Abrams, R., \& Clayden, J. (2020). Photocatalytic Difunctionalization of Vinyl Ureas by Radical Addition Polar Truce-Smiles Rearrangement Cascades. Angewandte Chemie - International Edition, 59(28), 1160011606. https://doi.org/10.1002/anie. 202003632

Peer reviewed version

Link to published version (if available):
10.1002/anie. 202003632

Link to publication record in Explore Bristol Research
PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online via Wiley at https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.202003632?af=R. Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research

General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/

Photocatalytic Difunctionalization of Vinyl Ureas by Radical Addition Polar Truce-Smiles Rearrangement Cascades

Roman Abrams and Jonathan Clayden*

Abstract

We report tandem alkyl-arylations and phosphonylarylations of vinyl ureas by way of a photocatalytic radical-polar crossover mechanism. Addition of photoredox-generated radicals to the alkene forms a new $C-C$ or $C-P$ bond and generates a product radical adjacent to the urea function. Reductive termination of the photocatalytic cycle generates an anion that undergoes a polar TruceSmiles rearrangement, forming a $C-C$ bond. The reaction is successful with a range of α-fluorinated alkyl sodium sulfinate salts and diarylphosphine oxides as radical precursors, and the conformationally accelerated Truce-Smiles rearrangement is not restricted by the electronic nature of the migrating aromatic ring. Formally the reaction constitutes an α, β-difuctionalisation of a carboncarbon double bond, and proceeds under mild conditions with visible light and a readily available organic photocatalyst. The products are α, α-diaryl alkylureas typically functionalised with F or P substituents that may be readily converted into α, α-diaryl alkylamines.

Modern photoredox catalysis has provided a wide range of methods for synthesis using radical intermediates under mild conditions. ${ }^{1}$ Of particular value for the functionalisation of alkenes are radical-polar crossover mechanisms, ${ }^{2,3}$ whereby the product of a radical addition is oxidised or reduced to a cation or anion in the redox reverse of the initial photocatalytic radical generation step. Radical-polar crossover mechanisms terminated by oxidation to a carbocation have been particularly successful in enabling the 1,2-disubstitution of alkenes. ${ }^{2}$ Reductive termination to give a carbanion is rarer, and has typically been used for photoredox-catalysed mono-functionalisations of alkenes, whereby the product carbanion is simply protonated. ${ }^{3}$ Nonetheless, a few examples of reductive photoredox radicalpolar crossover difunctionalisations have been recently reported (Scheme 1a). For example, Martin and co-workers have demonstrated that styrenes undergo alkyl-carboxylation where an intermediate benzylic carbanion formed is intercepted by carbon dioxide. ${ }^{4}$ Molander and co-workers ${ }^{5}$ and Aggarwal and coworkers ${ }^{6,7}$ have independently reported methods for the alkylcyclopropanation and cyclobutanation of alkenes by reductively terminated radical-polar crossover, in which the carbanion product of the photoredox cycle attacks a pendent alkyl halide. These methods allow the formation of two new $C-C$ bonds to the alkene, but there are as yet no reports of the use of the intermediary carbanion in carbon-aryl bond formation by, for example, an $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ mechanism.

[^0]

Scheme 1. (a) Photoredox-catalysed alkene difunctionalisations by reductive termination radical-polar crossover. (b) This work: N to C aryl migration of ureasubstituted anions generated by a reductive radical-polar crossover sequence.

Arylation at sp^{3} carbon centres typically involves transition metal-catalyzed coupling, ${ }^{8}$ but an appealing alternative, recently used for the stereoselective arylation of amino acid enolates, ${ }^{9}$ entails a conformationally induced Truce-Smiles rearrangement, which transfers an aryl ring to an anionic precursor. This transformation proceeds by a concerted $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ mechanism, ${ }^{10}$ but the use of a urea tether to impose a conformational preference on the intermediate ${ }^{11}$ means that - unlike the classical Truce-Smiles rearrangement, which typically proceeds only with electrondeficient aromatic rings ${ }^{12}$ - the electronic nature of the migrating aryl group is of little consequence to the reaction's outcome. ${ }^{9,13}$ The N to C aryl migration that results has been developed into a versatile transition metal-free route to a range of products including enantio-enriched α-quaternary amines, ${ }^{14 a-c}$ hydantoins, ${ }^{14 d, e}$ medium-ring heterocycles, ${ }^{14 f, g}$ and α-quaternary amino acids. ${ }^{14 \mathrm{~h}-\mathrm{j}}$

Anionic precursors for this C -arylation chemistry have been made by direct lithiation of benzylic ${ }^{15}$ or allylic ureas, ${ }^{16}$ by carbolithiation of a vinyl urea, ${ }^{17}$ or by deprotonation alpha to a carbony $1^{14 e, h-k}$ or nitrile. ${ }^{14 h, 18}$ Generating the anion instead by photoredox catalysis offers the opportunity to conduct Carylations under milder conditions, avoiding both strong base and transition metals, while also facilitating the preparation of previously inaccessible products. We envisaged that electrophilic radicals generated by a reductive quenching photoredox cycle would add to vinyl ureas 1 to form benzylic radicals 2 . Singleelectron reduction would generate an anion α to the urea 3 that would undergo rearrangement to an α, α-diaryl alkylurea 4 (Scheme 1b). This approach represents a simple way to form two C-C bonds, one to each carbon of an alkene, and would provide

Table 1. Optimisation studies. ${ }^{[a]}$

a] Reactions performed on a 0.1 mmol scale: light source 24 W blue LED strips (see ESI); reaction time 16 h . [b] Yield determined by ${ }^{19} \mathrm{~F}$ NMR using $\mathrm{CF}_{3} \mathrm{C}_{6} \mathrm{H}_{5}$ as internal standard. Isolated yield in parentheses (0.2 mmol scale reaction). [c] DMF used as solvent. [d] Oxidative cyclisation products formed: see ESI. [e] MeCN used as solvent. [f] Acetone used as solvent. [g] Reaction carried out in the dark. PC - photocatalyst.
the first example of a radical-polar crossover mechanism in which the carbanion product of the photoredox cycle is used in C-aryl bond formation.

The trifluoromethyl group is a desirable function in medicina chemistry, ${ }^{19}$ and ${ }^{\circ} \mathrm{CF}_{3}$ is a versatile electrophilic radical, readily generated by oxidation of sodium trifluoromethylsulfinate, $\mathrm{NaSO}_{2} \mathrm{CF}_{3}$, known as the Langlois reagent. ${ }^{20}$ 1,2,3,5-Tetrakis(carbazol-9-yl)-4,6-dicyano-benzene 7 (4CzIPN) was selected as an easily accessible photocatalyst that would render the conversion of 5 to 6 a transition-metal free process. ${ }^{21}$ However, initial attempts to transform 5 to 6 using 4CzIPN 7 yielded only products arising either from cleavage of the vinyl urea or from trifluoromethylation and oxidative cyclisation (Table 1, entry 1, see SI for structures). Oxidative products presumably arise from the sulfur dioxide by-product which can accept an electron $\left(\mathrm{SO}_{2}\right.$ oxidation potential: -0.8 V vs SCE$)^{22}$ from the radical anion of 4CzIPN (7 oxidation potential: -1.2 V vs SCE). ${ }^{21}$ Carbonate salts may be used to sequester sulfur dioxide by adsorption or direct reaction, ${ }^{23}$ and, gratifyingly, $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ was found to inhibit the formation of these unwanted products of net oxidation, giving 6 in 66% yield (entry 2). Replacing DMF with acetonitrile or acetone improved the yield of 6 to 94% (entries 3 and 4). Reducing the amount of $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ to 1 equivalent lowered the yield of 6 (Table 1, entry 5), but reducing the stoichiometry of 7 from 3.0 to 1.5 was tolerated and gave 6 in an isolated yield of 87% (entry 6). Other less oxidising photocatalysts were investigated but gave lower

Scheme 2. Scope of migrating aryl groups for the trifluoromethyl-arylation reaction. Reactions were carried out on a 0.20 mmol scale. The heat generated by the LEDs resulted in reaction temperatures of ca. $30^{\circ} \mathrm{C}$. Yields of product isolated by chromatography. $\mathrm{R}=-\mathrm{C}(\mathrm{O}) \mathrm{NHMe}$. [a] Acetone used as solvent. [b] MeCN used as solvent. [c] DMF used as solvent. [d] 3 equiv. of $\mathrm{NaSO}_{2} \mathrm{CF}_{3}$ used.
yields of 6 formation (Entries 7-9). Control experiments were carried out to confirm that both the light source and the photocatalyst are required for formation of $\mathbf{6}$ from 5 (entries 10 and 11).

These optimised conditions were applied to the trifluoromethyl-arylation of a range of vinylic ureas. Firstly, we explored the scope of aromatic rings that would undergo migratory coupling (Scheme 2). Fluorinated and brominated aromatics performed well under trifluoromethyl-arylation conditions to give their respective α, α-diaryl alkylureas 9a-9d. Notably, and consistent with related base-promoted rearrangements, arylation with relatively electron-rich phenyl (9e) and para-tolyl rings (9f) were successful when DMF was used as solvent. (Use of acetone or acetonitrile inhibited the rearrangement step, giving significant amounts of hydrotrifluoromethylated product). Likewise, meta-tolyl (9g) and meta-methoxy phenyl (9h) were both tolerated, giving the corresponding α, α-diarylalkylureas in good yield, as was the migration of electron-deficient aromatic rings (9i-k).

With the broad scope of the migrating rings established, we examined different aromatic rings α to the site of arylation that could facilitate the rearrangement of vinyl ureas (Scheme 3). Both chlorinated and iodinated aromatics were tolerated as functionality α to the site of arylation (91-n). Trifluoromethylarylation was successful with vinyl ureas bearing both electrondeficient trifluoromethylated and trifluoromethoxylated aromatic rings (90 and $9 p$), and electron-rich p-tolyl ($9 \mathbf{q}$) and p-methoxy phenyl (9r) groups. Even the thiophene-substituted substrates (9s and $9 t$) participated successfully. Furthermore, a cyclic vinyl urea - the dihydronaphthalene $\mathbf{8 u}$ - also underwent trifluoromethyl-

 90
$84 \%{ }^{[a]}$

9p
$9 p$
$71 \%^{[b]}$

9q
$9 \mathbf{9}$
$77 \%{ }^{[a]}$

$68 \%{ }^{[b],[c]}$

Scheme 3. Scope of vinylic substituents in the trifluoromethyl-arylation reaction. Reactions were carried out on a 0.20 mmol scale. The heat generated by the LEDs resulted in reaction temperatures of ca. $30^{\circ} \mathrm{C}$. Yields of product isolated by chromatography. $\mathrm{R}=-\mathrm{C}(\mathrm{O}) \mathrm{NHMe}$. [a] MeCN used as solvent. [b] Acetone used as solvent. [c] 2.5 equiv. of $\mathrm{CF}_{3} \mathrm{SO}_{2} \mathrm{Na}$ used.
arylation in good yield and with excellent anti-diastereoselectivity (9u).

Other sodium sulfinate radical precursors were also used without any alteration to our optimised conditions (Scheme 4). Specifically, product ureas incorporating difluoromethyl (10a), 1,1-difluoroethyl ($\mathbf{1 0 b}$) and 1,1-difluoroalkyl chains bearing chloro (10c) or azide (10d) were formed in good yields, as were those containing (2,2-difluoroethyl)benzene groups (10e-10g). Perfluorinated sodium alkylsulfinates were also successful precursors, giving products $\mathbf{1 0 h}$ and $\mathbf{1 0 i}$ in good yield. Sodium alkylsulfinates that were not α-fluorinated (e.g. sodium butanesulfinate) failed to react with the vinyl urea, presumably because the resulting radical is too electron-rich to add to the nucleophilic alkene.

Organophosphorus compounds have a range of applications, ${ }^{24}$ and may be prepared by the addition of phosphinoyl radicals to olefins. ${ }^{25}$ Nonetheless, examples of nonannulative arylphosphonylations of alkenes still remain sparse. ${ }^{26}$ We found that diarylphosphine oxides functioned effectively as radical precursors or the arylphosphonylation of vinyl urea $\mathbf{8 n}$ without any appreciable alteration to conditions, yielding 1,1-diaryl-2-phosphoryl ureas ($\mathbf{1 0 j - m}$) (Scheme 4).

The functional group tolerance of these reactions towards halo substituents is greater than that of related reactions involving organolithiums. ${ }^{17}$ The reactivity of these radicals also nicely complements that of the organolithium component of related carbolithiation reactions, which conversely work best with more nucleophilic organometallics. ${ }^{17}$

Scheme 4. Scope of sodium sulfinate and diarylphosphine oxides radical precursors. The heat generated by the LEDs resulted in reaction temperatures of ca. $30^{\circ} \mathrm{C}$. Yields of product isolated by chromatography. [a] contains 15% of $\mathrm{X}=\mathrm{SEt}$, originating from the commercial sodium sulfinate radical precursor. [b] 1.9 equiv. of sodium sulfinate radical precursor used. [c] DMF used as solvent. [d] MeCN used as solvent.

Diarylalkylamines are a class of compounds that are of medicinal interest ${ }^{27}$ that also find use as starting materials in the synthesis of nitrogen heterocycles. ${ }^{28}$ Straightforward conversion of trifluoromethylated α, α-diarylalkylurea products $9 m-p$ into trifluoromethyl-containing α, α-diarylalkylamines ($\mathbf{1 1 m - p \text {) was }}$ realised by solvolysis in n-butanol (Scheme 5). ${ }^{14 \mathrm{a}, 29}$ Our radical addition Truce-Smiles arylation method thus formally delivers the β-trifluoromethylation α-arylation of an amino group, a reaction not possible possible using existing radical-initiated Smiles rearrangements. ${ }^{30}$

Scheme 5. Solvolysis of trifluoromethyl-arylation products. Yields of product isolated by chromatography.

Experiments were carried out to probe the mechanism of the tandem alkylation-arylation reaction. None of the product urea 9d was formed when the reaction of 8 d was carried out in the presence of TEMPO, however no TEMPO adducts could be detected. ${ }^{31}$ Radical trap 1,1-diphenylethylene,, 2t,4,32 also attenuated formation of 9d, and gave the trifluoromethyl adduct 12, confirming that trifluoromethyl radical is generated under the reaction conditions in a redox-neutral manifold (Scheme 6a). This was further validated by Stern-Volmer luminescence studies, which showed that the excited state of $\mathbf{7}$ is quenched by
$\mathrm{NaSO}_{2} \mathrm{CF}_{3}\left(\mathrm{E}_{\mathrm{p} / 2}=1.05 \mathrm{~V}\right.$ vs SCE$)$ to a greater degree than vinyl urea (8 b : $\mathrm{E}_{\mathrm{p} / 2}=1.33 \mathrm{~V}$ vs SCE). Measurement of a quantum yield (Φ) of 0.18 for the reaction of $\mathbf{8} \mathbf{b}$ with $\mathrm{NaSO}_{2} \mathrm{CF}_{3}$, suggests that alternative radical chain mechanisms are not operative (See ESI for details).

(b) Direct aryl migration of the hydrotrifluoromethylation product

9face

(c) Migrating aryl isotope labelling studies

(d) Isotope labelling studies with $\mathrm{D}_{2} \mathrm{O}$

14

15

8g

Solvent	Additive	Yield 9g	Yield 16
MeCN	None	79\%	9\%
MeCN	$\mathrm{D}_{2} \mathrm{O}$ (10.0 equiv)	20\%	55\% (82\% D)
Acetone	None	70\%	6\%
Acetone	$\mathrm{D}_{2} \mathrm{O}$ (10.0 equiv)	25\%	59\% (71\% D)

Scheme 6. Preliminary mechanistic studies. (a) Radical probe experiments. (b) Negligible contribution from a sequential hydrotrifluoromethylation/C-H arylation pathway. (c) Absence of deuterium incorporation into migrating aryl ring from solvent. (d) Inhibition of rearrangement step and deuteration by $\mathrm{D}_{2} \mathrm{O}$.

Although we assume that the N to C aryl migration occurs by an anionic intramolecular $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ (Truce-Smiles) mechanism, its electronic versatility is also characteristic of reactions mediated by radicals. ${ }^{30,33}$ Experiments were carried out to establish the nature of the reaction intermediates and to distinguish between these two mechanistic possibilities. We ruled out the participation of a neutral hydrotrifluoromethylation intermediate 13 by
resubjecting 13 to the conditions of the reaction: only trace amounts of $9 f$ were formed (Scheme 6b).

Several experiments were conducted to distinguish a radical from an anionic intermediate α to N. Reaction of $\mathbf{8 b}$ in deuterated solvents (Scheme 6c) led to no deuterium incorporation into the migrating aryl ring of $\mathbf{8 b}$. This result implies that a 1,5 -aryl translocation by 5 -exo-trig radical cyclisation, followed by hydrogen atom abstraction by the cyclohexadienyl radical and elimination of the nitrogen leaving group does not occur.

Experiments with vinyl urea 14, which can undergo radical addition but not rearrangement, showed that under the conditions of the reaction it is possible to form an anion α to N : in the presence of $\mathrm{D}_{2} \mathrm{O}$, significant amounts of deuterated product 15 were formed (Scheme 6d). Direct indication of the intermediacy of an anion was gained by performing the trifluoromethyl-arylation of 8 g in the presence of deuterium oxide as an anion trap. In both MeCN and acetone, the major product became the (mainly deuteratred) product 16, showing that a proton source can interrupt the migration. A similar switch in selectivity from $9 f$ to 13 was also noted in the trifluoromethyl-arylation of $8 f$ with solvents of lower $p \mathrm{~K}_{\mathrm{a}}$ (See ESI for details).

In summary, a transition-metal free difunctionalisation (alkyl-arylation and phosphoryl-arylation) of vinyl ureas is made possible using a readily available organic photocatalyst. The tandem reaction sequence entails the first example of polar Truce-Smiles arylations initiated by photoredox catalysis and first example of a radical addition leading to Truce-Smiles arylation α to nitrogen. The transformation is tolerant of a range of functional groups and aromatic rings, and provides an operationally simple method for preparing fluorinated and phosphonylated α, α diarylalkylureas, which may be converted into functionalised α, α diarylalkylamines.

Acknowledgements

We thank Ellie Stammers and Dr Alastair Lennox for assistance with cyclic voltammetry experiments. The work was supported by the EPSRC Centre for Doctoral Training in Catalysis.

Keywords: photochemistry • rearrangement • $\mathrm{S}_{\mathrm{N}} \mathrm{Ar} \cdot$ urea \cdot trifluoromethylation
[1] For selected reviews, see: a) C. K. Prier, D. A. Rankic, D. W. C. MacMillan, Chem. Rev., 2013, 113, 5322-5363; b) D. M. Schultz, T. P. Yoon, Science, 2014, 343, 1239176; c) M. H. Shaw, J. Twilton, D. W. C. MacMillan, J. Org. Chem., 2016, 81, 6898-6926; d) J. J. Douglas, M. J. Sevrin, C. R. J. Stephenson, Org. Process Res. Dev., 2016, 20, 11341147; e) N. A. Romero, D. A. Nicewicz, Chem. Rev., 2016, 116, 1007510166; f) C.-S. Wang, P. H. Dixneuf, J.-F. Soulé, Chem. Rev., 2018, 118, 167532-167585.
[2] For selected examples involving oxidative termination, see: a) Y. Yasu, T. Koike, M. Akita, Angew. Chem. Int. Ed., 2012, 51, 9567-9571; Angew. Chem., 2012, 124, 9705-9709; b) C.-J. Yao, Q. Sun, N. Rastogi, B. König, ACS Catal., 2015, 5, 2935-2938; c) G. Dagousset, A. Carboni, E. Magnier, G. Masson, Org. Lett., 2014, 16, 4340-4343; d) A. Carboni, G. Dagousset, E. Magnier, G. Masson, Synthesis, 2015, 47, 2439-2445; e) A. Carboni, G. Dagousset, E. Magnier, G. Masson, Chem. Commun., 2014, 50, 14197-14200; f) M. Silvi, C. Sandford, V. K. Aggarwal, J. Am.

Chem. Soc., 2017, 139, 5736-5739; g) M. Silvi, V. K. Aggarwal, J. Am. Chem. Soc., 2019, 141, 9511-9515.
[3] For selected examples involving reductive termination, see: a) K. Okada, K. Okamoto, N. Morita, K. Okubo, M. Oda, J. Am. Chem. Soc., 1991, 113, 9401-9402; b) P. Kohls, D. Jadhav, G. Pandey, O. Reiser, Org. Lett., 2012, 14, 672-675; c) Y. Miyake, K. Nakajima, Y. Nishibayashi, J. Am Chem. Soc., 2012, 134, 3338-3341; d) Y. Yasu, T. Koike, M. Akita, Adv. Synth. Catal., 2012, 354, 3414-3420; e) L. Chu, C. Ohta, Z. Zuo, D. W. C. MacMillan, J. Am. Chem. Soc., 2014, 136, 10886-10889; f) L. Pitzer, L. J. Schwarz, F. Glorius, Chem. Sci., 2019, 10, 8285-8291.
[4] a) V. R. Yatham, Y. Shen, R. Martin, Angew. Chem. Int. Ed., 2017, 56, 10915-10919; Angew. Chem., 2017, 129, 11055-11059; b) J. Hou, A. Ee, H. Cao, H.-W. Ong, J.-H. Xu, J. Wu, Angew. Chem. Int. Ed., 2018, 57, 17220-17224; Angew. Chem., 2018, 130, 17466-17470.
[5] a) J. P. Phelan, S. B. Lang, J. S. Compton, C. B. Kelly, Ryan Dykstra, O. Gutierrez, G. A. Molander, J. Am. Chem. Soc., 2018, 140, 8037-8047; b) J. A. Milligan, J. P. Phelan, V. C. Polites, C. B. Kelly, G. A. Molander, Org. Lett., 2018, 20, 6840-6844.
[6] C. Shu, R. S. Mega, B. J. Andreassen, A. Noble, V. K. Aggarwal, Angew. Chem. Int. Ed., 2018, 57, 15430-15434; Angew. Chem., 2018, 130, 15656-15660.
[7] C. Shu, A. Noble, V. K. Aggarwal, Angew. Chem. Int. Ed., 2019, 58 3870-3874; Angew. Chem., 2019, 131, 3910-3914.
[8] For selected reviews, see: a) O. Baudoin, Chem. Soc. Rev., 2011, 40, 4902-491; b) A. F. M. Noisier, M. A. Brimble, Chem. Rev., 2014, 114, $8775-8806$; c) Z. Huang, H. N. Lim, F. Mo, M. C. Young, G. Dong, Chem. Soc. Rev., 2015, 44, 7764-7786; d) J. He, M. Wasa, K. S. L. Chan, Q. Shao, J.-Q. Yu, Chem. Rev., 2017, 117, 8754-8786. For selected examples, see: e) S. Aspin, A.-S. Goutierre, P. Larini, R. Jazzar, O. Baudoin, Angew. Chem. Int. Ed., 2012, 51, 10808-10811; f) N. Martin, C. Pierre, M. Davi, R. Jazzar, O. Baudoin, Chem. Eur. J., 2012, 18, 4480 4484; g) D. Katayev, M. Nakanishi, T. Bürgi, E. P. Kündig, Chem. Sci., 2012, 3, 1422-1425; h) T. Saget, N. Cramer, Angew. Chem. Int. Ed., 2012, 51, 12842-12845; i) R. Shang, L. llies, A. Matsumoto, E. Nakamura, J. Am. Chem. Soc., 2013, 135, 6030-6032; j) M. Li, J. Dong, X. Huang, K. Li, Q. Wu, F. Song, J. You, Chem. Commun., 2014, 50, 3944-3946; k) X. Cong, Y. Li, Y. Wei, X. Zeng, Org. Lett., 2014, 16, 3926-3929; I) B. Wang, W. A. Nack, G. He, S.-Y. Zhang, G. Chen, Chem. Sci., 2014, 5, 3952-3957; m) D. P. Affron, O. A. Davis, J. A. Bull, Org. Lett., 2014, 16, 4956-4959; n) Y. Liu, H. Ge, Nat. Chem., 2017, 9, 26-32; q) B. Perry, T. F. Brewer, P. J. Sarver, D. M. Schultz, D. A. DiRocco, D. W. C. MacMillan, Nature, 2018, 560, 70-75; r) Z. Zuo, D. T. Ahneman, L. Chu, J. A. Terrett, A. G. Doyle, D. W. C. MacMillan, Science, 2014, 345, 437; s) J. Twilton, M. Christensen, D. A. DiRocco, R. T. Ruck, I. W. Davies, D. W. C. MacMillan, Angew. Chem. Int. Ed., 2018, 57, 5369; Angew. Chem., 2018, 130, 5467; t) R. Alam, G. A. Molander, J. Org. Chem., 2017, 82, 13728; u) A. Vara, N. R. Patel, G. A. Molander, ACS Catal., 2017, 7, 3955; v) Z. Zuo, H. Cong, W. Li, J. Choi, G. C. Fu, D. W. C. MacMillan, J. Am. Chem. Soc., 2016, 138, 1832; w) A. García-Domínguez, R. Mondal, C. Nevado, Angew. Chem. Int. Ed., 2019, 58, 12286-12290; Angew. Chem., 2019, 131, 12414-12418.
[9] D. J. Leonard, J. W. Ward, J. Clayden, Nature, 2018, 562, 105-109.
[10] a) C. N. Neumann, T. Ritter, Acc. Chem. Res., 2017, 50, 2822-2833; b) E. E. Kwan, Y. Zeng, H. A. Besser, E. N. Jacobsen, Nat. Chem., 2018, 10, 917-923; c) A. J. J. Lennox, Angew. Chem. Int. Ed., 2018, 57, 14686 14688; Angew. Chem., 2018, 130, 14898-14900; d) S. Rohrbach, A. J. Smith, J. Hao Pang, D. L. Poole, T. Tuttle, S Chiba, J. A. Murphy, Angew. Chem. Int. Ed., 2019, 58, 16368-16388; Angew. Chem., 2019, 131, 16518-16540.
[11] a) G. Lepore, S. Migdal, D. E. Blagdon, M. Goodman, J. Org. Chem., 1973, 38, 2590-2594; b) U. Lepore, G. Castronuovo Lepore, P. Ganis, G. Germain, M. Goodman, J. Org. Chem., 1976, 41, 2134-2137; c) K. Yamaguchi, G. Matsumura, H. Kagechika, I. Azumaya, Y. Ito, A. Itai, K. Shudo, J. Am. Chem. Soc., 1991, 113, 5474-5475; d) T. L. Kurth, F. D. Lewis, J. Am. Chem. Soc., 2003, 125, 13760-13767; e) M. S. Betson, A. Bracegirdle, J. Clayden, M. Helliwell, A. Lund, M. Pickworth, T. J. Snape, C. P. Worrall, Chem. Commun., 2007, 754-756; f) J. Clayden, L. Lemiègre, G. A. Morris, M. Pickworth, T. J. Snape, L. H. Jones, J. Am. Chem. Soc., 2008, 130, 15193-15202; g) J. Clayden, L. Lemiègre, M. Pickworth, L. Jones, Org. Biomol. Chem., 2008, 6, 2908-2913; h) J. Clayden, M. Pickworth, L. H. Jones, Chem. Commun., 2009, 547-549; i) J. Clayden, H. Turner, Tetrahedron Lett., 2009, 50, 3216-3219.
[12] a) M. W. Wilson, S. E. Ault-Justus, J. C. Hodges, J. R. Rubin, Tetrahedron, 1999, 55, 1647-1656; b) W. R. Erickson, M. J. McKennon, Tetrahedron Lett., 2000, 41, 4544; c) A. Kimbaris, J. Cobb, G. Tsakonas, G. Varvounis, Tetrahedron, 2004, 60, 8807-8815; d) L. H. Mitchell, N. C. Barvian, Tetrahedron Lett., 2004, 45, 5669-5671; e) T. J. Snape, Chem. Soc. Rev., 2008, 37, 2452-2458; f) V. Lupi, M. Penso, F. Foschi, F. Gassa, V. Mihali, A. Tagliabue, Chem. Commun. 2009, 5012-5014; g) F. Foschi, D. Landini, V. Lupi, V. Mihali, M. Penso, T. Pilati, A. Tagliabue, Chem. Eur. J., 2010, 16, 10667-10670; h) C. Dey, D. Katayev, K. E. O. Ylijoki, E. P. Kendig, Chem. Commun., 2012, 48, 10957-10959; i) Y. Liu, X. Zhang, Y. Ma, C. Ma, Tetrahedron Lett., 2013, 54, 402-405; j) M. Getlik, B. J. Wilson, M. M. Morshed, I. D. G. Watson, D. Tang, P. Subramanian, R. Al-awar, J. Org. Chem., 2013, 78, 5705-5710; k) D. Ameen, T. J. Snape, Eur. J. Org. Chem., 2014, 1925-1934; I) P. Smyslová, K. Kisseljova, V. Krchňák, ACS Comb. Sci. 2014, 16, 500-505; m) R. Kosowan, Z. W'Giorgis, R. Grewal, T. E. Wood, Org. Biomol. Chem., 2015, 13, 6754-6765; n) O. K. Rasheed, I. R. Hardcastle, J. Raftery, P. Quayle, Org. Biomol. Chem., 2015, 13, 8048-8052; o) V. GiménezNavarro, T. Volná, V. Krchňák, ACS Comb. Sci., 2015, 17, 433-436; p) C. M. Holden, S. M. A. Sohel, M. F. Greaney, Angew. Chem. Int. Ed., 2016, 55, 2450-2453; Angew. Chem. 2016, 128, 2496-2499; q) S. Coulibali, T. Godou, S. Canesi, Org. Lett., 2016, 18, 4348-4351; r) A. R. P. Henderson, J. R. Kosowan, T. E. Wood, Can. J. Chem., 2017, 95, 483-504; s) C. M. Holden, M. F. Greaney, Chem. Eur. J., 2017, 23, 89929008.
[13] A. M. Fournier, C. J. Nichols, M. A. Vincent, I. H. Hillier, J. Clayden, Chem. Eur. J., 2012, 18, 16478-16490.
[14] a) J. Clayden, U. Hennecke, Org. Lett., 2008, 10, 3567-3570; b) M. Tait, M. Donnard, A. Minassi, J. Lefranc, B. Bechi, G. Carbone, P. O’Brien, J. Clayden, Org. Lett., 2013, 15, 34-37; c) J. Maury, W. Zawodny, J. Clayden, Org. Lett., 2017, 19, 472-475; d) F. Fernández-Nieto, J. Mas Roselló, S. Lenoir, S. Hardy, J. Clayden, Org. Lett. 2015, 17, 3838-384; e) R. K. Saunthwal, M. T. Cornall, R. Abrams, J. W. Ward, J. Clayden, Chem. Sci., 2019, 10, 3408-3412; f) J. E. Hall, J. V. Matlock, J. W. Ward, K. V. Gray, J. Clayden, Angew. Chemie Int. Ed., 2016, 55, 11153-11157; Angew. Chem., 2016, 128, 11319-11323 g) J. E. Hill, J. V. Matlock, Q. Lefebvre, K. G. Cooper, J. Clayden, Angew. Chem. Int. Ed., 2018, 57, 5788-5791; Angew. Chem., 2018, 130, 5890-5893; h) R. C. Atkinson, D. J. Leonard, J. Maury, D. Castagnolo, N. Volz, J. Clayden, Chem. Commun., 2013, 49, 9734-9736; i) K. Tomohara, T. Yoshimura, R. Hyakutake, P. Yang, T. Kawabata, J. Am. Chem. Soc., 2013, 135, 1329413297; j) R. C. Atkinson, F. Fernández-Nieto, J. Mas Roselló, J. Clayden, Angew. Chemie Int. Ed., 2015, 54, 8961-8965; Angew. Chem., 2015, 127, 9089-9093.
[15] J. Clayden, J. Dufour, D. M. Grainger, M. Helliwell, J. Am. Chem. Soc., 2007, 129, 7488-7489.
$[16]$ a) D. J. Tetlow, U. Hennecke, J. Raftery, M. J. Waring, D. S. Clarke, J. Clayden, Org. Lett., 2010, 12, 5442-5445; b) M. B. Tait, P. A. Ottersbach, D. J. Tetlow, J. Clayden, Org. Proc. Res. Dev., 2014, 18, 1245-1252.
[17] a) J. Clayden, M. Donnard, J. Lefranc, A. Minassi, D. J. Tetlow, J. Am. Chem. Soc., 2010, 132, 6624-6625; b) J. Lefranc, A. Minassi, J. Clayden. Beilstein J. Org. Chem., 2013, 9, 628-632.
[18] J. Mas-Roselló, M. Okoh, J. Clayden, Chem. Commun., 2018, 54, 10985 10988.
[19] a) K. Müller, C. Faeh, F. Diederich, Science, 2007, 317, 1881-1886; b) S. Purser, P. R. Moore, S. Swallow, V. Gouverneur, Chem. Soc. Rev., 2008, 37, 320-330; c) W. K. Hagmann, J. Med. Chem., 2008, 51, 4359-4369.
[20] M. Lu, Z. Liu, J. Zhang, Y. Tian, H. Qin, M. Huang, S. Hua, S. Cai, Org. Biomol. Chem., 2018, 16, 6564-6568.
[21] a) J. Luo, J. Zhang, ACS Catal. 2016, 6, 873-877; b) E. Speckmeier, T. G. Fischer, K. Zeitler, J. Am. Chem. Soc., 2018, 140, 15353-15365.
[23] a) T. C. Keener, W. T. Davis, JAPCA, 1984, 34, 651-654; b) S. Kimura, J. M. Smith, AIChE J., 1987, 33, 1522-1532; c) H. T. Dang, V. D. Nguyen, H. H. Pham, H. D. Arman, O. V. Larionov, Tetrahedron, 2019, 75, 3258 3264.
[24] a) M. Steinmann, M. Wagner F. R. Wurm, Chem. - Eur. J., 2016, 22, 17329-17338; b) D. Yang, G. Yang, P. Yang, R. Lv, S. Gai, C. Li, F. He, J. Lin, Adv. Funct. Mater., 2017, 27, 1700371-1700371; c) R. S. Ullah, L. Wang, H. Yu, N. M. Abbasi, M. Akram, M. Saleem, M. Haroon, R. U. Khan, RSC Adv., 2017, 7, 23363-23391; d) L. A. Savas, T. K. Deniz, U. Tayfun, M. Dogan, Polym. Degrad. Stab., 2017, 135, 121-129; e) L. Lu, X. Qian, Z. Zeng, S. Yang, G. Shao, H. Wang, J. Jin, X. Xu, J. Appl. Polym. Sci., 2017, 134, 45105; f) L. Duan, H. Yang, Y. Shi, Y. Hou, Y Zhu, Z. Gui, Y. Hu, Ind. Eng. Chem. Res., 2016, 55, 10218-10231; g) X. Zhao, H. V. Babu, J. Llorca, D. Y. Wang, RSC Adv., 2016, 6, 59226 59236; h) J. Jing, Y. Zhang, X. Tang, Z. Fang, RSC Adv., 2016, 6, 4901949027; i) G. Abbenante, R. Hughes, R. H. Prager, Aust. J. Chem., 1997, 50, 523-528; j) W. Jiang, J. J. Fiordeliso, G. Allan, O. Linton, P. Tannenbaum, J. Xu, P. Zhu, J. Gunnet, K. Demarest, S. Lundeen, Z. Sui, Bioorg. Med. Chem. Lett., 2007, 17, 1471-1474; k) W. J. Tang, X. M. Zhang, Chem. Rev., 2003, 103, 3029-3070; I) J. H. Xie, Q. L. Zhou, Acc. Chem. Res. 2008, 41, 581-593. m) M. M. Pereira, M. J. Calvete, R. M. Carrilho, A. R. Abreu, Chem. Soc. Rev. 2013, 42, 6990-7027; n) H. W. He, Phosphorus, Sulfur Silicon Relat. Elem., 2008, 183, 266-279.
[25] a) Y. Z. Gao, G. Tang, Y. F. Zhao, Phosphorus, Sulfur Silicon Relat. Elem., 2017, 192, 589-596; b) W. Wei, J. X. Ji, Angew. Chem., Int. Ed., 2011, 50, 9097-9099; c) V. Gutierrez, E. Mascaro, F. Alonso, Y. Moglie, G. Radivoy, RSC. Adv., 2015, 5, 65739-65744; d) G. Y. Zhang, C. K. Li, D. P. Li, R. S. Zeng, A. Shoberu, J. P. Zou, Tetrahedron, 2016, 72, 29722978; e) T. Taniguchi, A. Idota, S. I. Yokoyama, H. Ishibashi, Tetrahedron Lett., 2011, 52, 4768-4770; f) Y. Gao, J. Wu, J. Xu, P. Zhang, G. Tang, Y. Zhao, RSC Adv., 2014, 4, 51776-51779; g) S. F. Zhou, D. P. Li, K. Liu, J. P. Zou, O. T. Asekun, J. Org. Chem., 2015, 80, 1214-1220; h) V. Richard, H. C. Fisher, J. L. Montchamp, Tetrahedron Lett., 2015, 56, 3197-3199; i) C. W. Zhang, Z. D. Li, L. Zhu, L. M. Yu, Z. T. Wang, C. Li, J. Am. Chem. Soc., 2013, 135, 14082-14085; j) X. Mi, C. Wang, M. Huang, Y. Wu, Y. Wu, Org. Biomol. Chem., 2014, 12, 8394-8397; k) J. Xu, X. Li, Y. Gao, L. Zhang, W. Chen, H. Fang, G. Tang, Y. F. Zhao, Chem. Commun., 2015, 51, 11240-11243; I) Q. Fu, Z.-Y. Bo, J.-H. Ye, T. Ju, H. Huang, L.-L. Liao, D.-G. Yu, Nat. Commun., 2019, 10, 3592.
[26] a) X.-Q. Chu, Y. Zi, H. Meng, X.-P. Xu, S.-J. Ji, Chem. Commun., 2014, 50, 7642-7645; b) L. Li, Q.-S. Gu, N. Wang, P. Song, Z.-L. Li, X.-H. Li, F.-L. Wang, X.-Y. Liu, Chem. Commun., 2017, 53, 4038-4041; c) W. Kong, E. Merino, C. Nevado, Angew. Chem. Int. Ed., 2014, 53, 5078 5082; Angew. Chem., 2014, 126, 5178-5182; d) D. Chen, Z. Wu, Y. Yao, C. Zhu, Org. Chem. Front., 2018, 5, 2370-2374.
[27] a) G. Ellison, Brain Res. Rev., 1995, 20, 250-267; b) P. Herold, J. W. Herzig, J. Med. Chem., 1995, 38, 2946-2954; c) K. Kamijyo, M. Moriya, T. Suzuki, A. Takezawa, WO 2009119726 A1, 2009; d) P. L. Kotian, Y. S. Babu, V. S. Kumar, W. Zhang, L. Vogeti, WO 2017059178 A1, 2017; e) K. Biswas, J. Brown, J. J. Chen, V. K. Gore, S. Harried, D. B. Horne, M. R. Kaller, V. V. Ma, T. T. Nguyen, K. Sham, W. Zhong, wo 2014025651 A1, 2014; f) Y. Hu, D. Cai, J. Zhu, P. Dong, M. Li, K. L. Greenman, J. Dong, T.-L. Wang, WO 2018130227 A1, 2018; g) M. E. Salvati, H. Finlay, L. S. Harikrishnan, J. Jiang, J. A. Johnson, M. G. Kamau, R. M. Lawrence, M. M. Miller, J. X. Qiao, T. C. Wang, Y. Wang, W. Yang, WO 2007062314 A2, 2007, h) R. D. Dally, T. A. Woods, WO 2014143601 A1, 2014, i) T. L Hough, P. S Gates, WO 9405644 A1, 1994.
[28] a) A. B. Weinstein, J. A. Ellman, Org. Lett., 2016, 18, 3294-3297; b) Y. Li, R. Wang, T. Wang, X.-F. Cheng, X. Zhou, F. Fei, X.-S. Wang, Angew. Chem. Int. Ed., 2017, 56, 15436-15440; Angew. Chem., 2017, 129, 15638-15642; c) D. Grosheva, N. Cramer, Angew. Chem. Int. Ed., 2018, 57, 13644-13647; Angew. Chem., 2018, 130, 13832-13835; d) X.-F. Cheng, T. Wang, Y. Li, Y. Wu, J. Sheng, R. Wang, C. Li, K.-J. Bian, X.S. Wang, Org. Lett., 2018, 20, 6530-6533.
[29] M. Hutchby, C. E. Houlden, J. G. Ford, S. N. G. Tyler, M. R. Gagné, G. C. Lloyd-Jones, K. I. Booker-Milburn, Angew. Chem., Int. Ed., 2009, 48, 8721-8724.
[30] a) M. Pudlo, I. Allart-Simon, B. Tinant, S. Gerard, J. Sapi, Chem. Commun., 2012, 48, 2442-2444; b) W. Kong, M. Casimiro, N. Fuentes, E. Merino, C. Nevado, Angew. Chem. Int. Ed., 2013, 52, 13086-13090; Angew. Chem., 2013, 125, 13324-13328; c) N. Fuentes, W. Kong, L. Fernandez-Sanchez, E. Merino, C. Nevado, J. Am. Chem. Soc. 2015, 137, 964-973; d) S. W. Crossley, R. M. Martinez, S. Guevara-Zuluaga, R. A. Shenvi, Org. Lett., 2016, 18, 2620-2623; e) H. Huang, Y. Li, J. Org. Chem., 2017, 82, 4449-4457; f) J. Yu, D. Wang, Y. Xu, Z. Wu, C. Zhu, Adv. Synth. Catal., 2018, 360, 744-750; g) T. M. Monos, R. C. McAtee, C. R. J. Stephenson, Science, 2018, 361, 1369-1373;) h) M.-W. Zheng, X. Yuan, Y.-S. Cui, J.-K. Qiu, G. Li, K. Guo, Org. Lett., 2018, 20, 77847789; i) D. M. Whalley, H. A. Duong, M. F. Greaney, Chem. Eur. J., 2019, 25, 1927-1930.
[31] No TEMPO-CF 3 adduct could be detected by ${ }^{19}$ F NMR. This may indicate that TEMPO reaction inhibition is due to oxidation of TEMPO over $\mathrm{CF}_{3} \mathrm{SO}_{2} \mathrm{Na}$. SCE: $\mathrm{E}_{0 \mathrm{x}}\left(\mathrm{CF}_{3} \mathrm{SO}_{2} \mathrm{Na}\right)=1.05 \mathrm{~V}, \mathrm{E}_{0 \mathrm{x}}(\mathrm{TEMPO})=0.62 \mathrm{~V} . \mathrm{X} .-$ Y. Qian, S.-Q. Li, J. Song, H.-C. Xu, ACS Catal., 2017, 74, 2730-2734.
[32] For selected examples of the use of 1,1-diphenylethylene as a radical inhibitor: (a) J. J. Lubinkowski, J. W. Knapczyk, J. L. Calderon, L. R. Petit, W. E. McEwen, J. Org. Chem., 1975, 40, 3010-3015; (b) H. Seo, M. H. Katcher, T. F. Jamison, Nat. Chem., 2017, 9, 453-456.
[33] a) J. J. Köhler, W. N. Speckamp, Tetrahedron Lett., 1977, 18, 631-634; b) W. B. Motherwell, A. M. K.Pennell, Chem. Commun., 1991, 877-879; c) W. Kong, M. Casimiro, E. Merino, C. Nevado, J. Am. Chem. Soc., 2013, 135, 14480-14483; d) W. Kong, N. Fuentes, A. Garcia-Dominguez, E. Merino, C. Nevado, Angew. Chem. Int. Ed., 2015, 54, 2487-2491; Angew. Chem., 2015, 127, 2517-2521; e) G. Zheng, Y. Li, J. Han, T. Xiong, Q. Zhang, Nat. Commun. 2015, 6, 7011; f) J. J. Douglas, H. Albright, M. J. Sevrin, K. P. Cole, C. R. J. Stephenson, Angew. Chem. Int. Ed., 2015, 54, 14898-14902; Angew. Chem., 2015, 127, 15111-15115; g) W. Li, W. Xu, J. Xie, S. Yu, C. Zhu, Chem. Soc. Rev., 2018, 47, 654-667; h) E. Brachet, L. Marzo, M. Selkti, B. König, P. Belmont, Chem. Sci., 2016, 7, 5002-5006; i) C. Pan, Q. Ni, Y. Fu, J.-T. Yu, J. Org. Chem., 2017, 82, 7683-7688; j) D. Alpers, K. P. Cole, C. R. J. Stephenson, Angew. Chem. Int. Ed., 2018, 57, 12167-12170; Angew. Chem., 2018, 130, 1234412348; k) Y. Li, B. Hu, W. Dong, X. Xie, J. Wan, Z. Zhang, J. Org. Chem., 2016, 81, 7036-7041; I) X. Gao, C. Li, Y. Yuan, X. Xie, Z. Zhang, Org. Biomol. Chem., 2020, 18, 263-271.

COMMUNICATION

Cascade formation of two C-C bonds at an electron-rich alkene is made possible by sequential capture of a radical (by intermolecular addition) and an anion (by intramolecular aromatic substitution), each formed in the photoredox cycle from the same organic photocatalyst.

Roman Abrams and Jonathan Clayden*

Page No. - Page No.

Photocatalytic Difunctionalization of Vinyl Ureas by Radical Addition Polar TruceSmiles Rearrangement Cascades

[^0]: [a] Mr. R. Abrams, Prof. Jonathan Clayden School of Chemistry, University of Bristol Cantock's Close, Bristol, BS8 1TS (UK)
 E-mail: j.clayden@bristol.ac.uk
 Supporting information for this article is given via a link at the end of the document.((Please delete this text if not appropriate))

