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Abstract 

Objectives 

The objective of this study was to explore potential relationships between neonatal line 

(NNL) width and early life history variables such as maternal health, gestation, the birth 

process, and perinatal health. 

 

Materials and Methods 

Histological thin sections of deciduous canines were studied from 71 children from the Avon 

Longitudinal Study of Parents and Children (ALSPAC). The width of the NNL was measured 

in three locations on the tooth crown using spatial mapping techniques (ArcGIS) from digital 

images from an Olympus VS-120 microscope. Life history variables were collected 

prospectively through a combination of clinical observations and questionnaires.  

 

Results 

Infants born late term or post term had narrower neonatal lines than those born prematurely 

or at full term. Infants born in Autumn (September to November) had narrower NNLs than 

those born at other times of year. NNLs in infants born to mothers with hypertension were 

wider than those without. Infants resuscitated at birth or born to obese mothers had narrower 

NNLs than those that were not. There was no association between NNL width and either the 

type or duration of delivery.  

 

Discussion 

The NNL in enamel is an irregular accentuated line, but the factors underlying its formation 

and width remain unclear. In contrast to some previous studies, we found no association 

between wider NNLs and long or difficult births. Instead we found that the width of the 

neonatal line NNL varied in relation to parameters that reflected the prenatal environment 

and length of gestation.  
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Life history and dental enamel 

 

Early life history can be investigated using light microscopy of histological ground sections 

of deciduous teeth using evidence from the regular structure of enamel growth (Birch and 

Dean, 2009, 2014; Nava et al., 2017). Disruptions to the regular incremental pattern of 

enamel formation can be used to identify and reconstruct a sequential chronology of events 

that affected the growth and development of an individual in the past (Hillson, 1992). Daily 

incremental markings in enamel are visible in transmitted polarized light microscopy (PLM) 

(Dean, 1987; Boyde, 1989; Shellis, 1998). These are formed during enamel matrix secretion 

and do not remodel thereafter. In this way the microstructure of dental enamel preserves a 

chronological record of growth that enables the identification of both regular growth 

increments and those that have been superimposed upon this as irregularly spaced structural 

features of varying width and intensity when viewed in PLM (FitzGerald, 1998; Antoine et 

al., 2009). 

 

Enamel is comprised of prisms, or rods, that are made up of tightly packed bundles of enamel 

crystallites (Boyde, 1964; Boyde, 1989). Prisms run from the enamel dentine junction (EDJ) 

to the enamel surface. Groups of prisms follow the path of ameloblasts, the cells that secrete 

enamel matrix, that creates a template for subsequent crystallite and prism mineralization 

(Robinson et al., 1997). At regular intervals along the length of every prism fine dark 

markings, known as cross-striations, denote daily increments of enamel formation (Boyde, 

1989; Antoine et al., 2009). Superimposed upon this daily incremental pattern is a regular 

longer period incremental marking, with a periodicity of between six to twelve days in 

permanent human teeth (FitzGerald, 1998; Reid and Dean, 2000; 2006) and between five and 
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nine days in human deciduous teeth (Mahoney, 2011, 2012). In studies of modern human 

permanent teeth, the modal value appears consistently to be eight days (Smith et al 2007). 

These regular long-period markings or striae (of Retzius) are coarser incremental markings 

that run obliquely through the enamel from the EDJ to the enamel surface, where they emerge 

in the grooves between ridges on the enamel surface known as perikymata. Both regular 

long-period striae (of Retzius) and perikymata grooves are less pronounced in deciduous than 

in permanent enamel (Hillson, 2014). Figure 1 illustrates the relationship between these 

various enamel incremental markings.   

 

Interruptions to these regular growth increments, in the form of altered rate of enamel 

formation, are considered to be indications of disruption to the individual’s normal 

developmental process (Boyde, 1989; Boyde, 1990). Interruptions to growth are often visible 

as external structural defects (enamel hypoplasia, or EH) and/or as internal structural defects 

that represent temporal disruptions to the enamel-forming ameloblast cell sheet (Hillson and 

Bond, 1997). The internal structural defects are manifest in PLM as irregular accentuated 

striae (or IAS) illustrated in Figure 1. These accentuated markings or striae (IAS) may be 

caused by disruption of or change of rate in enamel matrix secretion. Separately, or in 

addition to this, there may be changes in the quality or orientation of mineral laid down 

during the secretory phase. IAS may appear as either darker or broader lines or bands in PLM 

and represent the position of the ameloblast cell sheet at the time of the disruption. IAS may 

either coincide with the regular long period striae (of Retzius) or be superimposed between 

them in an irregular manner  (Hillson, 2014). They may or may not reach the enamel surface 

and present as EH (Hillson and Bond, 1997; Witzel et al., 2008). 
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There is little consensus as to what physiological stress events or pathologies underlie the 

appearance of IAS of different widths, intensities (dark or bright) or of different lengths of 

expression (short or long) within enamel (Boyde, 1990; Kierdorf and Kierdorf, 1997; Witzel 

et al., 2008). The relationship between external and internal markers of enamel growth 

disruption (IAS and EH) is incompletely understood (Witzel at al 2008, Hillson 2014) and 

our incomplete understanding of the relationship between life experience and changes to the 

microstructure of enamel remains a major stumbling block in the interpretation of life history 

from dental histology. 

     

A number of pathologies and stress events are known to disrupt enamel formation. These 

include genetic or inherited conditions such as amelogenesis imperfecta (Garn et al., 1965; 

Pindborg, 1982; Bhat and Nelson, 1989; Witkop, 1989; Flanagan et al., 1997; Alt and Türp, 

1998; Klingberg et al., 2002); maternal disturbances including maternal diabetes, 

hypothyroidism and hypertension in pregnancy (Gregg, 1944; Kreshover et al., 1954; 

Grahnen and Edlund, 1967; Guggenheimer et al., 1971; Norén, 1984; Silva-Sousa et al., 

2003; Dolphin and Goodman, 2009; Vucic et al., 2017); variables reflecting prenatal 

experience such as gestational age, very low birth weight, and perinatal Vitamin Deficiency 

(Grahnen and Larsson, 1958; Norén, 1983; Seow et al., 1984a; Seow et al., 1984b; Pimlott et 

al., 1985; Seow, 1986; Fearne et al., 1990; Franco et al., 2007; Rythen et al., 2008; Priya et 

al., 2015); or subsequent conditions associated with birth and early neonatal life including 

trauma such as intubation (Schour and Kronfeld, 1938; Johnsen et al., 1984; Eli et al., 1989; 

de Oliveira Melo et al., 2014) as well as stress events or systemic disturbances to health 

occurring while the deciduous dentition is being formed. In many populations EH and IAS in 

early forming deciduous teeth are likely to result from the combined effect of several 
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conditions such as malnutrition, parasitic load, and infectious diseases, and fevers (Hillson, 

2014).  

 

The neonatal line 

The neonatal line (NNL) has been firmly established as a specific type of accentuated line 

that represents a histologically observable disturbance in enamel microstructure formed at or 

around the time of birth (Schour, 1936; Stein, 1936). The work of Rushton (1933), following 

that of Rygge (1916) and von Ebner (1903), identified the NNL as a linear feature that 

appears brown in transmitted light microscopy (TLM) and blue in reflected light (Boyde, 

1964; Boyde, 1989; Hillson, 2014) and which obliquely transects the long axis of the enamel 

crown. It occurs in teeth that are forming at the time of birth (all deciduous teeth in most 

cases the first permanent molars). The position of the NNL within the enamel differs from 

tooth type to tooth type, as does the quality of the enamel on either side of the NNL (Schour, 

1936). The NNL has been observed in almost all (90-100%) longitudinal histological sections 

of teeth that are forming at birth from live-born children (Schour, 1936; Massler et al., 1941; 

Sarnat and Schour, 1941; Gustafson and Gustafson, 1967; Weber and Eisenmann, 1971; 

Norén et al., 1978a; Whittaker and Richards, 1978; Eli et al., 1989; Skinner and Dupras, 

1993; Sabel, 2012; Canturk et al., 2014; Hurnanen et al., 2017).  

 

Factors hypothesized to be associated with neonatal line appearance 

While the NNL can be securely identified and associated with birth by its relative position 

within the enamel crown (Skinner and Dupras, 1993), there is still considerable variation in 

it’s appearance that remains unexplained. In particular, the width or breadth of the NNL 

varies from 3 to about 30 μm (Weber and Eisenmann, 1971; Eli et al., 1989; Zanolli et al., 

2011; Sabel, 2012; Hurnanen et al., 2017) when viewed in PLM in longitudinal histological 
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ground sections of deciduous teeth (as seen in Fig. 2). As with other accentuated histological 

enamel markings, a variety of etiologies have been proposed to explain this variation, each 

having a specific implication for the processes by which enamel microstructure records life 

history experiences. Factors theorized to affect the appearance of the NNL fall largely into 

two categories a) maternal and gestational variables, pertaining to maternal health and the 

fetal environment; or b) aspects of the birth process and early neonatal life variables affecting 

the child at or soon after birth.     

 

NNL width can be measured in a number of ways and non-uniformity in the way it has been 

measured likely contributes to the variation reported in the literature. The majority of studies 

have emphasized the importance of measuring width across the NNL along the prism path to 

capture the duration of NNL formation, but there are exceptions (Sabel et al., 2008). A 

further consideration is the potential impact of section obliquity. A plane of section that cuts 

through the NNL at an oblique angle to the true long axis of the tooth that runs through the 

cusp tip and dentine horn and pulp horn tip will elongate and thicken the appearance of the 

NNL. Only a few studies have reported in detail exactly where along the NNL width 

measurements were taken (Zanolli et al., 2011). In some cases measures of NNL widths have 

even been pooled between several tooth types (Eli et al., 1989; Hurnanen et al., 2017). Given 

that there is variation in the daily enamel formation rate, which increases from the EDJ to the 

enamel surface and differs across tooth types (Mahoney, 2012; Birch and Dean, 2014), the 

width of the NNL along a prism path crossing a NNL at any given point will vary with both 

tooth type and its location within the enamel crown. 

 

Maternal and gestational variables  hypothesized to be associated with NNL width 
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The biological status of the mother and the resulting fetal environment are potential factors in 

determining NNL width. Several studies have concluded that the appearance of the NNL is 

primarily dependent on gestational factors (Norén et al., 1978a; 1978b; Norén, 1984; Zanolli 

et al., 2011; Kurek et al., 2015; Behie and Miszkiewicz, 2019). Norén and colleagues 

reported that wider NNLs are related to disruptions in the normal fetal calcium-phosphate 

metabolism caused by gestational illnesses such as maternal diabetes (Norén et al., 1978a; 

Norén, 1984). Subsequent research recorded a thinner NNL associated with conditions in 

pregnancy requiring an antispasmodic medication (Kurek et al., 2015). Others have 

concluded that lower gestational age at birth or lower birthweight co-occur with wider NNLs 

(Norén, 1983; Rythen et al., 2008; Zanolli et al., 2011; Kurek et al., 2015; Priya et al., 2015). 

Moreover, recent studies have reported an association between season of birth and both the 

width of the NNL (Kurek et al., 2015) and prenatal enamel thickness (Żądzińska et al., 2013). 

Children born in the summer and in the spring had thinner NNLs than children born in the 

winter. The authors suggested that lower maternal and fetal Vitamin D exposure in winter 

births contributed to a delay in the resumption of regular secretion by ameloblasts (Kurek et 

al 2015). Most recently, Behie and Miszkiewicz (2019) reported that children born to mothers 

who consumed alcohol during pregnancy had a thicker NNL than those of mother who 

abstained.  

  

Birth processes and early neonatal life variables hypothesized to be associated with NNL 

width. 

There is a large clinical literature that attributes variation in the width of the NNL to factors 

that reflect the severity of the disruption to infant homeostasis caused by delivery, including 

the difficulty (mode or duration) of the birth process and measures of infant health 

immediately after birth. The ‘homeostasis’ model places more emphasis on short-term 
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disruptions to health, rather than longer-term underlying metabolic aspects, as factors 

influencing the width of the NNL.  

 

Early studies attributed the presence of the NNL to the abrupt change in environment and 

nutrition experienced at birth and speculated that the prominence of the NNL should be 

proportionate to the difficulties and disturbances experienced at birth and in the early 

postnatal period (Schour, 1936; Stein, 1936; Schour and Kronfeld, 1938). Subsequently, 

Massler et al. (1941) emphasized factors including neonatal distress and clinical intervention 

around the time of birth. Following on from this, several studies have evaluated the 

association between NNL width, as a measure of stress, and mode of delivery. In several 

studies vaginal delivery was associated with wider NNLs compared to delivery by Caesarean 

section and this difference has been attributed to the longer duration of systemic stress 

associated with the natural birth process (Eli et al., 1989; Canturk et al., 2014). Conversely, 

other studies have reported that there was no variation in the width of the NNL according to 

mode of delivery (Zanolli et al., 2011; Kurek et al., 2015; Hurnanen et al., 2017). A potential 

confounding factor unaddressed by these studies is that some natural births are relatively 

straightforward while some Caesarian deliveries are non-elective and can occur after many 

hours of labor and physiological stress to both mother and baby (Kurek et al 2015). One 

recent study unexpectedly found that prolonged duration of vaginal delivery was associated 

with a narrower NNL (Hurnanen et al., 2017) 

 

Objectives of this study 

This paper examines the factors associated with NNL width in one specific tooth class, the 

deciduous canine, by evaluating the width of the NNL in relation to a series of variables 

reflecting gestation, birth timing and condition and the circumstances surrounding delivery. 
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Using comprehensive prospectively collected data this study tested the associations between 

NNL width and prenatal and gestational variables, and between NNL width and the 

circumstances of birth. This study also examined NNL width across different parts of the  

crown. Finally, it compares NNL width in teeth eight individuals in which a single child 

contributed more than one deciduous canine in order to illuminate variation within the same 

individual. 

 

MATERIALS AND METHODS 

 

Materials 

Deciduous canine teeth from 71 children enrolled in the Avon Longitudinal Study of Parents 

and Children (ALSPAC) were included in this analysis. ALSPAC is a prospective 

observational cohort study that investigates influences on health and development across the 

life course (Boyd et al., 2013; Fraser et al., 2013). The study enrolled 14,541 pregnant 

women resident in South West England with expected dates of delivery between 1st April 

1991 and 31st December 1992. Deciduous teeth were collected from ALSPAC participants 

between 1997 and 2004. Families were asked to send the study up to four naturally shed teeth 

per child as soon as possible after loss. Teeth were stored at -20oC until released for analysis. 

Information on maternal and infant health and environmental exposures were obtained from 

self- reported questionnaires and from routinely collected clinical data recorded during 

pregnancy and shortly after birth were extracted from the medical notes. More detailed 

obstetric information including records of medical interventions, mode of delivery, duration 

of labor, and vital statistics of mother and baby were obtained for a subset of ALSPAC 

participants, including 32 individuals studied here. Ethical approval for the study was 
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obtained from the ALSPAC Ethics and Law Committee and the Local Research Ethics 

Committees. 

 

One tooth from each child was used for the main part of the study. Eight of the children were 

represented by more than one tooth (making a total of 80 teeth in the sample); however, the 

nine additional ‘matching’ teeth are excluded from all analyses except those comparing NNL 

width across teeth from the same individual. Deciduous canines were preferentially selected 

as part of the sampling regime for a more comprehensive ongoing study of enamel 

composition and structure because of their relatively low levels of cuspal wear, greater 

enamel thickness, and longer enamel formation time. The NNL in the canine tooth is entirely 

contained in the cuspal enamel and it may be least affected by short-term cessation of 

ameloblast function at birth (Hurnanen et al., 2019). 

 

  

 

Methods 

The NNL was identified in histological thin sections taken through the center of the enamel 

cusp of each canine, approximately 300 µm from the exact midline running between cusp and 

cervix of each tooth. These were cut, lapped and polished using standard methods described 

below. Unlike deciduous incisors, that have an incisal edge, deciduous canines have a pointed 

dentine horn. However, avoiding obliquity is difficult and ideally an axial longitudinal 

section through a deciduous canine tooth must pass exactly through the cusp tip, the dentine 

horn and the pulp horn (see discussion in Birch 2012). A low speed Buehler Isomet circular 

diamond saw was used to section the teeth from the midline. These sections were mounted on 

glass slides with Araldite Huntsman 2020 and then hand-lapped with successively fine 
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carborundum grit papers (600, 1200) to a thickness of approximately 100 µm and polished 

with aluminum oxide powder suspended in water. Coverslips were mounted temporarily with 

glycerine for polarized light microscopy. The slides were then imaged using an Olympus VS-

120 virtual slide scanning system at resolutions of 2x, 20x, and 40x magnification under 

polarized light. The slide scanning system created very high-resolution digital images that 

were then imported with spatial coordinates intact into a geographic information system 

(ArcGIS, ESRI USA).  

 

The width of the NNL is defined as the length of a prism spanning the start and finish of the 

NNL. The boundaries of the start and finish of the NNL were identified at high magnification 

(20x objective) as either a marked or gradual change in enamel color intensity in transmitted 

PLM (Figure 2). In all cases the width of the NNL was measured along the path of prisms 

running through the line multiple times and in three locations along the line: cuspally, in the 

middle third, and cervically (nearer the enamel-dentine junction, or EDJ) and their location 

and length digitally recorded in ArcGIS. Using multiple measures takes into account 

variability in daily enamel secretion rates across the crown (Birch and Dean, 2009) and offers 

an averaged measure of NNL thickness, following the measures presented by Zanolli et al. 

(2011).  One of the advantages of using repeated measurements in three distinct regions of 

the NNL is that individual observer variability may be reduced through the averaging 

process. Measurement location is important, since previously Sabel et al (2008) have reported 

that NNL widths are highest in the middle third of the tooth crown. Since enamel daily 

secretion rates are higher in the cuspal enamel than in enamel close to the EDJ in the position 

where the NNL is observed (Birch and Dean, 2009, 2014), we expected NNL width to be 

highest in cuspal enamel and lowest in the most cervical enamel of the tooth crown where the 

NNL is close to the EDJ.  
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Data on mothers and infants included in the ALSPAC longitudinal cohort study sample were 

collected for the purpose of describing details of maternal health and lifestyle, pregnancy, and 

birth; and then details of the subsequent growth, development and health of the child. The 

study website contains details of all the data available through a fully searchable data 

dictionary and variable search tool (http://www.bristol.ac.uk/alspac/researchers/our-data/): 

relating to pregnancy, delivery, and the first few weeks of life as well as questionnaires 

completed by the mother in the same period. Informed consent for the use of data collected 

via questionnaires and clinics was obtained from participants following the recommendations 

of the ALSPAC Ethics and Law Committee at the time. In addition, in-depth information 

abstracted from clinical obstetric records of delivery were available for a subset of 32 of the 

71 infants included in this study. Variables encompassing maternal and gestational factors as 

well as those characterizing the birth process and early neonatal life factors were selected.  

 

Maternal or gestational factors selected include: maternal height, weight (Pre-pregnancy) 

BMI (Pre-pregnancy), obesity, age (with advanced maternal age as over 35 years), parity; 

fetal sex, birth weight, crown-to-heel length, gestational age at birth, status as small for 

gestational age; maternal Vitamin D levels during pregnancy and the occurrence of maternal 

diabetes, preeclampsia or hypertension, season of birth; also any responses to questionnaires 

given at clinic visits at 32 weeks gestation reporting maternal infection, maternal injury or 

shock, or maternal vomiting during the three months prior, so between 20-32 weeks, and any 

maternal infection, maternal injury or shock from seven months until the end of pregnancy 

reported in the eight week questionnaire. Gestational metabolism variables included 

gestational diabetes, gestational hypertension, glycosuria, preeclampsia, maternal Vitamin D 

levels, and cord blood calcium. These were examined alongside descriptors of pregnancy 
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outcome (season of birth, gestational age, birthweight, crown-heel height). Evidence of 

significant health disruption to the mother during pregnancy (injury, vomiting, infection) was 

also considered. For this study, season of birth was derived from the child’s age and date of 

completion of a questionnaire after birth.  

 

Gestational age as reported in this study follows the American College of Obstetricians and 

Gynecologists standard with ‘Preterm’ as birth prior to 37 weeks gestation; ‘Early Term’, 37 

to 38 weeks; ‘Full Term’, 39 to 40 weeks; ‘Late term’, 41 weeks; and ‘Post Term’, 42 weeks 

and beyond. Status as small for gestational age is based on birthweights in the 10th percentile 

for each gestational week as presented by Talge and colleagues (2014). Maternal BMI was 

calculated according to Keys et al. (2014) and obesity defined as a BMI of 30kg/m2 or higher.  

 

Delivery variables were recorded at birth unless otherwise specified. These include mode of 

delivery: Caesarean birth, spontaneous vaginal birth , or instrument assisted birth (assisted 

breech birth, or use of forceps or vacuum). Births were categorized as ‘spontaneous’ vs. those 

requiring ‘intervention’ by combining c-section, instrument assisted, and vacuum assisted 

births as interventions against spontaneous, or  non-instrument-assisted, vaginal birth. 

Duration of first stage of labor (hours), duration of second stage of labor (minutes), total 

duration of labor (minutes), and maternal distress were also assessed from data reported to 

ALSPAC. Neonate health variables assessed included abnormal fetal heart rate, APGAR 

score at one minute after birth (a standard measure of neonate health; Apgar, 1953; Apgar et 

al., 1958), APGAR score at five minutes after birth, and whether the baby was resuscitated. 

Early life health (in the first 14 days of life) was assessed based on reported occurrence of 

jaundice, feeding problems, or pyrexia (fever).  
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Statistical relationships between the NNL widths and the study variables are described using 

linear models (function lm) as implemented in the R base package (R Core Team, 2018). The 

w2 value is calculated using the anova_stats function implemented in R package sjstats 

(Lüdecke, 2019), and the measure of effect size, Cohen’s D, is calculated using cohen.d from 

the effsize package (Torchiano, 2014). 

 

RESULTS 

Average NNL widths in the three tooth crown locations vary from 2.06 to 30.13 µm and fall 

within the range reported by previous studies (Eli et al., 1989; Zanolli et al., 2011; Sabel, 

2012; Hurnanen et al., 2017). The relative width of the NNL compared at three different 

locations within the tooth crown across the sample was found to vary greatly. The 

distribution largely follows a pattern expected from the daily enamel formation rate in each 

region of the crown (Figure 3, Table 1), with the largest widths measured in the coronal 

(cusp) third of the line, decreasing through the middle of the line to the smallest widths in the 

cervical third of the line. Mean NNL widths in the three tooth crown regions varied greatly 

but were highly correlated across the sample (r = 0.79 for the middle and the cusp; r = 0.76 

for the middle and EDJ; and r = 0.76 for the cusp and EDJ).  Associations between variables 

tested and the width of the NNL observed in all three regions of the tooth crown are given in 

Table 2. 

 

Maternal Variables 

Descriptors of maternal status in terms of age, weight, BMI, obesity, parity, and history of 

hypertension or diabetes prior to pregnancy were examined (Table 3). Maternal age, height, 

and parity had no effect on NNL width. Maternal obesity (a pre-pregnancy BMI of over 30, 

though n = <5) had medium to large effect on decreasing the width of NNL line. A history of 
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hypertension (n = 10) was correlated with an increase in NNL width, with medium to large 

effect sizes.  

 

Gestational Variables 

Descriptors of gestational variables are given across three broad categories (Table 4).  

 

Maternal Metabolic Disruption 

A small number of mothers (n = 7) developed hypertension during pregnancy; this condition 

was associated with increased width of the middle portion of the NNL in their children. None 

of the mothers in the sample developed pre-eclampsia or maternal diabetes, and three 

developed glycosuria. Maternal infection, injury or shock, and other health disruptions during 

pregnancy (as specified in Table 4) were not associated with increased NNL width. 

Experience of health disruption in pregnancy (either infection, injury, or vomiting) was not 

associated with changes in NNL appearance. 

 

Previous research has demonstrated the potential for interaction between Vitamin D 

metabolism (including calcium levels), birth weight, gestational age, and seasonality of birth 

(Doi et al., 2011; Day et al., 2015), with possible implications for enamel development 

(Norén et al., 1978a; Żądzińska et al., 2013; Kurek et al., 2015). Cord blood calcium was 

measured in a small number of cases (n = 13) but was not associated with NNL width. 

Maternal Vitamin D, however, has a slightly more complicated set of interactions. 

 

Maternal serum total 25-hydroxy Vitamin D (25[OH]D) levels vary throughout the year, in 

relation to exposure to sunlight, as demonstrated previously in this sample (Sayers et al., 

2009). Because maternal Vitamin D was sampled at different gestational stages, at different 
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times of the year, it is necessary to detrend the series to account for the clear pattern of 

seasonal increase and decrease (Figure 4). Utilizing a detrended measure (the observed 

amount of 25H[OH]D divided by the average for the month observed), increased maternal 

Vitamin D levels were related to decreased NNL width, though only strongly in the cusp (p = 

0.0122, r2 = 0.1389). While a linear model using both the level of Vitamin D and the month 

of testing did not show a significant correlation to the width of the NNL in the three regions 

of the tooth, levels sampled in August and September did (p = 0.0233 and 0.0251, 

respectively).  

 

A grouping variable, season of birth, was assessed based on births in December, January, or 

February (‘Winter’); March, April, or May (‘Spring’); June, July, or August (‘Summer’); and 

September, October, or November (‘Autumn’). Season of birth was associated with NNL 

width (Figure 5) with the wider average NNL in Winter births thinning throughout the year 

to the narrow NNL observed in Autumn births.  

 

Pregnancy Outcome: Sex, Gestational Age, and Birthweight 

Because of the relationship (r2 = 0.2485, p <0.000) between the length of gestation and the 

weight of the infant at birth, it is difficult to separate the potential effect of either factor; 

however a simple linear regression reveals variation in NNL width correlated with gestational 

age but not birth weight. Gestational age at birth showed a clear association with NNL width 

(Figure 6). There was no clear reduction or increase in NNL width in babies who were small 

for gestational age. Width of the NNL increases, or in the case of measurements from nearest 

the EDJ, at least does not decrease, from Preterm and Early Term births to those at Full Term, 

and then falls markedly in Late Term and Post Term births. There were no sex-based 
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differences observed either on their own or in combination with other variables. There was no 

association between NNL width and crown-heel length of neonate. 

 

Birth process and early neonatal life variables 

Previous studies have linked NNL width to several factors relating to the mode of delivery, 

reflecting the potential impact of the birth process on fetal homeostasis, or on the recovery of 

homeostasis in the infant following birth and disruptions to health in very early neonatal life. 

The sample size for this investigation was limited to the 32 individuals for whom detailed 

delivery information was available, and results are given in Table 5. 

 

Birth Process 

This study found no association between mode of delivery the and width of the NNL (Figure 

7). There were three cases each of planned and emergency Caesarean sections recorded in 

this sample and the means for both planned and elective caesarean NNL widths fall well 

inside the range for those from non-assisted births. To increase the numbers in the groups, 

births were grouped into ‘Spontaneous’ or requiring ‘Intervention’, which included 

instrument-assisted and Caesarean section births. There were no differences in NNL width 

between children in these two groups.  There was no association between the duration of the 

birth process (measured in 1st stage of labor, 2nd, or as total duration) and NNL width. 

Observations of increased fetal heart rate or maternal distress were not associated with 

increased NNL width. 

 

Health at Delivery 

Neonatal line width was not associated with variation in APGAR scores at either one or five 

minutes after birth. Health problems in the first 14 days after birth including jaundice, 
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pyrexia, and difficulty feeding were not associated with wider NNLs, though there were only 

two cases of the latter. Babies requiring some form of resuscitation (n = 10) had a thinner 

NNL line on average but this was not a significant result.  

 

Variation Within Individuals 

A further issue that has not been specifically investigated previously is the extent of variation 

in NNL width in different teeth, of the same tooth type, from the same individual, which 

could have serious implications for the interpretation of causal factors in NNL formation. 

Eight individuals of the 71 included in the study contributed multiple teeth to the study. 

Variation of NNL width in the same individual was compared to variation across the sample 

by generating pairwise comparisons of NNL width between all possible pairs of unmatched 

teeth and comparing variation in NNL width in the unmatched pairs to variation in NNL 

between pairs of matched teeth – those from the same individual (Table 6). The average 

variation observed in the teeth from the same individuals is lower than that observed in the 

unmatched teeth, indicating that teeth from the same individual are more likely to have 

similar NNL widths than any two teeth drawn at random. The average difference between 

measurements from different teeth from the same individual ranged from 3.40 µm in the 

cusp, to 2.80 µm in the middle, and 1.91 µm towards the EDJ. However, differences in NNL 

width between teeth from the same individual are notable, ranging from < 0.01 to 7.85 µm in 

the cusp (x = 6.17 µm), 0.13 to 5.56 µm in the middle of the line (x = 4.61 µm), and 0.47 to 

7.05 µm near the EDJ (x = 3.43 µm). While cases are limited, the variation between NNL 

widths measured in upper and lower canines from the same individual is not higher than that 

measured between left and right canines from the same jaw.  

 

DISCUSSION 
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This study examined the relationship of variables describing gestation and birth to the width 

of the NNL in light of conflicting results from previous studies. Associations with season of 

birth, gestational age, and metabolic disturbances during pregnancy were observed; 

associations with duration and method of delivery and early neonatal life were not, with the 

interesting exception of infants who were resuscitated.  

 

The results obtained from the ALSPAC sample are consistent with previous studies that 

reported that gestational variables contribute more to the thickness of the neonatal line than 

delivery variables (Zanolli et al., 2011; Talge et al., 2014; Kurek et al., 2015).  This study 

found that NNL width is lowest in late term births of 41 or more weeks gestation. This is 

consistent with a previous study (Zanolli, et al. 2011), which reported that children both at 

term and post-term had thinner NNLs than those born preterm (before the beginning of the 

37th week). Both studies indicate an association between longer gestation, and hence greater 

maturity at birth, and thinner NNLs. The interdependence of infant birth weight and 

gestational age is clear in this study and is a well-established phenomenon (Brenner et al., 

1976), however neither birth weight, status as small for gestational age, nor an alternate 

measure of infant size at birth, crown-to-heel length, were associated with changes in NNL 

width. 

 

This study found a strong association between season of birth and NNL width, with children 

born in summer and autumn exhibiting thinner NNLs than those born in winter and spring.  

In contrast, a previous study on children from Poland reported thinner NNLs in children born 

in Spring and Summer (Kurek et al., 2015). Season of birth is a marker of maternal sunshine 

exposure during pregnancy and is indicative of maternal Vitamin D status during pregnancy.  
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In ALSPAC mothers, 25(OH)D measured at approximately 36.3 weeks gestation was 

strongly related to estimated background UVB during the last trimester of pregnancy (Sayers 

et al., 2009; Sayers and Tobias, 2009). Furthermore, background UVB during the last 

trimester of pregnancy fluctuates in a predictable way according to month and season of 

birth. This results in a direct link between season of birth and maternal Vitamin D status 

during the last trimester (Sayers et al 2009). Other research has demonstrated that neonatal 

serum 25(OH)D3 concentrations are related to maternal levels of Vitamin D during the third 

trimester (El Koumi et al., 2013). 

 

ALSPAC mothers of children born in winter and spring (December to May) experienced 

lower levels of sunlight during the third trimester of pregnancy than those born between June 

and November, leading to lower serum total 25-hydroxyVitamin D (Sayers et al., 2009). 

While finding a strong association between season of birth and NNL width, we find thinner 

NNLs in babies born in autumn, rather than in spring and summer as found by Kurek et al 

(2015). This could be due to differing levels of seasonal sunlight in the UK and Poland, 

where the studies were carried out. Vitamin D status during pregnancy may be a common 

factor underlying a range of parameters that have been linked to NNL thickness in this and 

previous studies. Observational studies have demonstrated that Vitamin D status during 

pregnancy is related to numerous aspects of maternal health, including gestational 

hypertension, preeclampsia and gestational diabetes, and fetal and neonatal development, 

including birth weight (Day et al., 2015) and neonatal hypocalcaemia (Curtis et al., 2018). 

 

Neonatal hypocalcemia involves a decline in serum calcium and a rise in phosphorus during 

the first 12-24 hours after birth.  Normal adult values are achieved over the subsequent 24 to 

48 hours (Kovacs, 2014). A number of authors have discussed the likely association between 
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NNL width and neonatal hypocalcemia (Norén et al., 1978a; Norén, 1983, 1984; Kurek et al., 

2015) but previous research has yielded conflicting results. In one study, infants of diabetic 

mothers (IDM) had a significantly higher incidence of wider NNL than healthy infants, and 

this finding was attributed to the higher incidence of neonatal hypocalcemia reported in IDM 

(Norén et al., 1978a). Subsequent research on deciduous incisors from a relatively 

homogeneous group of healthy children born full term found no correlation between the 

width of the neonatal line and the measured values of blood ionized calcium on days 1, 3, and 

5 of infant life (Ranggård et al., 1994). Similarly, hypocalcaemia observed in early neonatal 

life (at least three consecutive days within the first week) induced by repeated blood 

transfusions is not reported to be associated with a wider NNL (Ranggård et al., 1995). In the 

current study no association was found between cord calcium and NNL width, but cord 

calcium values were only available for 13 cases. Further research is needed to understand the 

possible relationship between the intensity and duration of hypocalcaemia and ameloblast 

function and enamel development. 

 

Whether Vitamin D or calcium metabolism is involved in determining the width of the 

neonatal line remains contentious. The observation of increased NNL width in infants born to 

diabetic mothers by Norén et al. (1978) as well as the association with hypertension seen here 

might also suggest a separate metabolic pathway acting to increase NNL width, one linked to 

the suite of conditions associated with insulin resistance (Cheung and Li, 2012).  There are no 

cases of diabetes in the sample studied here. The last variable we are able to comment on is 

maternal obesity. We found that maternal obesity is associated with a narrower NNL, with a 

clear trend particularly in the cusp, and with large effect size, which does not fit the expected 

pattern.  
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The method and duration of the birth process, and the potential maternal and/or neonatal 

distress caused thereby, do not show a clear association with NNL width in this study. The 

potential exception here is the narrower width of the NNL observed in infants who were 

resuscitated. Apart from resuscitation, effect sizes were small to negligible for these 

variables. Postnatal complications such as jaundice, pyrexia, or other early health conditions 

within the first 14 days of life were not significantly associated with NNL width. This was 

unsurprising given the strong evidence for the formation of the NNL at the time of birth 

(Schour, 1936; Weber and Eisenmann, 1971; Skinner and Dupras, 1993). The lack of 

association does not fully support a model of NNL formation where the width of the line is 

influenced by disruptions to fetal/infant homeostasis delimited by the experience of birth, 

contrary to reported findings from some earlier studies (Eli et al., 1989; Canturk et al., 2014; 

Hurnanen et al., 2017) but in agreement with other studies (Zanolli et al., 2010; Kurek et al., 

2015). 

 

Given the strong associations between NNL width and gestational age, it is possible that there 

is an additional factor to be considered: the timing of the formation of the NNL, compared to 

the schedule of the development of the enamel crown overall. The timing of NNL formation 

may affect the width of the NNL as the tooth crown has an underlying schedule of enamel 

formation that varies considerably from cusp to cervix, and from the EDJ to the enamel 

surface (Birch and Dean, 2009). The distribution of measured values of NNL width across the 

tooth crown was also examined and found to map closely to an expected pattern of wider 

measurements of the NNL in the cusp, where enamel secretion rates are higher, and thinner 

measurements nearer the EDJ where secretion rates are lower (Mahoney, 2015).  
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Variation in NNL width at different locations along the NNL may reflect the position of the 

NNL relative to local enamel formation rates. If the NNL formed at a later point in the overall 

schedule of enamel development, as would be the case in a Late term or Post Term birth, it 

would be located in an area where enamel forms more quickly. This timing of birth also has 

implications for the ameloblasts themselves in terms of their ability to buffer disruptions; the 

argument that ameloblasts at different stages of activity are more or less susceptible to 

interruption as proposed by Norén (1983) has been previously established (Witzel et al., 

2006). The potential interactions between variation in the rate of enamel formation, 

susceptibility of ameloblasts to disruption, and the position of the neonatal line could provide 

an alternate, or possibly complimentary, framework for understanding variation in the width 

of the NNL. Alternately, this clear variation in NNL width with gestational age may indicate 

that sensitivity to potentially disruptive influences on enamel formation and mineralization 

varies according to developmental status of the fetus; more mature fetuses may have 

developed more robust physiologies that are able to buffer the effects of birth on enamel 

formation more successfully.  

 

A further consideration is the method by which the data on neonatal line width are measured 

and analyzed, which may interfere with the interpretation of significant causal factors.  The 

current study is based on measurements of NNL width in teeth of a single type, removing a 

potential source of variation in measured neonatal line thickness. Early studies used an 

amalgamated sample of multiple tooth types to estimate the width of the NNL and the 

associations, for instance between NNL width and mode of delivery, that were derived from 

those data (Eli et al., 1989; Hurnanen et al., 2017) are not evident in this study of a single 

tooth type.  
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This study provided an opportunity to measure NNL width in multiple teeth of the same type 

from the same individual. While the majority of NNL widths from the teeth from the same 

individual have far less variation than the wider population, there is still variation in NNL 

width within individuals stretching from the negligible (<0.01 μm) to the considerable (7.85 

μm). One factor that may contribute to variation in NNL width in the same individual is 

variable section obliquity. It is not always possible to produce identical planes of section for 

analysis in antimere teeth. Given the expectation that NNL width should be the same in the 

same tooth type in the same individual, the differences we see between paired teeth could 

point to an optical effect resulting even from minimal section obliquity. The buccolingual 

sections studied here were taken as close as possible to the long axis of the crown running 

through the cusp tip, dentine and pulp horns. In our view, this is a critical step in obtaining 

comparable values though some variation in section obliquity might be expected given the 

difficulty of identifying the true axis of the tooth, particularly in worn teeth.  

  

A major advantage of this study is that it is based on teeth from a large prospective cohort 

study and does not rely on parental recollection of early life measures. The children are a 

relatively homogeneous group who were born within a period of 21 months. The teeth 

represent a well-resourced population that by definition had access to medical care. A 

disadvantage of the study is that the low numbers of cases with extreme exposures resulted in 

limited power to detect meaningful differences for some of the comparisons reported. The 

results of this study concur with other recent research that links variation in NNL width to 

gestational variables, but specific differences between the results from this study and earlier 

research demonstrate the need for replication of results in other research settings including 

more heterogenous and/or less advantaged study groups.   
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Decades of research have demonstrated that the NNL is a biomarker for birth, a key life 

history event,  reflecting a disturbance to ameloblast secretion resulting from the birth process 

(e.g. Weber and Eisenmann, 1971), our results have shown that experiences occurring prior 

to birth appear to have a greater association with NNL width than the birth process. In this 

specific case the expression of a chronologically resolved accentuated line cannot be 

attributed solely to events occurring at the time of its formation. The wider implications of 

this finding for other accentuated lines in enamel need to be explored.  The results of this 

study do not unambiguously support previous assumptions that the width of the neonatal line 

is a direct measure of the degree of adversity experienced during gestation or the birth 

process and the amount of time needed to recover. Ameloblasts may respond differently to 

the changing physiological circumstances surrounding birth as different thresholds of 

disruption are reached and according to stage of tooth development and the condition of the 

fetus at birth. Disruptions that retard enamel formation may lead to the formation of a thinner 

NNL if the rate of enamel growth itself is slowed; ameloblasts at different stages of 

development may be more or less susceptible to slowing down or even cessation of matrix 

formation, which might in turn lead to the formation of very thin NNLs in severely disturbed 

infants. Future research may be able to resolve these questions by addressing the position of 

the NNL within the enamel crown and along the EDJ, and by careful repeated measures on a 

non-oblique section of the NNL in regions of different enamel formation rates throughout the 

tooth. Rates of enamel secretion surrounding NNL formation and enamel ultrastructural 

changes within the NNL such as crystallite size and orientation as well as shifts in elemental 

composition across the NNL, may provide additional evidence for how the factors underlying 

NNL width interact with the process of enamel formation. Understanding the etiological 

factors behind observed variation in the structure and composition of dental tissues is 

fundamental for research that seeks to use these parameters as evidence for early lifetime 
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experiences in living and past individuals, and it is hoped that future research will continue to 

explore these interactions. 
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Figure Legends 

 

Figure 1 Regular structures of dental enamel, nested view. Clockwise from upper right: 

position of longitudinal section; histological section; magnified area of section showing NNL 

(black arrow) and accentuated straie of Retzius (white arrow); magnified view of NNL (black 

arrow) with visible cross striations. 

Figure 2 Illustration of repeated measures (white bars) of the central third of the NNL. Scale 

bar: 30 µm. 

Figure 3 Distribution of NNL widths in the sample. 

Figure 4. Maternal 25H[OH]D (Vitamin D) levels by month tested. 
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Figure 5. Season of birth and NNL Width. 

 

Figure 6. Gestational age and NNL Width.  

Figure 7. Delivery Method and NNL Width. 

 

Tables 

Table 1. Measurements of NNL width (averaged in three locations). 

 

Table 2. Description of variables examined. *Where cell counts are less than five, they are 

reported as <5. Bold indicates significance or large effect size. Italics indicate a medium 

effect size. 

 

Table 3. NNL Width across maternal variables. *Where cell counts are less than five, they 

are reported as <5. 

 

Table 4. NNL Width across gestational variables. *Where cell counts are less than five, they 

are reported as <5. 

 

Table 5. NNL Width across birth process and early life variables. *Where cell counts are less 

than five, they are reported as <5. 
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Table 6. Pairwise differences between teeth from the same individual (ten possible pairings 

in eight individuals), compared to differences from iterative random pairs generated from all 

individuals.  
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Table 1. Measurements of NNL width (averaged in three locations) 

Region Measurements 
(n)  Min (μm) Max (μm) Mean (μm) sd (μm) 

Cusp 142 2.06 30.13 12.33 5.72 

Middle 213 1.80 28.45 10.21 4.46 

EDJ 212 1.70 28.02 7.69 3.63 
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Table 2. Description of variables examined. *Where cell counts are less than five, they are reported as <5. Bold 
indicates significance or large effect size. Italics indicated medium effect. 
  

NNL 
Width n = 

71       
p value ω2 value (r2) Cohen's D (+ 

Hedges G)   

Variables 
  

Yes / 
Data 

Present 
No  cusp middle EDJ cusp middle EDJ cusp middle EDJ 

Maternal 
Variables 

Maternal 
Height 68   0.80 0.65 0.66 -0.14 -0.04 -0.05 -2.94 -3.36 -3.85 

Maternal 
Weight (Pre-
Pregnancy) 

67   0.38 0.61 0.44 0.07 -0.06 0.04 -2.30 -2.39 -2.48 

Maternal BMI 
(Pre-
Pregnancy) 

67   0.20 0.28 0.33 0.00 0.00 -0.01 -2.44 -3.40 -4.95 

*Maternal 
Obesity (BMI 
> 30) 

<5 63 0.04 0.07 0.21 0.05 0.03 0.01 3.12 3.35 0.64 

Parity 64 - 0.89 0.88 0.57 -0.04 -0.04 -0.02 2.74 2.89 2.88 

Maternal Age 67 - 0.79 0.72 0.79 -0.08 -0.06 -0.08 -1.40 -2.14 -3.36 
Geriatric 
Pregnancy 
(35 y +) 

11 56 0.12 0.21 0.11 0.02 0.01 0.02 0.51 0.42 0.47 

History of 
Hypertension 10 54 0.04 0.50 0.04 0.05 -0.01 0.05 -0.70 -0.23 -0.70 

  

Glycosuria <5 63 0.70 0.51 0.26 -0.01 -0.01 0.01 3.09 3.30 3.46 
*Hypertension 
in Pregnancy 
(only) 

7 <5 0.27 0.05 0.64 0.04 0.31 -0.08 -0.75 -1.46 -0.30 

Maternal 
Vitamin D 
Levels in 
Pregnancy 
(25[O]D 
nmol/l) 

38 - 0.51 0.44 0.55 -0.02 -0.01 -0.02 -2.45 -2.46 -2.47 

Insufficient Vit 
D  (> 80 
nmol/l 
25[O]D) 

9 29 0.73 0.67 0.17 -0.02 -0.02 0.02 0.13 0.16 -0.52 

Cord Blood 
Calcium 13 - 0.85 0.58 0.84 -0.08 -0.06 -0.08 -7.45 -7.77 -7.96 

Vomiting (at 
20-32w) 8 60 0.61 0.75 0.87 -0.01 -0.01 -0.02 2.52 2.58 2.43 

Any Infection 
(at 20-32w) 22 46 0.08 0.25 0.54 0.03 0.01 -0.01 3.01 3.01 3.08 

Any Infection 
(7 months +) 12 54 0.29 0.77 0.96 0.00 -0.01 -0.02 2.83 2.93 2.97 

*Injury or 
Shock (at 20-
32w) 

<5 64 0.43 0.67 0.61 -0.01 -0.01 -0.01 2.51 2.56 2.42 

*Injury or 
Shock (7 
months +) 

<5 63 0.12 0.08 0.56 0.02 0.03 -0.01 2.52 2.53 2.38 

Season of 
Birth 71 - 0.44 0.06 0.09 0.00 0.06 0.05 2.46 2.50 2.02 

Length of 
Gestation 
(weeks) 

68 - 0.28 0.02 0.12 0.00 0.06 0.02 -7.36 -9.87 -
14.45 
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Preterm' (< 
37w), ‘Early 
Term’ (37 - 
38w), ‘Full 
Term’ (39 -
40), ‘Late 
term’ (41 
weeks),  ‘Post 
Term’ (42+) 

68 - 0.12 0.01 0.18 0.05 0.15 0.04 2.38 2.38 2.11 

Crown - heel 
height 55 - 0.13 0.28 0.69 0.02 0.00 -0.02 -6.36 -6.53 -6.77 

Birthweight 
(g) 68 - 0.97 0.89 0.64 -0.02 -0.02 -0.01 -8.65 -8.65 -8.60 

Small for 
Gestational 
Age 

9 59 0.97 0.58 0.51 -0.02 -0.01 -0.01 0.01 -0.20 -0.23 

Sex 34 F, 
37 M - 0.74 0.58 0.41 -0.01 -0.01 0.00 0.08 0.13 0.20 

Birth 
Process 

and Early 
Life 

Variables 

Delivery 
Method 32   0.86 0.61 0.73 -0.11 -0.05 -0.07 2.24 2.37 2.00 

Intervention 
During Birth 14 17 0.91 0.69 0.64 -0.03 -0.03 -0.03 0.04 -0.14 0.16 

Total Duration 
of Labor (hrs) 28 - 0.81 0.91 0.91 -0.04 -0.04 -0.04 -0.14 -0.23 -0.45 

Length of 1st 
Stage of 
Labor (hrs) 

27 - 0.14 0.17 0.36 0.05 0.04 -0.01 0.48 0.33 -0.22 

Length of 2nd 
Stage of 
Labor (min) 

27 - 0.69 0.83 0.85 -0.03 -0.04 -0.04 -1.00 -1.02 -1.07 

*Maternal 
Distress in 
Labor 

<5 28 1.00 0.80 0.68 -0.03 -0.03 -0.03 0.00 0.13 0.22 

Fetal Heart 
Rate 
Abnormal 

18 10 0.84 0.32 0.59 -0.04 0.00 -0.03 0.08 0.39 0.21 

APGAR score 
at 1 min 32 - 0.95 0.70 0.80 -0.03 -0.03 -0.03 0.50 0.19 -0.96 

APGAR score 
at 5 min 32 - 0.71 0.44 0.62 -0.03 -0.01 -0.02 0.09 -0.37 -1.92 

Baby was 
Resuscitated 10 22 0.17 0.19 0.06 0.03 0.02 0.08 -0.52 -0.50 -0.72 

* Feeding 
problems (< 
14 postnatal 
days) 

<5 30 0.70 0.69 0.98 -0.03 -0.03 -0.03 -0.27 -0.28 0.02 

Pyrexia (< 14 
postnatal 
days) 

12 20 0.81 0.13 0.97 -0.03 0.04 -0.03 -0.09 0.55 -0.02 

Jaundice 
Present 22 10 0.95 0.60 0.62 -0.03 -0.02 -0.02 0.02 0.20 0.18 
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Table 3. NNL Width across maternal variables. *Where cell counts are less than five, they are reported as <5. 

NNL Width       average value (μm) 

Variables   n No 
Data cusp middle EDJ 

  sample mean 71   12.33 10.21 7.69 

Maternal 
Variables 

Maternal 
Height 68 3 

- - - 

Maternal 
Weight (Pre-
Pregnancy) 67 4 

- - - 

Maternal 
BMI (Pre-
Pregnancy) 67 5 

- - - 

*Maternal 
Obesity   5 

      

BMI < 30 63   12.12 10.09 7.34 
BMI > 30 < 5   6.82 6.61 5.75 

Parity   7       
First 27   11.69 9.56 6.89 

Second 25   11.18 9.80 7.01 
Third 10   14.33 11.03 6.12 

Fourth < 5   N/A N/A N/A 
Maternal 
Age   4 

      

< 35 years 56   12.23 10.14 7.50 
> 35 years 11   10.19 8.68 6.56 

*History of 
Diabetes 0 3 

- - - 

History of 
Hypertension   7 

      

Yes 10   14.71 10.59 8.65 

No 54   11.21 9.69 6.90 
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Table 4. NNL Width across gestational variables. *Where cell counts are less than five, they are reported 

as <5. 

NNL Width       average value (μm) 

Variables   n No 
Data cusp middle EDJ 

  sample mean 71   12.33 10.21 7.69 

Gestational 
Variables 

*Gestational 
Diabetes 

0 5 - - - 

*Glycosuria   5       

Yes < 5   10.92 8.63 5.81 

No 63   12.05 10.10 7.48 
*Hypertension 
in Pregnancy 
(only) 

  3       

Yes 7   16.06 12.24 8.88 
No 61   11.54 6.74 8.10 

*Preeclampsia 0 5 - - - 
Maternal 
Vitamin D 
Levels in 
Pregnancy 
(25[O]D 
nmol/l) 

  33       

 Insufficient  
(< 80 nmol/l ) 

9   12.03 10.30 7.24 

Sufficient      
(> 80 nmol/l ) 

29   10.47 8.79 8.38 

Cord Blood 
Calcium 

13 58 - - - 

Vomiting (at 
20-32w) 

  3       

Yes 8   12.68 9.47 7.14 

No 60   11.71 9.94 7.30 

Any Infection 
(at 20-32w) 

  3       

Yes 22   13.36 10.65 7.57 

No 46   11.09 9.51 7.16 

Any Infection 
(7 months +) 

  5       

Yes 12   13.29 9.59 7.32 
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No 54   11.59 9.96 7.28 
*Injury or 
Shock (at 20-
32w) 

  3       

  < 5   13.75 10.69 7.92 

No 64   11.70 9.83 7.25 
*Injury or 
Shock (7 
months +) 

  5       

Yes < 5   16.28 13.66 8.13 

No 63   11.69 9.71 7.24 
Month of 
Birth   4       

January < 5   11.32 8.82 8.14 

February < 5   13.20 13.33 7.13 

March < 5   13.20 9.95 9.45 

April 15   14.33 12.78 9.46 

May 5   12.42 10.41 8.14 

June 13   12.01 8.92 7.09 

July 7   10.50 8.58 6.33 

August 8   12.22 10.39 7.45 

September < 5   9.72 9.25 7.01 

October < 5   8.76 7.20 5.70 

November < 5   13.07 8.33 7.05 

December < 5   11.68 9.44 6.66 
Season of 
Birth    4       

Winter 9   12.28 12.07 7.20 

Spring 24   13.74 11.81 9.17 

Sμmmer 28   11.69 9.26 7.00 

Autumn 10   10.77 8.27 6.63 

Gestation   3       

Preterm   (< 
37 Wks) 

< 5   12.20 9.95 8.16 

Early Term 
(37-38 Wks) 

13   11.97 10.90 7.63 

Full Term 
(39-40 Wks) 

26   13.58 11.45 7.95 

Late Term   
(42 Wks) 

18   10.35 8.02 6.47 

Post Term 
(42+ Wks) 

8   9.06 7.31 5.99 
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Crown - heel 
height 

55 16 - - - 

Birthweight 
(g) 68 3 - - - 

Small for 
Gestational 
Age 

  3       

Yes 9   11.76 10.55 7.81 

No 59   11.83 9.78 7.21 
Sex   3       

Female 37   12.10 9.92 7.32 

Male 34   12.54 10.47 8.02 
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Table 5. NNL Width across birth process and early life variables. *Where cell counts are less than five, 

they are reported as <5. 

NNL Width       average value (μm) 

Variables   n No 
Data cusp middle EDJ 

  sample mean 71   12.33 10.21 7.69 

Birth 
Process 

and Early 
Life 

Variables 

Delivery 
Method 

  39       

Spontaneous 17   10.91 9.92 7.13 

Assisted 
Breech 

< 
5 

  11.64 8.38 8.69 

Breech, 
Extraction 

< 
5 

  - - - 

Caesarean 
Section 

6   12.32 9.40 7.66 

Forceps 
< 
5 

  9.28 4.43 6.80 

Vacuum 
Extraction 

5   9.77 10.81 7.02 

Other 
< 
5 

  6.24 7.09 4.03 

Intervention 
During Birth 

  40       

Yes 14   11.10 9.40 7.52 

No 17 40 10.91 9.92 7.13 
Total 
Duration of 
Labor (hrs) 

28 43 - - - 

Length of 1st 
Stage of 
Labor (hrs) 

27 44 - - - 

Length of 2nd 
Stage of 
Labor (min) 

27 44 - - - 

*Maternal 
Distress in 
Labor 

  39       

Yes 
< 
5 

  10.84 10.01 7.66 

No 28   10.84 9.54 7.14 
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Fetal Heart 
Rate 
Abnormal 

  43       

Yes 18   11.21 10.24 7.44 

No 10   10.84 8.80 6.94 

APGAR score 
at 1 min 

32 39 - - - 

APGAR score 
at 5 min 

32 39 - - - 

Baby was 
Resuscitated 

  39       

Yes 10   9.19 8.40 6.09 

No 22   11.60 10.15 7.71 
* Feeding 
problems  (< 
14 postnatal 
days) 

  39       

Yes 
< 
5 

  9.61 8.64 7.25 

No 30   10.93 9.67 7.20 
 Pyrexia (< 14 
postnatal 
days) 

  39       

Yes 12   10.58 10.80 7.18 

No 20   11.00 8.89 7.22 

 Jaundice 
Present 

  39       

Yes 22   10.88 9.83 7.34 

No 10   10.76 9.11 6.90 
 

 

 

 
 
 
 



Table 6. Pairwise differences between teeth from the same individual (ten possible pairings in eight 

individuals), compared to differences from iterative random pairs generated from all individuals.  

Pairwise Differences 

Same 

Individual (n 

= 10) 

All Possible Pairs (n 

= 2485) 

mean (μm) mean (μm) 

NNL Width at Cusp 3.40 6.17 

NNL Width at Middle 2.80 4.61 

NNL Width at EDJ 1.91 3.43 

 

 

 

 







Figure 3. Distributions of NNL width (µm) across the sample.
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Figure 5. Season of birth and NNL width (µm).
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Figure 6. Gestational Age and NNL width (µm).
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