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Comparing Matrix-based and Matrix-free
Discrete Adjoint Approaches to the Euler Equations

L. J. Kedward∗ ; C. B. Allen† ; T. C. S. Rendall‡
Department of Aerospace Engineering, University of Bristol, Bristol, UK

Detail is presented on the implementation of numerical derivatives with focus given to the
discrete adjoint equations. Two approaches are considered: a hybrid matrix-based scheme
where the convective Jacobian is constructed explicitly; and amatrix-freemethod using reverse-
mode automatic differentiation. The hybridmatrix-based scheme exploits a compact convective
stencil using graph colouring to evaluate the convective Jacobian terms inO(10) residual evalua-
tions. Jacobian terms, grouped by colours, are evaluated using the complex step tangent model;
this approach requires no external libraries or tools, minimal code modification and provides
derivatives accurate tomachine precision. The remaining artificial dissipation terms are trivial
to differentiate by hand where the sensor coefficients are held constant. The hybrid matrix-
based methodology is validated and compared with the ‘traditional‘ matrix-free approach
using reverse-mode automatic differentiation. The adjoint equations using both approaches
are solved using the same fixed-point Runge-Kutta iteration accelerated by agglomeration
multigrid. No loss in accuracy is seen between the matrix-based and the matrix-free methods
when validated with the complex step tangent model. The hybrid matrix-based approach
demonstrates a notable runtime performance advantage over the traditional matrix-free ap-
proach due to the prior calculation of Jacobian terms. Moreover, the convective Jacobian
calculation takes less than 5% of primal runtime due to the compact stencil used. A critical
analysis of the results and methodology is consequently presented, focussing on the general
applicability of the hybrid approach to more complex problems.

I. Introduction
Derivatives are of widespread importance to numerical methods particularly those requiring Jacobian products and

adjoint products. Jacobian products for example, are fundamental to the implementation of implicit Newton methods
for the solution of difficult problems such as coupled physics or in the case of multiple length and time scales. The
adjoint method has recently seen significant interest and development, most notably for error analysis[1], adaptive mesh
refinement [2] and aerodynamic optimisation[3, 4].

Adjoint methods for fluid applications are typically categorised as either continuous or discrete corresponding to
different ways of deriving the adjoint system (Figure 1). The continuous adjoint is derived from the linearised governing
equations and then discretised for numerical solution, whereas the discrete adjoint is constructed from a linearisation
of the discretised system. Early work within fluids favoured the continuous method due to the complexity associated
with linearising numerical programs. In the early 1970s Pironneau applied the theory of optimal control for distributed
parameter systems to obtain the continuous adjoint formulation for incompressible flows [5, 6]. In 1988 Jameson
derived the continuous adjoint equations for inviscid compressible flow after which the application of the adjoint for
aerodynamic shape optimisation became increasingly wide-spread. In 1998 Jameson, Martinelli and Pierce presented
the first derivation of the continuous adjoint for the Navier-Stokes equations [3].

The solutions for the continuous and discrete adjoints should be equivalent in the limit of discretisation refinement,
however there are usually minor differences in magnitude with much larger disagreement at sharp surface features.
Importantly, only the discrete adjoint solution retains consistency with the primal flow solution, regardless of mesh
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resolution. This is important for shape optimisation in theoretically allowing exact convergence of optimality which is
not possible by the continuous adjoint [7]. The inherent consistency of the discrete method means that adjoint boundary
conditions are a result of the linearisation, whereas for the continuous case boundary conditions must also be derived for
the adjoint problem. Moreover well-posed boundary conditions are not guaranteed to exist for all objective functions in
the continuous approach [8]. Furthermore, the discrete adjoint typically inherits the convergence rate of the primal flow
solution, however the same cannot be said for the continuous adjoint which may be ill-conditioned. An advantage of
the continuous method is in its implementation; the continuous adjoint equations, derived from a linearisation of the
flow equations, can be easily discretised and solved using the same numerical methods as for the flow. By contrast
the discrete adjoint is implemented as a linearisation of the numerical program requiring either specialist automatic
differentiation (AD) tools or a lengthy hand differentiation of the source code. Furthermore, the discrete adjoint has a
high memory requirement, when compared to the primal or continuous solutions; as a result development of discrete
adjoint methods has lagged that of the continuous with recent advances following corresponding developments in
automatic differentiation technology and computational capability. Despite this, implementation of discrete adjoint
codes remains an involved process, typically comprising a combination of automatic differentiation, hand differentiation
and code tailoring.

In this paper, a review of numerical methods for derivatives is given with particular focus on the discrete adjoint
method. This is followed by detail on the implementation of a hybrid method to the discrete adjoint which uses
a matrix-based approach for the convective Jacobian and a matrix-free approach for dissipation terms. The sparse
convective Jacobian matrix is constructed using tangent derivatives calculated using the complex step method and
accelerated using graph colouring. The hybrid approach is implemented for the Euler equations discretised using a
central scheme in an edge-based unstructured multigrid solver. Performance of the hybrid matrix-based approach is
compared against the ‘traditional’ matrix-free method derived using reverse-mode automatic differentiation.

II. Background
In this section, background is given on the adjoint equations followed by detail on common approaches to program

linearisation for discrete derivatives.

A. The discrete adjoint equations
The governing equations of the discretised flow are expressed:

R(W, X) = 0 (1)
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where R,W (α) and X(α) are the flow residual, conservative variables and computational mesh respectively, and α is
the vector of nα design variables.

For some aerodynamic objective J(W, X), an augmented objective I(W, X) is formed using a set of Lagrange
multipliers Λ to ensure satisfaction of the discrete flow equations:

I = J + ΛTR (2)

Now taking the total derivative of the augmented objective gives:
dI
dα
=
∂J
∂X

dX
dα
+
∂J
∂W

dW
dα
+ ΛT

∂R

∂W

dW
dα
+ ΛT

∂R

∂X

dX
dα

(3)

Rearranging this to factorise the term dW/dα, which introduces dependency of the flow solution on the design variables,
gives:

dI
dα
=

(
∂J
∂W
+ ΛT

∂R

∂W

)
︸                ︷︷                ︸

dW
dα
+

(
∂J
∂X
+ ΛT

∂R

∂X

)
dX
dα

(4)

From this it is clear that if the Lagrange multipliers are such that the bracketed term is zero, then the expensive term
dW/dα can be avoided. Equating the bracketed term to zero therefore gives the discrete adjoint equation:

∂J
∂W
+ ΛT

∂R

∂W
= 0 (5)

which is a linear system for the Lagrange multipliers, or adjoint state Λ. Note that only the vector ∂J/∂W is dependent
on the specific objective function, not the flow Jacobian; implementation of different objectives simply requires
substituting different partial derivatives for this right-hand side vector and within the total derivative calculation. It
is the solution of this linear system that forms the core of adjoint solvers. Such solvers can be classified as either
matrix-based or matrix-free; in the former case the Jacobian ∂R/∂W is constructed explicitly whereas in the latter
case only adjoint-vector products are used. Additionally, a solver may use both matrix-free vector products and a
matrix-based preconditioner, such as is required for Krylov solvers.

With a solution Λ to the adjoint equation, and a converged flow solution (i.e. R ≈ 0), the total derivative of the
objective can be evaluated from the remaining non-zero terms of equation 4:

dJ
dα
=

(
∂J
∂X
+ ΛT

∂R

∂X

)
dX
dα

(6)

Implementing the discrete adjoint simply requires evaluation of the derivatives and adjoint products in equations 5
and 6; these are summarised in Table 1. All of these derivatives either involve a transpose Jacobian product or are
derivatives of a single output with respect to many inputs; as is explained in the next section, this necessitates the need
for the adjoint model (reverse mode) of program linearisation. Note that evaluation of the total derivative in equation 6
also involves the mesh adjoint product, which uses the mesh movement Jacobian ( dXdα ) to project the sensitivies from the
grid vertices onto the design variables. This commonly involves two steps, first a projection onto the surface grid using
the mesh movement adjoint, then a projection onto the design variables using the shape control method. For linear mesh
movement and shape control schemes this projection is trivial [9], however non-linear methods require an additional
linearisation of the mesh movement code [10].

In the following section, theory is presented on the two modes of program linearisation and the different ways of
practically implementing them.

B. Program linearisation
A program or subroutine computes a function F : Rn → Rm via a set of primitive logical operations on memory

which, when abstracted, allow numerical calculation and program branching (e.g. if, for). Even in the presence of
branching constructs a program with sufficient continuity permits a local linearisation:

F̃(x0 + ∆x) = F(x0) + A∆x (7)

where A ∈ Rm×n is the Jacobian of F at x0. It is the linearisation provided by the Jacobian A and its products that are of
significant importance across a variety of disciplines. In many such applications, the dimension of the Jacobian excludes
the use of direct solution methods and instead iterative methods are usually employed. Excluding preconditioners, these
iterative methods typically require only matrix-vector products of the Jacobian with which there are two types:
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Table 1 Summary of derivatives for discrete adjoint

ΛT (∂R/∂W ) Adjoint product Jacobian of flow residual with respect to flow variables
ΛT (∂R/∂X) Adjoint product Jacobian of flow residual with respect to grid vertices

∂J
∂W Partial derivative Differentiation of objective with respect to flow variables
∂J
∂X Partial derivative Differentiation of objective with respect to grid vertices
dX
dα Total derivative Differentiation of grid vertices with respect to design variables

1) The tangent model: also referred to as the forward-mode derivatives, this calculates a standard Jacobian product:

Ûy = A Ûx (8)

2) The adjoint model: also referred to as the reverse-mode derivatives, this calculates the transpose vector product:

x̄ = AT ȳ (9)

In each case, the matrix-vector product operates on a seed vector Ûx ∈ Rn or ȳ ∈ Rm to provide a directional derivative.
Here notation common to automatic differentiation literature is adopted where Ûy denotes derivatives of all outputs with
respect to some combination of input perturbations and x̄ denotes some combination of output derivatives with respect
to all inputs. These seed vectors are combinations of perturbed input and output states that are propagated through the
program in the forward and reverse directions for the tangent and adjoint modes respectively.

When only Jacobian products are available, construction of the entire Jacobian can be performed by seeding with
the cartesian basis vectors ei which are entirely comprised of zeros except for a 1 in the ith component. For example,
seeding with ej gives the j th column of A when using the tangent Jacobian product and the j th row of A with the adjoint
product. Clearly the number of matrix-vector products required to evaluate the entire Jacobian is n for the tangent mode
and m for the adjoint mode. Put another way, the tangent mode provides the derivatives of all outputs with respect to a
single input perturbation whereas the adjoint mode provides the derivatives of all inputs with respect to a single output
perturbation. The tangent mode is therefore preferable when the number of outputs is much greater than the number
of inputs and vice versa for the adjoint mode. For example, numerical optimisation problems are often formulated
with a single objective function, between O(1) and O(10) non-linear constraints and between O(10) and O(100) design
variables. In this case the number of inputs (design variables) almost always exceeds the number of outputs (objective
function and constraints), and hence reverse mode derivatives are preferred. Alternatively, the implicit constraint for a
converged flow state requires the solution of an adjoint system when calculating sensitivities, this is presented in the
following section.

Several methods are available for evaluating tangent Jacobian products, each varying in accuracy, computational
cost and ease of implementation. By contrast, evaluation of the adjoint product is considerably more complex, due to
the need to reverse the call graph and save intermediate state, and is only possible with hand-derived code or automatic
differentiation tools.

Finite differences
Perhaps the simplest and most intuitive method for tangent derivatives are finite differences. A first order

forward-difference approximates the Jacobian product by the difference with a single perturbed state:

Ax0 Ûx ≈
F(x0 + δ Ûx) − F(x0)

δ
(10)

where δ is the step size. For second-order accuracy, a central-difference can be used, implementing the difference of two
perturbed states:

Ax0 Ûx ≈
F(x0 + δ Ûx) − F(x0 − δ Ûx)

2δ
(11)

In both cases, the choice of step size is of importance since it requires a trade-off between truncation error, which
dominates as δ increases, and rounding error, which dominates as δ decreases [11]. Typically, if a function known to
precision p, then first and second order step sizes can be chosen as √p and 3

√
p respectively. Despite their simplicity

4



and limited accuracy, finite differences offer some powerful advantages over more complex methods, notably: they are
black-box compatible, being entirely independent of the implementation of the target function and are hence trivial to
evaluate in any situation; similarly, if multiple differences are required, they are perfectly parallel, and can hence make
efficient use of HPC resources. A common application of finite differences is in matrix-free Newton Krylov methods
whereby only matrix-vector products are required to solve the Newton system. The generality of finite differences allows
the residual to be treated as a black-box, though degraded convergence may occur due to reduced accuracy.

Complex step
The lower bound restriction on finite difference step size occurs due to catastrophic cancellation in which the

difference of two very similar numbers in finite precision floating point representation produces a loss of significant
figures in the result. This can be overcome by the complex step method which requires modification of the program
such that relevant inputs, outputs and intermediates are represented by a complex type. The tangent Jacobian product is
then approximated by perturbing the imaginary component with the seed vector and taking the imaginary component of
the resulting complex function value:

Ax0 Ûx ≈
Im [F(x0 + iδ Ûx)]

δ
(12)

Not only is the complex step method second order accurate[12], but since there is no differencing involved the step size
δ can be chosen much smaller than machine precision such that the result is effectively accuracy to machine precision.
Slightly more expertise is required to implement the complex step method compared to finite differences, though it
is still straightforward provided the source code is available and complex types are supported. Similarly, the runtime
cost is higher for the complex code than for the original routine due to the complex numerics. This approach may be
termed grey-box compatible since source code access is needed, but no external tool or significant re-write of the code
is required. Custom functions may be required instead of intrinsics such as min, max and abs such that the complex
variable code follows the same thread branch as the original.

The augmentation of the programwith complex numbers bears resemblance to forward-mode automatic differentiation
which introduces, for each relevant variable, a dual number comprising the variation thereof. The chain rule is then
used to propagate the variations alongside the original code from the inputs to outputs. With the complex step method,
these variations are stored in the imaginary component, which for sufficiently small step size has equivalent results
as forward-mode AD. An important difference between forward mode AD and the complex step method however is
that the complex step method performs redundant computations that eventually cancel to zero and is usually not as
computationally efficient.

Automatic differentiation
Automatic differentiation, also known as algorithmic differentiation, describes methods by which the original

program may be transformed or augmented to produce a second program capable of evaluating its derivatives, either
in forward mode or reverse. As already mentioned, forward mode code can be generated by simply augmenting each
variable and statement with a corresponding derivative propagation, the resulting derivatives are exact to machine
precision. Whereas forward mode AD complements the forward methods already discussed, reverse-mode AD and
equivalent hand-derived codes are the only options available for performing the adjoint product in a matrix-free manner.
This highlights the complexity involved in evaluating the adjoint product. Reverse mode code, implementing the adjoint
product, requires a forward pass to evaluate the original code and a reverse pass to back propagate derivatives. Moreover,
certain data must be recorded or taped during the forward pass such that it is available during the reverse pass; this
includes intermediate variables required in local partial derivatives, variables that are overwritten or incremented, and
flags indicating the order of branching and looping. Various strategies are available for reducing the memory cost
including check-pointing and recomputation, but application of reverse mode AD to large scale problems is restricted
[13].

There are two main methods of implementing automatic differentiation tools:
1) Operator-overloading: relevant variables are replaced by a custom type which has its standard operations

overloaded to allow automatic propagation of derivatives;
2) Source code transformation: a tool parses the primal code and produces new code which explicitly contains

the propagation of derivatives.
For forward-mode differentiation, the difference between operator-overloading and source code transformation is

only aesthetic since the overloaded operations can be inlined to reproduce the transformed code, however the same
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cannot be said for the reverse mode. Operator-overloading constructs the reverse call graph as a stack of operations at
runtime which is then interpreted in the reverse pass. By contrast, source code transformation tools explicitly produce
reverse code which is then compiled normally and benefits from important optimisations performed by both the AD tool
and compiler; hence adjoint codes produced by operator overloading are much slower and memory-intensive than those
produced by source code transformation. Practical application of AD tools for the efficient generation of matrix-free
adjoint products remains an involved process requiring expertise. Also worth mentioning is that the type and availability
of automatic differentiation tools varies between programming languages. In particular, many specialist AD tools are
not free and open source which severely restricts portability and security.

Sparse Jacobian
The methods discussed so far all provide matrix-free Jacobian products; that is, they do not require the evaluation

and storage of the entire Jacobian matrix. This is advantageous in the general case since not only is there a cost
associated with evaluating the entire Jacobian, but the storage cost can be unmanageable. An exception to this is if the
Jacobian is sparse with some known structure, in which case storage of the Jacobian may be less than O(10) times that
of the state vector. In this work, a wrap-around approach to the discrete adjoint is presented using a sparse Jacobian
constructed by the complex step method and accelerated by graph colouring as performed in [14] and [15]. In [14], Lyu
et al. use forward-mode automatic differentiation with graph colouring to construct the sparse block Jacobian for the
three-dimension Reynolds Averaged Navier Stokes equations. In [15] He et al. instead use finite differences to provide a
more generic ‘black-box’ framework within openFOAM. The advantage of this method is that it avoids the complexity
and development time associated with reverse mode automatic differentiation, while providing a very efficient adjoint
product code.

III. Methodology
In this section, detail is presented on the unstructured Euler solver used here and the development of two discrete

adjoint methods therein: a hybrid matrix-based approach, where the convective Jacobian is explicitly constructed, and a
matrix-free approach using reverse-mode automatic differentiation for comparison and validation.

A. Flow discretisation and analysis
The compressible Euler equations are solved by a cell-centred finite volumemethod using the face-basedmethodology

of Eliasson [16] for arbitrary shape elements. Compact central JST terms with artificial dissipation [17] are used for the
discretisation with steady-state integration performed explicitly by four-stage Runge-Kutta. Convergence acceleration is
performed using local time-stepping and non-linear agglomeration∗ multigrid [19].

B. Hybrid matrix-based discrete adjoint
For the hybrid matrix-based approach, the complex step method is used to construct a sparse Jacobian of the

convective terms and the artificial dissipation terms are hand differentiated under a frozen coefficient assumption. Both
the flow state Jacobian (∂R/∂W ) and the flow grid metric Jacobian (∂R/∂X) are constructed in the same manner,
however in this section descriptions are presented with respect to the flow state Jacobian only. The Jacobian matrix
(∂R/∂W ) has ncell × nw rows and columns where nw is the number of conservative variables. To avoid evaluating the
complex step residual ncell × nw times to construct each column separately, a graph colouring technique is used to
exploit sparsity of the convective Jacobian.

Graph colouring
The compact stencils used here result in a highly sparse Jacobian for the convective terms with a known block

structure. Consequently, graph colouring can be used to identify independent subsets of control volumes whereby
control volumes of the same colour do not share cells in their stencils. These coloured sets correspond to structurally
orthogonal columns in the Jacobian which do not have non-zeros in common rows. Therefore, if all control volumes of
the same colour are perturbed simultaneously via the tangent model seed vector then the consequent output derivatives
can be uniquely positioned within the non-zero structure of the Jacobian. With this, the number of complex step residual
evaluations is only proportional to the number of colours required for the grid topology.

∗Performed using MGridGen [18] library: http://glaros.dtc.umn.edu/gkhome/mgridgen/overview
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A simple greedy colouring algorithm is adopted here, since the number of colours required for the convective stencil
is only O(10). This is outlined in algorithm 1; a loop over cells assigns colours by checking the cells in the local stencil
and assigning the lowest integer which is not also assigned to any of the stencil cells. Figure 2 shows the resulting
colour distribution for 3 different grid topologies.

Algorithm 1 Greedy graph colouring
1: procedure
2: init:
3: for cell in cellList do B Initialise cell colours to negative
4: cellColours(cell) ← −1
5: end for
6: main:
7: for cell in cellList do
8: col ← 1
9: while col ∈ cellColours(stencilCells(cell)) do B Find colour not equal to stencil neighbours
10: col ← col + 1
11: end while
12: cellColours(cell) ← col B Set cell colour
13: end for
14: end procedure

(a) Structured quadrilateral (b) Cartesian cutcell (c) Unstructured triangular

Fig. 2 Grid colouring

Jacobian construction and evaluation
Once the grid cells have been assigned colours, the Jacobian can be constructed by performing complex step

evaluations of the flow convective residual for each colour. Algorithm 2 outlines the process required to construct the
sparse Jacobian using the complex-step method and graph colouring.

The number of complex residual evaluations required is nw × ncolour . Despite the higher cost of the complex
residual routine compared to equivalent forward mode AD code, this is only required during Jacobian construction
which occurs prior to the much more computationally demanding solve of the adjoint system. Line 13 in the algorithm
denotes saving the resulting derivative vector dR into a sparse structure; this requires identifying which components of
the derivative vector belong to which columns and rows based on the current colour. Once identified, this operation
places the components directly into a sparse structure such that storage for the full Jacobian is never allocated. The
sparse structure requires memory proportional to the number of non-zero values which is:

nnnz = (nw)2 ·
ncell∑
i=1

mi (13)
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Algorithm 2 Construction of sparse Jacobian using complex step
1: procedure
2: for colour in colourList do B Loop over colours
3: for i = 1, nw do B Loop over conservative variables
4: for cell in cellList do
5: if cellColours(cell) == colour then
6: Ûw(i, cell) ← 0 + iδ B Construct complex step seed
7: else
8: Ûw(i, cell) ← 0 + 0i
9: end if
10: end for
11: R← Residual(W + Ûw) B Evaluate residual
12: dR← Imag(R)/δ B Perform complex step
13: sparseJacobian← dR B Save to sparse data structure
14: end for
15: end for
16: end procedure

where mi is the number of cells within the convective stencil of cell i. Assuming a grid of uniform topology where all
grid cells have at most m̄ stencil cells, then the number of non-zero values is bounded by:

nnnz ≤ n2
w · m̄ · ncell = O(ncell) (14)

i.e. the memory cost of storing the sparse Jacobian is linear with grid size. Despite this, the memory cost is sensitive
to the parameter m̄ which represents the size of the influence stencil. In this work, only the convective Jacobian
is constructed which has a compact stencil due to the central scheme used. Dissipation contributions have been
hand-differentiated and are hence evaluated in matrix-free fashion. This represents a hybrid approach to adjoint
evaluation involving both matrix-based and matrix-free operators.

C. Matrix-free discrete adjoint
For validation and comparison, a ‘traditional’ matrix-free adjoint code is produced using automatic differentiation†.

Once again, only the convective terms need differentiation with AD since the dissipation terms have already been
differentiated by hand. The AD tool was used with minimal code modification using the default settings which include
checkpointing, recomputation and optimisation of the derivative code. Listing 1 gives an extract from the face flux
calculation. Listing 2 gives the corresponding reverse-mode adjoint code produced by automatic differentiation; the
addition of ‘b’ to variable names indicates the corresponding derivative variable.

†Performed using Tapenade[20]: https://www-sop.inria.fr/tropics/tapenade.html
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Listing 1 Flux calculation extract

nve l = u∗nx + v∗ny + w∗nz
f l x ( 1 ) = rho ∗ nve l
f l x ( 2 ) = rho ∗u∗ nve l + p∗nx
f l x ( 3 ) = rho ∗v∗ nve l + p∗ny
f l x ( 4 ) = rho ∗w∗ nve l + p∗nz
f l x ( 5 ) = rho ∗ nve l ∗e + nve l ∗p

Listing 2 Flux derivative code extract

rhob = e∗ nve l ∗ f l x b ( 5 )
nve lb = ( p+e∗ rho )∗ f l x b ( 5 )
eb = rho ∗ nve l ∗ f l x b ( 5 )
pb = nve l ∗ f l x b ( 5 )
rhob = rhob + nve l ∗w∗ f l x b ( 4 )
wb = nve l ∗ rho ∗ f l x b ( 4 )
nve lb = nve lb + rho ∗w∗ f l x b ( 4 )
pb = pb + nz∗ f l x b ( 4 )
rhob = rhob + nve l ∗v∗ f l x b ( 3 )
vb = nve l ∗ rho ∗ f l x b ( 3 )
nve lb = nve lb + rho ∗v∗ f l x b ( 3 )
pb = pb + ny∗ f l x b ( 3 )
rhob = rhob + nve l ∗u∗ f l x b ( 2 )
ub = nve l ∗ rho ∗ f l x b ( 2 )
nve lb = nve lb + rho ∗u∗ f l x b ( 2 )
pb = pb + nx∗ f l x b ( 2 )
rhob = rhob + nve l ∗ f l x b ( 1 )
nve lb = nve lb + rho ∗ f l x b ( 1 )
ub = ub + nx∗ nve lb
vb = vb + ny∗ nve lb
wb = wb + nz∗ nve lb

D. Explicit multigrid solver
Solution of the discrete adjoint system is performed using the same non-linear iteration as for the primal flow

solution: in this work an explicit multistage Runge-Kutta scheme accelerated by agglomeration multigrid. This allows
code-reuse and minimises development time while also guaranteeing a minimum convergence rate bounded by the
primal problem [8]. Applied to a linear system, the multistage Runge-Kutta scheme applies simple corrections using a
residual of the form:

Radj = ATΛ + DTΛ − b (15)

where ATΛ is the the convective Jacobian adjoint product, DTΛ is the hand-differentiated matrix-free adjoint dissipation
operator and b is the right-hand side of the adjoint equation −∂J/∂W .

The convective Jacobian adjoint product (ATΛ) is evaluated using either an efficient sparse-vector multiplication in
the case of the matrix-based method or by calling the derivative code produced by automatic differentiation for the
matrix-free method.

As with the primal flow, agglomeration multigrid is used to accelerate convergence of the adjoint solution. Unlike
the primal flow, which uses a non-linear full approximation storage scheme, the adjoint multigrid uses a simple
linear correction scheme. For the matrix-based method, the convective adjoint operator on the coarse grids involves
constructing coarse grid Jacobians using the Galerkin method based on the prolongation and restriction operators Ip and
Ir :

Acoarse = Ir · Af ine · Ip (16)

These sparse products are easily performed and result in a very efficient coarse grid operator. By contrast, for the
dissipation terms and the matrix-free method, the coarse grid operator is constructed using the re-discretisation method,
whereby the derivative code is called on the coarse grid topology. The former methodology (Galerkin) represents the
coarse grid approximation to the adjoint problem, whereas the latter is the adjoint of the coarse grid discretisation [19].
Note that on the coarse grids a simpler first order dissipation operator is used in place of the usual second and fourth
order dissipation, as outlined by Eliasson [16]; this applies to both the primal and adjoint solutions.
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IV. Results

A. Test grids
Two coarse test grids are used for validation and performance testing: a structured hexahedral mesh around the MDO

wing[21], generated by transfinite interpolation [22] with improved orthogonality and smoothness; and an unstructured
tetrahedral mesh for the Onera M6 wing[23]. Grid sizes and run conditions are given in Table 2. Coarse grids are used
in this study to ensure tight convergence and for a reasonable runtime since all tests are run in serial.

Table 2 Test cases used for validation and performance evaluation

MDO Transport Wing
(Coarse)

Onera M6 Wing
(Coarse)

Cell type Hexahedral Tetrahedral
Surface grid points 3881 4794
Volume grid cells 125K 300K

Mach number 0.85 0.84
Target CL 0.47 0.26

(a) MDO modern transport wing (b) Onera M6 wing

Fig. 3 Surface and volume views for test case meshes

B. Derivative validation
Validation of the derivative codes can be done at two levels: at the adjoint-vector product level and at the objective

function level.

Jacobian inner products
Returning to equations 8 and 9 for the definition of the tangent and adjoint models respectively, the following identity

can be written:
x̄Tb = bT Ûy (17)

for any seed vector b, where x̄ is the result of the adjoint product with b and Ûy results from the tangent product with
b. This is useful in that it allows the adjoint model to be validated using the tangent model. Shown in Table 3 are
numerical results using a random unit vector for b. The adjoint product is evaluated using both the matrix-based method,
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Table 3 Inner product validation of adjoint models

x̄Tb
Complex-step Jacobian 0.605557047131933

AD Adjoint 0.605557047131936

bT Ûy Complex step 0.605557047131934
Finite difference 0.605556501974470

Fig. 4 Comparison between finite difference and discrete adjoint for drag sensitivities

constructed using the complex step, and the matrix-free method, constructed using automatic differentiation. The
tangent model is evaluated using the complex step method and finite differences. The matrix-based and the matrix free
adjoint products agree with the complex step tangent model to within 1 × 10−14. As is to be expected, the tangent model
using finite differences is only accurate to 1 × 10−6 corresponding to the rounding error in double precision arithmetic.

Objective function gradient
A higher level validation can be made using the total derivative of the objective given by equation 6. The total

derivative at each point produced from the adjoint solution can be compared to finite differences. Since this requires as
many flow evaluations as surface points, this validation is run on a 2D aerofoil case. Figure 4 shows the z-ordinate drag
sensitivity calculated both by finite difference and from the discrete adjoint implemented here. Good agreement is seen
in the general trend across the surface where the discrepancies between the two are dominated by the truncation error
during finite differencing.

C. Performance
Figures 5(a) and 6(a) show convergence histories for both the MDO and M6 wing test cases. Both cases are

converged to a residual decrease of six orders of magnitude for both the primal and adjoint problems. In both cases,
the asymptotic convergence rate of the adjoint problem matches that of the primal. Note that both adjoint strategies
(matrix-based and matrix-free) converge identically. Recall that whereas both fine grid adjoint operators have been
shown to be equivalent (Table 3), their respective coarse grid operators were implemented differently. It is clear however,
that the choice of coarse grid operator (Galerkin or re-discretisation) does not have any major effect on the overall
convergence rate for the Euler equations.

Despite having identical convergence rates, the realtime performance, shown in Figures 5(b) and 6(b), differs
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(a) Numerical convergence (b) Computation time

Fig. 5 Convergence of the primal and adjoint solutions for the MDO test case

between the two adjoint implementations. The matrix-based method actually converges faster than the primal solution
in both cases due to the efficient sparse-matrix products. For the structured hexahedral MDO case, the matrix-based
adjoint is approximately three-quarters the time of the flow solution. Moreover, construction of the corresponding
convective Jacobian is fast, requiring less than 5% the time of a flow solution in both cases. The structured hexahedral
mesh requires 13 colours for the grid colouring, with the tetrahedral mesh requiring 11 colours due to the fewer stencil
cells. Therefore the entire convective Jacobian is constructed in only 65 and 55 complex residual evaluations for the
MDO case and M6 case respectively.

By comparison the matrix-free adjoint solution using automatic differentiation requires between 30% and 70% more
time than a single flow solution. While being slower than the matrix-based method shown here, this is still an impressive
performance for a reverse-mode code and demonstrates the efficiency of automatic differentiation using source-code
transformation. By comparison, the test cases considered in [20] show adjoint runtime ratios between 2 and 16 when
using the same AD tool as here. Runtime ratios and breakdown are given in Table 4.

Table 4 Single-core runtime, normalised by the respective flow runtime for each case

MDO M6
Flow solution 1.00 1.00

Matrix-based adjoint
Jacobian construction 0.02 0.04
Adjoint solution 0.77 0.98

Matrix-free adjoint
Adjoint solution 1.36 1.67

Table 5 gives the memory usage and the ratio with respect to that of the primal solver for each case. As is expected the
matrix-based method has a larger memory requirement than the matrix-free method in order store the sparse convective
Jacobian. The hexahedral test mesh requires almost four times as much memory as the primal solver, compared to
the tetrahedral mesh which requires 3.75 times that of the primal; this can be attributed to the denser Jacobian in the
hexahedral case.
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(a) Numerical convergence (b) Computation time

Fig. 6 Convergence of the primal and adjoint solutions for the Onera M6 test case

Table 5 Total memory usage

MDO M6
MBytes Ratio MBytes Ratio

Flow 133 1.00 237 1.00
Matrix-based adjoint 528 3.97 888 3.75
Matrix-free adjoint 219 1.65 382 1.61

D. Discussion
Compared to previous matrix-based adjoint implementations[14, 15], the approach presented in this paper is a

hybrid methodology where only the compact terms of the Jacobian have been stored; the dissipation terms, with a much
larger stencil, were differentiated by hand and evaluated in a matrix-free manner when solving the adjoint equations.
The resulting adjoint product is very computationally efficient when compared to a purely matrix-free adjoint product
at the cost of a moderate increase in memory usage. These results take advantage of the JST scheme[17] which
has a very compact convective stencil, and a simple artificial dissipation scheme. Moreover, the use of a four-stage
Runge-Kutta scheme for the fixed-point iteration means that the costly dissipation fluxes, and the respective adjoints, are
only evaluated once for every four convective flux/adjoint evaluations.

Clearly a disadvantage of this hybrid methodology is how tailored it is to specific discretisation schemes and
numerical methods. Application of the same scheme to an upwind method using MUSCL for example would result
in a larger convective stencil and therefore an increase in memory required for the Jacobian. By comparison the
matrix-free method using automatic differentiation is very flexible with respect to the numerical problem at hand;
runtime performance, however, is very sensitive to the code implementation.

Not investigated in this work is the choice of linear solver. Using the same fixed-point iteration as the primal with
linear multigrid acceleration was sufficient and straightforward to implemented here, however the use of Krylov methods
such as GMRES is increasingly common within aerospace for implicit solvers and their adjoints. In this respect the
matrix-based methodology may offer some advantages in simplifying the construction of the preconditioners required
for Krylov methods.
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V. Conclusion
In this paper, detail has been presented on the evaluation of derivatives for the discrete adjoint equations and a

hybrid matrix-based methodology has been presented for the Euler adjoint equations. The hybrid matrix-based scheme
exploits a compact convective stencil and uses graph colouring to evaluate the convective Jacobian terms in O(10)
residual evaluations. The complex step is used to evaluate Jacobian columns, grouped by colours, in tangent mode. This
approach requires no external libraries or tools, minimal code modification and provides derivatives accurate to machine
precision. The remaining artificial dissipation terms are implemented in a matrix-free manner using hand-differentiated
code under the assumption of frozen sensor coefficients.

The hybrid matrix-based methodology has been validated and compared with the ‘traditional‘ matrix-free approach
using reverse-mode automatic differentiation. Both the hybrid matrix-based and traditional matrix-free methods have
been validated using the complex step tangent model and no loss in accuracy is seen in either method. The hybrid
matrix-based approach has demonstrated a notable runtime performance advantage over the traditional matrix-free
approach due to the ahead-of-time calculation of the convective Jacobian terms such that only sparse matrix-vector
products are required when solving the linear system. Moreover, calculation of the convective Jacobian terms takes less
than 5% of primal runtime due to the compact stencil used.

Critical analysis of the hybrid matrix-based methodology highlights a disadvantage in comparison to the traditional
matrix-free approach in that the current methodology requires a degree of tailoring to the specific numerical scheme.
By comparison the use of mature automatic differentiation tools means that the matrix-free methodology can be
implemented with minimal consideration of the underlying numerics. That said, the use of automatic differentiation
tools remains an involved task, still requiring some manual optimisation and tailoring of codes. Ongoing work will
consider automated and more general approaches to ahead-of-time evaluation of compact Jacobian terms used in
combination with matrix-free methods for non-compact terms.
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