
                          Chesnaye, N. C., Dekker, F. W., Evans, M., Caskey, F. J., Torino, C.,
Postorino, M., Szymczak, M., Ramspek, C., Drechsler, C., Wanner,
C., Jager, K. J., & the EQUAL Study investigators (2020). Renal
function decline in older men and women with advanced CKD: Results
from the EQUAL study. Nephrology Dialysis Transplantation,
[gfaa095]. https://doi.org/10.1093/ndt/gfaa095

Peer reviewed version

Link to published version (if available):
10.1093/ndt/gfaa095

Link to publication record in Explore Bristol Research
PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online
via Oxford University Press at https://doi.org/10.1093/ndt/gfaa095 . Please refer to any applicable terms of use
of the publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the
published version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/

https://doi.org/10.1093/ndt/gfaa095
https://doi.org/10.1093/ndt/gfaa095
https://research-information.bris.ac.uk/en/publications/2dd2574a-84f1-4e1d-8e72-f06a815364bc
https://research-information.bris.ac.uk/en/publications/2dd2574a-84f1-4e1d-8e72-f06a815364bc


1 
 

Renal function decline in older men and women with advanced CKD – Results from the EQUAL 

study 

Nicholas C Chesnaye1, Friedo W Dekker2, Marie Evans3, Fergus J Caskey4, Claudia Torino5, Maurizio 

Postorino5, Maciej Szymczak6, Chava L Ramspek2, Christiane Drechsler7, Christoph Wanner7, Kitty J. 

Jager1, and the EQUAL study investigators  

 

1 ERA-EDTA Registry, Dept of Medical Informatics, Academic Medical Center, University of 

Amsterdam, Amsterdam Public Health research Institute, Amsterdam, The Netherlands. 2 

Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands. 3 

Renal unit, department of Clinical Intervention and technology (CLINTEC), Karolinska Institutet and 

Karolinska University hospital, Stockholm. 4 Population Health Sciences, Bristol Medical School, 

University of Bristol, UK. BS8 2PL. 5 IFC-CNR, Clinical Epidemiology and Pathophysiology of Renal 

Diseases and Hypertension & G.O.M., Bianchi Melacrino Morelli, Reggio Calabria, Italy. 6 Dept of 

Nephrology and Transplantation Medicine, Wroclaw Medical University, Wroclaw, Poland. 7 Division 

of Nephrology, University Hospital of Wurzburg, Wurzburg, Germany. 

 

Corresponding author 

Nicholas C. Chesnaye 

Department of Medical Informatics, Amsterdam Public Health Research Institute 

Location AMC | J1b-109 | Meibergdreef 9, 1105 AZ Amsterdam 

T: +31(0)20-566 0022 | E: n.c.chesnaye@amsterdamumc.nl 

 

 

  

mailto:n.c.chesnaye@amsterdamumc.nl


2 
 

Abstract 

Introduction 

Understanding the mechanisms underlying the differences in renal decline between men and 

women may improve sex-specific clinical monitoring and management. To this end, we aimed to 

compare the slope of renal function decline in older men and women in CKD stage 4-5, taking into 

account informative censoring related to the sex-specific risks of mortality and dialysis initiation.  

Methods 

The EQUAL study is an observational prospective cohort study in stage 4-5 CKD patients ≥65 years 

not on dialysis. Data on clinical and demographic patient characteristics were collected between 

April 2012 to December 2018. eGFR was calculated using the CKD-EPI equation. eGFR trajectory by 

sex was modelled using linear mixed models, and joint models were applied to deal with informative 

censoring. 

Results 

We included 7801 eGFR measurements in 1682 patients over a total of 2911 years of follow-up. 

Renal function declined by 14.0% (95% CI 12.9%-15.1%) on average each year. Renal function 

declined faster in men (16.2% per year, 95% CI 15.9%-17.1%) compared with women (9.6% per year, 

95% CI 6.3%-12.1%), which remained largely unchanged after accounting for various mediators, and 

for informative censoring due to mortality and dialysis initiation. Diabetes was identified as an 

important determinant of renal decline specifically in women.  

Conclusion 

In conclusion, renal function declines faster in men compared with women, which remained similar 

after adjustment for mediators, and despite a higher risk of informative censoring in men. We 

demonstrate a disproportional negative impact of diabetes specifically in women.  
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What is already known about this subject:  

• It is known that the epidemiology of chronic kidney disease (CKD) differs by sex, however, 

the current evidence on sex-specific slopes of renal decline in advanced CKD remains 

inconclusive. 

• Studying renal function decline by sex is complicated by informative censoring caused by 

sex-specific risks of mortality and dialysis initiation. 

 

 

What this study adds:  

• Men progress faster than women, even after adjustment for important mediators, and 

despite having a higher risk of censoring. 

• Diabetes is an important determinant of renal decline, with a disproportional negative 

impact specifically in women. 

 

What impact this may have on practice or policy:  

• Our results help understand the mechanisms underlying the differences in renal function 

decline between the sexes, and help achieve individualized and sex-specific management 

and treatment in advanced CKD. 

 

 

Keywords 

Renal function decline, sex disparities, EQUAL  
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Introduction 

The epidemiology of chronic kidney disease (CKD) differs by sex. Population-based studies across the 

globe consistently show a higher prevalence of CKD in women compared with men 1–7, yet 

approximately 60% of those starting renal replacement therapy (RRT) for end-stage kidney disease 

(ESKD) are men 8,9. This paradox has several potential explanations 10. First, the longer life 

expectancy in women along with the natural decline of glomerular filtration rate with age may partly 

explain the higher prevalence of CKD in women. Second, several (population-based) studies 11–14, as 

well as a large meta-analysis of studies in non-diabetic CKD patients 15, point towards a faster decline 

of renal function in men. In contrast, others have demonstrated a more rapid progression in women 

in various (sub) populations 16–18, whereas some found no difference between the sexes at all 19,20. A 

meta-analysis of randomized controlled trials found that women progress at an equal speed as men, 

with adjusted analyses even suggesting a faster progression in women 21. Given these inconclusive 

results, it is clear that the estimated sex-specific decline in renal function depends on the population 

studied; CKD stage, the presence of diabetes mellitus, (post-menopausal) age, population-based 

cohorts versus referred patients, are all factors that likely contribute to the variation in current 

evidence. 

Studying renal function decline by sex is complicated by a sex-specific selection processes caused by 

a higher mortality risk in men across all ranges of pre-ESKD eGFR 22,23. The effect of eGFR decline and 

albuminuria on mortality risk seems stronger in women, adding complexity to the selection process 

22. Furthermore, as men and women start dialysis at different levels of eGFR 24, censoring at dialysis 

initiation may be deemed informative when studying CKD progression. Consequently, it is important 

when investigating this topic to take into account informative censoring caused by mortality and 

dialysis initiation, as the estimated slopes of renal function decline by sex may otherwise be biased. 

Understanding the mechanisms underlying the differences in renal function decline between the 

sexes may aid sex-specific clinical monitoring and management. To date, very few studies have 

investigated renal function decline by sex specifically during pre-dialysis stages 4-5 in referred CKD 

patients of older age, and none have taken into account the potential bias caused by the sex-specific 

risk of mortality and dialysis initiation 25. Consequently, here we aim to compare the slope of renal 

function decline in older men and women with advanced CKD, taking into account informative 

censoring due to mortality and dialysis. As a secondary aim, we will explore sex-specific 

determinants of renal function decline in this population. 
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Methods 

Study design and population 

The EQUAL study is an ongoing observational cohort study including stage 4-5 CKD patients not on 

dialysis receiving routine medical care in Germany, Italy, the Netherlands, Poland, Sweden, and the 

United Kingdom. Patients of 65 years of age and older were included with an incident estimated 

glomerular filtration rate (eGFR) < 20 ml/min/1.73m² calculated by the Modification of Diet in Renal 

Disease equation. Patients were excluded if the drop in eGFR resulted from an acute event or if they 

had previously received dialysis or a kidney transplant. Approval was obtained from the medical 

ethical committees in each country. Informed consent was obtained from all patients. A full 

description of the study has been published elsewhere 26.  

 

Data collection 

Clinical data were collected between April 2012 to December 2018 on patient demographics, 

primary renal disease, laboratory data, and cardiovascular risk factors (smoking status, body mass 

index, haemoglobin, blood pressure, cholesterol, and diabetes mellitus). Data on the following pre-

existing cardiovascular comorbid conditions were also collected (definitions provided in 

supplement); cerebrovascular disease, peripheral vascular disease, myocardial infarction, angina 

pectoris, congestive heart failure, left ventricular hypertrophy, hypertension, and cardiac 

arrhythmias. Study visits were scheduled at 6-month intervals, and patients were followed until 

dialysis initiation, kidney transplantation, death, refusal for further participation, loss to follow-up, 

or end of follow-up. The eGFR was calculated from serum creatinine level standardized to isotope 

dilution mass spectrometry using the CKD-EPI equation 27. In addition, GFR was estimated during 

follow-up from routine 24-hour urine collection by taking the average of creatinine clearance and 

urea clearance, normalized to body surface area following the Dubois & Dubois formula. Albumin-

creatinine ratio was also determined following routine 24-hour urine collection or a single sample if 

24h urinary collection was unavailable. Primary kidney disease was classified using the codes of the 

European Renal Association-European Dialysis and Transplantation Association (ERA-EDTA) and 

grouped as glomerulonephritis, diabetes mellitus, tubulo-interstitial disease, hypertension, and 

miscellaneous kidney diseases.  

 

Statistical analysis 

Patient characteristics were reported by sex as mean values with standard deviations for normally 

distributed continuous variables, as medians with interquartile ranges for skewed continuous 

variables, and as proportions for categorical variables. Linear mixed models were used to model the 
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eGFR trajectory. A random intercept was included to capture the variation in eGFR baseline value 

between patients, and a random slope for time to capture variability in the patient's eGFR trajectory. 

Due to non-linear patient trajectories of eGFR, the latter was included as a cubic B-spline with two 

equally spaced knots positioned between the minimum and maximum of follow-up. The unadjusted 

model includes time, sex, and their interaction, and describes the sex-specific trajectory of eGFR 

over time. In subsequent models, we investigate to which extent the effect of sex on the eGFR 

trajectory is mediated by various groups of a priori defined covariates (i.e. mediators). All models 

were adjusted for baseline eGFR and age at inclusion.  

 

We followed patients until death or dialysis initiation. Missing eGFR values may be introduced when 

patients drop-out of the study due to mortality or are censored due to dialysis initiation. As the level 

of renal function is related to these events, drop-out is deemed informative 28–30. We applied joint 

models for longitudinal and time-to-event data to avoid biased estimates of eGFR decline 31. The 

joint model links the linear mixed model described above to a Cox survival model, which captures 

the risk of either mortality or dialysis. In this manner, the joint model informs the longitudinal eGFR 

trajectory on missingness caused by either of these events. To determine whether the difference in 

eGFR slope between men and women had changed after taking into account informative censoring 

due to mortality or dialysis, we tested for equality between the time-sex interaction coefficients in 

the linear mixed model and joint model using a Z-score test 32. 

Sex-specific determinants of eGFR decline were studied through effect modification using 

interaction analyses, specifically through 3-way interactions between sex, time, and the 

characteristics of interest. Q-Q plots were used to check whether the residuals were normally 

distributed, and eGFR was log-transformed to fulfil this assumption. Consequently, regression 

coefficients were exponentiated and interpreted as the mean percent change in eGFR per year. Only 

complete cases were analysed, and missing values are reported in the supplement. All analyses were 

performed with SAS version 9.4 and R version 3.4.1. 

Sensitivity analyses 

We performed a number of sensitivity analyses. First, in addition to the CKDEPI equation, we also 

repeated the analyses using the Full Age Spectrum equation and the revised Lund-Malmö equation 

to estimate GFR 33,34. Second, we studied the association between sex and GFR decline estimated 

from 24-hour urine collection. Third, as age is an important variable in all estimating GFRs, we also 

considered the relationship between sex and 1/creatinine over time. Last, due the wide range in 

individual follow-up time, we also repeated the analyses in patients with at least 1 year of follow-up. 
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Results 

Patient characteristics  

Table 1 describes the baseline characteristics of 1682 patients by sex. On average, patients were 76 

years old at inclusion (IQR 71-81), two-thirds were men, and the eGFR at baseline was 17.0 

ml/min/1.73m2 (IQR 14.5-20.4). Women were older, had a slightly higher BMI, higher values of 

serum calcium, cholesterol, and potassium, but lower levels of haemoglobin. Diabetes and 

glomerular disease accounted for a lower proportion of primary renal disease in women compared 

with men, whereas tubulo-interstitial disease and hypertension were more common in women. 

Women had higher baseline renal function, and lower albumin creatinine ratio (ACR). Regarding 

comorbidity, more men had diabetes, peripheral vascular disease, myocardial infarction, and angina 

pectoris.  

The effect of sex on the eGFR trajectory 

We included 7801 eGFR measurements over a total of 2911 years of follow-up, with a median of 4 

(IQR 2-7) measurements per patient, and a median follow-up time of 18.6 months (IQR 6.7 – 32.6). 

Renal function declined 14.0% (95% CI 12.9%-15.1%) on average each year. Figure 1A shows a faster 

unadjusted annual decline in renal function in men (16.2% per year, 95% CI 15.9%-17.1%) compared 

with women (9.6% per year, 95% CI 6.3%-12.1%), with a difference of 6.6% (95% CI 4,3%-9,1%). 

These estimates remained largely unchanged after accounting for various groups of mediators (table 

2). For the purpose of comparison with existing literature, we determined the linear sex-specific 

slopes of renal function decline, without log-transformation, as -1.82 (95% CI -1.63--2.01) 

ml/min/1.73m2 per year for men and -0.91 (95% CI -0.40--1.43) ml/min/1.73m2 per year for women. 

Sensitivity analyses using GFR estimated following routine 24-hour urine collection, 1/creatinine, and 

eGFR calculated using the Full Age Spectrum and the revised Lund-Malmö equations provided similar 

results . Estimated renal function decline in a sub-group of patients with at least 1 year of follow-up 

was also similar to the main results (supplement). 

The effect of sex on the eGFR trajectory adjusted for informative censoring 

Figure 1B shows the eGFR trajectory in men and women after accounting for informative censoring 

due to death or dialysis initiation. The adjusted trajectories represent the average eGFR trajectory in 

the hypothetical situation that all patients had remained alive / had not started dialysis. After 
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accounting for death (5-year cumulative incidence of 21.4% in men and 19.6% in women, p-value = 

0.32), the difference in renal decline between men (16.1% per year, 95% CI 15.0%-17.1%) and 

women (9.5% per year, 95% CI 6.3%-12.6%) remained 6.6% (p-value for change in coefficient = 0.97). 

Accounting for drop-out due to dialysis initiation (5-year cumulative incidence of 31.9% in men and 

21.4% in women, p-value for difference <.0001) also had little effect on the difference in renal 

function decline between men (17.2% per year, 95%CI 16.1%-18.5%) and women (10.4% per year, 

95% CI 6.9%-14.2%), increasing the difference in slope between men and women marginally from 

6.6% to 6.8% (p-value for change in coefficient = 0.81). 

The sex-specific determinants of the eGFR trajectory 

We identified effect modification by age, diabetes, and myocardial infarction at inclusion on the 

slope of renal function decline by sex. We found that women of older age had slower declines in 

renal function compared with younger women (figure 2A), whereas age had little effect on renal 

decline in men (p-value for interaction= 0.03). In addition, women with diabetes had significantly 

faster declines in renal function compared with non-diabetics, whereas this was not the case in men 

(figure 2B, p-value for interaction = 0.05). The differential effect of diabetes seemed more 

pronounced in women under the age of 82 (p-value for interaction = 0.02, supplementary figure 1). 

Other baseline characteristics did not differentially affect the slope of renal decline in men and 

women. 

 

Discussion 

 

In our population of elderly CKD stage 4 and 5 patients not on dialysis, we demonstrate a faster 

decline of renal function in men compared with women, which persisted after taking into account 

important mediators. By applying joint models to account for the sex-specific risks of informative 

censoring due to death and dialysis, we demonstrate that men progress faster than women despite 

having a higher risk of drop-out. Furthermore, we identified diabetes as an important determinant of 

renal decline specifically in women, demonstrating that renal function in female diabetics 

deteriorated at a similar pace as in men. Interestingly, older women had slower declines of renal 

function, indicative of a certain degree of selection bias in our cohort. 

 

To our knowledge, this is the first study to explore renal decline by sex in a referred cohort of 

incident CKD patients with an eGFR of <20 ml/min/1.73m2. We found that renal function in men 

declined approximately twice as fast as in women (-1,82 ml/min/1.73m2 per year and -0,89 
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ml/min/1.73m2 per year, respectively), which remained similar after adjustment for various 

mediators and informative censoring. Comparable studies on sex-specific renal decline during the 

transition period from stage 4-5 CKD to dialysis are scarce11,25. Nonetheless, our results are in line 

with studies published in cohorts consisting of patients in earlier stages of CKD15; a Swedish 

population-based study of CKD stage 3 patients estimated similar differences in renal declines 

between men (-1.26 ml/min/1.73m2 per year for a 70-year old) and women (-0.76 ml/min/1.73m2 

per year) 13. More recently, in a referred cohort of CKD stage 2 and 3 patients, the CRIC study also 

found faster declines in men (-1.43 ml/min/1.73m2 per year) compared with women (-1.09 

ml/min/1.73m2 per year), although this difference was somewhat smaller compared to our 

estimates 12. Even in the ‘healthy’ general population (cohort baseline eGFR of 80.7 ml/min/1.73m2), 

the PREVEND study found an eGFR slope of -0.55 ml/min/year/1.73m2 in men and -0.33 

ml/min/year/1.73m2 in women 14. Altogether, most available evidence points towards a faster 

decline of renal function in men, seemingly regardless of CKD stage. Nonetheless, a handful of 

studies exist that have found either a faster progression in women 16 or no difference at all between 

the sexes 19,20. One of these studies, a large meta-analysis of randomized controlled trials, found that 

women progress at an equal speed as men, with adjusted analyses (baseline creatinine, blood 

pressure, urinary protein, age, and treatment assignment) suggesting a faster progression in women 

21, although this discrepancy may be attributed to stringent patient selection common to RCTs and 

erroneous adjustment within the causal pathway.  

This sex difference in renal decline has several potential explanations related to biological and/or 

sociocultural aspects 10. Risk factors related to lifestyle, such as a poor diet and smoking, may partly 

be responsible for faster decline as seen in men 18,35. Although more men had a history of smoking 

and a higher burden of cardiovascular co-morbidities in our cohort, adjustment for these factors had 

little effect on the sex difference in renal decline. Others have demonstrated differential effects of 

albuminuria, cholesterol, blood pressure, and glycaemic control, on renal function decline in men 

and women 14,16,35, although most of these studies applied methodology corresponding to prognostic 

research, thus not contributing to mechanistic evidence. Lastly, sex hormones also likely play a role, 

as animal studies have demonstrated renoprotective effects of oestrogens and damaging effects of 

testosterone 25,36–38. 

We demonstrate that diabetes has a stronger effect on renal decline in women compared with men, 

to the extent that renal decline was similar between the sexes in those with diabetes. The literature 

surrounding this topic is inconsistent, with some reporting faster declines in diabetic men39,40, and 

others finding no differences between the sexes 41. In line with our findings, a Japanese cohort of 
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type 2 diabetics described faster declines in women (-3.5 per year) compared with men (-2.0 per 

year), attributing this finding to a poorer metabolic control in women 42. Similarly, a UK randomised 

control trial in type 2 diabetics found that women had an 88% increased risk over men of declining 

to <60 ml/min 43. Moreover, excess mortality risk in diabetic women has been described in the 

dialysis population 44, as well as in non-renal cohorts 45,46, confirming a disproportional negative 

impact of diabetes in women. Diminished protection of oestrogens in the hyperglycemic state may 

explain this disparate effect, even though the women in our population were likely post-menopausal 

47.  

 

Missing eGFR values are introduced over time as patients are censored due to dialysis initiation or 

death. As the level of renal function is related to these events, censoring is deemed informative 28. 

More importantly, as the risks of dialysis initiation or death are specific to men and women, 

informative censoring may affect the estimated slopes for men and women differentially, potentially 

introducing bias. We are unaware of any previous studies that have taken into account the sex-

specific risks of dropout when studying renal decline by sex. Here, we were able to account for this 

issue by modelling both eGFR decline and the risk of drop-out simultaneously, providing eGFR slopes 

corrected for both censoring due to death and dialysis. As the risk of death did not differ 

substantially between men and women in our cohort, adjustment had little effect on the difference 

in slopes between men and women. However, as Nitsch et al demonstrated in their meta-analysis, 

the mortality risk difference between men and women is far larger in earlier stages of CKD 22. In such 

populations, accounting for mortality would have likely had a larger effect on the difference in renal 

slopes between men and women, accounting for more of the difference in renal decline compared 

to our cohort. Conversely, accounting for censoring caused by dialysis initiation led to marginally 

steeper adjusted slopes, reflecting the faster renal decline in patients that were censored due to 

dialysis initiation. As the risk of dialysis was higher in men, the unbiased difference in renal function 

decline between the sexes was amplified slightly after accounting for this event, although this 

change in effect was not statistically significant. 

 

Studying renal decline by sex is complicated by a sex-specific selection process throughout the pre-

dialysis period. Contrary to our expectations, we found slower renal declines in older women. The 

literature on the effect of age on renal decline is inconsistent, with some reporting faster renal 

declines with increasing age 17,48, and others reporting the opposite49,50. Potential explanations for 

our findings may be a differential mortality rate in men and women (prior to inclusion) which may be 

inclined to select the healthier surviving women with slowly progressing CKD. One may also 



12 
 

hypothesize that this finding may be caused by a sex-dependent decrease in muscle mass with age, 

biasing our estimated glomerular filtration rates. Lastly, considering all patients in the EQUAL cohort 

are referred, there may be selection mechanisms at play in the referral patterns. 

 

The main strength of our study is that we apply joint models to deal with informative censoring 

caused by mortality and dialysis initiation, providing unbiased estimates of renal decline. 

Furthermore, patients in our cohort were prospectively included when their eGFR dropped below 

the pre-defined level of 20 ml/min, thus minimizing the risk of survivor bias. Our study is also subject 

to several limitations. Preferably, we would have used measured GFR by a reference method to 

estimate the slope of renal decline, however, measuring GFR with a tracer technology was 

unfortunately not feasible in a cohort study of the size of EQUAL.. The use of eGFR in the main 

analysis may partly reflect muscle mass, which may disproportionately bias eGFR estimates in 

women 51. Nonetheless, others have shown mGFR to perform similarly to eGFR. Lastly, due to the 

observational nature of our study, residual confounding may play a role, and therefore the results 

should be interpreted accordingly. 

In older patients with advanced CKD, we demonstrate faster declines in renal function in men 

compared with women, even after adjustment for multiple groups of mediators. Importantly, 

informative events such as death and dialysis initiation explained little of the difference in renal 

decline between the sexes in our advanced CKD cohort. In diabetics, however, both men and women 

declined at a similar rate, demonstrating a disproportional negative impact of diabetes in women. 

Our results help understand the mechanisms underlying the differences in renal function decline 

between the sexes and warrant further research to develop the sex-specific interventions needed to 

achieve individualized management and treatment. 
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Table 1. Baseline patient characteristics by sex. 

  Overall (n=1682) Men (n=1099) Women (n=583) 
p-

value 

Demographics         

Age (mean (SD))  76.30 (6.76)  75.97 (6.45)  76.94 (7.28)  0.006 

Primary renal disease n (%)         

  Diabetes    341 (20.5)     238 ( 21.9)     103 ( 17.9)   0.006 

  Glomerular disease    152 ( 9.1)     111 ( 10.2)      41 (  7.1)    

  Tubulo-interstitial disease    138 ( 8.3)      76 (  7.0)      62 ( 10.8)    

  Hypertension    596 (35.8)     378 ( 34.7)     218 ( 37.9)    

  Miscellaneous renal disorders    436 (26.2)     285 ( 26.2)     151 ( 26.3)    

Weight (kg) (mean (SD))  79.70 (17.16)  83.44 (16.10)  72.51 (16.88) <0.001 

Height (cm) (mean (SD)) 167.57 (9.94) 172.17 (7.86) 158.81 (7.25) <0.001 

BMI (kg/m2) (mean (SD))  28.42 (5.34)  28.20 (4.81)  28.86 (6.23)  0.023 

Blood chemistry          

Albumin (g/dL) (mean (SD))  37.70 (5.91)  37.66 (5.89)  37.78 (5.97)  0.708 

Calcium (mmol/L) (mean (SD))   2.24 (0.32)   2.23 (0.32)   2.27 (0.33)  0.013 

Cholesterol (mmol/L) (mean (SD))   4.53 (1.28)   4.34 (1.17)   4.89 (1.41) <0.001 

PO4 (mmol/L) (mean (SD))   1.30 (0.32)   1.30 (0.33)   1.31 (0.30)  0.303 

Potassium (mmol/L) (mean (SD))   4.64 (0.61)   4.67 (0.62)   4.60 (0.60)  0.037 

Cardiovascular         
Systolic blood pressure (mmHg) (mean 
(SD)) 142.85 (21.96) 143.31 (21.61) 141.99 (22.61)  0.245 

Diastolic blood pressure (mean (SD))  73.83 (11.26)  74.00 (11.35)  73.49 (11.10)  0.379 

Hb (g/dL) (mean (SD))   0.72 (0.09)   0.73 (0.10)   0.71 (0.09) <0.001 

Current smoker n(%)    119 ( 9.3)      82 (  9.7)      37 (  8.4)   0.538 

Ex-smoker n(%)    752 (63.1)     587 ( 74.5)     165 ( 40.8)  <0.001 

Renal function         

CKDEPI (ml/min/1.73m2) (median [IQR])  17.01 [13.79, 20.11]  16.69 [13.67, 19.63]  17.63 [14.40, 21.08] <0.001 

MDRD (ml/min/1.73m2) (median [IQR])  18.57 [15.27, 21.92]  18.45 [15.05, 21.62]  18.99 [15.54, 22.62]  0.036 

ACR (median [IQR])  33.67 [4.90, 154.67]  41.36 [7.47, 161.10]  19.66 [2.99, 119.00]  0.002 

Comorbidities         

Diabetes n(%)    693 (42)     480 ( 44.5)     213 ( 37.4)   0.006 

Chronic heart failure n(%)    290 (18.1)     195 ( 18.7)      95 ( 17.0)   0.443 

Cerebrovascular disease n(%)    257 (15.7)     171 ( 15.9)      86 ( 15.3)   0.781 

Peripheral vascular disease n(%)    279 (17.2)     203 ( 19.2)      76 ( 13.5)   0.005 

Myocardial infarction n(%)    287 (17.4)     222 ( 20.6)      65 ( 11.4)  <0.001 

Angina pectoris n(%)    239 (14.7)     178 ( 16.8)      61 ( 10.9)   0.002 

Left ventricular hypertrophy n(%)    349 (23.7)     244 ( 25.3)     105 ( 20.8)   0.062 

Atrial fibrillation n(%)    297 (18.2)     190 ( 17.9)     107 ( 18.9)   0.644 

Hypertension n(%)   1432 (89.1)     935 ( 89.0)     497 ( 89.4)   0.860 
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Table 2. The average annual percent decline in eGFR by sex, adjusted for various groups of 

mediators.  

[see Excel document] 
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Figure 1A. The average eGFR trajectory by sex with 95% confidence intervals. 
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Figure 1B. The average eGFR trajectory by sex (LMM) adjusted for censoring due to death (JM: 

Death) and dialysis (JM: Dialysis). The adjusted trajectories represent the average eGFR trajectory in 

the hypothetical situation that all patients had remained alive / had not started dialysis. JM: Joint 

Model, LMM: linear mixed model. The top group of lines correspond to the eGFR trajectory in 

women and the bottom lines to that in men. 
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Figure 2A. Effect modification by age on renal function decline by sex.  
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Figure 2B. Effect modification by diabetes on renal function decline by sex.  
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