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Abstract

Epstein-Barr virus (EBV) causes nasopharyngeal carcinoma (NPC) in endemic regions,

where almost every tumor is EBV-positive. In Western populations, NPC is rare, and

human papillomavirus infection (HPV) has been suggested as another viral cause. We

validated multiplex serology with molecular tumor markers, to define EBV-positive,

HPV-positive and EBV-/HPV-negative NPCs in the United Kingdom, and analyzed

survival differences between those groups. Sera from NPC cases (n = 98) and age-

and sex-matched controls (n = 142) from the Head and Neck 5000 clinical cohort

study were analyzed. IgA and IgG serum antibodies against 13 EBV antigens were

measured and compared with EBER in situ hybridization (EBER-ISH) data of 41 NPC

tumors (29 EBER-ISH positive, 12 negative). IgG antibodies to EBV LF2 correctly

diagnosed EBV-positive NPCs in 28 of 29 cases, while all EBER-ISH negative NPCs

were seronegative to LF2 IgG (specificity = 100%, sensitivity = 97%). HPV early anti-

gen serology was compared to HPV molecular markers (p16 expression, HPV DNA

and RNA) available for 41 NPCs (13 positive, 28 negative). Serology matched molecu-

lar HPV markers in all but one case (specificity = 100%, sensitivity = 92%). EBV and

HPV infections were mutually exclusive. Overall, 67% of the analyzed NPCs were

defined as EBV-positive, 18% as HPV-positive and 14% as EBV/HPV-negative. There

was no statistical evidence of a difference in survival between the three groups.

These data provide evidence that both, EBV-positive and HPV-positive NPCs are

present in a low incidence country, and that EBV and HPV serum antibodies correlate

with the viral status of the tumor.
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1 | INTRODUCTION

Nasopharyngeal carcinoma (NPC) is a squamous cell cancer arising

from the lining of the nasopharynx. The incidence of nasopharyngeal

cancer varies widely across the world. Globally, the incidence rate is

below one per 100 000 person-years.1 However, incidence rates in

NPC endemic regions, including Southeast Asia, North Africa, China

and the Arctic, are up to 30 times higher.2

In high-incidence or endemic regions, Epstein-Barr-virus (EBV) is

uniformly associated with NPC development.3 Elevated antibody

levels to EBV proteins in NPC patients have been described since

19663 in many case-control4-6 and prospective studies7,8 and are a

useful tool for diagnosis and disease prediction in endemic

populations. Until recently, these serological analyses were limited to

IgA antibody levels against the viral capsid antigen (VCA), EBV nuclear

antigen 1 (EBNA1) and early antigen diffuse (EA-D). In 2018, Coghill

et al described a novel EBV antibody risk stratification signature, con-

sisting of 14 IgA and IgG antibodies against diverse EBV proteins for

the prediction of NPC development in Taiwan, a high-incidence

region.9 This model for NPC prediction showed an accuracy of 93%

for detecting NPCs, compared with an accuracy of 82% for VCAp18/

EBNA1 IgA biomarkers alone (P < .01).

In low-incidence regions, other risk factors besides EBV infection

have been described to be associated with NPC development.10 The

role of smoking as a risk factor has been examined in several studies

in both, low incidence and endemic regions, and the risk associated

with smoking has been shown to be higher in low incidence coun-

tries.11 More recently, several studies also described human papillo-

mavirus (HPV) as a risk factor for NPCs in low incidence regions,

although the causal link remains under debate.12-15

HPV, especially type 16, is established as a causal agent for the

development of oropharyngeal carcinoma (OPC),16,17 while the preva-

lence of HPV-driven head and neck tumors outside the oropharynx is

low.18 However, NPCs and OPCs share properties that distinguish

them from other head and neck cancers, like their predominantly viral

etiology, early age at disease onset, and similar clinical characteristics,

especially early lymph node involvement.19 In OPCs, early antigen

HPV serology (especially antibodies against the HPV16 oncoprotein

E6) has been shown to be very strongly associated with molecularly

defined HPV-positive OPCs, both at diagnosis and prospec-

tively.17,20,21 HPV detection in NPCs has been limited to p16 immu-

nohistochemistry (IHC) and HPV DNA detection by PCR or in situ

hybridization (ISH).12-15 Currently, no serological assay has been vali-

dated for detecting HPV-positive NPCs.

The aim of our study was thus to examine whether EBV and HPV

serum antibodies or antibody pattern can differentiate NPCs associ-

ated with EBV, with HPV, and those not associated with either virus,

and to describe the roles of EBV and HPV infection in the develop-

ment of NPCs in a low incidence region. These data have the potential

to make important contributions to the clinical management of NPCs.

While screening approaches are not reasonable in the United King-

dom, due to low NPC incidence, the viral status of the tumor could

reveal potential survival differences and underline the need for

specific treatment regimens. HPV-driven OPCs have been shown to

have a much better survival than HPV-negative OPCs, and can be

identified by HPV16-specific antibodies.22 Existing analyses of sur-

vival of EBV-positive, HPV-positive and EBV/HPV-negative NPCs are

sparse and contradictory13,23 and need to be further investigated.

To this end, we examined the molecular and serological EBV and

HPV status of NPC cases from the United Kingdom, a country with

low NPC incidence (0.27 per 100 00024). The analysis was based on

the Head and Neck 5000 clinical cohort study,25 and included 98 inci-

dent NPC cases and 142 age- and sex-matched laryngeal squamous

cell carcinoma cases (LSCCs) as controls. We used molecular analyses

to validate serology for both, EBV and HPV, and calculated sensitivi-

ties and specificities for NPC diagnosis. Moreover, we defined three

groups, NPCs associated with either EBV infection or HPV infection,

and EBV/HPV-negative NPCs, and compared risk factors, histological

subtypes and survival.

2 | MATERIALS AND METHODS

2.1 | Study population

The Head and Neck 5000 clinical cohort study has been described in

detail elsewhere.25,26 Briefly, 5511 individuals with newly diagnosed

head and neck cancer were recruited in 76 centers across the United

Kingdom between 2011 and 2014.

The current analysis included 98 incident nasopharyngeal carci-

noma cases (ICD-O-3 C11) and as controls 142 age- and sex-matched

laryngeal squamous cell carcinomas (LSCC; ICD-O-3 C32) for which no

EBV-positive cases27 and <5% HPV-positive cases18 are expected

(Table 1). Extended pathology reports were requested and available for

76 NPC cases. We cross-checked information captured in histopathol-

ogy reports against clinical data, and anatomical site misclassification

was ruled out, to the best of our knowledge, for 87% (66 of 76) of these

NPC cases. Routine clinical measures, including EBER-ISH and p16,

were extracted from the histopathological reports.

What's new?

While Epstein-Barr virus (EBV) causes almost all nasopharyn-

geal carcinoma (NPC) in endemic regions, human papilloma-

virus (HPV) may also cause NPCs in low-incidence, Western

populations. Here, the authors used molecular tumor

markers to validate EBV and HPV multiplex serology to

define the viral status of NPCs in the United Kingdom. IgG

antibodies to the EBV antigen LF2 and HPV early antigen

serology were highly specific and sensitive to identify EBV-

and HPV-positive NPCs, respectively. The results show that

both EBV-positive and HPV-positive NPCs are present in a

low-incidence country, and that EBV and HPV serum anti-

bodies correlate with the viral status of the tumor.
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2.2 | Molecular analysis of tumor tissue

2.2.1 | EBER-ISH and p16 IHC

Epstein-Barr virus small RNA 1 (EBER-1) in situ hybridization (EBER-

ISH) is the gold standard for detecting the EBV genome in tumor tis-

sue.28 EBER-ISH status was available for a total of 41 NPCs. For

34 NPC cases, it was obtained from pathology reports of the clinical

centers; for nine NPCs (including two of the above group), formalin-

fixed paraffin-embedded (FFPE) tumor tissue was sectioned according

to standard protocols29 and sent for EBER-ISH staining and reading

(Leica ISH EBER probe, automated BOND system) to Severn Pathol-

ogy, an ISO-accredited medical laboratory (Bristol, United Kingdom).

p16 immunohistochemistry (IHC) is the clinical gold-standard for

assessing HPV status of OPCs. p16 status was available for a total of

41 NPCs, for 20 it was provided by clinical centers and for 22 deter-

mined by staining FFPE tissue sections for p16 at the National Center

for Tumor Diseases (NCT) tissue bank (Heidelberg, Germany).

2.2.2 | HPV DNA and RNA analysis

HPV molecular analysis included isolation of HPV DNA and RNA

according to standard protocols with utmost care to avoid sample

cross-contamination.29

After DNA and RNA extraction, Multiplex Papillomavirus

Genotyping30,31 (MPG) was used to analyze DNA for the presence of

51 HPV types including all known high-risk HPV types. RT-PCR and

hybridization was used to detect HPV type-specific E6*I RNA for the

HPV type(s) detected in the MPG assay.29 Combined HPV DNA and

RNA detection is considered the laboratory gold-standard for

assessing HPV status of OPCs.21

2.2.3 | Histology

Histology data were obtained for 60 NPC cases, either by extracting

data from pathology reports (for 37 cases), or by reviewing and classi-

fying the tumor tissue (for 23 cases) by a pathologist.

Cases were categorized into keratinizing NPC (WHO type I),

nonkeratinizing differentiated NPC (WHO type II), nonkeratinizing

undifferentiated NPC (WHO type III), nonkeratinizing NPC not other-

wise specified (WHO type II or III), and basaloid squamous NPC. A

total number of 50 cases had an explicit WHO classification of type I,

II or III.

2.2.4 | EBV serology

Serological testing of blood taken at diagnosis was performed with

multiplex serology, a high-throughput assay for simultaneous detec-

tion of serum antibodies against a large number of antigens.32 Testing

for EBV antibodies included separate IgA and IgG detection, as indi-

cated by a recently published NPC risk stratification signature.9 Sera

were preincubated at 1:50 dilution for IgA testing (final dilution

1:100) and at 1:5000 dilution for IgG testing (final dilution 1:10 000)

in a serum preincubation buffer based on PBS with 2 mg/mL casein

and additionally containing 2 g/L of lysate proteins of Escherichia coli

overexpressing glutathione-S-transferase (GST)-tag, 5 g/L polyvinyl

alcohol and 8 g/L polyvinyl-pyrrolidone.33

EBV serology was based on 13 antigens. VCAp18, EBNA1 peptide

(pep), EBNA1 truncated (trunc), ZEBRA and EA-D were previously vali-

dated for multiplex serology.34 The remaining eight antigens (BXLF1,

LF2, BZLF1, BORF1, BFRF1, BGLF2, BRLF1, BPLF1) derived from an

NPC-specific risk stratification signature9 and were adapted for multi-

plex serology by recombinant expression as GST-tagged fusion proteins

in E. coli. The antigens ZEBRA (245 amino acids) and BZLF1 (43 amino

acids) display antigenic domains from the same protein, and show an

identity of 98% in their 43 overlapping amino acids. For consistency,

both, the previously validated ZEBRA and the BZLF1 as part of the

NPC-specific risk stratification signature, were included in our assay.

Three antigens representing the major capsid protein VP1 of the three

human polyomaviruses (HPyV) JC, BK and HPyV6 were included as

specificity controls (no association with NPC was expected).

Bound serum antibodies were detected with goat anti-Human

IgG-Biotin (1:1000, #109-065-098, Jackson ImmunoResearch, West

Grove, Pennsylvania) and goat anti-Human IgA-Biotin (1:1000,

#109-065-011, Jackson ImmunoResearch), respectively, and

TABLE 1 NPC case and LSCC control group characteristics

NPC cases

(n = 98)

LSCC controls

(n = 142) P-value

Mean age (SD) 53 (13) 55 (11) .42

Sex .97

Male 75 (77%) 109 (77%)

Female 23 (23%) 33 (23)%

Smokinga <.01

Never 21 (33%) 5 (5%)

Former 30 (47%) 61 (65%)

Current 13 (20%) 28 (30%)

Alcohol consumptiona .01

Nondrinker 28 (41%) 29 (30%)

Moderate 18 (26%) 20 (21%)

Hazardous 21 (31%) 32 (33%)

Harmful 1 (1%) 16 (16%)

Socioeconomic statusa .59

1—least deprived 23 (25%) 33 (26%)

2 19 (21%) 26 (21%)

3 19 (21%) 32 (25%)

4 13 (14%) 21 (17%)

5—most deprived 17 (19%) 14 (11%)

Abbreviations: LSCC, laryngeal squamous cell carcinoma; NPC, nasopha-

ryngeal carcinoma.
aNumbers may not add up to 100% due to missing data.
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subsequently stained with streptavidin-R-phycoerythrin (1:750,

MOSS Inc., Elk Grove Village, Illinois).

2.2.5 | HPV serology

HPV serology was performed at a final serum dilution of 1:100 with a

triple isotype-specific (IgG/IgM/IgA) goat anti-Human antibody as

described previously.32 Analysis included serum antibodies against

early (E6 and E7) and late (L1) proteins of high-risk HPV types 16, 18,

31, 33, 35, 45, 52 and 58, and additionally antibodies against early

proteins E1, E2 and E4 of HPV16 and HPV18. We defined seroposi-

tivity based on the standard definition (HPV16 E6 antibodies >1000

MFI [median fluorescence intensity]) which has been validated for

HPV-driven OPCs.21 In addition, we applied an extended approach

previously shown for neck squamous cell carcinoma from unknown

primary that includes the standard definition but alternatively allows

positivity to three out of four early antigens (E1, E2, E6, E7) for

HPV16 and HPV18, or positivity to two early antigens (E6 and E7) for

HPV 31, 33, 35, 45, 52 and 58. A serum sample was considered HPV

seropositive if either the standard or the extended definition was met.

Overall, 12 HPV16-positive cases were defined with the standard def-

inition, and five cases were defined as HPV18-positive using the

extended definition.

2.3 | Statistics

Statistical tests for categorical analyses included chi-square test, and

Fisher's exact test for small (n < 6) cell counts. t-Test was used to com-

pare the mean age of the case and control groups. Differences in MFI

values of cases and controls were calculated by Mann-Whitney test.

Smoking was categorized as never, former or current, and alcohol

consumption was analyzed in the categories nondrinker, moderate,

hazardous or harmful. Detailed information on smoking and alcohol

history was obtained at baseline via a self-reported questionnaire as

described before.35 Since there was only one harmful drinker among

the NPC cases, the “harmful” and “hazardous” categories were com-

bined in subsequent analyses (Table 1).

Socioeconomic status was categorized in five categories from

“1—least deprived” to “5—most deprived” based on the English Index

of Multiple Deprivation (IMD) 2010 quintiles using participants' home

postcode.36 This area-based index of deprivation is derived from mea-

sures of income, education, crime and barriers to housing.

We used receiver operating characteristic (ROC) analysis of

41 cases with EBER-ISH status to define antigen-specific cut-offs for

the EBV antigens based on ≥90% specificity. Resulting cut-off values

are listed in Table S1. The technical minimum cut-off above assay

background is 30 MFI for IgA at 1:100 dilution and IgG at 1:10 000

dilution, and 50 MFI for the triple isotype-specific (IgG/IgM/IgA) anti-

body at 1:100 dilution.

Odds ratios for the association of EBV antibodies with NPC were

calculated using unconditional logistic regression with 95% confidence

intervals (CI) adjusted for age, sex, smoking and alcohol consumption.

All NPC cases and controls were included in regression models, and

EBV antigens were treated as binary variables, based on the cut-offs

described above.

Final EBV status of NPCs was determined if available by

(a) EBER-ISH status from FFPE, (b) EBER-ISH data from diagnostic

pathology reports, or in the absence of EBER-ISH data, (c) EBV serol-

ogy. Final HPV status was determined if available by (a) p16 status

from FFPE, (b) clinical p16 data, (c) positivity to both HPV DNA and

RNA, or in the absence of HPV molecular data, (d) seropositivity as

described above.

Overall survival of EBV-positive, HPV-positive and EBV/HPV-

negative NPCs, as well as the overall survival stratified by WHO

type I, II and II, was plotted in a Kaplan-Meier graph. Cox proportional

regression models adjusted for age and sex were used to estimate

hazard ratios.

All statistical analyses were performed using GraphPad Prism 8.0

(GraphPad Software, Inc., La Jolla, California), Stata 15.0 (StataCorp.,

College Station, Texas) or SAS enterprise guide 7.1 (SAS Institute,

Cary, North Carolina). A P-value of .05 was considered as statistically

significant.

3 | RESULTS

3.1 | Participant characteristics

The nasopharyngeal carcinoma cases (n = 98) and the laryngeal squa-

mous cell carcinoma cases used as a control group (n = 142) did not

differ in mean age, sex and socioeconomic status (Table 1). However,

the proportion of never smokers and nondrinkers was significantly

higher in NPC cases than among LSCCs (33% vs 5%, P < .01, and 41%

vs 30%, P = .01, respectively).

3.2 | EBV serology validation

All case and control sera were tested for the presence of 26 EBV anti-

body markers, including IgA and IgG antibodies for 13 antigens. IgA

antibody responses to all 13 antigens and IgG antibody responses to

all antigens except one (VCAp18) were significantly higher among

cases than controls (Figure S1). No significant differences between

cases and controls were seen in both IgG and IgA antibody responses

to all three human polyomaviruses, with the exception of low-level

IgA responses to BK virus (median MFI among controls 306 MFI,

median MFI among cases 149 MFI, P < .01, compared to 300 and

345 MFI among cases and controls for IgG respectively, P = .52). Odds

ratios adjusted for age, sex, alcohol and smoking showed strong asso-

ciations of EBV antibody responses with NPC (Table S2). A higher risk

of NPC was observed for all anti-EBV antibodies except for VCAp18

IgG, with odds ratios ranging from 2.7 (95% CI 1.4-5.0) for VCAp18

IgA to 80.5 (95% CI 25.0-258.8) for LF2 IgG and 132.3 (95% CI

17.1-∞) for BGLF2 IgA (Figure 1 and Table S2).
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EBV tumor status based on EBER-ISH analysis was available for

41 NPC cases (29 positive, 12 negative). To investigate whether EBV

tumor status was reflected by serological markers, IgA and IgG anti-

bodies against 13 EBV proteins were compared to EBER-ISH tumor

status for validation. Antigen-specific cut-offs were defined using

ROC analysis with EBER-ISH status as gold-standard, and a minimum

specificity of 90%. The resulting sensitivities for the 26 combinations

of 13 antigens and both IgA and IgG antibodies ranged from 7% for

VCAp18 IgG to 97% for BGLF2 IgG and LF2 IgG (Table S1). Compar-

ing IgA and IgG antibody responses, a higher sensitivity of IgG anti-

bodies was observed for 9 out of 13 antigens, whereas IgA antibodies

were more sensitive for four antigens; the latter was particularly evi-

dent for VCAp18 (66% for IgA, 7% for IgG).

Examining individual antibody performances, LF2 IgG antibodies

were able to differentiate EBV-positive NPCs from EBV-negative

NPCs with 97% sensitivity and 100% specificity (Figure 2). The sole

EBER-ISH positive NPC case that was not identified by LF2 IgG

was seronegative for 21 antibody markers and only seropositive to

BGLF2 IgA and IgG, EBNA1trunc and EBNA1pep IgG and VCAp18

IgA. Seroprevalence of LF2 IgG in control LSCCs was only 3%

(Figure 2). The second and third best-performing antibodies were

BGLF2 IgG with a sensitivity of 97% at 92% specificity, and BXLF1
F IGURE 1 Odds ratios (OR) and 95% confidence intervals
(CI) adjusted for age, gender, smoking and alcohol consumption for
the association of EBV IgA and IgG antibodies with NPC

F IGURE 2 Median fluorescence intensities (MFI) for antibody
responses against LF2 IgG, stratified by EBER-ISH status for 98 NPC
cases (n = 29 positive, n = 12 negative, n = 57 missing) and control
laryngeal squamous cell cancer (LSCC; n = 142). The dotted line
indicates the seropositivity cut-off (30 MFI) based on receiver
operator characteristic (ROC) analysis of NPC cases with available
EBER-ISH data

F IGURE 3 Heatmap showing EBV and HPV serostatus as well as

molecular markers (EBER-ISH and HPV DNA, HPV RNA and p16 IHC)
of all 98 NPC cases. Positivity is shown in green, negativity in red, and
black indicates nonavailable data. EBV serology is defined as
seropositivity to LF2 IgG antibodies. HPV serology is defined as either
HPV16 E6 > 1000 MFI, or positivity to three out of four early
antigens of HPV16 or of HPV18, or positivity to two type-concordant
early antigens (E6 and E7) of HPV 31, 33, 35, 45, 52 or 58
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IgG (93% and 92%, respectively). However, 10% and 17% of the

control LSCCs were seropositive for BGLF2 and BXLF1 IgG,

respectively.

BGLF2 IgA antibodies showed the strongest association with

NPC among all cases (Table S2), based on high specificity (only 1% of

control LSCCs were seropositive) but with low sensitivity (only 47%

of NPC cases were seropositive; Table S2). Even when restricting the

analysis to EBER-ISH-positive cases, the sensitivity of BGLF2 IgA anti-

bodies was much lower (76%) than for BGLF2 IgG and LF2 IgG

(both 97%).

Combining several biomarkers did not improve classification of

EBV-positive NPCs compared to single markers in this dataset. The

combination of the two best stand-alone markers (positivity for at

least one of the two), LF2 IgG and BGLF2 IgG, yielded a slightly higher

TABLE 2 Characteristics of EBV-positive, HPV-positive and EBV/HPV-negative NPC cases

EBV-positive (n = 66) HPV-positive (n = 18) EBV/HPV-negative (n = 14) P-value

Mean age (SD) 52 (14) 53 (12) 59 (9) .19

Sex .38

Male 49 (74%) 16 (89%) 10 (71%)

Female 17 (26%) 2 (11%) 4 (29%)

Stagea .50

I 5 (8%) 0 (0%) 2 (14%)

II 15 (23%) 4 (22%) 5 (36%)

III 24 (37%) 8 (44%) 2 (14%)

IV 21 (32%) 6 (33%) 5 (36%)

Treatment .38

Surgery only 1 (2%) 0 (0%) 2 (14%)

Chemoradiotherapy only 51 (77%) 15 (83%) 9 (64%)

Radiotherapy only 8 (12%) 3 (17%) 2 (14%)

Surgery and chemo/radio 3 (5%) 0 (0%) 0 (0%)

Chemotherapy only 1 (2%) 0 (0%) 0 (0%)

No treatment 2 (3%) 0 (0%) 1 (7%)

Smokinga .39

Never 14 (33%) 2 (20%) 5 (45%)

Former 19 (44%) 5 (50%) 6 (55%)

Current 10 (23%) 3 (30%) 0 (0%)

Oral sex partnersa .24

1 to 2 10 (50%) 4 (50%) 1 (20%)

3 to 4 4 (20%) 4 (50%) 2 (40%)

5 or more 6 (30%) 0 (0%) 2 (40%)

Alcohol consumptiona .10

Nondrinker 21 (48%) 1 (8%) 6 (50%)

Moderate 12 (27%) 4 (33%) 2 (17%)

Hazardous/harmful 11 (25%) 7 (58%) 4 (33%)

Ethnicity .06

White 52 (79%) 18 (100%) 13 (93%)

Non-white 14 (21%) 0 (0%) 1 (7%)

Histologya .0004

WHO type I 0 (0%) 3 (30%) 1 (25%)

WHO type II 8 (17%) 5 (50%) 3 (75%)

WHO type III 28 (61%) 2 (20%) 0 (0%)

WHO type II/III 9 (20%) 0 (0%) 0 (0%)

Basaloid squamous 1 (2%) 0 (0%) 0 (0%)

Abbreviations: EBV, Epstein-Barr virus; HPV, human papillomavirus.
aNumbers may not add up to 100% due to missing data.
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sensitivity of 100% (vs 97% for the best marker LF2 IgG alone) but

also a lower specificity of 92% compared to 100% for LF2 IgG alone.

Combining LF2 IgG and BGLF2 IgG, the positivity for control LSCCs

was 12% and thus higher than for LF2 IgG (3%) or BGLF2 IgG (10%)

alone. The gain of sensitivity of the biomarker combination is thus

lower than the loss of specificity for both, EBV negative NPCs and

control LSCCs in our study.

Based on these data, IgG antibodies to LF2 were the best stand-

alone marker for EBV-positive NPCs in the United Kingdom as a non-

endemic region within the Head and Neck 5000 study. Thus, LF2 IgG

serology was used further to define EBV-positive NPCs by serology in

the subsequent analyses described below.

3.3 | HPV serology validation

All case and control sera were tested for the presence of antibodies

against high-risk HPV types. No significant differences were observed

for HPV antibody levels between cases and controls (data not shown).

HPV tumor status based on p16 IHC analysis was available for

41 NPC cases (13 positive, 28 negative). Nucleic acid analysis results

were obtained for 22 (RNA) and 20 (DNA) cases; two cases had inva-

lid DNA but valid RNA results. For all cases with DNA/RNA testing,

p16 status was available (Figure 3). All DNA and RNA results matched

p16 status, except two cases which were only HPV DNA positive but

HPV RNA and p16 negative. Given HPV DNA positivity is insufficient

to determine active viral involvement in tumor development,21 these

cases were not considered HPV-driven tumors.

To investigate whether HPV tumor status was reflected by sero-

logical markers, antibodies against early and late proteins of high-risk

HPV types 16, 18, 31, 33, 35, 45, 52 and 58 were measured and com-

pared to HPV molecular tumor status (as assessed by clinical and labo-

ratory gold-standards p16 and HPV DNA/RNA, respectively) for

validation. All p16 negative cases were HPV seronegative (28/28),

and all but one (12/13) p16 positive cases were seropositive, resulting

in 100% specificity and 92% sensitivity of HPV serology for molecu-

larly defined HPV-positive NPCs (positive for p16, or if p16 was not

available, positivity to both HPV DNA and RNA).

Overall, of the 18 HPV positive cases defined by molecular

analysis, 13 (72%) were HPV16 positive, four (22%) were HPV18

positive and one (6%) was positive for HPV39. Of the 13 HPV16

positive cases, 12 were also identified as HPV16-positive by serol-

ogy. The remaining HPV16-positive case (positive for HPV DNA,

RNA and p16) was missed by serology. All four HPV18-positive

cases based on molecular analysis were also defined as

HPV18-positive by serology. The one HPV39-positive case by HPV

DNA/RNA was likewise defined as seropositive to HPV18,

suggesting antibody cross-reactivity between these two closely

related HPV types (HPV39 was not included in the serological anal-

ysis). Altogether, serology matched molecular analysis in all except

one case (explained by cross-reactivity), and one case was missed

by serology.

3.4 | EBV-positive, HPV-positive and EBV/HPV-
negative NPCs

Overall, including molecular tumor markers and serology, 67% of the

analyzed NPCs were exclusively EBV-positive, 18% were exclusively

HPV-positive and 14% were not associated with either of these viral

infections (Figure 3).

Comparing the characteristics of EBV-positive, HPV-positive

and EBV/HPV-negative NPCs (Table 2) revealed no strong evidence

for significant differences among the three groups, despite of histol-

ogy. Participants with EBV- and HPV-positive NPCs tended to be

younger (52 and 53 years vs 59 years for EBV/HPV-negative NPCs,

P = .19). The proportion of nondrinkers was lower for HPV-positive

NPCs (8%) than for EBV-positive and EBV/HPV-negative NPCs

(48% and 50%, respectively, P = .10). There was no current smoker

in the group of EBV/HPV-negative NPCs, in contrast to 23% and

30% among EBV-positive and HPV-positive NPCs (P = .39). The his-

tological classification of EBV-positive, HPV-positive and EBV/HPV-

negative NPCs was significantly different among the three groups

(P = .0004; Figure S2). Of four WHO type I cases, three were HPV-

positive (75%), while 28 of 30 WHO type III cases were positive for

EBV (93%). Among the 46 EBV-positive NPCs, all but one case with

basaloid squamous histology were WHO type II or III cases, that is,

there was no EBV-positive WHO type I NPC. Of the 10 HPV-

positive NPC, 3 (30%) were WHO type I cases and 7 (70%) were

WHO type II or III cases. Among the four EBV/HPV-negative NPC

cases with histological data, one (25%) was classified as WHO type

I and three (75%) as WHO type II.

All 18 HPV-positive NPCs were identified among white partici-

pants, while 14 (21%) of the EBV-positive NPCs were identified

among people of color, including 1 Indian, 1 Bangladeshi, 2 Chinese

F IGURE 4 Kaplan-Meier plot of all-cause mortality stratified by
EBV- and HPV-positive and EBV/HPV-negative NPCs. Survival is not
significantly different (P = .61) between EBV-positive (Reference),
HPV-positive (hazard ratio [HR] 0.47, 95% confidence interval
[CI] 0.13-1.69) and EBV/HPV-negative NPCs (HR 0.91, 95% CI
0.29-2.80)
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and 3 with any other Asian background, 1 Caribbean, 2 African and

4 of any other admixture (P = .06).

3.5 | Survival analysis

There was no statistical evidence of a difference in survival between

EBV-positive, HPV-positive and EBV/HPV-negative NPCs (P = .61;

Figure 4). When compared to EBV-positive NPCs, the hazard ratios

were 0.47 (95% CI 0.13-1.69) for HPV-positive NPCs and 0.91 (95%

CI 0.29-2.80) for EBV/HPV-negative NPCs.

Comparing survival stratified by WHO histology classification,

there was no statistical evidence of a difference in survival between

WHO type I, II and III tumors (P = .51; Figure S3).

4 | DISCUSSION

Our analysis of 98 NPC cases from the United Kingdom, a low inci-

dence region, showed that 67% of all NPCs were EBV-positive, 18%

were HPV-positive and 14% were not associated with either of these

viral infections. This finding is in accordance with the existing, yet

sparse literature, showing that 60% to 76% of NPCs in low-incidence

regions are EBV-positive and 9% to 16% are HPV-positive.12-15

For the first time, we have adapted a previously developed large

EBV antigen panel for multiplex serology, and showed that IgG anti-

bodies against LF2 are sufficient to define EBV-positive NPCs. In

addition, we provided evidence that the comprehensive HPV multi-

plex serology panel, established to determine molecular HPV status in

OPCs, also reliably identifies HPV tumor status of NPCs.

Our study was based on the Head and Neck 5000 prospective

clinical cohort study, including more than 5000 participants with

head and neck cancer. Although the number of NPC cases was lim-

ited to 98 due to the low incidence of NPCs in this nonendemic

region, this likely represents one of the largest NPC case series from

a Western country. However, to validate LF2 IgG antibodies as a

reliable stand-alone biomarker and to investigate survival differences

between EBV/HPV-positive NPCs and those not associated with

either viral infection, larger and prospective studies are needed. The

inclusion of other markers for defining EBV-positive NPCs, for exam-

ple, BGLF2 IgG, has to be re-evaluated in other studies with larger

case numbers.

One limitation of our study is the use of LSCCs as a control group.

Tobacco smoking and alcohol consumption are the largest risk factors

for LSCCs, and create an imbalance between cases and controls,

which we have adjusted for in our analyses. Since we only used the

laryngeal cases to check whether antibodies distinguish between

NPCs and non-NPCs, they display a suitable control group, as LSCCs

are not known to be associated with EBV infection.27 LSCC is rarely

(<5%)18 associated with HPV infection, however, we have not calcu-

lated risk estimates for HPV serology that could have been affected

by HPV-positive LSCCs. Among people with head and neck cancer,

LSCCs are the most anatomically different and distant to NPCs, which

rules out misclassification bias. There is potential misclassification

between LSCCs and OPCs, which however does not affect our analy-

sis, as we expect both, LSCCs and OPCs, to be EBV-negative.

As a strength of our study, we requested extended histopathol-

ogy reports and cross-checked information between those against the

clinical data, to confirm tumor origin and rule out anatomical site mis-

classification as far as possible, which has been discussed as a poten-

tial explanation for HPV-positive NPCs in the past.14

The extended antigen panel we used for EBV serology is based on

a previous study that described differing IgA and IgG antibody

responses in NPC cases and controls from Taiwan, thus reflecting anti-

body pattern in a high incidence region.9 All antigens performed well in

differentiating NPC cases and controls from the United Kingdom,

where NPC incidence is low. Although a lower proportion of NPCs in

low incidence regions are associated with EBV infection, the EBV-

positive NPCs seem to be broadly serologically similar to NPCs from

high incidence regions. However, IgG antibodies to one antigen, LF2,

were sufficient to differentiate between EBV-positive and EBV-

negative NPCs in our study, rather than a panel of 14 IgA and IgG anti-

bodies.9 These findings need to be confirmed with larger case numbers.

Our cut-off values were based on relatively few cases with available

EBER-ISH data. Thus, confidence intervals are wide (LF2 IgG, sensitiv-

ity = 96.6% [95% CI 82.2-99.9], specificity = 100% [95% CI

73.5-100.0], Table S1). However, larger case numbers to further evalu-

ate the role of EBV antigens in NPCs are available in endemic countries.

The standard EBV antigens, VCAp18 and EBNA1, both needed

very high cut-off values to differentiate between EBV infected indi-

viduals and NPC cases, since they are not only markers for NPC, but

also for EBV infection, and present in almost every EBV-infected indi-

vidual. However, we used the full-length VCA-p18 as an antigen. The

most EBV-specific antigenic domain comprises the C-terminal amino

acids, while the N-terminus shows high homology with other herpes

viruses.37,38 We cannot exclude a C-terminal VCA-p18 antigen may

have resulted in higher specificities, however, a study by Fachiroh

et al examining IgA antibodies against the C-terminal VCA-p18 pep-

tide for NPC diagnosis showed lower sensitivity and specificity com-

pared to the newly described antibodies in this report.39 In contrast to

VCA-p18 and EBNA1 IgA antibodies, both IgA and IgG antibodies to

LF2 seem to be almost always present in EBER-ISH positive NPC

patients, and absent in control LSCCs and EBER-ISH-negative NPCs

(Figure 2). This clear distinction makes LF2 robust and potentially

attractive as a diagnostic and potentially also prospective biomarker.

Other than only differentiating EBV-positive from EBV-negative

NPCs, the low seroprevalence of LF2 IgG (3%) in control LSCCs

(Figure 2) indicates the high value of this marker for identifying indi-

viduals with EBV-positive NPCs, assuming healthy people have similar

EBV levels as individuals with LSCC. This could be especially impor-

tant for screening applications in endemic regions.

Little is known about the biological role of LF2 in NPC develop-

ment. The EBV protein interaction map shows that LF2 binds exclu-

sively to one other EBV protein, Rta (ie, BRLF1).40 Rta is one of two

transcriptional activators for controlling the switch from latent infec-

tion to the lytic replication cycle. LF2 overexpression has been shown
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to inhibit Rta by downregulating Rta activation of different early lytic

promoters, except its own; as a result, lytic activation is blocked.41

LF2 RNA was also found to be present in Burkitt lymphoma cell lines

during latency and in Burkitt lymphoma tumor biopsies.42

In our study, we applied HPV serology of high-risk HPV types

16, 18, 31, 33, 35, 45, 52 and 58 to all NPCs. It is the first time a sero-

logical definition is used to characterize HPV-positive NPCs. Valida-

tion with molecular tumor markers (p16, HPV DNA and RNA) showed

that the previously established HPV serology for OPC detection and

prediction17,20,21,43 can be applied equally for NPCs. Interestingly, all

18 HPV-driven NPCs are from white participants as observed previ-

ously in other studies12,14,44 compared to 21% of EBV-positive NPCs

being from people of color, half being from Asian countries. There

was no overlap (neither for molecular markers, nor for serology)

between EBV- and HPV-positive tumors, suggesting that there is no

interaction between the viruses in tumor development.

Unlike OPCs, which are mostly (≥90%) associated with HPV1645

and rarely with HPV16-related types such as HPV33, we identified

13 (72%) HPV16 positive, four (22%) HPV18 positive and one (6%)

HPV39 positive NPCs. This strengthens the hypothesis that HPV-

positive NPCs are not, or at least not always, an extension from an

oropharyngeal primary, as suggested by Singhi et al14 and instead can

represent a separate tumor entity. Multiple HPV types, also including

HPV16, HPV18, HPV39 and additionally HPV59, have been described

for HPV-positive NPCs before.46 However, the question whether

HPV truly causes NPC requires replication in bigger studies, and addi-

tional analyses to establish causality.

Survival analysis of HPV-positive vs EBV-positive and EBV/HPV-

negative NPCs did not reveal survival differences in our study. This

might be due to our small case groups. Dogan et al found that HPV-

positive NPCs have a similar overall survival to EBV-positive NPCs,

while EBV/HPV-negative NPCs have a worse overall survival.13

Another study by Stenmark et al however described a worse outcome

for HPV-positive and EBV/HPV-negative NPCs than for EBV-positive

NPCs.23 HPV-positive NPCs are only observed in low-incidence,

rather than endemic regions, which makes it difficult to obtain large

numbers of NPCs associated with HPV to evaluate different tumor

etiologies and patient prognosis with sufficient statistical power. In

contrast, it should be noted that the United Kingdom belongs to the

countries with relatively high HPV-prevalence in OPC.47

Comparing NPC cases positive for EBV or HPV and EBV/HPV-

negative NPCs, there is a significant difference between the histologi-

cal NPC subtypes. It is well established that nonkeratinizing NPCs

(WHO type II/III) are especially frequent in endemic regions, where

almost all tumors are EBV-positive, while EBV is absent in WHO type

I NPCs.48 In our study, 55 NPCs (92% of all 60 NPCs with histological

classification) are either WHO type II or III. Of those 55 NPCs, 45 are

positive for EBV (82%), only seven positive for HPV (13%) and three

negative for both EBV and HPV (5%). Of the four WHO type I NPCs,

none was positive for EBV. This strengthens the close association of

EBV-positive and WHO type II/III NPCs.

As suggested by Lo et al,49 we provide additional evidence that

HPV-positive NPCs are associated with keratinizing (WHO type I)

NPCs. Of four keratinizing NPCs, three were positive for HPV, and

the remaining one was negative for both EBV and HPV.

Keratinizing NPCs have also been associated with smoking and

alcohol use, a shared characteristic with other head and neck squa-

mous cell carcinomas.49 Of the four keratinizing NPCs we report,

two are former smokers and reported hazardous alcohol consump-

tion; one never smoked, but reported hazardous alcohol consump-

tion; and one was a former smoker, but nondrinker; in summary,

tobacco and alcohol exposure seems very high in this population.

Comparing the survival of the WHO type I, II and III cases, we did

not observe a difference in survival between these histological sub-

types (Figure S3). Larger studies are needed for a reliable compari-

son of survival data.

There is no statistical evidence for a difference in smoking

between EBV-positive, HPV-positive and EBV/HPV-negative NPCs.

However, it is noticeable that there is no current smoker in the

EBV/HPV-negative NPC group. Since EBV infection and smoking

have been described as independent risk factors,50 we expected more

current or former smokers in the group of EBV/HPV-negative NPCs.

Instead, we observed 55% of former smokers in this group (compared

to 50% for HPV-positive and 44% for EBV-positive NPC) and not a

single current smoker, while 23% of EBV-positive and 30% of HPV-

positive NPC cases were smoking at the time of diagnosis. In conse-

quence, NPCs which are neither associated with EBV, HPV and

smoking may be caused by other risk factors, which may include other

viral infections not considered in our study. The absence of any

smoker in the group of EBV/HPV-negative NPCs could also be based

on reporting bias. However, in our study, data on smoking is incom-

plete and our case groups are too small to draw final conclusions.

In summary, both EBV and HPV serology were included in our

analysis and validated with molecular tumor markers, and we have

shown that EBV and HPV serum antibodies correlate with the viral

status of NPC tumors. Individual serum antibodies or antibody pat-

terns represent an attractive, little invasive diagnostic marker that

does not require tumor tissue. The methods we presented here

should be applied in further case/control and prospective studies to

confirm results with larger case numbers (especially for HPV-

positive NPCs), healthy control groups, and prospectively collected

serum samples.
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