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Abstract 17 

Cytoplasmic dynein-2 is a motor protein complex that drives the movement of cargoes 18 

along microtubules within cilia, facilitating the assembly of these organelles on the surface 19 

of nearly all mammalian cells. Dynein-2 is critical for ciliary function as evidenced by 20 

deleterious mutations in patients with skeletal abnormalities. Long-standing questions 21 

include how the dynein-2 complex is assembled, regulated, and switched between active 22 

and inactive states. A combination of model organisms, in vitro cell biology, live-cell 23 

imaging, structural biology, and biochemistry has advanced our understanding of the 24 

dynein-2 motor. In this Cell Science at the Glance and the accompanying poster, we 25 

showcase current understanding of dynein-2 and its roles in ciliary assembly and function. 26 
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Introduction  31 

Cytoplasmic dynein-2 (here “dynein-2) is an ATP-dependent motor protein that steps along 32 

microtubules to transport cargoes within cilia and flagella (Box 1). It is related to 33 

cytoplasmic dynein-1 (here “dynein-1”), which is involved in the transport of cargos within 34 

the cytoplasm, organelle dynamics (Reck-Peterson et al., 2018), and mitotic spindle 35 

organization during mitosis (Raaijmakers and Medema, 2014). In contrast, dynein-2 does 36 

not act in canonical membrane traffic (Palmer et al., 2009), but functions primarily, if not 37 

exclusively, within the intraflagellar transport (IFT) system (Box 2). Here, dynein-2 38 

assembles with kinesin-2, IFT-A complexes, and IFT-B complexes to form polymeric IFT 39 

“trains”, which move cargoes to the ciliary tip (kinesin-2 direction) and back to the cell body 40 

(dynein-2 direction). Dynein-2-driven transport occurs in the confined space between the 41 

ciliary microtubule doublets and the ciliary membrane (Roberts, 2018). There is some 42 

evidence for dynein-2 functions outside of cilia; for example, in Chlamydomonas, which 43 

lacks dynein-1, dynein-2 is implicated in cytoplasmic trafficking to the base of cilia (Cao et 44 

al., 2015). 45 

Dynein-1 and dynein-2 are distantly related to their axonemal cousins (Kollmar, 2016; 46 

Wickstead and Gull, 2007), which drive the beating of motile cilia and flagella (Box 1). 47 

Below, and in the accompanying poster, we provide an overview of dynein-2 discovery, 48 

subunit composition, structure, and regulation. We also discuss new insights into the 49 

functions of dynein-2 in mantaining the ciliary transition zone – the gatekeeper between 50 

the cilium and the cytoplasm (Box 1) – as well as the connection between dynein-2 and 51 

human disease. 52 

Discovery of dynein-2 and its role in IFT 53 

Dynein-2 was first identified in sea-urchin (Gibbons et al., 1994) and rat (Tanaka et al., 54 

1995) based on sequence similarity to dynein-1 In mammals. It was described as a 55 

cytoplasmic dynein and shown to be upregulated prior to ciliogenesis in sea urchin 56 

embryos (Gibbons et al., 1994) and mammalian cells (Criswell et al., 1996). Retrograde 57 

IFT was first linked to a cytoplasmic dynein motor in Chlamydomonas (Pazour et al., 58 

1998). Further work revealed that mutations in dynein-2 resulted in cells with short flagella 59 

that accumulated IFT proteins at their tip (Pazour et al., 1999b; Pazour et al., 1998; Porter 60 

et al., 1999), and also perturbed retrograde transport of kinesin-2 in C. elegans (Signor et 61 

al., 1999).  62 
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Structure and composition of dynein-2 63 

Dynein-2 is a large multiprotein complex, composed of 16 copies of at least eight different 64 

proteins in humans (see poster). Insights into dynein-2 subunit composition have come 65 

from a variety of cell biology, genetic, and biochemical studies (see below), and a recent 66 

cryo-EM structure of the dynein-2 complex (Toropova et al., 2019). Like other dyneins, the 67 

subunits of dynein-2 are classified as heavy chains, intermediate chains, light-intermediate 68 

chains, and light chains depending on their mass. Most subunits in the dynein-2 complex 69 

are unique to dynein-2, but a subset of the light chains are also found in dynein-1 (Asante 70 

et al., 2014). Naming of dynein-2 subunits varies (see poster) and here we use the human 71 

nomenclature unless specified.  72 

Dynein-2 is built around two copies of the heavy chain, DYNC2H1 (Criswell et al., 1996; 73 

Mikami et al., 2002). The C-terminal region forms the motor domain, which converts the 74 

energy from ATP hydrolysis into movement (Schmidt et al. 2015). The N-terminal region 75 

forms the tail: an extended structure that binds the other subunits (Hamada et al., 2018) 76 

and holds the two heavy chains in a homodimer (Toropova et al., 2017; Toropova et al., 77 

2019). In an interesting variation compared to other organisms, trypanosomatids possess 78 

two distinct dynein-2 heavy chains that form a heterodimer (Adhiambo et al., 2005; Blisnick 79 

et al., 2014).  80 

The dynein-2 light-intermediate chain, DYNC2LI1 (Grissom et al., 2002; Hao et al., 2011; 81 

Hou et al., 2004; Li et al., 2015; Mikami et al., 2002), binds directly to the tail of each heavy 82 

chain and is important for stabilising its structure (Hou et al., 2004; Reck et al., 2016; 83 

Toropova et al., 2017). The light-intermediate chain has a Ras-like fold and appears to 84 

bind to nucleotide (Schroeder et al., 2014; Toropova et al., 2019). Although nucleotide-85 

binding by the light-intermediate chain does not seem essential for dynein-2 function (Hou 86 

et al., 2004), whether it serves a structural role or has a minor regulatory function remains 87 

unclear. 88 

The other dynein-2 subunits – namely, the intermediate chains and light chains – form an 89 

unusual stoichiometry subcomplex at the core of dynein-2’s tail, which makes the structure 90 

of dynein-2 highly asymmetric (Toropova et al., 2019). While dynein-1 is composed of 91 

homodimeric subunits, including its intermediate chain, dynein-2 notably differs in that it 92 

contains two different intermediate chains. Originally defined as FAP133 (Rompolas et al., 93 

2007) and FAP163 (Patel-King et al., 2013) in Chlamydomonas, these subunits have been 94 

validated as bona fide mammalian dynein-2 subunits, WDR34 (Asante et al., 2013; Asante 95 
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et al., 2014; Huber et al., 2013; Schmidts et al., 2013b) and WDR60 (Asante et al., 2014; 96 

McInerney-Leo et al., 2013).  97 

WDR34 and WDR60 form a heterodimer (Asante et al., 2014; Hamada et al., 2018; 98 

Toropova et al., 2019; Vuolo et al., 2018) (see poster). Their C-terminal β-propeller 99 

domains each bind a copy of the heavy chain, and their extended N-terminal regions are 100 

held together by an array of light chain dimers (Toropova et al., 2019). These comprise 101 

one DYNLRB dimer, which binds proximal to the β-propellers, followed by three DYNLL 102 

dimers, and a putative DYNLT-TCTEX1D2 heterodimer (Asante et al., 2014; Hamada et 103 

al., 2018; Kanie et al., 2017; Toropova et al., 2019; Tsurumi et al., 2019). Co-expression 104 

studies indicate that WDR34 preferentially interacts with DYNLL and DYNLRB, whereas 105 

WDR60 preferentially interacts with DYNLT-TCTEX1D2 (Hamada et al., 2018). Among the 106 

light chains, TCTEX1D2 is specific to dynein-2 (Asante et al., 2014; Gholkar et al., 2015; 107 

Schmidts et al., 2015). The other light chains (DYNLRB, DYNLL, and DYNLT) are also 108 

found in dynein-1 (Asante et al., 2014), and each has two orthologs in mammals (e.g. 109 

DYNLRB1 and DYNLRB2). The orthologs appear to play interchangeable roles (Hamada 110 

et al., 2018) but may have subtly different biochemical properties or generate tissue-111 

specific expression patterns (King et al., 1998). In summary, the unusual stoichiometry of 112 

dynein-2’s intermediate and light chains is a distinctive feature of the complex; as 113 

described below, it has important roles in dynein-2 motility regulation and attachment to 114 

IFT trains.  115 

Regulation and Motility 116 

Dynein-2 motility is tightly regulated to enable its functions in IFT. The dynein-2 motor 117 

domain contains a ring of six AAA+ modules, of which the N-proximal module (AAA1) is 118 

the main ATPase site (Schmidt et al., 2015). N-terminal to AAA1 is a rod-like ‘linker’ 119 

domain that amplifies conformational changes. Dynein-2’s microtubule-binding domain is 120 

at the tip of a coiled-coil stalk (see poster).  121 

The current generally accepted model is that dynein-2 is transported passively from the 122 

ciliary base to tip by kinesin-2 (Hao et al., 2011; Rosenbaum and Witman, 2002). 123 

Following activation, it then actively transports the IFT machinery and cargoes from tip to 124 

base during retrograde IFT. The motile properties of the human dynein-2 motor domain 125 

have been recently described using in vitro assays (Toropova et al., 2017). Interestingly, 126 

monomeric constructs moved significantly faster (around 500 nm/s) than dimers, as the 127 

motor domains in the dimer stack against one another to give rise to an auto-inhibited 128 
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conformation (Toropova et al., 2017; Toropova et al., 2019). Accordingly, disruption of the 129 

stacking interface induced a significant increase in velocity. These results suggested that 130 

the dynein-2 motor domains intrinsically exist in an autoinhibited, stacked conformation, 131 

that facilitates transport of dynein-2 to the ciliary tip by kinesin-2 (Toropova et al., 2017). 132 

Supporting this model, motility assays using both kinesin-2 and dynein-2 showed that the 133 

velocity of kinesin-2 was only minimally affected by inactive dynein-2, whereas an 134 

unstacked, active dynein-2 mutant conferred resistance against kinesin-2 (Toropova et al., 135 

2017). In vivo support for dynein-2 auto-inhibition came from an analysis of IFT trains by 136 

using cryo-electron tomography in Chlamydomonas (Jordan et al., 2018). In this study, the 137 

anterograde trains were observed as densely packed and ordered structures composed of 138 

three repeats of approximately of 6, 11 and 18 nm, which were assigned to IFT-B, IFT-A 139 

and dynein-2 respectively. Notably, dynein-2 appeared in a stacked (autoinhibited) 140 

conformation when interacting with anterograde trains, with its stalks oriented away from 141 

the microtubule, which is likely to further inhibit the motor. 142 

Recent cryo-EM and cryo-electron tomography studies shed light on how dynein-2’s 143 

subunits enable it to associate with anterograde IFT trains to travel to the ciliary tip. In 144 

particular, dynein-2’s subcomplex of intermediate and light chains has at least two 145 

important roles. First, it brings two copies of the heavy chain together into a stable dimer 146 

with auto-inhibited motors domains (Toropova et al., 2019), which is likely a suitable state 147 

for loading onto anterograde trains at the ciliary base (Wingfield et al., 2017). Second, the 148 

intermediate and light chains contort the two copies of the heavy chain into different 149 

conformations within the tail (Toropova et al., 2019). This asymmetric architecture is 150 

tailored to the repeating structure of the anterograde IFT-B train: each dynein-2 complex 151 

spreads out over seven to eight IFT-B repeats, and is tightly packed with the neighbouring 152 

dynein-2 complexes along the train (Jordan et al., 2018; Toropova et al., 2019) An 153 

important question for future studies is to determine which subunits of the IFT-B complex 154 

interact with dynein-2 on the anterograde train, but molecular genetic studies have 155 

implicated IFT172 as important for dynein-2 targeting or turnaround the ciliary tip 156 

(Pedersen et al., 2005; Tsao and Gorovsky, 2008; Williamson et al., 2012). 157 

The mechanism by which dynein-2 is repositioned to bind to the axoneme and switched to 158 

an active conformation at the tip remains one of the most intriguing questions in the field. 159 

Biochemical and genetic studies suggest that classical dynein-1 accessory factors such as 160 

dynactin (Reck-Peterson et al., 2018) are not involved in dynein-2 regulation (Asante et al., 161 

2014; Roberts, 2018). One possibility is that IFT-A and IFT-B themselves regulate dynein-162 
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2 activity and that the rearrangement of these large complexes during train disassembly 163 

and reassembly facilitates a conformational switch within dynein-2 to form an active 164 

complex at the ciliary tip (Yi et al., 2017). Because the intermediate and light chains 165 

stabilise the auto-inhibited conformation of dynein-2, they must either rearrange or 166 

dissociate to activate the motor at the ciliary tip (Pazour et al., 2000; Toropova et al., 167 

2019). Post-translational modifications of dynein-2 of the IFT subunits might have a role in 168 

dynein-2 activation, but these are not yet well described. It is also possible that other, thus 169 

far unknown regulators, are involved in this process.  170 

Ciliogenesis and cilia function in dynein-2 mutants 171 

Mutants in the dynein-2 heavy chain in many model organisms, including 172 

Chlamydomonas, C. elegans, mouse and zebrafish, and cultured mammalian cells, 173 

present similar phenotypes with short cilia and bulbous ciliary tips (Adhiambo et al., 2005; 174 

May et al., 2005; Pazour et al., 1999a; Porter et al., 1999; Wicks et al., 2000). In both mice 175 

(Wu et al., 2017) and cultured human cells (Vuolo et al., 2018), loss of WDR34 is 176 

associated with severe ciliogenesis defects, but others have shown that ciliogenesis is 177 

only moderately impaired in WDR34 knock-out (KO) cells (Tsurumi et al., 2019). In 178 

contrast, WDR60 is required for correct retrograde trafficking, but is dispensable for 179 

extending the ciliary axoneme in cultured human cells (Asante et al., 2014; Hamada et al., 180 

2018; Vuolo et al., 2018). Moreover, fibroblasts from affected individuals with mutations in 181 

WDR60 still extend the ciliary axoneme, but the percentage of ciliated cells is variable 182 

(McInerney-Leo et al., 2013). Similar phenotypes with normal cilia length and a moderate 183 

reduction in cilia number were observed in TCTEX1D2 mutant fibroblasts from affected 184 

individual with short rib–polydactyly syndromes (SRPS) (Schmidts et al., 2015) or in 185 

TCTEX1D2-KO cells (Hamada et al., 2018).  186 

Although defects in DYNC2LI1 do not completely abolish cilia extension, its mutation is 187 

associated with a ciliary accumulation of IFT proteins and defects in cilia length regulation, 188 

as observed in patient fibroblasts (Kessler et al., 2015; Taylor et al., 2015). Moreover, 189 

DYNC2LI1 appears to play a critical role in the stability of the dynein-2 complex in 190 

Chlamydomonas (Hou et al., 2004; Reck et al., 2016). These variations in phenotype could 191 

result from low level expression or, in some cases of genome engineering, expression of 192 

truncated proteins, leading to retention of partial function. Furthermore, loss of one subunit 193 

may affect the overall stability of the complex as has been seen for WDR34 and WDR60 194 

KO. This outcome has also been clearly described for mice lacking the transcription factor 195 

ASCIZ (ATMIN) which have a severely reduced expression of the LC8 light chain, 196 
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DYNLL1, which results in partial depletion other dynein-2 subunits (King et al., 2019). 197 

Overall, full dynein-2 function does not appear to be absolutely required for ciliogenesis 198 

per se, but is needed to maintain the overall structure, including length control, and for 199 

core ciliary signalling functions. 200 

Dynein-2 and the ciliary transition zone 201 

New insights into IFT trafficking recently revealed an unexpected role for IFT-A and 202 

dynein-2 in maintaining compartmentalization of the transition zone (TZ) and thus of the 203 

ciliary structure in C. elegans and human cells. The TZ consist of a densely packed 204 

domain containing multiple proteins that are assembled in a tightly regulated process (see 205 

Box 1 and poster). The hierarchy of TZ assembly has been extensively described in 206 

several organisms and presents some common features in different models (reviewed in 207 

(Goncalves and Pelletier, 2017)). Super-resolution imaging and electron microscopy have 208 

resolved a map that defines the localization of distinct modules of the TZ (see poster). 209 

CEP290 (centrosomal protein 290 kDa) lies at the core of the TZ base and facilitates the 210 

assembly of other TZ components (Yang et al., 2015). RPGRIP1L ((retinitis pigmentosa 211 

GTPase regulator interacting protein 1-like; also called MKS-5 (Meckel syndrome type 5)) 212 

is a core component of C. elegans and vertebrate TZs (Li et al., 2016; Wiegering et al., 213 

2018) that localizes distally to CEP290 and adjacent to the TZ microtubules. The NPHP 214 

(nephronophthisis) module links the CEP290 core to the MKS module that includes MKS1 215 

(Meckel syndrome type 1), TCTN1 (Tectonic-1), TCTN2 (Tectonic-2), as well as several 216 

membrane proteins including TMEM67 (transmembrane protein 67) (Awata et al., 2014; 217 

Dean et al., 2016; Goncalves and Pelletier, 2017; Schouteden et al., 2015; Wang et al., 218 

2013). This organization is also supported by proteomic mapping of the base of the cilium 219 

(Gupta et al., 2015). The TZ links the axonemal microtubules to the ciliary membrane and 220 

acts to gate entry and exit of proteins and lipids to the cilium. As such, it serves a vital 221 

function in the compartmentalization of ciliary signalling.  222 

Recent data showed that dynein-2 is important to maintain the structure and integrity of the 223 

TZ. Loss of dynein-2 intermediate chains WDR34 and WDR60 caused a disruption of TZ 224 

composition in cultured human cells (Jensen et al., 2018; Vuolo et al., 2018), and a 225 

temperature-sensitive mutant showed that dynein-2 is required for TZ assembly and gating 226 

function in C. elegans (Jensen et al., 2018). In particular, the studies in human cells 227 

showed a distal extension of the RPGRIP1L domain of the TZ and a reduction of the 228 

TMEM67 area, whereas other TZ components, such as TCTN1 and CEP290, were not 229 
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affected. Interestingly, knockout of WDR34 and WDR60 was also associated with 230 

mislocalisation of several ciliary membrane proteins and IFT components, suggesting a 231 

defect in the entry and/or export mechanism that is regulated by the TZ (Vuolo et al., 232 

2018). Consistent with these data, the temperature-sensitive mutation in the dynein-2 233 

heavy chain resulted in a defective TZ composition in C. elegans (Jensen et al., 2018). 234 

Notably, at the restrictive temperature, some TZ components, such as NPHP4 235 

(nephrocystin 4), CEP290 and MKS6 (Meckel Syndrome, Type 6), were mislocalised to a 236 

more distal region of the cilium. Furthermore, disruption of the TZ resulted in the ectopic 237 

localization of two different basal body proteins,TRAM1 (Translocating Chain-Associating 238 

Membrane Protein) and RPI2 (human retinitis pigmentosa-2 ortholog), in the ciliary 239 

axoneme (Jensen et al., 2018), suggesting a defect in the ‘ciliary gate’ formed by the TZ. 240 

Interestingly, proper TZ organisation was restored at permissive temperature, indicating 241 

that maintenance of TZ integrity is an active process that requires dynein-2.  242 

It is uncertain how dynein-2 mediates TZ assembly, but this might involve its association 243 

with the IFT-A complex (Scheidel and Blacque, 2018). Analysis of IFT-A mutants indicated 244 

that IFT-A components play different roles in cilia entry and/or export of TZ components in 245 

the cilia in C. elegans. According to this model, core subunits of IFT-A (e.g. IFT140) 246 

promote entry of TZ proteins into cilia, whereas its non-core subunits (IFT121, IFT139, 247 

IFT43) regulate ciliary export. Consistent with observations in dynein-2 KO-cells (Vuolo et 248 

al., 2018), the key TZ component RPGRIPL1 is mislocalised in IFT-A mutants. Although 249 

the cilia from both IFT-A and dynein-2 mutants show a mislocalisation of several TZ 250 

proteins, no major defects are observed in the overall architecture of the TZ as determined 251 

by electron microscopy (Jensen et al., 2018). High-resolution views of the structure and 252 

dynamics of the TZ’s components may help to elucidate its gating function and 253 

dependence on IFT-A and dynein-2.  254 

Human diseases associated with defects in dynein-2 function  255 

Defects in cilia formation and function lead to human pathologies, collectively termed 256 

ciliopathies (Reiter and Leroux, 2017). Mutations in dynein-2 are associated with a group 257 

of ciliopathies called ‘skeletal ciliopathies’ that are described as dysplasia (SRTD) with or 258 

without polydactyly (Huber and Cormier-Daire, 2012). The phenotypes related to skeletal 259 

ciliopathies include craniofacial abnormalities, short stature, shortened ribs, brachydactyly, 260 

and polydactyly. The skeletal phenotype can appear in association with defects in other 261 

organs, with retinal and kidney abnormalities as the most common symptoms observed 262 
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outside the skeletal system (Huber and Cormier-Daire, 2012). The skeletal abnormalities 263 

observed in some forms of SRTD patients are most likely related to defects in signalling 264 

pathways during embryonic development, including hedgehog (Hh), which requires cilia 265 

(Huangfu et al., 2003). In this context, cilia are particularly important to ensure correct Hh 266 

signalling during bone formation, and defects in dynein-2 result in the mislocalisation of 267 

Smoothened, a key component of Hh signalling, to cilia (May et al., 2005; Tsurumi et al., 268 

2019; Vuolo et al., 2018; Wu et al., 2017). In recent years, whole exome-sequencing has 269 

enabled the identification of new mutations involved in skeletal ciliopathies, with the most 270 

common mutations affecting DYNC2H1 (Badiner et al., 2017; Cossu et al., 2016; 271 

Dagoneau et al., 2009; Merrill et al., 2009; Schmidts et al., 2013a). Moreover, mutations in 272 

WDR34 (Huber et al., 2013; Schmidts et al., 2013b), WDR60 (Cossu et al., 2016; 273 

McInerney-Leo et al., 2013), DYNC2LI1 (Kessler et al., 2015; Taylor et al., 2015), and 274 

TCTEX1D2 (Gholkar et al., 2015; Schmidts et al., 2015) have been also associated with 275 

SRTD, and a conditional KO of DYNLL1 in mouse limb mesoderm resulted in bone 276 

shortening, similar to that observed in SRTD patients (King et al., 2019). A comprehensive 277 

review of dynein-2 genes associated with skeletal ciliopathies has been recently published 278 

(Schmidts and Mitchison, 2018).  279 

Conclusions 280 

While we know much about the composition of the dynein-2 motor, its interactions, and 281 

now even have a structure of the dynein-2 complex, there is still much to be determined. A 282 

question for both mechanistic and clinical studies is how defects in dynein-2 relate to 283 

anterograde and retrograde trafficking. The tight co-assembly of dynein-2 with IFT-B trains 284 

defines its crucial position in anterograde IFT trains (Jordan et al., 2018; Toropova et al., 285 

2019). Understanding the role of dynein-2 in maintaining a functional cilium and 286 

coordinating different signalling pathways, notably Hh, will likely help us to understand the 287 

contributions of dynein-2 and cilia in and skeletogenesis. Open questions include how, at 288 

the atomic level, dynein-2 co-assembles with IFT complexes at the ciliary base, and how 289 

its entry into the cilium is gated. It is also unclear what triggers the disassembly of 290 

anterograde kinesin-2-driven IFT trains at the ciliary tip, how retrograde trains - driven by 291 

active dynein-2 - are formed, or why dynein-2 is used to actively transport kinesin-2 to the 292 

ciliary base in vertebrate cilia (Broekhuis et al., 2014; Williams et al., 2014) when diffusion 293 

appears to be sufficient in Chlamydomonas (Chien et al., 2017; Engel et al., 2012).  294 
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Intensive and integrated efforts combining biochemistry, structural biology, clinical 295 

genetics, cell and developmental biology will be required to address these challenges, 296 

giving an opportunity to fully understand the mechanism and functions of dynein-2 in cilia 297 

biology and to apply this knowledge to improve human health.  298 
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BOX 1: Primary and motile cilia  311 

Cilia are microtubule-based structures, with an axoneme based on nine cylindrically 312 

arranged microtubule (MT) doublets. Primary (a.k.a. sensory) cilia are solitary structures 313 

on the cell surface and function as ‘antenna’ that transduce signals from the extracellular 314 

environment. Motile cilia are present on specialised cell types and function to drive the 315 

movement of fluids in multiciliated epithelia in vertebrates, the locomotion of sperm, and 316 

the motility of many unicellular organisms. In addition to the nine microtubules doublets, 317 

motile cilia usually feature an additional central pair of MTs in the axoneme lumen (Mirvis 318 

et al., 2018). Axonemal dyneins generate the force to bend the axoneme in motile cilia 319 

(King and Sale, 2018). In all cilia and flagella, each microtubule doublet consists of A and 320 

B tubules, with the A tubule formed by 13 protofilaments and the B tubule formed by 10 321 

protofilaments. While motile cilia typically present a 9+2 structure along the axoneme 322 

length, the structure of primary cilia is more variable. Recent electron tomography data 323 

indicate that in the primary cilium of several kidney cell lines, two of the microtubule 324 

doublets progressively shift toward the core of the axoneme at the region where the 325 

primary cilium starts to extend into the extracellular space, forming a 7+2 arrangement 326 

(Sun et al., 2019).  327 

The structure of cilia includes a series of evolutionarily conserved subdomains, each 328 

defined by a specific cohort of proteins. The cilium extends from the basal body, formed by 329 

the mother centriole along with subdistal and distal appendages proteins. Transition fibres 330 

connect the basal body to the plasma membrane. Distal to the basal body is the transition 331 

zone (TZ), characterized by membrane-associated Y-shaped links. Transition fibres and 332 

the TZ compartment form a permeability barrier called the ‘ciliary gate’ that regulate ciliary 333 

protein composition (Jensen and Leroux, 2017) (see poster) . 334 

  335 
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BOX 2: The bidirectional intraflagellar transport system 336 

IFT was first described in Chlamydomonas reinhardtii, where large particles moving in both 337 

directions along the length of the flagella were observed using differential interference 338 

contrast (DIC) microscopy (Kozminski et al., 1993). Subsequently, using time-lapse 339 

imaging of specifically-labelled proteins, IFT has been described in many model systems, 340 

including Caenorhabditis elegans (Orozco et al., 1999), Tetrahymena thermophila (Brown 341 

et al., 1999), Trypanosoma brucei (Absalon et al., 2008) and vertebrate cells (Follit et al., 342 

2006; Pazour et al., 2002; Pazour et al., 2000). IFT trafficking complexes called ‘trains’ 343 

comprise IFT-A and IFT-B subcomplexes, which mediate the interactions between the 344 

ciliary motors and cargo (see poster). The IFT-B complex is generally associated with 345 

anterograde trafficking; it is formed of a core subcomplex of 10 subunits (IFT88, -81, -74, -346 

70, --56, 52, -46, -27, -25, and -22), a peripheral complex of six subunits (IFT172, -80, -57, 347 

-54, -38, and -20), and associates with the small GTPase RabL2 (Kanie et al., 2017). IFT-348 

A, which is generally required for retrograde transport as well as the ciliary import of a 349 

variety of membrane proteins, includes IFT144, -140, - 139, -122, -121, and -43 (Taschner 350 

and Lorentzen, 2016), and associates with the cargo adapter TULP3 (Mukhopadhyay 351 

2010). A further complex, the BBSome, associates with IFT trains to stabilise their 352 

assembly (Wei et al., 2012) and mediates retrograde membrane protein trafficking 353 

(Nachury and Mick, 2019). In Chlamydomonas, anterograde and retrograde IFT trains 354 

have been defined to move on the B and A tubules of the axonemal microtubule doublets, 355 

respectively (Stepanek and Pigino, 2016). While there are strong common features of IFT 356 

between model organisms, there are also key differences. In Chlamydomonas, kinesin-2 357 

appears to mainly diffuse back to the ciliary base (Engel et al., 2012), whereas, in 358 

metazoans, kinesin-2 motors appear to be recycled to the ciliary base predominantly by 359 

retrograde IFT (Mijalkovic et al., 2017; Signor et al., 1999; Vuolo et al., 2018; Williams et 360 

al., 2014). Interestingly, an additional dynein heavy chain, DHC-3, has been implicated in 361 

the formation of a subset of cilia in C. elegans, and DHC-3 was identified – together with 362 

the dynein-2 heavy chain - in genetic screens for anti-helminth resistance (Page, 2018). 363 

The deposited protein sequence for DHC-3 suggests it is a highly divergent dynein heavy 364 

chain that lacks ATP binding sites that is thus unlikely to function as a conventional motor. 365 

  366 
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Structure of dynein-2Subunit composition of dynein-2

Role of dynein-2 in the bidirectional IFT system Impact of dynein-2 subunit mutants Dynein-2 and the ciliary transition zone
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