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Abstract 

Several epidemiological studies have reported a relationship between statin treatment and 

increased bone mineral density (BMD) and reduced fracture risk, but the mechanism 

underlying the purported relationship is unclear. We used Mendelian randomization (MR) to 

assess whether this relationship is explained by a specific effect in response to statin use, or by 

a general effect of lipid-lowering. We utilized 400 single nucleotide polymorphisms (SNPs) 

robustly associated with plasma lipid levels as exposure. The outcome results were obtained 

from a heel estimated BMD (eBMD) GWAS from the UK Biobank and DXA BMD at four 

body sites and fracture GWASs from the GEFOS consortium. We performed univariate and 

multivariable MR analyses of low-density lipoprotein cholesterol (LDL-C), high density 

lipoprotein cholesterol (HDL-C) and triglyceride levels on BMD and fracture. Univariate MR 

analyses suggested a causal effect of LDL-C on eBMD (β = -0.06; standard deviation change 

in eBMD per standard deviation change in LDL-C, 95% CI=-0.08 to -0.04; P = 4x10-6), total 

body BMD (β =-0.05, 95%CI=-0.08 to -0.01, P=6x10-3) and potentially on lumbar spine BMD. 

Multivariable MR suggested that the effects of LDL-C on eBMD and total body BMD were 

independent of HDL-C and triglycerides. Sensitivity MR analyses suggested that the LDL-C 

results were robust to pleiotropy. MR analyses of LDL-C restricted to SNPs in the HMGCR 

region showed similar effects on eBMD (β = -0.083; -0.132 to -0.034; P = 0.001) to those 

excluding these SNPs (β= -0.063; -0.090 to -0.036; P = 8x10-6). Bidirectional MR analyses 

provided some evidence for a causal effect of eBMD on plasma LDL-C levels. Our results 

suggest that effects of statins on eBMD and total body BMD are at least partly due to their 

LDL-C lowering effect. Further studies are required to examine the potential role of modifying 

plasma lipid levels in treating osteoporosis. 
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Introduction 

 

Statins, the 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors, are 

principal therapeutic agents in lowering blood cholesterol, especially, low density lipoprotein 

cholesterol (LDL-C). Several randomized controlled trials (RCTs) have reported increased 

bone mineral density (BMD) following statin administration (1)(2). These results could reflect 

a direct effect of statins on BMD, as suggested by findings from several in vivo studies that 

statins stimulate bone formation (3)(4)(5). An alternative possibility is that the relationship 

between statin use and BMD is at least partially mediated by an effect of LDL cholesterol 

(LDL-C) on bone metabolism (6)(7). For example, Parhami et al proposed that products of 

lipid and lipoprotein oxidation may contribute to the pathophysiology of osteoporosis (8). 

Consistent with this hypothesis, several observational epidemiological studies have 

documented a link between coronary heart disease and osteoporosis (9)(10). However, 

observational epidemiological studies are subject to confounding and reverse causality, making 

interpretation of such associations difficult and their meaning uncertain. 

Mendelian randomization (MR) uses genetic variants as instrumental variables to estimate the 

causal effect of modifiable environmental exposures on medically relevant outcomes (11)(12). 

For example, we previously used this method to demonstrate a causal effect of greater fat mass 

on BMD in children (13). Recent MR studies have suggested a causal relationship between 

LDL-C lowering and bone (14)(15)(16). These studies, however, have not taken advantage of 

the full range of data on lipids and BMD available in the public domain (e.g. GWAS of DXA-

scans based on BMD at different body sites). In order to obtain a more comprehensive 

understanding of the relationship between blood lipids and BMD, we performed a two sample 

MR study (17). We utilized summary GWAS data from the Global Lipids Genetics Consortium 

(18) to proxy lipid exposures (400 instruments), and summary GWAS data of ultrasound 

derived heel estimated BMD on 426,824 UK Biobank European participants (19), DXA-

derived BMD (total body BMD, N=66,611; forearm BMD, N=8,143; femoral neck BMD, 

N=32,735; lumbar spine BMD, N=28,498) (20)(21) and fracture (GEFOS ALLFX fracture, 

N=264,973; UK Biobank fracture, N=426,795) (19)(22). To obtain estimates of the causal 

effect of blood lipids on BMD and fracture, we performed two sample inverse variance 

weighted (IVW) MR (23), and also a series of sensitivity analyses including MR Egger 

regression (24), weighted median MR analysis (25) and multivariable MR (26)(27) which may 

produce more robust causal estimates in the presence of horizontal genetic pleiotropy (28). To 

determine whether any relationship between blood lipids and eBMD might be mediated by 
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direct effects of statin use, we compared causal estimates obtained using SNPs in the HMGCR 

gene (i.e. whose product is the target of statin therapy) versus estimates using SNPs outside 

this gene. In addition, we conducted a reverse MR analysis to test whether there was any 

evidence for BMD causally affecting plasma lipids (29). 

 

Methods 

 

Two sample inverse variance weighted Mendelian randomization analysis of estimated BMD 

 

We performed a series of two-sample MR analyses using summary results data from the Global 

Lipids Genetics Consortium (N = 331,368) (18) and the UK Biobank Study of eBMD (N = 

426,824) (19). In total, 400 conditionally independent SNPs robustly associated with blood 

lipids (P < 5 x 10-8) were selected as instruments for the MR analyses (see Supplementary 

Table 1). Of these SNPs, 195 variants were associated with HDL-C, 147 were associated with 

LDL-C, and 163 were associated with triglycerides at genome-wide levels of significance (see 

Supplementary Table 2, 3 and 4). We refer to MR analyses involving all these variants as 

analyses using the “Complete Set” of SNPs. To obtain estimates of the causal effect of lipid 

fractions on eBMD, we performed two-sample IVW MR analysis (30) on each lipid fraction 

separately. Analyses were performed using the TwoSampleMR R package of MR-Base (31) 

(https://github.com/MRCIEU/TwoSampleMR). 

 

Sensitivity analyses 

 

Standard MR analyses rely on the validity of a number of core assumptions to produce accurate 

causal estimates of the exposure on the outcome  (11)(30)(32). One of these assumptions states 

that genetic instruments (lipid SNPs) must only potentially be related to the outcome (i.e. 

eBMD) through their relationship with the exposure (lipid levels). Thus, if there are additional 

pleiotropic paths between the SNP and outcome that do not pass through lipid levels, then 

standard MR analyses may produce biased causal estimates of blood lipids on eBMD. We 

therefore applied three recent extensions of the basic IVW MR method, that can produce more 

accurate causal estimates, MR Egger regression (24), weighted median MR (25) and mode-

based estimator (weighted mode approach) (33), given horizontal pleiotropy is common place. 
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In MR Egger regression, as long as the ‘INSIDE assumption’ (INstrument Strength is 

Independent of Direct Effect) assumption is met, the slope of the weighted regression line 

provides an asymptotically unbiased causal estimate of the exposure on the outcome that is free 

from the effects of horizontal pleiotropy (24). In general, MR Egger regression is potentially 

more robust to horizontal pleiotropy but has less statistical power compared to the IVW MR 

method. In addition, the intercept of the MR Egger regression line quantifies the amount of 

directional pleiotropy present in the data averaged across the genetic instruments. 

 

We assessed the no measurement error (NOME) assumption in MR Egger regression using an 

adaptation of the I2 statistic to the two-sample summary data MR context, which is referred to 

as I2
GX and accounts for uncertainty in the SNP-exposure estimates. I2

GX provides an estimate 

of the degree of regression dilution in the MR-Egger causal estimate (34). 

 

We also used the weighted median MR and mode-based MR approaches as additional 

sensitivity analyses, which provide consistent causal estimates of the exposure on the outcome 

even when up to 50 of the information contributing to the analysis comes from genetic variants 

that exhibit pleiotropy (or even the majority of information in the case of the mode-based MR) 

(25)(33). Thus, MR Egger regression, weighted median MR and mode-based MR provide 

causal estimates of the exposure (lipids) on the outcome (eBMD) under different assumptions. 

If all approaches (i.e. IVW MR, MR Egger regression, weighted median MR and mode-based 

MR) provide similar estimates of the causal effect of lipids on eBMD, then we can be more 

confident that our findings are robust. All sensitivity analyses were performed using the MR-

Base R package as described above (31). We further applied MR-PRESSO (35) as another 

sensitivity analysis, which attempts to reduce heterogeneity in the estimate of the causal effect 

by removing SNPs that contribute to the heterogeneity disproportionately more than expected. 

We conducted this analysis by using the MR-PRESSO R package 

(https://github.com/rondolab/MR-PRESSO). The number of distributions was set to 10000 and 

the threshold was set to 0.05. 

 

When applying MR, we make an assumption that SNPs used to proxy lipids exert their primary 

association on lipids, and that any correlation with eBMD is a consequence of a causal effect 

of lipids on eBMD. But, if eBMD exerts a causal effect on lipids, then there is a possibility that 

some SNPs primarily associated with eBMD might also pass the genome-wide significant 

threshold in a GWAS of lipids with large sample size. These eBMD SNPs could then 

https://github.com/rondolab/MR-PRESSO
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misleadingly be applied as genetic instruments for lipids, when actually they should be applied 

as genetic instruments for eBMD. In other words, in very large GWAS it can be difficult to 

determine whether a SNP has its primary association with the exposure under study, or the 

outcome (36). This was particularly relevant to the current study as some of the eBMD 

associated SNPs were also robustly associated with lipids (i.e. reached the genome-wide 

significant threshold). We therefore applied MR Steiger filtering (37) as implemented in the 

TwoSampleMR R package (31) to test the causal direction of each of the 400 lipid associated 

SNPs on the hypothesized exposures (lipids) and outcome (eBMD). This approach infers the 

causal direction between phenotypes using a simple inequality. Given trait A causes trait B 

then one would expect that:  

 

because cor(gi, B)2 = cor(A, B)2 * cor(gi, A)2, where “cor” denotes correlation, and the vector 

g contains a set of M SNPs that influence trait A. For any SNP that had a cor(g,A)2 < 

cor(g,B)2 (which means it showed evidence of primarily affecting eBMD rather than lipids), 

we removed those lipids SNPs and conducted IVW MR, MR Egger and weighted median 

MR using the remaining instruments (“Steiger filtered” set). The process of choosing 

validated instruments using Steiger filtering followed these steps:  

1. Select lipid instruments from the main analysis (p-value threshold 5x10-8). 

2. Classify instruments in each MR analysis based on Steiger filtering:  

• 'TRUE': evidence for causality in the expected direction i.e. lipids influence 

eBMD. 

• 'FALSE': evidence for causality in the reverse direction i.e. eBMD influences 

lipids. Instruments with ‘FALSE’ were removed from the sensitivity analysis.  

• 'NA': no result (due to missing effect allele frequencies in the outcome data or 

missing numbers of cases and controls for binary traits). 

Individual Steiger filtering results can be found in Supplementary Table 2, 3 and 4.  

 

Two sample Mendelian randomization analysis for estimated BMD controlled for possible 

confounders  

 

To control for the possible introduction of confounding by including adiposity, height, smoking 

and alcohol intake related variants in our MR analyses, we cross referenced our LDL-C 



 

7 
 

instruments with the most up-to-date list of SNPs related to body mass index (BMI) (38), height 

(38), smoking (39) and alcohol intake (40). We excluded LDL-C SNPs that were in linkage 

disequilibrium with published GWAS variants associated with BMI, height, smoking and 

alcohol intake (r2>0.5 in the 1000 Genome Europeans; Supplementary Table 3). We excluded 

ten BMI associated SNPs, 20 height associated SNPs and three SNPs associated with alcohol 

intake. No SNPs associated with smoking related traits were in LD with any LDL-C SNPs. We 

then conducted the IVW MR, MR Egger and weighted median MR analyses again using the 

remaining instruments.  

 

Since men and women differ markedly in terms of their average BMD, we conducted a sex-

specific MR analysis using male and female only eBMD as a sensitivity test (19). The same 

MR analyses were applied, including IVW MR, MR-Egger and WM MR approaches. 

 

Two sample multivariable Mendelian randomization analysis of estimated BMD 

 

Since many of the SNPs used in the previous MR analyses were associated with more than one 

lipid fraction, we applied multivariable MR (Figure 1) to identify the causal effect of HDL-C, 

LDL-C and triglycerides on eBMD, using a “weighted regression-based method” approach 

where the inverse-variance weights were applied to a multivariable regression model (26)(27). 

Multivariable MR has an advantage over univariate MR in that it accounts for the potential 

pleiotropic influence of other exposures included in the analysis (i.e. HDL-C, LDL-C and 

triglycerides). However, similar to IVW MR, multivariable MR relies on the assumption that 

the relationship between the instruments and the outcome is only mediated by the exposure 

variables tested in the analysis (i.e. LDL-C, HDL-C and triglycerides), which in the real world 

may not always be the case. We therefore fitted a multivariable MR model with an 

unconstrained intercept term, which has the effect of allowing for directional pleiotropy, 

similar to the situation in MR Egger regression (41). Since multivariable MR does not require 

each genetic instrument to be related to every exposure variable (merely that each SNP is a 

strong instrument for at least one exposure), we applied the method to the complete set of 400 

lipid associated SNPs. We performed sensitivity analyses coding the direction of the SNPs as 

LDL-C increasing, HDL-increasing and then triglyceride-increasing to examine whether the 

direction of coding affected the multivariable MR Egger regression results. 
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Predicting the impact of lipid lowering pharmaceutical interventions on estimated BMD 

 

Analogous to what has been done in several previous MR studies of lipids and coronary heart 

disease (42)(43)(44), we used a selection of genetic variants at the 3-Hydroxy-3-

Methylglutaryl-CoA Reductase (HMGCR), Niemann-Pick C1-Like 1 (NPC1L1) and 

Proprotein convertase subtilisin/kexin type 9 (PCSK9) genes to mimic the expected action of 

statins, ezetimibe and evolocumab, respectively on BMD. Since some of the SNPs within these 

genes were in incomplete linkage disequilibrium (LD), we used a likelihood-based two-sample 

MR approach that takes into account the correlation between genetic instruments when 

estimating the causal effect of lipid lowering drugs on eBMD (17). LD correlation estimates 

(r) between markers were obtained in CEU individuals using the LD matrix webserver (45). 

As a further sensitivity analysis, we repeated MR analyses using all SNPs outside the HMGCR 

region. 

 

If statins causally affect bone mineral density via “direct effect” (i.e. independent of lipids), 

then we would expect to see significant causal estimates for MR analyses involving HMGCR 

SNPs, but not for analyses involving SNPs in the NPC1L1 and PCSK9 genes, nor the rest of 

the genome. In contrast, if the effect of the SNPs on eBMD were mediated through blood lipids, 

then we would expect to obtain significant causal estimates using lipid associated SNPs across 

the rest of the genome. We formally compared the different causal estimates obtained using 

SNPs in the different gene regions using heterogeneity tests (46). 

 

Bidirectional Mendelian randomization of estimated BMD 

 

Finally, in order to test the potential causal effect of BMD on blood lipids, we used summary 

results data from 1,103 conditionally independent genetic variants reported in a recent eBMD 

GWAS using 426,824 UK Biobank European individuals (19) as instrumental variables. 

Sentinel SNPs with a marginal P value smaller than 5x10-8 were selected from the Morris et al 

paper. LD clumping was conducted for the eBMD instruments with an r2 threshold of 0.01. We 

then extracted summary results association data on these variants on LDL-C, HDL-C and 

triglycerides from the Global Lipids Genetics Consortium (18)(44). We performed IVW MR, 

weighted median MR and MR-Egger regression methods using the TwoSampleMR R package 

as described above (31). 
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When applying Bidirectional MR, we also applied the Steiger filtering analysis (37) to 

investigate the causal direction of each eBMD associated SNP on the hypothesized exposure 

(BMD) and outcomes (lipids). When the Steiger test showed evidence of primarily affecting 

lipids rather than eBMD, we removed these eBMD SNPs and conducted bidirectional MR 

using the remaining instruments.  

 

Two sample Mendelian randomization analysis of DXA-derived BMD and fracture   

 

Heel-ultrasound derived measures (eBMD) have previously been found to predict fracture risk 

as accurately as DXA-based measures (47), and to be moderately correlated with DXA derived 

BMD at the hip and spine (r = 0.4 to 0.6) (48)(49). However, in comparison to heel ultrasound-

derived BMD, DXA-derived BMD is used more widely clinically to assess fracture risk. We 

therefore conducted comprehensive two sample MR analyses to estimate the causal 

relationship between the three lipid subtypes and four DXA-derived BMDs and fracture. The 

outcomes included total body BMD (20), forearm BMD (21), femoral neck BMD (21), lumbar 

spine BMD (21) measured by DXA and fracture from the GEFOS ALLFX study (22) and UK 

Biobank (19). Together with eBMD, we tested 6 outcomes in total, using a conservative 

Bonferroni corrected threshold (α=8.33x10-3, as 6 outcomes were assessed) to account for the 

multiple risk factors tested. The same MR analysis pipeline was applied for these analyses, 

including IVW MR, MR Egger and weighted median MR with and without Steiger filtering, 

multivariable MR and bi-directional MR.   

 

Two sample Mendelian randomization analysis of total body BMD across lifespan 

To understand whether the effects of LDL-C on BMD in adulthood were consistent throughout 

the lifespan, we conducted an MR analysis of LDL-C on total body BMD across five age 

groups: age 15 or less, 15 to 30, 30 to 40, 45 to 60 and 60 or more. The complete list of LDL-

C instruments were used, while the total body BMD data were obtained from Medina-Gomez 

et al. (20). The MR IVW, MR Egger, weighted median MR and mode-based MR were 

conducted using the TwoSampleMR R package.  

 

LD score regression for quantifying sample overlapping across studies 
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Sample overlap may bias the causal estimates derived from two sample MR when the study 

suffers weak instrument bias (50). Given the sample size of the lipids GWAS we used in this 

study, weak instrument bias is less likely to be an issue. We quantified the level of sample 

overlap between the GLGC consortium and GEFOS consortium (and UK Biobank). Bivariate 

LD score regression (51) was applied to the three lipid subtypes and seven bone phenotypes 

we analysed in this study. The bivariate LD score regression intercept is a function of the degree 

of sample overlap between the two studies. An intercept close to zero implies little evidence of 

sample overlap.  

 

Results 

 

Mendelian randomization estimates the causal effects of plasma lipids on estimated BMD 

 

Table 1 presents results from the univariate MR analyses of plasma lipids and eBMD. Each 

effect represents the estimated causal change in standard deviations (SD) of eBMD per SD 

change in serum level of HDL-C, LDL-C or triglycerides. IVW MR, MR Egger, weighted 

median MR and mode-based MR using the complete set of SNPs all suggested a causal effect 

of increased LDL-C on reduced eBMD (IVW estimate: β = -0.060, 95%CI = -0.084 to -0.036, 

P = 4x10-6). The MR estimate after removing outliers identified by MR-PRESSO suggested a 

consistent negative effect of LDL-C on eBMD (MR-PRESSO estimate: β = -0.041, 95%CI = -

0.055 to -0.027, P = 8x10-8)   

Excluding SNPs related to BMI (β = -0.058, 95%CI = -0.082 to -0.034, P= 3x10-6, 

Supplementary Figure 1), height (β = -0.057, 95%CI = -0.082 to -0.032, P= 4x10-5), or alcohol 

intake (β = -0.060, 95%CI = -0.084 to -0.036, P= 4x10-6) in the MR analyses yielded similar 

estimates of the causal effect of increased LDL-C on reduced eBMD. The sex-specific MR 

suggested that LDL-C was strongly associated with both male and female eBMD 

(Supplementary Figure 2).  

 

In contrast, univariate MR analyses revealed little evidence for a causal effect of HDL-C or 

triglycerides on eBMD (IVW HDL-C estimate: β = -0.016, 95%CI = -0.40 to 0.08, P = 0.2; 

IVW triglycerides estimate: β = 0.021, 95%CI = -0.49 to 0.07, P = 0.1). The directionality test 

using Steiger filtering showed that most of the lipid SNPs exerted their primary effect on lipids 

as opposed to eBMD. 146 SNPs showed evidence of a primary causal effect on LDL-C, 190 
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SNPs on HDL-C and 158 SNPs on triglycerides opposed to eBMD (Supplementary Table 2, 3 

and 4). MR using the Steiger filtered set of SNPs also showed strong evidence of LDL-C 

causally influencing eBMD (IVW estimate: β = -0.058, 95%CI = -0.081 to -0.035, P = 8.9x10-

7) and little evidence that HDL-C or triglyceride levels causally influenced eBMD (IVW HDL-

C estimate: β = -0.013, 95%CI = -0.31 to 0.05, P = 0.15; IVW triglycerides estimate, β = 0.015, 

95%CI = -0.035 to 0.05, P = 0.13) (Table 1). Funnel plots and scatter plots for this sensitivity 

analysis are presented in Supplementary Figure 3. 

 

The funnel plots presented in Figure 2 display MAF-corrected genetic associations for each of 

the individual SNPs on lipid levels (y-axis) plotted against their causal effect estimates (x-axis). 

Visual inspection of Figure 2 provided little indication for the existence of directional 

horizontal pleiotropy for LDL-C (panel A), but a suggestion of directional pleiotropy for HDL-

C (panel B) and potentially for triglycerides (panel C). In particular, SNPs less strongly related 

to increased HDL-C tended to be associated with reduced eBMD. This interpretation was 

consistent with estimates of the intercepts from the MR Egger regression analyses (LDL-C: 

intercept = -0.001, P = 0.1; HDL-C: intercept = -0.004, P = 3x10-4; Triglycerides: intercept = 

0.002, P = 0.08). Figure 2 also illustrates the associations between the LDL-C (panel D) / HDL-

C (panel E) / triglycerides (panel F) variants and eBMD in the form of scatter plots, with the 

MR Egger regression and IVW MR lines superimposed on the data points (the slopes 

representing the estimated causal effects). In Figure 2D, we observed some outlier SNPs, which 

may increase the magnitude of the causal estimates of the effect of LDL-C on eBMD obtained 

in the IVW and MR Egger regression analyses. The weighted median MR estimate, which is 

less influenced by the presence of outliers, was lower compared to IVW and MR Egger 

estimates (β= -0.028, 95%CI= -0.042 to -0.014, P=1x10-4). In addition, the Cochrane Q test 

also suggested strong heterogeneity in estimates of the causal effect across the different LDL-

C instruments (Q = 1605.24, P = 6.39x10-244). Thus, although the overall effect of pleiotropy 

on the pooled results was likely to be small (as indicated by an MR Egger regression intercept 

close to zero), it is likely that many individual SNPs exhibited horizontal pleiotropy (which 

then tended to cancel out when the estimates were combined together in meta-analysis/Egger 

regression). 

 

Assessment of the NO Measurement Error (NOME) assumption (34) with respect to the MR-

Egger estimate gave unweighted I2
GX = 0.995 and weighted I2

GX = 0.995. This suggests a minor 

0.5% attenuation of the causal estimate toward zero, as a consequence of uncertainty in the 
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SNP exposure estimates.  

 

Multivariable IVW analysis provided additional evidence for a causal effect of LDL-C on 

eBMD (β = -0.055, 95%CI = -0.080 to -0.030, P = 2.8x10-5), independent of the effects of 

HDL-C and triglycerides. The causal effect estimate was comparable to estimates produced 

from the previous univariate IVW MR analyses (Figure 3). As shown in Supplementary Table 

5, there was no independent association between HDL-C and eBMD (β = -0.020, 95%CI = -

0.046 to -0.006, P = 0.124) and triglycerides on eBMD (β = 0.013, 95%CI = -0.028 to 0.043, 

P = 0.397), consistent with univariate MR findings (Figure 3). The direction the alleles were 

coded in the multivariable analyses did not materially affect the results (Supplementary Table 

5). 

 

Genetic prediction of the impact of lipid lowering interventions on estimated BMD 

 

Table 2 displays estimates of the causal effect of LDL-C level on eBMD obtained using SNPs 

from genes whose proteins are targets for lipid lowering drugs. Results obtained using 5 SNPs 

in the region of the HMGCR gene (43) suggest that reducing the activity of HMGCR (i.e. 

mimicking the effect of statins) increases eBMD (β = -0.083, 95%CI = -0.132 to -0.034, P = 

0.001). In contrast, results using 7 SNPs in the region of the PCSK9 gene (43) plus rs11591147 

(44), and 5 SNPs in the region of NPC1L1 from Ference et al (42), suggested that genetically 

reducing the activity of PCSK9 (mimicking Evolocumab) and NPC1L1 (mimicking Ezetimibe) 

had no clear effect on eBMD (PCSK9: β = -0.007, 95%CI = -0.027 to 0.013, P = 0.486; 

NPC1L1: β = -0.004, 95%CI = -0.059 to 0.051, P = 0.887). Interestingly, there was some 

evidence of heterogeneity in causal effect estimates across the different SNPs in the PCSK9 

gene, with one SNP in particular providing evidence for a causal effect in the opposite direction 

to the majority of the other SNPs. The SNPs used to explore the effect of the lipid lowering 

drugs are listed in Supplementary Table 6. 

 

Sensitivity analysis using non-HMGCR lipid lowering SNPs on estimated BMD  

 

Table 2 and Supplementary Figure 4 display the causal estimates of LDL-C on eBMD 

excluding the HMGCR SNPs from the MR analyses. We found that the 140 LDL-C associated 

SNPs outside the HMGCR, PCKS9 and NPC1L1 regions still produced significant estimates 
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of a negative causal effect of LDL-C on eBMD (β = -0.063, 95%CI = -0.090 to -0.036, P = 

8x10-6). Supplementary Table 7 shows heterogeneity test results comparing causal estimates 

obtained from different gene regions (LD correlation matrices between SNPs in HMGCR, 

PCSK9 and NPC1L1 are shown in Supplementary Table 8). We found that the causal effect 

estimates using SNPs in the HMGCR gene were not different from those generated from the 

rest of the genome (excluding HMGCR, PCSK9 and NPC1L1 SNPs) (Cochran Q = 0.487, 

P=0.485). This finding suggests that some of the effect of the SNPs on eBMD may be mediated 

through LDL-C (i.e. through mechanisms not involving HMGCR and statins). In addition, the 

confidence intervals surrounding the causal effect estimates obtained using SNPs in PCSK9 

and NPC1L1 were wide and overlapped zero and were also different to the ones obtained using 

the HMGCR SNPs and the rest of the genome. 

 

Bi-directional MR estimating the reverse causal effect of estimated BMD on plasma lipids 

 

We also investigated the potential reverse causal effect of eBMD on blood lipids. After LD 

clumping, 574 out of 1,103 SNPs reported as robustly associated with eBMD from the UKBB 

study could be found in the blood lipids GWAS data (44). Where the exact eBMD variant was 

not available in the lipids GWAS a proxy variant was used instead (LD r2 > 0.8 with the leading 

SNP as the proxy SNP). The Steiger filtering analysis suggested that most of these SNPs 

exerted their primary effect on eBMD as opposed to lipid levels. 514 SNPs showed evidence 

of a primary causal effect on eBMD as opposed to LDL-C, 507 SNPs opposed to HDL-C and 

515 opposed to triglycerides (last four columns in Supplementary Table 9). Supplementary 

Table 10 presents univariate MR results for the effect of these remaining eBMD associated 

SNPs on plasma lipids. IVW MR, weighted Median MR and MR-Egger regression results 

showed no strong evidence of eBMD causally influencing HDL-C or triglyceride levels 

although there was some evidence that eBMD might influence LDL-C. Interestingly, even after 

Steiger filtering and MR Egger regression, Cochrane Q statistics suggested the presence of 

considerable heterogeneity remaining in the analysis. The funnel plot and scatter plot for the 

bidirectional MR are presented in Supplementary Figure 5.  

 

Mendelian randomization estimates of the causal effect of plasma lipids on DXA-derived BMD 

and fracture 
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We further investigated whether the effect of lipids on eBMD was similar to their effect on 

DXA-derived BMDs and fracture. Supplementary Table 11 and Supplementary Table 12 

present univariate and multivariable MR estimates for the causal effect of the three lipid 

subtypes on DXA-derived BMD at four body sites and fracture. IVW MR, MR Egger, weighted 

median MR and mode-based MR using the complete set (and the Steiger filtered set) of SNPs 

suggested a causal effect of increased LDL-C on reduced total body BMD (IVW estimate: β = 

-0.047, 95%CI = -0.080 to -0.014, P = 6x10-3), which was similar to the multivariable MR 

estimate (β = -0.041, 95%CI= -0.072 to -0.011, P = 8.4x10-3). MR also showed a suggestive 

effect of LDL-C on lumbar spine BMD (univariable MR: β = -0.048, 95%CI= -0.095 to -0.002, 

P = 0.04; multivariable MR: β = -0.045, 95%CI= -0.096 to 0.006, P = 0.08). Multivariable MR 

also showed an effect of LDL-C on forearm BMD (β = -0.094, 95%CI= -0.160 to -0.027, 

P=6.14x10-3) and a suggestive effect on fracture in UK Biobank (OR= 1.026, 95%CI=1.001 to 

1.052, P=0.046). These findings were consistent with the results of MR analyses examining 

the relationship between LDL-C and eBMD. For HDL-C associations, univariate MR 

suggested strong effects of HDL-C on forearm BMD (β =-0.075, 95%CI=-0.131 to -0.019, P= 

8.3x10-3) and fracture in UK Biobank (OR=1.035, 95%CI=1.013 to 1.057, P=4x10-3). But after 

controlling the effect of LDL-C and triglycerides in a multivariable MR model, these effects 

were attenuated somewhat. Only a suggestive result was observed between HDL-C and 

fracture in UK Biobank (OR= 1.027, 95%CI= 1.002 to 1.053, P=0.035). Multivariable MR 

suggested a negative effect of HDL-C on total body BMD (β = -0.041, 95%CI= -0.070 to -

0.011, P = 0.007), but this association was not supported in the univariate MR. For triglycerides, 

univariate MR suggested evidence of an effect of triglycerides on fracture in UK Biobank 

(OR=0.963, 95%CI=0.937 to 0.989, P=7x10-3). The multivariable MR using fracture data from 

the ALLFX study supported these results (OR=0.946, 95%CI=0.9079 to 0.985), but the causal 

effect did not replicate using multivariable MR in the UK Biobank (OR= 0.978, P=0.137). 

There was no strong evidence for a relationship between HDL-C (or triglycerides) on femoral 

neck BMD or lumbar spine BMD. In general, the consistent relationship between LDL-C and 

BMD at multiple sites was not apparent for HDL-C and triglycerides (Supplementary Table 11 

and 12). The bidirectional MR results suggested no strong consistent effect of DXA-based 

BMD and fracture on lipids (Supplementary Table 13). 
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Mendelian randomization estimates of the causal effect of LDL-C on total body BMD across 

lifespan 

Figure 4 presents the MR results of LDL-C on total body BMD at 5 different age groups: age 

15 or less, 15 to 30, 30 to 40, 45 to 60 and 60 or more. This MR analysis suggested that LDL-

C showed a consistent negative effect on total body BMD across all age groups. Age group 

“age 15 or less” showed the strongest evidence for a causal effect (β = -0.064, 95%CI= -0.121 

to -0.007, P = 0.028). Confidence intervals were wide across because of the stratification of 

individuals into different age groups. 

 

Finally, Supplementary Table 14 shows the results of bivariate LD score regression analyses 

designed to assess the degree of sample overlap between GLGC consortium and GEFOS 

consortium (and UK Biobank). The intercepts of the 21 bivariate LD score regression analyses 

were close to zero (column “gcov_int”), suggesting little sample overlap across the groups.  

 

Discussion 

We performed an MR study to examine whether previous findings of an inverse observational 

association between serum cholesterol and BMD reflected a causal relationship. We found that 

eBMD increased by 0.064 SD per SD lower LDL-C, based on IVW MR analyses of the 

complete SNP set. Interestingly, MR analyses using five SNPs in the region of the HMGCR 

gene and using all the other known LDL-C related variants across the genome also produced 

strong estimates of the causal effect of LDL-C lowering on eBMD. Taken together, these 

observations suggest that gains in BMD following statins are at least partly due to a causal 

effect of lowering LDL-C. 

 

Aside from studies of statins (1)(2)(3)(4)(5), some very recent MR studies have also suggested 

a negative causal effect of LDL-C level on BMD, although there are some key differences 

between their studies and ours, and we have conducted a more powerful and comprehensive 

MR study of lipids on BMD across five different body sites and fracture(14)(15)(16). Using 

the latent causal variable (LCV) approach, O’Connor and Price suggested a negative causal 

relationship between LDL-C and eBMD (14), however their LCV approach cannot take into 

account the possibility of bi-directional effects between two phenotypes (i.e. our study showed 

bi-directional associations for LDL-C on eBMD as well as on total body BMD). Cherny et al. 

applied univariable MR to summary results data of eBMD from the first release of the UK 
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Biobank and found a causal effect of LDL-C on eBMD (16). However, the complex pleiotropic 

relationships between SNPs influencing LDL-C, HDL-C and triglycerides were not modelled 

using multivariable MR. Also, their reverse MR analysis suggested no effect of eBMD on 

LDL-C, whilst our study indicated a possible effect. Finally, Li et al. found evidence of a bi-

directional effect of LDL-C on total body BMD but found a unidirectional effect of LDL-C on 

eBMD using the first release of UK Biobank only (15), while our study using better powered 

exposure and outcome data suggested a bi-directional effect. Also, our study suggested that the 

effect of LDL-C on total body BMD was consistent across the lifespan (from adolescence to 

old age), which was not examined in Li et al. From a methodological point of view, our MR 

study also used more advanced methods such as mode-based MR as well as Steiger filtering 

and MR-PRESSO for instrument selection and, providing more robust evidence on causal 

relationships than previous work (15).  

 

We were also keen to determine whether the causal relationship between LDL-C and BMD 

which we observed translated into an effect on fracture risk. Although little effect was observed 

for LDL-C in univariate analyses, MVMR suggested that decreased LDL-C led to a small 

reduction in fracture risk. In contrast, decreased HDL-C and triglycerides were related to lower 

and higher fracture risk respectively in univariate analyses, whereas in MVMR, HDL-C was 

unrelated to fracture risk, while decreased triglycerides was related to higher fracture risk using 

ALLFX data but showed little association in the UKBB. These findings are consistent with the 

reduction in BMD caused by LDL-C. However, they are difficult to explain in the case of HDL-

C and triglycerides which were unrelated to BMD. Therefore, while our results provide some 

indication that lipids may affect fracture risk, the findings are generally too weak and 

inconsistent to draw firm conclusions. 

 

Other cholesterol-lowering agents might lack the same tendency as statins to reduce BMD, 

which is further suggested by the results of our sensitivity analyses in which genetic 

instruments for other classes of cholesterol-lowering agents, ezetimibe and evolocumab, were 

unrelated to BMD. However, this finding contrasts with the effects of non-statin pathways as 

a whole on BMD, assessed by examining all LDL-C genetic instruments apart from HMGCR, 

which showed similar effects to instruments within the HMGCR region. Conceivably, 

ezetimibe and evolocumab might exert distinct, adverse effects on BMD, countering beneficial 

effects resulting from lowering of LDL-C levels.  
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A recent meta-analysis of 10 studies found that LDL-C levels were higher in patients with 

osteoporosis compared to controls (52). Such a relationship could conceivably contribute to 

the association between coronary vascular disease, for which high LDL-C levels are an 

important risk factor, and osteoporosis (9)(10). An inverse relationship between LDL-C and 

eBMD, suggested by our results, is consistent with evidence that lipids may contribute to the 

pathophysiology of osteoporosis through lipid oxidation (7). For example, oxidized lipids, 

especially oxidized LDL, characteristic of hyperlipidemia, may have direct adverse effects on 

cellular components of bone, inhibiting osteoblastic differentiation and bone formation, 

increasing adipogenesis of MSCs at the expense of their osteogenic differentiation, and 

inducing osteoclastic differentiation and bone resorption (8)(53)(54). In addition, oxidized 

lipids induce the expression of cytokines such as MCP-1, M-CSF and IL-6 both in vitro and in 

vivo, thought to play a role in osteoporotic bone loss (55)(56).  

 

A key assumption underlying the MR methodology is that the SNPs used as instruments are 

merely related to the outcome of interest via the exposure variable under study. This is 

invalidated by horizontal pleiotropy, whereby the genetic instrument for the exposure relates 

to the outcome via separate pathway to the exposure. There were several potential mechanisms 

for horizontal pleiotropy in the present study. For example, based on our previous finding that 

BMI is causally related to BMD (13), and the fact that LDL-C tends to be higher in obese 

individuals, it’s conceivable that relationships which we observed between LDL-C and eBMD 

are affected by BMI. That said, whereas we observed an inverse relationship between LDL-C 

and eBMD, increased BMI has a positive effect on eBMD, suggesting these causal pathways 

would be in opposite directions. In addition, it’s conceivable that some of the SNPs selected 

from the lipid GWAS affect eBMD independently of altered lipid levels. For example, a variant 

upstream of ESR1 is very strongly associated with eBMD (and LDL-C). Likewise, a SNP in 

the RSPO3 gene is strongly associated with eBMD, HDL-C and triglycerides (although not 

with LDL-C) (57). Furthermore, a given lipid-related SNP could conceivably affect BMD by 

influencing a different lipid class, since many of the SNPs are associated with multiple lipid 

subtypes (see Figure 1). 

 

Despite these potential sources of horizontal pleiotropy, there was not strong evidence of 

directional pleiotropy within the set of 147 LDL-C instruments, as reflected by the estimate of 

the MR-Egger intercept (I=-0.002, p=0.09), and the finding that the causal estimate from MR-

Egger was consistent with estimates obtained from the IVW MR and weighted median MR 
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methods. Moreover, we observed an almost equivalent effect of LDL-C on eBMD following 

exclusion of obesity-associated SNPs (β = -0.058, 95%CI = -0.082 to -0.034, P = 3x10-6). In 

addition, there was little evidence of a causal effect of HDL-C or triglycerides on eBMD, and 

in multivariable MR analysis the effect of LDL-C on eBMD was independent of these other 

lipid classes. Our findings contrast with a recent MR study based on a more restricted sample 

of UK Biobank that found evidence of an inverse effect of eBMD, as measured here, on HDL-

C and other cardiovascular and type 2 diabetes mellitus risk factors (58). 

 

A causal relationship between LDL-C and eBMD is consistent with estimates of the genetic 

correlation between blood lipids and eBMD (49) using Linkage Disequilibrium (LD) score 

regression  (51)(59). However, unlike the present analyses, a genetic correlation does not imply 

causality or indicate a direction of effect. Interestingly, our bidirectional MR analyses provided 

some evidence for a causal effect of eBMD on LDL-C in all three sets of MR analyses (i.e. 

inverse variance, MR Egger and weighted median approaches), although large Cochrane Q 

statistics suggested the existence of uncontrolled genetic pleiotropy that may have 

contaminated the analyses. A putative causal pathway is consistent with several lines of 

evidence that the skeleton plays a role in regulating energy metabolism. For example, research 

involving mouse models has suggested that bone turnover, which is inversely related to BMD, 

influences insulin sensitivity and adiposity via osteocalcin (an osteoblast-specific protein) (60). 

Likewise, individuals with rare genetic mutations in LRP5 which predispose to very high bone 

mass have markedly increased fat mass and reduced bone turnover, consistent with a causal 

influence of reduced osteocalcin on fat accumulation (61). Given the strong relationship 

between LDL-C levels and insulin sensitivity (62), our observation that eBMD has a causal 

effect on LDL-C is consistent with this apparent control of energy metabolism by the skeleton. 

 

Our finding that the causal effect of LDL-C lowering on eBMD was most closely mirrored by 

forearm DXA results may reflect the fact that this lipid effect targets trabecular bone; like the 

heel used for eBMD measurements, the distal forearm site from which DXA measurements 

were obtained has a relatively high proportion of trabecular bone. In contrast, the femoral neck, 

where DXA showed little causal relationship with LDL-C, mainly comprises cortical bone. 

Although the lumbar spine is also rich in trabecular bone, DXA measures at this site showed a 

somewhat weaker causal relationship with LDL-C, compared to forearm BMD. This may 

reflect the fact that, contrary to the heel and distal radius, lumbar spine BMD is strongly 
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influenced by artefacts due to age-related degenerative changes, which may partly mask 

relationships with trabecular BMD.  

 

Strengths and Limitations  

 

One of the main strengths of our study was use of very large GWAS, which helps overcome 

power limitations of MR. In addition, application of two-sample MR avoids bias towards the 

observational association caused by weak instruments (50). A further strength of our study was 

the application of several analytical approaches to detect and correct for horizontal pleiotropy.  

 

Conclusions 

Having performed an MR study to examine the causal effect of lipid lowering on eBMD, we 

found evidence that lowering LDL-C improves eBMD, independently of HMGCR inhibition. 

Our results illustrate how MR can be used profitably to investigate clinical questions and drug 

interventions relevant to osteoporosis and bone health. Further studies are justified to explore 

the mechanisms by which lower LDL-C improves BMD, and to examine their potential role in 

treating osteoporosis, for example based on methods such as network MR (63).  
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Figure legends 

Figure 1. Directed acyclic graph illustrating multivariable MR analysis of the relationship 

between lipids levels and DXA BMD/eBMD. In total, 400 conditionally independent SNPs 

robustly associated with blood lipids (p < 5 x 10-8) were used in the multivariable MR analysis. 

Many of the SNPs act pleiotropically and affect more than one lipid fraction. In addition, 

estimating an intercept in the multivariable MR regression (rather than having it constrained to 

zero) is akin to allowing for the possibility of additional horizontal pleiotropy in MR Egger 

regression. 

 

Figure 2. Results of the MR analysis of lipid levels on eBMD using the complete set of 

instruments. Funnel plots displaying instrument strength (y-axis) plotted against causal effect 

estimates (x-axis) for SNPs associated with LDL-C (Panel A), HDL-C (Panel B), and 

triglycerides (Panel C) and scatter plots displaying estimates of the association between each 

SNP and eBMD (y-axis) against estimates of the association between each SNP and lipid level, 

i.e. LDL-C (panel D), HDL-C (panel E) and triglycerides (panel F). The error bars on each of 

the points represent, 95% CI. SNPs in circles denote those associated with one lipid subtype 

(P<5x10-8) but not the other two (P>0.05), whereas the remaining SNPs are denoted by 

triangles. For Panel A, B and C, the inverse-variance weighted MR, MR-Egger and weighted 

median MR causal effect estimates are represented by dotted, solid and double dotted lines 

respectively. For Panel D, E and F, the slope of the solid line represents the MR-Egger 

regression estimate of the causal effect of serum lipids on eBMD and the inverse-variance 

weighted estimate is represented by the slope of the dotted line. The y-intercept of the solid 

regression line is an estimate of the degree of directional pleiotropy in the dataset.  

 

Figure 3. Forest plot comparing causal effect estimates of serum lipid levels on eBMD using 

univariate and multivariable MR. The analysis was conducted using the complete set of lipid 

associated SNPs Abbreviations: SD, standard deviation; LDL-C: low density lipoprotein 

cholesterol; HDL-C: high density lipoprotein cholesterol; TG: triglycerides; eBMD: estimated 

bone mineral density measured at the heel; IVW inverse variance weighted; Egger, MR-Egger 

regression; WM, weighted median Mendelian randomization; MultiMR, multivariable 

Mendelian randomization. Note: all outlier exclusion approaches lead to reduced standard 

errors.   

 



 

27 
 

Figure 4. Forest plot comparing causal effect estimates of LDL-C levels on total body BMD 

throughout the lifespan. The X-axis displays the magnitude of the causal effect of LDL-C on 

total body BMD, while the Y-axis represents total body BMD at 5 different time points:  age 

15 or less, 15 to 30, 30 to 40, 45 to 60 and 60 or more.  
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Table 1. Summary of the univariate Mendelian randomization estimates of the causal effect 

of plasma lipids on eBMD using different sets of SNPs as instruments. eBMD was the 

outcome for all analyses. 

Exposure SNP selection Methods N_SNPs Beta Standard error P value 

LDL-C 

complete IVW 147 -0.06 0.012 4x10-6 

complete WM 147 -0.028 0.007 1x10-4 

complete Egger 147 -0.04 0.018 0.03 

complete MBE 147 -0.035 0.005 1.1x10-9 

Steiger filtered IVW 146 -0.058 0.012 8.9x10-7 

Steiger filtered WM 146 -0.027 0.007 1.3x10-4 

Steiger filtered Egger 146 -0.043 0.017 0.01 

Steiger filtered MBE 146 -0.035 0.005 1.1x10-9 

Outlier 

removed 

MR-

PRESSO 118 -0.041 0.007 7.7x10-8 

HDL-C 

complete IVW 195 -0.016 0.012 0.20 

complete WM 195 0.009 0.005 0.06 

complete Egger 195 0.023 0.016 0.10 

complete MBE 195 0.007 0.004 0.09 

Steiger filtered IVW 190 -0.013 0.009 0.15 

Steiger filtered WM 190 0.010 0.005 0.03 

Steiger filtered Egger 190 0.019 0.012 0.11 

Steiger filtered MBE 190 0.006 0.003 0.05 

Outlier 

removed 

MR-

PRESSO 148 -0.009 0.006 0.12 

Triglycerides 

complete IVW 163 0.021 0.014 0.10 

complete WM 163 0.007 0.007 0.30 

complete Egger 163 -0.004 0.02 0.80 

complete MBE 163 0.006 0.006 0.30 

Steiger filtered IVW 158 0.015 0.010 0.13 

Steiger filtered WM 158 0.006 0.006 0.31 

Steiger filtered Egger 158 0.006 0.014 0.69 

Steiger filtered MBE 158 0.002 0.005 0.75 

Outlier 

removed 

MR-

PRESSO 128 0.006 0.006 0.29 

Abbreviations: ‘complete’ refers to all SNPs associated with the particular lipid fraction, 

“Steiger filtered” refers to SNPs associated with the lipid fraction and pass Steiger filtering 

(31); “Outlier removed” refers to  SNPs associated with the lipid fraction and pass MR-

PRESSO outlier removal step (35); Beta represents the standard deviation change in BMD per 

standard deviation change in plasma lipid level; N_SNPs refers to the number of SNPs used as 

instrumental variables in the analysis; HDL-C: high density lipoprotein cholesterol; LDL-C: 

low density lipoprotein cholesterol; eBMD: estimated bone mineral density at the heel; IVW: 

inverse variance weighted Mendelian randomization; Egger: MR-Egger regression; WM: 

weighted median Mendelian randomization; MBE: weighted mode based Mendelian 

randomization . 
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Table 2. Instrumental variable estimates of the causal effect of LDL-C levels on eBMD. 

Target gene 
# SNPs Outcome Beta Standard error P value P_H 

(Drug) 

HMGCR 
5 eBMD -0.083 0.025 0.001 0.818 

(Statin) 

NPC1L1/ 
5 eBMD -0.004 0.027 0.887 0.906 

(Ezetimibe) 

PCSK9/ 
7 eBMD -0.007 0.0104 0.486 0.049 

(Evolocumab) 

Other SNPs 140 eBMD -0.063 0.014 8x10-6 0 

 

Estimates are shown using SNPs in the HMGCR, NPC1L1 and PCSK9 gene regions, and using 

all LDL associated SNPs outside these regions (Other SNPs). Pharmacological inhibitors of 

the HMGCR, NPC1L1 and PCSK9 proteins reduce LDL cholesterol levels in the blood. 

Analyses were performed using a likelihood-based approach that accounts for correlations 

between genetic variants as described in Burgess et al (19). Effects of HMGCR SNPs on LDL 

cholesterol were estimated using results from Ference et al (43); Effects of PCSK9 SNPs on 

LDL-C were estimated using results from Ference et al (43) and the effect of rs11591147 was 

obtained from the Global Lipids Genetics Consortium (44); Effect of NPC1L1 SNPs on LDL-

C were estimated using results from Ference et al (42). The eBMD GWAS of 426,824 

individuals was used to estimate the effect of the SNPs on eBMD. Abbreviations: HMGCR, 3-

Hydroxy-3-Methylglutaryl-CoA Reductase gene; NPC1L1, Niemann-Pick C1-Like 1 gene; 

PCSK9, Proprotein convertase subtilisin/kexin type 9 gene. Beta represents the estimated 

causal standard deviation change in eBMD per standard deviation change in LDL-C; P_H is 

the heterogeneity test p-value for differences in the causal effect estimates across the SNPs 

within a gene using a likelihood ratio heterogeneity test (17). 
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Figure 3  
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