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Abstract

Motivation: Next generation sequencing technologies have accelerated the discovery of single nucleotide
variants (SNVs) in the human genome, stimulating the development of predictors for classifying which of
these variants are likely functional in disease, and which neutral. Recently we proposed CScape, a method
for discriminating between cancer driver mutations and presumed benign variants (Rogers et al., 2017a).
For the neutral class this method relied on benign germline variants found in the 1000 Genomes Project
database. Discrimination could therefore be influenced by the distinction of germline versus somatic,
rather than neutral versus disease-driver. This motivates the current paper in which we consider predictive
discrimination between recurrent and rare somatic single point mutations based solely on using cancer
data, and the distinction between these two somatic classes and germline single point mutations.
Results: For somatic point mutations in coding and non-coding regions of the genome, we propose
CScape-somatic, an integrative classifier for predictively discriminating between recurrent and rare variants
in the human cancer genome. In the present study we use purely cancer genome data and investigate
the distinction between minimal occurrence and significantly recurrent somatic single point mutations in
the human cancer genome. We show that this type of predictive distinction can give novel insight, and
may deliver more meaningful prediction in both coding and non-coding regions of the cancer genome.
Tested on somatic mutations, CScape-somatic outperforms alternative methods, reaching 74% balanced
accuracy in coding regions and 69% in non-coding regions, while even higher accuracy may be achieved
using thresholds to isolate high-confidence predictions.
Availability: Predictions and software are available at http://CScape-somatic.biocompute.org.uk/.
Contact: mark.f.rogers.phd@gmail.com
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction
Next generation sequencing technologies have accelerated the discovery
of single nucleotide variants (SNVs) in the human genome, stimulating
the development of predictors for classifying which of these variants are
likely functional in disease, and which neutral. Predictors have been deve-
loped for variants in both coding and non-coding regions of the human
genome. For example, in Shihab et al. (2015), we developed such a predi-
ctor based on pathogenic disease-driver germline variants from the Human

Gene Mutation Database (HGMD) (Stenson, P.D. et al., 2014), and assu-
med neutral variants from the 1,000 Genomes Project Consortium (1000G)
(The 1000 Genomes Project Consortium, 2012). Multiple types of data
may be informative, so we used an integrative binary classifier which wei-
ghted component data-types according to their relative informativeness
(Shihab et al., 2015). A variety of similar predictors have been proposed
(Adzhubei et al., 2010; Kumar et al., 2009; Reva et al., 2011; Kircher,
L.A. et al., 2014; Quang et al., 2014; Liu et al., 2016). In Rogers et al.
(2017a) we proposed CScape, a classifier for predicting the driver-status
of SNVs in the human cancer genome with a follow-on investigation of
biological insights in Darbyshire et al. (2019). By a driver, we mean a
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2 Rogers et al.

disease-enabler, therefore including the sub-instances of gain-of-function,
loss-of-function or both simultaneously.

As tumours evolve, they accrue thousands of somatic mutations that are
commonly labeled according to their role in cancer development: driver
mutations are subject to positive selection during a tumour’s evolutionary
progress, as they confer a growth advantage and contribute to tumour gro-
wth. Passenger mutations accumulate as tumours evolve, and may confer
no advantage or may even inhibit tumour fitness (Stratton et al., 2009; Pon
and Marra, 2015). Oncogenesis is believed to be caused by a small number
of key driver mutations (Martincorena et al., 2017; Darbyshire et al., 2019)
that trigger tumour growth and induce subsequent passenger mutations as
tumours proliferate (Bozic et al., 2010; McFarland et al., 2014; Pon and
Marra, 2015). Many more passenger than driver mutations exist in cancer
cells and distinguishing between the two classes remains a significant chal-
lenge (Marx, 2014). Germline mutations have been identified as drivers in
genes such as BRCA1 and BRCA2, but it is estimated that up to 90% of
cancer-related genes are influenced by somatic mutations: those that accrue
during a patient’s lifespan (Futreal et al., 2004). Furthermore, the immune
system could be expected to tolerate germline mutations but remove cells
with particular types of somatic mutation, leading to differing distributions
between germline and somatic variation. Hence understanding particular
characteristics that differentiate somatic and germline mutation will be
crucial to our understanding of how the disease progresses.

In this paper we focus on a machine learning approach to distin-
guishing between driver and passenger SNVs across the human cancer
genome. The development of such classifiers will be important for inter-
preting cancer sequence databases currently being compiled, such as the
Cancer Genome Atlas (Weinstein et al., 2013), the International Cancer
Genome Consortium (Zhang et al., 2011) and national programmes such
as the Genomics England (100,000 genomes) Project. Mirroring previ-
ous methods (Shihab et al., 2015; Rogers et al., 2015, 2017a), we use an
integrative classifier and select features from a wide variety of data sou-
rces. Using leave-one-chromosome-out cross-validation (LOCO-CV), the
proposed method, which we call CScape-somatic, outperforms alternative
models, achieving balanced test accuracies of 74% in coding regions and
69% in non-coding regions.

We also associate a confidence measure to the predicted class assign-
ments (cf. Supplementary Section 1). To interpret this confidence measure,
in Supplementary Section 4, we consider two thresholds, a default thre-
shold and a high-confidence threshold. If we restrict prediction to highest
confidence instances only (cautious classification) then balanced accuracy
in LOCO-CV rises to 92% for coding regions and 87% for non-coding
regions, though with this level of test accuracy is confined to 10% of
coding and 9% of non-coding nucleotide positions across the genome,
respectively.

2 Materials and Methods

2.1 Recurrence thresholds

We assembled two datasets based on variants found in the COSMIC
database (version 84, February 2018) (Forbes et al., 2010). Among the
COSMIC database annotations is the recurrence level, or the number of
times a mutation has been observed in different cases. In the discussion
below, highly recurrent variants have a recurrence of r ≥ ρ, where we
select ρ = 8 in non-coding regions and ρ = 7 in coding regions. The
dependence of predictive accuracy on unseen validation data, versus recur-
rence level r, is depicted in Figure 1. For somatic variants, the other
category of interest will be rare somatic SNVs which occur once in the
whole dataset (r = 1). These two categories of somatic alterations will
contain variants with differing disease-driver statuses. It is reasonable to

assume that some highly recurrent variants, specific to cancer samples and
absent from healthy individuals, are actually neutral passengers. A recur-
rent somatic SNV could be closely co-located within a region where there
is an active disease driver. Similarly a rare somatic SNV (r = 1) could
actually be a rare driver. However, it is plausible to assume that recur-
rently observed somatic SNVs, which are restricted to cancer samples,
are enriched for driver mutations. Similarly, rare somatic SNVs could
be expected to be enriched for neutral variants. Even if this statement
were challenged, we point out that the consequence of the current study
is to show that membership of these two classes can be predicted with
a non-trivial accuracy on unseen test data, and hence these two classes
must have different enrichments and characteristics. Our interest in discri-
minating recurrent somatic SNVs from rare somatic SNVs is therefore
that it provides an alternative insight beyond a discrimination between
germline neutrals (from healthy individuals) and recurrent somatic vari-
ants from cancer patients, absent from healthy individuals (Rogers et al.,
2017a). This latter distinction could be influenced by a bias towards germ-
line versus somatic discrimination, rather than the intended distinction of
passenger versus disease-driver.
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Fig. 1. Balanced accuracy for models at different COSMIC recurrence levels shows that
the coding models achieve a peak validation accuracy of 74.1% at a recurrence threshold of
ρ = 7 (top) while the non-coding models achieve a peak accuracy of 69.5% at a recurrence
threshold of ρ = 8 (bottom).

A further possible bias may be introduced if our class of negative
examples, say the rare variants, are located in different genomic regions
from the positive examples, the highly recurrent variants. For example,
the positives may appear predominantly near transcription start sites while
negatives are distributed more broadly (Ritchie et al., 2014; Kircher, L.A.
et al., 2014; Shihab et al., 2015). To ensure the locations of rare somatic
mutations approximate those of recurrent somatic mutations, we select
only those rare mutations found within a windoww of a recurrent mutation.
For coding examples we use w = 10, 000, and for non-coding examples
we use w = 1, 000 (Supplementary Section 1). Hence our final training
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sets, outlined in Supplementary Tables 1 and 2, consist of 27,575 coding
examples and 10,908 non-coding examples.

Feature Groups

All of our data are based on the GRCh37/hg19 version of the human
genome and detailed further in the Supplementary. Following our previous
work (Shihab et al., 2015; Rogers et al., 2015, 2017b,a), we annotated our
datasets using more than 30 feature groups that could be predictive of
pathogenicity. For discriminating between somatic variants, we found the
following feature categories to be predictive:

• Genomic: genomic features include GC content, local mutation fre-
quency (Martincorena and Campbell, 2015), sequence spectra (Leslie
et al., 2002), proximity to gene features such as splice sites or transcri-
ption factor binding sites, predicted functional elements, and measures
of region uniqueness.

• Evolutionary: evolutionary features include a comprehensive set of
conservation-based measures provided by tools such as PhastCons
(Siepel et al., 2005), PhyloP (Pollard et al., 2010) and FATHMM
(Shihab et al., 2015).

• Consequences (coding only): using the Variant Effect Predictor
(McLaren et al., 2016) we use binary vectors to represent allele conse-
quences and the affected amino acids within all transcripts associated
with a mutation.

The COSMIC database also provides a set of mutational signatures
that are specific to oncogenic mutations. These are associated with various
distinct forms of mutation, such as DNA replication errors, defective DNA
repair, enzymatic DNA modification, and exposure to mutagens (Alexan-
drov et al., 2013). However, this signature set is still evolving and may
represent only a subset of potential oncogenic driver signals. Furthermore,
metrics used to derive some of these signatures are based in part on drivers
gleaned from the COSMIC database and potentially could bias our models.
Hence our final models use seven distinct feature groups: Conservation,
GC content, Sequence uniqueness, Local mutation frequency, Proximity to
gene features, Spectrum and Functional elements. More detailed descripti-
ons of these feature groups, and the machine learning method used, appear
in the Supplementary and in (Rogers et al., 2017a).

CScape-somatic models

We evaluated all models using leave-one-out cross validation (LOCO-CV)
testing, omitting mitochondrial and allosomal (X and Y) chromosomes
from testing as these have evolutionary characteristics distinct from auto-
somal chromosomes, and tend to yield fewer examples. For each fold
we leave out one test chromosome while the remaining 21 chromosomes
are used to train the model, using the same model parameters for all folds.
Except where noted, we trained models using randomly selected, balanced
sets of 4,000 positive and 4,000 negative examples. This smaller subset
of examples yields accuracy nearly as high as with complete training sets
but takes less time to train, and allows us to estimate the variability of test
results across multiple LOCO-CV runs. For testing we used all available
examples for the left-out chromosome, resulting in slightly unbalanced test
sets for coding and non-coding (Supplementary Table 2). For the training
datasets, we balanced examples by class, and report results for balanced
training for all test set estimations.

We integrated data from the feature groups outlined above and used
them to train two distinct sub-classifiers: one for coding regions (CSS-
coding), and a second for non-coding regions (CSS-noncoding). The
simplest kernel method for integrating different data sources is to combine
features from all sources into a single kernel. In previous work (Rogers

et al., 2017b,a) we have found that this approach yields excellent perfor-
mance that may surpass multiple-kernel methods (Rogers et al., 2017b), as
single kernel methods allow models to learn interactions between features
from different sources. Given at least 30 possible data sources, the num-
ber of possible combinations of feature groups makes exhaustive testing
impractical. Instead, we use a forward selection approach based on previ-
ous work in which we found that sequential learning could be an effective
means to identify an optimal combination of feature groups (Rogers et al.,
2015). To identify the data sources to include in each model, we first rank all
feature groups by balanced accuracy. Starting with the top-ranked feature
group by validation accuracy, we iterate over the remaining feature groups,
creating models by combining each of the remaining groups with the top-
ranked group to form a single kernel. If any of these models yield higher
balanced accuracy than the best model, it becomes the new best model. We
continue this process until none of the subsequent models yields signifi-
cantly higher balanced accuracy than the current best model in LOCO-CV
(Supplementary Figure 1). We evaluate all combinations with and without
data normalisation, where we standardise features by subtracting the mean
and dividing by the standard deviation. For these models we observed no
difference in performance between the raw feature values and standardised
data. The final CSS-noncoding model includes five feature groups: Conse-
rvation, Local mutation frequency, Distance from gene features, and two
related to sequence: GC content and Sequence uniqueness. For CSS-coding
the best model uses all of the feature groups used in CSS-noncoding plus
the Functional elements and Spectrum groups (Supplementary Section 2).

3 Results

Measurable differences between germline and somatic
neutral variants

The methodology we use will be similar to that used with CScape (Rogers
et al., 2017a). However, the key difference is that we wish to explore
the potential for discriminating between two different classes of somatic
variants: highly recurrent SNVs, which we label as positives, and rare
SNVs which we label as negatives. The other distinction is between the
neutral germline variants we used to train our CScape models and the r = 1

somatic SNVs in cancer samples. To investigate this latter distinction, we
evaluated 30 different feature groups to detect differences between these
latter two classes of variants.

Non-coding data: germline versus somatic
In non-coding regions, several feature groups yielded different distributi-
ons for r = 1 somatic variants and germline neutral variants. These are
depicted in Figure 2 and Supplementary Figure 2, and the distinction is
highly significant by hypothesis testing. For example, PhyloP conservation
scores for r = 1 somatic variants tend to be higher (associated with more
highly-conserved regions) and fall within a narrower range than neutral
germline variants (Figure 2, top). Based on our mutation tolerance mea-
sure, r = 1 somatic variants reside in regions where somatic variants
typically cluster, while benign germline variants appear in these regions
less often (Figure 2, bottom). These patterns are consistent with other fea-
tures in the same groups (Supplementary Figure 2), and hence supports our
hypothesis that by developing models focused solely on somatic variants,
we may begin to tease out differences between cancer drivers and puta-
tive passenger variants. However one should be cautious about drawing
inferences from these results. For example, germline neutral variants have
higher percent GC content scores in coding regions, but lower scores in
non-coding regions, so it is unclear whether GC content plays a significant
role, or whether it merely correlates with other features.
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Fig. 2. Scoring distributions for SNVs in the non-coding datasets show differences between
germline (1000 Genomes) and rare somatic (COSMIC, r = 1) examples. The features that
discriminate most clearly between germline and somatic variants are those associated with
conservation scores (top) and the somatic mutation frequency within a local region (bottom).
Conservation scores do not yield the kind of discrimination we see typically when comparing
pathogenic or oncogenic mutants with presumed benign variants, however PhyloP scores
suggest that putative somatic passenger variants are more closely associated with highly-
conserved regions (lower scores indicate greater conservation) than benign germline variants
(top). This same pattern holds for other conservation scores, but the distinction is less clear
(Supplementary Figure 2). Somatic variants also appear to reside in regions with higher
mutation tolerance, as measured by the number of somatic variants found within a region
of 1,000 positions (bottom). The individual probabilities that the two distributions in each
subplot come from the same underlying distribution are upper bounded by 10−18 and
hence the differences are certainly statistically signficant.

Coding data: germline versus somatic
Conservation estimates feature prominently in many methods designed to
predict pathogenic or oncogenic variants in coding regions of the genome,
including our own FATHMM-MKL (Shihab et al., 2015), FATHMM-XF
(Rogers et al., 2017b) and CScape (Rogers et al., 2017a). The selection
of positive examples (pathogenic or oncogenic) is relatively clear, but
selecting appropriate neutral examples may be challenging. Hence we used
conservation scores to assess characteristic differences between neutral
germline and somatic variants. For our analysis we use three different
methods for scoring conserved positions in a genome: PhastCons (Siepel
et al., 2005), PHYLOP (Pollard et al., 2010) and FATHMM (Shihab, H.A.
et al., 2013). PhastCons produces scores that correspond to the probability
that a particular position is in a conserved region: high scores correspond to
high conservation probability. PHYLOP yields scores in a broader range,
but positive scores generally correspond to conserved regions and negative
scores, to variable regions. FATHMM scores also span a relatively broad
range. In this case, negative scores correspond to conserved regions and
positive scores reflect variable regions.
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Fig. 3. Two methods for estimating conservation in coding regions show that there are
differences in scoring distributions between germline (1000 Genomes) and rare somatic
(COSMIC, r = 1) variants. With PhastCons scores (top) germline neutral variants tend
to have low scores associated with more highly conserved regions, while somatic neutral
variants tend to have higher scores. PHYLOP scores (bottom) exhibit a similar pattern where
again, high scores are associated with conserved regions while low scores are associated
with more variable regions. While these differences are subtle, this suggests that developing
a coding-region classifier strictly based on somatic variants may yield better specificity for
cancer drivers than the current CScape coding model. The individual probabilities that the
two distributions in each subplot come from the same underlying distribution are upper
bounded by 10−18 and hence the differences are certainly statistically signficant.

In coding regions, conservation scores tend to yield good discrimina-
tion between pathogenic and benign germline variants (Shihab et al., 2015;
Rogers et al., 2017b), or between somatic driver and neutral germline
variants (Rogers et al., 2017a). Hence it is not surprising that several con-
servation scoring methods also exhibit different distributions between rare
somatic variants and neutral germline variants in coding regions (Figure
3). Here we show the results for two methods: PhastCons (Siepel et al.,
2005) and PHYLOP (Pollard et al., 2010) (we find similar results for sco-
res from FATHMM (Shihab, H.A. et al., 2013), Supplementary Figure 3).
For conservation scores we found that putative somatic passenger variants
tend to have score distributions associated with more highly conserved
regions than neutral germline variants. Note that we observed the same
pattern in conservation scores for non-coding variants, where rare somatic
variants were also associated with more highly-conserved regions (Figure
2). These results are consistent with the idea that germline variants under
selective pressure occur less frequently in conserved regions that are into-
lerant to variation. By contrast, rare somatic variants are under little or no
selective pressure once tumours proliferate, and hence may tend to arise
in conserved regions with a greater frequency.
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Classifying recurrent and rare somatic variants

Classifier Bal. Acc. Sens. Spec. MCC PPV
CSS-noncoding 0.69 0.64 0.74 0.38 0.73

cautious (τ = 0.84) 0.84 0.87 0.81 0.67 0.91
CSS-coding 0.74 0.72 0.77 0.48 0.76

cautious (τ = 0.91) 0.92 0.96 0.88 0.85 0.93

Table 1. Statistics for CSS-noncoding and CSS-coding applied to LOCO-CV
test data provide estimates of how the models are likely to perform on new
examples. Shown are the performance statistics for each model: sensitivity
(Sens., the proportion of positive examples correctly classified), specificity
(Spec., the proportion of negative examples correctly classified), balanced
accuracy (Bal. Acc.), the Matthews correlation coefficient (MCC) and the
positive predictive value (PPV, the proportion of positive predictions that are
true positives). τ is the cutoff on the confidence for cautious classification.

Classifying somatic variants in non-coding regions
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Fig. 4. Comparison between CScape-somatic performance in LOCO-CV (non-coding regi-
ons, COSMIC data) with prediction results for CScape, CADD and FunSeq2 on the same
examples (CSS=CScape-somatic and CS=CScape). Top: CScape-somatic dramatically out-
performs other methods on the COSMIC training data with accuracy over 69%. Of the other
methods, only FunSeq2 appears to yield prediction accuracy better than chance, at 52.7%.
The remaining methods fare poorly, including the original CScape. Bottom: We see the
same trend with ROC scores, as CScape-somatic yields satisfactory ranking performance
of 0.75, while only FunSeq2 yields rankings better than chance.

Cancer specific predictors have been proposed for prediction in coding
regions of the cancer genome (Adzhubei et al., 2010; Kumar et al., 2009;
Wong et al., 2011). General purpose predictors have also been proposed
for prediction across the entire genome (coding and non-coding regions)
using catalogued disease-drivers across a variety of disease traits (e.g.

HGMD (Stenson, P.D. et al., 2014)), and recently we have seen the emer-
gence of classifiers designed to discriminate between cancer drivers and
presumed benign variants from germline databases (Fu et al., 2014; Rogers
et al., 2017a). However, there is currently a lack of predictors specifically
trained to discriminate between somatically acquired putative drivers and
passengers, particularly for non-coding regions of the cancer genome.

Here we consider the distinction between rare somatic variants and
highly recurrent somatic variants, with the working assumption that the
former class is enriched for neutral passengers while being distinct from
germline neutrals, and with the latter class enriched for drivers. In Figure
4 we present results demonstrating that CSS-noncoding outperforms rival
prediction tools for this distinction, based on the use of COSMIC data,
both in terms of accuracy (top) and area-under-ROC-curve (AUC) score
(bottom). In comparison with general-purpose classifiers such as CADD
(Kircher, L.A. et al., 2014), and cancer-specific methods such as CScape
(Rogers et al., 2017a) and FunSeq2 (Fu et al., 2014), our CScape-
somatic model yields dramatically higher accuracy and AUC performance.
CScape-somatic test accuracy with LOCO-CV is 69.2% while its nea-
rest competitor, FunSeq2 yields 52.7%. Similarly, CScape-somatic yields
an AUC score of 0.73 substantially higher than its nearest competitor,
FunSeq2, with 0.52.

International Cancer Genome Consortium (ICGC) test data
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Fig. 5. Performance of the best CScape-somatic model with the original CScape, CADD
and FunSeq2 on the ICGC test set for non-coding regions (CSS=CScape-somatic and
CS=CScape). Top: CScape-somatic yields accuracy from 60.0% up to 64.2% on the
ICGC test sets, substantially higher than competitors. The closest competitor changes at
each ICGC recurrence level: FunSeq2 for ICGC r ≥ 2, at 50.9%; CScape for ICGC
r ≥ 3, at 50.5%, and CADD for ICGC r ≥ 4, at 51.4%. Bottom: CScape-somatic
yields AUC scores from 0.64 to 0.73. None of the competitors yield scores better than
random chance (0.50), and with the exception of the original CScape, perform worse as
the driver threshold r increases.
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ICGC data includes patient identifiers, which enables us to find cancer
variants that occur more than once. Hence this dataset provides a good
independent test for models that might discriminate between putative dri-
ver mutations (those found in multiple patients) and rare, prospectively
neutral, mutations (those found just once). Within the ICGC data, we
found 52, 825 examples in non-coding regions after we applied our strict
filtering criteria. This procedure yielded 37, 802 variants associated with
only one patient, and 15, 023 examples associated with two or more pati-
ents. We selected positive examples using three different recurrence levels:
r ≥ 2, r ≥ 3 and r ≥ 4 (we found no examples associated with more than
four patients). In each case, we restricted rare variants to be within 1,000
nucleotide positions of highly recurrent putative driver, to mitigate poten-
tial bias related to genomic locations. This yielded 37, 802 rare variants
and 15, 023 recurrent variants at r ≥ 2; 3, 781 rare variants and 1, 548

recurrent variants at r ≥ 3, and 1, 207 rare variants and 481 recurrent
variants at r ≥ 4.

Generally we found that CADD, which was trained solely on germ-
line or simulated variants, and models such as CScape, FunSeq2, DANN,
FATHMM-MKL and FATHMM-XF, trained on combinations of germline
and somatic variants,perform poorly on this test set. CScape-somatic yields
substantially higher balanced accuracy and AUC scores than competing
methods on these data. Interestingly, this model performs better as the
recurrence level increases: from 60% at r ≥ 2 up to 64% at r ≥ 4

(Figure 5). This observation implies there is a substantive difference
between low-recurrence and high-recurrence variants, supporting our pre-
viously stated assumption that high-recurrence variants are more likely to
be driver mutations. The remaining models all perform worse in terms of
AUC scores as the ICGC driver threshold r increases, the lone exception
being the original CScape (Figure 5, bottom).

Evaluation on TERT/SDHD/PLEKHS1 examples from non-coding
regions

Mutation CSS CS FS† CADD
TERT
5:g1295228G>A + (0.56) + (0.52) + (1.33) + (0.34)
5:g1295229G>A + (0.51) + (0.62) + (1.69) + (0.66)
5:g1295250G>A + (0.51) + (0.58) + (0.56) + (0.31)
SDHD
11:g111957523C>T + (0.52) + (0.81) + (1.00) + (1.64)
11:g111957541C>T + (0.68) + (0.67) + (1.62) + (0.82)
11:g111957544C>T + (0.87) - (0.40) + (1.00) + (0.64)
PLEKHS1
10:g115511590G>A + (0.71) + (0.65) - (0.17) - (-0.10)
10:g115511593C>T + (0.57) + (0.71) - (0.17) - (-0.06)

Table 2. Tests on verified cancer drivers from non-coding regions show that
CScape-somatic predicts all variants correctly, while the original CScape cor-
rectly predicts all but one SDHD variant. FunSeq2 and CADD predict the TERT
and SDHD examples correctly, but both mis-classify the PLEKHS1 examples.
For each method we present the predicted label (+= driver, −= passenger) with
the associated score in parentheses. (Classifiers: CSS = CScape-somatic, CS
= CScape, FS = FunSeq2). †For FunSeq2 we use a threshold of 0.56 (Rogers
et al., 2017a).

Few oncogenic single-point mutations have been verified in non-coding
regions. The most prominent to date are three mutations in the TERT pro-
moter region (Huang et al., 2013; Horn et al., 2013; Weinhold et al., 2014).
These have been characterised as disruptions to putative E26 transforma-
tion specific (ETS) family transcription factor binding sites, that include
five additional mutations in SDHD and PLEKHS1 (Weinhold et al., 2014).

This test set is tiny, and thus inadequate to evaluate classifiers in any com-
prehensive fashion, but represents the few documented examples of driver
mutations in non-coding regions. Hence we expect a useable classifier to
predict a majority of these examples correctly. For both CScape methods
we assign negative (-) labels to scores below 0.5 and positive (+) labels for
the rest. For CADD scores we associate negative and positive predictions
with negative and positive scores, respectively. For FunSeq2, we label as
negative scores below 0.56 and use positive labels for the rest.

The CScape-somatic non-coding predictor yield positive predictions
for all of these examples, while the original CScape predict all but one
of the SDHD examples (Table 2). FunSeq2 and CADD perform worst in
this test, missing both of the PLEKHS1 examples. However, it is worth
repeating that these validated examples represent but a small fraction of
cancer drivers in non-coding regions. It is also worth noting that none of
these examples appear in the CScape-somatic training set, while all three
of the TERT mutations were part of the original CScape training set.
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Classifying somatic variants in coding regions
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Fig. 6. Comparison between CScape-somatic performance using LOCO-CV (coding regi-
ons, COSMIC data) with prediction results for CScape, CADD and TransFIC (Gonzalez-
Perez et al., 2012) models on the same examples. Top: CScape-somatic balanced accuracy
in LOCO-CV outperforms other methods on the COSMIC training data, with accuracy
over 74%. Of the other methods, only CScape yields prediction accuracy better than
chance, at 59.2%. The remaining methods fare less well, even the TransFIC methods
that were optimized for somatic variants. Bottom: We see the same trend with ROC
scores, as CScape-somatic yields satisfactory ranking performance of 0.82, while only
the original CScape yields rankings better than chance, at 0.62. (CSS=CScape-somatic;
CS=CScape; TF-MAS=TransFIC-MutationAssessor, TF-PPH2=Transfic-Polyphen2 and
TF-SIFT=TransFIC-SIFT)

For classifying driver mutations, coding regions have received considera-
bly more attention than non-coding regions. However, few models have
been developed expressly to differentiate between somatically acquired
cancer drivers and passenger mutations. Hence we are interested in seeing
whether a classifier trained on rare putative passengers and highly recur-
rent putative drivers in coding regions can discriminate between these two
classes, better than existing models. Results on our COSMIC training data,
shown in Figure 6, show that most methods struggle to make this disti-
nction. Of the methods tested, only the original CScape yields prediction
accuracy better than chance, at 56% with an AUC score of 0.62. By con-
trast, CScape-somatic achieves an average balanced accuracy of 74% in
LOCO-CV, with an average AUC of 0.82.

ICGC test data
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Fig. 7. Performance of the best CScape-somatic model with the original CScape, CADD
and TransFIC models on the ICGC test set for coding regions. Top: CScape-somatic yields
substantially higher accuracy, at over63%, than the original CScape at59%. The remaining
methods fare less well, with accuracies ranging from51% to56%. Bottom: When consider
ranking performance, CScape-somatic again out-performs the other methods with an AUC
score of 0.69, followed by the original CScape at 0.61 and the remaining methods all
below 0.60. (CSS=CScape-somatic; CS=CScape; TF-MAS=TransFIC-MutationAssessor,
TF-PPH2=Transfic-Polyphen2 and TF-SIFT=TransFIC-SIFT)

We see similar performance characteristics on our ICGC test set: the
CScape-somatic coding classifier yields 64% accuracy and an AUC score
of 0.69, while the best of the remaining methods, CScape, manages
59% accuracy and an AUC of 0.61. Taken with the performance on our
COSMIC data set, these results suggest that models trained to discriminate
between presumed cancer drivers and generic neutral germline variants
may be poor with distinguishing between true drivers and passengers.

We note that the performance of the CScape-somatic coding classifier
drops considerably between the COSMIC training set and the ICGC test
set. By contrast, the original CScape performs slightly better on the ICGC
test set at 59% accuracy compared with 56% accuracy on the COSMIC
data set. There are two possible reasons for this: either the ICGC test
set does not represent cancer drivers and putative passengers as well as
the COSMIC dataset, or the CScape-somatic coding model may over-fit
the COSMIC dataset. After filtering out examples found in our training
set, the ICGC test sets are relatively small, with just 1,695 driver and
2,921 putative passenger mutations in the set. As a result, we did not have
sufficient test data to stratify by recurrence levels with putative drivers
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defined by recurrence levels as low as two. When we test our coding model
on unseen COSMIC data where drivers are identified using recurrence
levels of just two or higher, performance indeed drops considerably, to a
balanced accuracy of 62.3%, slightly lower than its performance on the
ICGC test data using the same recurrence levels. Thus while we cannot
rule out some degree of over-fitting, these results suggest that relatively
low recurrence levels in the ICGC data account for some of the observed
performance difference.

We have used the COSMIC dataset for model training and the ICGC
dataset for test evaluation. Of course, it is also possible to train on ICGC
data and test on COSMIC. Though this leads to a slightly lower test perfor-
mance, we consider and evaluate this alternative in Supplementary Section
5.

Aside from evaluations on test data, we can also test the model for
biologically meaningful prediction. There are a number of well characte-
rised cancer driver mutations stemming from variants in coding regions.
For example, the His1047Arg substitution derives from A → G at
location 3:178952085 (GRCh37/hg19) in the driver gene PIK3CA and
has been implicated in various cancers (Janku and et al, 2011). Using
CScape-somatic (http://CScape-somatic.biocompute.org.uk/) this is a high
confidence predicted driver (at 0.927). In Supplementary Section 6, we
further tested Cscape-somatic on a range of other recurring single point
driver mutations in coding regions, residing in well known cancer genes,
and characterised by Rheinbay et al (Extended Data Figure 1 in Rheinbay
(2017)) as SNV-drivers. Their study uses data from the Pan-Cancer Analy-
sis of Whole Genomes Consortium and uses in excess of 2,700 cancer
genomes from more than 2,500 patients. Subject to the proviso given in
Supplementary Section 6, the presented classifier correctly predicts all
of these well characterised drivers from the driver-genes KRAS, PIK3CA,
TP53, NRAS and IDH1.

4 Discussion
In this study we have investigated the feasibility of developing models that
can accurately predict the likely influence of different classes of somatic
mutations on tumorigenesis. Our hypothesis was twofold. Firstly, there
are characteristic differences in many of the features distinguishing rare
somatic variants, which are prospectively enriched for neutral passenger
variants, and benign germline variants. The latter category is frequently
used to train methods for SNV driver status annotation. Secondly, these
features can play an important role in discriminating between rare soma-
tic variants, putatively passengers, and highly recurrent somatic variants,
restricted to cancer patients, and which are likely to be enriched for dri-
vers. We found evidence to support the first hypothesis within features that
measure degree of conservation across the genome, mutation frequency
or GC content in the region surrounding each variant. We also present the
CScape-somatic model to distinguish these two classes of somatic vari-
ant in coding and non-coding regions of the genome. Both the coding
and non-coding sub-classifiers, optimized separately within their respe-
ctive domains, rely to some degree on the same features: conservation,
mutation frequency and GC content.

To our knowledge, the CScape-somatic model is the first to discrimi-
nate solely between somatic cancer variants. We compared our new model
to our original CScape model which was trained to discriminate betw-
een somatic driver variants and benign germline variants, and found that
while the original model provides weak discrimination between highly
recurrent and rare somatic variants, the new model provides substantially
higher test accuracy across the entire genome. We also compared this new
model to CADD, FunSeq2 and the three TransFIC models: TransFIC-
MutationAssessor, TransFIC-SIFT and TransFIC-Polyphen2. Of these
latter models, only FunSeq2 has been optimized to predict oncogenic

variants. The remaining five methods were all developed to discriminate
pathogenic germline variants from benign germline variants. In nearly
all cases we found that models trained on germline variants as the neutral
control, were unable to distinguish between highly recurrent putative onco-
genic drivers and and rare somatic variants, likely to be putative passenger
variants. Only models trained on cancer variants, CScape and FunSeq2,
provided weak discrimination on some test data for this type of distinction.
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