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Abstract  

We hypothesized that a genetic risk score for fatty liver disease influences the risk of cirrhosis and 

hepatocellular carcinoma. Three genetic variants (PNPLA3 p.I148M, TM6SF2 p.E167K, and 

HSD17B13 rs72613567) were combined into a risk score, ranging from zero to six risk-increasing 

alleles. We examined association of the risk score with plasma markers of liver disease, and with 

cirrhosis and hepatocellular carcinoma in 110,903 individuals from Copenhagen, Denmark, and in 

334,886 individuals from the UK Biobank. The frequencies of risk score zero, one, two, three, four, 

and five to six were 5%, 25%, 41%, 23%, 5.5%, and 0.5%, respectively. A higher genetic risk score 

was associated with increases in plasma alanine transaminase of up to xx% in those with score five 

to six versus zero. In meta-analysis of the Copenhagen Studies and UK Biobank, individuals with 

scores one, two, three, four, and five to six had odds ratios for cirrhosis of 1.6 (95% confidence 

interval, 1.3 to 1.9), 2.0 (95% CI, 1.8 to 2.2), 3.1 (95% CI, 2.7 to 3.5), 5.2 (95% CI, 4.2 to 6.4), and 

12 (95% CI, 7.7 to 19), respectively, as compared to those with score zero. The corresponding odds 

ratios for hepatocellular carcinoma were 1.2 (95% CI, 0.9 to 1.7), 1.0 (95% CI, 0.7 to 1.3), 2.4 (95% 

CI, 1.9 to 3.0), 3.3 (95% CI, 2.2 to 5.5), and 29 (95% CI, 17 to 51).    

Conclusions: A genetic risk score for fatty liver disease confers up to 12-fold higher risk of 

cirrhosis and up to 29-fold higher risk of hepatocellular carcinoma in individuals from the general 

population.   
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Fatty liver disease has become the most common gastrointestinal disease, affecting up to 40% of the 

population in Westernized societies(1, 2). The disorder encompasses a spectrum of hepatic 

abnormalities ranging from an excess of triglycerides in hepatocytes (steatosis), to inflammation 

(steatohepatitis) and scarring of the liver (fibrosis and cirrhosis), to hepatic failure(1). Ultimately, 

fatty liver disease can progress to hepatocellular carcinoma, a cancer with a five-year survival rate 

of less than 25%(3, 4).  

Obesity and a habitually high alcohol intake are the main causal drivers of fatty liver 

disease(1, 2). Most individuals with these risk factors have hepatic steatosis, the first stage of the 

fatty liver disease spectrum. However, only a subset of those with hepatic steatosis go on to develop 

severe liver disease. Identifying these individuals early might allow for behavioral or 

pharmacological interventions aimed at forestalling disease progression. Unfortunately, we lack 

methods to accurately predict the course of fatty liver disease, despite an intense hunt for prognostic 

biomarkers(5, 6).  

Genetics account for approximately half of the interindividual variation in risk of fatty 

liver disease(7, 8). So far, three sequence variations with robust effects on multiple stages of the 

disorder have been identified in genome-wide association studies: PNPLA3 p.I148M(9), TM6SF2 

p.E167K(10), and a splice variant (rs72613567) in HSD17B13(11). For each of the three variants, 

individuals carrying two risk alleles have a two to four-fold higher risk of developing fibrosis, 

cirrhosis, and hepatocellular carcinoma compared to those carrying zero risk alleles(11-17). These 

relatively large effect sizes have spurred an interest into using the variants prognostically in fatty 

liver disease(18, 19).   

We hypothesized that a genetic risk score for fatty liver disease influences risk of 

cirrhosis and hepatocellular carcinoma. To test this, we combined the three variants in PNPLA3, 
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TM6SF2 and HSD17B13 into a score ranging from zero to six risk-increasing alleles. We then 

determined the effects of a higher genetic risk score on biochemical markers of liver disease and on 

the risk of cirrhosis and hepatocellular carcinoma in 110,903 individuals from the Danish general 

population, in 334,886 individuals from the UK Biobank, and in meta-analysis of the two studies 

combined. Finally, we estimated absolute ten-year risks of cirrhosis and hepatocellular carcinoma, 

stratified by genetic risk score, alcohol intake, obesity, age, and gender.  
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Methods 

Participants 

Copenhagen Studies 

We combined two studies of the Danish general population, the Copenhagen General Population 

Study (CGPS, n=100,836) and the Copenhagen City Heart Study (CCHS, n=10,067), into one 

cohort, referred to here as the Copenhagen Studies(10, 14, 20). The CGPS and CCHS are 

prospective studies of the Danish general population initiated, respectively, in 2003-2015 and in 

1976–1978, with follow-up examinations for CCHS in 1981-83, 1991-94, and 2001-03. Individuals 

were selected based on the national Danish Civil Registration System to reflect the adult population 

aged 20 to 100+ and of white, Danish descent. Each Danish citizen gets assigned a unique personal 

identification number at birth. All participants in the Copenhagen Studies had a unique personal 

identification number, ensuring no participant overlap between the studies. Data were obtained from 

a self-administered questionnaire reviewed together with an investigator on the day of attendance, a 

physical examination and blood samples. Blood samples for DNA extraction were drawn on the day 

of enrollment in the CGPS (2003–2015) and at the CCHS examinations in 1991–1994 and 2001–

2003. Studies were approved by institutional review boards and Danish ethical committees and 

were conducted according to the Declaration of Helsinki. Written informed consent was obtained 

from participants.  

 

UK Biobank 

The UK Biobank is a cohort of about half a million individuals aged 40 to 69 from across the 

United Kingdom(21). All individuals were identified through the National Health Service patient 
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registries and went through a baseline assessment including a questionnaire, measurement of 

anthropometrics and blood sampling for subsequent analysis. National Health Service records on in-

hospital admissions and causes of death until March 2019 have been linked to the participants. 

Genotype data were available for approximately 490,000 individuals enrolled in the study. The 

quality control pipeline for these data are explained in detail elsewhere(22). Briefly, the pipeline 

included both marker and sample-based quality control steps, including checks for population 

substructure, missing rates, heterozygosity frequencies, and sex mismatch. Individuals with 

withdrawn consent, evidence of genetic relatedness or who were not of white European ancestry 

were excluded from analysis. After filtering, we included 334,886 non-related individuals of self-

reported British descent from the UK Biobank. 

 

Cirrhosis and hepatocellular carcinoma  

In the Copenhagen Studies, diagnoses of cirrhosis were collected from the national Danish Patient 

Registry and the national Danish Causes of Death Registry from January 1st, 1977 to April 18th, 

2018. The national Danish Patient Registry has information on all patient contacts with all clinical 

hospital departments in Denmark. From 1994 and onwards, this includes emergency wards and 

outpatient clinics. The national Danish Causes of Death Registry contains data on the causes of all 

deaths in Denmark, as reported by hospitals and general practitioners. Cirrhosis cases were defined 

as individuals with International Classification of Diseases, tenth edition (ICD-10) codes: K70.3 

(alcoholic cirrhosis, n=246), and/or K74.6 (unspecified cirrhosis of liver, n=165), and/or with ICD-

8 codes 57109 (alcoholic cirrhosis, n=48), 57192 (unspecific cirrhosis, n=24), and/or 57199 

(cirrhosis of non-alcoholic causes, n=13). We also divided cirrhosis cases into “alcoholic cirrhosis” 

(K70.3 or 57109) and “other cirrhosis” (K74.6, 57912, or 57199). 
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Hepatocellular carcinoma cases were defined as individuals with an ICD-10 code of 

C22.0 (liver cell carcinoma, n=80) or C22.9 (unspecified liver cancer, n=18) in the Danish Cancer 

Registry. The C22.9 diagnosis likely captures hepatocellular carcinoma cases without a verifying 

histology(23, 24). The Danish Cancer Registry contains information on cancer events in Denmark 

since 1943. Of the cancer events in the registry, nearly 100% have been validated 

histologically(25). We included cases of hepatocellular carcinoma recorded up to December 31st, 

2016 (our last update of the registry). From January 1st, 2017 to March 1st, 2018 hepatocellular 

carcinoma was collected from the national Danish Patient Registry, using the same ICD-codes 

(C22.0, n=13 and C22.9, n=2).  

In the UK Biobank, we used the same ICD-10 codes described above to define 

cirrhosis and hepatocellular carcinoma cases, based on data from in-hospital records and causes of 

death registries (UK Biobank data fields 41202, 41204, 40001, and 40002). The National Health 

Services initiated the use of ICD-10 codes in April 1995. 

Individuals identified as cirrhosis or hepatocellular carcinoma cases that had a 

concurrent diagnosis of chronic (viral) hepatitis (ICD-10 B18 and/or ICD-8 57193), or acute 

hepatitis C (ICD-10 B17.1) were excluded from the studies (18 and 24 cirrhosis cases were 

excluded from the Copenhagen Studies and UK Biobank, respectively; the corresponding numbers 

for hepatocellular carcinoma were 10 and eight). Of the cirrhosis cases in the Copenhagen Studies, 

58 received their diagnosis before the discovery of hepatitis C in 1989. Some of these cases may in 

theory have been caused by hepatitis C. However, more than 80% of these cases survived for more 

than a decade following 1989; if they had hepatitis C, it would likely have been diagnosed during 

follow-up. See Supplemental Figure S1 for an overview of included and excluded events in each 

cohort.  
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Genotyping  

PNPLA3 p.I148M (rs738409), TM6SF2 p.E167K (rs58542926), HSD17B13 (rs72613567) and 

GCKR P.446L (rs1260326) were genotyped using Taqman assays (ABI PRISM 7900HT Sequence 

Detection System, Applied Biosystems) in the CGPS and CCHS(10, 14, 20), and by GWAS-chip in 

the UK Biobank (Affymetrix UK BiLEVE and UK Biobank Axiom arrays). Genotype call 

clustering in UK Biobank was assessed using the Scattershot website(26) (Supplemental Figure S2). 

 

Genetic risk score 

PNPLA3 p.I148M, TM6SF2 p.E167K, and HSD17B13 rs72613567 T/TA, genotypes were coded 0, 

1, and 2 for non-carriers, heterozygous, and homozygous carriers of the risk-increasing allele. For 

PNPLA3 p.I148M and TM6SF2 p.E167K, this was the minor allele (the M-allele and K-allele, 

respectively). For HSD17B13 rs72613567 T/TA, we considered the major T-allele a risk-increasing 

allele since the minor TA-allele of this variant associates with protection from chronic liver 

disease(11). For each participant, a combined genetic risk score was calculated as the sum of these 

risk-increasing alleles (range: zero to six). Due to very few individuals with score six, we combined 

group five and six into one group in all main analyses. The distribution of the risk score in 

populations of White Europeans, African American, Hispanic American, and East Asian ancestry 

was estimated based on allele frequencies in the 1000 Genomes Project, available via Ensembl. In a 

sensitivity analysis, we created a score where each variant was weighted by the ALT-effect reported 

by Abul-Husn et al(11). We also tested a score that included GCKR p.P446L, coded 0, 1, and 2 for 

PP-homozygotes, PL-heterozygotes and LL-homozygotes, respectively.  
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Biochemistry 

Plasma levels of ALT, albumin, aspartate transaminase, alkaline phosphatase, gamma 

glutamyltransferase, bilirubin, and high-sensitivity C-reactive protein were measured using standard 

hospital assays (Konelab, Helsinki, Finland, ACL-Top, Instrumentation Laboratory, Kirchheim, 

Germany, and Boehringer Mannheim, Mannheim, Germany in the Copenhagen Studies, and 

Beckman Coulter, High Wycombe, United Kingdom in the UK Biobank). 

 

Other covariates 

Body mass index (BMI) was calculated as weight in kilograms divided by measured height in 

meters squared. Alcohol consumption was self-reported current intake of alcohol in units per week 

(1 unit = 12g alcohol). Diabetes mellitus, including both type 1 and type 2, was defined as 

individuals with one or more of the following ICD-codes in the national Danish Patient Registry: 

ICD-10 E10, E11, E13, or E14 and/or ICD-8 249 or 250 for Copenhagen Studies and identical ICD-

10 codes in one of the national registries for individuals in the UK Biobank. In individuals with 

cirrhosis in the Copenhagen Studies we calculated CirCom score, a comorbidity index developed 

specifically for cirrhosis patients(27). For those with hepatocellular carcinoma in the Copenhagen 

Studies, we calculated the Charlson Comorbidity Index (excluding liver disease), an index of 

comorbidities affecting one-year survival in critically ill patients(28). Both indices were based on 

ICD-codes from the National Danish Patient Registry received before a diagnosis of cirrhosis or 

hepatocellular carcinoma (see Supplemental Tables S1 and S2 for details).    

 

Statistical analyses 
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All analyses were performed using R statistical software version 3.6.0. Differences in baseline 

characteristics were tested with a χ2-test for categorical traits and a Kruskal-Wallis rank sum test for 

continuous traits. Associations between the genetic risk score (encoded 0, 1, 2, 3, 4, and 5 and 

entered as a continuous variable) and biochemical markers or liver disease outcomes (prevalent and 

incident events combined) were tested with linear and logistic regression. The assumptions of 

linearity between exposure and outcome in the linear and logistic regression models were checked 

by visual inspection of plots of fitted values versus residuals and of predictors versus the logit of the 

outcome. No evidence of nonlinearity was detected. In the logistic regression analyses, we 

estimated 95% confidence intervals (CIs) for each group of the risk score (including the reference 

group) that corresponded to the amount of information underlying each group calculated with the 

Quasi Variances for Factor Effects in Statistical Models (qvcalc) package in R(29). This method 

avoids potential biases owing to low numbers in the reference group, and allows comparison of 

confidence intervals between any two groups(29). Results from the logistic regressions were meta-

analyzed across the two cohorts using a fixed effects model. All logistic and linear regressions were 

adjusted for age, sex, and BMI, and in the UK Biobank additionally for the first ten genetic 

principal components (to account for potential population stratification). Due to skewed 

distributions, all plasma measurements (except albumin) were natural log-transformed before 

entering linear regressions when calculating the P for trend value. We tested for interaction between 

the genetic risk score and BMI, alcohol consumption, and diabetes on plasma ALT or the risk of 

cirrhosis or hepatocellular carcinoma by the inclusion of an interaction term between the genetic 

risk score and each of the covariates mentioned (one at a time) in the linear or logistic regression 

models. The genetic risk score and each covariate was entered as continuous variables (i.e., all tests 

for interaction are 1 degree of freedom). 
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Survival analyses were used to test the risk of incident hepatocellular carcinoma after 

a diagnosis of cirrhosis or all-cause mortality after a diagnosis of cirrhosis or hepatocellular 

carcinoma. Follow-up began at the date of cirrhosis or hepatocellular carcinoma diagnosis and 

ended at the date of hepatocellular carcinoma (for the cirrhosis to hepatocellular carcinoma 

analysis), death, or last update of the registries, whichever occurred first. The underlying timescale 

was years since diagnosis. Hazard ratios and 95% confidence intervals (CIs) were calculated by 

Cox proportional hazards regression models adjusted for age at diagnosis, sex and diabetes. Missing 

variable were imputed using ‘predicted mean matching’(30). For each incomplete case, we 

identified five complete cases with predicted values closest to that of the predicted value of the 

incomplete case. The incomplete case's missing value is then replaced with one of the observed 

values from the complete cases chosen at random. The proportional hazards assumption was 

checked visually by plotting Schoenfeld residuals. In the cirrhosis to hepatocellular carcinoma and 

cirrhosis to death analyses, patients diagnosed with hepatocellular carcinoma prior to or at the time 

of their cirrhosis diagnosis were excluded. Cumulative incidences were calculated using the Aalen-

Johansen estimator, with all-cause mortality entered as a competing event in the cirrhosis to 

hepatocellular carcinoma model. In a sensitivity analysis, we excluded individuals with cirrhosis or 

hepatocellular carcinoma diagnosed prior to baseline (ie. prevalent cases). To address potential 

collider bias we checked for associations between the genetic risk score and covariates in the 

cirrhosis and hepatocellular cases, and by adjusting the analyses for potential confounders(31).  
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Results 

Baseline characteristics and genotyping 

The baseline characteristics of the 110,761 individuals from the Copenhagen Studies and the 

334,691 UK Biobank participants stratified by disease status are shown in Table 1. There were 478 

with cirrhosis and 103 with hepatocellular carcinoma in the Copenhagen Studies. The 

corresponding numbers in the UK Biobank were 339 and 101. PNPLA3, TM6SF2, and HSD17B13 

genotypes were in Hardy-Weinberg equilibrium in both cohorts (Supplemental Figure S3 and S4, 

all P>0.07). Sex, age, BMI, diabetes, and alcohol consumption did not differ by genetic risk score in 

either cohort (Supplemental Table S3 and S4). The frequencies of risk score zero, one, two, three, 

four, and five to six were 5%, 25%, 41%, 23%, 5.5%, and 0.5%, respectively. The predicted 

distributions of the risk score in other ethnicities are shown in Supplemental Table S5.  

 

Biochemical markers of liver disease 

Higher genetic risk score was associated with higher plasma ALT in both the Copenhagen Studies 

and the UK Biobank (Figure 1). The association appeared curvilinear, with negligible effects in the 

range below a score of three, and larger effects seen for scores of three and above. Individuals with 

risk score zero, one, or two had similar medians and interquartile ranges of ALT. In contrast, the 

medians and 75th percentiles of ALT increased from score three through five to six. The absolute 

difference in median ALT between individuals with score zero and five to six was 5 U/L (relative 

difference: 26%) in both cohorts. A higher risk score was also associated with higher aspartate 

transaminase, gamma glutamyltransferase and bilirubin, and with lower alkaline phosphatase 

(Supplemental Table S6 and S7). The PNPLA3, TM6SF2 and HSD17B13 variants (but not GCKR 

p.P446L) were individually associated with ALT in both cohorts (Supplemental Figures S3, S4, and 
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S5). A risk score in which the alleles were weighted by their effect on ALT performed similarly to 

the unweighted score (Supplemental Figure S6). Adding GCKR p.P446L to the risk score did not 

improve its association with ALT (Supplemental Figure S7).  

 

Interaction with adiposity, alcohol intake, and diabetes 

Previous studies have reported synergistic relationships between the individual risk variants in 

PNPLA3, TM6SF2, and HSD17B13 and adiposity on hepatic steatosis and biochemical markers of 

liver disease(14, 20). We wondered whether similar synergistic relationships modify the ALT-

increasing effect of the three-gene risk score in the present study. In both the Copenhagen Studies 

and the UK Biobank, the association of the risk score with increased ALT was amplified with 

increasing BMI, alcohol intake, and in individuals with diabetes (Figure 2, all P for interaction 

<0.001). For example, among lean individuals with a BMI below 25 kg/m2 in the Copenhagen 

Studies, median plasma ALT was 17 U/L in those with score zero and 19 U/L in those with score 

five to six (absolute difference: 2 U/L, relative difference: 12%). Among the most obese individuals 

with a BMI above 35 kg/m2, the corresponding values were 23 U/L and 37 U/L (absolute 

difference: 14 U/L, relative difference: 61%).  

 

Risk of cirrhosis and hepatocellular carcinoma 

A higher genetic risk score was associated with cirrhosis and hepatocellular carcinoma in both the 

Copenhagen Studies and UK Biobank (Figure 2). Compared to individuals with score zero, those 

with score five to six had odds ratios for cirrhosis of 7.6 (95% CI: 4.2 - 14) and 21 (95% CI: 11 - 

40) in the Copenhagen Studies and UK Biobank, respectively. The corresponding odds ratios for 

hepatocellular carcinoma were 47 (95% CI: 25 - 87) and 6.5 (95% CI: 2.1 - 20). In meta-analysis 

including the Copenhagen Studies and UK Biobank, the corresponding odds ratios were 12 (95% 
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CI: 7.7 - 19) for cirrhosis and 29 (95% CI: 17 - 51) for hepatocellular carcinoma. The associations 

for the score with groups five and six viewed individually are shown in Supplemental Figure S5. 

The risk conferred by the score was comparable for alcohol-related cirrhosis and for cirrhosis due to 

other causes (odds ratios of 1.33 [95% CI, 1.19-1.50] and 1.47 [95% CI, 1.27-1.70], respectively, 

for a one-unit higher score in the Copenhagen Studies). The associations were comparable for the 

ALT-weighted risk score (Supplemental Figure S8), and for a score that included GCKR p.P446L 

(Supplemental Figure S9).  

We examined whether adiposity, alcohol intake, and diabetes influenced the effects of 

the risk score on cirrhosis and hepatocellular carcinoma (Supplemental Figure S10). Although 

power was limited in these analyses, the effect of the risk on cirrhosis score was amplified  

amplified by increasing BMI, and by diabetes in the UK Biobank (P-interaction<0.05). 

We wondered how the associations of the risk score would compare to those seen for 

elevated plasma ALT, a routinely used biochemical marker of liver disease. In the Copenhagen 

Studies, 3% of the participants had baseline ALT above the upper limit of normal (45 U/L for 

women and 70 U/L for men). These individuals had hazard ratios for incident cirrhosis and 

hepatocellular carcinoma of 10 (95% CI, 7.8 - 14) and 5.6 (95% CI, 3.1 - 10) as compared to those 

with ALT below the upper limit of normal.  

 

Disease progression after a diagnosis of cirrhosis or hepatocellular carcinoma 

Baseline characteristics of patients with cirrhosis and hepatocellular carcinoma stratified by genetic 

risk score are shown in Supplemental Tables S8 and S9. Potential confounders did not differ by risk 

score, apart from diabetes which was more common among patients with cirrhosis and a high 

genetic risk score. As expected, patients with a higher risk score had higher levels of plasma ALT 
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and gamma glutamyl-transferase, biochemical markers of liver cell damage. Of the 478 cases with 

cirrhosis in the Copenhagen Studies, 38 received their diagnosis post-mortem or after a diagnosis of 

hepatocellular carcinoma, leaving 440 for the prospective analyses. Of these, 44% received their 

diagnosis prior to baseline assessment (Supplemental Figure S11, Panel A). Among the 103 cases 

with hepatocellular carcinoma, ten were prevalent at baseline. Of the 440 individuals who received 

a cirrhosis diagnosis, 27 (6%) subsequently developed hepatocellular carcinoma and 252 (57%) 

died during a median follow-up of 5.1 years (Supplemental Figure S11, panel B).    

The cumulative fraction of individuals with hepatocellular carcinoma as well as all-

cause mortality as a function of years post cirrhosis diagnosis, and all-cause mortality as a function 

of years post hepatocellular carcinoma diagnosis all increased as a function of genetic risk score 

(Figure 4, A-C). Compared to patients with cirrhosis and risk score zero to two, those with score 

three to four and five to six had hazard ratios for incident hepatocellular carcinoma of 8.9 (95% CI: 

3.3 - 25) and 19 (95% CI: 4.3 - 86), respectively (Figure 4A). The corresponding hazard ratios for 

all-cause mortality were 1.3 (95% CI: 1.1 - 1.7) and 1.6 (95% CI: 0.7 - 3.8) (Figure 4B). A higher 

genetic score also predicted all-cause mortality in patients with hepatocellular carcinoma (Figure 

4C). Compared to those with score zero to two, those with score three to four and five to six had 

hazard ratios for all-cause mortality of 1.8 (95% CI: 1.1 - 2.9) and 1.5 (95% CI: 0.7 - 3.2), 

respectively. 

The associations remained after multifactorial adjustment for age at diagnosis, sex, 

diabetes, BMI, alcohol consumption, international normalized ratio, albumin, bilirubin, ALT, high 

sensitivity C-reactive protein and disease-specific comorbidity indices (all P for trend <0.03). In a 

sensitivity analysis, we excluded individuals with a diagnosis of cirrhosis (n=194) or hepatocellular 

carcinoma (n=10) prior to baseline (see Supplemental Figure S11 for details). After these 

exclusions, cirrhosis patients with risk score three to four had hazard ratios for hepatocellular 
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carcinoma and all-cause mortality of 8.7 (95% CI, 2.3 - 32.3) and 1.4 (1.0 - 1.9), respectively, as 

compared to those with score zero to two (Supplemental Figure S12). The corresponding hazard 

ratio for all-cause mortality after a diagnosis of hepatocellular carcinoma was 1.6 (95% CI, 1.0-2.7). 
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Discussion 

The main finding of this study is that a genetic risk score comprising three common variants in 

PNPLA3, TM6SF2, and HSD17B13 is associated with up to 12-fold higher risk of cirrhosis, and up 

to 29-fold higher risk of hepatocellular carcinoma. Moreover, a high genetic risk score conferred up 

to 19-fold increased risk of progressing from cirrhosis to hepatocellular carcinoma, and up to 1.6-

fold higher rate of all-cause mortality after a diagnosis of cirrhosis. These results raise the question 

whether a similar genetic risk score might be used in a clinical setting to predict the onset and 

progression of chronic liver disease. The genetic risk score might be used together with established 

risk factors to identify individuals at high risk of developing chronic liver disease. For example, 

individuals with obesity, a high alcohol intake, and a high genetic risk score could be offered 

regular clinical surveillance, aiming to detect the development of steatohepatitis or fibrosis at an 

early, treatable stage.  

While the highest genetic risk scores conferred a markedly higher risk of liver disease, 

it is important to note that 94% of the participants in our study had a score of three or lower, a range 

in which risk of liver disease only increased moderately. For example, participants with score three 

had an approximately two-fold higher risk of cirrhosis compared to those with score zero to one. 

Larger effect sizes are likely required for effective risk discrimination. We speculate that focusing 

on those in the extreme tails of the score (in combination with existing risk factors) is most likely to 

yield clinically useful risk discrimination.  

We constructed the genetic risk score by simply counting the number of risk alleles in 

three variants with known effects on fatty liver disease and/or cirrhosis and hepatocellular 

carcinoma. This may seem crude compared to the complex methods and hundreds to thousands of 

variants used in recent studies to construct genetic risk scores for other traits and diseases(32, 33). 
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However, the three variants used here are the only common variants that have been consistently 

associated with fatty liver disease. The L-variant of GCKR p.P446L has been associated with a 

moderately increased risk of hepatic steatosis, but its effect on the more advanced stages of fatty 

liver disease is less clear(20, 34). Adding GCKR p.P446L to the score did not improve its 

performance in our study. The simplicity of the three-gene score can also be viewed as a strength, 

because it is easy and inexpensive to replicate and to use in a clinical setting. Another strength of 

the score is that the biology of the three implicated variants and genes is relatively well-known, 

facilitating mechanistic interpretations (PNPLA3 and HSD17B13 play a role in the metabolism of 

hepatic lipid droplet content, and TM6SF2 is implicated in the efflux of triglycerides from the liver 

to the circulation(10, 35-39)). 

Our study has limitations that should be considered. Despite the large sample size, the 

number of cases was modest, resulting in wide confidence intervals for some of the estimates 

(especially for those pertaining to score five to six). We only included European ancestry 

individuals of the Danish and British general population. The findings may therefore not necessarily 

be generalizable to other ethnicities. To begin to address this issue, we examined the predicted 

distribution of the genetic risk score in other ethnicities. The score was predicted to have a flatter 

distribution in East Asian populations, with relatively more individuals in the extreme tails of the 

score compared to other ethnicities. For example, the predicted frequencies of risk scores zero and 

five/six were 0.03 and 0.003, respectively, in white Europeans, and 0.04 and 0.01 in East Asians, 

suggesting that the risk score might be particularly useful for risk discrimination in East Asian 

populations. There are also limitations relating to the covariables and clinical endpoints in the study. 

We did not have detailed information on the etiology underlying the cirrhosis and hepatocellular 

carcinoma cases. Self-reported alcohol intake at baseline is an imperfect measure of lifelong alcohol 

consumption and may not reflect future changes in drinking patterns. Disease definitions based on 
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ICD-codes inevitably suffer from some degree of misclassification. For example, some individuals 

with compensated (asymptomatic) cirrhosis may lack an ICD-code for cirrhosis in our study. That 

said, most individuals with compensated cirrhosis eventually progress to symptomatic disease(40). 

Those individuals that did receive an ICD-code for cirrhosis in our study were unlikely to have been 

misclassified, because cirrhosis is a hard endpoint with well-defined diagnostic criteria. In support 

of this, a study from 1997 found that 85% of individuals with an ICD-code for cirrhosis in the 

national Danish Patient Registry had biopsy-proven cirrhosis or fulfilled the standard clinical 

diagnostic criteria(41). Because the methods to diagnose cirrhosis with have improved since 1997, 

we would expect the specificity of the cirrhosis ICD-codes to be even higher in our study. Further 

supporting the validity of the cirrhosis endpoint is that each of the variants in PNPLA3, TM6SF2 

and HSD17B13 was strongly associated with this endpoint, with effect sizes comparable to other 

studies that used histology or imaging. Misclassification was likely negligible for the hepatocellular 

carcinoma cases in the Copenhagen Studies, because these were extracted from the Danish Cancer 

Registry, a registry which mainly includes histologically verified cancers. In any case, 

misclassification of cirrhosis and hepatocellular carcinoma most likely is nondifferential to 

genotypes and would only bias results toward the null hypothesis, and thus cannot explain the 

positive findings of the present study.  

In conclusion, we found that a genetic risk score comprising three common variants 

influenced risk of cirrhosis by up to 12-fold and hepatocellular carcinoma by up to 29-fold in 

individuals from the general population. 
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Figure legends 

Figure 1. Plasma alanine transaminase by genetic risk score in the Copenhagen Studies and in 

the UK Biobank. The box plots depict medians and interquartile ranges, and the whiskers extend to 

the 5th and 95th percentiles. P-value by linear regression. 

 

Figure 2. Plasma ALT as a function of body mass index, alcohol intake, or diabetes, stratified 

by genetic risk score. The lines in the BMI and alcohol-panels depict regression lines, and the light 

shading show the 95% confidence intervals. The box plots in the diabetes plots depict medians and 

interquartile ranges, and the whiskers extend to the 5th and 95th percentiles. The ALT-increasing 

effect of a higher genetic risk score was amplified by increasing adiposity, alcohol intake, and 

diabetes mellitus in the Copenhagen Studies and UK Biobank (all P values for interaction <0.001).  

 

Figure 3. Risk of liver cirrhosis or hepatocellular carcinoma by genetic risk score in the 

Copenhagen Studies and in the UK Biobank, and in the combined cohorts. Odds ratios were 

calculated by logistic regression. Results from the Copenhagen Studies and UK Biobank were meta-

analyzed using a fixed-effects model. Error bars are 95% confidence intervals.  

 

Figure 4. Cumulative incidence of hepatocellular carcinoma (A) or mortality (B) in patients 

with cirrhosis, and of mortality in patients with hepatocellular carcinoma (C), stratified by 

genetic risk score. A) Individuals were followed prospectively from the time of cirrhosis diagnosis 

until development of hepatocellular carcinoma, death, or end of follow-up. Death due to other 

causes was entered as a competing risk in the model. B) Participants were followed prospectively 
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from the time of cirrhosis diagnosis until death or end of follow-up. C) Individuals were followed 

prospectively from the time of hepatocellular carcinoma until death or end of follow-up.  

Cumulative incidences are Aalen-Johansen estimates. Hazard ratios were calculated by Cox 

regression, adjusted for sex, age at diagnosis, and diabetes and with time since diagnosis as the 

underlying time scale.  
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Table. Baseline characteristics. 

Copenhagen Studies Controls Cirrhosis HCC 

N 110,219 478 103 

Male (%) 49,287 (45) 312 (65)** 72 (70)** 

Age, years 58 (48 – 68) 
63 (56 – 

70)** 

67 (61 - 

73)** 

Body mass index, kg/m² 26 (23 – 28) 27 (24 -30)** 
29 (25 – 

33)** 

Diabetes mellitus (%) 6278 (5.7) 119 (24.9)** 40 (38.8)** 

Alcohol intake, grams per week 96 (36 – 180) 
168 (48 – 

372)** 

180 (60 – 

324)** 

UK Biobank    

N 334,276 339 101 

Male (%) 154,277 (46) 254 (75)** 71 (70)** 

Age, years 58 (51 – 63) 
61 (54 – 

64)** 

64 (59 – 

66)** 

Body mass index, kg/m² 27 (24 – 30) 
29 (25 – 

33)** 
29 (25 – 31)* 

Diabetes mellitus (%) 10,006 (3.0) 89 (26.3)** 26 (25.7)** 

Alcohol intake, grams per week 84 (36 – 168) 
48 (0 – 

228)** 

108 (36 – 

240) 

Values are numbers and (percentage) for categorical traits, or medians and (interquartile ranges) for 

continuous traits. P-values are by χ²- test for categorial traits and by Kruskal-Wallis Rank Sum test 

for continuous traits both with controls as reference. Alcohol consumer is defined as at least once 

monthly self-reported alcohol intake. *P < 0.05 **P < 0.001. HCC: Hepatocellular carcinoma. 
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