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Abstract ESA's CryoSat-2 has transformed the way we monitor Arctic sea ice, providing routine
measurements of the ice thickness with near basin-wide coverage. Past studies have shown that
uncertainties in the sea ice thickness retrievals can be introduced at several steps of the processing chain, for
instance, in the estimation of snow depth, and snow and sea ice densities. Here, we apply a new physical
model to CryoSat-2, which further reveals sea ice surface roughness as a key overlooked feature of the
conventional retrieval process. High-resolution airborne observations demonstrate that snow and sea ice
surface topography can be better characterized by a lognormal distribution, which varies based on the ice
age and surface roughness within a CryoSat-2 footprint, than a Gaussian distribution. Based on these
observations, we perform a set of simulations for the CryoSat-2 echo waveform over “virtual” sea ice surfaces
with a range of roughness and radar backscattering configurations. By accounting for the variable
roughness, our new lognormal retracker produces sea ice freeboards that compare well with those derived
from NASA's Operation IceBridge airborne data and extends the capability of CryoSat-2 to profile the
thinnest/smoothest sea ice and thickest/roughest ice. Our results indicate that the variable ice surface
roughness contributes a systematic uncertainty in sea ice thickness of up to 20% over first-year ice and 30%
over multiyear ice, representing one of the principal sources of pan-Arctic sea ice thickness uncertainty.

Plain Language Summary We have developed a new way of measuring sea ice thickness in the
Arctic, by comparing real and simulated data from the European Space Agency satellite: CryoSat-2. Our
simulations are guided by aircraft observations that demonstrate sea ice has distinct patterns of surface
roughness. Traditional methods ignore or misrepresent the surface roughness, which reduces our
confidence in the measured ice thickness by around one third. If we account for the roughness, however, we
can extend the capability of Cryosat-2 for measuring both the thinnest smoothest sea ice and thickest
roughest ice. These improvements will boost our confidence in derived estimates of the Arctic Ocean's sea ice
volume budget and freshwater fluxes, while enhancing the accuracy of sea ice forecasts primed with
satellite data.

1. Introduction

Basin-scale estimates of sea ice thickness have been produced since the early 1990s by satellite radar alti-
meters including the European Space Agency's ERS-1 and ERS-2, Envisat, and, more recently, CryoSat-2
(Laxon et al., 2003; Laxon et al., 2013; Paul et al., 2018). Since its launch in 2010, CryoSat-2 has routinely
monitored the polar oceans with almost complete basin-scale coverage. The novel multilook synthetic aper-
ture radar (SAR) capability has enabled CryoSat-2 to measure sea ice freeboard at a greater resolution and
precision than preceding pulse-limited altimeters (Wingham et al., 2006). The Ku-band frequency radar of
CryoSat-2 is assumed to penetrate through overlying snow and backscatter from the snow-ice interface.
Sea ice freeboard, which is the portion of the floating ice that is above sea level, is then obtained from the
elevation difference between radar echoes backscattered from sea ice and ocean tie-points between ice floes.
These measurements of freeboard are converted to sea ice thickness by assuming hydrostatic equilibrium,
taking estimates of the densities of sea ice, ocean water, and snow from the literature, and estimating the
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depth of snow accumulated on the ice surface (Laxon et al., 2013; Ricker et al., 2014; Tilling et al., 2018). As
the ice freeboard (not including snow cover) is typically only 5-20% of its thickness (Alexandrov et al., 2010),
errors in measurements of freeboard magnify roughly 10-fold in the conversion to thickness.

Recent work has focused predominantly on the sea ice thickness error introduced by uncertain snow proper-
ties. A snow depth and density climatology (Warren et al., 1999) is still used to derive the current
state-of-the-art ice thickness products (Kurtz et al., 2014; Ricker et al., 2014; Tilling et al., 2018). Snow depth
has consequently been identified as a primary source of ice thickness error (Giles et al., 2008; Ricker
et al., 2014). Moreover, spatiotemporal variations in snow properties, including density (Willatt et al., 2011),
grain size (Kwok, 2014), and basal salinity (Nandan et al., 2017), contribute additional error to derived sea ice
thickness. Ricker et al. (2014) suggested that sea ice surface roughness may also represent a significant
source of ice thickness uncertainty, because the effect of roughness on CryoSat-2 radar waveforms remains
unaccounted for by conventional empirical retracking algorithms. The raw range measurement between the
altimeter and target is only approximate, so the radar waveform must be “retracked” to accurately identify
the mean sea ice or ocean scattering surface, represented by a point on the waveform's leading edge (Quartly
et al., 2019). Commonly used threshold first-maximum retracker algorithms (TFMRA) simply apply a per-
centage threshold of the waveform's first-maximum power return to identify this retracking point (Laxon
et al., 2013; Ricker et al., 2014; Tilling et al., 2018). However, modeling studies indicate this power threshold
should realistically change depending on sea ice properties, principally surface roughness at the scale of the
radar footprint (Kurtz et al., 2014; Landy et al., 2019).

Three groups producing routine and publicly available sea ice thickness data from the CryoSat-2 Synthetic
Aperture Interferometric Radar Altimeter (SIRAL) are the Centre for Polar Observation and Modelling
(CPOM), Alfred Wegener Institute (AWI), and Goddard Space Flight Centre (GSFC). Other sea ice thickness
products are available from the NASA Jet Propulsion Laboratory (JPL) (Kwok & Cunningham, 2015),
Laboratoire d'Etudes en Géophysique et Océanographie Spatiales (LEGOS) (Guerreiro et al., 2017) and
the ESA Climate Change Initiative (CCI) Program (Paul et al., 2018). The first group to produce ice thickness
estimates from CryoSat-2, CPOM use TFMRA with a 70% threshold for retracking sea ice floes and a
curve-fitting routine for retracking leads that identifies the waveform peak (Laxon et al., 2013; Tilling
etal., 2018). AWI use TFMRA with a 50% threshold for retracking both sea ice and leads (Ricker et al., 2014).
GSFC optimize the fit of a physical model for the SAR altimeter echo to CryoSat-2 waveforms, with the
threshold at the tracking point varying from approximately 85-95% depending on sea ice roughness at multi-
ple scales (Kurtz et al., 2014). The empirical retracking algorithms obtain the scattering surface elevation
directly from the detected waveform, rather than an ideal echo fit to the waveform, and are several orders
of magnitude faster than physical retrackers (Kurtz et al., 2014). While this makes them attractive for opera-
tional sea ice thickness products, they do not account for physically realistic variations in the tracking point
threshold owing to variable sea ice properties. Consequently, several studies have demonstrated that
CryoSat-2 elevations from the physically based GSFC algorithm agree most accurately with ice floe and lead
(ocean surface) elevations (Yi et al., 2018) and sea ice freeboards (Xia & Xie, 2018) obtained from coincident
airborne lidar observations.

The GSFC model assumes a sea ice surface with an undulating Gaussian topography. However, airborne
lidar data have shown that sea ice topography cannot be accurately characterized by a Gaussian model
(Rivas et al., 2006). The tail of the surface height distribution can be well represented by a negative exponen-
tial function (Petty et al., 2016; Wadhams et al., 1992), with the full height distribution well represented by a
lognormal model (Castellani et al., 2014; Davis & Wadhams, 1995; Landy et al., 2019; Liu et al., 2014;
Tian-Kunze et al., 2014). Using a new model for the SAR altimeter echo, Landy et al. (2019) showed that
—in theory—ice freeboard could be underestimated by at least 5 cm if the topography is assumed to be
Gaussian rather than lognormal. The ice freeboard bias increases as the sea ice surface gets rougher, up to
20 cm for a surface roughness (e.g., height standard deviation, o) of 0.5 m (Landy et al., 2019), translating
into a “worst case” 1.5 to 2 m sea ice thickness bias.

Here, we characterize the statistical properties of sea ice surface roughness, at both the air-snow and
snow-ice interfaces, using airborne observations acquired as part of NASA's Operation IceBridge (OIB) cam-
paign. Building on these results, we apply a set of simulations from the model of Landy et al. (2019) to
develop a new algorithm (hereafter the Lognormal Altimeter Retracker Model [LARM]) for retracking
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CryoSat-2 radar echoes from sea ice floes and leads. We compare CryoSat-2 sea ice freeboards derived from a
range of existing physical-model and empirical retracking methods to each other, and against coincident air-
borne freeboard observations, to ascertain the systematic uncertainty associated with the retracking step.
Finally, we contrast this uncertainty with other systematic uncertainties of the sea ice thickness processing
chain, introduced by snow depth or density, or ice density, for instance.

2. Characterizing the Sea Ice Surface Roughness Height Distribution

Airborne lidar and radar observations collected by OIB are used to evaluate the suitability of employing
Gaussian or lognormal assumptions for the ice surface height probability density function (PDF) when mod-
eling SAR altimeter echoes from sea ice. These two PDFs can be characterized by the single free parameter:
o, assuming zero mean, so offer a tractable solution for the waveform model optimizations (Section 3).
Airborne lidar observations, such as those from the OIB Airborne Topographic Mapper (ATM), have been
employed in several prior studies to examine statistical properties of the snow or sea ice surface topography
(e.g., King et al., 2015; Petty et al., 2016; Rivas et al., 2006) and represent the state of the art in terms of reso-
lution and coverage. Since the lidar observes the snow surface elevation, however, these measurements do
not necessarily represent the statistical characteristics of the underlying snow-ice interface, which is osten-
sibly observed by the Ku-band radar of CryoSat-2. Therefore, we additionally use data from the OIB airborne
Ku-band radar altimeter to directly analyze the roughness of the snow-ice interface.

2.1. OIB Lidar Data

We analyze the ATM L1B Elevation and Return Strength V2 dataset (Studinger, 2018) (last access on 18 April
2019) collected in spring 2013 and 2014, covering 7,300 km of first-year ice (FYI) and 19,000 km of multiyear
ice (MYTI) across the western Arctic Ocean. The wide-scan ATM is a conically scanning laser altimeter oper-
ating at 532 nm, which provides an ~250-m swath of surface height measurements at the nominal flight alti-
tude of ~500 m. Each shot has a footprint of around 1 m and a vertical accuracy of around 0.1 m, with higher
shot density at the edge of the swath due to the conical scan pattern (Studinger, 2018). We follow the ice
topography analysis approach of Petty et al. (2016, 2017) but adapt this to collate all shots within individual
1,700 m along-track sections to broadly represent a given CryoSat-2 swath (300 X 1,700 m). The onboard
Applanix POS/AV precision orientation system is used to delineate the data and find the bounds of each
swath-like segment. The data are expressed as the relative height versus the lowest elevation in each section
(data originally provided as an elevation with respect to the WGS-84 ellipsoid).

2.2. OIB Ku-Band Radar Data

We further analyze the OIB Ku-Band Radar LIB Geolocated Echo Strength Profiles V2 dataset (Paden
et al., 2017) (last access on 8 September 2019) collected during two airborne campaigns on 21 March 2013
and 14 March 2014, each spanning the same track across the Western Arctic Ocean from the Lincoln Sea
to Point Barrow, Alaska, and covering 1,240 km of FYI and 3,085 km of MYI. The Centre for Remote
Sensing of the Ice Sheets (CReSIS) Ku-band radar is an ultra-wideband radar altimeter with a central fre-
quency of 15 GHz (Rodriguez-Morales et al., 2013). At the nominal bandwidth of 6 GHz, the flat-surface
range resolution in snow (dielectric constant, & = 1.53 for dry snow with density of 300 kg m™>) is approxi-
mately 4.9 cm (Paden et al., 2017), compared to 47 cm for CryoSat-2 (Wingham et al., 2006). With such a fine
range resolution, the CReSIS Ku-band radar has previously been applied to separate air-snow from snow-ice
interfaces over Arctic sea ice (Kwok, 2014). Through unfocused SAR processing, raw samples are coherently
stacked along-track to obtain a finer spatial resolution, before a boxcar filter is applied for a final along-track
sample spacing of approximately 5 m (at nominal flight speed of 140 m s™"). For a sea ice surface with zero
slope, the across-track footprint is limited by the pulse duration to approximately 10-15 m depending on the
surface roughness and flight altitude (Rodriguez-Morales et al., 2013).

We collate all radar samples above a threshold signal-to-noise ratio (SNR) of 10 dB along 5-km OIB tracks,
providing ~1,000 samples in the best case, and vertically compensate the radar echograms for variations in
the flight altitude. A 50% threshold first-maximum retracking algorithm (Landy et al., 2017) is used to esti-
mate the elevation of the principal scattering horizon (generally assumed to be the mean level of the
snow-ice interface), before a 2-km-span median filter is applied to remove residual long-wavelength undula-
tions of the topography not corrected during aircraft compensation. Specular returns from leads within the
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Table 1

Summary Statistics for Gaussian and Lognormal Model Fits to High-Resolution 1,700-m Along-Track Snow Surface Height Distributions Obtained From the OIB

ATM Lidar in 2013 and 2014

2013  Num sections  Sigma (normal, m)  KS test (normal)  KS test (lognormal) RMSE (normal) RMSE (lognormal) % lognormal superior fit

FYI 2,716 0.16
MYI 3,689 0.31
All 6,405 0.25

0.13 0.07 0.67 0.41 92
0.13 0.06 0.37 0.21 96
0.13 0.07 0.50 0.29 94

2014 Num sections  Sigma (normal, m)  KS test (normal)  KS test (lognormal) RMSE (normal) RMSE (lognormal) % lognormal superior fit

FYI 1,313 0.20
MYI 7,235 0.32
All 9,033 0.30

0.14 0.08 0.57 0.38 91
0.13 0.07 0.38 0.23 94
0.13 0.07 0.41 0.25 94

Table 2

pack ice are classified based on high waveform pulse-peakiness (Laxon et al., 2013) and backscattering
coefficient (e.g., Paul et al., 2018). An estimate for the sea surface elevation fit to lead returns (Figure 2a)
is finally removed, leaving a profile of snow-ice interface heights relative to their mean elevation. All
sections with high aircraft altitude variations, pitch or roll, low SNR, or too few leads for a valid sea level
estimate are discarded.

2.3. Gaussian and Lognormal Model Fits to Sea Ice Height Distributions

We mask all data within 25 km to the nearest coastline and use the EUMETSAT Ocean and Sea Ice Satellite
Application Facilities (OSI-SAF) sea ice type product (OSI-403-c) (Breivik et al., 2012) to classify each section
as either FYT or MYT. All valid samples within a lidar or radar section are used to produce normalized PDFs
of the surface height, with fixed 5-cm-width bins. A least-squares method is used to fit Gaussian and lognor-
mal models to the observed PDFs. The Kolmogorov-Smirnov (KS) test and root mean squared error (RMSE)
of the model fit to the binned PDFs are used to assess goodness of fit, with a lower value indicating superior
fit in both cases.

Summary statistics for more than 15,000 analyzed lidar segments and 850 radar segments are provided in
Tables 1 and 2, along with examples for the snow and ice surface height PDF fits for selected segments in
Figures 1 and 2, respectively. For both FYT and MY]I, the lognormal model offers a better match to the under-
lying snow and sea ice surface elevation distributions than the Gaussian model. The KS score using either
model is similar between FYI and MYI while the normalized RMSEs are clearly lower for the MYI function
fits, indicating that multiyear ice roughness—in particular—is better characterized with a lognormal model.
The KS test score defines the distance between an empirical distribution and reference (model) cumulative
distribution. For our normalized PDFs, the absolute difference between Gaussian and lognormal test scores
are consistent in Tables 1 and 2, which suggests the lognormal is superior to the Gaussian model for a similar
fraction of the snow and ice surface topography segments. The lognormal model provides a superior fit than
the Gaussian model to snow surface topography in 94% of cases (92% for FYI, 95% for MYT) (Table 1) and to
snow-ice interface topography in 90% of cases (96% for FYI, 88% for MYI) (Table 2). These results provide

Summary Statistics for Gaussian and Lognormal Model Fits to Medium-Resolution 5-km Along-Track Snow-Ice Interface Height Distributions Obtained From the

OIB Ku-Band Radar in 2013 and 2014

2013 Num sections  Sigma (normal, m) KS test” (normal)  KS test® (lognormal) RMSE (normal) RMSE (lognormal) % lognormal superior fit

FYI 167 0.10 0.73 0.69 0.24 0.16 93
MYI 239 0.24 0.71 0.65 0.17 0.11 88
All 406 0.18 0.72 0.67 0.20 0.13 920
2014 Num sections Sigma (normal, m) KS test” (normal)  KS test® (lognormal) RMSE (normal) RMSE (lognormal) % lognormal superior fit
FYI 81 0.14 0.77 0.67 0.23 0.16 99
MYI 378 0.22 0.71 0.64 0.18 0.13 87
All 459 0.20 0.72 0.65 0.19 0.13 89

“KS test statistics are higher for the radar results compared to the lidar results due to the much lower number of observations per analyzed section.
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Figure 1. (a,c) Snow surface elevations from characteristic FYI and MYI 1,700-m along-track segments of the OIB ATM lidar, respectively, and (b,d) their height
PDFs with corresponding best-fit Gaussian and lognormal models, and their locations inset.

strong evidence that a lognormal height distribution must be used to accurately model the radar echo back-
scattered from sea ice.

Tables 1 and 2 also reveal the similarity of kilometer-scale roughness statistics for air-snow and snow-ice
interfaces of the Arctic sea ice cover. For instance, the lognormal model provides a superior fit than the
Gaussian model to the snow and ice topography in a consistent ~90% of cases. The average standard devia-
tion of the height distribution (o) is significantly higher for the snow surface (0.28 m) than the ice surface
(0.19 m), although we did not analyze identical sections between the two instruments. Since the snow and
sea ice surfaces exhibit similar roughness properties, our results support the argument that snow surface
roughness is primarily controlled by the roughness of the underlying sea ice (e.g., Doble et al., 2011;
Tacozza & Barber, 1999; Kurtz et al., 2013), for instance, by the spacing and height of deformed ice and
pressure ridges.
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Figure 2. (a) Echogram from the OIB Ku-band radar over MYI in the Lincoln Sea March 2013, compensated for aircraft altitude changes and relative to the
WGS-84 ellipsoid, including the retracked elevation of the snow-sea ice interface, samples classified as leads, and an estimate for the sea surface height. Minor
(5-10 dB) backscattering from the snow surface and volume is apparent above the retracked sea ice surface and evidence for radar sidelobes is apparent above and
below the leads. Height PDFs from characteristic (b) FYI on 14 March 2014 and (c) MYT on 21 March 2013, 5-km along-track segments of the radar with
corresponding best-fit Gaussian and lognormal models, and their locations inset.

3. Application of a Numerical SAR Altimeter Echo Model for Retracking
CryoSat-2 Waveforms

We use the facet-based numerical model of the delay-Doppler SAR altimeter echo from snow-covered sea ice
presented in Landy et al. (2019) to generate ideal waveforms for comparison against CryoSat-2. The model
can simulate echoes from a tetrahedral mesh of virtual sea ice surfaces generated from statistical descriptions
of the ice surface roughness. The final echo integrates the total backscattered power from all facets of the sea
ice surface height distribution illuminated by the CryoSat-2 antenna footprint. As previous studies, we make
the necessary assumption that the principal scattering horizon of the CryoSat-2 radar originates from the
snow-ice interface (Laxon et al., 2013), so we assume zero surface or volume scattering from the snowpack
in our simulations. Only CryoSat-2 observations from October to April each year are processed.

3.1. SAR Echo Model Simulations

Statistical rough surfaces with Gaussian or lognormal height PDF and prescribed roughness parameters: rms
height o and correlation length [ are generated through the techniques presented in Landy et al. (2019), and
each is converted to a triangular irregular network (TIN). The surface area is constant in all simulations:
400 m along the track of the satellite and 8,000 m across-track, based on the illuminated area of the
Doppler beam-limited footprint along-track and several times the pulse-limited footprint across-track
(Wingham et al., 2006). The resolution of the statistical surfaces was a constant 5 m to ensure the surface
roughness (at multiple scales) was accurately characterized (Landy et al., 2015; Landy et al., 2019). To gen-
erate a lookup table of ideal echoes from which to fit the CryoSat-2 waveforms, we modified two parameters
of the surface: g, at 1 cm increments from 0 to 100 cm, and the subgrid “radar-scale” sea ice roughness (i.e.,
roughness at a scale below the length of a 5-m facet), s,,,,5, at 0.25 mm increments from 0 to 6 mm. The latter
range has been determined from terrestrial lidar measurements of natural and artificially grown sea ice
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Figure 3. (a) CryoSat-2 SAR-mode waveforms simulated for sea ice surfaces with lognormal height distribution, varying height standard deviation o, and fixed
radar-scale roughness s,,,,s of 3 mm. Example model fits to CryoSat-2 SAR-mode waveforms for (b) sea ice floe and (c) lead, with the four optimized
parameters. The tracking points (“epochs”) are represented by the vertical lines at t = 0 in each plot.

(Landy et al., 2015; Landy, Isleifson, et al., 2015). Where ¢ < 0.02 m and s,,,,; < 1 mm, the waveform is
representative of a specular lead-type echo (Kurtz et al., 2014). All other surface parameters were kept
constant, including the correlation length [ at 5 m, following Rivas et al. (2006). This matrix of roughness
parameters produced a lookup table of 2,222 simulated echoes (e.g., Figure 3a), repeated for both
Gaussian and lognormal surfaces.

Echo range bins were oversampled by five times in each simulation to accurately characterize the waveform
leading-edge and peak and ensure that fits to CryoSat-2 waveforms were not degraded by poorly resolved
model echoes. All other model satellite and antenna parameters were kept as in Table IT in Landy et al. (2019).
Because the rough surface generator produces a single random version of a surface, for each combination of
o and s,,,,5, we ran the echo model for 100 iterations to get a representative statistical sample of echoes and
calculated the final echo as the mean of these iterations.

One significant modification was made to the model equations outlined in Landy et al. (2019) to produce
more realistic simulations of the sea ice surface backscatter coefficient ¢°. In Landy et al. (2019), we made
the simple assumption that the snow-ice interface was a purely incoherent (diffusely) scattering surface at
the Ku-band frequency of CryoSat-2. Snow-ice interface c°(6) for the incidence angles illuminated by the
CryoSat-2 footprint, 6, was simulated from the integral equation model (Fung, 1994). However, we now take
the more realistic approach to model ¢°(6) from the snow-ice interface as the combination of incoherently
scattered and coherently reflected power, accounting for expected near-nadir reflection of the altimeter
beam over relatively smooth sea ice at Ku-band (Fetterer et al., 1992). As described in Landy et al. (2019)
for modeling coherent reflection from leads, the fraction of the backscattered power reflected coherently
from the snow-ice interface is

Weon = exp(—4ko>Symsc0s>6) )

where ky, is the radar carrier wavenumber (284.3 m ™). For s,,,,s toward the smoother end of observed rough-
ness heights over sea ice (at a length scale <5 m), w,y, is up to 0.72 at near-nadir 6, verifying the importance
of including coherent scattering contributions when modeling Ku-band altimeter backscattering from sea
ice facets. As in Landy et al. (2019), the coherent backscattering coefficient for a flat, relatively smooth
snow-ice interface, inclined at facet incidence angle 6, can be written in the form (Fung & Eom, 1983)

2 2
o'(c)oh = (Iﬁif) exp(—4k(2)sfms)exp <_ %) ) @)

where R, is the Fresnel reflection coefficient at nadir incidence and . is the effective width of the
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Table 3 ) . angular extent of the coherent backscatter component (kept identical
VRGO T R to the angular interval between successive bursts of the CryoSat-2
Parameter Initial point Lower bound Upper bound Doppler beams). Thus, the total snow-ice interface ¢ =09, + 9.,
A Waveform peak Waveform peak ~ Waveform where the incoherent scattering component is obtained from the inte-
peak * 1.5 gral equation model. The effect of changing small-scale snow-ice inter-
fo Time at waveform  Time at first bin ~ Time at final bin  face roughness s,,s for a sea ice surface with fixed, very smooth
IEEL topography (¢ = 1 cm) is shown in Figure S1 in the supporting infor-

o o at waveform 0 100 cm i .
PP value mation. The echo becomes more sharply peaked as s,,,,; decreases, with
Srms Syms at waveform 0 6 mm the transition in peakiness occurring rapidly as the fraction wcop
PP value switches from near-zero to >0.5 at a radar-scale roughness depending

on frequency. When o increases above ~10 cm, modifying the

small-scale roughness has little effect on the echo shape because local
facet incidence angles increase well above zero and ¢, becomes negligible outside the point perpendi-
cular to the antenna boresight.

3.2. Optimization Algorithm for Fitting CryoSat-2 Waveforms

Observed CryoSat-2 waveforms are truncated to remove range bins below the noise floor (Ricker et al., 2014)
and significant secondary peaks on the waveform trailing edge are filtered out. These secondary peaks are
caused by strong reflection from specular targets, such as leads or smooth regions of ice, well outside the
nadir point of the radar footprint. As the modeled echoes represent ideal targets with statistically defined
roughness and uniform scattering properties, we cannot fit and extract useful information from these sec-
ondary peaks, instead focusing on optimizing the fit to the waveform leading edge. Secondary peaks are
identified from the first derivative of the waveform power and a simple, conservative filter is used to remove
the peaks while retaining the full waveform. We found the process of “cleaning” the waveform trailing edge
to vastly improve the speed and quality of model fits.

We use a least-squares fitting procedure to optimize the functional form of the modeled sea ice echo to
observed CryoSat-2 waveforms, following a similar method to Kurtz et al. (2014). Linear interpolation coef-
ficients are precomputed for the Gaussian and lognormal echo lookup tables, so that echoes can be rapidly
generated for any queried combination of roughness parameters. A least-squares fitting routine based on the
bounded trust region reflective algorithm (implemented through the MATLAB function Isqnonlin) is used to
minimize the difference between the model fit and each CryoSat-2 power waveform. To prevent the algo-
rithm converging on a local minimum, the finite difference step size is kept relatively small and maximum
number of iterations large. If the fit does not converge within the iteration limit, the waveform is discarded.

Following methods adopted for retracking ocean echoes (Dinardo et al., 2018; Ray et al., 2015), the optimi-
zation minimizes four free parameters: A, the scaled waveform amplitude, f,, the tracking point of the mean
radar scattering surface (or “epoch”), o, the surface topography rms height, and s,,,5, the small-scale rough-
ness (Figures 3b and 3c). The pulse-peakiness (PP) parameter is calculated for each CryoSat-2 waveform, fol-
lowing the method of Laxon et al. (2013), and compared to a table of PP values for model waveforms in the
lookup table. Initial guesses and bounds for the free parameters are given in Table 3.

The quality of an echo fit, if the optimization algorithm converges to a solution, is determined from the coef-
ficient of determination #* and the RMSE between model fit and CryoSat-2 waveform. A waveform fit is
accepted if the ¥ > 0.95, or if the * > 0.90 and the RMSE <10%. For instance, in March 2015, 26% of SAR
and SARIn waveforms north of 50° and in the sea ice zone (SIC >70%) were discarded by applying these cri-
teria and the filters described above.

A waveform optimization typically converges to a solution within 0.01-0.2 s on a high-specification desktop
computer, so the physical model-fitting routine is ~2 orders of magnitude slower than threshold
first-maximum retracker algorithms (TFMRA). We have retracked the entire 2010-2018 CryoSat-2 SAR
and SARIn archive, above 50° North and greater than 10 km from land, simultaneously applying algorithms
for the physical echo model with Gaussian and lognormal assumptions for the topography, TFMRA with
50% and 70% thresholds, and a peak-identifying algorithm for lead returns (Tilling et al., 2018) to enable a
direct comparison between methods.
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4. Comparison of Physical-Model and Threshold-Based Retracking Algorithms

Empirical retrackers, such as the TFMRA, apply a constant threshold of the CryoSat-2 waveform's
leading-edge power to estimate the sea ice surface mean elevation. However, our physical model for
the CryoSat-2 echo waveform suggests that the mean elevation (tracking point) actually exists at a dif-
ferent location on the leading edge depending on the sea ice surface roughness. Across a typical range
of sea ice surface roughness heights from 5 to 55 cm (the approximate range of o values determined
from the OIB data analyzed in section 2.3), the tracking point in our lookup table of Gaussian echoes
varies from 95 to 85% of the leading-edge power, verifying the results of Kurtz et al. (2014). The track-
ing point shifts closer to the waveform peak (i.e., 100% normalized power) as o approaches zero. Indeed,
returns from leads—with almost zero roughness—have a modeled retracking point >95% (Figure 3c).
Across the same range of o from 5 to 55 cm, the retracking point in our lookup table of Lognormal
echoes varies from 95% to 60% (Figure 3a), indicating that the more realistic Lognormal model predicts
the true sea ice mean elevation to vary by considerably more than the Gaussian model suggests. The
model results indicate that heavily deformed sea ice, with surface roughness >50 cm, should have a
retracking point around 60% (e.g., Figure 3b), whereas for newly formed sea ice with little roughness
it would be around 95%.

Figure 4 illustrates the pan-Arctic patterns of the offsets between gridded sea ice and sea surface eleva-
tions measured by each retracker, averaged for March over the CryoSat-2 record. Over smooth
FYI in the Eastern Arctic and marginal seas the Lognormal and Gaussian retrackers produce
elevations within 2 cm, whereas over rougher MYI in the Central Arctic the Gaussian retracker pro-
duces elevations more than 6 cm lower than LARM (Figure 4e). The regional pattern of this offset is
consistent with regional variability in sea ice surface roughness characteristics (Figure 1). The
Lognormal roughness assumption enables mean footprint sea ice elevation to accurately increase over
deformed and MYI, in a way that is limited for a Gaussian retracker. Sea level estimates from the
Lognormal and Gaussian retrackers are almost identical, with a mean difference of only
—0.2 cm (Figure 41).

Both threshold-based algorithms produce estimates for the mean sea ice elevation that are higher than
LARM (Figures 4f and 4g). This is because the lognormal roughness model suggests the true retracking
threshold should only reduce to 70% of the waveform's leading-edge power when the roughness height o
increases above 40 cm. The offset between the 70% threshold retracker and LARM is only 1-2 cm over
MYT in the Central Arctic, because in this region the mean sea ice roughness is generally between 30 and
50 cm, so that a retracking threshold of 70% is quite realistic (Figure 4f). However, physical models indicate
that a 70% retracking threshold is unrealistic over smooth FYI (Kurtz et al., 2014; Landy et al., 2019), with the
threshold likely >85% (Ricker et al., 2015), so the retracker overestimates mean elevation within the FYI
zone by 4-6 cm with respect to LARM.

The offsets between sea ice elevations measured by LARM and the 50% threshold retracker are considerably
larger, with the threshold algorithm overestimating LARM by up to 30 cm over rough MYI (Figure 4g). Such
large offsets in sea ice elevation will not translate directly into an ice freeboard bias, as freeboard is estimated
from the difference between ice and sea levels (see section 5), with the method for retracking the sea level
varying between groups too. Although there are significant offsets between the relative sea surface heights
measured through these different methods (Figures 4m and 4n), the offsets are predictably near-constant
across the Arctic, having no regional pattern. In contrast, the offsets in retracked sea ice elevation do vary
regionally (Figures 4e-4g), reflecting the pan-Arctic pattern of sea ice surface roughness (Landy et al., 2015).
This has a direct impact on the CryoSat-2 radar freeboard derived from the relative difference between sea
ice and sea surface elevations.

5. Uncertainties in Sea Ice Freeboard Introduced by Ice Surface Roughness

Each of the developers of available CryoSat-2 sea ice thickness datasets use a different combination of algo-
rithms for classifying waveforms, retracking sea ice and lead elevations, for applying geophysical corrections
to ice and sea levels, filtering poor quality observations, and gridding final radar freeboard estimates. Rather
than comparing gridded ice freeboard products, our approach here is to reproduce only the retracking steps
of other group's processing chains to enable direct evaluation of the retracker algorithms on derived sea ice

LANDY ET AL.

90f18



Vel

et Journal of Geophysical Research: Oceans 10.1029/2019JC015820
Gaussian Model 70% Threshold 50% Threshold
: i"( ST 0.5
§ 0.25
s
.g 0
§ -0.25
-05m
E
z
S
o
3
3
£
8
5
g
g
]
Logormal Model (LARM)
- 05
E
= 0.25
3
% 0
T
'R
:ng | -0.25
-05m

Sea Level compared to LARM [cm]

Figure 4. March mean radar sea ice surface elevations obtained from (a) the lognormal model retracker (LARM), (b) the Gaussian model retracker, (c) the 70%
threshold retracker, and (d) the 50% threshold retracker, with respect to the DTU15 mean sea surface height for the full 2011-2018 CryoSat-2 record. (e-g) show
the sea ice elevation offsets between each retracker minus LARM. March interpolated sea level anomalies (SLAs) from (h) LARM, (i) the Gaussian model, (j) the
peak-finder retracker, and (k) the 50% threshold retracker, for 2011-2018, with respect to the DTU15 mean sea surface. (I-n) show the sea level offsets between
each retracker minus LARM. Note the varying ranges between offset plots. The average MYT edge is highlighted in gray. Plots (e-g) and (I-n) are reproduced for
November in Figure S2.
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freeboard. Although we have reproduced the retracking algorithms as closely as possible, it is therefore
important to note that our freeboard estimates are not intended to and will not exactly emulate those from
other groups, due to the various nuances in the respective processing chains.

We refer to the reproduced GSFC method as the Gaussian model. CPOM use TFMRA with a 70%
threshold for retracking sea ice floes and a curve-fitting routine for retracking leads that identifies the
waveform peak (Tilling et al., 2018), which we refer to as Threshold70+Peaks. AWI use TFMRA with
a 50% threshold for retracking both sea ice and leads (Ricker et al., 2014), which we refer to as
Threshold50. A simple multi-parameter classification technique, based on waveform pulse-peakiness
(Kurtz et al., 2014; Laxon et al., 2013), stack standard deviation (Laxon et al., 2013) and backscatter
coefficient (Paul et al., 2018), is used to separate sea ice and lead returns (Quartly et al., 2019). We apply
identical classifications, waveform filtering, geophysical corrections and sea level tie-point interpolation
schemes between all methods (Landy et al., 2017). In reality, these steps vary between different group'-
s processing chains. Radar freeboard is calculated from the elevation difference between sea ice floes
and sea level. To provide context for our findings, the patterns of radar freeboard from each of the offi-
cial group's products alongside the ‘emulated’ versions using our own processor are presented
for March 2015 in Figure S3. Our emulated freeboards reproduce the general patterns of each group's
true product and, importantly, the relative offsets between freeboards are consistent across the
four products.

Winter sea ice radar freeboard from the LARM retracker exhibits the expected pattern of higher radar
freeboards (15-35 cm) in the MYI zone north of Greenland and the Canadian Archipelago, with lower
radar freeboards (5-20 cm) in the seasonal ice zone and marginal seas (Figure 5a). The Gaussian model
produces a comparable regional ice freeboard distribution (Figure 5b); however, FYI freeboards are 0-
3 cm lower and, most importantly, freeboards in the MYI zone are 2-6 cm lower than LARM
(Figure 5e). This translates into a reasonably consistent 10-20% underestimation across the Arctic
(Figure 5h). Both physical retrackers estimate similar elevations for the sea level (Figure 41), so the
ice freeboard distribution closely reflects the observed offsets in measured sea ice elevations
(Figure 4e). Over the entire March 2011-2018 record, the mean CryoSat-2 radar freeboard difference
when using a Gaussian-based physical retracker compared to LARM is —1.3 cm (—12%) over FYI and
—2.7 cm (—15%) over MYI.

The Threshold70+Peaks method uses different thresholds for retracking sea ice and lead waveforms, with a
constant 16.26 cm bias deducted to align sea ice elevations to sea level (Tilling et al., 2018), producing gen-
erally thinner radar freeboard estimates than the LARM algorithm (Figure 5c). The freeboard offsets
between LARM and this method exhibit a similar spatial pattern across the Arctic (Figure 5f), with a
March mean freeboard difference of —1.3 cm (—11%) over FYI and —1.3 cm (—7%) over MYI. By deducting
a constant bias to align sea ice floe elevations to sea level, the Threshold70+Peaks method coincidentally
accounts for some of the expected roughness-induced variation in the retracking threshold between FYI
and MYI zones. This is because the constant correction has a relatively larger impact on reducing the free-
board of thinner FYI compared to thicker MYI. However, around the ice pack margins the 16 cm correction
appears to reduce ice elevation retrievals excessively, with the estimated freeboard underestimating LARM
by >20% (Figure 5i).

The Threshold50 algorithm uses a fixed threshold at 50% of the waveform leading-edge power for retracking
both sea ice and lead returns, which produces relatively low radar freeboards over the FYI zone (Figure 5d)
—within 2 cm of the LARM and Gaussian Model results (Figure 5g). However, applying the 50% threshold
over rough sea ice leads to a systematically higher estimate for the ice elevation (Figure 4g), producing 2-
12 cm (5-25%) higher freeboards over the MYI zone than the physical retrackers (Figures 5g and 5j). The
March mean radar freeboard difference for the Threshold50 algorithm compared to LARM is —0.3 cm
(—3%) over FYI and +2.4 cm (+12%) over MYL

The key take-away from Figure 5 is that between the four algorithms, with all steps of the processing chain
equal except for the retracking method, the March radar freeboards have an uncertainty range of, on average,
15% over FYI and 29% over MYI. These values constitute systematic uncertainties which cannot be reduced
by sample averaging and will translate directly into systematic sea ice thickness uncertainties, once the radar
freeboard is converted to thickness.
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Figure 5. March mean CryoSat-2 radar freeboard [cm] obtained from (a) the Lognormal Altimeter Retracker Algorithm (LARM), (b) the Gaussian model,
(c) TFMRA70+Peaks, with a 16.26 cm bias correction, and (d) TFMRA50. Absolute and relative freeboard differences between each retracker algorithm and
LARM are provided in (e-g) and (h-j), respectively. The MYI edge is highlighted in gray. The same plots for mean November 2010-2018 freeboard are shown in

Figure S4.

6. Independent Validation of Sea Ice Freeboard Retrievals

Although the LARM and GSFC algorithms are based on theoretically more-realistic representations of vari-
able sea ice backscattering properties than empirical threshold-based algorithms, few studies have directly
intercompared algorithm performance with respect to independent sea ice observations (Xia & Xie, 2018;
Yi et al., 2018). Yi et al. (2018) compared lead and sea ice elevations and derived ice freeboards over several
CryoSat-2 tracks, with an identical processing chain save for varied waveform retrackers. Here we reprocess
sea ice freeboards from each of the four algorithms introduced above and compare them to broadly coinci-
dent OIB observations from 27 airborne campaigns in 2011, 2012, and 2013. For this analysis we use the L4
Sea Ice Freeboard, Snow Depth, and Thickness V1 dataset (Kurtz et al., 2015), which covers the period 2009-
2013. Only CryoSat-2 observations acquired +3 days either side of an OIB campaign are used in this analysis.
Following Xia and Xie (2018), we use snow depths from OIB to correct ATM elevations to the snow-ice inter-
face and to correct CryoSat-2 range for the delayed Ku-band wave propagation within the snowpack (Kwok
& Cunningham, 2015). (We use a snow density-dependent correction based on the equation for wave propa-
gation in snow in Ulaby et al., 1982, as described in Mallett et al., 2020.) The processing chains for each
CryoSat-2 dataset are identical except for the four different retracking algorithms. Both the OIB and

LANDY ET AL.

12 of 18



Vel

.
NI Journal of Geophysical Research: Oceans 10.1029/2019JC015820
AND SPACE SCIENCE
0.14
(a) LARM (b) Gaussian Model
0.12 mean diff =-0.3 cm mean diff =-2.1cm
_é‘ rmse =3.3 cm rmse = 3.9 cm 035
3 010 . T T T T T
g (e) *
> 0.08
3 030 R
3 006 _
g E
& 004 °
g 025 f .
0.02 2
[
C
° Y 020 |
0.14 H ©
(c) TFMRA70+Peaks (d) TFMRA50 2
0.12 mean diff =-2.0 cm mean diff = 1.1 cm *l»
: H ' s 015 ®  Gaussian Model, FYI 1
2 rmse =4.1cm rmse =3.8cm P aussian Model,
3 0.10 [} ®  TFMRA70+Peaks, FYI
c S‘ ®  TFMRASO, FYI
a ®  LARMFYI
> 0.08 0.10 *  Gaussian Model, MY E
= *  TFMRA70+Peaks, MY
E 0.06 *  TFMRAS0, MYl
2 *  LARM,MYI
& 004 005 K s : : s '
0.05 0.10 0.15 0.20 0.25 0.30 0.35
0.02 OIB Sea Ice Freeboard [m]

0 0.1 0.2 03 04 05 0 0.1 0.2 0.3 04 05
Sea Ice Freeboard [m] Sea Ice Freeboard [m]

Figure 6. Probability density functions of sea ice freeboard obtained from CryoSat-2, via (a) LARM, (b) the Gaussian model, (c) TFMRA70+Peaks, and

(d) TFMRASO0, overlaid on ice freeboard PDFs from the L4 OIB sea ice data product (gray background) (Kurtz et al., 2015), within 25 km EASE-grid cells. Insets
are the mean differences and root-mean square errors of paired gridded CryoSat-2 and OIB samples. (e) Intercomparison of sea ice freeboard from each CryoSat-2
retracking technique versus mean ice freeboard measured during each of the 27 OIB airborne campaigns. For this analysis, the CryoSat-2 data have been
processed using coincident OIB observations of snow depth.

CryoSat-2 observations of sea ice freeboard are sampled onto the same 25-km grid and compared. Ice
freeboards from all coincident grid cells in all campaigns are compared in Figures 6a-6d, whereas for
Figure 6e, we compare the mean freeboard per campaign as calculated by OIB and CryoSat-2.

- [ 0to25cm B 2.5to5cm

0 5 10 15 20 25
Radar Freeboard [cm]

Figure 7. The lower limit on detectable sea ice radar freeboards when applying the LARM algorithm to CryoSat-2 in
October 2015. (a) Mean 25-km gridded radar freeboards below 5 cm are enclosed by the gray contour, and radar
freeboards below 2.5 cm are enclosed by the black contour. (b) Radar freeboards between 0 and 2.5 cm are shown in
green, and freeboards between 2.5 and 5 cm in purple.
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Figure 8. Schematic diagram of the potential systematic bias in CryoSat-2-derived sea ice thickness introduced from each principal source of uncertainty: Partial
penetration into the snowpack on multiyear ice, snow depth, snow density, partial penetration into snow on first-year ice owing to snow basal salinity, sea ice
density, and sea ice surface roughness. Potential ice thickness biases are illustrated in pink.

PDFs of the 25-km gridded samples highlight the differences between CryoSat-2 waveform retracking
approaches. The RMSE of paired samples from OIB and CryoSat-2—when processed with LARM—is lowest
of the four algorithms at 3.3 cm (Figure 6a), between 13% and 20% smaller than the RMSE of the alternative
algorithms. In our comparison, the Gaussian model and Threshold70+Peaks methods do not appear to cap-
ture the thickest sea ice in the upper tail of the OIB ice freeboard distribution (Figures 6b and 6c), underes-
timating mean OIB freeboards by 2.1 and 2.0 cm, respectively. The TFMRAS50 method produces ice
freeboards capturing the thick ice tail of the OIB distribution (Figure 6d) but appears to overestimate mean
OIB freeboard by 1.1 cm.

It is important to note in this analysis, however, that the uncertainties of individual OIB snow depth or ice
freeboard samples are each around 5-6 cm (Kurtz et al., 2015). The OIB snow depths have also exhibited low
biases over rough sea ice (King et al., 2015). Although we use coinciding OIB snow depths to convert the
CryoSat-2 radar freeboards to sea ice freeboards, so can reasonably discount systematic biases in the snow
depth data, it is unlikely that the OIB freeboard uncertainties are uncorrelated along the aircraft track
enabling errors to be reduced by sample averaging. Consequently, the differences between the four
CryoSat-2 retracking algorithms shown in Figure 6 are likely to be below the uncertainty or “noise floor”
of the independent OIB observations.

In Figure 6e, the average sea ice freeboard for all FYI or MYT sections within a single OIB campaign are com-
pared to coinciding CryoSat-2 observations, obtained from each of the four retracking approaches.
Variability between the ice freeboards derived from each method is more than three times larger over
MYI (standard deviation [SD] = 2.0 cm) than over FYI (SD = 0.6 cm), indicating that the choice of retracking
algorithm is more important for retrieving accurate ice freeboards over MYI. The least-square trend between
the LARM and OIB freeboards is closest to one-to-one (Figure 6e), confirming that LARM captures the
dynamic range of Arctic sea ice freeboards from thin and smooth FYI up to thick and rough MYI
(Figure 6a), with a mean difference to the OIB freeboard of only —0.3 cm.

7. Discussion and Conclusions

Another example of the advantages of applying a physically based approach for retracking CryoSat-2 obser-
vations is evident over thin sea ice. It has been conventionally estimated that CryoSat-2 has a minimum ice
thickness retrieval limit of ~0.5 m, owing to the challenge measuring radar freeboards thinner than ~5 cm
through radar altimetry (Ricker et al., 2017). However, our model simulations indicate that smooth
newly-formed sea ice, with a roughness height o of only 1-3 c¢m, should produce radar echoes with a
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retracking point >95% (Landy et al., 2019). A fixed 50% or 70% retracking threshold for sea ice floes therefore
imposes a strict but artificial lower limit on the detectable ice freeboard. A roughness-based correction would
need to be removed from the retracked sea ice floe elevations to accurately resolve the freeboards of thinner
ice floes (Laforge et al., 2020). Based on the range difference between modeled echoes from smooth thin sea
ice with a >95% retracking threshold and from leads with a ~98% threshold (Figure 3c), this places a theo-
retical lower detection bound on the ice freeboard retrieval of approximately 2.5 cm. As evidence for this
improved detection limit, we observe mean radar freeboards as low as 2-3 cm covering regions of several
thousand square kilometers at the pack ice margins during October, calculated from the LARM algorithm
(e.g., Figure 7). In the absence of snow cover, this yields a minimum detectable ice thickness of around
0.25 m.

It is clear from Figure 5 that, with the waveform classifications and geophysical corrections equal between
methods, different retracking algorithms still have a significant impact on the measured sea ice freeboard.
Despite the pan-Arctic mean radar freeboard only varying by 4-6 cm between methods (section 5) the free-
board pattern, and asymmetry between FYI and MYI zones in particular, can vary considerably. We follow
the AWI processing chain (Ricker et al., 2014) to estimate the variations in ice thickness and volume intro-
duced by these uncertainties in retracking approach. This includes using adapted snow depth and density
estimates from (Warren et al., 1999) and correcting for the delayed Ku-band wave propagation speed in
snow. For the Gaussian Model, pan-Arctic mean sea ice thickness for March 2011-2018 is 15 and 19 cm
lower than the LARM algorithm, for FYT and MYI, respectively. For the Threshold70+Peaks method, mean
ice thickness is 14 and 9 cm lower than LARM. And finally, the Threshold50 method is 1 cm lower than
LARM for FYI and 17 cm larger than LARM for MYI. Total sea ice volume (above a latitude of 70°) compared
to LARM is —605 km® (—8%) for the Gaussian Model, —430 km> (—5%) for Threshold70+Peaks, and
+130 km? (+3%) for Threshold50. These variations in ice thickness and volume will be different between
months and years, but the range of the percentage uncertainty is similar to the estimate in Kwok and
Cunningham (2015). Systematic uncertainties in ice thickness/volume of this magnitude could have severe
implications for calculating the seasonal and interannual sea ice thickness/volume budget, including ice
growth and melt rates (e.g., Kwok, 2018; Petty et al., 2018; Stroeve et al., 2018), fluxes of sea ice exported from
the Arctic via Fram Strait (Ricker et al., 2018), for initializing dynamical sea ice forecasting systems (Day
et al., 2014; Schroder et al, 2019), and for constraining freshwater fluxes into the Arctic Ocean
(Bacon et al., 2015).

Sallila et al. (2019) discovered a similar pattern of pan-Arctic offsets between the CPOM and AWI sea ice
thickness products to our emulated freeboards, with the MYT consistently thicker and FYI consistently thin-
ner in the AWI product. They also found the GSFC ice thickness product to be universally thicker than the
other products, which contradicts our finding that minimum radar freeboard was derived from the Gaussian
model retracker. However, results from Yi et al. (2018) and Xia and Xie (2018) demonstrate that GSFC sea ice
freeboards are significantly lower than coincident freeboards from AWI and CPOM algorithms, corroborat-
ing our findings (Figure S3) and suggesting that thicker ice in the GSFC product (Kurtz et al., 2014) is likely
introduced in the processing chain for converting ice freeboard to thickness.

It is still an open question as to how much retracker/roughness-based uncertainties compare to other poten-
tial sources of uncertainty in the estimation of ice thickness from satellite radar altimeter observations, espe-
cially considering the lack of validation data to constrain the relative errors. Here we attempt to estimate the
systematic uncertainty budget of Arctic sea ice, evaluating our new results in the context of those from the
literature. It is important to emphasize that systematic uncertainties only manifest as biases when they can
be identified as such against a reference “truth” and we are not therefore suggesting that one sea ice thick-
ness product is necessarily more accurate than others. Rather, these estimates characterize realistic upper
limits of the main physical parameters potentially introducing systematic (i.e., signed) bias to sea ice thick-
ness retrievals. Uncertainties are intended to be applicable at the scale of a gridded sea ice thickness product
from CryoSat-2, with >10-km grid cells, rather than individual ~300-m along-track radar samples which
could have far larger errors.

The following principal sources of systematic uncertainty are considered: (i) partial wave penetration into
the snowpack on MY, for instance, due to metamorphic snow features (King et al., 2018; Kurtz et al., 2014;
Ricker et al., 2015; Tonboe et al., 2010; Willatt et al., 2009; Willatt et al., 2011); (ii) snow depth and (iii)
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density (Alexandrov et al., 2010; Kern et al., 2015; Lawrence et al., 2018; Ricker et al., 2014; Rostosky
et al., 2018; Tonboe et al., 2010; Warren et al., 1999; Zygmuntowska et al., 2014); (iv) partial penetration into
the snowpack on FYI, for instance due to brine wicking-induced snow basal salinity (Nandan et al., 2017;
Willatt et al., 2011); (v) sea ice density (Alexandrov et al., 2010; Tonboe et al., 2010; Zygmuntowska
et al., 2014); (vi) sea level bias resulting from off-nadir ranging to leads (Armitage & Davidson, 2013) and
low along-track lead densities (Kwok & Cunningham, 2015); and finally (vii) sea ice surface roughness
(Hendricks et al., 2010; Ricker et al., 2014) (results presented in this study). Different sources of uncertainty
may also be correlated with each other rather than entirely independent (Lawrence et al., 2018). Systematic
sea ice thickness uncertainties are calculated by multiplying the component errors with the partial derivative
of the respective variable (e.g., Ricker et al., 2014).

Estimates for individual component uncertainties range from 7-32% over FYI and from 8-30% over MYI
(Figure 8). Systematic uncertainties introduced in the retracking step have the potential to bias sea ice thick-
ness estimates up to 20% over FYI and up to 30% over MYI (Figure 8), with regional patterns depending on
the ice surface roughness (Figures 5e-5j). For FYI with a thickness of 2 m, this translates into an uncertainty
of around 40 cm, and for MYT with a thickness of 3 m, an uncertainty of around 90 cm. Over FYI, the 20%
roughness uncertainty contributes more than the combined systematic errors from snow depth and density
but is lower than the potential uncertainty introduced by unknown snow basal salinity. Over MY, the 30%
roughness uncertainty contributes greater systematic uncertainty than any other single source of error.

Given the error that sea ice roughness can potentially introduce into thickness estimates, our results demon-
strate the importance of determining a consistent and rigorous approach for extracting information, includ-
ing freeboard and the roughness itself, from SAR altimeter observations of sea ice. It is anticipated that sea
ice will generally become “smoother” as the Arctic's remaining MYT is replaced by FYI (Martin et al., 2016;
Rampal et al., 2011), but with regions of the ice cover under compression more easily deformed and ridged.
This must be accounted for if we are to accurately estimate sea ice thickness from future altimeter missions.
We hope our findings will inform scenario testing and developments in the lead up to new missions, such as
the candidate ESA dual Ka-/Ku-band Copernicus Polar Ice Snow and Topography Altimeter (CRISTAL)
mission. It is clear from our results that Arctic radar and sea ice freeboards still require thorough evaluation,
before focus moves onto evaluating the derived sea ice thickness. We also aim to build on this knowledge of
surface roughness and satellite radar retracking to better understand CryoSat-2 returns over the Antarctic
sea ice pack (which can feature regions of high surface roughness) (Fons & Kurtz, 2019) and in future efforts
to compare and reconcile the sea ice thickness data produced from NASA's new ICESat-2 laser altimetry mis-
sion (Kwok et al., 2019).
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