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Abstract: In this paper, we propose and analyse a mathematical model for the onset and development
of autoimmune disease, with particular attention to stochastic effects in the dynamics. Stability
analysis yields parameter regions associated with normal cell homeostasis, or sustained periodic
oscillations. Variance of these oscillations and the effects of stochastic amplification are also
explored. Theoretical results are complemented by experiments, in which experimental autoimmune
uveoretinitis (EAU) was induced in B10.RIII and C57BL/6 mice. For both cases, we discuss
peculiarities of disease development, the levels of variation in T cell populations in a population of
genetically identical organisms, as well as a comparison with model outputs.

Keywords: mathematical model; immune response; autoimmunity; stochasticity

1. Introduction

To provide effective protection against various pathogenic challenges, the immune system should
be able to successfully distinguish healthy cells from the cells infected by pathogens. When this
discrimination between self- and non-self fails, the immune system starts a specific attack on cells
or organs, causing autoimmune disease. Various factors have been identified over the years that
contribute toward the onset and development of autoimmune disease, including age, sex and genetic
predisposition, as well as various environmental factors, among which infectious pathogens play
a major role [1–3].

Several mathematical models have investigated aspects of onset and development of
autoimmunity, with particular emphasis on the role of T cells. Starting with early models of T
cell vaccination that defined the autoimmune state as above-threshold oscillations in the number
of autoreactive cells [4–6], subsequent models have also considered interactions between different
types of T cells from the perspective of controlling autoimmunity through regulation of immune
response [7–9]. Iwami et al. [10,11] analysed autoimmune dynamics emerging a result of breakdown of
immune response to a viral infection, highlighting the importance of the function representing growth
of susceptible host cells. Focusing on bystander activation as a mechanism of pathogen-induced
autoimmunity, Burroughs et al. [12–14] and Oliveira et al. [15] analysed the role of interleukin-2 (IL-2)
in mediating immune response associated with autoimmunity. Several recent reviews and special
issues have provided excellent overview of different mathematical approaches used for modelling
autoimmune dynamics, as well as outstanding challenges [16–18].

With T cells playing a major part in the adaptive immune response, and regulatory T cells being
directly involved in controlling the autoimmune response [19–22], several different approaches have
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been proposed for mathematical modelling of various roles played by the T cells in autoimmunity.
Burroughs et al. [12–14] and Alexander and Wahl [23] explicitly included a separate compartment
representing regulatory T cells, in order to explore the mechanism of how these cells can suppress
autoreactive T cells upon activation by auto-antigens. An alternative approach to modelling T cell
dynamics in the context of autoimmunity is that of so-called tunable activation thresholds (TAT), originally
proposed theoretically to model peripheral and central T cell dynamics [24–26] (see also recent reviews
by Grossman and Paul [27] and Grossman [28]). In this methodology, the underlying assumption
is that, depending on various environmental conditions or even through endogenous stochastic
variation, the same T cells can adjust their activation thresholds for response to stimulation by
auto-antigens. Although initially this was proposed as a theoretical model, subsequent murine and
human experiments provided justification for this by confirming that, during their circulation, T cells
can indeed dynamically change their activation thresholds [29–32]. Carneiro et al. [33] reviewed
different models of autoimmunity that are based either exclusively on the TAT approach, or on the
suppressive role of regulatory T cells, and concluded that rather than being mutually exclusive, these
different mechanisms are most likely complementary. Blyuss and Nicholson [34,35] used a TAT-based
model to investigate autoimmunity arising through a mechanism of molecular mimicry from immune
response to a viral infection. To capture a dynamical regime where autoimmunity arises as a by-product
of viral infection but after that initial infection has already been cleared by the immune system,
Fatehi et al. [36–40] developed this model further by including cytokines mediating T cell proliferation,
as well as time delays associated with various aspects of the immune response.

Due to an intrinsically complex multi-factor nature of immune response [41], several mathematical
models have investigated stochastic aspects of immune dynamics. They have included, among
others, analyses of T cell homeostasis [42] and repertoire [43,44]; the dynamics of T cell activation
thresholds [45,46]; T-cell proliferation and activation, including the role of cytokines [47–49];
self-tolerance based on regulatory T cells [23]; cytokine-mediated pathogen-induced autoimmunity [36];
T cell recruitment in response to a viral infection [50]; as well as an investigation of how a variable
affinity between T cell receptors and MHC-peptide complexes may affect possible outcomes during T
cell selection [51]. These models have focused primarily on investigating such aspects of stochastic
dynamics as the probability distribution of T cell activation thresholds, or simulations of immune
dynamics that are valid for relatively small numbers of cell populations (thus going beyond the
mean-field models). At the same time, such important issues as the variance of stochastic fluctuations,
their regularity, and the possibility of coherence resonance have remained largely unexplored,
even though these aspects may be essential for an adequate description of the dynamics observed in
the immune response in laboratory experiments and in the clinic. This paper addresses this limitation
through analysis of stochastic effects in a model of autoimmune dynamics, paying particular attention
to investigating how the variance of stochastic oscillations depends on the system’s parameters,
and comparing model predictions with the results of two sets of experiments studying autoimmune
disease in mice.

In the next section, we discuss biological assumptions and derive a deterministic mathematical
model of the immune response that includes naïve, regulatory and autoreactive T cells, as well as
a cytokine growth factor that mediates T cell proliferation. We then derive a stochastic analogue of
this model based on continuous-time Markov chains, and also present a computationally efficient
stochastic differential equation that will be used for simulating the model. We also discuss the details
of an experimental set-up for two murine experiments on EAU. In Section 3, we identify all steady
states of the deterministic model, study their stability, and illustrate different dynamical regimes that
can be exhibited by the model. Using a system-size expansion of the master equation, we explore how
the variance of stochastic oscillations around deterministically stable steady states depends on system
parameters, and illustrate the dynamics by numerically solving a corresponding stochastic differential
equation model. We also compare experimentally measured numbers of T cells with the results of
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numerical simulations from our model. The paper concludes in Section 4 with a discussion of results
and open problems.

2. Materials and Methods

2.1. Deterministic Mathematical Model

We consider the dynamics of immune response in a single part of the body, where the healthy
somatic cells S(t) are assumed to reproduce logistically with a linear growth rate r and the carrying
capacity N in the absence of infection and/or any adverse immune reaction. One could alternatively
represent the dynamics of healthy cells by some constant influx and a constant death rate, which by
themselves would result in the same long-term behaviour representing the population of healthy
cells approaching some stable level, which biologically can be interpreted as a homeostasis. However,
earlier work of Iwami et al. [10,11] has shown that, while this behaviour can be observed for both types
of growth functions in the absence of infection or immune reaction, their specific functional form does
have a significant effect on the overall dynamics of autoimmune disease. Thus, we have chosen to use
a logistic form for the growth function of healthy organ cells, in agreement with Iwami et al. [10] and
our earlier work on autoimmunity [34–40].

With experimental evidence demonstrating that autoimmunity can develop even in the absence
of B cells [52], and in light of the fact that the development of autoantibodies can itself depend on prior
T cell activation [53], in our model we focus on T cell dynamics and do not take into account antibody
responses. We consider only T cells able to respond to a single target self-antigen expressed by the
somatic cells. We assume that both naïve and regulatory T cells Tin(t) and Treg(t) are maintained in
a state of homeostasis, where they are each produced at some constant rates λin and λr, and they
die at rates din and dr, respectively. We assume that upon activation at rate α by a signal from some
self-antigen presented on APCs, a proportion p of naïve T cells will develop into regulatory T cells,
while a remaining proportion (1− p) will become autoreactive T cells Taut(t) capable of destroying
healthy host cells at rate µa, and that these cells die at rate da. It is further assumed that autoreactive T
cells produce cytokine growth factors (e.g., interleukin 2 (IL-2)) I(t), at rate σ, and these are cleared
at rate di. The effect of cytokines is to facilitate proliferation of regulatory and autoreactive T cells at
rates ρ1 and ρ2, respectively. Autoreactive cells are known to be present in the periphery [54], and with
activation thresholds of T cells changing to improve the efficiency of immune response, they can
further arise as daughter cells of normal T cells but having lower activation thresholds. In this model
for simplicity, we do explicitly not discriminate between inactive regulatory and effector T cells and
consider both of those to be subpopulations of Tin(t), even though, of course, these cells have clear
distinctions. Interactions between different cell populations are illustrated in a diagram in Figure 1.

With these assumptions, the model of immune response has the form given in Equation (1),

dS
dt

= rS
(

1− S
N

)
− µaTautS,

dTin
dt

= λin − dinTin − αTinS,

dTreg

dt
= λr − drTreg + αpTinS + ρ1Treg I,

dTaut

dt
= α(1− p)TinS− daTaut − δTregTaut + ρ2Taut I,

dI
dt

= σTaut − di I.

(1)
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Figure 1. A diagram of the model of immune response. Blue circle indicates somatic cells that
are the target of the autoimmune response, red circles denote different T cells (naïve, regulatory,
and autoreactive T cells), and a yellow circle shows cytokine growth factor, such as IL-2.

2.2. Stochastic Model

To analyse the role of stochasticity in autoimmune dynamics, as a first step we construct
a continuous-time Markov chain (CTMC) model based on the deterministic ODE system (1).
Let X1(t), . . . , X5(t) ∈ {0, 1, 2, . . .} denote discrete random variables representing the numbers of
healthy cells, naïve T cells, regulatory T cells, normal activated T cells, and cytokine growth factor at
time t, respectively. Let the initial condition be fixed as in Equation (2),

X0 = (X1(0), . . . , X5(0)) = (n10, n20, n30, n40, n50). (2)

The probability of finding the system in the state n = (n1, n2, n3, n4, n5) with ni ∈ {0, 1, 2, ...} at
time t can be defined as in Equation (3),

P(n, t) = Prob{X(t) = n|X(0) = X0}. (3)
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Let ∆t be sufficiently small such that ∆Xi(t) = Xi(t + ∆t) − Xi(t) ∈ {−1, 0, 1} for 1 ≤ i ≤ 5.
The CTMC can then be formulated as a birth and death process in each of the variables [55], with the
infinitesimal transition probabilities corresponding to Figure 1 being given by Equation (4),

Prob(∆X = i|X = n) =



q1∆t + o(∆t), i = (1, 0, 0, 0, 0),
q2∆t + o(∆t), i = (−1, 0, 0, 0, 0),
q3∆t + o(∆t), i = (0, 1, 0, 0, 0),
q4∆t + o(∆t), i = (0,−1, 0, 0, 0),
q5∆t + o(∆t), i = (0,−1, 1, 0, 0),
q6∆t + o(∆t), i = (0,−1, 0, 1, 0),
q7∆t + o(∆t), i = (0, 0, 1, 0, 0),
q8∆t + o(∆t), i = (0, 0,−1, 0, 0),
q9∆t + o(∆t), i = (0, 0, 0, 1, 0),
q10∆t + o(∆t), i = (0, 0, 0,−1, 0),
q11∆t + o(∆t), i = (0, 0, 0, 0, 1),
q12∆t + o(∆t), i = (0, 0, 0, 0,−1),

1−
12
∑

i=1
qi∆t + o(∆t), i = (0, 0, 0, 0, 0),

o(∆t), otherwise,

(4)

where
q1 = b1n1 + b2n2

1, q2 = d1n1 + d2n2
1 + µan1n4, q3 = λin, q4 = dinn2,

q5 = αpn1n2, q6 = α(1− p)n1n2, q7 = λr + ρ1n3n5, q8 = drn3,
q9 = ρ2n4n5, q10 = (da + δn3)n4, q11 = σn4, q12 = din6,

and the terms of order o(∆t) are neglected. Here, b1n1 + b2n2
1 and d1n1 + d2n2

1 are natural birth and
death rates for uninfected cells with b1 − d1 = r and d2 − b2 = r/N. One should note that, since
effectively there are four independent parameters b1, b2, d1 and d2, and only two conditions on them,
there are infinitely many choices of these parameters that would deterministically represent the same
logistic growth, but stochastically would have slightly different characteristics, such as persistence
times and variances [55]. Since we are modelling cell populations, we choose b2 to be negative and d2

to be zero, so that the birth rate represents logistic growth, while the death rate represents linear death
term, and we do not include density dependence. An extended discussion of the effects of choosing
different values of bi and di on stochastic equivalents of deterministic logistic models can be found
in [55–57].

The probabilities P(n, t) satisfy the following master equation (forward Kolmogorov equation) (5),

dP(n, t)
dt

=
{
(ε−1 − 1)q1 + (ε+1 − 1)q2 + (ε−2 − 1)q3 + (ε+2 − 1)q4 + (ε+2 ε−3 − 1)q5

+(ε+2 ε−4 − 1)q6 + (ε−3 − 1)q7 + (ε+3 − 1)q8 + (ε−4 − 1)q9 + (ε+4 − 1)q10

+(ε−5 − 1)q11 + (ε+5 − 1)q12

}
P(n, t).

(5)

where the raising and lowering operators ε±i are defined as follows,

ε±i f (n1, n2, n3, n4, n5, t) = f (n1, ..., ni ± 1, ..., n5, t), for each 1 ≤ i ≤ 5,

and if ni < 0 for any 1 ≤ i ≤ 5, then P(n, t) = 0.
Although this master equation can yield the probability density for our model, since this

is a high-dimensional difference-differential equation, solving it is an extremely challenging task.
To make further analytical progress, one performs a system size expansion of this equation to obtain
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a characterisation of stochastic oscillations around deterministic states, including their variance, as
explained in detail in Appendix A.

To simulate stochastic dynamics numerically, it is convenient to derive an equivalent
representation of stochastic dynamics based not on the master equation, but on an Itô stochastic
differential equation (SDE) model, which produces similar probability distributions but is much
more computationally efficient. Following the methodology of Allen [55], we consider Y(t) =

(Y1(t), Y2(t), Y3(t), Y4(t), Y5(t)) to be a continuous random vector for the sizes of various cell
compartments at time t. Similar to the CTMC model, we assume that the time interval ∆t is sufficiently
small to ensure that during this time interval at most one change can occur in state variables. We denote
these changes as ∆Y = ∆Y(t) = (∆Y1(t), . . . , ∆Y5(t))T , where Yi(t) = Yi(t + ∆t)− Yi(t), i = 1, . . . , 5,
and the ith change is denoted as (∆Y)i. These changes together with their probabilities are summarised
in the Table A1 in Appendix B, which, similar to the CTMC model, is based on Figure 1, and the terms
o(∆t) are again neglected. Using this table of possible state changes, one can compute the expectation
vector E(∆Y) and covariance matrix of ∆Y for sufficiently small ∆t [58,59], which together give the
following Itô SDE model showin in Equation (6),

dY(t) = µdt + HdW(t), Y(0) = (A(0), Tin(0), Treg(0), Taut(0), I(0))T , (6)

where parameters µ and H are provided in Equation (7),

µ =


P1 − P2

P3 − P4 − P5 − P6

P5 + P7 − P8

P6 + P9 − P10

P11 − P12

 , H =

 H1 0 0
0 H2 0
0 0 H3

 , H1 =
√

P1 + P2

H3 =
√

P11 + P12, H2 =


√

P3 + P4 −
√

P5 −
√

P6 0 0
0

√
P5 0

√
P7 + P8 0

0 0
√

P6 0
√

P9 + P10

 ,

(7)

probabilities P1, . . . P12 of different transitions between cell populations are given in Appendix C,
and W(t) = [W1(t), W2(t), ..., W7(t)]T is a vector of seven independent Wiener processes [60].
Equation (6) is used in the next section to numerically explore stochastic dynamics of the system
in different regimes.

2.3. Experimental Set-Up

For the purpose of comparing theoretical predictions with experimental observations, we use
two datasets from the murine model of ocular autoimmunity, experimental autoimmune uveoretinitis
(EAU), which is known to be a useful animal model of human inflammatory eye disease [61]. In these
experiments, two strains of mice, B10.RIII and C57BL/6, were immunised with peptides derived from
retinol-binding protein 3, also known as interphotoreceptor retinoid-binding protein (IRBP), 161–180
peptide (SGIPYIISYLHPGNTILHVD) [62] and 1–20 peptide (GPTHLFQPSLVLDMAKVLLD) [63],
respectively. The immunisation protocol uses peptide combined with adjuvants (complete Freund’s
and pertussis toxin) and leads to an expanded population of pathogenic CD4+ T cells in the circulation
that can recognise and damage ocular tissue. Both peptides induce disease that is characterised in
the eye by a primary peak of infiltration, followed by secondary regulation [64–66]. EAU dynamics
were monitored by sampling the eyes of individual animals at different time points and quantifying
infiltrating cells [66] using flow cytometry. Since all available experimental data suggest that T
cells are the main mediators of EAU [66,67], we focused specifically on measurements of them in
our experiments.
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3. Results

3.1. Stability Analysis of the Deterministic Model

As a first step of mathematical analysis, we investigated the model in Equation (1), which has
two biologically infeasible steady states, characterised by the absence of host cells, i.e., S = 0. The first
one, E1 = (0, λin/din, λr/dr, 0, 0), is always unstable as one of its characteristic eigenvalues is r > 0.
The second steady state can be found as shown in Equation (8),

E2 = (0, T∗in, T∗reg, T∗aut, I∗), T∗aut =
di(da + δT∗reg)

ρ2σ
, I∗ =

da + δT∗reg

ρ2
, (8)

with

T∗reg =
ρ2dr − ρ1da ±

√
(ρ2dr − ρ1da)2 − 4ρ1ρ2δλr

2ρ1δ
.

One characteristic eigenvalue of this steady state x1 = −din is always negative, another one is
given by Equation (9),

x2 = r− diµa(da + δ)

ρ2σ
, (9)

while the remaining three eigenvalues xi, i = 1, 2, 3 are determined by the roots of the cubic
Equation (10),

(ρ2 − ρ1δ)x3 + [δ(ρ2 − ρ1δ)(1− di) + ρ2dr − ρ1da + ρ1δ2di]x2

+[δ(ρ2dr − ρ1)(1− di) + dadi(2ρ1δ− ρ2)]x + dadi(ρ1da − ρ2dr) = 0.
(10)

The model in Equation (1) can also have another steady state E∗ with all its components being
positive, but it does not prove possible to find a closed form expression for this steady state. Biologically,
the steady state E∗ can be viewed as a state of low-level autoreactivity that is sufficiently controlled
by the immune system to ensure it does not cause adverse immune reaction, while maintaining the
immune system’s ability to effectively respond to potential infections. In contrast, sustained periodic
oscillations around this steady state, whose amplitude exceeds certain threshold, can be interpreted as
a state of autoimmunity [5,6].

To explore the model’s dynamics, we fix all parameter values as shown in Table 1 and identify
regions of stability of the steady state E∗ in terms of parameters ρ1 and ρ2 characterising the effects of
cytokine growth factor on facilitating proliferation of regulatory and autoreactive T cells, respectively,
as shown in Figure 2. One observes that, for very small values of ρ2, which means a very weak effect of
cytokine growth factor on proliferation of autoreactive T cells, the steady state E∗ is stable for all values
of ρ1. Increasing the rate δ, at which Tregs suppress autoreactive T cells, increases the region in the
parameter space where the steady state E∗ is biologically feasible, while the region of stability for this
steady state shrinks. For any combination of values of ρ1 and ρ2, wherever it is feasible, the steady state
E∗ is stable for lower values of ρ2 and unstable for higher values of ρ2 that exceed certain threshold,
indicating that for higher ρ1, E∗ is stable for a larger range of values of ρ2. From a biological point of
view, this suggests that increasing the positive impact of cytokine growth factor on proliferation of
autoreactive T cells can be one of the mechanisms resulting in the emergence of autoimmune dynamics.
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Table 1. Table of parameters.

Parameter Value Parameter Value

r 2 N 20,000
µa 0.0044 α 4× 10−5

λin 18,000 din 2
λr 54,000 dr 0.8
p 0.4 δ 2.22× 10−6

σ 0.8 di 0.6

Figure 2. Stability of the steady state E∗ with parameter values from Table 1, and (a) δ = 4.44× 10−7;
(b) δ = 2.22× 10−6; (c) δ = 1.11× 10−5; and (d) δ = 4.44× 10−5. The colour code shows max[Re(x)].

Quite naturally, the threshold for transition to autoimmunity also increases with δ, which
characterises the efficiently of suppression of autoreactive T cells by regulatory T cells, indicating
that, whereas one may observe autoimmune regimes for lower values of δ, increasing this parameter
will result in a tighter control of autoreactive T cells by Tregs and elimination of autoimmunity.
Corresponding numerical simulations of the model in Equation (1) are shown in Figure 3. This figure
illustrates the situation where, for sufficiently small δ (such as, δ = 4.44× 10−7), one observes sustained
periodic oscillations around E∗, while, for higher δ, these oscillations are suppressed. Similarly to
an earlier work of Borghans et al. [5,6], periodic oscillations exhibited in the model can be interpreted
as an autoimmune regime, provided their amplitude exceeds a certain threshold.
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3.2. Numerical Simulations

Having fixed the values of all parameters as given in Table 1 with Ω = 1000, we chose initial
conditions in the form of Equation (11),

Y(0) = (A(0), Tin(0), Treg(0), Taut(0), I(0))T = (18000, 7200, 63000, 0, 0) (11)

and solved the SDE model in Equation (6) numerically using Euler–Maruyama method.
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Figure 3. Numerical solution of the model in Equation (1) with parameter values from Table 1
ρ1 = 0.0022, ρ2 = 4.4× 10−4, and δ = 2.22× 10−6 (left column) or 4.44× 10−7 (right column).

Figure 4 shows the result of 20,000 individual stochastic realisations and its comparison with the
deterministic model. Since deterministically the system is in the parameter region, where E∗ is stable,
the deterministic trajectory exhibits damped oscillations approaching this steady state. The same result
would appear if one computed an average of a very large number number of simulations. In contrast,
in individual stochastic realisations, one observes sustained stochastic oscillations, a phenomenon
known as coherence resonance or stochastic amplification [68,69].
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Figure 4. The black curve shows deterministic trajectory satisfying the macroscopic system in
Equation (1), the red curve illustrates a single stochastic realisation of the model in Equation (6)
and the purple region indicates the area of one standard deviation from the mean trajectory at each
moment of time, as computed over 20,000 stochastic realisations. Parameter values are the same as in
Figure 3, with δ = 2.22 · 10−6.

3.3. Dependence of Variance of Oscillations on Parameters

To gain a better understanding of stochastic dynamics, we consider the system in a parameter
regime where deterministically E∗ is stable, and solve numerically the Lyapunov Equation (A12) to
explore how the variance of stochastic oscillations around this steady state depends on parameters,
as shown in Figure 5. We observe that, when staying within the parameter region where E∗ is
stable, variance increases with ρ2 but decreases with ρ1, thus mirroring the pattern of how the largest
characteristic eigenvalue of E∗ varies with the same parameters, as illustrated in Figure 2 above.
Similarly to that stability calculation, increasing δ reduces the variance of stochastic oscillations,
thus reducing the potential for a development of autoimmune behaviour through a tighter control of
autoreactive T cells by Tregs. As expected, the value of the variance increases as one approaches the
stability boundary of E∗, because this makes the steady state more sensitive to perturbations.

3.4. Comparison with Experiments

Figure 6 shows experimental results from observation of EAU in B10.RIII and C57BL/6 mice.
In terms of disease progression, we observed a prodromal or delayed period with very low intra-retinal
T cell counts, followed by a peak of disease between two and three weeks post-immunisation,
and subsequent disease regulation. Although the precise mechanisms of the prodromal period remains
unknown, similar kinetics has been observed in other autoimmune diseases, such as experimental
autoimmune encephalomyelitis (EAE) [70]. In both models of EAU, following the initial peak, T cells
exhibited decaying oscillations, and it has been hypothesised that these oscillations may be connected
to feedback mechanisms involved in limiting inflammation during disease progression [65,66]. Among
various scenarios of how this can be achieved, two important mechanisms are associated with MDSC
and FoxP3+ T cells [71,72]. In the same figure, for comparison, we also plot the output from the
deterministic model in Equation (1), which shows decaying oscillations around the deterministically
stable steady state that are qualitatively similar to those observed in experimental data. These
experimental and theoretical results indicate that taking averages across multiple experiments or
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simulations at each time point results in averaged T cell populations showing decaying oscillations, as
observed in Figure 6. In contrast, a more detailed examination of individual experiments and single
realisations (i.e., single numerical solutions) of the stochastic model in Equation (6), as illustrated in
Figure 7, reveals substantial non-decaying oscillations in the magnitude of T cell populations around
the mean value. The importance of this result lies in the fact that in laboratory or clinical settings,
one observes only a single course of autoimmune disease, which may be characterised by sustained
non-decaying oscillations.

It is important to note that the deterministic model in Equation (1) and its stochastic counterpart
in Equation (6) can be scaled with respect to time, as well as magnitudes of cell populations. In other
words, these models can exhibit the same qualitative behaviour, but on a different (ultimately,
arbitrarily chosen) timescale by appropriately scaling the values of parameters, and the same applies
to the values achieved by state variables. To give an example, if one were to replace state variables
Tin, Treg and Taut by T̂in = kTin, T̂reg = kTreg and T̂aut = kTaut, respectively, where k is some positive
scaling factor, while simultaneously replacing parameters µa, λin, λr, σ and δ by µ̂a = µa/k, λ̂in = kλin,
λ̂r = kλr, σ̂ = σ/k, and δ̂ = δ/k, respectively, this would result in the modified system having exactly
the same dynamics as the original system, except that populations of T cells would now be scaled
with a factor k. Interestingly, the rates ρ1 and ρ2 characterising the influence of cytokine growth
factor on proliferation of different types of T cells, as well as death/clearance rates din, dr, da and di
remain unchanged.

Figure 5. Variance in the number of autoreactive T cells during stochastic oscillations around
deterministically stable steady state E∗ depending on parameters ρ1 and ρ2, with other parameter
values as in Figure 4 and (a) δ = 4.44 × 10−7; (b) δ = 2.22 × 10−6; (c) δ = 1.11 × 10−5; and (d)
δ = 4.44× 10−5.
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Figure 6. Intra-retinal numbers of CD4+ cells in B10.RIII mice (a) and CL57/B6 mice (b) at multiple
time points following immunisation with RBP-3 peptides, with 10 realisations for B10.RIII mice and
8 realisations for CL57/B6 mice. Black curves indicate averages, shaded regions show areas of one
standard deviation from the mean and red curves are numerical solutions of the model in Equation (1).

The importance of having such scalings that keep qualitative behaviour but change the
magnitudes to state variables, or alternatively, modify the timescales of the processes, lies in the
fact that it allows one to much better fit the output of the model to experimental data, and this is
particularly important in cases where only some, or a small number of, parameters can be properly
measured experimentally.

Figure 7. Experimental values of CD4+ cells from three experiments in CL57/B6 mice, compared to
a single realisation of the stochastic model in Equation (6).
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4. Discussion

In this study, we analysed the role of stochasticity in autoimmune dynamics, paying particular
attention to the emergence of sustained stochastic oscillations in cell populations in individual
realisations of the model, and showed how the variance of these stochastic oscillations depends
on model parameters. Immunologically, these stochastic oscillations correspond to an autoimmune
process, which can develop in the model when regulatory T cells do not sufficiently suppress
autoreactive T cells. We discovered that cell populations oscillate more substantially (i.e., have
a larger variance) when cytokine growth factors are more strongly enhancing the proliferation of
autoreactive T cells, or when they are less strongly enhancing the proliferation of regulatory T cells.
We also compared numerical results from the model with experimental measurements of T cell
populations during progression of EAU in B10.RIII and C57BL/6 mice, and the qualitative agreement
is excellent, suggesting that the model is able to capture essential aspects of the immune response
dynamics. In the specific context of autoimmunity, stochasticity is known to play a number of important
roles, controlling the balance of activation and inhibition of T cell regulation [73] and expression of
autoantigens and peripheral tissue antigens [74,75], as well as many other gene regulatory events
associated with immune response [76]. A very recent review by Macfarlane et al. [77] has specifically
highlighted an extremely important role played by stochasticity in triggering and mediating the
progress of rheumatoid arthritis, a chronic autoimmune condition characterised by inflammation of
joints, and suggested that stochastic models need to be developed in order to better understand the
dynamics of this disease, and to optimise its management and potential treatments. In application to
EAU dynamics, stochasticity manifests itself in the fact that, even though experiments are performed
on genetically identical mice with exactly the same immunisation protocol, there is clinically significant
variation in the time course of autoimmune disease between individual eyes. Such variation can only
be attributed to stochastic factors, and this is exactly what we have explored with our model.

Whereas mathematical models presented in this paper are able to qualitatively reproduce
dynamical behaviours observed in experiments both for averages, and for individual stochastic
realisations, they do not currently capture the initial slow prodromal phase of the developing immune
response prior to the first major peak in the number of T cells. This is an interesting and important
challenge from the perspective of mathematical modelling, which has appeared in the context of
modelling the dynamics of immune responses to viral infections [78–80], as well as in the studies of
early stages of outbreaks of infectious diseases modelled at population level [81,82]. There are several
methods for addressing this problem, such as including time delays or additional compartments to
better represent the initial phase of the immune response [83–86], or considering spatial aspects of
the immune dynamics using such approaches as partial differential equations, cellular automata, or
multi-scale methods [17,87,88].

There are other research directions in which the work presented in this paper could be extended.
While we focused on the analysis of stochastic effects in autoimmune dynamics that are associated with
fluctuations in the numbers of different cell populations for fixed values of parameters, it may also be
instructive to investigate the effects of time-dependent and/or stochastically varied parameters. This is
known as “environmental stochasticity" in ecological [89–91] and epidemiological models [92,93], and it
can be represented mathematically either by replacing constant parameters by time-dependent random
functions, or by adding randomly fluctuating terms directly to deterministic equations. Random
variation in parameters could be argued to provide a more realistic representation of behaviour of the
immune system during a complex multi-factor process of immune response, as well as during onset
and progression of autoimmune disease.

From an experimental perspective, an interesting and important question is whether the
autoimmune disease develops in the same manner in different organs of the body. In this respect,
eyes present particularly interesting organs, because they are known to enjoy what is known as
“ocular immune privilege” [94–97], which means that eyes are relatively isolated from the rest of
the immune system by a blood-ocular barrier. Ocular immune privilege is manifested by a very
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specialised microenvironment in the eye, characterised by the presence of immunosuppressive cells
and anti-inflammatory cytokines. This environment resists the influx of autoreactive T cells not
eliminated through a thymic selection, and each eye represents a single realisation of the disease
process. Within the framework of the model presented in this paper, an important open question is
whether there is statistically significant variation in the dynamics of autoimmune disease developing
in different eyes of the same mouse, or between the eyes of different but genetically identical mice, all
inoculated in the manner described in Section 2.

Another interesting problem directly related to ocular immune privilege concerns sympathetic
ophthalmia [98,99], where a trauma in one eye results in the generation of eye antigens that subsequently
cause an autoimmune disease in the non-damaged eye. Our earlier work based on deterministic
models [34] has shed some light on pathogen-induced autoimmune dynamics associated with infection
taking place in one organ of the body, and autoimmune reaction potentially occurring in another organ.
Having in mind sympathetic ophthalmia as one of possible conditions falling under the same umbrella
(although, most likely, not being directly associated with infectious triggers), it would be instructive to
explore how such type of dynamics is affected by stochasticity, both in the numbers of cell populations,
and in the values of parameters.
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final manuscript.

Funding: Experimental work described in this paper was generated with the support of the National Eye
Research Centre.
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Appendix A. System-Size Expansion and Fluctuations

To apply the van Kampen’s approach [100], we consider fluctuations within a systematic
expansion of the master equation for a large system size Ω. Specifically, we write each ni(t) as
a deterministic part of order Ω plus a fluctuation of order Ω1/2 as shown in Equation (A1),

ni(t) = Ωxi(t) + Ω1/2ζi(t), i = 1, . . . , 5, (A1)

where xi(t) and ζi(t) are two continuous variables, and Ωxi(t) = E[ni(t)]. The probability density
P(n, t) satisfying the master Equation (5) is now represented by the probability density Π(ζ, t), i.e.,
Π(ζ, t) = P(n, t) = P

(
Ωx + Ω1/2ζ, t

)
, which implies Equation (A2),

dP(n, t)
dt

=
∂Π
∂t
−

5

∑
i=1

Ω1/2 dxi
dt

∂Π
∂ζi

. (A2)

To expand the master Equation (5) in a power series in Ω−1/2, we use the expansion for the step
operators and their products as shown in Equation (A3),

ε±i = 1±Ω−1/2 ∂

∂ζi
+

1
2

Ω−1 ∂2

∂ζ2
i
± · · · ,

ε+i ε−j =

(
1 + Ω−1/2 ∂

∂ζi
+

1
2

Ω−1 ∂2

∂ζ2
i
+ · · ·

)(
1−Ω−1/2 ∂

∂ζ j
+

1
2

Ω−1 ∂2

∂ζ2
j
− · · ·

)

= 1 + Ω−1/2

(
∂

∂ζi
− ∂

∂ζ j

)
+ Ω−1

(
1
2

∂2

∂ζ2
i
− ∂2

∂ζi∂ζ j
+

1
2

∂2

∂ζ2
j

)
+ · · ·, 1 ≤ i, j ≤ 5.

(A3)
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In a similar way, it is straightforward to obtain Ω-expansions for all parameters qi, shown in
Equation (A4):

q1 = b1n1 + b2n2
1 = b̃2ζ2

1 +
(

b1 + 2b̃2x1

)
ζ1Ω1/2 +

(
b1x1 + b̃2x2

1

)
Ω,

q2 = d1n1 + d2n2
1 + µan1n4 = µ̃aζ1ζ4 + d̃2ζ2

1 +
[
d1ζ1 + 2d̃2x1ζ1 + µ̃a (x1ζ4 + x4ζ1)

]
Ω1/2

+
(

d1x1 + d̃2x2
1 + µ̃ax1x4

)
Ω,

q3 = λin = λ̃inΩ, q5 = αpn1n2 = α̃pζ1ζ2 + α̃p(x1ζ2 + x2ζ1)Ω1/2 + α̃px1x2Ω,

q4 = dinn2 = dinΩx2 + dinΩ1/2ζ2, q8 = drn3 = drΩx3 + drΩ1/2ζ3,

q6 = α(1− p)n1n2 = α̃(1− p)ζ1ζ2 + α̃(1− p)(x1ζ2 + x2ζ1)Ω1/2 + α̃(1− p)x1x2Ω,

q7 = λr + ρ1n3n5 = λ̃rΩ + ρ̃1ζ3ζ5 + ρ̃1(x3ζ5 + x5ζ3)Ω1/2 + ρ̃1x3x5Ω,

q9 = ρ2n4n5 = ρ̃2ζ4ζ5 + ρ̃2(x4ζ5 + x5ζ4)Ω1/2 + ρ̃2x4x5Ω,

q10 = (da + δn3)n4 = δ̃ζ3ζ4 +
[
daζ4 + δ̃ (x3ζ4 + x4ζ3)

]
Ω1/2 +

(
dax4 + δ̃x3x4

)
Ω,

q11 = σn4 = σΩx4 + σΩ1/2ζ4, q12 = din5 = diΩx5 + diΩ1/2ζ5,

(A4)

where we have rescaled parameters as in Equation (A5)

b2 =
b̃2

Ω
, d2 =

d̃2

Ω
, µ=

µ̃a

Ω
, α =

α̃

Ω
, λin = λ̃inΩ, λr = λ̃rΩ, δ =

δ̃

Ω
, ρi =

ρ̃i
Ω

, i = 1, 2.
(A5)

Substituting these expressions into the master Equation (5) at the order Ω1/2 yields Equation (A6),

−Ω1/2 dx1

dt
∂Π
∂ζ1

=

(
−Ω−1/2 ∂

∂ζ1

)(
b1x1 + b̃2x2

1

)
ΩΠ +

(
Ω−1/2 ∂

∂ζ1

)(
d1x1 + d̃2x2

1 + µ̃ax1x4

)
ΩΠ,

−Ω1/2 dx2

dt
∂Π
∂ζ2

=

(
−Ω−1/2 ∂

∂ζ2

)
λ̃inΩΠ +

(
Ω−1/2 ∂

∂ζ2

)
[dinx2 + α̃x1x2]ΩΠ,

−Ω1/2 dx3

dt
∂Π
∂ζ3

=

(
−Ω−1/2 ∂

∂ζ3

)
α̃px1x2ΩΠ−

(
Ω−1/2 ∂

∂ζ3

)(
λ̃r + ρ1x3x5

)
ΩΠ +

(
Ω−1/2 ∂

∂ζ3

)
drx3ΩΠ,

−Ω1/2 dx4

dt
∂Π
∂ζ4

=

(
−Ω−1/2 ∂

∂ζ3

)
α̃(1− p)x1x2ΩΠ−

(
Ω−1/2 ∂

∂ζ4

)
ρ2x4x5ΩΠ

+

(
Ω−1/2 ∂

∂ζ4

)(
dax4 + δ̃x3x4

)
ΩΠ,

−Ω1/2 dx5

dt
∂Π
∂ζ5

=

(
−Ω−1/2 ∂

∂ζ5

)
σx4ΩΠ +

(
Ω−1/2 ∂

∂ζ5

)
dix5ΩΠ,

(A6)
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which can be simplified to give a system of equations describing macroscopic dynamics, as shown in
Equation (A7),

dx1

dt
= (b1 − d1)x1 + (b̃2 − d̃2)x2

1 − µ̃ax1x4,

dx2

dt
= λ̃in − dinx2 − α̃x1x2,

dx3

dt
= λ̃r − drx3 + α̃px1x2 + ρ̃1x3x5,

dx4

dt
= α̃(1− p)x1x2 − dax4 − δ̃x3x4 + ρ̃2x4x5,

dx5

dt
= σx4 − dix5.

(A7)

At order Ω0, stochastic fluctuations are determined by linear stochastic processes, hence, this is
known as a linear noise approximation [100,101]. The dynamics of these fluctuations around any of
the steady states (x1, . . . , x5) is described by the following linear Fokker–Planck Equation (A8),

∂Π
∂t

=

[
−
(

b1 + 2b̃2x1 − d1 − 2d̃2x1 − µ̃ax4

) ∂(ζ1Π)

∂ζ1
+ µ̃ax1

∂(ζ4Π)

∂ζ1
+ (din + α̃x1)

∂(ζ2Π)

∂ζ2

+α̃x2
∂(ζ1Π)

∂ζ2
− α̃px1

∂(ζ2Π)

∂ζ3
− α̃px2

∂(ζ1Π)

∂ζ3
− α̃(1− p)x1

∂(ζ2Π)

∂ζ4
− α̃(1− p)x2

∂(ζ1Π)

∂ζ4

−ρ̃1x3
∂(ζ5Π)

∂ζ3
− (ρ̃1x5 − dr)

∂(ζ3Π)

∂ζ3
− ρ̃2x4

∂(ζ5Π)

∂ζ4
− ρ̃2x5

∂(ζ4Π)

∂ζ4
+
(

da + δ̃x3

) ∂(ζ4Π)

∂ζ4

δ̃x4
∂(ζ3Π)

∂ζ4
− σ

∂(ζ4Π)

∂ζ5
+ di

∂(ζ5Π)

∂ζ5

]
+

1
2

{(
b1x1 + b̃2x2

1 + d1x1 + d̃2x2
1 + µ̃ax1x4

) ∂2Π
∂ζ2

1(
λ̃in + dinx2 + α̃x1x2

) ∂2Π
∂ζ2

2
+
(

α̃px1x2 + λ̃r + ρ̃1x3x5 + drx3

) ∂2Π
∂ζ2

3
− 2pα̃x1x2

∂2Π
∂ζ2∂ζ3

+
[
(1− p)α̃x1x2 + x4

(
ρ̃2x5 + δ̃x3 + da

)] ∂2Π
∂ζ2

4
− 2(1− p)α̃x1x2

∂2Π
∂ζ2∂ζ4

+ (σx4 + dix5)
∂2Π
∂ζ2

5

}
.

(A8)
This equation can be equivalently rewritten in the form of Equation (A9),

∂Π(ζ, t)
∂t

= −∑
i,j

Aij
∂

∂ζi
(ζ jΠ) +

1
2 ∑

i,j
Bij

∂2Π
∂ζi∂ζ j

, (A9)

where A is the Jacobian matrix of deterministic system

A =


b1 + 2b̃2x1 − d1 − 2d̃2x1 − µ̃ax4 0 0 −µ̃ax1 0

−α̃x2 −din − α̃x1 0 0 0
α̃px2 α̃px1 ρ̃1x5 − dr 0 ρ̃1x3

α̃(1− p)x2 α̃(1− p)x1 −δ̃x4 ρ̃2x5 − da − δ̃x3 ρ̃2x4

0 0 0 σ −di

 ,

and B is a 5× 5 symmetric matrix given by
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Bij =



(b1 + d1)x1 + (b̃2 + d̃2)x2
1 + µ̃ax1x4, if (i, j) = (1, 1),

λ̃in + dinx2 + α̃x1x2, if (i, j) = (2, 2),

λ̃r + drx3 + α̃px1x2 + ρ̃1x3x5, if (i, j) = (3, 3),

α̃(1− p)x1x2 + dax4 + δ̃x3x4 + ρ̃2x4x5, if (i, j) = (4, 4),

σx4 + dix5, if (i, j) = (5, 5),

−α̃px1x2, if (i, j) = (2, 3) or (3, 2),

−α̃(1− p)x1x2, if (i, j) = (2, 4) or (4, 2),

0, otherwise.

Since the Fokker–Planck Equation (A9) is linear, the probability density Π(ζ, t) is Gaussian, and,
hence, just the first two moments are sufficient to characterise it [102,103]. Due to the way the system
size expansion was introduced in Equation (A1), the mean values of fluctuations for all variables
are zero, i.e., 〈ζi(t)〉 = 0 for all 1 ≤ i ≤ 5, while the covariance matrix Ξ with Ξij = 〈ζi(t)ζ j(t)〉 −
〈ζi(t)〉〈ζ j(t)〉 = 〈ζi(t)ζ j(t)〉 satisfies the following system [100,103] given in Equation (A10),

∂tΞ = AΞ + ΞAT + B, (A10)

where AT is the transpose of A.
We are mainly interested in the dynamics of fluctuations when the oscillations of the deterministic

model have died out, and the system is in a stationary state, i.e., the fluctuations take place around
the steady states [104]. If the model in Equation (A7) tends to a steady state as t → ∞, then into
Equation (A9) one can substitute the values of xis with the corresponding constant components of that
steady state to study the fluctuations around it, as described by the linear Fokker–Planck equation. At
any steady state, the covariance matrix Ξ is independent of time, and the fluctuations are described by
a Gaussian distribution with the zero mean and the stationary covariance satisfying Equation (A11),

AΞ + ΞAT + B = 0. (A11)

To be able to relate the results of this analysis to simulations, it is convenient to express the
covariance matrix in terms of actual numbers of cells in each compartment, rather than deviations from
stationary values. To this end, we instead use the covariance matrix C defined as Cij = 〈(ni−〈ni〉)(nj−
〈nj〉)〉, which, in light of the relation Cij = ΩΞij, satisfies the following Lyapunov Equation [103] (A12),

AC + CAT + ΩB = 0. (A12)

This equation can be solved numerically for each of the stable steady states to determine the
variance of fluctuations around that steady state depending on system parameters.
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Appendix B. State Changes and Their Probabilities

Table A1. Possible state changes ∆Y during a small time interval ∆t.

i (∆Y)T
i Probability Pi∆t

1 (1, 0, 0, 0, 0) (b1Y1 + b2Y1
2)∆t

2 (−1, 0, 0, 0, 0) (d1Y1 + d2Y1
2 + µaY1Y4)∆t

3 (0, 1, 0, 0, 0) λin∆t
4 (0,−1, 0, 0, 0) dinY2∆t
5 (0,−1, 1, 0, 0) αpY1Y2∆t
6 (0,−1, 0, 1, 0) α(1− p)Y1Y2∆t
7 (0, 0, 1, 0, 0) (λr + ρ1Y3Y5)∆t
8 (0, 0,−1, 0, 0) drY3∆t
9 (0, 0, 0, 1, 0) ρ2Y4Y5∆t
10 (0, 0, 0,−1, 0) (da + δY3)Y4∆t
11 (0, 0, 0, 0, 1) σY4∆t
12 (0, 0, 0, 0,−1) diY5∆t

13 (0, 0, 0, 0, 0) 1−
12
∑

i=1
Pi∆t

Appendix C. Derivation of Itô SDE Model

To derive the Itô SDE model, we use Table A1 to compute the expectation vector of ∆Y for
sufficiently small ∆t, as given by Equation (A13),

E(∆Y) ≈
17

∑
i=1

Pi(∆Y)i∆t = µ∆t, (A13)

where

µ =


P1 − P2

P3 − P4 − P5 − P6

P5 + P7 − P8

P6 + P9 − P10

P11 − P12

 ,

is the drift vector, which can be easily seen to be identical to the right-hand side of the deterministic
model in Equation (A7). The covariance matrix is obtained by keeping terms of order ∆t only, as
shown in Equation (A14),

cov(∆Y) = E
[
(∆Y)(∆Y)T]−E [∆Y] (E [∆Y])T ≈ E

[
(∆Y)(∆Y)T]

=
12
∑

i=1
Pi(∆Y)i(∆Yi)

T∆t = Σ∆t,
(A14)

where

Σ =


P1 + P2 0 0 0 0

0 P3 + P4 + P5 + P6 −P5 −P6 0
0 −P5 P5 + P7 + P8 0 0
0 −P6 0 P6 + P9 + P10 0
0 0 0 0 P11 + P12


is a 5× 5 covariance matrix. To derive Itô SDE model, we need to find a diffusion matrix H defined
according to HHT = Σ. Although this matrix is not unique, different forms of this matrix give
equivalent systems [58,60].
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Rewriting the covariance matrix Σ in the block-diagonal form of Equation (A15),

Σ =

 U 0 0
0 W 0
0 0 Z

 , (A15)

with

U = P1 + P2, Z = P11 + P12, W =

 P3 + P4 + P5 + P6 −P5 −P6

−P5 P5 + P7 + P8 0
−P6 0 P6 + P9 + P10

 ,

one can then easily determine matrices H1, H2 and H3 as shown in Equation (A16),

H1 =
√

P1 + P2, H3 =
√

P11 + P12,

H2 =


√

P3 + P4 −
√

P5 −
√

P6 0 0
0

√
P5 0

√
P7 + P8 0

0 0
√

P6 0
√

P9 + P10

 .
(A16)

These matrices can be combined into a new 5× 7 matrix

H =

 H1 0 0
0 H2 0
0 0 H3

 ,

satisfying HHT = Σ. This then gives the SDE model in Equation (6).
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