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6

7 ABSTRACT

8 Previous studies have shown that the seismic incidence angle imposes a non-negligible impact on the 

9 seismic performance of curved bridges. The computational efficiency of some current methods for 

10 determining the critical angle needs to be improved and their applicability in practical engineering 

11 projects remains to be examined. For this reason, a resultant response-based (RRB) method is 

12 developed herein for assessing the critical excitation direction of curved bridges. To validate the 

13 feasibility of this method in an actual seismic design context, a 1/62.5-scale model of a three-span 

14 curved bridge is designed and a multi-angle shaking table test is implemented. Meanwhile, the finite-

15 element model of the test specimen is set up, and the RRB method as well as the linear response-

16 history analysis (LRHA) are comparatively assessed. The results indicate that the RRB method can 
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2

17 capture the critical excitation direction of curved bridges with sufficient precision (error does not 

18 exceed 10% compared to LRHA). The associated computational effort is also substantially reduced 

19 given that RRB requires analysis solely along two orthogonal directions as the incidence angles, 

20 compared to standard response history analyses where ground motion excitation is applied at 

21 multiple ground motion orientations. The above observation is further verified by a well-designed 

22 experimental campaign, which demonstrates the accuracy and practicability of the RRB method for 

23 the case of realistic bridge configurations. 

24
25 Keywords: Curved bridges, critical excitation directions, resultant response, shaking table, response spectrum

26 1. INTRODUCTION

27 By virtue of superior adaptability in densely populated areas and complex terrains, horizontally 

28 curved bridges have become common in urban overpasses and inter-city highways, hence, a 

29 considerable number of curved bridges are used as the lifeline system hubs to meet transport 

30 demands. Therefore, it is significant to guarantee the safety and functionality of curved bridges 

31 in their service period. Experience of the last fifty years, however, shows that curved bridges can 

32 be particularly vulnerable to seismic events [1–4]. In light of this issue, research efforts have been 

33 devoted to the study of seismic performance of curved bridges based on both deterministic [5–9] 

34 and probabilistic assessment [10–17]. 

35 The above studies mainly focused on the impact of bridge configuration, ground motion 

36 frequency content and numerical simulation methods. The direction of seismic excitation, which 

37 also has a major effect on their structural seismic responses [18–26], is only rarely considered. One 

38 of the reasons is that the angle of seismic incidence is random and not predictable, while its effect 

39 is more profound to curved bridges given their irregularity in plan and their distinct features in 



3

40 terms of stiffness, strength, dynamic properties and damping [27–30]. Along these lines, it is 

41 important to ensure the reliability of seismic design of curved bridges, accounting for the peak 

42 responses of interest and the associated critical direction of excitation. The most common and 

43 direct method to predict the critical excitation direction is to implement a response history 

44 analysis (RHA) at multiple ground motion orientations and then compare the maximum 

45 response corresponding to each incidence angle (hereafter called direct analysis procedure [31]). 

46 The challenge here is that this method is computationally expensive and time consuming 

47 particularly for complex structures. Although provisions and specifications [32–34] recommend 

48 the use of a combination rule to estimate the peak seismic demand, which is a relatively simple 

49 way compared to the direct analysis procedure, it is still highly probable that seismic response is 

50 underestimated by the code provisions [35]. Given that the limitation of aforementioned 

51 methods, a number of methods aiming to directly determine the critical excitation direction of 

52 structures have been developed. The latter involve response spectrum analysis (RSA) [36], 

53 random vibration theory [37], linear response-history analysis (LRHA) [38], nonlinear static (i.e., 

54 pushover) analysis [39], nonlinear response history (NLRHA) and probabilistic fragility 

55 assessment [40] as well as lateral force analysis [41]. It is shown that the abovementioned methods 

56 enable a straightforward determination of the critical excitation direction of structures and are 

57 validated through other numerical approaches. On the other hand, there are still several issues 

58 that need to be improved. For instance, some of the existing methods predict the response 

59 components along a certain structural reference axis as the judging criterion for the critical 

60 excitation direction, which may not involve the responding contribution along the other 

61 orthogonal structural axis. Hence, the seismic performance of the whole structural member may 
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62 be misleading. Moreover, the critical angles for response quantities along different structural axes 

63 can also vary, therefore, it is difficult to find a single critical angle for each structural member. 

64 This is especially true for the case of curved bridges where, due to their geometric irregularity, 

65 directions of principal axes (tangential and radial) for the various members are different, thus the 

66 critical excitation direction of the major members may be very complex to predict. Additionally, 

67 the majority of previous works are limited to analytical and numerical approaches, for simpler 

68 structural systems and without experimental verification. 

69 To test and verify the numerical results obtained from the theoretical derivation in a more 

70 practical way, experimental investigation is essential. In recent years, shake table tests for bridge 

71 structures were gradually carried out, including tests for the crucial bridge members (i.e. piers 

72 [42–44], bearings [45], foundations [46]) as well as entire bridge structures [47–52]. 

73 Notwithstanding the progress made, the above tests study straight bridges with only few of them 

74 focusing on curved ones. One example is the work of Williams and Godden [53] who conducted 

75 a shake table study for the linear and nonlinear dynamic behavior of curved bridges and 

76 emphasized the importance of seismic design in expansion joints. Yan et al. [54] evaluated the 

77 efficiency of sliding isolation bearings in curved bridges while Li et al. [55] performed an 

78 experimental study to assess the impact of ground motion spatial variability on the seismic 

79 responses of curved bridges. Results showed that the curvature radius increases the sensitivity of 

80 the bridge to the ground motion spatial variations, a result that can be mainly attributed to the 

81 excitation of higher modes [56,57]. Zhang et al. [58] compared experimental and numerical 

82 results of seismic damage for a small radius curved bridge considering the soil-structure 

83 interaction (SSI) and reported that applying the equivalent soil springs method to simulate SSI 
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84 in the numerical model can gain approximate results to the actual ones. The aforementioned 

85 experimental studies reveal that seismic performance of curved bridges is particularly complex 

86 and highlight the effects of geometric parameters, seismic propagation process, and soil condition. 

87 However, the impact of seismic excitation direction has not been yet taken into account. 

88 Given the aforementioned issues and limitations in the development of theoretical methods 

89 and the lack of experimental studies for the determination of critical excitation direction of 

90 curved bridges, the peak resultant response quantity of interest, which is able to comprehensively 

91 reflect the seismic behavior of the entire structural member, is proposed in this study as the key 

92 proxy for identifying the critical excitation direction. Based on this evaluation measure, a 

93 computationally efficient method, hereafter called “resultant response-based (RRB) method” is 

94 presented for the determination of critical excitation direction of structures which is based on the 

95 fundamentals of dynamics of structures and the RSA method. Subsequently, a 1/62.5-scaled 

96 model of a three-span curved bridge is constructed and experimentally tested as a means to verify 

97 the applicability of the RRB method. Results are also compared with numerical predictions using 

98 standard LRHA to demonstrate the accuracy of this method.

99

100 2. DESCRIPTION OF THE RESULTANT RESPONSE-BASED METHOD

101 2.1  Assumptions

102 In general, during dynamic analysis of structures, seismic excitation is applied along a pair of 

103 orthogonal horizontal and one vertical orientations [59]. Particularly for multi-angle seismic analysis 

104 however, Lopez and Torres [60] have shown that the critical excitation direction does not depend 
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105 on the vertical spectrum. Recently, Roy et al. [61] proposed the definition of the “most preferred” 

106 angle of excitation, where the difference between bi-directional and uni-directional response is 

107 minimized. In their study, they found that the structural peak response under unidirectional 

108 excitation may considerably change with the incidence angle. Based on the foregoing observations, 

109 they developed the relationship between the ratio of energetic length scale ( ) of ground motion eL

110 components and the ratio of structural peak responses under bi-directional and unidirectional 

111 excitation, respectively, thereby corroborating the existence of the most preferred angle which 

112 corresponds to the neighborhood of the orientation where ratio of component  is maximized. eL

113 Based on their conclusions, one needs to identify the maximum response and the corresponding 

114 seismic incidence angle by means of one-component ground motion, as an efficient prediction of the 

115 peak response under bi-directional shaking so that the computational cost is greatly reduced. This 

116 has motivated the authors to develop the RRB method based on the uni-directional seismic analysis. 

117 The main steps of the methodology are outlined below. 

118 Figure 1 illustrates the condition of a linear multi-degree-of-freedom (MDOF) structure or structural 

119 member subjected to a horizontal time-variant seismic action . X and Y are the orthogonal ( )a t

120 horizontal axes in the global coordinate system, while  and  are the local principal axes of the x y

121 member analyzed. Define  as the reference angle from the X-axis to the direction of seismic 

122 excitation  and let  represent the orientation of the resultant engineering demand ( )a t 

123 parameter  (e.g., displacement, stress, forces, etc.) with respect to the -axis. Angles  and  R x  

124 are considered positive when they are measured counterclockwise. Seismic input excitation is 

125 assumed to be a wide-band stationary process.
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126
127 Figure 1:  A linear structure or member under an arbitrarily unidirectional excitation
128

129 2.2  Fundamentals of the method

130 For a multi-degree-of-freedom, viscously damped, linear structure and based on the principle of 

131 modal superposition [62], the nodal displacement responses  of the system can be written as: tu

𝒖(t) = ∑N
i = 1Φiηi(t) ( 1 )

132 where  is the ith modal vector,  is the modal coordinate for mode i and N is the number Φi ( )i t

133 of modes analyzed. Thereby, the response quantities of interest, , are a linear combination of ( )R t

134 the nodal displacements  and can be written as:  tu

 R(t) =  qTu(t) =  qT∑N
i = 1Φiηi(t) ( 2 )

135 where  is the transpose for the response transfer vector that are associated with structural Tq

136 geometry and stiffness properties.

137 Let  be the acceleration response spectrum for the seismic input . When the excitation is aS ( )a t

138 acting along the X-axis, according to the RSA method and derive the peak response quantities of 

139 interest along the  and  direction for mode , respectively,  and  as:x y i X
x
iR X

y
iR
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R x
iX =  qT

xΦiηiX ( 3 )

R y
iX =  qT

yΦiηiX ( 4 )

140 in which

ηiX =  
SiΓiX

ω2
i

( 5 )

141 where  and  are the transposes for response transfer vectors for response quantities along T
xq T

yq

142 the  and  direction, respectively;  is the maximum modal coordinate for mode i when x y Xi

143 acting the excitation along X-axis;  is the spectral value of the acceleration response spectrum for Si

144 the mode i;  is the modal participation coefficient for mode i along X-axis and  is the Xi i

145 circular frequency for mode i.

146 Consequently, the peak resultant response for mode i, can be expressed as:XiR

X iX Xcos sinx y
i iR R R   ( 6 )

147 Likewise, for the case of applying  along the Y-axis, the peak response quantities along the  aS x

148 and  directions for mode i, respectively,  and  can be given as:y Y
x
iR Y

y
iR

R x
iY =  qT

xΦiηiY ( 7 )

R y
iY =  qT

yΦiηiY ( 8 )

149 in particular 
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ηiY =
SiΓiY

ω2
i

( 9 )

150 where  is the maximum modal coordinate for mode i under the excitation along direction Y Yi

151 and  is the modal participation coefficient for mode i along the Y-axis. Thereby, the peak Yi

152 resultant response for mode i, , can be expressed as:YiR

Y Y Ycos sinx y
i i iR R R   ( 10 )

153 When  acts along an arbitrary angle of incidence , the resultant response quantity of interest aS 

154 for mode i, , can be determined as:iR

X Ycos  sini i iR R R    ( 11 )

155 It should be noted that the algebraic sum in equation (11) is due to the fact that the ground motion 

156 component ( ) along X-axis and ) along Y-axis are completely correlated. a(t) cosθ (a(t) sinθ

157 Substituting the equation (6) and equation (10) into equation (11) gives:

X X

Y Y

( cos  sin )cos

         + ( cos  sin )sin

x y
i i i

x y
i i

R R R

R R
   

  

 


( 12 )

158 Combining equation (3) and equation (4) as well as equation (7) and equation (8), equation (12) can 

159 be rewritten as: 

Riθ = (𝒒T
xΦicos α +  𝒒T

yΦisin α)ηiXcos θ

         +  (qT
xΦicos α +  qT

yΦisin α)ηiYsin θ
( 13 )

160 Note that the peak modal coordinates,  and  appear simultaneously and the ratio iX Yi
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161  is a constant, which can be verified using equation (5) divided by equation (9) as: X Y/i i 

X
iX iY

Y

/ i

i

  



( 14 )

162 Therefore, the peak resultant response quantity of interest for a structure subjected to the seismic 

163 excitation in an arbitrary direction , , can be obtained using the Complete Quadratic  R

164 Combination (CQC) method [63] as: 

1 1

N N

ij i j
i j

R R R  
 

  ( 15 )

165 where the correlation coefficient between responses in mode i and j, , is also taken from the [63].ij

166 Substituting equation (13) into equation (15) leads to:

2 2
1 2 3

1 1
(cos sin 2sin cos

N N

ij
i j

R D D D     
 

   ） ( 16 )

167 In particular,

D1 =   R x
iXR x

jXcos2α + 2R x
iXR y

jXcosαsinα + R y
iXR y

jXsin2α ( 17a )

D2 =   R x
iYR x

jYcos2α + 2R x
iYR y

jYcosαsinα + R y
iYR y

jYsin2α ( 17b )

D3 = R x
iXR x

jYcos2α + R y
iXR y

jYsin2α + R x
iXR y

jYcosαsinα

       + R x
iYR y

jXcosαsinα
( 17c )

168 On the basis of equation (16), the critical excitation direction for the structure, , can be obtained cr

169 by means of computer programming by following the three steps outlined below:
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170 (i) Apply spectrum  along the direction X and analyze the structure to calculate the peak modal aS

171 responses ,  given by Equations (3) and (4),X
x
iR X

y
iR

172 (ii) Apply spectrum  along the direction Y and analyze the structure to calculate the modal aS

173 responses ,  from Equations (7) and (8),Y
x
iR Y

y
iR

174 (iii) By means of computer programming and for a given incidence angle , loop the ( 1,2,... )i i n 

175 responding direction  over 360° with a specified interval (e.g. 3°) to calculate the peak ( 1,2.... )i i n 

176 responses with respect to the incidence angle , , determined by Equations (15)-(17) and i
i

R

177 then compare the peak responses with various incidence angles to determine the critical 

178 excitation direction .cr

179 It can be seen from the derivation process of RRB method that the critical excitation direction ( ) cr

180 with regard to the overall seismic response of a structural component can be obtained meanwhile the 

181 computational costs are significantly reduced by using computer programming with the aid of only 

182 two angles of seismic incidence compared to the standard response history analyses along multiple 

183 angles of seismic incidence. 

184 3. BRIDGE MODEL DESIGN AND INSTRUMENTATION

185 To verify the validity of the RRB method, a typical horizontally curved, continuous, reinforced 

186 concrete (RC) bridge was selected as the prototype bridge for experimental verification. Figure 2 

187 shows the geometric configuration of this bridge with a length of 75 m, three equal spans and a radius 

188 (R) of 50 m measured to the centerline of the deck. The deck consists of a single-cell box girder section 

189 with 8.5 m width and 1.9 m depth which is supported by four single-pier bents. For each bent, the 

190 pier is composed of solid circular RC sections with a height of 10 m and a diameter of 1.9 m. Two 
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191 laminated rubber bearings are set on each cap beam to connect the superstructure with the 

192 substructure. Moreover, the deck, cap beams and piers are constructed using the Chinese Grade C40 

193 concrete [64].

194
195 Figure 2: Configuration of the prototype (units: m): (a) plan, (b) box girder cross-section, (c) elevation,
196 (d) pier cross-section.

197 3.1 Similitude Requirements

198 Determination of the scale factor is key in experimental model design. Generally, the elastic modulus 

199 ( ), acceleration ( ) and length ( ) are selected as three fundamental physical quantities E a l

200 considering the simplicity and convenience for controlling them at the early stage of the test. Based 

201 on dimensional analysis and combined with equation of motion, similitude requirements for 

202 dynamic models can be written as [65]:

1E

a l

S
S S S

 ( 18 )

203 where , , ,  are scale factors of elastic modulus, material density, acceleration and length, ES S aS lS

204 respectively.
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205 Given the limitation of the shaking table dimensions, the test model was geometrically scaled to 1/62.5 

206 ( ) of the prototype bridge. Besides, as the RRB method is based on the RSA method, 1/ 62.5lS 

207 which is applicable to linear structural systems only, a material with equivalent elastic properties was 

208 selected. In particular, polymethylmethacrylate (PMMA) was selected for the deck and bents of the 

209 scaled model. Assuming the elastic modulus of 2600Mpa for PMMA [66], the scale factor ( ) for ES

210 the elastic modulus can be calculated equal to 0.08. Moreover, to obtain a reasonable mass for the 

211 bridge model, the mass scale factor, which depends on the three key fundamental quantities, should 

212 be also determined. In light of the fixed value for , considering the limited actuation and load /E lS S

213 capacity of the shaking table, the acceleration scale factor ( ) was set equal to 3, which is within the aS

214 reasonable value range suggested in the literature [66]. 

215 Table 1: Similitude requirements of the curved bridge model

Physical quantity Dimension Similitude relation Scale factor
Length, l [L] Sl 0.016

Acceleration, a [LT-2] Sa 3
Elastic modulus, E [FL-2] SE 0.08
Displacement, δ [L] Sδ = Sl 0.016

Strain, ε / Sε = 1 1
Stress,   [FL-2] Sσ = SE 0.08

Equivalent mass density, ρ [FL-4T2] Sρ = SE/(SlSa) 1.667
Mass, m [FL-1T2] Sm = SESl

2/Sa 0.00000683
Area, S [L2] SS = Sl

2 0.000256
Stiffness, k [FL-1] Sk = SESL 0.00128

Time, t [T] St = (Sl/Sa)0.5 0.073
Moment, M [FL] SM = SESl

3 0.000000328
Force, F [F] SF = SESl

2 0.00002048
Velocity, v [LT-1] Sv = (SaSl)0.5 0.219

216 Note: [F] = Force; [L]= Length; [T]=Time

217 Based on the known fundamental scale factors, the other scale factors required in the bridge model 

218 design can be calculated through the similitude relations given in Table 1, with the results also listed 

219 in the same table.
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220 3.2 Design of the scaled model

221 Having listed the similitude requirements in Table 1, the dimensions of the scaled model were decided. 

222 Figure 3 presents the geometric configuration of the scaled model.

223 To facilitate the selection of the PMMA sheet specification and reduce the assembly difficulty of the 

224 model, as shown in Figure 3(a), the girder adopted the rectangular hollow cross-section. Given that 

225 the axial stiffness is not a dominant factor for the seismic response of the bridge model, the cross-

226 section of the girder was designed to match the scale factor of flexural and torsional stiffness. To 

227 ensure an elastic model, the material of the bearing still employed rubber, and the upper and lower 

228 surfaces of the bearing were fixed with the girder and cap beam, respectively. The bearing had a 

229 circular cross-section, with both its diameter and height taken equal to 10 mm based on the stiffness 

230 scale factor. Considering that the bearing has small dimensions and can experience multiple seismic 

231 cycles during testing and to reduce the chances of accidental bearing failure during the experimental 

232 campaign, a simple replacement device for the bearing was invented as illustrated in Figure 3(b). It 

233 can be seen that the bearings can be replaced by removing the bolts connecting the inner and outer 

234 flange plates. 

235 Regarding the substructure, the bridge has four single-pier bents (Figure 2). Solid circular cross-

236 sections were adopted for the piers of the scaled model and were fixed on a rigid base. As the loading 

237 is applied unidirectionally by the shaking table, the base is designed to be rotatable in order to achieve 

238 the multi-angle excitation. For this purpose, two arc-shaped slots were designed for the base. The 

239 positions of the slots depend on the hole sites of the countertop, which means that there should be 

240 enough holes so that the base and the countertop can be bolted together firmly. The geometric details 
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241 and the working principle for the rotatable base are displayed in Figure 3(c) and Figure 3(d), 

242 respectively.

243 Additionally, to meet the similitude requirements for the dynamic characteristics, additional artificial 

244 masses were attached to the scaled model. As shown in Figure 3(e), for the superstructure, a total of 

245 5.02 kg additional masses was uniformly distributed along the deck, while for the substructure, 0.95 

246 kg lumped additional masses were placed on the cap beam for each bent. Figure 4 presents a schematic 

247 view of the curved bridge model.
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248
249 Figure 3: Geometric configuration of the scaled model (units: mm): (a) geometric dimensions of the scaled 
250 model, (b) bearing replacement device, (c) geometric dimensions of the rotatable base, (d) working principle 
251 of the rotatable base, (e) additional mass arrangement.
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252
253 Figure 4: Schematic view of the curved bridge model

254 3.3 Mechanical property tests of model members

255 In the process of determining the similitude requirements for the scaled model, theoretical 

256 mechanical properties for the model members were utilized. However, due to discrepancies in 

257 specimen specification, test environment and processing techniques, the actual mechanical properties 

258 for the members are different from the theoretical ones. Therefore, to gain accurate numerical results 

259 so as to make comparison with the experimental data, mechanical property tests for major model 

260 members are necessitated. Previous studies [67] have shown that the dynamic modulus of elasticity (

261 ) of a polymer may not be equal to its static modulus, hence, a test for the dynamic elastic modulus dE

262 of PMMA members was implemented as shown in Figure 5. One end of the test specimen was fixed 

263 through the clamp, while the other end hung the weight using the rope; then rope was cut and the 

264 specimen started free vibration; meanwhile, the strain attenuation curves of the specimen were 

265 recorded and the fundamental period could be determined. According to the undamped free 

266 vibration equation of distributed-parameter system [62], the fundamental circular frequency, , is 1

267 given by:
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2
1 4

1.875 dE I
mL

  ( 19 )

268 where  is the flexural moment of inertia of the specimen;  is the mass per unit length and is I m L

269 the span of the distributed-parameter system.

270 The dynamic elastic modulus of the specimen can be obtained based on equation (19) as:

Ed =
ω2

1mL4

12.360I
( 20 )

271 Another consequence of the small size of the rubber bearings for the scaled model, is that 

272 conventional quasi-static experimental setups are not applicable to test their shear stiffness. For this 

273 reason, a simple device for approximately testing the shear stiffness was designed. Figure 6 presents 

274 the device structure and the test method. The upper and lower surfaces of the bearings were glued 

275 with the cover plates, respectively. The upper cover plate was connected with the weights through 

276 the wire rope and the lower plate was fixed on the table. When the weights were applied, the bearings 

277 produced shear deformations which were recorded by the dial gauge. Thereby, the approximate shear 

278 stiffness of the bearing, , was derived as:bk

w
b

m gk
n

 ( 21 )

279 where  is the mass of the weight;  is the number of tested bearings and  is the average wm n 

280 displacement of the left and right dial gauges.

281 By gradually increasing the weight mass, the shear stiffness of the bearing tended to be constant and 

282 was adopted as the shear stiffness for the bearing. Figure 7 shows the test results for the shear stiffness 
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283 of the bearings and Table 2 summarizes the mechanical properties of the structural members.

284
285 Figure 5: Test method for the dynamic elastic      Figure 6: Test method for the shear stiffness of 
286 modulus of the members                     the bearings

287

288 Figure 7: Test results for the shear stiffness of the bearings

289 Table 2: Mechanical properties of the members for the scale model

Member Shear stiffness (kN/m) Dynamic elastic modulus (GPa)
Bearing 7.126 —

Deck — 1.620
Pier — 3.095

290 3.4 Instrumentation

291 To capture the response quantities of interest under seismic excitation, the scaled model was 

292 instrumented with 26 transducers, including 8 displacement markers, 2 accelerometers and 16 strain 

293 gages. Figure 8 shows the instrumentation details of the scaled model. Unlike straight bridges, nodal 

294 displacements of the curved bridge are not just along the excitation direction. Accordingly, the NDI 

295 Optotrak Certus optical measurement system (resolution of displacement: 0.01 mm) produced by 

296 Northern Digital Inc. was employed to track the three-dimensional nodal displacements of the scaled 

297 model. Five displacement markers were arranged along the deck, two were placed on the cap beam of 

298 the side bents, and one was set in the middle of the base as the reference point for the measurement. 
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299 The two accelerometers were installed orthogonally in the middle of the deck to monitor the 

300 accelerations along the tangential and radial directions with respect to the midpoint of the deck. 

301 Additionally, four strain gages (electrical resistance = , gauge factor = 2.08 ± 1% and 120 Ω ±  0.1%

302 measuring range = 1×10-6 ε-15000 ε) were pairwise orthogonally attached on each pier to measure the 

303 average section curvatures in the local directions. All the measurement data was monitored by a 

304 multifunctional data-acquisition system produced by Jiangsu Donghua Testing Technology Co. Ltd 

305 with a sampling rate of 500 Hz.

306
307 Figure 8: Instrumentation details of the scaled model

308 4. EXPERIMENTAL PROGRAM

309 The scaled model was tested at the Civil and Mechanical Experimental Center in Jiangxi University 

310 of Science and Technology. Figure 9 shows the details of the shake table system, mainly including a 

311 0.6 m × 0.7 m countertop and a unidirectional actuator with a working frequency of 200 Hz. The 

312 payload of the shake table system was 100 kilos for an acceleration of 1.5g. 

313 4.1 Input ground motion 

314 A typical far-field ground motion record was selected as the seismic input, namely, one component 
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315 of the 1992 Landers earthquake ground motion (station: LA-116th St School, identifier: 

316 RSN865_LANDERS_116000). Because of the 1/62.5 geometric scale and 3/1 acceleration scale, the 

317 time coordinate of the input ground motion was compressed by a factor of 13.693. Besides, 

318 considering the large stiffness of the scaled model and in order to excite discernible responses and 

319 ensure measurement accuracy, the selected ground motion record was amplified up to 1g. The input 

320 motion with a compressed time axis and the corresponding response spectrum with 5% damping 

321 ratio are shown in Figures 10(a) and 10(b), respectively. In order to examine the earthquake 

322 simulation of the shake table testing system, input signal was compared with the output achieved 

323 motions as shown in Figure 11. Meanwhile, as the excitation shall be implemented multiple times 

324 considering the effect of ground motion directionality, the achieved acceleration-time records by the 

325 shake table for different seismic incidence angles (eg., 0°, 45° and 90°) were compared and plotted in 

326 Figure 12. As a result, a good agreement is presented among the achieved motions. Hence, the 

327 achieved acceleration-record was adopted as the excitation for the numerical analyses to eliminate the 

328 effect caused by the error between the original input signal and the output motions.

329 Figure 9: Details of the shaking       Figure 10: Input ground motion: (a) acceleration time history
330    table system                    and (b) acceleration response spectrum with 5% damping
331
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332
333 Figure 11: Comparison between the original signal       Figure 12: Comparison of achieved motions and 
334 the achieved motion by the shake table             for the cases of different excitation directions

335 4.2 Test cases

336 Table 3 lists the test case arrangements for the scaled model. To evaluate the applicability and 

337 efficiency of the RRB method, the scaled model should be shaken by omnidirectional seismic actions 

338 (from 0° to 360°). As the curved bridge model is symmetric with respect to the transversal axis (global 

339 Y-axis), the angle of seismic incidence is only needed to vary from 0° to 180°. Therefore, in this test, 

340 the scaled model was rotated clockwise for the interval at incremental angles of 15°. ° °0 180 

341 White-noise excitations were also applied throughout the test to help identify the modal properties 

342 of the scaled model.

343 Table 3: Shake table test cases for the curved bridge model

Case name Input motion PGA(g) Input direction
W-0 White noise 0.3g 0°
L-0 Landers 1g 0°
L-15 Landers 1g 15°
L-30 Landers 1g 30°
L-45 Landers 1g 45°
L-60 Landers 1g 60°
L-75 Landers 1g 75°

W-90 White noise 0.3g 90°
L-90 Landers 1g 90°
L-105 Landers 1g 105°
L-120 Landers 1g 120°
L-135 Landers 1g 135°
L-150 Landers 1g 150°
L-165 Landers 1g 165°
L-180 Landers 1g 180°
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344 5. NUMERICAL APPLICATION AND EXPERIMENTAL VERIFICATION 

345 Based on the fundamentals mentioned in section 2.2, the RRB method was applied to the numerical 

346 model of the curved bridge specimen. Then the numerical results were compared with the test results 

347 to evaluate the applicability and efficiency of the RRB method. 

348 5.1 Finite-element model

349 The finite-element (FE) model of the curved bridge test specimen was developed using the 

350 commercially available software SAP2000 [68]. Figure 13 illustrates the FE model of the 1/62.5-scaled 

351 bridge. The deck and bents were simulated adopting the elastic beam-column elements, while the 

352 cross-sectional properties for the members were determined based on the geometric configuration in 

353 Figure 2. The Young’s modulus of the deck and piers employed the measured data presented in Table 

354 2, namely, 1.620 GPa and 3.095 GPa. The rubber bearing was simulated using the linear link with the 

355 tested horizontal shear stiffness of 7.126 kN/m. Soil-structure interaction was not able to be captured 

356 in the shake table test, therefore all the bents were assumed fixed at their bottoms. A damping ratio 

357 of 5% was adopted for all modes. Natural vibration periods and frequencies of the scaled model are 

358 illustrated in Table 4. Figure 14 shows that the fundamental vibration mode is the radial mode of the 

359 deck, while the second and third are predominantly tangential and torsional modes of the deck, 

360 respectively.
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361
362 Figure 13: Numerical model of the test curved bridge

363

364
365 Figure 14: First three mode shapes of the scaled model: (a) first mode, (b) second mode, (c) third mode
366
367 Table 4: Natural vibration periods and frequencies of the scaled model

Mode Period (s) Frequency (Hz)

1 0.081 12.337

2 0.081 12.422

3 0.063 15.979

4 0.021 46.958

5 0.021 47.214

6 0.021 47.314
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7 0.021 47.622

8 0.021 47.752

9 0.019 53.260

10 0.019 53.894

11 0.018 55.000

12 0.016 63.145

368

369 As already mentioned for the testing protocol, the actual motion achieved by the shake table was 

370 applied to the numerical model and rotated by multiple angles. Figure 13 illustrates the angle of 

371 seismic incidence  with respect to the included angle between the input motion and axis X. To be 

372 consistent with the shake table test, the angle  was varied from 0° to 180° with increments of 15° 

373 and  increasing in the counterclockwise direction. 

374 As a consequence of the geometric symmetry of the scaled model, the resultant moments at the 

375 bottom of Pier 3 and Pier 4, and the resultant deck-end displacement close to the Pier 1 (hereafter 

376 called deck displacement) were selected to represent the structural response. The stipulation for the 

377 direction of resultant response, , is also shown in Figure 13. For the piers,  refers to the resultant  

378 direction relative to the -axis which corresponds to the tangential direction of the piers, while in x

379 terms of the deck displacement,  denotes the angle between the resultant responding direction 

380 and the -axis. Note that angle  is taken to be positive counterclockwise.X 

381 5.2 Finite-element model validation for bridge model

382 To verify the accuracy of the design for the scaled model, the dynamic characteristics and the response 
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383 histories of the test model were compared with the FE model. As shown in Figure 15, the fundamental 

384 frequency of the scaled model is 12.512 Hz and the corresponding vibration mode is the radial one, 

385 which is quite close to the fundamental frequency of the numerical model (12.337 Hz). The minor 

386 error (1.42%) is deemed satisfactory as per the scaled model design.

387 To identify the agreement between the seismic performance of experiment and the numerical model 

388 under the multi-angle excitations, response histories of deck displacement and moment of Pier 3 were 

389 compared for different incidence angles, 15° and 135°, as presented in Figures 16 and Figure 17. Table 

390 5 compares the measured and numerically identified peak responses of the scaled model. It can be 

391 seen that the peak responses of both the experimental and the numerical model are reasonably close, 

392 with an average error of 26.7% for the deck displacement and 14.4% for the pier moment, respectively. 

393 Compared to the case of pier moment, the larger error for the deck displacement comparison is 

394 because the round marker has a small glued contact area with deck (Figure 8, detail A) and could 

395 slightly vibrate with respect to the girder during the shake table test, therefore the displacement 

396 information obtained from the reflected signal of the marker was affected considering the actual small 

397 deck displacement itself, thereby a certain additional error for the displacement measurement is 

398 introduced compared to that of the pier moment. Although the experimental results are generally 

399 more fluctuant, it can be seen from Figure 16 and 17 that the phase changes of the seismic response 

400 identified experimentally are relatively in line with the numerical model, which indicates that the 

401 peak responses of the numerical model can be approximately captured by the test when subjected to 

402 multidirectional seismic excitations. As a result, it can be used to efficiently evaluate the applicability 

403 of the RRB method.
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404
405 Figure 15: Fourier spectra of transverse acceleration response on the top of the deck
406
407 Table 5: Comparison of the peak responses between test model and numerical model

Deck displacement (mm) Moment of Pier 3 (N·m)
X direction Y direction x direction y direction

Incidence 
angle

Measure
d

results

Numerical
results

Measure
d

results

Numerical
results

Measure
d

results

Numerical
results

Measure
d

results

Numerical
results

15° 3.23 2.82    
(-14.6%)

2.79 2.00
(-39.5%)

5.20 7.25 
(+28.3%)

2.39 2.88 
(+16.9%)

135° 2.33 1.97    (-
18.2%)

2.34 1.74
(-34.5%)

6.48 7.28 
(+11.0%)

4.68 4.62 
(+1.31%)

408

409
410 Figure 16: Comparison of seismic response time histories with respect to θ=15°: (a) deck displacement and (b) 
411 moment of Pier 3
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412
413 Figure 17: Comparison of seismic response time histories with respect to θ=135°: (a) deck displacement and 
414 (b) moment of Pier 3

415 5.3 Comparison of numerical and experimental results

416 As described earlier, RRB method is able to predict the variation of peak resultant pier moments and 

417 deck displacements with respect to the incidence angle. See step (i) and step (ii) as described in Section 

418 2.2, the peak modal responses along the local axes for the pier moment and deck displacement were 

419 derived and were displayed in Tables 6 and 7, respectively. Using the results in Table 6 and Table 7, 

420 the relationship between the peak response and the excitation direction can be established from step 

421 (iii). 

422 To verify the theoretical reliability and practical applicability of the RRB method, the peak resultant 

423 responses under multi-directional excitations were also calculated using the LRHA and test data, that 

424 is, responses in two orthogonal directions were combined by the Square-Root-of-Sum-of-Squares 

425 (SRSS) rule [69] through the entire history of excitation and the maximum was taken as the peak 
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426 one. Figure 18 compares the peak resultant responses predicted by the RRB method with those 

427 derived by means of LRHA and the shake table test.

428

429 Table 6: Peak modal responses for the pier moment along local axes

 Moment of Pier 3 (N · m)    Moment of Pier 4 (N · m)
Mode

X
x
iR X

y
iR Y

x
iR Y

y
iR   X

x
iR X

y
iR Y

x
iR Y

y
iR

1 -0.410 -0.090 -7.210 -1.580 -0.330 -0.270 -5.750 -4.830 
2 -0.460 7.540 0.030 -0.410 -1.750 6.870 0.110 -0.400 

3 -0.720 0.090 -0.020 0.000 -1.840 -0.840 
-

0.040 
-0.010 

4 0.040 -0.070 0.210 -0.370 0.060 -0.040 0.320 -0.190 

5 -0.010 -0.070 -0.020 
-

0.070 
-0.020 0.060 -0.020 0.050 

6 0.010 -0.200 0.010 0.010 -0.020 0.210 0.010 0.000 
7 -0.050 -0.090 0.480 0.900 -0.070 -0.120 0.810 1.310 

8 0.070 -1.150 0.010 
-

0.070 
0.100 -1.340 -0.010 0.060 

9 0.010 -0.010 0.360 -0.050 0.010 -0.010 0.020 0.040 
10 0.340 0.030 0.020 0.000 0.800 0.040 0.050 0.000 
11 -0.020 -0.010 0.170 0.020 -0.010 -0.010 0.040 -0.010 
12 0.010 0.010 0.100 0.010 -0.010 0.000 -0.100 0.000 

430

431 Table 7: Peak modal responses for the bearing displacement 

 Deck displacement (mm)
Mode

 X
x
iR X

y
iR Y

x
iR Y

y
iR

1 0.016 0.195 0.286 3.438 
2 2.856 1.029 -0.174 -0.063 
3 0.372 -0.923 0.007 -0.017 
4 0.002 -0.002 0.013 -0.013 
5 0.000 0.000 0.000 0.000 
6 0.000 0.000 0.000 0.000 
7 -0.003 0.003 0.031 -0.028 
8 0.009 0.010 0.001 0.001 
9 0.001 -0.001 -0.032 0.039 
10 0.002 -0.006 0.000 0.000 
11 0.000 0.000 -0.001 0.002 
12 0.000 0.000 0.002 -0.002 

432
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433
434 Figure 18: Variation of the peak resultant responses with regard to the excitation direction based on the RRB 
435 method, LRHA, and the shaking table test: (a) Pier 3, (b) Pier 4, (c) deck displacement

436

437 It can be seen that the variations of peak resultant responses with respect to the excitation direction 

438 are in good agreement for the three methods. The critical excitation direction for the pier moment is 

439 135°， while for the deck displacement is 45°. This indicates that applying the ground motion 

440 component only along the principal bridge axes (tangential and radial directions with respect to the 

441 middle point of the bridge) as it is commonly prescribed by the codes, may underestimate the seismic 

442 response of curved bridges at least when the resultant response is used as the evaluation criterion. The 

443 results derived from the RRB method match well with those of LRHA with the maximum difference 

444 of 8.86% and 2.90% for the pier moment and deck displacement, respectively. This verifies that the 

445 RRB method is able to identify the critical excitation direction with acceptable errors and without 

446 significant computational cost. Moreover, for the same bridge member, the maximum discrepancies 

447 of the peak responses amongst various incidence angles are 36.4% and 32.3% for Pier 4 and deck 

448 displacement, and 15.1% for Pier 3. This is evidence that at least for the curved bridge studied, seismic 

449 responses of the piers close to the deck-end are more sensitive to the excitation direction than those 

450 near the mid-span.

451 On the other hand, the experimental results demonstrate that the scaled model remains elastic, which 

452 satisfies the prerequisite of the RRB method. Specifically, the moment of Pier 3 at θ = 135° as the 
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453 critical response among piers (as shown in Figure 18) was selected to examine the state of piers and 

454 bearings. As the Pier 3 is simultaneously subjected to the vertical axial force (Fv) and the flexural 

455 moment (M), the conditions for the pier to remain elastic are expressed as:  

456                                                           |M
W| + |Fv

A | ≤  [σc]

457 (22a)

458                                                            |M
W| -  |Fv

A | ≤  [σt]

459 (22b)

460 where A is the gross area of the pier section, W is the section modulus of the pier, and  and  [σc] [σt]

461 are the permissible compression and tensile stress of the PMMA, respectively. In this study, Fv equals 

462 to 20 N (including partial masses of the deck, masses of cap beam and pier as well as the additional 

463 artificial masses applied on the deck and cap beam), M is 7.975 N· m, A is 7 × 10-4 m2 and W is 2.65× 

464 10-6 m3. According to the previous studies [70],  and  are more than 100 MPa under the [σc] [σt]

465 dynamic strain-rate (  [71]) loading condition such as seismic loading. Substituting the ≥ 103 s - 1

466 specific geometric and mechanical parameters into Eqs. (22a) and (22b) and they are satisfied as:

467                                        |M
W| + |Fv

A | =  3.04 MPa ≤  [σc] ( > 100 MPa)

468 (23a)

469                                        |M
W| -  |Fv

A | =  2.98 MPa ≤  [σt] ( > 100 MPa)

470 (23b)                              

471 Based on the above results, the actual tensile and compression stresses do not exceed the permissible 

472 threshold values, which effectively means the piers remains elastic during the test. For bearings, it can 

473 be seen from the Figure 7 that the bearing is approximately linearly elastic when the horizontal load 
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474 is less than 162.68 N. On the basis of the moment of Pier 3, the shear force (Fs) of the bearing can be 

475 calculated as:

476                                                                  (24)Fs =  
M
L

477 where L is the height from the pier bottom to the middle of the bearing and equals to 0.185 m. 

478 Substituting the specific values of M and L into Eq. (24), the shear force of the bearing can be 

479 obtained as:

480                                           Fs =  
M
L =  7.975

0.185 = 43.12 N <  162.68 N

481 (25)

482 Hence, the bearing also remains within the elastic regime. Along these lines, the entire scaled model 

483 was validated in the elastic domain during the test. Based on the aforementioned verifications, the 

484 applicability of the RRB method for the case of a realistic bridge configuration is highlighted by 

485 contrast with the experimental results. As shown in Figure 18, the variation of peak resultant 

486 responses that develop at the deck and piers as well as the critical angle captured by the RRB method 

487 are approximately consistent with those identified by the experiment. The peak values of piers 

488 experimentally observed are smaller than those predicted by the RRB method with the maximum 

489 error of 41.4%, while the peak deck displacements tested are larger compared to those obtained from 

490 the RRB method with the maximum error of 39.7%. There are four reasons for the discrepancies 

491 observed between the numerical and experimental results: 

492 (a) Given that the dimensions of the rubber bearings with a diameter and height of 10 mm, their 

493 shear stiffness can only be approximately measured by the simple device invented and shown in 

494 Figure 6. This naturally introduces a certain error in terms of equivalent stiffness. Based on the 
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495 observation in Figure 18, it is indicated that the actual stiffness of the bearing could be smaller 

496 than the measured ones taken from the test.

497 (b) The accumulated error when combining the measured response components by means of the 

498 SRSS rule could affect the prediction of the actual resultant responses.

499 (c) As stated in Section 5.2, the slight vibration of the marker with respect to the deck during the test 

500 could introduce a certain error to the acquisition of the real deck displacement.

501 (d) Considering the payload of the shaking table, the PMMA which has small density is selected as 

502 the material for the small-scale model in this study. Because the mechanical properties of the 

503 PMMA are sensitive to the temperature and loading mode [72], there is a degree of uncertainty 

504 that is introduced. In case of a large-scale test, steel would be a better option given its stable 

505 mechanical properties.

506 Despite of the aforementioned source of discrepancies from the particular test, as displayed in Figure 

507 18, the test and numerical results show the same trend in terms of the peak resultant responses. As a 

508 result, it can be concluded that this test confirms the validity of the RRB method and as such, the 

509 conclusions drawn are valid for a full-scale (i.e., real) bridge as well. Besides, it can be found from 

510 Figure 18(c) that the that the critical excitation direction of the deck displacement for the numerical 

511 results is  while the test shows a different critical incidence angle ), followed θ =  45° (θ =  60°

512 closely by . This observation is because the peak deck displacements obtained from the θ =  30°

513 numerical results (e.g., RRB method) for , 45  and 60  are 3.72 mm, 3.84 mm and 3.81 θ =  30° ° °

514 mm, respectively, which are very close with each other. Therefore, the test does not actually clearly 

515 identify the critical excitation direction.
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516 Taking the case of Pier 3 as an example, Figure 19 illustrates the variation of the moment component 

517 with respect to the excitation direction. It is evident that the numerical and experimental variation of 

518 the bending moment component with the incidence angle is in better agreement compared to the 

519 case where the composition of response components is plotted, which verifies the effect of 

520 accumulated error produced when combining the response components measured by means of the 

521 SRSS rule. On the other hand, Figure 19 also corroborates that the critical incidence angle for different 

522 response components varies:  is the critical direction for the moment along x-axis, while the =165 

523 peak moment along y-axis appears for an excitation angle of . By contrast, considering the =75 

524 resultant moment as the evaluation criterion, the RRB method is able to catch the unique critical 

525 excitation direction for the pier ( as mentioned in this section). Hence, it can be seen that the =135 

526 RRB method can not only comprehensively reflect the seismic performance of the entire structural 

527 member but also be more convenient to be carried out in the practical seismic design of the structure.

528
529 Figure 19: Variation of the moment component of the Pier 3 with respect to the excitation direction 
530 (numerical prediction and shake table test measured response): (a) direction x and (b) direction y

531 6. CONCLUSIONS

532 An analytical, response resultant-based (RRB) method is developed in this paper for assessing the 

533 critical excitation direction of curved bridges. The specific formulae were derived based on the 

534 fundamentals of structural dynamics and RSA method to capture the critical angle and demand. In 
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535 order to evaluate the efficiency and applicability of the RRB method for the case of a realistic curved 

536 bridge configuration, a shaking table study of a 1/62.5-scale three-span curved bridge model was 

537 conducted for several excitation directions. Then, the RRB method as well as the LRHA were also 

538 comparatively assessed. The main conclusions and findings are summarized as follows:

539 1. Considering the resultant response quantity of interest as the evaluation criterion of the critical 

540 excitation direction is a pragmatic approach that is able to comprehensively reflect the seismic 

541 performance of the entire structural member and associate it with a unique critical incidence 

542 angle. This approach is not only computationally efficient in comparison with taking the 

543 individual response components along the local axes but is also more meaningful in terms of 

544 structural design.

545 2. The RRB method proposed herein was found able to assess the critical excitation direction of the 

546 curved bridge example with sufficient precision (deviation did not exceed 10% compared to the 

547 results of LRHA) while the computational efforts were drastically reduced (the ground motion 

548 was only applied twice) by means of computer programming. 

549 3. For the horizontally curved bridge studied, and assuming the resultant response as the judging 

550 criterion for critical angle of incidence, the application of input motion along the principal bridge 

551 axes only (i.e., tangential and radial directions with respect to the middle point of the bridge) may 

552 underestimate the actual response and thereby lead to unconservative seismic design. Bridge bent 

553 piers that are close to the deck-end show higher sensitivity to the excitation direction compared 

554 to those located near the mid-span.

555 4. The results of multi-angle shaking table test are capable to capture the variation of peak resultant 
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556 response as a function of the excitation direction. They also verify the applicability and efficiency 

557 of the RRB method for the case of a realistic curved bridge. However, the differences between 

558 actual mechanical properties of the members and their measure ones, the accumulated error 

559 caused by the combination of the tested orthogonal response components using the SRSS rule 

560 and the slight vibration of the marker itself with respect to the deck during the test, cause a non-

561 negligible deviation from the theoretically and numerically expected response.

562 5. The RRB method is a useful alternative to standard multi-angle response history analysis and is 

563 appropriate for the prediction of the critical excitation direction of a curved bridge responding 

564 elastically. However, further research is needed given that the critical angle is different for 

565 different structural components and for each engineering demand parameter. It is also important 

566 to extend the relevant research to the nonlinear field.
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