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Abstract. Natural populations are increasingly threatened with collapse at the hands of
anthropogenic effects. Predicting population collapse with the help of generic early warning
signals (EWS) may provide a prospective tool for identifying species or populations at highest
risk. However, pattern-to-process methods such as EWS have a multitude of challenges to over-
come to be useful, including the low signal-to-noise ratio of ecological systems and the need for
high quality time series data. The inclusion of trait dynamics with EWS has been proposed as a
more robust tool to predict population collapse. However, the length and resolution of avail-
able time series are highly variable from one system to another, especially when generation time
is considered. As yet, it remains unknown how this variability with regards to generation time
will alter the efficacy of EWS. Here we take both a simulation- and experimental-based
approach to assess the impacts of relative time series length and resolution on the forecasting
ability of EWS. We show that EWS’ performance decreases with decreasing time-series length.
However, there was no evident decrease in EWS performance as resolution decreased. Our sim-
ulations suggest a relative time series length between 10 and five generations as a minimum
requirement for accurate forecasting by abundance-based EWS. However, when trait informa-
tion is included alongside abundance-based EWS, we find positive signals at lengths one-half
of what was required without them. We suggest that, in systems where specific traits are known
to affect demography, trait data should be monitored and included alongside abundance data
to improve forecasting reliability.

Key words: body size; early warning signals; fold bifurcation; population collapse; reliability; sampling;
time series length; time series resolution; trait-based EWS; transcritical model.

INTRODUCTION

Anthropogenic pressures have long been known to
reduce the resilience of ecological systems, leaving them
vulnerable to transitioning into undesirable states where
the systems’ ability to provide valuable ecosystem ser-
vices is diminished. Such undesirable transitions have
occurred in multiple systems such as in the global whale
stock collapse of the 20th century due to overfishing
(Hilborn et al. 2003, Clements et al. 2017); lake eutroph-
ication through heavy nutrient input (Smith and Schind-
ler 2009); or coral bleaching as a result of increased
ocean warming (Hughes et al. 2017). In many cases,
recovery from such a perturbed state can be difficult as
complex systems such as those seen in ecology often
show hysteresis (Folke et al. 2004, Scheffer et al. 2009),
thus driving a need to minimize impacts on biological

systems, as well as a developing effective methods to
monitor them (Costanza et al. 1997).
Early warning signals (EWS) have been shown to pre-

dict population collapses (Wissel 1984, Drake and Grif-
fen 2010, Dai et al. 2012, Clements and Ozgul 2018) and
shifts in ecosystem states (Scheffer et al. 2009, Carpenter
et al. 2011). These indicators provide the possibility to
intervene and reverse these undesirable events (Biggs
et al. 2009, Pace et al. 2017). Classical EWS are statisti-
cal signatures that arise as a result of a phenomenon
known as critical slowing down (CSD) that occurs prior
to an ecosystem transition (Dakos et al. 2008, Scheffer
et al. 2009, Clements and Ozgul 2018). CSD occurs as a
system loses stability in the face of increasing external
stress and takes longer to return to its original equilib-
rium state (Wissel 1984). Directly measuring CSD
requires monitoring the return rate of the system, which
is challenging to do in natural systems. Alternatively,
whether a system is experiencing CSD can be inferred
through other statistical metrics measured over state-
based data, for example abundance time series. Some
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proposed statistical signatures related to the return rate
of a dynamical system are variance and autocorrelation,
although various other metrics have also been developed
(Dakos et al. 2012a). Increases in variance and autocor-
relation in abundance time series, known as classical
abundance-based EWS (Drake and Griffen 2010, Dai
et al. 2012), are shown both theoretically and experimen-
tally to occur in systems approaching transition (Drake
and Griffen 2010, Carpenter et al. 2011, Dakos et al.
2012b, Clements and Ozgul 2016b).
Increases in variance and autocorrelation, along with

other classical abundance-based EWS, provide an ideal
generic method that responds to the dynamics of the sys-
tem independent of any system-specific data such as
intrinsic demographic processes and extrinsic environ-
mental factors. However, the performance of these clas-
sical EWS has been questioned in numerous simulations
(Hastings and Wysham 2010, Boerlijst et al. 2013, Cle-
ments et al. 2015, Burthe et al. 2016, Clements and
Ozgul 2016a, Dutta et al. 2018) as well as in experimen-
tal and field data (Pace et al. 2017, Wilkinson et al.
2017). Recent studies on data quality have shown that
these signals might require high-resolution time series
data to produce reliable forecasting (Clements et al.
2015). Given that EWS are statistics derived from abun-
dance time series, the quality of data available is critical
to obtain a strong forecast by EWS and temporal limita-
tions might have many consequences.
In monitoring programs from natural ecological sys-

tems high-resolution data can be hard to achieve. In
addition, data can be spatially and temporally limited
due to constraints on resources. Thus, data from ecologi-
cal systems can often present with short time series
lengths, low sampling resolutions, or both (Clements
et al. 2015). Further, abundance time series data col-
lected in field or experimental populations can vary
greatly in temporal quality. For instance, in a laboratory
experiment, populations of Didinium nasutum were sam-
pled roughly once every two generations for 45 d before
a collapse of the population occurred (Clements and
Ozgul 2016a) while in a field experiment data on a lake
system was collected once a day during the summer sea-
son for three years (Carpenter et al. 2011). Similarly, in
wild populations demographic data is generally collected
monthly (van Benthem et al. 2017) or annually (Walle
et al. 2018). Due to these differences in sampling effort
the temporal quality of the time series relative to the pro-
cess rate of the system (for example the generation time
of the species sampled) will vary (Clements and Ozgul
2018). Previous work suggested that the length and reso-
lution of data being analyzed in relation to the process
rate, that is: the relative length and resolution, could
alter the rate at which a tipping point occurs (Spanbauer
et al. 2016). Following this, it has been shown that the
speed at which a tipping point occurs can affect the
detectability of abundance-based EWS (Clements and
Ozgul 2016b). It is thus unknown how the temporal
quality of the time series relative to the generation time

of the organisms being monitored will affect the
detectability of abundance-based EWS. Given that wild
populations are monitored using varied sampling efforts,
it is important to further our understanding of the rela-
tive length and resolution of time series needed to derive
reliable EWS. In turn, this would help lay the foundation
for generalizable guidelines for the monitoring of popu-
lations with the aim of reliably predicting population
declines, or whether time series that are currently avail-
able will be suitable for detecting abundance-based
EWS.
Composite EWS have been proposed as a more reli-

able method whereby multiple leading indicators are
combined to increase overall forecasting ability (Drake
and Griffen 2010). Recent work has used this composite
approach to drive the inclusion of fitness-related pheno-
typic trait data, specifically body size, alongside abun-
dance-based methods to create trait-based EWS
(Clements and Ozgul 2016a, Clements et al. 2017). The
motivation behind the use of fitness-related trait data
combined with leading indicators comes from a body of
work providing evidence that individual traits affected
by changes in the external environment are linked with
concurrent demographic changes (Ozgul et al. 2009,
Pigeon et al. 2017, Baruah et al. 2019b). In particular,
individual plasticity in body size has been shown to buf-
fer environmental change to higher trophic levels for
example in the face of reduced food availability, climate
change, and increased pollution (Brown et al. 2004, Che-
ung et al. 2013), For example, previous study has shown
that shifts in body size can accompany a transition in
diatom communities (Spanbauer et al. 2016). In addi-
tion, trait-based signals derived from body size data have
been shown to be more robust than traditional abun-
dance-based leading indicators (Clements and Ozgul
2016a, Clements et al. 2017, Baruah et al. 2019b). There
remains a need to fully assess whether the inclusion of
body-size data leads to any considerable improvement in
forecasting population collapses in the face of common
data quality issues, such as shortened time series lengths.
In this paper, we use model simulations and data from

microcosm populations of Didnium nasutum (Clements
and Ozgul 2016a) to test and compare the effects of sam-
pling length and resolution on the detectability of popu-
lation collapse by both classical abundance-based EWS
as well as trait-based EWS. We first investigated the
strength and reliability of abundance-based EWS across
a range of sampling lengths and resolutions. Subse-
quently, wetested whether the inclusion of trait dynamics
(body size) can increase forecasting ability even when
data was sparse.

METHODS

Simulations: transcritical and fold bifurcation model

We first modeled the logistic growth of a population
that moves from an underexploited state to critically
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exploited state through a non-catastrophic transcritical
bifurcation. The population is forced through the trans-
critical bifurcation via a linear harvesting regime. The
dynamics of this population are given by

dN=dt ¼ rNð1�N=KÞ þ rNdW � ctN (1)

where r is the growth rate of the population (0.5 individ-
uals/d), K is the carrying capacity (100 individuals), ct is
the harvesting rate, and rNdW is the Gaussian dis-
tributed white noise process with mean 0 and standard
deviation r (1.5). Time step dt used was 0.3 for each of
the stochastic simulations and was implemented using
the Euler approximation. The simulation was run for
100 total time steps.
Next, to simulate the dynamics of population collapse

via a fold catastrophe, we used a second model where
harvesting of individuals of the population followed a
nonlinear function (May 1977, Scheffer et al. 2009). The
parameters in this model are identical to those of the
transcritical catastrophe model except for the addition
of h, the half-saturation constant

dN=dt ¼ rNð1�N=KÞ þ rNdW � ctN2=ðh2 þN2Þ
(2)

Population collapse and abundance-based EWS

We simulated population collapse for the two models
by increasing the value of the harvest parameter ct lin-
early with time. We used three different levels of forcing
(Clements and Ozgul 2016b): (1) slow forcing, where the
rate of forcing increased linearly from 0.03 and 0.0015 in
fold and transcritical models, respectively; (2) moderate
forcing, where the forcing parameter ct increased linearly
at the rate of 0.045 and 0.0025 in fold and transcritical
models, respectively; and fast forcing: where the forcing
parameter ct increased linearly at the rate of 0.07 and
0.004 in fold and transcritical bifurcation models,
respectively. For each simulated population’s time series
data, we estimated the bifurcation time point by fitting
GAMS (generalized additive modeling) to 1/N(dN/dt)
over time t. The time point at which 1/N(dN/dt) < 0 is
then our estimated bifurcation time point. For abun-
dance-based EWS’ analyses, we discarded abundance
time series data after the estimated bifurcation point. We
then applied generic EWS of population collapse by
using the earlywarnings package (Dakos et al. 2012a) in
R version 3.5.2 (R Core Team 2018). Specifically, we
used two early warning indicators: autocorrelation at
first-lag (ar(1)) and standard deviation (SD). Other indi-
cators, such as return rate, first-order autoregressive
coefficient, and coefficient of variation can theoretically
be derived from these two main indicators. We used
Gaussian detrending to remove any trends in the abun-
dance time series data. To quantify the strength of

population collapse, we calculated Kendall’s tau correla-
tion coefficients of the statistical indicators over time.
Strong positive Kendall’s tau correlation of the statisti-
cal indicators (SD, ar(1)) with time would indicate an
approaching population collapse (Dakos et al. 2012b).
We further quantified the rate of false negatives as the
number of times Kendall’s tau value calculated to be less
than or equal to zero within the set of replicate time ser-
ies. While previous work has suggested that a strong
trend is indicated by a Kendall’s tau correlation
approaching one (Dakos et al. 2012b), we use this false
negative metric as an alternative visualization to present-
ing raw Kendall’s tau values.

Effect of sampling in relation to simulated population
dynamics on EWS

To study the effect of varying resolutions on the
detectability of collapse, we subset the data into four
data sets that varied in their resolution: as the generation
time for the populations in the simulation models is
t = 1, sampling of the abundance time series was done
every quarter of t, every half of t, every t, and every two
t. Interpolation between points was not performed. With
these four data sets, we explored the effect of different
sampling resolutions on the efficacy of EWS forecasting.
Specifically, we assessed the resolution required to detect
positive EWS. We assessed the effect of these sampling
regimes on EWS for the three different levels of environ-
mental forcing as mentioned in Population collapse and
abundance-based EWS. Next, we calculated Kendall’s
tau correlation coefficients as a measure of the strength
of EWS and rates of false negatives as a measure of the
reliability of EWS for these sampling regimes and for
each level of environmental forcing.

Effect of varying length of simulation abundance time
series on EWS

To quantify the effect of varying lengths of abundance
time series on EWS, we used the quarter generation sam-
pling resolution data set acquired following Effect of
sampling in relation to simulated population dynamics on
EWS. We used this resolution as it allowed us to explore
the largest range of time series lengths. Next, we quanti-
fied the strength and reliability of EWS on the entire
length of the abundance time series and then re-quanti-
fied it using the same time series but with the earliest
data point removed (or the furthest data point from the
bifurcation point). We repeated this process by sequen-
tially removing the earliest data point and re-performing
EWS analysis until the time series was six data points,
where it becomes too short for any meaningful analysis.
SD and ar(1) that were estimated on abundance data
using the earlywarnings package typically uses a sliding
window approach where the window size is generally
50% of the time series length. At six data points, a rolling
window size of 50% of the time series would be just three
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data points, where estimating autocorrelation and stan-
dard deviation would lead to spurious values. We per-
formed this length reduction analysis on time series from
the three forcing scenarios mentioned in Population col-
lapse and abundance-based EWS. Finally, we calculated
Kendall’s tau correlation coefficients as a measure of the
strength of EWS and rates of false negatives as a mea-
sure of the reliability of EWS for these sampling regimes
and for each level of environmental forcing.
The parameters used in our simulations were chosen

such that in all three forcing scenarios populations per-
sisted long enough to return sufficiently long time series.
This allowed us to later reduce their length and reana-
lyze them giving us a range of time series lengths for
each resolution and forcing scenario.

Experimental data

In addition to the model simulations, we also analyzed
an experimental microcosm data set. In this experiment,
microcosm populations were forced to collapse by vary-
ing the rate of decline in food availability over time in
four different scenarios: (1) fast decline in food availabil-
ity, (2) moderate decline in food availability, (3) slow
decline in food availability, (4) constant food availability
as the control treatment. The microcosm populations
consisted of protozoan ciliate Didinum nasutum feeding
on Paramecium caudatum. This particular experiment
used a total of 60 replicate populations, where 15 repli-
cates were used per treatment. In our study, we used the
microcosm data only from the three different deteriorat-
ing environments (fast, moderate, and slow decline in
food availability). For details of the experimental design,
refer to Clements and Ozgul 2016a.

Effect of varying length of experimental time series on
EWS.—For each of the three experimental treatments
(fast, moderate, and slow), we estimated the effect of dif-
ferent lengths of time series on the efficacy of EWS as
was done with simulation data in Effect of varying length
of simulation abundance time series on EWS to directly
compare our simulation results with the experimental
data.

Effect of sampling in relation to microcosm population
dynamics on EWS.—We subset the experimental data
into two sampling regimes. Since Didinum nasutum has a
generation time of roughly 2 d (Beers 1926), sampling of
the abundance time series data was done (1) every one-
half generation (every day), (2) every generation (every
2 d). Subsampling of this kind was done for each of the
three experimental treatments of the microcosm popula-
tion collapse. Next, as was done with simulation data,
we quantified Kendall’s tau correlation coefficients as a
measure of the strength of EWS and rates of false nega-
tives as a measure of the reliability of EWS for these
sampling regimes and for each level of environmental
forcing.

Inclusion of body-size data: trait-based EWS

We wanted to assess whether including trait dynamic
information (body size) alongside abundance-based
EWS would improve the predictability of population
collapse for the scenarios of time series length and for
the sampling resolutions in the experimental data for the
three forcing experimental treatments. To evaluate the
utility of trait-based EWS for the different sampling res-
olutions and lengths of abundance time series, data from
mean body size was incorporated with the leading indi-
cators in an additive manner (Clements and Ozgul
2016a). We z-standardized abundance-based EWS (stan-
dard deviation (SD), autocorrelation at-lag-1 (ar(1)),
and body-size time series data. The length of body-size
time series that was used was the same as the corre-
sponding replicate abundance time series. Before a popu-
lation collapse, SD and ar(1) are anticipated to increase
over time, while body size is expected to decline as food
availability in the experimental treatment decreases. As a
consequence, z-standardized body-size time series were
multiplied by �1 so that they could be included along-
side standardized abundance-based EWS. Next, stan-
dardized abundance-based EWS were then added to
standardized mean body-size time series to create trait-
based EWS. Next, we evaluated two trait-based EWS
metrics namely ar(1) + trait and SD + trait, and trait-
only EWS:trait. Finally, we compared these three trait-
based EWS in terms of strength and reliability of fore-
casting a population collapse with the abundance-based
statistical EWS for both the scenarios of varying time
series length and varying sampling resolution.

RESULTS

Effect of sampling resolution on abundance-based EWS
(simulated data)

Reducing the resolution of the time series used for
analysis with abundance-based EWS in simulated popu-
lations did not lead to reductions in the strength of
abundance-based indicators of population collapse for
slow and fast forcing levels. However, for moderate forc-
ing levels, particularly for SD, decreases in the resolution
of the time series generally led to decreases in the median
strength of the signal of population collapse (Fig. 1, yel-
low; Appendix S1: Fig. S4–S6). Further, at highest reso-
lutions in the moderate forcing levels, we observed the
highest Kendall’s tau values indicating that time series
at this resolution returned the most confident forecasts
capable of passing more strict thresholds than our own
at a tau value of zero.
While the median strength of signals (SD and ar(1))

did not drop with decreasing resolution (Fig. 1), the pro-
portion of false negatives increased with decreasing reso-
lution for SD only, particularly for slow and moderate
environmental forcing (Table 1). In terms of fast forcing,
however, the lowest sampling resolution had the lowest
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number of false negatives in comparison to the highest
sampling resolution for SD. This suggested that SD was
predicting population collapse better in low resolution
time-series data than in high-resolution time-series data.
Fast forcing and low resolution sampling in combination
returned short time-series length, which resulted in

higher variation between consecutive data points. This
caused a high Kendall’s tau value for SD. For ar(1),
however, there was no particular trend in terms of either
signal strength or rate of false negatives with decreasing
time-series resolution (Table 1). Our simulation results
demonstrated that forecasting strength and reliability of

Slow

Slow

Fold

Autocorrelation at-first-lag

Transcritical

Fold Transcritical

Moderate

Moderate

Standard deviation

Fast

Fast

Resolution of time series per generation

FIG. 1. Box plots of the strength of abundance-based early warning signals of population collapse across decreasing resolutions
of subsampling in simulated populations subjected to collapse by harvesting. The data is split into subplots based on the bifurcation
model simulated (fold, transcritical) and forcing level (slow, medium, fast). Box plots are further split by metric used (yellow, stan-
dard deviation; red, autocorrelation at-first-lag). Each box represents the median Kendall’s tau value (shown on the y-axis) across
replicate time series across three forcing level for different sampling resolutions. The x-axis shows the resolution of sampling in
numbers of generations such that a value of 2 indicates that sampling was performed every two generations and 0.25 denotes sam-
pling every one-quarter generation.
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EWS in predicting population collapses were weak and
did not depend on sampling resolutions.

Effect of length of time series on abundance-based EWS
(simulated data)

In simulations, decreasing the length of the sampling
time series before either a fold or transcritical bifurca-
tion negatively affected the performance of abundance-
based EWS ar(1) and SD across all three intensities
(Fig. 2; Appendix S1: Table S1). However, the decline in
performance of abundance-based EWS as time-series
length decrease was not as steep. For moderate forcing,
ar(1) and SD had a decline in Kendall’s tau value (slope
= �0.09 and R2 = 0.8 for ar(1); slope = �0.07 R2 = 0.71
for SD) as length of time series decreased regardless of
the type of bifurcation. Moreover, as forcing increased,
the decline of signal reliability (Fig. 2B) and signal
strength (Fig. 2A), as indicated by the rate of false nega-
tives and the Kendall’s tau value respectively, saw a stee-
per decline. With fast forcing, when time series dropped
below approximately ten generations long both EWS
performed poorly with Kendall’s tau values near zero
(Fig. 2A) and approximately 50% false negatives
(Fig. 2B). With moderate forcing, this minimum length
drops closer to five generation long time series. Finally,
with slow forcing, the minimum time series length
becomes less clear, particularly for fold bifurcation, as
slopes of Kendall’s tau value against length of time ser-
ies were small for both ar(1) (slope = �0.01, R2 = 0.39)
and SD (slope = �0.0003, R2 = �0.009). For, transcriti-
cal bifurcation and for slow forcing (dotted lines,
Fig. 2A, slow), however, the minimum length drops to
around 5–10 generation long time series for both SD
(slope = �0.075, R2 = 0.22) and ar(1) (slope = �0.09,
R2 = 0.43).

Effect of sampling resolution on abundance and trait-
based EWS (experimental data)

Similar to simulation results, decreasing the resolution
of the time series in microcosm populations did not lead
to decreases in the strength of abundance-based EWS
(Fig. 3). Strength in SD and ar(1) in forecasting

population collapse remained nearly constant as resolu-
tion was decreased (Fig. 3). Results from the experimen-
tal data also states that strength in predicting population
collapse did not depend on changes in time series resolu-
tion.
However, including information from mean body-size

data alongside abundance-based EWS to create trait-
based EWS led to significant increases in strength and
reliability of predicting population collapse regardless of
forcing strength, or time series resolutions (Fig. 3, dark
colors).
The rate of false negatives was high for abundance-

based EWS across the two different time-series resolu-
tions for the experimental data (Appendix S1: Fig. S2).
In comparison to ar(1) across the sampling resolutions,
the false negative rate of SD was higher in slow and fast
decline in food availability. When the resolution of time
series decreased the rate of false negatives increased for
abundance-based EWS, particularly for ar(1) in slow
and fast decline in food availability. For moderate
decline in food availability, rate of false negatives
decreased as time-series resolution decreased
(Appendix S1: Fig. S2). In contrast, trait-based EWS
(ar(1) + trait; SD + trait) and trait-only EWS (trait)
were reliable in forecasting population collapse even
when time-series resolution was low.

Effect of length of time series on abundance and trait-
based EWS (experimental data)

For most of the forcing scenarios and time-series
lengths tested, abundance-based EWS derived from
microcosm data did not produce a positive forecast of
population decline. In the treatment of slow decline in
food availability abundance-based EWS saw some
increases in Kendall’s tau values but mostly these
remained negative. For moderate decline in food avail-
ability, time-series length did not have any impact on the
performance of abundance-based EWS. For fast decline
in food availability, only for SD, there was noticeable
decrease in performance as time-series length decreased
(Fig. 4A, B).
Furthermore, trait-based EWS, i.e., including body-

size information alongside abundance EWS, and trait-

TABLE 1. Rate of false negatives from abundance-based early warning signals (EWS) of population collapse in simulated
populations led to collapse through harvesting at three different rates.

Strength of forcing

Measure
Slow Moderate Fast

Resolution 2 1 0.5 0.25 2 1 0.50 0.25 2 1 0.50 0.25

SD 52.5 52.4 51.5 45.1 51.4 50.4 44.5 41.7 39.5 51 50.4 58.7
ar(1) 46.5 46.1 49.7 46.6 46.4 47.8 48 42.6 52.5 46.5 48.2 60.7

Notes: The rate of false negatives reported is the number of false negative signals returned divided by the number of true positive
signals. Results are further split by four time series resolutions tested (a value of two indicates sampling was performed every two
generations) and by the metric used as an EWS.

Article e03040; page 6 A. A. ARKILANIAN ETAL. Ecology, Vol. 101, No. 7



only information, significantly improved the strength as
well as reliability of population collapse across different
length in time series data for different levels of environ-
mental forcing. With trait-based EWS, or trait-only
EWS, Kendall’s tau value always remained positive
regardless of very short time series and strength of envi-
ronmental forcing (Fig. 4A, B, solid lines). Only during
slow environmental forcing scenario, and when length of
time series was less than five generations, trait + ar(1)
was unable to predict population collapse.

DISCUSSION

Generic EWS would provide a unique tool for conser-
vation prioritization and management of populations
facing increased stress with changes to their abiotic envi-
ronment if they are detectable prior to their collapse
(Scheffer et al. 2009, Dakos et al. 2012b, Burthe et al.
2016). The attraction of generic EWS is their relative
simplicity; they are easy to calculate and require only
state data such as the abundance of a population (Drake
and Griffen 2010, Boettiger et al. 2013, Dutta et al.
2018). Alternative approaches such as trait-based EWS

have been developed with the goal of providing more
reliable predictions of population collapse but require
additional data to calculate (Clements and Ozgul 2016a,
Clements et al. 2017). For both complementary
approaches how the relative length and resolution of a
time series may affect their performance has thus far
remained unknown. This question is critical for our
understanding of the utility and applicability of these
methods (Boerlijst et al. 2013, Boettiger and Hastings
2013). Here, using simulations and experimental data,
we show that time series length and resolution relative to
the process rate of the system in question influence the
performance of abundance-based EWS. Further, we
found that including average body size with abundance-
based EWS leads to stronger and more reliable signals
even when temporal length and resolution of the time
series are low.

Effect of resolution of sampling time series on abundance-
based and trait-based EWS

Our simulations indicated that there was no ideal sam-
pling resolution that increases either the reliability or the

Slow

SD SD fold foldtranscritical transcriticalar(1) ar(1)

Moderate Fast

Slow Moderate Fast

FIG. 2. Performance of abundance-based early warning signals of population collapse across decreasing sampling time series
lengths in simulated populations subjected to collapse by different rates of forcing (harvesting). The data is split into subplots based
on forcing intensity (slow, moderate, fast) and further split by metric used (yellow, standard deviation; red, autocorrelation at-lag-1)
and bifurcation model simulated (solid, fold model; dashed, transcritical model). Each point represents (A) the mean Kendall’s tau
correlation coefficient or (B) rate of false negatives on the y-axis of 100 replicate simulations of population collapse. The x-axis rep-
resents length of time series analyzed.
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forecasting strength of abundance-based EWS in pre-
dicting population collapses. Only when environmental
forcing was moderate, high sampling resolution resulted
in reliable forecasts of population collapse by SD and
less slightly by ar(1). In general, irrespective of whether
population transition was transcritical or fold, time ser-
ies resolution did not have any considerable impact on
the performance of abundance-based EWS. Our simula-
tions also showed that reliability of SD was high for fast
forcing and lowest time series resolution. Such a result,
although unintuitive, was due to the combined effect of
fast forcing and low sampling resolution. Combination
of fast forcing and low sampling resolution produced
very short time series length (nine data points). Applying
EWS analysis with a rolling window size of 50% of the
time series length resulted in further reduction of the
time series length. As a consequence, high variability
between consecutive data points had led to high SD in
general leading to strong Kendall’s tau value. However,
in experimental microcosm data, ar(1) performed better
in forecasting population collapse than SD when time
series resolution was manipulated. Reliability of

abundance-based EWS, particularly SD, in forecasting
population collapse for the experimental microcosms
was rather poor. Low reliability (high false negatives) of
SD in microcosms could probably be attributed to the
fact that experimental systems are inherently more
stochastic. Our simulated populations were likely sub-
jected to smaller amounts of stochasticity in population
size compared to our experimental populations. Given
that SD is sensitive to rising stochasticity in a system
(Boettiger and Hastings 2013), one could expect SD to
perform better when there is a high level of environmen-
tal stochasticity. Indeed, results from replicate simula-
tions, where we varied stochasticity levels and measured
the performance of abundance-based EWS suggested
that SD performed relatively better when environmental
stochasticity was higher. However, ar(1), regardless of
low or high environmental stochasticity, performed bet-
ter than SD, confirming our speculation on the perfor-
mance of ar(1) when environmental stochasticity was
high (Appendix S1: Fig. S1).
In addition, abundance-based EWS showed a greater

sensitivity to system stochasticity than trait-based EWS

Slow

Autocorrelation at-first-lag

Moderate

Standard deviation

Fast

Slow

SD

ar(1)

Trait

Trait

SD + Trait

ar(1) + Trait

Moderate Fast

Resolution of time series per generation

FIG. 3. Performance of abundance-based (SD, ar(1)), trait-based EWS (SD + trait, ar(1)+ trait), and trait-only EWS (trait) of
population collapse across decreasing sampling time series resolutions for the experimental data of Clements and Ozgul (2016).
Plots are organized into subplots based on the forcing intensity (slow, medium, fast) and further split by metric used. Each box rep-
resents the Kendall’s tau value (on the y-axis) for each resolution studied (on the x-axis). Note that trait-based EWS and trait-only
EWS had higher strength than abundance-based EWS.
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did; the latter did not present any obvious differences in
performance between metrics used (Fig. 3). This is pos-
sibly an effect of adding phenotypic data to abundance
data, which stabilizes the signal through time and
reduces stochasticity (Fig. 3). This is an important find-
ing if abundance-based EWS are to be used to monitor
natural populations, which likely have more stochasticity
than laboratory populations.
As observed with abundance-based EWS, perfor-

mance of trait-based EWS also did not decrease with
decreasing sampling resolution (Fig. 3). However, the
performance of trait-based EWS was much better than
abundance-based EWS alone. Trait-based EWS calcu-
lated with the lowest resolution in the experimental pop-
ulations still derived a more reliable forecast than
abundance-based EWS calculated with the highest possi-
ble resolution.
Our findings suggest that abundance-based EWS

derived from autocorrelation at-first-lag would perform
better in natural populations subjected to high levels of

stochasticity when compared with standard deviation
derived signals when the resolution of available abun-
dance time series is low. On the other hand, the inclusion
of trait data with either metric or trait data alone, led
both to an increase in EWS performance when faced
with reduced sampling time series resolutions and mini-
mized any important differences between the two time
series metrics used. Thus, whenever possible, trait-based
EWS will likely outperform abundance-based EWS in
natural populations (but see Baruah et al. 2019b) and,
when trait data is not available, abundance-based EWS
derived from autocorrelation at-first-lag are more pow-
erful and reliable indicators.

Effect of length of sampling time series on abundance-
based and trait-based EWS

Reducing the length of the sampling time series in sim-
ulated data negatively affected the performance of abun-
dance-based EWS. In our simulation study, having

Slow Moderate Fast

Slow Moderate Fast

Trait SD SD + Trait ar(1) + Traitar(1)

Trait SD SD + Trait ar(1) + Traitar(1)

FIG. 4. Performance of abundance-based (SD, ar(1)), and trait-based EWS (SD + trait, ar(1)+ trait), and trait-only EWS (trait)
of population collapse across decreasing sampling time series lengths for the experimental data of Clements and Ozgul (2016). Plots
are organized into subplots based on the forcing intensity (slow, medium, fast). The x-axis is the length of time series data analyzed
and the y-axis denotes (A) mean Kendall’s Tau value and (B) rate of false negatives. Note that trait-based EWS and trait-only EWS
had higher strength (shown in A) and higher reliability (shown in B: false negative plots) than abundance-based EWS. False nega-
tive plots were produced using loess smoothing.
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longer time series led to stronger EWS, particularly for
slow and moderate levels of environmental forcing and
for transcritical bifurcation (dashed lines, Fig. 2). Time
series from slow and moderate forcing scenarios with
lengths less than five generations returned weaker fore-
casts of population collapse with higher rates of false
negatives (Fig. 2). In the case of fast forcing and only
for the population simulated with a transcritical model,
length of time series no longer had an effect on the pre-
dictability of collapse (Fig. 2, dashed lines). In the con-
text of a ciliate population such as the one used in the
microcosms of this paper (D. nasutum), 10 generations
corresponded to roughly 20 d. Twenty days’ worth of
sampling might seemed feasible to generate reliable fore-
casting for a ciliate population. However, for this same
reliability in a population experiencing rapid forcing,
22–35 yr of sampling would be required in the case of
Thynnus thynnus (Atlantic bluefin tuna): an endangered
species of high economic concern with a generation time
between 2.2 and 3.5 yr (Collette et al. 2011). For organ-
isms with longer generation times such as T. thynnus, the
required investment of resources and time becomes an
important consideration if there is a desire to monitor
populations using abundance-based EWS. In addition,
we found that abundance time series require a minimum
of 10 generations worth of data when forcing was fast
and a minimum of 5 when forcing was moderate
(Fig. 2). This finding suggests that in situations where
forcing was more intense and, thus, populations are
most at risk, the requirement for good quality data is
extended. This requirement of long time series was a
clear shortcoming of abundance-based EWS for organ-
isms with long generation times and populations experi-
encing moderate to rapid forcing.
In our microcosm study, the effect of time series

length on the Kendall’s tau metric was less clear than in
the simulation. However, abundance-based EWS rarely
had the length of sampling required to make a confident
forecast of collapse. It appears that regardless of
improvements brought about by the increased length of
the sampling time series, most abundance-based EWS
did not provide a confident forecast even with the maxi-
mum length of sampling time series (between 10 and
12.5 generations). In our simulations we showed that
abundance time series need a minimum of 10 genera-
tions of data to provide an accurate forecast. These
microcosm results show that the required minimum
length of sampling exceeds 10 generations in controlled
laboratory settings. Thus, we could expect that, in natu-
ral populations subjected to higher levels of stochasticity
the minimum length of sampling might exceed even that
which was required in the microcosms. However, in nat-
ural populations, there could be the possibility to mea-
sure phenotypic data and derive trait-based EWS, which
we had additionally assessed. The addition of pheno-
typic data with abundance data improved forecasting in
the microcosms. Trait-based EWS, that included body-
size information alongside abundance-based EWS,

offered a significant improvement over abundance-based
EWS, providing a positive forecast of collapse for all
time series lengths tested.
Our modeling scenario of time series length and reso-

lution was focused solely on abundance dynamics, and
ignored trait dynamics. Abundance data are the most
available, with databases such as Living Planet Index
(LPI) offering an opportunity to analyze abundance
time series data (>22,000) for future forecasts of popula-
tion declines at a global scale. However, average time ser-
ies length in the LPI databases is around 10.3 yr and
median length of 6 yr. It was thus of foremost impor-
tance to understand whether short time series of differ-
ent resolutions would affect the predictability of
population decline before these statistical tools could be
applied widely. Trait data, such as body-size time series
are less widely available. Hence, the main motivation of
our work was to develop an understanding of the effi-
cacy of abundance-based EWS in forecasting population
decline when time series lengths were variable and were
of different resolutions.
Trait-based simulations of population dynamics could

essentially be done using a quantitative genetic frame-
work (see Baruah et al. 2019a). In fact, a recent study,
on comparing the strength of abundance-based and
trait-based EWS, has implied the preferential use of
trait-based EWS over abundance-based EWS. This par-
ticular study suggested that under certain ecological cir-
cumstances, such as high trait plasticity and/or high
reproductive rate, trait-based EWS outperformed abun-
dance-based EWS in predicting population declines
(Baruah et al., 2019b). Parallel to their simulation study,
we showed with experimental data from microcosms,
that despite shorter time series lengths and/or low sam-
pling resolutions, body-size-based signals outperform
abundance-based EWS. Whether a trait, such as body
size, could be included among the suite of EWS would
depend not only on the type of the trait but also on
whether external environmental forcing affected the
trait. If external environmental forcing did not affect
body size it could be expected that body size based EWS
would fail in forecasting potential population declines.
We thus expect traits that were correlated to fitness of an
organism to be potential candidates to be included
within the suite of trait-based EWS.
That being said, body-size-based signals are clearly

potential candidates to be included alongside generic
EWS of population collapse. Recent study on this aspect
has highlighted the environmental, ecological, and evo-
lutionary circumstances under which it is possible for
phenotypic traits to shift before a potential population
decline and thus act as a warning signal (Baruah et al.
2019a). The strength of shifts in phenotypic trait such as
body size, was dependent on how fast the environment
changes, how plastic the trait was to changes in the
external environment, and how high genetic variation
was in the trait. In fact, strength of trait-based EWS was
directly dependent on the above ecological and
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evolutionary factors. For instance, it was suggested that,
high levels of plasticity in the trait led to stronger trait-
based EWS (Baruah et al. 2019b).
In our modeling scenarios, we chose a specific set of

parameters to evaluate the performance of EWS in the
face of myriad sampling lengths and resolutions. The
choice of such a specific set of parameters that we used
in our simulations were motivated through an iterative
process that returned time series spanning a large range
of forcing values while maintaining time-series lengths.
Changes in the parameter values of strength in forcing
levels or growth rate did not significantly alter our simu-
lation results (see Appendix S1: Fig. S4 and S5): longer
time series generally led to stronger forecasts of popula-
tion collapse, while low resolution led to poor forecasts
of population collapse with EWS.
Our findings on the effect of sampling length on the

forecasting of population collapse by EWS suggest that
the length of sampling required to calculate confident
forecasts by abundance-based EWS are very long and
likely impractical from a conservation and monitoring
standpoint. On the other hand, trait-based EWS can
give accurate and reliable forecasts with much less sam-
pling data compared to their abundance-based counter-
parts.

CONCLUSION

Our results stemming from simulations and a labora-
tory microcosm study make a case for the use of trait-
based EWS over classical abundance-based signals based
on their increased reliability and strength when faced
with varying lengths and resolutions of sampling time
series. We attempted here to evaluate these EWS with
data that might more realistically resemble data gathered
from field monitoring programs. However, true field
data arising from monitoring programs are likely to be
noisier than the data we have presented and analyzed
here. Nonetheless, our results suggest that abundance-
based EWS perform poorly across resolutions and when
the length of abundance time series with regards to the
process rate of the system is decreased. We found that
including trait dynamics alongside abundance-based
EWS to generate trait-based EWS leads to more reliable
and confident forecasts of population collapse. We fur-
ther found in our simulations that a length of five gener-
ations is a minimum for deriving confident forecasts
with abundance-based EWS. If trait-based EWS are
used, this length requirement and the effect of resolution
is much more relaxed. With these results in mind, we rec-
ommend considerations be made for the length and res-
olution of sampling time series required to accurately
forecast populations in the design of monitoring pro-
grams. Further, we recommend the additional monitor-
ing of phenotypic traits in populations, which have been
shown to vary with increasing levels of environmental
forcing such that trait-based EWS that have more fore-
casting power and reliability can be derived.
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