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Gradient-Limiting Shape Control
for Efficient Aerodynamic Optimisation

L. J. Kedward † ; C. B. Allen ‡ ; T. C. S. Rendall §
Department of Aerospace Engineering, University of Bristol, Bristol, UK

Local shape control methods, such as B-Spline surfaces, are well-conditioned such that they

allow high-fidelity design optimisation, however this comes at the cost of degraded optimisation

convergence rate as control fidelity is refined due to the resulting exponential increase in the

size of the design space. Moreover, optimisations in higher-fidelity design spaces become ill-

posed due to high frequency shape components being insufficiently bounded; this can lead

to non-smooth and oscillatory geometries that are invalid both in physicality (shape) and

discretisation (mesh). This issue is addressed here by developing a geometrically-meaningful

constraint to reduce the effective degrees of freedom and improve the design space thereby

improving optimisation convergence rate and final result. A new approach to shape control is

presented using coordinate control (x, z) to recover shape-relevant displacements and surface

gradient constraints to ensure smooth and valid iterates. The new formulation transforms

constraints directly onto design variables, and these bound the out-of-plane variations to ensure

smooth shapes as well as the in-plane variations for mesh validity. Shape gradient constraints

approximating a C2 continuity condition are derived and demonstrated on a challenging test

case: inviscid transonic drag minimisation of a symmetric NACA0012 aerofoil. Significantly

the regularised shape problem is shown to have an optimisation convergence rate independent

of both shape control fidelity and numerical mesh resolution, while still making use of increased

control fidelity to achieve improved results. Consequently, a value of 1.6 drag counts is achieved

on the test case, the lowest value achieved by any method.
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Nomenclature

CD = Drag coefficient

ε = Absolute constraint bound

h = Mean surface mesh spacing

Nk
j = k th order B-Spline basis

s = Arc-length

t = Parametric ordinate

x, z = Cartesian coordinates

κ = Surface curvature

σ = Length scale constraint parameter

D = Derivative matrix

n = Unit normal vector

p = B-Spline control point

q = B-Spline derivative control point

t = Unit tangent vector

x(t) = Uniparametric curve coordinates

∆x = Discrete curve facet

α = Design variable vector

Û��� = parametric derivative

���′ = arc-length derivative

I. Introduction
Computational fluid dynamics (CFD) has matured rapidly over the last half-century and, in combination with

increasing computing power, has become a commonplace tool for modelling fluid flow in industry. In addition to

reducing the reliance of industry on expensive and lengthy ground and in-fight tests, this accessibility to CFD is also

being increasingly applied in numerical optimal design: the coupling of optimisation methods to numerical analysis

tools to improve on a design objective. Shape optimisation in particular has many applications across aerospace, with

optimal design objectives such as aerodynamic drag, structural weight, aeroacoustic signature, mission endurance,

electromagnetic stealth as well as various multidisciplinary objectives.
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Aerodynamic shape optimisation has reached a good level of maturity, as well as variety, among the tools and

approaches adopted, particularly in the areas of adjoint methods, surface and volume mesh manipulation and quasi-

Newton search methods. Much collaborative effort towards this has been in the AIAAAerodynamic Design Optimization

Discussion Group (ADODG∗) through which a set of benchmark cases [1–3] have been defined and tackled; here the

current state-of-the-art sees much recent work surrounding the Common Research Model wing [4, 5] and wing-body-tail

[6, 7] configurations. The cutting-edge in the field now sees the explicit inclusion of aerodynamic phenomena, such as

buffet onset [8] and aeroelastic flutter [9], into the optimisation thereby further refining the design problem being posed.

Importantly, maturity in the field has been demonstrated by certain studies [2, 10] which compare different optimisation

frameworks and achieve consistent optimised results therewith.

A shape optimisation framework often comprises three main components: a numerical analysis code (e.g. finite

element analysis, CFD); a geometry representation and manipulation method (e.g. computer-aided-design model, shape

basis functions); and a numerical optimisation method (e.g. gradient-descent, gravitational search). The optimisation

process involves successive calls to the analysis tool by the optimiser to iteratively improve upon the objective. Since

the analysis method itself often involves an expensive iterative process, optimal design still remains a computationally

expensive process. Current state-of-the art gradient-based search algorithms, such as those using quasi-Newton methods,

have an optimisation cost proportional to the effective degrees-of-freedom in the problem; these degrees-of-freedom can

be thought of as the subspace formed by the combination of design variables and constraints.

For shape optimisation, the design variables are defined by the shape control method acting as the interface between

the search algorithm, which operates on the vector of design variables, and the analysis code, which is only concerned

with the geometry. Hence the choice and configuration of the shape control methodology can have particular influence on

the number of optimisation iterations, and therefore computational cost. This is demonstrated in large scale comparative

studies by Masters et al. [11, 12] whereby the efficiency, robustness and final result are compared across seven different

shape parameterisation methods.

Among such parameterisations, the ability to refine the design space for increased control fidelity varies significantly,

an observation that can be attributed to the conditioning of such geometric parameterisations. Whereas some shape

control methods rapidly become ill-conditioned when refined, which consequently adds little to the design space, local

shape control methods, such as B-Splines, are well-conditioned where the basis retains good linear independence when

refined; this allows high-fidelity shape control but comes at the cost of degraded optimisation performance as control

fidelity is refined due to the resulting exponential increase in the size of the design space.

While increasing control fidelity, these additional degrees of-freedom also introduce extraneous geometries into

the design space which, for local control methods, consist of non-smooth and oscillatory shapes. Such undesirable

shapes have been observed in optimisation literature [12–14] for medium to high-fidelity B-Splines. The propensity for
∗https://sites.google.com/view/mcgill-computational-aerogroup/adodg [retrieved February 2020]
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gradient-based search algorithms to amplify high-frequency grid components and produce such oscillatory shapes is

clear when one considers the limiting case of using mesh-point control whereby the design variables are the individual

vertices of the discretised geometry, or mesh. This natural approach to shape control, which for a fixed mesh resolution

provides the most comprehensive design space, is well-conditioned since there is no parametric coupling between

vertices. However, even with the maturation of adjoint flow solvers[15] which provide surface sensitivities at a cost

effectively independent of the number of design variables, mesh point control alone leads to a degeneration of surface

smoothness since the gradients of the discrete shape functional have a lower regularity than the original shape [16, 17].

The same problem is encountered for shape and topology optimisation in solid mechanics where the nature of finite

element analysis induces non-physical optima with jagged edges and so-called ‘chequerboard’ patterns [18, 19]. This

problem is most commonly avoided by restricting the number of surface spline control points or using global volume

splines which, while generally guaranteeing smoothness, do not remain well-conditioned with refinement. Moreover, it

is rare within literature for authors to perform a control-fidelity study demonstrating the effect of refining their chosen

shape control method; this may be due to computational constraints or the fact that shape control is peripheral to the

research goal of the work.

In this work, the effective degrees of freedom of high-fidelity shape control methods are considered from a geometric

standpoint, motivated by the observation that such problems are ill-posed by being insufficiently bounded; that is, they

naturally include geometries that are invalid both in physicality (shape) and discretisation (mesh). Several methods

for shape control exist, which address the ill-posed nature of the problem either directly or indirectly; however such

methods often a priori constrain the design space at low fidelities and perform poorly when shape control is refined.

The goal of the work here is to present a new approach to shape control which explicitly removes non-smooth and

oscillatory shapes from the design space by limiting contributions from high-frequency components. This filtering

approach, implemented using constraints on surface gradients, reduces the effective degrees of freedom in the design

problem in a geometrically meaningful way while still allowing the high-fidelity design space to be exploited.

II. Background
A variety of shape control methods are encountered in aerodynamic shape optimisation all of which address shape

smoothness in some way either directly or indirectly; commonly-used methods are presented in Table 1 and discussed

briefly here. A simple but effective approach to addressing smoothness during optimisation is to penalise bad shapes by

augmenting the objective function with a weighted penalty term given by a function of some surface derivative such

as curvature [16] or alternatively on a calculated quantity such as pressure distribution [40]. This method is a form a

regularisation which arises in a variety of fields for solving ill-posed problems. One way of viewing regularisation is the

addition of prior knowledge in the form of assumptions that characterise the solution; the solution of the regularised

problem is that which is most probable under the assumptions made. Within shape optimisation, penalisation of shape
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Table 1 Common shape control methods for optimisation

Shape parameterisation
Continuous shape functions are used to describe
geometry such that the number of design vari-
ables is much less than the number of mesh
nodes

B-Spline surfaces [20]
Bezier surfaces [21]
Volume splines: Bezier[22], B-Spline[23],

NURBS[3], RBF[24]
Hicks-Henne [25]
CSTs [26]
Fictitious loads [27]
SVD [28]
Partial differential equation [29]
Volume of solid active contour [30, 31]

Multilevel optimisation
Successive optimisations are performed where
shape control is refined after each stage

Subdivision [32, 33]
B-Spline/Bezier knot insertion [34]
RBF [35]

Sensitivity filtering
Mesh vertices are used for shape control and
surface sensitivities are filtered to remove high
frequency components

Implicit Sobolev [36]
Explicit Gaussian [37]
Multilevel preconditioner [38]

Shape filtering
Mesh vertices are used for shape control and
both surface sensitivities and shape updates are
filtered to remove high frequency components

Gaussian [18]
Vertex Morphing [39]

derivatives is equivalent therefore to an a priori characterisation of the differentiability of the solution shape. These

methods are simple to implement since they only augment the objective with an explicit term, however the choice of

weighting parameter, which represents an arbitrary trade-off between performance and smoothness, is not explicit but

still directly influences the final result.

The most prevalent approach to addressing the challenges of shape optimisation is shape parameterisation, referring

to methods that describe the geometry using a lower-dimension representation with intuitive design controls. Examples

include: spline surfaces; volume splines; and various other shape functions derived analytically (Hicks-Henne and

shape-class functions), from physical considerations (fictitous loads ) or numerically (orthogonal modes). All such

methods typically reduce to a linear combination of shape basis functions; different parameterisations vary only in the

form and fidelity of the basis functions. Inherent in the reduction of dimensionality is the introduction of smoothing,

specifically the amplitude of higher order derivatives are implicitly bound by that of the basis functions. This advantage

was emphasised by Braibant and Fleury when advocating the use of B-Splines for shape optimisation [20]. However the

reduction in dimensionality inevitably corresponds to a reduction in the available design space and therefore attainable

optimum; as such, the choice of parameterisation fidelity becomes important and this is investigated extensively by

Masters et al. for several different parameterisation methods [11, 12]. High-fidelity parameterisations (many design
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variables) often exhibit poor optimisation performance due to degraded design space conditioning or the exponential

increase in design space and generation of non-smooth shapes [12–14] as shape control locality approaches that of

mesh-point control. In their studies, one parameterisation is shown to perform particularly well, orthogonal modes

extracted by singular value decomposition (SVD). This method uses a database of aerofoils to extract shape modes, a

subset of which is used as a basis for shape optimisation. The chosen SVD modes correspond to high predominance

in the aerofoil library which also therefore represents filtering and removal of low-importance high-frequency shape

information. Similar treatment of high-frequency information occurs in multilevel methods which progressively or

adaptively enrich the parameterisation during successive optimisations [32–35, 41, 42].

Splines and general basis function approaches describe the shape explicitly as a function of the design variables;

implicit methods also exist however, whereby the design variables constrain a mathematical problem, the solution to

which defines the shape. For example, the partial differential equation (PDE) approach by Bloor and Wilson [29] solves

a fourth-order PDE where the boundary conditions are defined by the design variables. More recently, the restricted

snake volume of solid (RSVS) method of Payot et al. [30, 31] defines shapes as the minimal surface enclosing specified

volume fractions on a background grid. In this approach the volume fractions of the background grid cells are the design

variables which, in combination with the restricted snakes active contour method, are able to produce shapes of arbitrary

topology.

An alternative to shape parameterisation is direct mesh point control which uses the individual coordinates of nodes

in the discretised analysis mesh as design variables. The advantage of this method is that the design space is only

limited by the analysis discretisation - the most expansive design space possible. Furthermore, it is trivial to implement

compared to setting up shape parameterisation functions, and generalisable to arbitrary geometries, assuming a discrete

surface mesh exists. However, despite the theoretical simplicity, practical implementation requires that either the

gradients or surface perturbations be smoothed to maintain a smooth surface. Sensitivity filtering involves passing the

raw shape sensitivity information through some form of low-pass filter before it is presented to the search algorithm, the

intended effect of this being that the removal of high-frequency components in the shape sensitivity leads to a smooth

search direction and therefore maintains surface smoothness. Common within aerodynamic shape optimisation is a

weighted Sobolev gradient as suggested by Jameson[36] and used in combination with design variables defined as

normal perturbations to the initial geometry. This second-order implicit smoothing method is equivalent to applying

the inverse of the mesh Laplacian [17] to the surface sensitivities and is most often combined with a simple steepest

descent search forming the so-called Smoothed Descent Method [43]. Studies by Jameson notably conclude that the

optimisation convergence of the smoothed steepest descent method is independent of the number of design variables

[36]. Stück et al. [37] instead use a Gaussian kernel to explicitly smooth shape sensitivities and the resulting filter

is shown to be first-order equivalent to the Sobolev method; however the implementation has improved flexibility

and efficiency compared to the implicit Sobolev method which requires the solution of a partial differential equation.
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Explicit and implicit smoothing methods are studied by Jaworski and Müller [44] within a multilevel shape optimisation

procedure. Vazquez et al. [38] draw analogy between sensitivity filtering and preconditioning of discrete partial

differential equations, and derive a multi-level filter to compensate the loss of regularity in the gradient update.

The methods discussed so far primarily control the regularity of the shape-relevant variation (normal to the surface),

however the mesh-relevant (in-plane) variation must also be addressed to maintain validity of the surface mesh. The

objective of this work is to generalise the regularisation effects of the methods discussed above (penalty-regularisation,

shape parameterisation, filtering) to allow the use of high-fidelity well-conditioned shape control methods and remove

dependence of the optimisation convergence rate on shape control fidelity. Shape gradient constraints are derived and it

is demonstrated that a sufficiently constrained problem space is all that is required for a well-posed and consistent shape

optimisation problem without limitation on the numerical method used for solution.

The remainder of the paper is organised as follows: in the following section the key challenges of shape control

for optimisation are presented leading to the motivation for the present work. In section IV two-dimensional shape

constraints are derived for both mesh point control and cubic B-Splines. Finally sections V and VI present the

methodology and results for applying the shape constraint formulation to drag minimisation using a gradient-based

adjoint optimisation framework.

III. Shape Control for Optimisation
An advantage of using shape parameterisation is that the shape control fidelity (number of design variables), which

defines the extents of the design space, can be selected as is required; for example B-Spline control polygons can

be refined via knot-insertion to generate higher-fidelity control, and shape functions, such as Hicks-Henne, can be

defined at an arbitrary number of positions on the geometry. High-fidelity shape control is of particular benefit for

aerodynamic design objectives due to their non-linearity and the necessary coupling of design variables defining a

geometric boundary. It is well known that high control fidelity is required for aerofoil optimisation [33] and more

generally in the chord-wise direction [4], especially at the leading edge [25]. Moreover, high-fidelity localised shape

control is found to be particularly beneficial when dealing with similarly localised geometric constraints such as thickness

and when performing multipoint optimisations involving multiple flight conditions [10].

However high-fidelity shape parameterisations generally suffer from degraded performance during numerical

optimisation as demonstrated by Masters et al. [11, 12]. In their studies it was found that as the number of design

variables increased, the convergence of optimisation was poor and the final result was often sub-optimal. The choice of

control fidelity therefore becomes a trade-off between optimisation performance and extent of the design space. The

cause of degraded efficiency at high-fidelity can be categorised as either an ill-posed problem (presence of undesirable

shapes) or an ill-conditioned problem corresponding to basis functions of local and global support respectively.

In the former case, for local shape parameterisations (e.g. mesh points and B-Splines), as the number of design
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variables increases the shape functions become more localised, which introduces both increased design fidelity but also

oscillatory shapes characterised by high amplitudes in the high frequency components. The good linear-independence

of such local control methods means that the useable design space grows at an exponential rate when design variables are

added, which consequently results in degraded optimisation convergence rate. Moreover, the shape optimisation process

is increasingly prone to local minima formed by undesirable oscillatory shapes since there is no explicit mechanism to

avoid non-smooth search directions. The poor performance of B-Splines at high-fidelity matches that observed by

Reuther and Jameson [13] and again by Castonguay et al. [14] who subsequently showed that this effect is eliminated

when used with sensitivity filtering. However gradient smoothing is not general since the discrete gradients are no

longer consistent with the optimisation problem which is particularly important for constrained SQP methods. Masters

et al. [12] found that increasing the order of B-Splines, which increases the support and smoothness of the basis, was

also able to alleviate some of the convergence issues, though this removes the advantages of using low-order B-Splines

in their compact support and consequent good conditioning.

In the latter case, for shape functions which exhibit a large zone of influence and remain smooth with refinement, the

conditioning of the shape control generally increases significantly as the number of design variables increases. Whereas

local basis functions retain linear independence as they are refined, shape basis functions with large support suffer from

deteriorating linear independence such that increasing the number of design variables give diminishing additions to the

design space. This means that similar shapes do not have similar control vectors, i.e. shapes that are geometrically

similar do not lie close together within the design space. This is especially undesirable for gradient-based optimisers

which generate a sequence of solutions by stepping through the design space. The effect of this being that convergence

rate is unaffected by refinement, since the useable design space is not practically improved due to ill-conditioning, which

therefore means that the final attainable result of the optimisation is also not improved. For example, in [45] high-order

Beziers (96 knots) became ‘saturated’ as the design variables hit their respective upper bounds during optimisation

and preventing further improvement. This is explained by the global support of simple Bezier curves leading to a

highly-conditioned design space where small shape modifications require large changes to all design variables.

The two effects, non-smoothness and ill-conditioning, at high shape control fidelities are demonstrated in Figures 1

and 2. Figure 1 shows the basis functions for cubic B-Splines at two control fidelities; when control fidelity is increased

the basis functions retain good linear independence but become highly localised thereby allowing non-smooth shapes.

Conversely when the Hicks-Henne basis, shown in Figure 2, is refined the basis functions retain smoothness but become

increasingly indistinguishable which represents deteriorating linear independence (ill-conditioning).

A. Design space conditioning

To demonstrate the effect of design space conditioning on shape optimisation, an inverse design problem is considered

for a two-dimensional aerofoil. The objective is the RMS difference with a target pressure distribution which is evaluated
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Fig. 1 Cubic B-Spline shape functions

0 0.2 0.4 0.6 0.8 1

x

0

0.5

1

i

N = 10

0 0.2 0.4 0.6 0.8 1

x

0

0.5

1

i

N = 30

Fig. 2 Hicks-Henne shape functions

with a panel method. Gradients for the inverse problem are evaluated discretely using automatic differentiation and

optimisation is performed using the SNOPT [46] SQP package. Shape control is performed using both cubic B-Splines

and Hicks-Henne functions at varying levels of fidelity.

Shown in Figure 3 are the optimisation convergence histories for both shape control methods applied to the inverse

design problem. For the B-Spline parameterisation, the commonly-observed deterioration in initial convergence rate

due to increased number of design variables is clearly seen prior to the quadratic convergence achieved in the last

stages when the quasi-Newton Hessian approximation has been sufficiently constructed. However the same behaviour is

not seen for the Hicks-Henne parameterisation. The B-Spline shape control exhibits deteriorating initial convergence

rate with increases in control fidelity due to its good linear-independence which means that the design space grows

exponentially when refined. As a result the B-Spline case is able to achieve better overall results albeit at a slower pace.

By contrast, the Hicks-Henne parameterisation does not experience any significant change in initial convergence rate as

the number of design variables increases. Moreover, there is little improvement in optimised result when increasing the

control fidelity of the Hicks-Henne parameterisation. This illustrates the effect of an ill-conditioned shape control in

restricting the ‘useable’ design space; whereas the design space has additional degrees of freedom in the mathematical

sense, the poor conditioning means that numerical methods such as gradient-based optimisation cannot make good use

of them.

This is further illustrated quantitatively in Figure 4(a) which shows the condition number for each shape control basis

and Figure 4(b) which shows the magnitude of the optimised design variable vectors when performing inverse pressure
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Fig. 3 Inverse pressure design convergence
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Fig. 4 Shape control conditioning

design. For the B-Spline case, the conditioning of the basis is good and largely independent of the number of design

variables; this is reflected in the magnitude of the optimised design variable vector which remains well-bounded and

close the geometry it is representing. By contrast, the Hicks-Henne parameterisation rapidly becomes ill-conditioned

as it is refined. This results in increasingly larger design variable values as the optimiser attempts to explore the

ill-conditioned design space. The magnitude of the resulting optimised design variables do not match that of the

underlying geometry and importantly, the optimisation has not achieved optimised objective values comparable to those

from the B-Spline parameterisation.

B. Control orientation

Also of importance for shape optimisation, in addition to smoothness and conditioning, are the actual degrees of

freedom available to the search algorithm. Among previous studies it is common for the parameterisation to be manually

constrained such that only one ordinate is free to move [45], or that certain degrees of freedom (e.g. sweep, taper)
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are specified by hand [24], or combinations of both [47]. The parameterisation of a single coordinate, thickness, for

aerofoils is convenient and commonly adopted since aerofoils are predominantly planar such that most of the surface

normals are closely aligned with the vertical coordinate. However this has three drawbacks: first, the single coordinate

parameterisation is restricted in its ability to produce local rotation of the surface; second, there is poorly defined control

in areas where the local normals do not initially align with the vertical (e.g. the leading edge); and finally the notion of a

dominant coordinate direction is not general and does not extend to three-dimensional geometries. In a similar way,

manually specifying degrees of freedom relies on user-knowledge which, in the general case, does not necessarily know

which controls are useful beforehand. The implication is that to allow shape relevant perturbations (displacements

normal to the current shape) at all stages of optimisation, shape control must be permitted in all coordinate directions. A

side-effect of this is that consideration must be made for the grid-relevant, in-plane, variation of the discretised surface.

Based on this, the rationale for the work here is to perform localised shape control in all coordinate directions and

constrain the larger resulting design space by utilising a geometric constraint to maintain validity and continuity of the

discrete surface. The use of local shape control methods ensures the design space is well-conditioned which means that

refinements are meaningful and which therefore allows high-fidelity design optimisation. Constraint-based continuity

has been applied in [48] and [49] for structural topology optimisation where first spatial derivatives were bounded to

enforce approximate C0 on the solution. Xu et al. [50] use a non-linear constraint to enforce geometric continuity (G2)

between separate spline patches in their CAD-based shape optimisation. Similarly Cinquegrana et al. [51] include a

penalty on derivatives of surface curvature to counter oscillations induced by a NURBS parameterisation. In the work

here an approximate C2 condition is applied across the entire discretised shape to control both shape smoothness and

mesh quality.

IV. Shape Constraints
In this section a constraint-based approach is developed based on an approximate C2 condition to allow general

parameterisation of more than one ordinate of the discretised surface mesh when using two different local control

methods: mesh-point control and B-Spline control.

A. Geometric smoothness

In this section the concept of smoothness is presented within the mathematical framework of a plane uniparametric

curve (Figure 5(a)) in R2 ; there is no loss of generality here since the same framework can be applied to surfaces in R3

by application along isoparametric curves. The curve is described continuously by:

x = x(t) =


x(t)

y(t)

 , t ∈ [a, b] ⊂ R (1)
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Fig. 5 Two-dimensional geometry representations

where the component functions x, y are differentiable with respect to the parameter t, denoted here by dot, such that the

non-vanishing tangent vector is given by:

Ûx(t) =


Ûx(t)

Ûy(t)

 , 0, ∀t (2)

A local coordinate frame at the point x(t) is constructed exposing familiar geometric quantities; the unit tangent vector t

and unit normal vector n are given by:

t =
Ûx
| | Ûx | | , n =

Ût
| | Ût | |

(3)

Any parametric curve can be re-parameterised naturally by the arc length parameterisation, s(t):

s(t) =
∫ t

a

| | Ûx | |dt (4)

which yields the following relationships:

x ′ = t, x ′′ = κn (5)

where κ is the local curvature and prime ′ denotes differentiation with respect to arc length..

One way to mathematically describe smoothness is differentiability. The definition of x(t) above states that the

curve is at least once differentiable with respect to the parameter t and hence this curve has parametric continuity 1,

denoted C1, which implies continuously varying tangent vectors. Parametric curves that are twice differentiable with

respect to their current parameterisation are C2 and will be curvature continuous. However this definition is dependent

on the particular parameterisation and indeed a curve can have continuity of curvature while not being C2. Hence the

more general class of curves is defined as Geometrically continuous G2 ⊃ C2 which contains those curves that are twice

differentiable with respect to the invariant arc length parameterisation. Using subscript + and − to represent the left and

right limits respectively, then the conditions for C2 and the more general G2 can be expressed as:

C2 : Üx+(t) − Üx−(t) = 0 (6)
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Fig. 6 Geometric and parametric continuity

G2 : x ′′+ (s) − x ′′− (s) = 0 (7)

The difference between the stricter C2 condition and the more general G2 can be explained by expanding the term Üx

using the chain rule:

Üx = x ′′( Ûs)2 + x ′(Üs) (8)

Substituting the relations of equation 5 this becomes:

Üx = κ( Ûs)2n + (Üs)t (9)

The parametric derivative Üx contains a normal component corresponding to the local curvature, and an in-plane

component representing the ‘acceleration’ of the parameterisation. Notice that the condition for G2 (equation 7),

which uses the arc length derivative x ′′, is concerned only with the normal component (for curvature continuity)

whereas the stricter C2 condition (equation 6), defined using the parametric derivative Üx, also requires continuity of

the parameterisation; this is illustrated in Figure 6 where ‘velocity’ refers to the rate of change in the parameter and

‘acceleration’ refers to the rate of change in velocity. i.e. Parametric continuity is a special case of geometric continuity.

This makes intuitive sense since only the normal component is visible (shape-relevant) and so the class of visually

smooth curves should not exclude those with discontinuous parameterisations hence the classification of geometric

continuity Gk . Therefore all geometrically continuous curves permit an arclength parameterisation t → s (equation 4),

however the same cannot be said about the inverse process, formulating a Ck parameterisation s→ t for a Gk curve.

In this work, the parametric derivative will be used to enforce the stricter C2 condition since, by suitable choice

of the parameter t, the in-plane component can be used to represent the smoothness of the discretisation. Hence by

enforcing the C2 condition both the shape relevant and mesh relevant components can be controlled simultaneously.
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B. Gradient constraint for mesh point control

Consider now a mesh made up of vertices sampled at discrete parameter locations (Figure 5(b)) described by:

xi = x(ti), i ∈ [0, n] ⊂ Z (10)

In this discrete setting differentiation with respect to the parameterisation t (denoted by dot) is approximated by discrete

difference in the logical domain such that the facets of the mesh are given by:

Ûx = ∆xi = xi+1 − xi , 0, i ∈ [1, n] ⊂ Z (11)

Similarly the relations of equation 3 give approximations to the unit tangent and normal vectors defined at the surface

elements and vertices respectively by:

ti = t(∆xi) =
∆xi
| |∆xi | |

, ni = n(xi) =
ti+1 − ti
| | ti+1 − ti | |

(12)

and the arc length parameterisation is replaced by an approximation using chord length:

si =
i∑
1
| |∆xi | | (13)

To enforce some smoothness restriction on the mesh, an analogous condition to that of C2 (equation 6), based on

the parametric derivative Üx is sought. Since the parameter t corresponds to the mesh point index i, then the second

parametric derivative Üx is simply the uniform mesh Laplacian given by:

Üxi = ∆xi+1 − ∆xi = xi+1 − 2xi + xi−1 (14)

On the discretised surface, the left and right limits of equation 6 cannot shrink to smaller than a surface element and so

instead the following condition is formulated:

| | Üxi+1 − Üxi | |∞ ≤ ε, ∀i (15)

for some small bound ε , i.e. the variation in the mesh Laplacian across surface facets is bounded.

This condition can be interpreted by expansion and manipulation of the uniform mesh Laplacian Üx, which gives the
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Fig. 7 A section of a piecewise linear discretised curve showing the uniform mesh Laplacian (left); the uniform
mesh Laplacian expressed in the local frame (right).

following equivalent form in the approximate local frame:

Üx = ∆Si+1 + ∆Si
2

| | ti+1 − ti | |ni +
ti+1 + ti

2
(∆Si+1 − ∆Si) (16)

Since | | ti+1 − ti | | =
√

2(1 − cosθ) ≈ θ for small values of the exterior angle θ, and that θ = κ Ûs then this becomes:

Üx = κi
(
∆Si+1/2

)2
ni + (∆Si+1 − ∆Si) ti+1/2 (17)

Note the resemblance to the exact form given in equation 9 where the nodal values of Ûs and t have become approximated

by simple averages from the neighbouring elements. Hence the condition in equation 15 bounds both normal and

in-plane contributions representing variations in local curvature (or exterior angle) and element size respectively. These

two components of the uniform mesh Laplacian are illustrated in Figure 7. An intuitive effect of this is that regions of

high curvature will require smaller elements and vice-versa for flat regions.

Note that it is the coordinate components of the gradient that are bounded and not explicit bounds on the the normal

and in-plane components; separation of the normal and in-plane components is possible however this is non-linear with

respect to the shape control, which introduces unnecessary complexity to the optimisation process.

C. Gradient constraint for B-Spline control

Whereas mesh point control is trivial to setup and gives the most design flexibility, this level of control fidelity is

often exessive for most applications. Moreover mesh point control introduces dependency on the discretisation method

and the quality of the resulting surface mesh, as well as requiring the non-trivial transfer of the optimal result back to a

continuous representation. In this section equivalent gradient constraints are derived for curves represented by B-Spline

functions, though the same methodology can be applied to all spline-like representations and permits an efficient

extension to surfaces in three-dimensions. The B-spline basis has several properties that are particularly desirable for
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shape control; first, the basis functions have local support such that the effect of any control point (design variable) is

limited to a local neighbourhood of the geometry; second, it has linear independence and is therefore guaranteed to form

a well-conditioned polynomial basis regardless of the desired number of degrees of freedom (number of control points);

finally, the resulting function has well defined smoothness properties, specifically Ck−2 for a k th-order spline in regions

away from repeated knots. For a comprehensive theory of B-splines, see Farin [52].

Whereas the analytic spline has guaranteed smoothness, a numerical discretisation thereof does not; that is to

say, without re-sampling, manipulations to the analytic form can still result in poor discretisations. Re-sampling is

undesirable in gradient-based shape optimisation since the process cannot guarantee continuity for gradient evaluation

and also implies a costly volume mesh regeneration which suffers from the same differentiability concern.

In this section, the same discrete surface gradient constraints are posed now using the spline formulation; in addition

to affording all the aforementioned advantages of using B-Splines, and as will be demonstrated in the results, this also

remedies degraded optimisation performance of B-Splines at increased fidelity by reducing the effective degrees of

freedom. Considering now a geometry described continuously by a k th-order B-Spline representation:

x(t) =
n−1∑
j=0

Nk
j (t)p j (18)

Where p j are the B-spline control points and Nk
j (t) are the B-spline basis functions (shown in Figure 1) defined in

parameter space by scaling and shifting according to some knot vector u.

A useful feature of B-spline functions is that their derivatives are conveniently given by another B-spline function of

lower degree. The first derivative with respect to the parameterisation t is:

Ûx(t) =
n−2∑
j=0

Ñk−1
j (t)q j (19)

where the basis functions Ñk−1
j (t) are defined on a modified knot vector ũ formed by truncating the first and last knots

of the original u and the new ‘control points’ q j are given by:

q j =
k − 1

u j+k − u j+1

(
p j+1 − p j

)
(20)

In a similar way the second derivative Üx can be evaluated and the following condition enforced:

| | Üx j+1 − Üx j | |∞ ≤ ε (21)

where the derivatives Üx j are evaluated at the knot parameters u j . In this way the constraints are only applied at a sample
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of locations along the curve and the number of constraints is proportional to the number of control points.

This spline-based constraint is formulated in parametric space which allows an easy extension of the method to

surfaces in three dimensions. Specifically, the same constraints can be applied along isoparametric curves defined on

the surface at each corresponding tensor-product knot location; this introduces two sets of constraints one for each

parametric direction, however the constraints remains linear and proportional to the number of control points.

D. Constraint bound and filtering

As demonstrated by the formulation of the previous sections, the constraint bound is equivalent to bounding the

third derivative with respect to a parameterisation that corresponds to the mesh point or B-Spline connectivity, the effect

being that a bounded third derivative ensures that the second derivative is a continuous function which therefore means

that the original function is twice continuously differentiable, or approximately C2. This can be further interpreted as

a low-pass filter on the wavelength in parametric space whereby tightening the constraint bound (smaller ε) lowers

the cut-off frequency and more high-frequency components are attenuated. Choosing the constraint bound therefore

corresponds to choosing the smallest meaningful wavelength for the problem. This could be a physically motivated,

such as feature sizes and manufacturing tolerances, or numerical, related to the spatial discretisation (i.e. mesh quality).

In fact for aerodynamic optimisation problems, numerical concerns are likely to be the driving factor in choosing the

length scale since manufacturing tolerances are small and small geometric features are neglected (‘de-featured’) for

numerical analysis. For example, the numerically-motivated length scale could be chosen to be the smallest geometric

wavelength that can be represented by a discretisation of fixed resolution and which conforms to some measure of mesh

quality. Measures of mesh quality are beyond the scope of the present study and instead a sweep of values for the

constraint bound will be performed to demonstrate its effect on the shape optimisation problem.

E. Numerical implementation

A consequence of bounding the parametric derivative as defined previously is that the resulting smoothness

constraints for mesh point control and B-Splines are linear with respect to the coordinate design variables and can hence

be implemented in following form: 
D

−D

 α < ε


1
...

 (22)

Here α is the design variable vector consisting of stacked mesh point or control polygon coordinates for mesh point and

B-Spline shape control respectively and ε is the constraint bound which is henceforth given by:

ε = σh3 (23)
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where h is the mean mesh spacing of the initial grid and matrix D is either a third difference matrix for mesh point

control or a spline derivative matrix for B-Spline control. σ is the grid-independent constraint parameter related to the

filter cut-off imposed by the constraint. By decreasing the constraint bound σ, the cut-off frequency is lowered such

that more high-frequency components are attenuated. Evaluation of the gradient constraint on a database[11] of 1296

aerofoils† shows that values of σ between 25 and 100 are more than sufficient for common aerofoil variations. For more

general geometry, the same analysis of the baseline geometry can give an expected upper bound on σ for subsequent

shape optimisation.

The space and time costs associated with applying the constraints are dependent on the specific search algorithm,

however the constraint matrices are banded diagonal such that the number of non-zero elements scales linearly with

respect to the number of degrees of freedom; hence algorithms that implement sparse methods are especially applicable.

The optimiser used in this work (see section V) selects feasible search directions at a cost proportional to the square of

the system size [53] and which is negligible compared to the cost of the objective function evaluations. The general

continuity constraint assumes non-vanishing surface tangents and so it must be applied in combination with a non-linear

constraint preventing surface elements from shrinking below a certain size, which is here taken to be the smallest

element on the initial mesh.

V. Aerodynamic Optimisation Methodology
This section describes the numerical methods comprising the aerodynamic optimisation framework used herein;

specifically the methods used for flow solution, mesh deformation and gradient-based optimisation. In the following

section, this framework is used in combination with the gradient constraints of the previous section on a two-dimensional

inviscid drag minimisation problem.

A. Flow solver: SU2

For this work the Stanford University Unstructured (SU2) [54] flow solver is adopted. This open-source software

was constructed with aerodynamic shape optimisation in mind and hence has both continuous and discrete adjoint

implementations [55]. The main flow solver implements both the compressible Euler and RANS equations using an

unstructured finite volume method.

Multigrid acceleration is available as well as MPI parallel processing. The SU2 suite also includes other modules

for tasks such as shape parameterisation, mesh adaption and mesh deformation, however only the CFD module with

continuous adjoint is used here for obtaining flow solutions and objective sensitivities. During optimisation, the primal

and adjoint solutions are converged down to an absolute residual of 10−8 on density (and corresponding dual), except in

cases where the primal has restarted from a previous solution when a tighter tolerance of 10−10 is used.
†Available as supplementary material at: https://arc.aiaa.org/doi/suppl/10.2514/1.J054943 [Accessed February 2020]
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B. Volume mesh handling

(a)

(b) Leading edge (c) Trailing edge

Fig. 8 513 × 257 O-Mesh generated around NACA 0012 aerofoil

High quality single-block O-meshes are generated here by a conformal mapping approach, with an orthogonality

smoothing algorithm. Figure 8 shows three views of the complete 513 × 257 mesh, used later (L2 mesh in section

VI.E); for clarity, only every other point in both directions is shown in the main picture, with every point shown in the

two close-ups (the leading and trailing edge images have the same window size). During shape optimisation, mesh

deformation is used to produce new meshes for the displaced surface geometry from the initial volume mesh. Not only

is this computationally cheaper than regenerating a mesh for each geometry iteration but it also maintains consistency of

the discretisation error which is highly desirable during iterative numerical optimisation.

In this work interpolation using multiscale radial basis functions (RBFs) [56] is used. Interpolation using radial

basis functions (RBFs) has recently become a prominent mesh deformation method boasting excellent robustness and

quality-preserving characteristics [57–59]. Moreover, the method is completely generic, operating on point-clouds alone,
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and is perfectly parallel. The multiscale RBF method [56] is particularly effective, both increasing the computational

efficiency and improving the system conditioning over conventional or reduced datapoint RBF methods, by using

variable length scales depending on boundary point locations.

C. Search algorithm: SNOPT

The SNOPT [46] (Sparse Non-linear Optimiser) package is used here for gradient-based optimisation. This package

implements a Sequential Quadratic Programming (SQP) algorithm for solving general non-linear constrained optimisation

problems. The power of this package lies in its ability to efficiently and robustly handle large problems ( ≈ 1000s of

variables and constraints) while allowing precise constraint satisfaction.

The SQP algorithm operates iteratively whereby successive search directions are found from the solution of a

quadratic programming (QP) sub-problem and a line-search is used to determine step length. In this work a non-derivative

line-search is chosen. The sub-problems are formed from quadratic approximations to the augmented objective function

(Lagrangian) and linearisations of the constraints. The quadratic approximation is initialised with an identity matrix and

BFGS updates are used to approach the Hessian of the Lagrangian. The quadratic sub-problems are well-posed and the

function values and derivatives thereof are easily evaluated; difficulty is not usually encountered when solving these

sub-problems.

VI. Inviscid Drag Minimisation

A. Test case: Symmetric transonic drag reduction of NACA0012

This inviscid drag reduction case is one of several benchmark cases laid out by the AIAA Aerodynamic Design

Optimisation Discussion Group (ADODG‡) to aid in the collaborative evaluation and comparison among shape-

optimisation practitioners. The case is defined as minimising the inviscid drag at Mach 0.85 and 0 degree incidence

subject to the constraint that the solution shape must lie outside the profile of the initial shape, a NACA0012 aerofoil:

min
α

CD

s.t. y ≥ y0

0.85 Mach

0◦ incidence

(24)

This case is chosen since it has been studied extensively in literature due to the unique aerodynamic and geometric

challenges it poses. In fact, from a geometric standpoint it is the most challenging test case possible and so makes an

ideal benchmark to demonstrate the current method. This does not restrict applicability to RANS-based objectives
‡https://sites.google.com/view/mcgill-computational-aerogroup/adodg [retrieved July 2019]
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which generally present as better-conditioned optimisation problems than Euler-based ones due to the additional physical

modelling and removal of non-unique solutions. This problem was formulated by Vassberg [60] specifically for

studying different optimisation methods since it permits a large design space and requires only moderate computational

expense. The case only exhibits drag due to shocks, with Vassberg stating that a shock-free design is anticipated to be

impossible. Starting from a baseline of 469 drag counts, Vassberg achieved an optimised result of 103.8 drag counts

while also identifying a pathological nature in the symmetric problem in the form of asymmetric instability. A detailed

study by Destarac et al. [61] additionally demonstrated Mach hysteresis in various optimised shapes due to the existence

of non-unique flow solutions. In addition to these numerical challenges, the associated geometric problem is demanding,

requiring a high-fidelity and flexible design space as well as a robust and quality-preserving mesh deformation method.

Poole et al. [62] used orthogonal modes extracted by singular value decomposition, achieving 85.6 drag counts with

only 15 design variables. Carrier et al. [45] apply several different optimisation frameworks, eventually obtaining a

result of 36.7 drag counts, 1.1 drag counts of which they show corresponds to spurious drag. He et al. [63] use a volume

B-Spline obtaining a result of 7.60 drag counts with 50 design variables, the lowest published result for comparable

mesh resolution (131K cells).

Masters et al. compared six different parameterisations on the benchmark problem [12] as well as applying a

multilevel subdivision parameterisation [33]. The authors achieved a result of 27.8 drag counts on a 257 × 257 mesh

using single-level B-Splines (16 design variables) and a result of 15.7 drag counts on the same mesh using multilevel

subdivision curves; when performed on a 1025 × 513 mesh the multilevel subdivision scheme was able achieve 4.2 drag

counts. Two distinct solution shapes were observed by the authors differing in boat-tail angle and thickness, where the

thicker shapes with larger-boat tail angles corresponded to different trailing-edge flow structures with lower overall

inviscid drag. Two techniques found to be particularly effective by Masters et al. [33] for this test case are also used here:

first, the explicit imposition of a symmetry boundary condition on the volume mesh to stabilise convergence of the flow;

and second, the use of flow-restarts during optimisation to minimise the influence of flow hysteresis during line-searches.

B. Geometric constraint

Since shape control is permitted in all axes, the constraint on lying outside the initial profile requires some extra

consideration. A linearisation is made at each point on the surface and constraints applied such that the displacement of

each point must be above the initial local tangent plane, i.e. the dot product of displacement and initial normal must be

positive. An advantage of this is that the constraint can be implemented linearly and is hence guaranteed to be satisfied

(when using SQP). Whereas this constraint is only geometrically approximate, it is found to be sufficiently accurate for

well-discretised surface meshes. Moreover this can be considered ‘conservative’ for convex shapes in the sense that

when the approximate constraint is active, the real constraint remains strictly feasible.
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C. Results: Mesh point control

0 10 20 30 40 50 60 70

Major Iteration

10-3

10-2

O
bj

ec
tiv

e
 25
 50
 100

Fig. 9 Convergence of symmetric transonic drag minimisation using gradient constrained mesh point control.

The transonic test case described above was run on a 257 × 257 half-mesh with a farfield distance of 50 chords (see

Figure 8). Shape control is implemented using the two ordinates of the 257 vertices of the surface mesh such that there

are 514 design variables. The surface gradient constraint is applied at each point (equation 22) as a linear constraint in

SNOPT and multiple optimisations have been performed for varying values of the continuity parameter σ, summarised

in Table 2. In this work, minor iterations refer to those of the line-searches performed at each major iteration. The

number of minor iterations is equal to the sum of the number of flow solutions and adjoint solutions (where one adjoint

solution is required at each major iteration) and hence gives an indication of computational work.

Table 2 Gradient-limited mesh-point optimisation results

σ Drag (counts) Major iterations Minor iterations
25 18.99 43 145
50 11.04 52 179
100 7.68 60 229

Figure 9 shows the optimisation convergence histories for the sweep of parameter values and Figure 10 shows the

resulting optimised profiles. All cases recover similar profiles, specifically those exhibiting large boat-tail angles and a

maximum thickness at approximately fifty percent chord as found in [12]. The optimised pressure distributions, shown

in Figure 11, clearly show the removal of the strong shock and the tendency towards a flat distribution with minimal

variation at the leading edge acceleration and trailing edge compression. The same result is also clear in the Mach and

pressure contours shown in Figure 12.

Recall that low values of σ correspond to a tighter gradient constraint and hence smaller design space. In the case
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of the two tightest gradient constraints considered here, σ = 25 and σ = 50, the higher optimal drag values indicate

that the respective design spaces may be over-constrained for the shape problem compared to larger values of σ which

achieved better results. In the resulting profiles (Figure 10), the lesser performing cases have not achieved as tight a

corner at the leading edge and have lower overall thicknesses indicating that the gradient constraint has restricted the

short wavelength variations required in these areas. This is confirmed when plotting the constrained surface derivatives,

shown in Figure 13. For σ = 25 and σ = 50, large portions of the surface constraints are active at the solution,

particularly near the leading and trailing edges. In contrast, where σ > 100, all cases achieved below 8 drag counts

with variations of less than a drag count between them. Correspondingly, the constrained surface derivatives are much

less active at the solution. In general, as the gradient constraint is loosened (larger σ) the attainable result improves

corresponding to a tighter leading edge corner, a maximum thickness closer to 50% and a smaller boat-tail angle. The

improved results for larger σ also come at increased computational cost of optimisation (more function calls), however

the increase is not substantial and is expected since the feasible design space is larger for larger values of σ.

All cases with σ ≥ 100 achieve comparable results with less than a drag count in variation and a best result of

7.68 drag counts for σ = 100. The previous best result for this test case, at the same mesh resolution (257 × 257),

is 15.7 drag counts by Masters et al. using multilevel subdivision curves [33]. The improvement achieved here is

partly attributed to the use of coordinate control (control over both x and z coordinates) which has allowed unrestricted

representation of the blunt leading and trailing edges observed in the optimised results. This is also the case for B-Spline

control presented in the next section. Coordinate control (of mesh points or spline control points) is made practical by

the gradient constraints which, as well as regularising the localised shape control, introduce consideration for surface

connectivity by their additional in-plane components. As a result the deformed surface and volume meshes are of higher

quality than would be produced by unconstrained coordinate control or thickness modifications alone.
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Fig. 10 Initial and optimised shape of symmetric transonic drag minimisation using gradient-limited mesh
point control
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Fig. 11 Optimised pressure distributions from gradient-limited mesh-point control (top), showing detail at the
trailing edge (bottom)
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(b) Optimisation result (σ = 100)

Fig. 12 Mach and pressure fields for baseline and optimised profiles
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Fig. 13 Constrained third differences at optimal solutions normalised by mesh spacing
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D. Results: B-Spline control

Based on the results of the mesh-point optimisations, a value of σ = 100 was chosen to perform optimisations

using B-Spline shape control. The geometrically meaningful reduction in the design space imposed by the gradient

constraints mean that the optimisation problem should remain well-posed (by excluding undesirable geometries) even

with increases in B-Spline control fidelity. The intended effect of this is to remove dependence of the optimisation

convergence rate on the B-Spline control fidelity. This will be demonstrated in this section by comparing optimisation

with varying numbers of B-Spline control points for cases with and without the gradient constraints.

Least-squares fitting of the surface geometry is used to generate cubic B-Spline curves at a range of control fidelities

where the number of control points varies between 8 and 64. The input surface mesh was parameterised using arc

length and the knot sequence chosen to match the underlying point distribution such that more control points are located

towards the leading and trailing edges where the mesh densities are highest. Figure 14 shows the resulting control

polygon for N = 12 control points. The two ordinates of the B-Spline control points are used for shape control such that

the number of design variables is twice the number of control points. The B-Spline gradient constraints, which are only

applied between spline knots, are implemented as a linear constraint in SNOPT.
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Fig. 14 B-Spline control polygons for N = 12 control points: initial parameterisation and optimised result
(σ = 100)

Also shown in Figure 14 is the resulting control polygon and aerofoil profile after optimisation on the transonic

NACA0012 case. The initial and optimised control polygons in this example demonstrate the importance of performing

shape control with all coordinates (both x and z). Note the geometric changes at the leading and trailing edges where

there are increases in radius of curvature and surface rotation respectively; in these cases, especially for the surface

rotation at the trailing edge, there is significant movement of the control points in the x axis as well as the z. Without

this extra freedom, excessive control fidelity would be required to reproduce the same deformation using, for example,

vertical only displacements. Moreover the resulting surface discretisation would be of poor quality since it is necessarily
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modified as a side-effect of seeking a normal shape-relevant displacement. In contrast, the coordinate shape control

used here, in combination with shape constraints, enables efficient and flexible shape relevant perturbations to be made

during optimisation while maintaining a high quality surface discretisation.

Figure 15 shows the convergence histories for both constrained and unconstrained cases with varying numbers of

control points. Final optimisation results are summarised in Tables 4 and 3. Note that in the gradient-limiting case,

all runs are performed with the same value of the constraint parameter, σ = 100. Immediately it is clear that the rate

of convergence under the gradient constraint is independent of the control fidelity (number of control points) of the

B-Spline shape control. Importantly however, the optimiser is still able to make use of the increased control fidelity to

achieve improvements in the final result; hence the surface gradient constraint does not remove useful geometries from

the higher fidelity design spaces.

By contrast, when used without the gradient constraint (Figure 15(a)) the convergence rate deteriorates with increased

control fidelity. This behaviour, which is also seen in previous studies [12–14, 33, 64], is expected for increases in

problem dimensionality and reflects the good linear-independence of the B-Spline shape basis even with refinement.

However the exponential increase in the size of the design space, and consequent deterioration in convergence rate, can

be avoided by filtering the allowable contributions from the additional low wavelength shape components; this reduces

the effective design space in a geometrically meaningful way such that convergence rate is largely independent of

chosen shape control fidelity. i.e. the convergence of the optimisation problem is dependent on the underlying physical

problem and not the chosen solution method. This finding complements the results of Jameson on the independence

of the smoothed steepest descent method to number of design variables [36]. For unconstrained steepest descent,

sensitivity smoothing can also be viewed as projecting the gradient into some constraint subspace; hence smoothed

steepest descent imposes a minimum length scale on the shape control (determined by the filter radius) and thereby also

fixes the convergence rate for shape optimisation.

In addition to improving the convergence rate, the removal of spurious high frequency shape components also

affects the path taken by the optimiser which therefore affects the final result. For this test case, the addition of the

gradient constraints improves the final optimised objective at all control fidelities. Shown in Figure 16 are the resulting

profiles for both unconstrained and constrained cases. For the unconstrained case (Figure 16(a)), the lower control

fidelities tested (N8, N12, N16) do not have sufficient flexibility whereas the high control fidelities (N24, N32, N64) are

dominated by a ‘step’ feature on the aft-surface and oscillations at the wavelength of the control points. The aft-surface

feature appears spuriously in response to the shock in the initial flow; however this short wavelength phenomenon is

undesirable from a geometric point of view and importantly, it leads to a strong local minima. The surface oscillations

in the unconstrained results are most clearly evident when considering the optimised pressure distributions, shown in

Figure 17, due to their analogy with surface curvature. In comparison, when optimised with surface gradient constraints,

the B-Spline control polygons remain regular, without forming short wavelength features or oscillations on the surface.
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This demonstrates the ability of the gradient constraint to sufficiently regularise the B-Spline basis while retaining the

desirable property of a localised well-conditioned basis needed for high-fidelity shape control.
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Fig. 15 Convergence of symmetric transonic drag minimisation using B-Spline control

Figure 18 shows the constrained spline third derivatives at the optimal solutions. For all cases, the gradient constraint

is inactive for the majority of the spline knots across which it is applied, indicating that the limiting factor in the shape

optimisation problem is the fidelity (number of control points) of the spline and not the gradient constraint. This further

demonstrates the effect of the constraint in constraining the design space such that the shape problem is well-posed

without limiting the attainable result.
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Table 3 Unconstrained B-Spline optimisation results

No. control points Drag (counts) Major iterations Minor iterations
8 97.83 10 107
12 51.88 67 315
16 36.01 54 345
24 129.0 36 227
32 127.6 27 174
64 222.2 55 268

Table 4 Gradient-limited B-Spline optimisation results (σ = 100)

No. control points Drag (counts) Major iterations Minor iterations
8 52.53 10 31
12 18.98 203 542
16 11.77 46 173
24 8.14 41 187
32 8.25 38 171
64 7.88 62 271
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Fig. 16 Initial and optimised profiles for symmetric transonic drag minimisation using B-Spline control
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Fig. 17 Initial and optimised pressure distributions for symmetric transonic drag minimisation using B-Spline
control
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Fig. 18 Constrained spline third derivatives at optimal solutions
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E. Effect of mesh resolution

The effect of mesh resolution was also investigated, with a fixed number of B-Spline control points (N = 64) and

fixed constraint parameter (σ = 100) such that the shape control fidelity is held constant. Three mesh resolutions were

investigated, summarised in Table 5; the grid dimensions indicated are Ni × Nj corresponding to number of grid points

on the half surface and to the farfield respectively. For all resolutions considered here, the optimum drag values decrease

monotonically as the mesh is refined. Figure 19 shows convergence of the objective during optimisation; despite the

number of major iterations varying between mesh resolutions, the primary rate of convergence during the initial phase of

optimisation, where the majority of objective reduction is achieved, is approximately constant between mesh resolutions.

In the same way as for increased B-Spline control fidelity, improved results have been achieved while bounding the

convergence of the optimisation. However in this case, the improvement in final objective is attributable to increased

resolution of the physical problem and its gradients. At the highest mesh density an optimised value of 1.60 drag counts

is achieved; to the authors’ knowledge this is by far the lowest result to be published.

Table 5 Mesh resolution results

Mesh resolution Drag (counts) Major iterations Minor iterations
L1 129 × 129 21.20 39 171
L2 257 × 257 7.88 62 271
L3 513 × 513 1.60 73 308
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Fig. 19 Optimisation convergence using gradient constrained B-Spline control at varying mesh resolutions.
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VII. Conclusions
A new shape control method has been presented that permits local shape design optimisation and high-fidelity

refinement without an exponential increase in the size of the design space and consequent degradation in optimisation

convergence rate. Shape constraints have been derived to ensure surface smoothness and mesh validity when using

local shape control for optimisation and which reduce the effective degrees of freedom in a geometrically meaningful

manner; unlike existing shape control methods, the constraint-based approach is not restricted to low control fidelities or

require the manual definition of shape functions and deformation modes. The resulting shape optimisation problem is

well-posed, as the design space is sufficiently bounded, and well-conditioned since local control methods (mesh-points

and B-Splines) are used. The local control methods with coordinate (x,z) control provide high-fidelity shape-relevant

control, whereas the surface constraints reduce the effective degrees of freedom by excluding non-physical shapes from

the design space. Moreover the constraint formulation also implicitly controls mesh validity by taking into account the

in-plane surface variation. The constraint-based approach has been tested on a challenging two-dimensional inviscid

drag minimisation problem and the effects of the constraint bound magnitude and varying control fidelities have been

investigated. When used with B-Spline curves, the gradient-constraint excludes control polygons with excessive

deformations or oscillatory arrangements and ensures the underlying discretisation remains smooth. Furthermore the

regularised B-Spline shape control is shown to have an optimisation convergence rate independent of numerical grid

resolution as well as shape control fidelity, while still making use of the increased design space to achieve improved

results. As a result, high-fidelity shape optimisation is possible at a reasonable computational cost. At the highest mesh

density the gradient limiting method applied with a 64 control point B-Spline curve achieved an optimised result of 1.60

drag counts for the standard test case, the lowest published result so far.
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