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Epigenetic prediction of complex traits and
mortality in a cohort of individuals with
oropharyngeal cancer
Ryan J. Langdon1,2†, Rhona A. Beynon1,2†, Kate Ingarfield3,4,5, Riccardo E. Marioni6,7, Daniel L. McCartney6,7,
Richard M. Martin1,2,3, Andy R. Ness3, Michael Pawlita8, Tim Waterboer8, Caroline Relton1,2,3, Steven J. Thomas3 and
Rebecca C. Richmond1,2*

Abstract

Background: DNA methylation (DNAm) variation is an established predictor for several traits. In the context of
oropharyngeal cancer (OPC), where 5-year survival is ~ 65%, DNA methylation may act as a prognostic biomarker. We
examined the accuracy of DNA methylation biomarkers of 4 complex exposure traits (alcohol consumption, body mass
index [BMI], educational attainment and smoking status) in predicting all-cause mortality in people with OPC.

Results: DNAm predictors of alcohol consumption, BMI, educational attainment and smoking status were applied to
364 individuals with OPC in the Head and Neck 5000 cohort (HN5000; 19.6% of total OPC cases in the study), followed
up for median 3.9 years; inter-quartile range (IQR) 3.3 to 5.2 years (time-to-event—death or censor). The proportion of
phenotypic variance explained in each trait was as follows: 16.5% for alcohol consumption, 22.7% for BMI, 0.4% for
educational attainment and 51.1% for smoking. We then assessed the relationship between each DNAm predictor and
all-cause mortality using Cox proportional-hazard regression analysis. DNAm prediction of smoking was most
consistently associated with mortality risk (hazard ratio [HR], 1.38 per standard deviation (SD) increase in smoking
DNAm score; 95% confidence interval [CI] 1.04 to 1.83; P 0.025, in a model adjusted for demographic, lifestyle, health
and biological variables). Finally, we examined the accuracy of each DNAm predictor of mortality. DNAm predictors
explained similar levels of variance in mortality to self-reported phenotypes. Receiver operator characteristic (ROC)
curves for the DNAm predictors showed a moderate discrimination of alcohol consumption (area under the curve
[AUC] 0.63), BMI (AUC 0.61) and smoking (AUC 0.70) when predicting mortality. The DNAm predictor for education
showed poor discrimination (AUC 0.57). Z tests comparing AUCs between self-reported phenotype ROC curves and
DNAm score ROC curves did not show evidence for difference between the two (alcohol consumption P 0.41, BMI P
0.62, educational attainment P 0.49, smoking P 0.19).

Conclusions: In the context of a clinical cohort of individuals with OPC, DNAm predictors for smoking, alcohol
consumption, educational attainment and BMI exhibit similar predictive values for all-cause mortality compared to self-
reported data. These findings may have translational utility in prognostic model development, particularly where
phenotypic data are not available.
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Background
Peripheral blood DNA methylation (DNAm), which is a
type of epigenetic modification, has been established as a
predictor of complex health and lifestyle factors, and
may be used to complement and refine self-reported
phenotypes by circumventing issues of recall biases and
potentially improving phenotypic resolution [1]. Multiple
examples of the utility of DNAm for trait prediction
exist in the epidemiological literature. Peripheral blood
DNAm has been shown to serve as both a sensitive and
specific biomarker of tobacco smoke exposure, with
methylation status at one cytosine-phosphate-guanine
(CpG) site in the aryl hydrocarbon receptor repressor
(AHRR) gene (cg05575921) having a predictive area
under the receiver operating characteristic curve (AUC)
for smoking status of 0.99 for current vs never smokers
[2]. Moreover, previous studies have found that periph-
eral blood DNAm at smoking-related CpG sites, both in-
dividually and in combination in ‘scores’ (methylation
values derived from a weighted average of multiple trait-
associated CpG sites), may have potential for improving
lung cancer risk and mortality prediction over and above
self-reported smoking information [3–6]. DNAm risk
scores of other lifestyle characteristics, including alcohol
consumption, body mass index (BMI) and educational
attainment, have recently been developed in large train-
ing datasets and have been shown to independently ex-
plain a range of phenotypic variance, from 2.5% for
educational attainment to over 60% for smoking [4].
These too have been shown to serve as predictors of dis-
ease outcomes, in addition to all-cause mortality in
(healthy) population-based cohort studies [7, 8].
To date, the added prognostic utility of DNAm pre-

dictors in estimating mortality risk in clinical cohorts
of individuals diagnosed with disease has not been
thoroughly investigated. In the setting of a large pro-
spective head and neck cancer cohort (the Head and
Neck 5000 Study [9]), we attempted to use peripheral
blood DNAm and self-reported data associated with
four complex exposure traits of interest—alcohol con-
sumption, smoking, BMI and educational attain-
ment—to assess whether externally derived DNAm
risk scores could provide an accurate prediction of
phenotype in a subset of participants with oropharyn-
geal tumours. We also assessed the validity of these
DNAm risk scores as biomarkers of mortality after a
median 3.9 years follow-up (time-to-event [death or
censor], inter-quartile range [IQR] 3.3 to 5.2 years),
given that the four exposure traits of interest have
been shown to be related to head and neck cancer
(HNC) mortality in previous studies [10–16]. The
peripheral blood DNAm risk scores were then com-
pared with the self-reported measures of the four ex-
posure traits in terms of their predictive ability.

Results
The primary analysis included 364 individuals with DNAm
and complete phenotypic and covariate data available. The
baseline descriptive statistics of included participants are
presented in Table 1 and stratified by human papillomavi-
rus (HPV) status in Supplementary Table 1. In total, 78 of
the 364 individuals died during a median follow-up period
of 3.9 years (IQR 3.3 to 5.2). The Kaplan-Meier survival
curves for mortality based on our covariates of interest are
shown in Supplementary Figures 1a and b.

Proportion of phenotypic variance explained for DNAm-
based risk scores
We generated five DNAm scores for alcohol consump-
tion, two for BMI, one DNAm score for educational at-
tainment and five for smoking, based on several large
epigenome wide associations studies (EWAS), as out-
lined in Tables 2, 3, 4 and 5. The phenotypic variance
explained by all DNAm risk scores is shown in Table 6.
Where available, the Bayesian-derived DNAm risk scores
for BMI and smoking [17] (BMI 24.5%, smoking 48.7%)
explained a higher proportion of variance than least ab-
solute shrinkage and selection operator-derived
(LASSO-derived) (BMI 22.2%, smoking 43.5%) and gen-
eralised linear model-derived (glm-derived) (BMI N/A,
smoking 40.5%) alternatives. The DNAm risk score for
educational attainment (McCartney et al. [4]; LASSO
model) explained the least variance of our phenotypes,
at 0.43%. Finally, the DNAm risk score explaining the
highest proportion of phenotypic variance in alcohol was
derived from an EWAS meta-analysis using a LASSO
model which gave the minimum cross-validated error
(Liu et al. [18] model 4 16.5%).

Relationship between self-reported phenotype and
mortality
The multivariable Cox proportional-hazard outputs for
minimally adjusted and fully adjusted models are pre-
sented in Table 7. In minimally adjusted models (ad-
justed for age and sex), smoking and alcohol intake were
positively associated with mortality (HR 3.29, 95% CI
1.75 to 6.18, P 2.2. × 10−4 for ever versus (vs) never
smokers and HR 1.62, 95% CI 1.06 to 2.49, P 0.027 for
hazardous-to-harmful drinkers vs non-hazardous-to-
harmful drinkers). BMI appeared to be protective (HR
0.93, 95% CI 0.87 to 0.99, P 0.028 × 10−2 for overweight
vs not overweight). Educational attainment was not asso-
ciated with mortality (HR 0.81, 95% CI 0.54 to 1.22, P
0.32 for higher education vs school education).
The association of self-reported smoking status with

mortality remained (albeit attenuated) following adjust-
ment for demographic (age, sex), clinical (TNM stage,
HPV status, comorbidity) and phenotypic (alcohol con-
sumption and education) variables (HR 2.21, 95% CI
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1.14 to 4.30, P 0.019). Analogous results were observed
in the imputed analysis (to account for covariate
missingness; Supplementary Table 2), with smoking
being the only phenotype associated with mortality in
the fully adjusted models (HR 2.56, 95% CI 1.30 to
4.92, P 4.9 × 10−3).

Relationship between DNAm scores and mortality
All the DNAm risk scores were related to mortality in
the minimally adjusted models (adjusted for age, sex, cell
counts and batch effects) (Table 7), except for the BMI
predictor derived by McCartney et al. [4]. After adjusting
for clinical factors and self-reported phenotypes, the
smoking-derived DNAm scores developed by Joehanes
et al. (Bonferroni) [19] and Zhang et al. [20] were most
strongly associated with mortality risk (Joehanes et al.
HR 1.38, 95% CI 1.04 to 1.83, P 0.025; Zhang et al. HR
1.28, 95% CI 1.02 to 1.60, P 0.036), with some evidence
of association also found for the Liu et al. alcohol-
derived DNAm score (144 CpG sites) (HR 1.21, 95% CI
1.00, 1.46, P 0.052). There was a modest positive correl-
ation between the phenotypic variance explained by the
various DNAm scores and their magnitude of associ-
ation with mortality (Supplementary Figure 2; R2 =
0.29), with some outliers. For example, the Zhang et al.
predictor of smoking explained 5.2% phenotypic variance
(the lowest out of the DNAm predictors of smoking) but
showed the third-highest absolute HR for OPC mortality
of the 6 smoking DNAm predictors (HR 1.28, Table 7—
fully adjusted).

Predictive accuracy of DNAm risk scores against mortality
Given the largest amount of phenotypic variance ex-
plained, Bayesian DNAm risk scores for BMI and smok-
ing were used to predict mortality. For the same reason,
the DNAm risk derived from McCartney et al. [4] was
used as a predictor for educational attainment and the
DNAm risk from Liu et al. [18] (model 4) was used as a
predictor for alcohol consumption.
Across all four phenotypes assessed in our study, the

AUC when DNAm risk scores were used to predict
mortality was greater than self-reported phenotypes
(Supplementary Figure 3), although the difference was
modest (Z test P value for comparison of DNAm AUC
and self-reported AUC for the following: smoking =
0.19, alcohol = 0.41, BMI = 0.62, educational attain-
ment = 0.49). When a generalised linear model of
DNAm risk score and corresponding self-reported
phenotype were used to predict mortality, the AUC im-
proved over self-reported phenotype alone, but again
with only modest improvement (Z test P value for com-
bined epigenetic risk score and self-reported phenotype
AUC vs self-reported phenotype AUC for the following:
smoking = 0.30, alcohol = 0.38, BMI = 0.71, educational
attainment = 0.26). The most predictive epigenetic risk
score for mortality was that of smoking, with an AUC
of 0.70 (vs 0.67 for self-report). The weakest epigenetic
risk score predictor against mortality was our predictor
of educational attainment, with an AUC of 0.57 (vs 0.54
for self-report).

Table 1 Baseline descriptive statistics of included participants (N
= 364)

Alive (N = 273) Dead (N = 91)

Characteristic N Frequency N Frequency P value

Gender

Male 209 76.6% 75 82.4% 0.242

Female 64 23.4% 16 17.6%

Age at enrolment

< 44 20 7.3% 3 3.3% 0.016

45 to 54 83 30.4% 22 24.2%

55 to 64 113 41.4% 34 37.4%

65 to 74 48 17.6% 22 24.2%

75 + 9 3.3% 10 11.0%

TNM stage

Low (I–II) 39 14.3% 8 8.8% 0.176

High (III–IV) 234 85.7% 83 91.2%

HPV status

Negative 61 22.3% 48 52.7% < 0.001

Positive 212 77.7% 43 47.3%

BMI group

Not overweight 73 38.0% 31 55.4% 0.021

Overweight or obese 119 62.0% 25 44.6%

Comorbiditya

None 164 60.1% 34 37.4% < 0.001

Mild 73 26.7% 29 31.9%

Moderate/severe 36 13.2% 28 30.8%

Education level

School education 116 42.5% 45 49.5% 0.470

College 111 40.7% 34 37.4%

Degree 46 16.8% 12 13.2%

Self-reported smoking status

Never 96 35.2% 11 12.1% < 0.001

Former 140 51.3% 49 53.8%

Current 37 13.6% 31 34.1%

Self-reported alcohol intake

Non-drinker 75 27.5% 22 24.2% 0.119

Moderate 68 24.9% 15 16.5%

Hazardous-harmful 130 47.6% 54 59.3%

BMI body mass index, HPV human papillomavirus, N number.aComorbidity was
defined using the Adult Comorbidity Evaluation-27 (ACE-27) index [37]. For the
purposes of analysis, moderate and severe comorbidity groups
were combined

Langdon et al. Clinical Epigenetics           (2020) 12:58 Page 3 of 14



Sensitivity analysis
A summary of the baseline descriptive characteristics of
participants included in the sensitivity analysis is pro-
vided in Supplementary Table 3. When the analysis was
restricted to participants with data available for BMI (N
= 248) (Supplementary Table 4), the results of models
examining the association of self-reported phenotypes
with mortality followed a similar trend; only self-
reported smoking was associated following full adjust-
ment (adjusted for age, sex, TNM stage, HPV status,
comorbidity and a combination of smoking, alcohol in-
take, education and BMI, as appropriate to the model).
When the relationships between DNAm scores and

mortality were examined, there was evidence that all al-
cohol consumption DNAm scores derived from Liu
et al. were associated with mortality (5 CpG score [most
associated] HR 1.36, 95% CI 1.08 to 1.73, P 9.39 × 10−3),
in addition to the Bayesian score for BMI (HR 0.76, 95%
CI 0.59 to 0.99, P 0.045). For the smoking DNAm scores,
the Joehanes et al. (HR 1.84, 95% CI 1.36 to 2.49, P 7.43
× 10−5), McCartney et al. (HR 1.49, 95% CI 1.13 to 1.97,
P 4.31 × 10−3), Zhang et al. (HR 1.41, 95% CI 1.04 to
1.91, P 0.029), AHRR (HR 0.63, 95% CI 0.47 to 0.83, P
1.28 × 10−3) and Bayesian scores (HR 1.61, 95% CI 1.21
to 2.14, P 1.17 × 10−3) showed evidence of association
with mortality (Supplementary Table 4).
Following full adjustment (as for self-reported pheno-

types, additionally adjusted for cell counts and batch ef-
fects), three Liu et al. alcohol DNAm scores remained
associated with mortality (5 CpG score HR 1.43, 95% CI
1.07 to 1.92, P 0.017, 78 CpG score HR 1.32, 95% CI

1.03 to 1.69, P 0.027, 144 CpG score HR 1.29, 95% CI
1.02 to 1.63, P 0.036). Additionally, three smoking
DNAm scores remained associated with mortality (Joe-
hanes [FDR] (18,760 CpGs) HR 1.59, 95% CI 1.09 to
2.32, P 0.016, Joehanes [Bonferroni] (2623 CpGs) HR
1.50, 95% CI 1.06 to 2.12, P 0.022, Zhang HR 1.33, 95%
CI 1.00 to 1.77, P 0.047) (Supplementary Table 4).
Analogous results for our minimally and fully adjusted

Cox regression HRs between DNA and mortality were
obtained in an imputed analysis (N = 408) (Supplemen-
tary Table 5). There was additional evidence of a rela-
tionship between AHRR methylation status and
mortality in the imputed analysis, whereby a SD unit de-
crease in cg05575921 methylation (smoking is associated
with hypomethylation at this loci) was associated with a
26% decrease in risk of death (HR 0.74, 95% CI 0.56 to
0.98, P 0.033) in the fully adjusted model (model 4).
There was also an association between all-cause mortal-
ity and the Bayesian-derived DNAm risk score for BMI
in the imputed analysis (fully adjusted HR 0.72, 95% CI
0.56 to 0.91, P 7.24 x 10-3).

Discussion
We estimated the predictive accuracy of thirteen DNAm
risk scores for smoking, alcohol consumption , BMI and
educational attainment, in comparison with self-reported
phenotypes. We then used these DNAm scores to assess
mortality risk in a clinical cohort of individuals with oro-
pharyngeal cancer , using a Cox proportional-hazard
model.

Table 2 Origins of alcohol consumption DNAm scores employed in the current analysis

Phenotype Origin publication EWAS model # CpG sites

Alcohol
consumption

‘A DNA methylation biomarker of
alcohol consumption’ Liu et al. [18]

EWAS (450 K) were conducted initially using
linear models per cohort. Next, an inverse
variance-weighted random-effects model
was used to meta-analyse 8 European-
ancestry cohorts. CpGs from the meta-analysis
were taken forward and included in a least
absolute shrinkage and selection operator
(LASSO) regression in an independent cohort,
with four selection criteria used to select CpGs
with predictive value of alcohol consumption

Model 1: 5, model 2: 23,
model 3: 78, model 4:
144

‘Epigenetic prediction of complex
traits and death’ McCartney et al. [4]

EWAS (MethylationEPIC) were conducted using
a LASSO regression model with k-fold (k = 10)
cross-validation.

450

Table 3 Origins of BMI DNAm scores employed in the current analysis

Phenotype Origin publication EWAS model # CpG sites

BMI ‘Epigenetic prediction of complex traits and death’ McCartney et al. [4] EWAS (MethylationEPIC) were conducted
using a LASSO regression model with
k-fold (k = 10) cross-validation.

1109

‘Bayesian reassessment of the epigenetic architecture of complex
traits’ Trejo Banos et al. [17]

EWAS (MethylationEPIC) were conducted
using a Bayesian framework.

144
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The maximum proportion of phenotypic variance ex-
plained in each trait by any one DNAm score was as fol-
lows: 16.5% for alcohol consumption, 24.5% for BMI, 0.4%
for educational attainment and 48.7% for smoking. All
phenotypes proxied by a DNAm risk score yielded similar
mortality estimates to those of self-reported phenotypes.
Results from our fully adjusted model show that self-
reported smoking is the only trait strongly associated with
mortality risk after adjustment for age, sex, TNM stage,
HPV status, comorbidity, alcohol consumption and educa-
tional attainment. Similarly, DNAm prediction of smoking
was most consistently associated with mortality risk after
adjusting for clinical factors and self-reported phenotypes,
with some evidence of association for the alcohol and
BMI DNAm scores. DNAm predictors explained similar
levels of variance in mortality to self-reported phenotypes.
ROC curves for the DNAm predictors showed a moderate
discrimination of alcohol consumption, BMI and smoking
when predicting mortality. The DNAm predictor for edu-
cation showed poor discrimination. Results provided evi-
dence for a gain of 0.03 in AUC but power was limited to
detect a statistical improvement in prediction given the
small number of deaths. Z tests comparing AUCs between
self-reported phenotype ROC curves and DNAm score
ROC curves did not show evidence for difference between
the two.

Smoking has been shown to be an independent prog-
nostic factor for OPC in prospective studies [21], case-
control studies [22] and systematic reviews [23]. Beynon
et al. investigated the wider HN5000 cohort (N = 1393,
oral cavity cancer N = 403, oropharyngeal cancer N =
660, laryngeal cancer N = 330) for the prognostic value
of self-reported smoking and alcohol consumption, find-
ing that only smoking influenced all-cause mortality in
models adjusted for age, gender, ethnicity, stage, comor-
bidity, BMI, HPV status, treatment, education,
deprivation index, income, marital status and either
smoking or alcohol use [24]. Moreover, Beesley et al. in-
vestigated the prognostic value of existing OPC ‘calcula-
tors’ developed between 2003 and 2016 [25]. Four such
calculators were evaluated, derived from Maastro Clinic
data [26], Radiation Therapy Oncology Group (RTOG)
trial data [27], patient data from eastern Denmark [28]
and Erasmus Medical Centre data [29]. Three of these
calculators (Maastro Clinic, RTOG and Denmark) in-
clude pack-years of smoking as a prognostic variable;
none of them include a metric of alcohol consumption.
For the prediction of mortality using DNAm scores,

the two predictors that were derived using a Bayesian
framework (smoking and BMI) explained the most
phenotypic variance and were therefore employed over
other epigenetic scores derived using a LASSO/linear

Table 4 Origins of educational attainment DNAm scores employed in the current analysis

Phenotype Origin publication EWAS model # CpG
sites

Educational
attainment

‘Epigenetic prediction of complex traits and
death’ McCartney et al. [4]

EWAS (MethylationEPIC) were conducted using a LASSO regression
model with k-fold (k = 10) cross-validation.

373

Table 5 Origins of smoking DNAm scores employed in the current analysis

Phenotype Origin publication EWAS model # CpG sites

Smoking ‘Epigenetic Signatures of Cigarette Smoking’
Joehanes et al. [19]

Linear mixed models were conducted,
then combined in a random-effects model
meta-analysis (450 K). After meta-analysis,
one set of CpGs was selected based on a
Bonferroni P value of P < 1 × 10−7

(485,381 tests) and another was selected
based on a genome-wide false discovery
rate P value < 0.05.

Bonferroni model:
2623, FDR model:
18760

‘Self-reported smoking, serum cotinine, and
blood DNA methylation’ Zhang et al. [20]

An EWAS (450 K) of cotinine concentration
was conducted using median quantile
regression, then CpG sites were individually
validated against estimated average
cigarettes per day using restricted cubic
spline regression. Results were filtered by
optimising AUCs derived from logistic
regression for smoking status (current vs
never; former vs never).

4

‘Bayesian reassessment of the epigenetic
architecture of complex traits’ Trejo Banos et al. [17]

EWAS (MethylationEPIC) were conducted
using a Bayesian framework.

59

‘Epigenetic prediction of complex traits and death’
McCartney et al. [4]

EWAS (MethylationEPIC) were conducted
using a LASSO regression model with k-fold
(k = 10) cross-validation.

233
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mixed-effects regression. Despite explaining the largest
amount of phenotypic variance, neither Bayesian pre-
dictor was associated with mortality as strongly as their
respective directly measured phenotype. One potential
explanation for this finding is that the LASSO/linear
mixed-effects-derived DNAm scores capture elements of
smoking and BMI, respectively, which are more associ-
ated with mortality (e.g. smoking heaviness or visceral
fat mass), whereas the Bayesian-derived DNAm scores
may be a more composite measure of phenotype and
better predict it.
In our minimally adjusted models, self-reported BMI

and alcohol consumption, DNAm risk scores for alcohol
consumption and a DNAm risk score for education all
showed evidence of an association with mortality. How-
ever, when we adjusted for clinical covariates and mutu-
ally adjusted for the four exposure phenotypes in our
fully adjusted models, the associations notably attenu-
ated. This could reflect over -adjustment i.e. by adjusting
for mediators which actually lie on the causal pathway
between phenotype and mortality. Additionally, adjust-
ing for variables which are strongly correlated (i.e. by in-
cluding both self-report and DNAm scores for the same
phenotype in the same model) can lead to imprecision
in the effects estimated by our regression models. How-
ever, in the case of prediction, it is precisely the added
value of the DNAm score over and above the phenotype
which we were interested in estimating, hence the choice
of variables in our fully adjusted models.

Most of the attenuation in the strength of association
between self-reported phenotypes and mortality came
with adjustment for clinical variables (model 2 in Sup-
plementary Table 2), whilst for the methylation scores,
adjusting for the corresponding self-reported phenotypes
led to the biggest attenuation in estimates (model 3 in
Supplementary Table 2). Nonetheless, there was evi-
dence of an association between the smoking and, to a
lesser extent, the alcohol consumption and BMI DNA
methylation scores with mortality, even in the fully ad-
justed model, which may reflect the true effects of
the corresponding phenotypes on OPC mortality in our
study.
This study has several strengths including the avail-

ability of Illumina MethylationEPIC array data and the
availability of DNAm risk scores derived from large-
scale studies (see Supplementary Table 6). As the
MethylationEPIC platform supersedes the older Illumina
450 K array and provides ~ 400,000 more CpG sites to
interrogate in relation to a phenotype (whilst maintain-
ing the vast majority of sites already on the 450 K array),
the DNAm risk scores derived from this platform (and
applied to our data) explain a greater proportion of
phenotypic variance than those derived from the 450 K
array (Tables 2, 3, 4, 5 and, 6).
The availability of DNAm data and comprehensive

mortality follow-up data in the same cohort, as well as
our ability to adjust for multiple biological, clinical and
lifestyle covariates, including HPV status, presents

Table 6 Proportions of phenotypic variance explained by the DNAm risk scores employed

Methylation score Variance explained
in phenotype

Smoking

Trejo Bayesian (59 CpG sites) 48.7%

AHRR (cg05575921) 47.0%

McCartney LASSO (233 CpG sites) 43.5%

Joehanes (Bonferroni) (2623 CpG sites) 40.5%

Joehanes (FDR) (18,670 CpG sites) 33.5%

Zhang (4 CpG sites) 5.2%

Alcohol

Liu model 4 (144 CpG sites) 16.5%

Liu model 3 (78 CpG sites) 15.8%

Liu model 1 (5 CpG sites) 13.9%

Liu model 2 (23 CpG sites) 10.3%

McCartney LASSO (450 CpG sites) 10.0%

BMI

Trejo Bayesian (144 CpG sites) 24.5%

McCartney LASSO (1109 CpG sites) 22.2%

Educational attainment

McCartney LASSO (373 CpG sites) 0.4%
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another major strength of our study. It enabled investi-
gation of the association of DNAm scores with mortality
within a cancer cohort—a novel application of epigenetic
prediction which may have clinical utility in the future.
A notable limitation of our analysis is the small sample

size with a relatively limited number of deaths. Addition-
ally, our models examining the effect of BMI on mortal-
ity risk are not directly comparable to those estimating
the mortality risk associated with smoking, drinking and
education, as the included populations would differ due
to missing data. We used multiple imputation (MI) tech-
niques in our sensitivity analysis to address this issue, as
ignoring missing data, or failing to adequately account
for it can lead to bias and a loss of precision in param-
eter estimates [30]. The most common approach for ad-
dressing missing data (and the default in most statistical
packages) is complete case analysis [31]. However, a
major disadvantage of complete case analysis, particu-
larly in smaller sample sizes, is that it can diminish

statistical power through simply discarding samples with
incomplete data. If BMI had been included as a covariate
in our fully adjusted models, this would have reduced
the statistical power, shown by the loss of precision in
our complete case sensitivity analyses. Conversely, MI
makes use of all the available data, but under the as-
sumption that data is missing completely at random
(MCAR) or missing at random (MAR). When data are
missing not at random, complete case analysis gives the
most unbiased results [31]. In the case of BMI, which
had the most missing data, the baseline descriptive char-
acteristics of participants with or without data on this
variable did not appear to be different, presumably be-
cause BMI data was MCAR. Accordingly, the MI ap-
proach adopted is likely to be valid and provides further
support for our findings.
Another limitation of our study is that we were only

able to assess all-cause mortality, as cause-of death data
were not available for all participants in the current

Table 7 Association of phenotypic and DNAm-based predictors of smoking, alcohol drinking, BMI and education with mortality

Minimally adjusteda Fully adjustedb

Exposure N HR ll ul P value Nc HR ll ul P value

Self-reported phenotype

Ever vs never smoker 364 3.29 1.75 6.18 2.22 × 10−4 364 2.21 1.14 4.30 0.019

Hazardous to harmful drinker vs not 364 1.62 1.06 2.49 0.027 364 1.34 0.86 2.09 0.202

Higher education vs school education 364 0.81 0.54 1.22 0.320 364 0.87 0.57 1.31 0.503

BMI 248 0.93 0.87 0.99 0.028 248 0.98 0.92 1.06 0.664

DNAm score

Smoking

McCartney LASSO (233 CpG sites) 364 1.53 1.24 1.88 7.89 × 10-5 364 1.20 0.94 1.52 0.144

Trejo Bayesian (59 CpG sites) 364 1.70 1.37 2.11 1.49 × 10-6 364 1.26 0.93 1.72 0.140

AHRR (cg05575921) 364 0.59 0.48 0.74 1.72 × 10-6 364 0.79 0.58 1.07 0.125

Joehanes (FDR) (18,760 CpG sites) 364 1.70 1.34 2.15 1.27 × 10−5 364 1.35 0.99 1.84 0.056

Joehanes (Bonferroni) (2623 CpG sites) 364 1.67 1.36 2.05 7.57 × 10−7 364 1.38 1.04 1.83 0.025

Zhang (4 CpG sites) 364 1.48 1.16 1.88 1.48 × 10−3 364 1.28 1.02 1.60 0.036

Alcohol

Liu (5 CpG sites) 364 1.32 1.10 1.57 2.50 × 10−3 364 1.19 0.97 1.47 0.094

Liu (23 CpG sites) 364 1.26 1.04 1.52 0.019 364 1.10 0.89 1.36 0.357

Liu (78 CpG sites) 364 1.25 1.07 1.45 5.02 × 10−3 364 1.20 0.99 1.45 0.067

Liu (144 CpG sites) 364 1.24 1.07 1.44 5.31 × 10−3 364 1.21 1.00 1.46 0.052

McCartney LASSO (450 CpG sites) 364 1.28 1.03 1.60 0.024 364 1.05 0.79 1.41 0.723

BMI

Trejo Bayesian (144 CpG sites) 364 0.78 0.63 0.97 0.024 248 0.77 0.56 1.08 0.132

McCartney LASSO (1109 CpG Sites) 364 0.85 0.68 1.06 0.146 248 0.77 0.57 1.04 0.093

Education

McCartney LASSO (373 CpG sites) 364 0.76 0.61 0.96 0.021 364 0.87 0.68 1.12 0.270

N number, HR hazard ratio, ll lower confidence interval, ul upper confidence interval. aSelf-reported phenotypes adjusted for age and gender; epigenetic scores
adjusted for age, gender, cell counts and batch effects. bPhenotypes additionally adjusted for clinical variables (TNM stage, HPV status and comorbidity), and a
combination of smoking, alcohol intake, education and BMI, as appropriate to the model; risk scores additionally adjusted for clinical variables, the corresponding
phenotype predicted by the score of interest and the remaining self-reported phenotypes (excluding BMI). cSample numbers vary due to missing BMI data
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HN5000 data release. Moreover, previous work has
shown that the cause of death information on a death
certificate is often inaccurate [32, 33]. Whilst all-cause
mortality will be impacted by cancer status, it will not
show specificity to OPC as deaths could arise from com-
peting causes such as cardiovascular disease, secondary
cancers or age, preventing us from estimating phenotype
risk on OPC-specific death. However, hazard ratio esti-
mates are larger in our analysis compared to another
study examining the association of DNAm scores against
mortality in a healthy population. McCartney et al. [4]
report a HR per SD increase in score of 1.29 (95% CI
1.05 to 1.57, P 0.013) for their smoking DNAm risk score
(vs our HR per SD increase in smoking DNAm score
1.72, 95% CI 1.21 to 2.45, P 2.50 × 10−3, two-sided Z test
P 0.21). All-cause mortality estimates in those with OPC
likely reflect the effect of sustained heavy tobacco and al-
cohol use (a hallmark demographic of HNC popula-
tions), in addition to presence of cancer. The difference
in mortality estimates may therefore reflect the effect
these behaviours have on DNAm patterns, potentially
correlating with an increase in proportion of phenotypic
variance explained by DNAm in these prognostic factors
and allowing clearer distinction between those dead vs
alive, compared to a healthy population. In published lit-
erature, notable changes in DNAm have been reported
in response to smoking [34], alcohol consumption [35],
OPC oncogenesis and progression [36]. The marked HR
differences seen between those with and without OPC il-
lustrate a need to separately risk-stratify those with the
disease from those without.

Conclusion
In summary, we have shown that in the context of OPC,
peripheral blood DNAm-based scores are able to predict
complex traits with a relatively high proportion of vari-
ance explained for smoking, alcohol consumption and
BMI; but not educational attainment. Comparing the ef-
fect on mortality of both peripheral blood DNAm pre-
dictors and self-reported phenotype yielded similar
results, with peripheral blood DNAm displaying similar
effects on mortality across all traits assessed. Our find-
ings suggest peripheral blood DNAm predictors can be
used to supplement a prediction model of mortality in
those with oropharyngeal cancer, potentially providing
reliable insight into smoking, alcohol consumption and
BMI measures in situations where self-reported pheno-
type information is not available for these individuals.

Methods
Study population
The study population for this analysis was drawn from
individuals enrolled in the Head and Neck 5000 clinical
cohort study (HN5000) [9]. Full details of the study

methods and overall population are described in detail
elsewhere [9, 37]. Briefly, between April 2011 and De-
cember 2014, 5511 individuals with HNC were recruited
from 76 centres across the UK. All people with a new
diagnosis of HNC were eligible to join the study and
were recruited before or within a month of their cancer
treatment commencing. Individuals with cancers of the
pharynx, mouth, larynx, salivary glands and thyroid were
included, whilst those with lymphoma, tumours of the
skin or a recurrence of a previous head and neck cancer
were excluded from the study. The study is estimated to
have captured a third of all incident cases in the UK at
the time of enrollment.
Local research nurses obtained informed consent from

individuals, which included agreement to: collect, store
and use biological samples; obtain samples of stored tis-
sue; carry out genetic analyses and collect information
from hospital notes and through record linkage. Ethics
approval for this study was granted by the National Re-
search Ethics Committee (South West Frenchay Ethics
Committee, reference [10] /H0107/57, November 5,
2010) and approved by the research and development
departments from participating National Health Service
(NHS) Trusts.
Participants for the current study were selected from

the HN5000 cohort based on a hierarchy of the follow-
ing: (i) an ICD-10 coding (pathological where available)
of oropharynx (CO1, CO5, CO9, C10.0–2, C10.3, C10.8
and C10.9); (ii) availability of OncoChip genotype data
generated previously [38]; (iii) baseline questionnaire
and clinical information (diagnosis, treatment and co-
morbidity) and (iv) both blood and saliva samples taken
at baseline (N = 448, 23.5% of all OPC in HN5000) (see
Fig. 1).

Baseline data collection
Participants were asked to complete a series of three
self-administered questionnaires at baseline enquiring
about the following: (1) social and economic circum-
stances, overall health and lifestyle behaviours; (2) phys-
ical and psychological health, well-being and quality of
life and (3) past sexual history and behaviours [9]. Clin-
ical information on diagnosis, treatment and comorbid-
ity was recorded on a short data capture form using
questions based on a national audit [39]. Diagnoses were
coded using the International Classification of Diseases
(ICD) version 10 [40] and clinical staging of the tumour
was based on the American Head and Neck Society
TNM staging [41]. Comorbidity was defined using the
Adult Comorbidity Evaluation-27 (ACE-27) index [42].
Nurses graded participants’ comorbidities into one of
four categories according to the severity or organ de-
compensation: none, mild, moderate, or severe. An over-
all comorbidity score was assigned according to the
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severity of the highest-ranked medical condition, except
in cases with two or more grade 2 ailments in different
organ systems, where a final score of three was assigned.
Research nurses collected a blood sample from all con-

senting participants [9]. These were then sent to the
study centre laboratory https://www.bristol.ac.uk/popu-
lation-health-sciences/research/groups/bblabs/ at ambi-
ent temperature for processing. The samples were
shipped to the laboratory by the next available first-class
post using the transfer kits provided. Over 60% of sam-
ples arrived within 48 h and over 85% within 72 h. The
blood samples were centrifuged at 3500 rpm for 10 min
and the buffy coat layer used for DNA extraction. Any
additional samples from the same participant were fro-
zen and stored at − 80 °C. DNA extraction was carried
out by LGC genomics (http://www.lgcgenomics.com/)
using the Kleargene spin column extraction method
(http://www.lgcgroup.com/products/dna-extraction-kits/
kleargene-spin). Samples were eluted in a 1-ml low salt
buffer and DNA quantified using picogreen. The mean
DNA concentration across all HN5000 samples was
97.21 ng/μl, (SD 46 ng/μl).

Assessment of tobacco, alcohol, BMI and education
Information on tobacco and alcohol consumption, high-
est educational obtainment and BMI was obtained from
baseline questionnaires, which are available on the study
website (http://www.headandneck5000.org.uk/). Smoking
was defined as having smoked at least one daily cigarette
during a whole year and current smoking status was de-
fined as ‘current’, ‘former’ or ‘never’. Among smokers,
information on smoking status, age at smoking initiation
and number of years of smoking was obtained.
Respondents were asked to report their average weekly

alcohol consumption of a range of beverage types (wine,
spirits and beer/larger/cider) before their diagnosis of
head and neck cancer. From these measures, we derived
an average intake of alcohol consumption in units per
week, where one alcohol unit was equal to 10 ml or 8 g
of pure alcohol. Baseline drinking categories were then
defined as none, moderate (men and women drinking <
14 units/week), hazardous (men consuming 14–50 units/
week; women consuming 14–35 units/week) and harm-
ful (men consuming > 50 units/week; women consuming
> 35 units/week) [43].

Fig. 1 Flow diagram of HN5000 participants included in the analysis. *Data available for age, gender, TNM stage, HPV status, comorbidity,
education, self-reported smoking status and alcohol consumption
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BMI was calculated as weight (kg)/[height (m)]2 and
was based on participants’ self-report. At the start of
data collection, baseline questionnaires did not enquire
about participants’ height and weight and as a result,
BMI data are missing for just over 40% of participants
overall. For those with available data, a BMI of ≤ 25 was
classed as ‘not overweight’, a BMI of > 25–≤ 30 was
classed as ‘overweight’ and a BMI > 30 was classed as
‘obese’. Participants’ highest educational attainment was
defined as ‘school educated’, ‘college educated’ or ‘degree
level’.

Study follow-up and mortality
Notification of cancer registrations and mortality among
HN5000 cohort members were received from the NHS
Central Register and NHS Digital (formerly known as the
Health and Social care information Centre), through link-
age via NHS numbers. The last person was recruited into
HN5000 on December 31, 2014 and follow-up informa-
tion on mortality status was obtained up to September 1,
2018. Median follow-up from cohort entry to death or
censoring (end of follow-up for this analysis—September
1, 2018) was 3.9 years (IQR 3.3 to 5.2).

Epigenetic profiling and pre-processing
DNAm data from peripheral blood samples were gener-
ated on participants using Infinium MethylationEPIC
BeadChips (Illumina, USA). Following extraction, DNA
was bisulphite-converted using the Zymo EZ DNA
MethylationTM kit (Zymo, Irvine, CA, USA).
Epigenome-wide methylation data were generated using
the MethylationEPIC array according to the manufac-
turer protocol. The arrays were scanned using an Illu-
mina iScan (version 2.3). Raw data files (IDAT files)
were pre-processed using the R package meffil (https://
github.com/perishky/meffil/) [44] to perform quality
control (QC) and normalisation, as described previously
[45]. From the initial 448 samples available, 8 samples
did not pass QC: 2 samples with incorrect sex predic-
tion, 3 samples with sex detection outliers, 1 sample
with an outlier in predicted median methylated vs
unmethylated signal and 2 duplicate samples. An add-
itional 32 individuals were subsequently removed from
the analysis owing to pathological re-classification, leav-
ing 408 participants with DNAm data available (Fig. 1).
During QC, probe intensities were dye-bias and back-
ground corrected using the ‘noob’ method developed by
Triche et al. [46]. A total of 3674 probes were excluded,
leaving 863,289 CpGs with which to perform analyses—
2704 probes were removed due to a high proportion of
high detection P values (> 10% of samples with a detec-
tion P value > 0.1) and 970 CpGs had low bead numbers
in a high proportion of samples (< 3 beads in > 10%
samples). Following QC, we performed functional

normalisation (originally developed by Fortin et al. [47])
using the Meffil R package, which exploits control
probes to separate biological variation from technical
variation. Data were normalised using 6 control probe
principal components derived from technical probes.
During the normalisation process, probe intensity quan-
tiles were normalised between samples by fitting linear
models to these 6 derived principal components. The
resulting quantile residuals for each QC object were
retained as a set of normalised quantiles and used in a
second normalisation step, where the raw probe inten-
sities for each sample were adjusted to conform to its
own set of normalised quantiles. After the second step
had been completed for each sample, the resulting nor-
malised DNAm data subsets were merged into a single
dataset for analysis.
Post-normalisation, estimation of blood cell propor-

tions, per sample, were estimated via the Houseman cel-
lular composition prediction algorithm [48]. We used a
cell-type reference (Reinius et al. 2012 [49]) to estimate
proportions of neutrophils, natural killer cells, B cells,
eosinophils, CD4T cells, CD8T cells and monocytes.

DNAm risk score generation
Peripheral blood DNAm scores for alcohol consumption,
smoking, BMI and educational attainment were based
on independently identified CpG sites from several large
epigenome-wide association studies (N = 500 to 9643;
see Supplementary Table 6 [4, 17–20];). Details of re-
gression model, sample size, year of publication and
number of CpGs for each EWAS used to derive DNAm
risk scores are shown in Tables 2, 3, 4 and 5. For each
individual, DNAm scores were calculated as the
product-sum of the effect size for each CpG from the re-
spective EWAS results, multiplied by the normalised
methylation (beta) value (post-QC) of the same CpG site
in the HN500 MethylationEPIC data. Beta values are the
ratio of methylated probe intensity compared to the
overall intensity (sum of methylated and unmethylated
probe intensities).

Statistical analysis
Associations of DNAm scores with self-reported phenotypes
We performed linear regression analyses, adjusted for
age, sex, stage, cell counts and batch effects, of DNAm
risk scores against self-reported data to determine which
scores explained the largest amount of variance in our
exposure phenotypes of interest. We used the R2 statistic
generated by the ‘lm’ function of the core Stats package
in R (v3.4.1) as our measure of variance explained.

Survival analysis
The end point of this study was all-cause mortality, de-
fined as the time in days from study enrolment to date
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of death from any cause, or the date of censorship (i.e.
the last date of follow-up for this analysis 01/09/2018).
The primary analyses included complete cases only, i.e.
participants with complete data for all the covariates
used in the adjusted models and DNAm data available.
Kaplan-Meier curves and the log-rank test were first
used to investigate the univariate impact of covariates on
mortality. The proportional hazard assumption was
checked using statistical tests and graphical diagnostics
based on the Schoenfeld residuals. Mortality risk was
assessed in relation to each of the self-reported pheno-
types (i.e. for smoking, alcohol drinking, BMI and educa-
tion level) and DNAm scores, using Cox proportional-
hazard models. All DNAm scores from Tables 2, 3, 4
and 5 were standardised (z-scored) to allow direct com-
parison of effect sizes with each other. Hazard ratios
(HRs) and 95% confidence intervals (CIs) for mortality
were calculated for each standard deviation (SD) in-
crease in these scores. The HRs represent the increase in
mortality risk for ever versus never smokers, hazardous
to harmful drinkers versus non-hazardous to harmful
drinkers, higher education (college or degree-level) ver-
sus school education and the difference in mortality risk
per unit increase in BMI.
To assess potential associations of the four self-

reported exposure phenotypes with mortality we fitted
three regression models: (1) a minimally adjusted model
that controlled for age and sex; (2) a model that add-
itionally adjusted for clinical factors (TNM stage, HPV
status and comorbidity) and (3) a fully adjusted model
that mutually adjusted for the other self-reported pheno-
types of interest. The clinical factors were selected on
the basis of the strength of prior evidence linking them
with HNC survival. Higher TNM stage is consistently as-
sociated with poorer survival [50]. HPV positivity, des-
pite being a risk factor for OPC (that is, tumours driven
by HPV infection, in particular HPV16) confers a
marked survival advantage to those with OPC without
HPV-driven tumours [22]. Comorbidity greatly affects
all-cause mortality in both general populations and can-
cer populations [51, 52]. Owing to missing data, models
examining the associations of self-reported smoking, al-
cohol drinking and education with mortality were not
adjusted for self-reported BMI (model 3) because this
would have reduced the sample size by 148 individuals
(and therefore, statistical power). Ethnicity was not in-
cluded as a potential covariate in this study because the
cohort is almost exclusively white (97.1%).
Four separate models were fit to examine the relation-

ship between DNAm scores with mortality: (1) a minim-
ally adjusted model that adjusted for age, sex, cell counts
and batch effects; (2) a ‘clinical model’, as above; (3) a
model that additionally adjusted for the corresponding
self-reported phenotype (e.g. models that examined the

association of smoking-related DNAm scores with mor-
tality adjusted for self-reported smoking status) and (4) a
model that additionally adjusted for the other self-
reported phenotypes (excluding BMI to preserve sample
numbers). Batch effects included the DNAm bisulphite
conversion date and the MethylationEPIC array slide
and position of each sample. Results of the minimally
adjusted (model 1) and fully adjusted (model 4) models
are presented. The outputs from models 2 and 3 can be
found in the supplementary material.
It was decided a priori not to restrict the complete

case analysis to participants with self-reported BMI data
available due to the amount of missing data, as this
would decrease the statistical power to detect an effect
of our exposures on mortality. Therefore, as a sensitivity
analysis, another dataset was analysed as above but with
complete data for BMI (self-reported). Finally, the entire
dataset was analysed using MI as described below.

Multiple imputation
Data were missing for age at consent (1.2%), BMI (33.3%),
comorbidity (0.74%), highest education level obtained
(4.7%), annual household income (13%), self-reported
smoking status (3.9%) and self-reported alcohol consump-
tion (1.97%) (Supplementary Table 7). Missing values were
imputed using the ‘ICE’ package for multiple chained equa-
tions in STATA (version 15) [53]. MI assumes that data is
either MCAR or MAR, in which case data are acknowl-
edged to be missing for non-random reasons but the miss-
ingness can be accounted for by observed variables (e.g.
people with high education tend not to disclose their in-
come) [54]. Information on BMI was likely MCAR since
this information was not collected at the start of the study
and missing BMI data appeared to be unrelated to observed
values of other variables. Twenty imputed datasets were
generated and then combined using Rubin’s rule to obtain
valid statistical inferences [55]. The imputation model in-
cluded the event indicator, the Nelson-Aalen estimator of
the cumulative hazard, all of the variables that were used in
substantive Cox models and any other available variables
that help to explain the missing data. Analysis of the
stacked datasets was performed with the prefix command
‘mim’, to obtain combined parameter estimates [56].

Predictive accuracy of DNAm risk scores against mortality
To assess the accuracy with which the DNAm risk
scores for phenotypes could independently predict mor-
tality (rather than directly affect it as described in “Sur-
vival analysis” section), we derived ROC curves of
DNAm risk scores as predictor variables and used all-
cause mortality as a response variable, using the pROC
R package [57]. AUC was computed using the trapez-
oidal rule. We calculated 3 ROC curves per phenotype
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(alcohol consumption, BMI, educational attainment,
smoking):

1. The DNAm risk score which explained the largest
variance in each phenotype

2. Self-reported phenotype as the predictor
3. A generalised linear model combining both

epigenetic risk score of the phenotype and the self-
reported phenotype

To assess whether prediction of mortality using an epi-
genetic risk score improved upon prediction of mortality
using self-reported phenotype, we conducted Z tests to
compare AUCs using the DeLong Z test [58, 59], using
the pROC R package. We compared epigenetic risk
score for phenotype against self-reported phenotype (1.
vs 2. above), in addition to comparing the generalised
linear model of both epigenetic risk score and self-
reported phenotype against self-reported phenotype
alone (3. vs 2. above).
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