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Nonlinear normal modes (NNMs) are a widely used
tool for studying nonlinear mechanical systems. The
most commonly-observed NNMs are synchronous
(i.e. single-mode, in-phase and anti-phase NNMs).
Additionally, asynchronous NNMs in the form of
out-of-unison motion, where the underlying linear
modes have a phase difference of 90◦, have also
been observed. This paper extends these concepts to
consider general asynchronous NNMs, where the modes
exhibit a phase difference that is not necessarily equal
to 90◦. A single-mass, two-degree-of-freedom model
is firstly used to demonstrate that the out-of-unison
NNMs evolve to general asynchronous NNMs with
the breaking of the geometrically-orthogonal structure
of the system. Analytical analysis further reveals that,
along with the breaking of the orthogonality, the out-
of-unison NNM branches evolve into branches which
exhibit amplitude-dependent phase relationships.
These NNM branches are introduced here and termed
phase-varying backbone curves. To explore this further,
a model of a cable, with a support near one end,
is used to demonstrate the existence of phase-
varying backbone curves (and corresponding general
asynchronous NNMs) in a common engineering
structure.

1. Introduction
Nonlinearities in mechanical structures can cause a wide
variety of complex dynamic phenomena, such as modal
interactions, localisation, bifurcations and instability [1–
3]. As such, identifying the existence of these phenomena,
and addressing the difficulties they pose to the design,
performance analysis and prediction of the behaviour of
nonlinear systems can be challenging. For example,
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cables can exhibit complex nonlinear behaviours [4–7]; this renders cable-supported structures,
e.g. cable-stayed bridges and floating offshore systems, susceptible to unwanted vibrations
during operation [8,9].

To understand these nonlinear phenomena, linear theory is often insufficient, or even invalid,
since the nonlinear behaviours can significantly differ from the linearised ones. In this context,
extending linear theory to account for nonlinear behaviours is needed. To address this, the
concept of a Nonlinear Normal Mode (NNM) was defined by Rosenberg [10–12] as an in-unison,
or a synchronous, periodic resonance for a conservative nonlinear system. It requires that the
displacements of components all reach their extreme values and pass through equilibrium points
simultaneously during periodic resonances. As such, these NNMs may be represented in terms
of their initial displacements, where the initial velocities are set to zero. Such synchronous NNMs
include single-mode, in-phase and anti-phase responses, which have been observed in a variety
of nonlinear systems, e.g. the two-mass oscillators [13–15], beam structures [16,17], rotor systems
[18], and cable structures [19].

As well as synchronous (single-mode, in-phase and anti-phase) resonances, nonlinear systems
can exhibit asynchronous resonances, where the displacements of components do not reach their
extreme values and pass through equilibrium points simultaneously while remaining periodic. To
account for such asynchronous resonances, an extension to Rosenberg’s definition was proposed
in [20,21], where an NNM is defined as a (non-necessarily synchronous) periodic response of
the conservative system; this definition of an NNM is considered throughout this paper. One
example of an asynchronous NNM is the whirling motion observed in cable structures [6,19], and
rotor systems [18]. This whirling motion is an out-of-unison response in which one coordinate
reaches an extremum whilst another passes through the equilibrium point. As such, for a two-
mode system, this motion may be represented by the initial displacement of one coordinate
and the initial velocity of the other (whilst the respective initial velocity and displacement are
simultaneously zero). Considering the phase of the underlying coordinates, in-phase and anti-
phase motions are characterised by a phase difference of 0◦ or 180◦, whilst out-of-unison motion
is characterised by a phase difference of±90◦. Besides this special case of out-of-unison motion, to
the best knowledge of the authors, a more general asynchronous NNM, characterised by a general
phase relationship (i.e. non-necessarily 90◦ out-of-phase), has not been identified in the literature.
If such general asynchronous NNMs exist, they represent a large family of nonlinear responses
that may affect the performance of the nonlinear systems, and may potentially be exploited. Such
behaviours may be considered to be more complex than synchronous or out-of-unison motions,
as they may include responses where no velocities or displacements are simultaneously zero.
Their existence also indicates that the phase relationships between modal coordinates are crucial
parameters to be determined when computing the NNMs.

Here, we hypothesise and then demonstrate the existence of general asynchronous NNMs
using the simple motivating example of a two-mode1 single-mass oscillator. In addition to
this being a new solution type, this observation highlights the need to consider phase as a
free variable (rather than constrained to 0, ±90◦ or 180◦) when searching for NNMs using
analytical techniques, and using numerical approaches that rely on systematic investigation
of the initial conditions. Section 2 first revisits the concept of synchronous and asynchronous
NNMs, distinguished by the phase relationships between the modal coordinates of a two-mode
system with 1 : 1 internal resonance. A numerical method is then used to demonstrate that
the hypothisised general asynchronous NNMs can exist for the single-mass oscillator. As with
the cable structure and in-line two-mass oscillator studied in [19], numerical results show that
the single-mass model possesses out-of-unison NNMs when it has a geometrically-orthogonal
layout. With the breaking of the orthogonal configuration, the out-of-unison NNMs can evolve
to more general asynchronous cases, where the phase difference is neither 0◦, 180◦ nor ±90◦.
This demonstrates that such motions may exist in a nonlinear mechanical structure. Building on
this finding, in Section 3, an analytical technique is used to further quantify the characteristics of
1Note that the term mode is used here to refer to a mode of the underlying linear model of the system.
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Synchronous responses Asynchronous responses

Figure 1. Schematic representations of synchronous and asynchronous nonlinear normal modes (NNMs) for a two-mode

system with 1 : 1 internal resonance. The responses are illustrated in the projection of the first and second linear modal

coordinates, q1(t) and q2(t), parameterised in time. (a) the single-mode NNMs. (b) the in-phase (θd = 0) and anti-phase

(θd = π) NNMs. (c) the ±π/2 out-of-phase NNMs, where the ‘+’ and ‘−’ signs denote clockwise and anticlockwise

motions respectively. (d) the ±θd out-of-phase NNMs. (Online version in colour.)

asynchronous NNMs in the single-mass model. Analytical phase relationships of the backbone
curves, i.e. the branches of NNMs, verify the results found in Section 2, and further reveal that,
with the breaking of orthogonal configurations, the out-of-unison backbone curve evolves to one
that consists of asynchronous NNMs whose phase relationships are varying along the backbone
curve. This class of backbone curve is defined here as a phase-varying backbone curve, and represents
the loci of general asynchronous NNMs.

Using insights obtained from the single-mass model, the existence of phase-varying backbone
curves in a cable model (a common mechanical structure that exhibits out-of-unison backbone
curves [19]) is then considered in Section 4. A reduced-order cable model is first derived and
verified, using an existing analytical model [8]. The addition of a support near the cable root is
then considered – this resembles the engineering practice of installing external devices to suppress
vibrations [6,22,23]. This support breaks the orthogonal configuration of the cable and, as with
the single-mass model, causes the out-of-unison (i.e. whirling) motions to evolve into general
asynchronous motions on a phase-varying backbone curve. Finally, conclusions are presented in
Section 5.

2. Nonlinear normal modes of a two-mode system with 1 : 1
internal resonance

In this section, the NNMs of a two-mode system with 1 : 1 internal resonance are first revisited,
where an NNM is defined as a periodic response of a conservative system [20,21]. NNMs can be
divided into synchronous and asynchronous solutions. Examples of the synchronous responses
are shown in figure 1a and b, where the lines represent the oscillations over time in linear modal
space (q1 and q2 denote the first and second linear modal coordinates respectively). The extrema
of q1 and q2 are marked by ‘O’ and ‘×’ respectively. Figure 1a represents the simplest type of NNM
solution – single-mode responses that contain contributions from only q1 or q2. Figure 1b shows
the synchronous mixed-mode NNMs which, in contrast to the single-mode NNMs in figure 1a,
arise from modal interactions and consist of contributions from both linear modal coordinates,
q1 and q2. For synchronous mixed-mode NNMs, the modal coordinates reach extrema and
equilibrium points simultaneously, shown in figure 1b. Such NNMs can be characterised using the
phase relationship, θd, between the fundamental components of q1 and q2, which can be either
in-phase (θd = 0) or anti-phase (θd = π); note that this phase relationship is undefined for the
single-mode cases in figure 1a. They can also be represented by their initial modal conditions at
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Figure 2. A schematic diagram of a single-mass, two-mode system. A mass, with mass value m, has x and y

denoting horizontal and vertical in-plane displacements respectively. This mass is grounded by two horizontal springs

with coefficients k1 and k3, and unstretched lengths L1 and L3. Another spring, with coefficient k2 and unstretched

length L2, grounds the mass, with angle δ representing the angle between k1 and k2. The orthogonal case is shown

here where δ= 90◦ (Online version in colour.)

extrema – non-zero displacements with zero velocities. These synchronous cases can be seen in a
variety of nonlinear systems – see references [13–19].

For asynchronous NNMs, an example is shown in figure 1c where one modal coordinate
reaches an extremum when the other passes through the equilibrium point. In this case, the linear
modal coordinates have ±π/2 out-of-phase relationships (the ‘+’ and ‘−’ signs here denote the
clockwise and anticlockwise motions respectively). Such motions can also be characterised by
the initial conditions at extrema – a non-zero displacement for one coordinate with a non-zero
velocity for the other, or vice versa. This class of NNM is termed an out-of-unison NNM in [19],
and includes, for example, whirling motions of cables and rotor systems [18,19]. The commonly-
observed NNM motions can, therefore, be categorised as single-mode (figure 1a, where θd is
undefined), in-phase and anti-phase (figure 1b, θd = 0, π respectively) and out-of-unison (figure
1c, θd =±π/2). It seems logical, therefore, to pose the question: Can other phase relationships
exist between the linear modes of NNM responses? Such an NNM is depicted in figure 1d,
and corresponds to a general asynchronous response where the phase relationship between
linear modal coordinates is θd out-of-phase (to differentiate from these previously discussed
cases, θd 6= 0, π,±π/2). Unlike the synchronous and out-of-unison NNMs, this NNM represents
responses where displacements and velocities cannot simultaneously be zero. To the knowledge
of the authors, this more general asynchronous NNM has not been identified in the literature.

To explore the existence of this general asynchronous NNM, and further characterise its
features, a two-mode single-mass system, schematically shown in figure 2, is firstly considered.
This example system consists of one mass, with mass value m, and has displacements x and
y, denoting horizontal and vertical in-plane motions respectively. This mass is grounded by
three linear springs with coefficients k1, k2 and k3, and with unstretched lengths L1, L2 and
L3 respectively. At equilibrium, all the springs are unstretched and springs, k1 and k3, are laying
in the x-direction, whilst the angle between k1 and k2 is denoted δ (when δ= 90◦, spring k2 is
orthogonal to springs k1 and k3). Such a system can exhibit nonlinear behaviours due to geometric
nonlinearity. To investigate the nonlinear dynamic behaviours, the equations of motion can be
obtained via the Euler-Lagrange equations

mẍ+ k1 (L1 + x)− k1L1 (L1 + x)√
(L1 + x)2 + y2

+ k2 [L2 cos (δ) + x]

− k2L2 [L2 cos (δ) + x]√
[L2 cos (δ) + x]2 + [L2 sin (δ) + y]2

− k3 (L3 − x)−
k3L3 (x− L3)√
(L3 − x)2 + y2

= 0 (2.1a)
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Figure 3. Backbone curves obtained via numerical continuation for the two-mode system in figure 2 with an orthogonal

configuration. The backbone curves are shown as solid curves in the projection of the response frequency, Ω, against

the absolute displacement of the mass,
√
X2 + Y 2, for a system with m= 1, k1 = k3 = 0.5, k2 = 1.005, L1 =L2 =

L3 = 1 and δ= 90◦. Branch point bifurcations are denoted as solid dots, labelled ‘BP1’ and ‘BP2’. Five embedded plots,

in the projection of modal coordinates, q1(t) against q2(t), represent the time-parameterised responses of NNMs on the

corresponding backbone curves. The extreme displacement values of modal coordinates q1(t) and q2(t) are marked

by ‘O’ and ‘×’ respectively in these embedded plots. Arrows in the embedded plot linked to S±90
1 denote clockwise and

anticlockwise motions. (Online version in colour.)

mÿ + k1y −
k1L1y√

(L1 + x)2 + y2
+ k2 [L2 sin (δ) + y]

− k2L2 [L2 sin (δ) + y]√
[L2 cos (δ) + x]2 + [L2 sin (δ) + y]2

+ k3y −
k3L3y√

(L3 − x)2 + y2
= 0. (2.1b)

For details of the derivation, readers can refer to Appendix A. Using this two-mode model,
we investigate one potential mechanism, i.e. the breaking of the orthogonality2, that may lead
to the existence of the general asynchronous resonance. This is achieved by comparing the
backbone curves, i.e. branches of NNMs, for the orthogonal and non-orthogonal cases. These
backbone curves are computed using the numerical continuation software COCO [24], and hence
no analytical approximation is required for the results shown in this section.

(a) NNMs of the system with an orthogonal configuration
First we consider the orthogonal case, where the two-mode single-mass system has m=

1, k1 = k3 = 0.5, k2 = 1.005, L1 =L2 =L3 = 1 and δ= 90◦. The backbone curves of this system
are shown in figure 3 in the projection of the response frequency, Ω, against the absolute
displacement amplitude of the mass,

√
X2 + Y 2, where X and Y are the maximum amplitudes

of displacements x and y respectively. In this region, there are two single-mode backbone curves
2Note the orthogonality here is referred to the orthogonal geometric layout of the springs.
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S1 and S2;3 and two mixed-mode backbone curves, S+
1 and S−

1 , bifurcating from S1 through the
branch point bifurcation ‘BP1’ (the subscripts of S+

1 and S−
1 indicate the backbone curve from

which they bifurcate, in this case from S1). Note that, due to the symmetry of the configuration,
S+
1 and S−

1 are superimposed in this projection. The NNMs on these single-mode and mixed-
mode backbone curves exhibit synchronous resonances – see the time-parameterised responses
of NNMs on these backbone curves in the embedded plots, which are analogous to those shown
in figure 1a and 1b respectively. Besides these synchronous backbone curves, asynchronous
backbone curves, i.e. the out-of-unison backbone curves, S±90

1 , bifurcate from S1 through the
branch point bifurcation ‘BP2’. The embedded plot, near S±90

1 in figure 3, describes the NNMs
on S±90

1 : q1 reaches its extreme value when q2 has a zero value and vice versa, and the arrows
on the curve describe the clockwise motion (θd =+π/2) and anticlockwise motion (θd =−π/2)
respectively. The out-of-unison NNMs in this plot are similar to those shown in figure 1c, and the
out-of-unison motions reported in [19].

(b) NNMs of the system with a non-orthogonal configuration
With δ perturbed away from 90◦, the orthogonality of the system is broken. The effect of breaking
the orthogonality on the backbone curves is shown in figure 4 for the case where δ= 89.5◦, whilst
other parameters remain unchanged. For comparison, backbone curves for the orthogonal case
are also presented using dash-dotted grey curves in this figure. It can be seen that the branch
point bifurcation, ‘BP1’, splits to generate one primary in-phase backbone curve, S+

1 , and one
isolated anti-phase backbone curve S−

1 [26]. The contribution of the first linear modal coordinate,
q1, to the single-mode backbone curve, S2, increases from 0 and leads to an in-phase backbone
curve S+

2 . These three mixed-mode backbone curves still consist of synchronous NNMs – see
the embedded plots of time-parameterised responses. The other bifurcation point, ‘BP2’, remains,
and connects the anti-phase backbone curve S−

1 to S±v
1 . Backbone curves, S±v

1 , can be seen as
evolutions from the out-of-unison backbone curves, S±90

1 , with the breaking of orthogonality.
It is shown in the embedded plot linked to the S±v

1 curves that, similar to the out-of-unison
backbone curves, the NNMs on S±v

1 also exhibit asynchronous responses, where the arrows
denote the clockwise motion (+θd) and anticlockwise motion (−θd) respectively; however, the
phase relationship between the two modal coordinates, θd, are not ±π/2, but instead are similar
to the asynchronous ones shown in figure 1d. This is highlighted by the dots and crosses, shown
in the embedded plots, which illustrate that the extrema and equilibria are reached at different
times. This demonstrates that NNMs with a general asynchronous motion can exist. The phase
relationships, θd, of NNMs on these backbone curves show amplitude-dependent characteristics;
in other words, phase relationships of NNMs are varying along the backbone curves. Hence
they are termed as phase-varying backbone curves, denoted with the superscript ‘±v’. This will be
discussed in detail in the next section.

In this section, the periodic responses, i.e. the NNMs, of a two-mode system with 1 : 1 internal
resonance were firstly reviewed, emphasising the less studied asynchronous NNMs. A specific
example of such asynchronous NNMs is the out-of-unison NNM, studied in [19], where the
modal coordinates have ±π/2 phase difference. To explore the existence of a more general case,
where the NNM has a phase difference θd 6= 0, π,±π/2 between linear modal coordinates, a
simple two-mode system, shown in figure 2, has been considered. We found that the breaking
of orthogonality can transform the out-of-unison NNMs to the more general asynchronous ones.
In the next section, analytical studies are carried out to further study the dynamic characteristics
of the asynchronous NNMs.

3Note that responses on the backbone curve S1 do contain a small component of the second mode, q2; however, this is
dominated by a response at twice the fundamental frequency and there is no component at the fundamental frequency - i.e.
the motion is similar to the swaying of a cable, observed at low amplitude [25]. For consistency with later sections, we denote
this as a single-mode backbone curve, representing the fact that only one mode (q1) has a component at the fundamental
frequency.
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Figure 4. Backbone curves obtained via numerical continuation for the two-mode system in figure 2 with a non-orthogonal

configuration. The backbone curves are shown as solid curves in the projection of the response frequency Ω against

absolute displacement of the mass,
√
X2 + Y 2, for a system with m= 1, k1 = k3 = 0.5, k2 = 1.005, L1 =L2 =

L3 = 1 and δ= 89.5◦; and the branch point bifurcation is denoted as solid dot, labelled ‘BP2’. Four embedded plots,

in the projection of modal coordinates, q1(t) against q2(t), represent the responses of NNMs on the corresponding

backbone curves. The extreme displacement values of modal coordinates q1(t) and q2(t) are marked by ‘O’ and ‘×’

respectively in these embedded plots. Arrows in the embedded plot linked to S±v
1 denote clockwise and anticlockwise

motions. For comparison, the backbone curves for the orthogonal case in figure 3 are shown as grey dash-dotted curves

with branch point bifurcations denoted as hollow dots. (Online version in colour.)

3. Analytical analysis of the asynchronous backbone curves
In this section, using the harmonic balance technique, the backbone curves of the single-mass
system are found analytically and further used to characterise the asynchronous responses. To
simplify this analytical study, the full model, described by equations (2.1), is first expanded to a
polynomial one using Maclaurin expansion, and then truncated by retaining nonlinear terms up
to the cubic order. The obtained equations of motion in linear modal space are

q̈1 + ω2
n1q1 + 3Ξ1q

2
1 + 2Ξ2q1q2 + Ξ3q

2
2 + 4Ψ1q

3
1 + 3Ψ2q

2
1q2 + 2Ψ3q1q

2
2 + Ψ4q

3
2 = 0, (3.1a)

q̈2 + ω2
n2q2 + Ξ2q

2
1 + 2Ξ3q1q2 + 3Ξ4q

2
2 + Ψ2q

3
1 + 2Ψ3q

2
1q2 + 3Ψ4q1q

2
2 + 4Ψ5q

3
2 = 0, (3.1b)

where ωn1 and ωn2 denote the first and second linear natural frequencies respectively, and where
Ξ1, Ξ2, · · · , Ξ4 and Ψ1, Ψ2, · · · , Ψ5 are quadratic and cubic nonlinear coefficients. For details of
this derivation, see Appendix A.

To apply the harmonic balance method4, it is assumed that the modal displacements may be
approximated by a single harmonic, i.e.

qi ≈ ui =Ui cos (ωrit− θi) , (3.2)

4Other methods, such as the multiple-scales and normal form methods could alternatively be used.
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where ui represents the fundamental component of the qi response, and where Ui, ωri and θi are
the amplitude, frequency and phase of ui respectively. It is further assumed that the fundamental
frequencies of the two modes are equal, i.e. ωr1 = ωr2 =Ω, which accounts for 1 : 1 internal
resonance. Following the procedure described in [16] – with the substitution of expressions (3.2)
into the equations of motion (3.1), and the non-resonant terms removed, one can obtain the
time-independent solutions from

4
(
ω2
n1 −Ω2

)
U1+12Ψ1U

3
1+2Ψ3U1U

2
2

[
1+2 cos2 (θd)

]
+3
(
Ψ4U

3
2 + 3Ψ2U

2
1U2

)
cos (θd) = 0,(3.3a)

4
(
ω2
n2 −Ω2

)
U2+12Ψ5U

3
2+2Ψ3U

2
1U2

[
1+2 cos2 (θd)

]
+3
(
Ψ2U

3
1 + 3Ψ4U1U

2
2

)
cos (θd) = 0,(3.3b)[

4Ψ3U1U2 cos (θd) + 3Ψ2U
2
1 + 3Ψ4U

2
2

]
sin (θd) = 0,(3.3c)

where θd = θ1 − θ2. These equations can then be used to compute the backbone curves of the two-
mode system, depicted in figure 2. Note that the quadratic terms, presented in equations (3.1), do
not lead to 1 : 1 internally-resonant components [27], hence they do not appear in equations (3.3).

(a) Backbone curves for systems with orthogonal configurations
For orthogonal configurations of the single-mass system, one can find that Ψ2 = Ψ4 = 0 – see
Appendix A for details. This further reduces equations (3.3) to{

4
(
ω2
n1 −Ω2

)
+ 12Ψ1U

2
1 + 2Ψ3U

2
2

[
1 + 2 cos2 (θd)

]}
U1 = 0, (3.4a){

4
(
ω2
n2 −Ω2

)
+ 12Ψ5U

2
2 + 2Ψ3U

2
1

[
1 + 2 cos2 (θd)

]}
U2 = 0, (3.4b)

4Ψ3U1U2 cos (θd) sin (θd) = 0. (3.4c)

There are six different sets of solutions to equations (3.4), representing the backbone curves of the
system. The solution U1 =U2 = 0 is trivial, corresponding to the case where the system has no
motion. Besides this trivial case, there are two single-mode solutions: one is the backbone curve,
S1, with U2 = 0 and U1 6= 0; the other is the backbone curve, S2, which has U1 = 0 and U2 6= 0.
Their amplitude-frequency relationships are

S1 : U2 = 0, Ω2 = ω2
n1 + 3Ψ1U

2
1 , (3.5)

S2 : U1 = 0, Ω2 = ω2
n2 + 3Ψ5U

2
2 . (3.6)

The NNMs on these single-mode branches, as discussed previously, are schematically shown in
figure 1a.

Cases where U1 6= 0 and U2 6= 0 are related to mixed-mode backbone curves, hence the phase
relationship (equation (3.4c)) between two linear modal coordinates must be determined before
finding their amplitude-frequency relationships. Two sets of phase relationships can be found to
satisfy equation (3.4c). One requires sin (θd) = 0, i.e. θd = nπ (where n∈Z), which corresponds
to the in-phase and anti-phase cases. With sin (θd) = 0 substituted into equations (3.4), the
amplitude-frequency relationships for in-phase and anti-phase backbone curves are given

S±
1 , S

±
2


U2
1 =

2
(
ω2
n2 − ω2

n1

)
+ 3 (2Ψ5 − Ψ3)U2

2

3 (2Ψ1 − Ψ3)
,

Ω2 =
2
(
2Ψ1ω

2
n2 − Ψ3ω2

n1

)
+ 3

(
4Ψ1Ψ5 − Ψ2

3

)
U2
2

2 (2Ψ1 − Ψ3)
.

(3.7)

Like the single-mode backbone curves, NNMs on these mixed-mode, in-phase and anti-phase
backbone curves relate to synchronous responses, schematically shown in figure 1b. Note that
S±
2 doesn’t exist for the system considered in figure 3. The other phase relationship, satisfying
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equation (3.4c), has cos (θd) = 0, i.e. θd = (2n+ 1)π/2. This solution branch represents the out-
of-unison backbone curves S±90

1 and S±90
2 . Substituting cos (θd) = 0 into equations (3.4), the

amplitude-frequency relationships of S±90
1 and S±90

2 are governed by

S±90
1 , S±90

2


U2
1 =

2
(
ω2
n2 − ω2

n1

)
+ (6Ψ5 − Ψ3)U2

2

6Ψ1 − Ψ3
,

Ω2 =
2
(
6Ψ1ω

2
n2 − Ψ3ω2

n1

)
+
(
36Ψ1Ψ5 − Ψ2

3

)
U2
2

2 (6Ψ1 − Ψ3)
.

(3.8)

NNMs on these backbone curves exhibit ±π/2 out-of-phase asynchronous resonances, whose
responses are schematically shown in figure 1c. Again, we note S±90

2 doesn’t exist for the system
considered in figure 3.

(b) Backbone curves for systems with non-orthogonal configurations
For non-orthogonal configurations of the single-mass system, the nonlinear coefficients, Ψ2 and
Ψ4, are not necessarily equal to 0. With non-zero values of Ψ2 and Ψ4, the single-mode solutions
(U2 = 0 and U1 6= 0, or U1 = 0 and U2 6= 0) can no longer be achieved in equations (3.3). Hence,
in this case, only mixed-mode backbone curves can be found. Similar to the orthogonal case,
the phase relationship needs to be determined first by considering the equation (3.3c). This can
be satisfied when sin (θd) = 0, i.e. θd = nπ, which corresponds to the in-phase and anti-phase
backbone curves S±

1 and S±
2 , similar to those discussed previously. The amplitude-frequency

relationships are given by rearranging equations (3.3a) and (3.3b) as

S±
1 , S

±
2


Ω2 = ω2

n1 +
3

4

[
4Ψ1U

3
1 + 2Ψ3U

2
2U1 + p

(
Ψ4U

3
2 + 3Ψ2U

2
1U2

)]
U−1
1 ,

0 =
(
−3pΨ4U−1

1

)
U4
2 + 6 (2Ψ5 − Ψ3)U3

2 + [9p (Ψ4 − Ψ2)U1]U
2
2+[

4ω2
n2 − 4ω2

n1 + 6 (Ψ3 − 2Ψ1)U
2
1

]
U2 + 3pΨ2U

3
1 ,

(3.9)

where p= cos (nπ). For even n, p=+1 and it indicates the in-phase backbone curves S+
1 and S+

2 ;
whilst for odd n, p=−1, representing anti-phase backbone curves S−

1 and S−
2 .

Besides the in-phase and anti-phase cases, the other phase relationship relates to a zero value
of the terms in the bracket of equation (3.3c), which can be rearranged as

cos (θd) =−
3
(
Ψ2U

2
1 + Ψ4U

2
2

)
4Ψ3U1U2

. (3.10)

This expression indicates that the phase relationship (θd) is dependent upon the amplitude,
suggesting that the phase difference between the modal coordinates is varying along the backbone
curve. Here we term the asynchronous NNM branch with an amplitude-dependent phase
relationship between modal coordinates as a phase-varying backbone curve. To find the expressions
of this phase-varying backbone curve, the phase relationship (3.10) is substituted into equations
(3.3a) and (3.3b), after some algebraic manipulation, one has

S±v
1 , S±v

2



U2
1 =

8Ψ3

(
ω2
n1 − ω2

n2

)
+ [4Ψ3 (Ψ3 − 6Ψ5) + 9Ψ4 (Ψ4 − Ψ2)]U2

2

4Ψ3 (Ψ3 − 6Ψ1) + 9Ψ2 (Ψ2 − Ψ4)
,

Ω2 =


(
9Ψ2

2 − 24Ψ3Ψ1

)
ω2
n2 +

(
4Ψ2

3 − 9Ψ4Ψ2

)
ω2
n1

+
(
2Ψ3

3 − 72Ψ1Ψ3Ψ5 − 9Ψ2Ψ3Ψ4 + 27Ψ1Ψ
2
4 + 27Ψ5Ψ

2
2

)
U2
2


4Ψ3 (Ψ3 − 6Ψ1) + 9Ψ2 (Ψ2 − Ψ4)

.

(3.11)

As previously discussed, an orthogonal configuration can lead to Ψ2 = 0 and Ψ4 = 0. Substituting
these into expressions (3.11), the amplitude-frequency relationships describing phase-varying
backbone curves can be reduced to the ones describing out-of-unison backbone curves in
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Figure 5. Analytically-computed backbone curves for the single-mass system in figure 2. The backbone curves for the

orthogonal configuration, i.e. m= 1, k1 = k3 = 0.5, k2 = 1.1, L1 =L2 =L3 = 1 and δ= 90◦, are shown as grey

dash-dotted curves; whilst the backbone curves for the system with a non-orthogonal configuration, i.e. with δ changed

from 90◦ to 85◦, are presented using solid curves. (a) Backbone curves in the projection of the response frequency, Ω,

against the absolute displacement of the mass,
√
X2 + Y 2. (b) The phase on the backbone curves in the projection

of the response frequency, Ω, against the phase difference, θd. Six embedded plots, in the projection of q1(t) against

q2(t), show the responses, parameterised in time, of the NNMs on the phase-varying backbone curve, S+v
1 , positions on

which are marked by the branch point bifurcation on S−
1 and ‘+’ signs, labelled (i), (ii), . . . , (vi). The extreme values

of q1(t) and q2(t), in these embedded plots, are labelled with ‘O’ and ‘×’ respectively. (Online version in colour.)

equations (3.8). Furthermore, with Ψ2 = 0 and Ψ4 = 0, the phase relationship, described by the
expression (3.10), can be reduced to cos (θd) = 0. This phase relationship is again identical to that
for the out-of-unison backbone curves. This therefore indicates that the phase-varying backbone
curve is an evolution from the out-of-unison backbone curve with the orthogonality breaking,
through the phase-amplitude coupling, described by equation (3.10).

Figure 5a presents the analytically-computed backbone curves (using equations from (3.5) to
(3.11)) in the projection of the response frequency, Ω, against the absolute displacement of the
mass,

√
X2 + Y 2, for the single-mass system in figure 2. Backbone curves for the orthogonal case

(i.e. m= 1, k1 = k3 = 0.5, k2 = 1.1, L1 =L2 =L3 = 1 and θ= 90◦) are denoted by dash-dotted
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curves; whilst backbone curves for the non-orthogonal case, obtained by changing δ from 90◦

to 85◦, are shown as solid curves. This plot, similar to figure 4, shows the effect of breaking
the orthogonality on the backbone curves. It causes the single-mode backbone curve, S1, to split
into one primary in-phase backbone curve, S+

1 , and one isolated anti-phase backbone curve S−
1 .

The branch point bifurcation ‘BP2’ remains unsplit and the out-of-unison backbone curves, S±90
1 ,

evolve to the phase-varying backbone curves S±v
1 (two overlapping curves in this figure).

Figure 5b shows the phase relationships on these backbone curves in the projection of
the response frequency, Ω, against the phase difference, θd, between the two fundamental
components of modal coordinates, q1 and q2. For the orthogonal case, as expected, different
NNMs on any one backbone curve share a fixed phase relationship between q1 and q2, indicated
by the dash-dotted straight lines in figure 5b. For the non-orthogonal case, the backbone curves,
S+
1 , S

−
1 and S+

2 , have fixed phase relationships; however, the phase relationships of backbone
curves, S±v

1 , vary with frequency. One branch of these phase-varying backbone curves, S+v
1 , has

a phase relationship varying from θd = π (on the branch point bifurcation on S−
1 ) to θd = π/2,

with the decrease in response frequency (along with the increase in displacement amplitude –
see figure 5a). The embedded plots, labelled (i), (ii), . . . , (vi), present the time-parameterised
responses of a selection of NNMs on S+v

1 . It can be seen that the NNMs evolve from an anti-
phase NNM (θd = π on the branch point bifurcation) towards a clockwise out-of-unison NNM
(θd = π/2). The other phase-varying backbone, S−v

1 , shows similar behaviours, except for having
NNMs exhibiting anticlockwise motions.

In this section, the harmonic balance technique has been used to find the analytical
expressions of backbone curves for the single-mass system with orthogonal and non-orthogonal
configurations. Analytical analysis shows that the general asynchronous backbone curve,
discussed in Section 2, has an amplitude-dependent phase relationship between the linear modal
coordinates. This backbone curve is termed as a phase-varying backbone curve, and it can
be seen as an evolution from the out-of-unison backbone curve through the breaking of the
orthogonality. The existence of such backbone curves indicates that phase relationships between
modal coordinates are crucial parameters to be determined in finding NNMs, a key implication
of which is when applying harmonic balance method numerically to compute NNMs. In the next
section, numerical analysis is carried out to investigate the existence of phase-varying backbone
curves in a cable model.

4. Phase-varying backbone curves for a cable model
In this section, phase-varying behaviour is investigated using a horizontal cable, taut between
two fixed end points. An additional elastic support connects the cable to ground, near one of
the fixed ends, as shown in figure 6. The dynamics of the cable system are modelled based on
a lumped-mass approach, similar to the method in [28]. A brief description is given here for
completeness.

The model is formulated by discretising the cable into n identical elastic elements, connected
in series between n+ 1 nodes. The two end nodes are fixed, resulting in a total of 3(n− 1) degrees
of freedom in three-dimensional space. The mass of the cable is equally distributed between
the elements, and for each element, half of its mass is lumped on either end. The elements are
assumed to be undamped and linearly elastic. The cable has an unstretched length of L0, uniform
density ρ, Young’s modulusE, and a constant cross-section of diameter d. Axial stress is assumed
to be uniformly distributed over the cross-sectional area, and a static axial pre-tension with a
horizontal component T is applied at both cable ends. The forces considered acting on the cable
are due to gravity and elasticity, while viscous and aerodynamic effects are neglected.

An additional undamped, linearly elastic element is attached to the cable at a position zs along
its span. This element lies within the cross-sectional (x-y) plane, at an angle δ from the horizontal.
It has a length l, stiffness k, and is unstretched when the system is at equilibrium.

A 2-DOF nonlinear reduced-order model of the cable system, which captures its salient
dynamic behaviour near the first two natural frequencies, is obtained using a force-based indirect
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Chord line/ horizontal line

Static sag profile
ρ, d, E
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Figure 6. A schematic diagram of a cable with an unstretced length of L0, uniform density ρ, Young’s modulus E, a

constant cross-section of diameter d, and a static pre-tension applied at both ends with a horizontal componen T . A

physical coordinate system is defined at one end of the cable, with y-z plane denoting the cable profile, where z and y

are in the direction of the chord line and the gravity respectively. An additional elastic support is attached to the cable at

a position zs along the cable span in the x-y plane, and it is modelled using a linear stiffness, k, and a support length, l,

with δ indicating the angle between the support and the negative x-axis. (Online version in colour.)

reduction method [29]. This involves a projection of the equations of motion of the full model,
onto a 2-DOF reduced basis. The reduction/projection basis consists of the first out-of-plane and
the first in-plane transverse mass-normalised linear modeshapes of the cable about its equilibrium
position. As such, the equations of motion of the reduced-order model can be written as

q̈1 + ω2
n1q1 + f1(q1, q2) = 0, (4.1a)

q̈2 + ω2
n2q2 + f2(q1, q2) = 0, (4.1b)

where f1 and f2 are the nonlinear restoring forces. For linear elastic finite element models with
geometric nonlinearities, the forcing functions typically take the form of quadratic and cubic
polynomials [29–31], i.e.

f1(q1, q2) = 3Ξ1q
2
1 + 2Ξ2q1q2 + Ξ3q

2
2 + 4Ψ1q

3
1 + 3Ψ2q

2
1q2 + 2Ψ3q1q

2
2 + Ψ4q

3
2 , (4.2a)

f2(q1, q2) =Ξ2q
2
1 + 2Ξ3q1q2 + 3Ξ4q

2
2 + Ψ2q

3
1 + 2Ψ3q

2
1q2 + 3Ψ4q1q

2
2 + 4Ψ5q

3
2 . (4.2b)

Note that linear dependencies are imposed on the coefficients in equations (4.2), such that the
energy in the system is conserved [31,32], similar to equations (3.1).

The linear properties in equations (4.1) can be obtained directly through an eigenanalysis of
the full system. However, the coefficients of the nonlinear terms in equations (4.2) are computed
in a non-intrusive manner, using a set of static solutions of the lumped-mass model5. The
static solutions are obtained by applying a set of prescribed static loads and computing the
corresponding displacements. The selected loading cases consist of scaled linear combinations
of the retained modes. For each load case, the computed static displacement of the full system
is then projected onto the reduced modal space. Finally, the coefficients of the nonlinear terms
in equations (4.2) are estimated through regression analysis in a least-squares manner, using the
modal force – modal displacement dataset. A validation of the developed lumped-mass cable
model, and of the corresponding reduced-order model obtained using the indirect reduction
method described above, can be found in Appendix B.

We now consider a 40-element, 117-DOF cable model with the following physical parameters:
L0 = 1.5m, d= 5mm, ρ= 3000kg m−3, E = 200GPa. The system is subjected to a static pre-
tension with a horizontal component T = 100N, and is additionally constrained by an elastic
element with the following properties: l= 0.2m, k= 105 N m−1, and zs = 0.15m. Two additional
5Note that, even though the lumped-mass cable model is developed ad hoc, and the full equations of motion are known
and accessible, these are not explicitly used to construct the reduced-order model as such. The indirect approach used
instead, does not require knowledge of the exact equations of motion, and is applicable to finite element models built using
commercial finite element software packages.
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Table 1. Values of the estimated parameters of the reduced-order model for the orthogonal case, and the non-orthogonal

case.

ωn1 ωn2 Ξ1 Ξ2 Ξ3 Ξ4

orthogonal case 86.31 103.73 2 · 10−6 2.72 · 106 2 · 10−6 2.90 · 106
non-orthogonal case 87.71 102.76 6.20 · 105 2.58 · 106 6.22 · 105 2.81 · 106

Ψ1 Ψ2 Ψ3 Ψ4 Ψ5

orthogonal case 1.82 · 109 6 · 10−4 4.09 · 109 1 · 10−3 2.43 · 109
non-orthogonal case 1.86 · 109 2.63 · 108 4.11 · 109 3.64 · 108 2.38 · 109

Figure 7. Numerically-computed backbone curves and responses for the cable system in figure 6 with δ= 90◦, other

modal parameters are listed in table 1. (a) Backbone curves in the projection of the response frequency, Ω, against the

absolute displacement of the cable in x-y plane,
√
X2 + Y 2. (b) The phase on the backbone curves in the projection

of the response frequency, Ω, against the phase differences between modal coordinates, θd. Panels (c) and (d) are the

time-parameterised responses of NNMs (marked with ’+’ signs in panels (a) and (b)) on the out-of-unison backbone

curve, S−90
1 , in the projection of q1(t) against q2(t), and xmid(t) against ymid(t) respectively, where xmid and ymid

denote the physical displacements at the mid-span position in x-y plane. The extreme values of q1(t) and xmid(t) are

labelled with ‘O’; whilst the extreme values of q2(t) and ymid(t) are labelled with ‘×’. The arrows in panels (c) and

(d) denote the anticlockwise motions. The motions of NNMs on the other out-of-unison backbone curve, S+90
1 , have the

same trajectories but clockwise motions. (Online version in colour.)

support layouts are considered – one corresponds to the case when the spring is aligned with the
y-axis, i.e. when δ= 90◦, and this is denoted as the orthogonal case; the other relates to the case
when δ= 60◦, and this is denoted as the non-orthogonal case. The estimated parameters of either
model can be found in Table 1.
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Figure 8. Numerically-computed backbone curves and responses for the cable system in figure 6 with δ= 60◦, other

modal parameters are listed in table 1. (a) Backbone curves in the projection of the response frequency, Ω, against the

absolute displacement of the cable in x-y plane,
√
X2 + Y 2. (b) The phase of the backbone curves in the projection

of the response frequency, Ω, against the phase differences between modal coordinates, θd. Panels (c) and (d) are the

time-parameterised responses of NNMs (marked with ’+’ signs in panels (a) and (b)) on the phase-varying backbone

curve, S−v
1 , in the projection of q1(t) against q2(t), and xmid(t) against ymid(t) respectively. The extreme values of

q1(t) and xmid(t) are labelled with ‘O’; whilst the extreme values of q2(t) and ymid(t) are labelled with ‘×’. The arrows

in panels (c) and (d) denote the anticlockwise motions. The motions of NNMs on the other phase-varying backbone

curve, S+v
1 , have the same trajectories but clockwise motions. (Online version in colour.)

For the orthogonal case, the backbone curves of the 2-DOF nonlinear reduced-order model
of the cable system are shown in figure 7a. Two single-mode backbone curves can be found,
namely S1 and S2, on which the time-parameterised responses of NNMs are similar to those
shown in figure 1a. Besides these single-mode backbone curves, out-of-unison backbone curves,
S±90
1 , can also be observed. The phase relationships on these backbone curves are shown in figure

7b. The NNMs on either out-of-unison backbone curve exhibit a fixed phase relationship, which
is represented by a straight line denoting either θd =±90◦, same as the out-of-unison backbone
curves for the single-mass system discussed in Section 3. A selection of NNMs on S−90

1 , i.e. NNMs
marked by ’+’ signs in figures 7a and 7b, are presented in figures 7c and 7d, where the time-
parameterised responses are shown in modal coordinates and physical coordinates respectively.
Due to the variation of tension in cable during oscillation, a non-resonant q2 component arises
from the nonlinear quadratic terms in expressions (4.2). This leads to a shift of the extrema q1(t)
(marked by ’O’ in figures 7c and 7d) along the backbone curve [25]. Nonetheless, an anticlockwise
out-of-unison (θd =−90◦) phase relationship between q1 and q2 can still be seen, similar to the one
in figure 1c. Likewise, similar behaviours can be expected for the other out-of-unison backbone
curve, S+90

1 , except for having clockwise motions.
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Figure 8a shows the backbone curves for the non-orthogonal case. The corresponding phase
relationships on the backbone curves are shown in figure 8b. With δ perturbed away from 90◦,
it leads the single-mode backbone curves, S1 and S2, to mixed-mode backbone curves, S+

1 and
S−
2 , respectively. The out-of-unison backbone curves, S±90

1 , like these for the single-mass system
discussed in previous sections, evolve into phase-varying backbone curves, S±v

1 , and bifurcate
from the in-phase mixed-mode backbone curve S+

1 . The phase-varying backbone curves show
phase relationships evolve from θd = 0 (in-phase motions at the bifurcation) to θd ≈±π/2 (nearly
out-of-unison motions), as depicted in figure 8b. One example of this evolution of motions is
presented in figure 8c, which describes the modal motions of NNMs marked with ’+’ signs on the
backbone curve, S−v

1 , in figures 8a and 8b. Corresponding time-parameterised physical motions
at the mid-span position of the cable are shown in figure 8d, which as well show phase-varying
behaviour.

5. Conclusion
Nonlinear normal modes (NNMs) represent important tools in the analysis of nonlinear
phenomena. This paper has investigated the less-commonly studied asynchronous NNMs. It
has been shown that out-of-unison NNMs (characterised by a ±90◦ phase relationship between
modal coordinates) are a special case of a more general, and previously unreported, NNM
solution set where the phase relationship may assume any value. The existence of this general
asynchronous NNM was first explored using a single-mass model via numerical analysis and it
was demonstrated that the breaking of orthogonality causes the out-of-unison NNMs to evolve
into general asynchronous NNMs (i.e. the phase difference between the modes evolves from
±90◦, to a general phase difference). An analytical method was then used to find the expressions
of backbone curves, i.e. branches of NNMs, of the single-mass model. The analytical phase
relationship between modal coordinates revealed that, along with the breaking of orthogonality,
the out-of-unison backbone curves evolve to ones on which the phase relationships exhibit
amplitude-dependent characteristics. This newly identified NNM branch is defined as a phase-
varying backbone curve. The existence of phase-varying backbone curves was then investigated in
a cable model, through the attachment of a near-cable-end support. This support has the effect of
breaking the orthogonal geometry of the cable and, as with the single-mass example, cause the
out-of-unison (whirling) motions to evolve into general asynchronous motions.

The existence of phase-varying backbone curves, and the accompanying general asynchronous
NNMs, represents a new set of nonlinear phenomena in mechanical systems. These NNMs may
represent significant responses in nonlinear systems, that may be critical in understanding its
performance (such as the evolution from whirling in a cable with non-orthogonal geometry),
or which may be exploited to improve the performance of such systems. The existence of such
NNMs also indicates that phase relationships between modal coordinates are crucial parameters
to be determined when computing nonlinear responses, and should be carefully considered when
computing nonlinear responses. These motions may be considered more complex than the more
commonly-observed synchronous or out-of-unison motions, as their displacement and velocity
coordinates are never simultaneously zero. A key implication is that when using the harmonic
balance technique to compute the NNMs, the phase relationships, being the critical parameters
describing the nonlinear phenomena (similar to the role of the harmonic amplitudes), should be
seen as unknowns to be determined.
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A. Obtaining the truncated model of the single-mass system
Using ∆Li to denote the stretch or compression of springs ki, the Lagrangian of the one-mass
two-mode system, schematically shown in figure 2, can be written as

L=T − V =
1

2
mẋ2 +

1

2
mẏ2 −

(
1

2
k1 (∆L1)

2 +
1

2
k2 (∆L2)

2 +
1

2
(∆L3)

2
)
, (A.1)

=
1

2
mẋ2 +

1

2
mẏ2 − 1

2
k1

(√
(L1 + x)2 + y2 − L1

)2

− 1

2
k2

(√
[L2 cos (δ) + x]2 + [L2 sin (δ) + y]2 − L2

)2

− 1

2
k3

(√
(L3 − x)2 + y2 − L3

)2

,

where m is the mass value; k1, k2 and k3 are the coefficients of linear springs with lengths L1, L2

and L3 respectively; δ denotes the angle between springs k1 and k2. Applying the Euler-Lagrange
equation, the equations of motion can be obtained as

mẍ+k1 (L1 + x)− k1L1 (L1 + x)√
(L1 + x)2 + y2

+ k2 [L2 cos (δ) + x]

− k2L2 [L2 cos (δ) + x]√
[L2 cos (δ) + x]2 + [L2 sin (δ) + y]2

− k3 (L3 − x)−
k3L3 (x− L3)√
(L3 − x)2 + y2

= 0, (A.2a)

mÿ+k1y −
k1L1y√

(L1 + x)2 + y2
+ k2 [L2 sin (δ) + y]

− k2L2 [L2 sin (δ) + y]√
[L2 cos (δ) + x]2 + [L2 sin (δ) + y]2

+ k3y −
k3L3y√

(L3 − x)2 + y2
= 0. (A.2b)

This full model can then be expanded as polynomial equations using Maclaurin expansion, and
further simplified by retaining nonlinear terms up to cubic orders. In this way, the equations of
motion can be written as

Mẍ+Kx+Nx = 0, (A.3)

where M and K are mass and linear stiffness matrices respectively; Nx is a vector of nonlinear
terms; and x is a vector representing physical displacements. They can be written as

M=

[
m 0

0 m

]
, K=

[
k1 + k2 cos

2 (δ) + k3 k2 sin (δ) cos (δ)

k2 sin (δ) cos (δ) k2 sin
2 (δ)

]
, (A.4)

Nx =

(
3β1x

2 + 2β2xy + β3y
2 + 4γ1x

3 + 3γ2x
2y + 2γ3xy

2 + γ4y
3

β2x
2 + 2β3xy + 3β4y

2 + γ2x
3 + 2γ3x

2y + 3γ4xy
2 + 4γ5y

3

)
, x=

(
x

y

)
, (A.5)

where the coefficients of nonlinear terms, β1, β2, · · · , β4, γ1, γ2, · · · , γ5, are

β1 =
k2 cos (δ) sin

2 (δ)

2L2
, β2 =−

[
3 cos2 (δ)− 1

]
sin (δ) k2

2L2
,

β3 =−
L1L3k2 cos (δ)

[
3 cos2 (δ)− 2

]
+ L3L2k1 − L1L2k3

2L1L2L3
, β4 =

k2 sin (δ) cos
2 (δ)

2L2
,

γ1 =−

[
5 cos2 (δ)− 1

]
sin2 (δ) k2

8L2
2

, γ2 =
k2 sin (δ) cos (δ)

[
5 cos2 (δ)− 3

]
2L2

2

, (A.6)
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γ3 =−
15L2

1L
2
3k2 cos

2 (δ)
[
cos2 (δ)− 1

]
+ 2L2

3L
2
2k1 + 2L2

1L
2
3k2 + 2L2

1L
2
2k3

4L2
1L

2
2L

2
3

,

γ4 =−
k2 cos (δ) sin (δ)

[
5 cos2 (δ)− 2

]
2L2

2

,

γ5 =
cos2 (δ)L2

1L
2
3k2

[
5 cos2 (δ)− 4

]
+ L2

3L
2
2k1 + L2

1L
2
2k3

8L2
1L

2
2L

2
3

.

The underlying linear model of this truncated model can be directly obtained by removing the
nonlinear terms to give

Mẍ+Kx= 0. (A.7)

This underlying linear model can be used for linear modal analysis to find the modal parameters,
allowing the truncated system (A.3) to be translated into linear modal space. This is achieved by
using substitution x=Φq, where Φ is the modeshape matrix and q is a vector of linear modal
coordinates, written as

Φ=

[
φ11 φ12
φ21 φ22

]
, q=

(
q1
q2

)
, (A.8)

where the first and second columns of Φ denote the first and second linear modeshapes
respectively. After applying the linear modal transform, the equations of motion can be written

q̈+ Λq+Nq = 0, (A.9)

where

Λ=

[
ω2
n1 0

0 ω2
n2

]
, (A.10)

Nq =

(
3Ξ1q

2
1 + 2Ξ2q1q2 + Ξ3q

2
2 + 4Ψ1q

3
1 + 3Ψ2q

2
1q2 + 2Ψ3q1q

2
2 + Ψ4q

3
2

Ξ2q
2
1 + 2Ξ3q1q2 + 3Ξ4q

2
2 + Ψ2q

3
1 + 2Ψ3q

2
1q2 + 3Ψ4q1q

2
2 + 4Ψ5q

3
2

)
, (A.11)

and where ωni denotes the ith linear natural frequency, and nonlinear modal coefficients are

Ξ1 =β1φ
3
11 + β2φ

2
11φ21 + β3φ11φ

2
21 + β4φ

3
21,

Ξ2 =(3β1φ12 + β2φ22)φ
2
11 + 2 (β2φ12 + β3φ22)φ11φ21 + (β3φ12 + 3β4φ22)φ

2
21,

Ξ3 =(3β1φ11 + β2φ21)φ
2
12 + 2 (β2φ11 + β3φ21)φ12φ22 + (β3φ11 + 3β4φ21)φ

2
22,

Ξ4 =β1φ
3
12 + β2φ

2
12φ22 + β3φ12φ

2
22 + β4φ

3
22,

Ψ1 =γ1φ
4
11 + γ2φ

3
11φ21 + γ3φ

2
11φ

2
21 + γ4φ11φ

3
21 + γ5φ

4
21,

Ψ2 =(4γ1φ12 + γ2φ22)φ
3
11 + (3γ2φ12 + 2γ3φ22)φ

2
11φ21

+ (2γ3φ12 + 3γ4φ22)φ11φ
2
21 + (γ4φ12 + 4γ5φ22)φ

3
21, (A.12)

Ψ3 =
(
6γ1φ

2
12 + 3γ2φ12φ22 + γ3φ

2
22

)
φ211 +

(
6γ5φ

2
22 + 3γ4φ12φ22 + γ3φ

2
12

)
φ221

+
(
3γ2φ

2
12 + 4γ3φ12φ22 + 3γ4φ

2
22

)
φ11φ21,

Ψ4 =(4γ1φ11 + γ2φ21)φ
3
12 + (3γ2φ11 + 2γ3φ21)φ

2
12φ22

+ (2γ3φ11 + 3γ4φ21)φ12φ
2
22 + (γ4φ11 + 4γ5φ21)φ

3
22,

Ψ5 =γ1φ
4
12 + γ2φ

3
12φ22 + γ3φ

2
12φ

2
22 + γ4φ12φ

3
22 + γ5φ

4
22.
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Table 2. Comparison between the values of the estimated model parameters, using the analytical cable model in [8], and

the 2-DOF reduced-order-model (ROM) via reduction method described in Section 4.

ωn1 ωn2 Ξ1 Ξ2 Ξ3 Ξ4

cable model in [8] 122.04 123.87 0 1.28 · 106 0 1.28 · 106
2-DOF ROM 122.07 123.90 1 · 10−8 1.28 · 106 1 · 10−8 1.28 · 106

Ψ1 Ψ2 Ψ3 Ψ4 Ψ5

cable model in [8] 1.81 · 109 0 3.63 · 109 0 1.81 · 109
2-DOF ROM 1.81 · 109 3 · 10−7 3.63 · 109 1 · 10−7 1.81 · 109

Figure 9. Comparison between the backbone curves of the 2-DOF analytically derived model in [8] (solid black line), and

those of the 2-DOF reduced-order model (dash-dotted blue line) obtained using the approach described in Section 4.

(Online version in colour.)

For orthogonal configurations of the single-mass system in figure 2, δ= 90◦. Substituting δ= 90◦

into nonlinear physical coefficients in expressions (A.6), one can find β1 = β4 = γ2 = γ4 = 0. Then
the linear modal analysis, i.e. finding the eigenvalues and eigenvectors of M−1K, reveals that
φ11 = φ22 and φ12 = φ21 = 0. With these expressions substituted into nonlinear modal coefficients
in equations (A.12), one has Ψ2 = Ψ4 = 0.

B. Validation of lumped-mass cable model and reduced-order
model

The lumped-mass discretisation approach, as well as the subsequent reduction method described
in Section 4, are validated by comparing the backbone curves of a reduced-order model, with
those obtained using an analytically derived dynamic model of a small-sag cable system [8]. The
analytical model in [8] is applicable to highly stressed cables with a small weight-to-tension ratio,
such that axial modal motions can be neglected. The cable considered for validation purposes has
the same properties as that described in Section 4, but the applied axial pre-tension is increased
from 100N to T = 200N, in order to satisfy the aforementioned requirement.

A two-mode model based on [8] was previously studied in [19], where it was shown that the
whirling motion of a cable corresponds to out-of-unison resonance between its first out-of-plane
and first in-plane transverse modes. The results obtained using the corresponding reduced-order
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model, are in close quantitative and qualitative agreement with these observations, as shown in
Figure 9. The corresponding parameters in the equations of motion, (4.1), computed using the
reduction method described in Section 4, as well as those obtained using the analytical model, are
shown in Table 2.
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