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ABSTRACT 

Failure of dermal protection or repair mechanisms might lead to visibly aged skin. The study 

aimed to identify genetic associations with perceived age. A genome-wide association study 

was undertaken in 423,992 adult participants of UK Biobank, using questionnaire data on 

perceived age and genetic data imputed to the Haplotype Reference Consortium imputation 

panel. Seventy-four to our knowledge previously unreported and independent associated 

genetic loci were identified (P<5x10-8), which were enriched for cell signaling pathways 

including the NEK6 and SMAD2 subnetworks. Common genetic variation was estimated to 

account for 14% of variation in perceived age and the heritability of perceived age was 

partially shared with that of 75 other traits including multiple traits representing adiposity, 

suggesting that perceived age may be a useful proxy trait in genetic association studies. 

 

INTRODUCTION 

Skin is the interface between the internal and external environment and has functions to 

prevent and repair damage from exogenous factors such as ultraviolet (UV) light and bacteria 

(Lee et al., 2006). Studies which characterize the biological mechanisms underlying normal 

skin barrier and repair functions may provide insight into diseases where these mechanisms 

fail (Williams, 2005) such as atopy, proxy phenotypes for skin response to exogenous factors 

and improve understanding of these mechanisms. 

One challenge is the ability of skin to respond to UV light, which has been explored using 

genome-wide association studies (GWAS) for proxy phenotypes such as self-reported tanning 

ability (Nan et al., 2009, Visconti et al., 2018), identifying a range of associated loci. 

Objective or subjective measures of skin age might represent the ability of skin to respond to 

a wider range of environmental challenges. Studies have investigated genetic factors 
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associated with skin age, rationalizing that failure of photoprotective or other dermal integrity 

mechanisms will lead to visibly aged skin (Law M. H. et al., 2017, Liu et al., 2016). The 

results of these studies and GWAS investigating self-reported tanning identified association at 

the melanocortin 1 receptor (MC1R), which regulates pigmentation. Other genes identified 

have been linked to skin and hair pigmentation, poor tanning ability, increased freckling and 

skin cancers (Duffy et al., 2004, Duffy et al., 2010, Han et al., 2008, Han et al., 2011, Kita 

and Fraser, 2016, López et al., 2014, Sulem et al., 2007, Zhang M. et al., 2013). This apparent 

similarity in findings for objective and subjective measures of skin function is mirrored in 

studies where multiple measures of skin appearance and function are available in the same 

participants (Oyetakin-White et al., 2015).  

We reason that subjective measures of perceived age may act as a proxy for underlying 

dermal integrity and photoprotective mechanisms. This study aims to characterize genetic 

associations with perceived age focusing on understanding heritability, identify genetic loci 

and understand whether genetic mechanisms regulating dermal integrity are shared with other 

risk factors or diseases. 

 

RESULTS  

Participants 

A GWAS was performed for perceived age. After final exclusions, analysis included 423,992 

adult participants. Of these, 8,630 reported looking older than their biological age, 103,300 

reported looking about their age and 312,062 reported looking younger than their biological 

age. There were trends with both age and sex, where females were more likely to report 

looking young for their age than males, and older participants were more likely to report 

looking young for their age than young participants (S1 Table). As there was an imbalance of 
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responses in these three groups the effective statistical power of the experiment was smaller 

than the total sample size (see S1 Text for an estimate of effective sample size).  

Total heritable contribution 

After final quality control, approximately 9.6 million single nucleotide variants (SNVs) with 

MAF of 0.1% or greater were tested for association. There was evidence for inflation in test 

statistics (genomic control factor [λGC]=1.49), which is typical for large studies of complex, 

polygenic traits and lower than that reported in recent studies of height and body mass index 

(BMI) (Yengo et al., 2018). LDSR analysis estimated that 14 % (SE 0.6%) of variation in 

perceived age was due to effects of common genetic variants, and that polygenic heritability 

rather than inflationary bias was responsible for most of the inflation in λGC (LDSR 

ratio=0.09).  

Single variant findings  

There was evidence for association at 5,395 SNVs representing 81 independent signals of 

association (p<5x10-8). 74 represented to our knowledge previously unreported discoveries, 

while 7 were in the region of loci previously reported for a skin-appearance or facial-age- 

related trait (Figure 1). A subset of lead variants are presented in Table 1, and full results are 

provided in S2 Table. 

Of these genetic loci, the strongest statistical evidence was seen at C9orf66-DOCK8 with a 

lead signal carried by rs520015_C (EAF 0.51, OR 1.07, P=1.0x10-58). SNPs were mapped to 

genes using positional mapping tools in FUMA (Watanabe et al., 2017). Rs520015 was 

annotated as an intergenic variant in LD with a missense variant within C9orf66 (rs481905, 

r2=0.81) and multiple intronic variants within DOCK8 (e.g. rs2484966, r2=0.88).  

Of the genetic loci discovered, the largest effect size of a minor allele was estimated for 

rs139356332_G (EAF 0.98, OR 0.90, P=8.1x10-13), an uncommon intronic variant within 
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MFAP4. This gene encodes an extracellular glycoprotein which is thought to contribute to 

organization of elastin fiber components in the extracellular matrix (Pilecki et al., 2016).  

The study replicated evidence for association at 7 previously-studied loci, with the strongest 

evidence at rs12203592_C, a common intronic variant within IRF4 with large effects on odds 

of appearing youthful (EAF 0.78, OR 1.22, P=1.2x10-327). This locus has been reported for 

skin-age related traits, including pigmented spot severity, perceived skin ageing, tanning 

ability, risk of sunburn and tanning response to sun (Jacobs et al., 2015, Law Matthew H. et 

al., 2017, Visconti et al., 2018, Zhang Mingfeng et al., 2013). 

In-silico transcriptome-wide association analysis and fine mapping 

Predicted expression of 25,812 gene transcripts was tested for association with perceived 

facial age. 175 gene transcripts passed a Bonferroni-corrected p value threshold (p<1.9x10-6). 

There was inflation in these results (S1 Figure), which might represent polygenic association 

signal but could also be related to correlation in predicted expression of adjacent genes seen 

using the S-PrediXcan method (Wainberg et al., 2019). There was high concordance with the 

results of single variant analysis, and nearly all transcripts were in genomic loci already 

highlighted by the single variant results. The strongest evidence for association was IRF4, 

where higher transcription was predicted to associate with lower odds of looking youthful 

(p=1.6x10-77) (S3 Table). The FOCUS method (Mancuso et al., 2019) for probabilistic fine 

mapping was applied to help resolve correlation in adjacent predictions and nominate a 

credible set of biologically causal genes underlying this association signal. This was able to 

resolve some association signals with a high degree of confidence, for example an association 

signal on chromosome 2 represented by rs1438898 in single variant results which mapped to a 

uncharacterized transcript AC074093.1 using positional mapping was mapped to ZEB2 with a 

high probability using fine-mapping. Conversely, the fine mapping approach was unable to 
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produce stable models for associated loci on chromosome 6, and results from this 

chromosome are not presented. The single gene with the highest posterior probability estimate 

for each locus is reported in S4 Table and full results are included in S5 Table. 

Enrichment in gene sets and tissue expression. 

Enrichment analysis was performed using DEPICT (Pers et al., 2015) implemented in GCT-

VL (Cuéllar-Partida et al., 2019). Analysis identified enrichment (FDR<=0.05) in 23 

predefined sets of functionally related genes, with the strongest enrichment signal seen for the 

NEK6 subnetwork (P=3.2x10-7). (S6 Table). Enrichment in tissue-specific transcription in 209 

tissues was tested but didn’t identify any enrichment beyond chance (PFDR>0.05 for all 

tissues) (S7 Table). 

Shared heritability and genetic causality proportions 

Genetic correlation with 1362 traits was estimated, of which 75 traits had evidence for shared 

heritability with perceived age after a Benjamini-Hochberg correction for multiple testing 

(PFDR <0.05). All genetic correlation estimates lay within the range -0.5 to +0.5, suggesting 

that the genetic determinants of perceived age aren’t fully captured by other traits in the GCT-

VL (Cuéllar-Partida et al., 2019) catalogue. 

The strongest evidence for genetic correlation was seen with obesity-related traits, where 

genotypes which associated with greater adiposity overlapped with genotypes associated with 

reduced odds of appearing youthful (for example BMI) , Rg –0.25, PFDR=2.9x10-12 and waist 

circumference, Rg=-0.23, PFDR=2.3x10-13) (S8 Table). 

These correlations might be due to shared genetic influences on perceived age but may be due 

to vertically pleiotropic pathway effects where one trait exerts a causal effect on the other. To 

investigate this further, genetic causality proportions (O’Connor and Price, 2018) were 

estimated for all pairs of traits with a significant genetic correlation using an online platform 



 

7 
 

(Haworth et al., 2019a). The single trait with the strongest evidence for causal effect was 

BMI. Effects of greater BMI on reduced odds of appearing youthful were modelled to explain 

part of the genetic correlation with BMI (genetic causality proportion estimate=-0.64), 

however neither this finding (PFDR=0.07) nor any other causality proportions were considered 

significant after correction for multiple testing (S9 Table). 

 

DISCUSSION  

This study used genome wide analysis to investigate genetic contributions to perceived age 

using the rationale that failure of dermal repair mechanisms would lead to visibly aged skin. 

There was evidence for a polygenic heritable contribution to youthful appearance and single 

variant analysis identified 74 to our knowledge previously unreported loci. These loci were 

enriched for gene sets encoding a range of regulatory networks, supporting the idea that a 

range of different biological processes are implicated in maintaining a youthful appearance. 

The NEK6 subnetwork, identified in gene set enrichment analysis, helps govern the initiation 

of mitosis, progression through the cell cycle and prevents cell senescence (Jee et al., 2010). 

We hypothesize that natural variation in genes encoding the NEK6 subnetwork leads to 

variation in ability to compensate for age-related decline in tissues, resulting in variation in 

signs of ageing. This is supported by enrichment in other regulatory networks with roles in 

growth signaling including the SMAD2, SMAD4 and SMAD9 subnetworks. This mechanism is 

likely one of several diverse pathways which contribute to maintaining a youthful appearance, 

for example we also observed enrichment in lipid-mediated signaling. 

While perceived age may capture variation in skin biology and response to environmental 

challenges, it is likely to also capture other biological factors for example nutritional status. 

To help investigate the degree of overlap with other traits and biological specificity of the 
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phenotype, we estimated genetic correlations with traits and diseases in a hypothesis-free 

manner and identified genetic correlations with 75 other traits or diseases. These correlations 

were modest in magnitude, suggesting that perceived age provides a proxy for an underlying 

phenotype which hasn’t been extensively explored yet by other GWAS studies. We followed 

up these genetic correlations to explore whether there are causal relationships (in either 

direction) between perceived age and genetically correlated traits but didn’t find strong 

evidence supporting this. This may reflect the limited statistical power of this follow-up 

analysis (the genetic correlations were of modest magnitude), or that the genetic overlap 

between perceived age is predominantly due to biological processes which have underlying 

relevance for many traits rather than causal pathways between these phenotypes. 

 

Aside from capturing the response to environmental stressors, the analysis may also capture 

genetic associations with stressors. Factors such as smoking and UV exposure related to 

geographical location were traditionally considered to be purely environmental and therefore 

uncorrelated with genotype. However, an increasing body of evidence now points to the 

heritability of the home environment (Kong et al., 2018) and evidence for correlation between 

genetic data and both socio-economic conditions (Tyrrell et al., 2017) and latitude (Haworth 

et al., 2019b) in UK Biobank. Despite reasons for caution, there was little evidence for 

inflationary bias in the primary results. The lead single variants show good concordance with 

previously-published findings and appear relevant to dermal protection functions, suggesting 

that the results of the study primarily capture host susceptibility and response to pro-ageing 

stimuli, rather than host liability to be exposed to those stimuli. 

The existence of genetic predictors of skin function and likely ageing trajectory provides 

opportunities for research and clinical applications. The results may help prioritize relevant 

biology for detailed molecular study of photoprotective mechanisms and nominate proteins 
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whose function, if modulated by cosmetic or pharmacological products, might enhance 

photoprotection. Statistical power for investigations into longitudinal mechanics of skin 

ageing might be boosted by recruiting based on participants’ genotype who are at greatest risk 

of accelerated ageing. In the longer term, integration of insights from population-level and 

individual genetic information may pave the way to precision skincare. 

Aside from the conceptual limitations of complexity using perceived age as a proxy for skin 

traits, one practical limitation of this investigation is the use of categorical data, which is 

cruder than previous approaches such as using a panel of volunteers to guess the age of a 

participant and compare that to actual age to generate a continuous measure (Liu et al., 2016). 

As the phenotype used here was self-reported and subjective there will be some degree of 

misclassification. We modelled the likely impact of this on statistical power and false 

discovery rate using simulations. These showed misclassification in this study likely affected 

the statistical power and led to some degree of under-estimation of effect size at truly 

associated SNVs but wouldn’t lead to false positive associations (S2 Text, S2 Figure). Despite 

these limitations, the study identified association at previously-reported positive controls such 

as variants within IRF4, MC1R and BNC2 with high levels of statistical evidence. This 

indicates that the large sample size was sufficient to overcome regression dilution bias 

introduced by misclassification. Although we believe that the properties of the phenotypic 

assessment in this study would lead to under-reporting of association signals, we haven’t 

undertaken replication in an independent sample which is a limitation of the study. 

In conclusion, apparent age is a partially heritable trait. The polygenic association signal and 

results of gene set analysis suggest that diverse mechanisms act to preserve a youthful 

appearance. Biological and functional characterization of the single variant association signals 

identified in this study may be a useful way to gain improved understanding of skin biology 

or as a step towards interventions which moderate the rate of age-related skin changes. 
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MATERIALS AND METHODS 

Participants and phenotypes 

This study used data from UK Biobank, a project which recruited approximately 500,000 

participants aged between 40-69 between 2006 and 2010 (Fry et al., 2017). Eligible 

participants were identified from health records in the UK National Health Service (NHS), 

and invited to participate in one of 22 assessment centers, which were in densely-populated 

regions of Great Britain. Participants took part in a baseline assessment including completion 

of questionnaires, physical measurement, donation of biological samples and consent for 

subsequent follow-up via linkage to NHS records. In the questionnaire, participants were 

asked to respond to the question ‘Do people say that you look’. The possible answers were 

‘Younger than you are’, ‘Older than you are’, ‘About your age’, ‘Do not know’ or ‘Prefer not 

to answer’. For this analysis, participants were coded ‘1’ if they reported they reported 

looking younger, ‘0’ if they reported they looked older and ‘0.5’ if they reported they looked 

their age. Participants who didn’t know or preferred not to answer the question were excluded 

from analysis.  

Genotypes 

Genotype data was generated using one of two genotyping arrays - the UK BiLEVE Axiom 

array and the UK Biobank Axiom array. Quality control and imputation were undertaken 

centrally by UK Biobank as described previously (Bycroft    et al., 2017). Following 

imputation, in-house quality control was undertaken to remove participants with poor quality 

data and to restrict analysis to participants of European ancestry, following a published 

protocol (Mitchell et al., 2017). Genotype data was filtered to a high-confidence set of SNVs 

by removing monomorphic or rare variants with MAF <0.1%, removing structural variation 
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such as insertion-deletions, removing sites with poor imputation quality using a graded filter 

(minimum INFO score >0.3 for MAF >3%, INFO >0.6 for MAF in the range 1-3%, INFO 

>0.8 for MAF in the range 0.5-1% and INFO >0.9 for MAF in the range 0.1-0.5%) and 

removing sites not in the Haplotype Reference Consortium imputation panel (Mitchell et al., 

2017).  

Genome-wide association analysis 

Genome-wide analysis was performed using a linear mixed model approach implemented in 

BOLT-LMM (Loh et al., 2018). This tests the relationship between genotype and phenotype 

while accounting for covariates (age, sex and study participation center) and relatedness, 

following a published protocol (Elsworth et al., 2017). This approach was chosen because the 

linear mixed model approach is reported to achieve good control for potential confounding 

due to population stratification in the UK Biobank sample (Loh et al., 2018). Genome-wide 

summary statistics on a linear scale were transformed into log odds ratios using a Taylor 

expansion series. Odds ratios greater than 1 indicate greater odds of looking youthful. 

SNV selection procedure and conditional analysis 

SNVs with p<5x10-08 were considered associated with perceived age, chosen as a threshold 

for genome-wide significance. Nearby SNVs are typically correlated through linkage 

disequilibrium (LD), meaning that genetic effect sizes and p-values of nearby SNVs are also 

correlated. Lead SNVs were defined after reducing the association signals down to a subset of 

approximately-independent signals of association within single-variant results using a 

stepwise model selection procedure implemented in GCTA(v1.91.4) (Yang et al., 2012, Yang 

et al., 2011), which takes into account LD between different SNVs to select independently 

associated SNVs (--cojo-slct function). This subset of approximately independent signals was 

tested against previously reported association signals in an approximate conditional analysis 
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(--cojo-cond function in GCTA) in order to identify which signals capture previously-reported 

associations, using a list of SNVs reported for perceived facial age or related traits (S9 Table). 

SNVs which were conditionally independent of previously-reported signals of association 

with P<5x10-8 in conditional analysis were defined as lead signals, and are reported in S9 

Table.  

Enrichment analysis 

To test for enrichment in predefined gene sets or gene pathways, enrichment analysis was 

performed using the DEPICT approach (Pers et al., 2015) implemented in GCT-VL (GCT-

VL). Analysis used full genome-wide results, and associated loci were defined internally by 

DEPICT using a reference panel for LD estimation. 

Estimation of heritability 

To estimate variation in perceived facial age attributable to common genetic variants, 

heritability was estimated using univariate linkage-disequilibrium score regression 

(LDSR)(Bulik-Sullivan Brendan K. et al., 2015), implemented in LD-Hub, an automated 

online resource (Zheng et al., 2017). Summary statistics of GWAS were uploaded and results 

processed through a standardized procedure. This uses a subset of approximately 1 million 

common variants and reference LD data to estimate heritability attributable to common 

genetic variants (h2_LDSR) and assess for inflationary bias in GWAS results.  

Estimation of genetic correlation and partial genetic causality 

Genetic correlation (Rg) was assessed against 1362 traits in the Complex Trait Genomics 

Virtual Lab (GCT-VL) catalogue (Cuéllar-Partida et al., 2019) using bivariate LDSR (Bulik-

Sullivan Brendan et al., 2015). Genetic correlation summarizes the similarity in the heritable 

contribution to a pair of traits assessed across the whole genome; values near 1 or -1 indicate 

two traits have substantial shared genetic associations, which have consistent and 
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proportionate effects on both traits. Values near 0 indicate largely independent genetic 

determinants with little overlapping heritability between the two traits. Adjustment for 

multiple testing used a Benjamini-Hochberg procedure and correlations with false discovery 

rate (FDR)<0.05 were reported. 

For each trait with a detectable non-zero genetic correlation, latent causal variable models 

(O’Connor and Price, 2018) were fitted to help distinguish between genetic correlations 

resulting from horizontally pleiotropic genetic effects and genetic correlations resulting from 

causal relationships. Models were fitted using an automated online pipeline (Haworth et al., 

2019) implemented in the GCT-VL platform (https://genoma.io).  

Imputed transcriptome wide association study and transcriptome-informed fine 

mapping 

To test the consequences of a range of gene transcripts on perceived facial age, tests for 

association with predicted gene expression were performed using S-PrediXcan (Barbeira et 

al., 2017). This assesses the mediating effects of expression levels on phenotypes by imputing 

transcriptome levels, using pre-trained models derived in datasets with measured gene 

expression. Analysis was performed using pre-fitted elastic net prediction models of gene 

expression levels in the 48 Genotype-Tissue Expression tissues (Lonsdale et al., 2013), which 

are available online (URLs: http://predictdb.org/). Summary results from GWAS were 

uploaded to the S-PrediXcan (Barbeira et al., 2017) web pipeline (URL: 

https://cloud.hakyimlab.org/). Results from 48 tissues were combined using the TissueXcan 

method (Barbeira et al., 2019) which prioritizes the most relevant tissue transcripts overall, 

taking into account evidence from multiple tissue-specific predictions while accounting for 

correlation in gene transcription between different tissues and multiple testing. In parallel, 

analysis using the FOCUS method (Mancuso et al., 2019) was performed using the standalone 

https://cloud.hakyimlab.org/
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python software provided by the authors of the method at 

(https://github.com/bogdanlab/focus/blob/master/README.md). It references LD data from 

the 1000 genomes project samples (European ancestry) and reference transcription data from 

the pre-compiled database including data from multiple sources described at 

(https://github.com/bogdanlab/focus/wiki). 
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TABLES 

Table 1: Top 10 independently-associated lead variants in GWAS 

Chr SNP Position Effect allele EAF Beta se Odds ratio Locus p (conditional) 

9 rs520015 211762 C 0.51 0.070 0.0043 1.07 

C9orf66 

- DOCK8 1.2x10-58 

8 rs10956486 130699140 T 0.68 -0.073 0.0046 0.93 GSDMC 2.6x10-55 

3 rs61263161 126691104 G 0.83 -0.087 0.0058 0.92 CHCHD6 1.4x10-51 

2 rs1438898 145714354 A 0.75 0.059 0.0050 1.06 AC074093.1 3.5x10-32 

2 rs76032374 56058356 A 0.87 0.068 0.0064 1.07 EFEMP1 7.9x10-27 

20 rs28897169 22100542 T 0.39 0.043 0.0044 1.04 LOC100270679 7.0x10-22 

6 rs4869723 151579432 C 0.56 -0.040 0.0044 0.96 AKAP12 1.7x10-20 

2 rs116254882 223025055 G 0.96 0.095 0.0107 1.10 PAX3 5.2x10-19 

15 rs1550436 74221157 C 0.53 -0.039 0.0043 0.96 LOXL1 5.5x10-19 

2 rs7590866 223087329 G 0.86 -0.054 0.0062 0.95 PAX3 2.3x10-18 

Each row contains a lead SNV representing an independent signal of association following a stepwise 

selection procedure with  p<5.0e-08 after conditioning on previously-reported signals of association. The 

position column contains genomic position based on build 37 (GRCh37.p13) of the human genome. The beta 

coefficient and accompanying standard error are on a log-odds scale and have been exponentiated to provide 

an odds ratio for reference. Odds ratios greater than 1 reflect increased odds of appearing young. The locus 

column includes the name of the gene nearest the lead SNV. Results for all independent lead variants are 

provided in S2 table with both conditional and unconditional P values. Full results for all variants are 

provided as a link in the data access statement.  

 

 

 

 

 



 

22 
 

FIGURE LEGENDS 

Figure 1: Manhattan plot of GWAS. 

Genomic regions independently meeting genome-wide significance are highlighted in 

magenta (to our knowledge previously unreported loci) or navy blue (positive controls). The 

red line at p=5x10-08 indicates the conventional threshold for genome-wide significance. The 

y-axis scale is split and truncated at p=1x10-250. 
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