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Abstract: Strong tectonic movement brings great risk to exploration of shale gas in southern
China, especially in Lower Cambrian shale with complex tectonic backgrounds, which has good
hydrocarbon-generation matter but low or no gas content. In this paper, the Lower Cambrian shale
from the southeast Chongqing region, located in the Upper Yangtze Platform, and the Xiuwu Basin,
located in the Lower Yangtze Platform, were selected as the research objects. First, the gas components
in shale gas samples were measured, then analysis of nitrogen isotopic was used to reveal the
nitrogen sources. Using regional geological backgrounds, core description, and seismic interpretation,
combined with the perpendicular and parallel permeability test and focused ion beam–helium ion
microscopy (FIB–HIM) observation, the reasons for high content of nitrogen in the Lower Cambrian
shale from the Xiuwu Basin and the Southeast Chongqing region were clarified. The results indicate
that the main sources of nitrogen in the Lower Cambrian shale gas at the Southeast Chongqing
region is the thermal evolution of organic matter and atmosphere. Nitrogen in the atmosphere is
filled into the shale reservoir through migration channels formed by detachment layers at the bottom
of the Lower Cambrian, shale stratification planes, and widespread thrust faults. Nitrogen was
also produced during the thermal evolution of organic matter. Both are responsible for the low
content of hydrocarbon and high content of nitrogen of shale gas in the Southeast Chongqing region.
Further, the main sources of nitrogen in the Lower Cambrian shale gas at the Xiuwu Basin is the
upper mantle, superdeep crust, and atmosphere. Nitrogen in the atmosphere is also filled into the
shale reservoir through migration channels formed by detachment layers at the bottom of the Lower
Cambrian, shale stratification planes, and widespread thrust faults. Nitrogen was also produced by
volcanism during the Jurassic. Both are the causes of the low content of hydrocarbon and high content
of nitrogen in shale gas in the Xiuwu Basin. Finally, destruction models for shale gas reservoirs

Energies 2020, 13, 281; doi:10.3390/en13010281 www.mdpi.com/journal/energies

http://www.mdpi.com/journal/energies
http://www.mdpi.com
https://orcid.org/0000-0003-2942-0431
http://dx.doi.org/10.3390/en13010281
http://www.mdpi.com/journal/energies
https://www.mdpi.com/1996-1073/13/1/281?type=check_update&version=2


Energies 2020, 13, 281 2 of 18

with complex tectonic backgrounds were summarized. This research aimed to provide a theoretical
guidance for shale gas exploration and development in areas with complex tectonic backgrounds.

Keywords: nitrogen isotope; atmospheric source; thermal evolution of organic matter; deep
crust-upper mantle source; stratification planes; detachment layers; deep fault; volcanic activity

1. Introduction

Shale gas has become an important natural gas resource. In recent years, due to the development
of geological understanding, organic-rich shale has become a hot target for natural gas exploration
and development around the world [1–3]. At the same time, application of horizontal well technology
and hydraulic fracturing has greatly boosted the production efficiency of shale gas [4–8]. In China,
a number of shale gas blocks were built successively and achieved large-scale development by
2018, namely Weiyuan, Fushun–Yongchuan, Changning, Dingshan, and Jiaoshiba [9,10]. However,
compared with the Paleozoic marine shale in North America, marine shale in southern China underwent
complex process of thermal evolution and multistage tectonic movements. Although marine shale in
the South China plate has little variation in terms of mineral composition and total organic carbon
(TOC) content, there are great differences in gas composition due to diverse sealing conditions in
different regions and layers. Nitrogen is common component of natural gas. Natural gas reservoirs
with high nitrogen content are found in many oil-bearing basins around the world. In the gas fields of
the United States, the average nitrogen content is 3%. The nitrogen content is lower than 5% in most
of the natural gas reservoirs in the Ordos Basins and Sichuan Basins of China [11]. The content of
nitrogen in natural gas stays in the range of 10–30% in the Tarim Basin [12,13], and in the Fuling block
in the Sichuan Basin, shale gas contains almost nitrogen-free [14,15]. High nitrogen content of natural
gas not only brings great risks for oil and gas exploration, but also causes a series of difficult problems
for resource evaluation and development [16,17]. Therefore, it becomes an important problem to solve
shale gas composition with complex tectonic backgrounds and precisely select favorable areas [18].

A series of studies on correlation between tectonic movement and shale gas accumulation was
carried out previously. Kang et al. (2017) studied shale gas enrichment conditions in areas with
complex tectonic backgrounds by taking the front of Daba Mountain in the northern margin of the
Sichuan Basin as an example. The authors found that good sealing conditions play a key role in shale
gas enrichment in this area, and that the sealing conditions are influenced by widely developed deep
faults and inclined folds broken by faults [19]. Considering the structural features in the front of
Daba Mountain and the influence of burial depth, less-developed fractures in the delamination belts
near the basin, widely distributed synclines and anticlines, and relatively wide and gentle boxlike
anticlines in this area were considered as the targets of exploration. Hu et al. (2017) analyzed the
structural characteristics of the block in the Fuling shale gas field of the Sichuan Basin and clarified the
main structural factors affecting the productivity of shale gas wells by different structural units [20].
The results showed that the influence of structural characteristics on shale gas production capacity is
reflected in the fracturing effects and gas-bearing property. The stronger the structural deformation,
the more developed the fractures, and the greater the burial depth and negative compressive stress,
the worse the fracturing effect. On the other hand, the lesser the burial dept and negative compressive
stress, the better the fracturing effect. The stronger the structural deformation, the larger the large-scale
fracture, and the higher the degree of natural fracture development, the easier it is for the shale gas to
escape and the lower the gas content; otherwise, the higher the gas content. After analyzing the main
controlling factors the accumulation of the Fuling shale gas field, Guo et al. (2017) believed that the
sealing conditions determined by the duration and strength of later tectonic processes were the key
geological factors for reservoir formation and the production of shale gas, and that a good shale floor
and roof can effectively limit vertical dispersion of hydrocarbon [9]. In this case, the shale reservoir has
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high porosity, high gas content, and high pressure, which are beneficial to the formation of a high-yield
region for shale gas.

Some shale gas blocks located outside the stable basin, such as the Xiuwu Basin and the Southeast
Chongqing region, have good hydrocarbon-generation matter. However, commercially valuable
shale gas reservoirs have not been found in these blocks, and the exploration wells have shown that
the nitrogen content in these blocks is far higher than in other shale gas blocks, illustrating that the
characteristics of the Lower Cambrian shale gas reservoir in these blocks are distinct from those of shale
gas blocks with high methane content. Based on the geochemical characteristics of the Lower Cambrian
shale gas in the typical complex tectonic zone from the Yangtze Plate, such as the Xiuwu Basin and
Southeast Chongqing region, this study used nitrogen isotopes to trace the sources of nitrogen and
then considered regional geological backgrounds and tectonic deformation characteristics to analyze
the reasons for low hydrocarbon and high nitrogen. Finally, destruction models for shale gas reservoirs
were established in these blocks, which provide a scientific basis for guiding the exploration and
development of highly evolved shale gas in complex tectonic areas.

2. Geological Setting

2.1. Tectonic Characteristics

The scope of this research was the whole Yangtze region. The primitive continental crust of
southern China was separated into two ancient plates, the Yangtze and Cathaysian, in the early period
of the Mesoproterozoic Era [21–23]. During the Early Cambrian, the two plates were extended with the
occurrence of large-scale transgression, resulting in the deposition of a set of organic-rich shale across
almost all of the Yangtze plate. Then, the water body began to shallow. In this case, the lithologic
features of the Yangtze plate changed from fine-grained and silty shale to siltstone, sandstone, and other
coarse-grained clastic rocks. The collision between the Yangtze and Cathaysian plates in the Ordovician
period caused the water body to continue to become shallow, in which the sedimentary system on the
Yangtze plate transformed from clastic to carbonate. In the Silurian period, a transgression occurred,
causing the sedimentary system to change back to a clastic sedimentary system. During this period,
the oceanic basin between the two plates was subjected to gradual subduction and collision toward
the Yangtze Plate. By the Late Silurian period, the Yangtze and Cathaysian Plates merged into one,
namely the uniform South China Plate. The Xiuwu Basin and the Southeast Chongqing region are
representative blocks with complex tectonic backgrounds, both of which are located outside the large
stable sedimentary basins. Southeast Chongqing region is located on the southeast side of Sichuan
Basin (Figure 1A,D), and Xiuwu Basin is located on the southeast side of Jianghan Basin (Figure 1C,F).
Southeastern Chongqing borders Sichuan Basin. The distance between Xiuwu Basin and Jianghan
Basin is about 60 kilometers. The two blocks are not far from the junction of the two plates and
experienced intense tectonic movement against complex tectonic backgrounds.

2.2. Sedimentary and Stratum Characteristics

During the Early Cambrian, the sedimentary environments on the Yangtze plate from northwest
to southeast were ancient lands, a shallow shelf, a deep shelf, a continental slope, and an ocean
basin [24,25], as shown in Figure 1G. The target layer for this research was a set of shale that was
widely deposited on the Yangtze plates in the Early Cambrian. Because of the widespread distribution
of shale, they are called different names in various regions. In the Upper Yangtze area, they are known
as the Qiongzhusi Formation, while in the Sichuan Basin and outside of the Sichuan Basin (such as the
Southeast Chongqing region), they are called the Niutitang Formation. In the Lower Yangtze area,
they are known as the Wangyinpu and Guanyintang Formations, which are sets of black to deep gray
organic-rich siliceous shale deposited early in the Early Cambrian and the key target strata for China’s
shale gas exploration.
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Figure 1. Geological maps of the research areas. (A,D) Geographical location maps of Southeast
Chongqing. Pengye-1 and Youye-1 wells are located in this block, and Jiaoye-1 well is located in
the Sichuan Basin. (B) Geographical location map showing Southeast Chongqing region in Upper
Yangtze area and Xiuwu Basin in Lower Yangtze area. (C,E) Geographical location maps of Xiuwu
Basin. Jiangye-1 and Jiangye-2 wells are located in this block, which is closest to the junction of the
Yangtze and Cathaysian plates. (F) Map of sedimentary features of Yangtze plate in Early Cambrian.

3. Samples, Experiment, and Data Sources

3.1. Gas Composition and Nitrogen Isotope Test

The Shimadzu GC-2014 gas chromatograph (JPN) was used for quantitative multicomponent
analysis of mixed gases in this study. The stainless-steel chromatographic column was placed in a
room with a constant temperature of 60 ◦C. The six-way valve sample injector used a sample loop
with a capacity of 1 mL, and the temperature was kept constant at 100 ◦C. The thermal conductivity
cell detector was kept under a constant temperature of 200 ◦C. Nitrogen isotope tests were used to
determine the source of nitrogen, implemented with an EA IsoLink Plus EA–IRMS device using helium
(99.999%) as the carrier gas at a flow rate of 1.3 mL/min. The gas sample feeding was implemented in
a split-stream sampling approach (with a split ratio of 20:1) with a gas inlet temperature of 200 ◦C.
Specifically, the temperature was held at 35 ◦C for 6 min, then increased to 80 ◦C at a rate of 15 ◦C/min
and 200 ◦C at a rate of 5 ◦C/min, and finally held constant at 200 ◦C for 5 min. The reacting furnace
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temperature was 940 ◦C. Eight shale gas samples were taken from the Niutitang Formation in the
Youye-1 well and 16 from the Wangyinpu and Guanyintang Formations in Xiuwu Basin. The shale gas
sample information can be seen in Table 1.

Table 1. Experimental numbers, wells, geologic age, and formation names of gas samples. The well
locations can be seen in Figure 1.

Number Well Geologic Age Formation

1 Youye-1 Early Cambrian Niutitang
2 Youye-1 Early Cambrian Niutitang
3 Youye-1 Early Cambrian Niutitang
4 Youye-1 Early Cambrian Niutitang
5 Youye-1 Early Cambrian Niutitang
6 Youye-1 Early Cambrian Niutitang
7 Youye-1 Early Cambrian Niutitang
8 Youye-1 Early Cambrian Niutitang
9 Jiangye-1 Early Cambrian Guanyintang

10 Jiangye-1 Early Cambrian Guanyintang
11 Jiangye-1 Early Cambrian Guanyintang
12 Jiangye-1 Early Cambrian Guanyintang
13 Jiangye-1 Early Cambrian Guanyintang
14 Jiangye-1 Early Cambrian Guanyintang
15 Jiangye-1 Early Cambrian Guanyintang
16 Jiangye-1 Early Cambrian Guanyintang
17 Jiangye-1 Early Cambrian Guanyintang
18 Jiangye-1 Early Cambrian Guanyintang
19 Jiangye-1 Early Cambrian Wangyinpu
20 Jiangye-1 Early Cambrian Wangyinpu
21 Jiangye-1 Early Cambrian Wangyinpu
22 Jiangye-1 Early Cambrian Wangyinpu
23 Jiangye-1 Early Cambrian Wangyinpu
24 Jiangye-1 Early Cambrian Wangyinpu

3.2. Experiment of Permeability Perpendicular and Parallel to Stratification Plane

The traditional steady-state test technology mainly uses Darcy’s law to calculate permeability
based on the gas flow rate per unit time under the condition of stable pressure difference, which makes
the permeability measured higher under low average pressure and lower under high average
pressure. Therefore, the Klinkenberg correction of data is necessary in permeability tests [26–28].
The non-steady-state pulse attenuation permeability measurement technology can avoid the gas
flow measurement and calculate permeability by the pressure difference–time curve of the core front
and back to weaken the gas slip effect [29]. The permeability of the shale samples was measured
perpendicular and parallel to the stratification planes with a PDP-200 pulse decay permeability analyzer
(USA). Since gas slippage is more evident in shales under low pore pressure [28], the permeability
of the shale samples was tested at 1000 psi. This study collected 16 shale samples from the Lower
Yangtze area. Before the test, the shale samples were made into cylinders with a length of 50 mm and a
diameter of 25 mm. We also collected test results for 12 samples from the Upper Yangtze area [30].
The gas sample information is shown in Table 2.

3.3. FIB–HIM Experiment

Focused ion beam–helium ion microscopy (FIB–HIM) contains three parts: The cutting function
of a focused ion beam (FIB), the imaging function of a helium ion microscope (HIM), and a neon (Ne)
ion beam. Compared with a field emission scanning electron microscope (FE-SEM), a scanning helium
ion microscope has higher resolution, which makes it easier to distinguish micro-nanopore in shale.
Before sample observation, FIB–HIM samples must be ground and Ar-ion polished. In this research,
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a NanoFab ORION microscope was used to observe an organic-rich shale sample from the Niutitang
Formation at 3811 m in the Youye-1 well, and experimental images of organic-rich shale samples were
taken from the Longmaxi Formation at 2402 m in the Jiaoye-1 well [31].

Table 2. Experimental numbers, wells, geologic age, and formation names of core samples. The well
locations can be seen in Figure 1.

Number Well Geologic Age Formation

1 Jiangye-1 Early Cambrian Guanyintang
2 Jiangye-1 Early Cambrian Wangyinpu
3 Jiangye-1 Early Cambrian Wangyinpu
4 Jiangye-2 Early Cambrian Guanyintang
5 Jiangye-2 Early Cambrian Guanyintang
6 Jiangye-2 Early Cambrian Guanyintang
7 Jiangye-2 Early Cambrian Guanyintang
8 Jiangye-2 Early Cambrian Guanyintang
9 Jiangye-2 Early Cambrian Wangyinpu

10 Jiangye-2 Early Cambrian Wangyinpu
11 Jiangye-2 Early Cambrian Wangyinpu
12 Jiangye-2 Early Cambrian Wangyinpu
13 Jiangye-2 Early Cambrian Wangyinpu
14 Jiangye-2 Early Cambrian Wangyinpu
15 Jiangye-2 Early Cambrian Wangyinpu
16 Jiangye-2 Early Cambrian Wangyinpu
17 Pengye-1 Early Silurian Longmaxi
18 Pengye-1 Early Silurian Longmaxi
19 Pengye-1 Early Silurian Longmaxi
20 Pengye-1 Early Silurian Longmaxi
21 Pengye-1 Early Silurian Longmaxi
22 Pengye-1 Early Silurian Longmaxi
23 Pengye-1 Early Silurian Longmaxi
24 Pengye-1 Early Silurian Longmaxi
25 Pengye-1 Early Silurian Longmaxi
26 Pengye-1 Early Silurian Longmaxi
27 Pengye-1 Early Silurian Longmaxi
28 Pengye-1 Early Silurian Longmaxi

4. Results and Discussion

4.1. Shale Gas Composition and Nitrogen Isotope Analysis

4.1.1. Shale Gas Composition Analysis

According to gas composition analysis of eight gas samples from the Niutitang Formation in the
Youye-1 well and 16 gas samples from the Wangyinpu and Guanyintang Formations in the Jiangye-1
well, the experimental results show that the gas composition was mainly composed of O2 and N2,
as shown in Figure 2A,B. Counter art average volume percentages were 11% and 83%, in the Youye-1
well and 17% and 80% in the Jiangye-1 well. These values are close to the proportions of O2 and N2 in
atmosphere (21% and 78%, respectively). The average content of methane was lower than 1% in the
two wells.
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Figure 2. Results of gas composition analysis: (A) Niutitang Formation gas samples from the Youye-1
well; (B) Wangyinpu and Guanyintang Formations gas samples from the Jiangye-1 well. The gas
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4.1.2. Nitrogen Isotope Analysis

The results of nitrogen isotope analysis of the Niutitang Formation gas samples from the Youye-1
well and the Wangyinpu and Guanyintang Formation gas samples from the Jiangye-1 well are shown in
Figure 3A,B. In the Youye-1 well, the nitrogen isotopes varied from −3%� to 0%�, while in the Jiangye-1
well, the nitrogen isotopes varied from −1%� to 0%�.
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Figure 3. Results of nitrogen isotope analysis. (A) Niutitang Formation gas samples in the Youye-1
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Due to different origins, nitrogen from various sources is characterized by different isotopic
compositions [17,32,33]. Nitrogen sources, origins, and corresponding isotope characteristics are listed
in Table 3, which shows that the source of the nitrogen for the gas samples in the Youye-1 well was
organic-matter thermal evolution and the atmosphere, while source of the nitrogen for the gas samples
in the Jiangye-1 was the upper mantle, the superdeep crust, and the atmosphere.
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4.2. Analysis of Nitrogen Derived from the Atmosphere

4.2.1. Migration Channels with Permeability Parallel to Stratification Plane

The permeability experiment results and data statistics for the Wangyinpu and Guanyintang
Formations shale core from the Jiangye-1 and Jiangye-2 wells and the Longmaxi Formation shale
core from the Pengye-1 well are shown in Figures 4 and 5. The experimental results show that due
to well-developed stratification planes in the shale, the permeability parallel to the stratification
plane was more than 1–40 times greater than the permeability perpendicular to the stratification
plane, which means that the gas in the shale strata mainly flowed along the direction parallel to
stratification plane.

Table 3. Isotope variation characteristics of nitrogen from various sources (Zeng, 2002 and Liu et al.,
2006).

Nitrogen Source Origin Isotope Characteristics

Atmosphere Surface water carrying nitrogen δ15N ≈ 0%�

Upper mantle and
superdeep crust

Produced by various radiation effects and
thermal reactions in Earth’s core δ15N ≈ −2%� to +1%�

Deposition

Metamorphism Generated by high-temperature
metamorphism of nitrogenous minerals δ15N ≈ +1%� to +3.5%�

Microbial
denitrification

Formed by the interaction between organic
matter and biological δ15N ≈ −17%� to −10%�

Organic material
evolution

Generated in various stages of thermal
evolution of organic matter

Immature:
δ15N ≤ 10%�

Mature and high mature:
δ15N ≈ −10%� to −1%�

Overmature:
δ15N ≈ +5%� to +20%�
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Figure 5. Ratio statistics between parallel and perpendicular permeability. (A) Samples of Wangyinpu
and Guanyintang Formations shale from the Jiangye-1 and Jiangye-2 wells; (B) samples of Longmaxi
Formation shale from the Pengye-1 well. The sample information can be seen in Table 2.

The bedding slip surfaces, known as the detachment layer, often developed microfractures in
different directions and higher reflectivity than the shale matrix, resembling a polish from simple
shear [34,35]. Through the observation of cores from the Niutitang Formation in the Youye-1 well,
the bedding slip surfaces can be found (Figure 6A,B). Similarly, a bedding slip deformation was
observed in cores from the Wangyinpu Formation of the Jiangye-1 and Jiangye-2 wells (Figure 6C,D),
and obvious interlayer slippage and corrugation occurred in the Pukou profile in the northern part of
the Xiuwu Basin (Figure 6E), which indicates that the detachment layers were widely developed at the
bottom of the Lower Cambrian in the Xiuwu Basin and Southeast Chongqing region. Because the
Xiuwu Basin was subjected to compressive stress in the northeast direction and the Southeast Chongqing
region was subjected to compressive stress from the southeast direction and [36–38], the relative slide
between the hard Sinian siliceous dolomite and the soft Lower Cambrian organic-rich shale resulted
in the formation of detachment layers. The stratification plane was the lateral migration channel of
shale gas, while the detachment layers greatly accelerated the process of gas diffusion [39]. In this
study, both areas were synclinal geological units, and the target strata in the synclinal wings were both
exposed to the ground surface, which provided a pathway for the migration of gases (Figures 7 and 8).
Hydrocarbon gases migrated along the detachment layers and the stratification planes from the center
of the syncline to the flanks. Meanwhile, the nitrogen gas in the air entered the shale reservoir along the
detachment layers and the stratification planes, forming high nitrogen content from the atmosphere.
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the results of seismic interpretation, this continuous extrusion was intense, and most of the thrust 
faults are deep (Figure 7). 

 
Figure 7. Seismic interpretation results for Southeast Chongqing region. 

Based on the analysis of the tectonic evolution history, during the Early-Middle Jurassic, the 
Xiuwu Basin developed numerous faults and compressed into a syncline due to the collision and 
extrusion between the North China and South China plates [37]. During the Late Cretaceous–
Paleogene, the Xiuwu Basin was subjected to tensile action due to the impact of the collision and 
subduction of the Pacific plate toward the Eurasian plate [38]. Since the Neogene period, the stress 

Figure 6. Detachment layers developed at the bottom of the Lower Cambrian in cores and field profiles
in the Southeast Chongqing region and Xiuwu Basin. (A) Cores from the Niutitang Formation in the
Youye-1 well, 3820 m; (B) cores from the Niutitang Formation in the Youye-1 well, 3827 m; (C) cores
from the Wangyinpu Formation in the Jiangye-1 well, 2671 m; (D) cores from the Wangyinpu Formation
in the Jiangye-2 well, 3130 m; (E) The Wangyinpu Formation in the Pukou profile. The well locations
can be seen in Figure 1.
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4.2.2. Migration Channels with Perpendicular to Stratification Plane

The Southeast Chongqing region is located in the southeast side of the Sichuan Basin. During the
Cretaceous, this region underwent extrusion stress in the southeast direction, which caused the
formations to be squeezed and uplifted and produced a large number of thrust faults. According to the
results of seismic interpretation, this continuous extrusion was intense, and most of the thrust faults
are deep (Figure 7).

Based on the analysis of the tectonic evolution history, during the Early-Middle Jurassic, the Xiuwu
Basin developed numerous faults and compressed into a syncline due to the collision and extrusion
between the North China and South China plates [37]. During the Late Cretaceous–Paleogene,



Energies 2020, 13, 281 11 of 18

the Xiuwu Basin was subjected to tensile action due to the impact of the collision and subduction of the
Pacific plate toward the Eurasian plate [38]. Since the Neogene period, the stress on the thrust faults
changed from tension to compression again [31,40]. According to the results of seismic interpretation,
there were several deep faults in the study area in the vertical direction (Figure 8).
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Figure 8. Seismic interpretation results for the Xiuwu Basin.

The development of fractures destroys the seal in the direction perpendicular to the horizontal
plane, causing methane and other hydrocarbon gases to escape [41] and the entry of nitrogen from the
atmosphere to target layer along the fractures [15]. The fault-opening events happened in the Late
Cretaceous–Paleogene in the Xiuwu Basin, and the development of the deep faults in the Southeast
Chongqing region accelerated these processes.

4.3. Analysis of Nitrogen Produced in Stages of Organic Matter Evolution

Because of the lack of vitrinite in the Lower Paleozoic, maturity evaluation is usually
performed using the equivalent vitrinite reflectance (equal-Ro) calculated from asphalt reflectance [42].
According to the hydrocarbon generation history restored by Zhao et al., 2018 (Figure 9), the Niutitang
Formation shale in the Southeast Chongqing region entered high mature stage in the Late Ordovician
period [43]. In the Middle Silurian, the shale region entered the overmature stage (equal-Ro > 2.0%).
Due to strata uplift, the maturity of organic matter no longer increased and equal-Ro of the shale
eventually reached 3.13% to 3.49%, falling into the partial graphitization stage [44,45].
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Figure 9. Hydrocarbon generation history in the Southeast Chongqing (modified from Zhao et al., 2018).

Equivalent vitrinite reflectances of shale samples used for FIB observation from the Jiaoye-1
well and Youye-1 well were 2.58% and 3.47% respectively. It was observed that there was nesting
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of small pyrobitumen pores in large pores in the shale sample taken from the Longmaxi Formation
of the Jiaoye-1 well. These pore development features could increase the organic matter reservoir
capacity and the specific surface area (Figure 10A). Only isolated pores were developed in the organic
matter pores (OM-pores) in the shale sample taken from the Niutitang Formation of the Youye-1
well, with a small amount and poor reservoir capacity (Figure 10B). When equal-Ro >3.0%, the
graphitization of organic matter appears [45]. During graphitization, the property of organic matter
changes, which compromises the reservoir space, mainly embodied as deformation of the organic
matter pore structure and dramatic reduction of pores [46–50]. Organic matter in shale samples from
Youye-1 well reaches the graphitization stage. Compared with the Jiaoye-1well, organic pores in shale
samples from the Youye-1well were poorly developed.
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Figure 10. Focused ion beam–helium ion microscopy (FIB–HIM) images of organic-rich shale.
(A) Organic-rich shale (total organic carbon (TOC) = 4.44%, equal-Ro = 2.58%) of the Longmaxi
Formation from the Jiaoye-1 well, 2402 m.; (B) organic-rich shale (TOC = 5.78%, equal-Ro = 3.47%) in
the Niutitang Formation from the Yiuye-1 well, 3811 m. The well locations can be seen in Figure 1.

Organic matter can produce nitrogen in the mature to high mature stage (equal-Ro = 0.7–2.0%),
which was adsorbed in the shale organic matter pores [17]. The Lower Cambrian shale of the Youye-1
well went through the mature to high maturity stage and nitrogen was produced in this stage. Due to
changes in the nature of the organic matter, ultra-high thermal evolution of organic matter results in an
exhaustion situation of generation potential in shale, and the adsorption capacity of organic matter for
methane is reduced [43,46,47]. The result is that the methane in the pores escaped to shallower layers
or the atmosphere, and nitrogen with strong adsorption capacity was retained, which finally caused
the characteristics of low hydrocarbon and high nitrogen.

4.4. Analysis of Nitrogen Derived from Upper Mantle and Superdeep Crust

Krooss et al. (1995) concluded that nitrogen originating from the superdeep zone of crust and upper
mantle zone is generally concentrated in volcanic activity zones, while in other regions, the nitrogen
content is actually very low [51]. According to the regional structural analysis, the Niutitang Formation
in the Youyang-1 well was not directly affected by volcanic activity, while the Xiuwu Basin was
influenced by magmatism during the Jurassic, and remnants of Jurassic eruptive rocks are also present
on both sides of the basin. The magmatic activity in the Xiuwu Basin led to changes in the ancient heat
flow. The values of the ancient heat flow in the Xiuwu Basin have undergone great changes since the
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Early Cambrian, as shown in Figure 11. The value of the ancient heat flow between the Cambrian and
Late Triassic (543–199 Ma) increased slowly from 50 mW/m2 to 54 mW/m2. During the Jurassic (199–137
Ma), magmatism began to become active in the Xiuwu Basin due to the collision between the North
China and South China plates, causing a sharp increase in the value of the heat flow to 71 mW/m2.
During the Early Cretaceous (137–96 Ma), the value of the heat flow decreased gradually. From the Late
Cretaceous to the Paleogene (96–23.3 Ma), as the stress changed from compression to tension, the value
increased to 62 mW/m2, and then it gradually cooled to the present [52]. The magmatic activity carried
nitrogen originating from the superdeep zone of crust and upper mantle into zones near the basin
basement. Nitrogen was volatilized and moved into the Wangyinpu and Guanyintang Formation shale
reservoir through the fault during the cooling down of magma [53]. Therefore, based on the above
analysis, the nitrogen in the Jiangye-1 well was derived from the superdeep zone of crust and the upper
mantle zone, while there is no evidence that these were the sources of nitrogen in the Youye-1 well.

Energies 2020, 13, x FOR PEER REVIEW 13 of 17 

 

and Guanyintang Formation shale reservoir through the fault during the cooling down of magma 
[53]. Therefore, based on the above analysis, the nitrogen in the Jiangye-1 well was derived from the 
superdeep zone of crust and the upper mantle zone, while there is no evidence that these were the 
sources of nitrogen in the Youye-1 well.  

 
Figure 11. Historical map of ancient heat flow in the Xiuwu Basin (modified from Li et al., 2016). 

4.5. Destruction Model for Shale Gas Reservoirs in Areas of Active Plate Movement 

From the above analysis, there are three main sources of nitrogen in shale reservoirs under 
complex tectonic settings: From the atmosphere carried by surface water, produced in mature and 
high mature stages of organic matter evolution, from the superdeep zone of crust, and from the upper 
mantle zone. Due to strong tectonic activity, it is easier for the strata to form channels for gas 
migration. In the lateral direction, stratification planes and detachment layers became the main 
channels for atmospheric nitrogen into shale reservoirs and methane dissipation, while in the vertical 
direction, faults are the main channels for entry of nitrogen and methane dissipation, such as the 
development of deep faults in the Southeast Chongqing region and the opening of the Late 
Cretaceous–Paleogene faults in the Xiuwu Basin.  

Based on nitrogen isotope analysis results, the nitrogen in the southeastern Chongqing region 
not only comes from the atmosphere, but also from the thermal evolution process of organic matter. 
On the one hand, when the maturity of organic matter reaches the stage of graphitization, its 
brittleness changes and the OM-pores collapse under the overlying pressure, resulting in fewer pores, 
smaller pore size, and bad storage capacity. Then, the strata begin to uplift, causing the development 
of faults, denudation of the overlying strata, and the escape of hydrocarbon gas. On the other hand, 
since the adsorption capacity of nitrogen is stronger than methane, part of the nitrogen produced 
during the thermal evolution of organic matter is adsorbed on the surface of OM-pores and retained 
in shale reservoirs [54,55]. In summary, detachment layers at the bottom of the Lower Cambrian in 
the lateral direction, shale stratification planes, vertical deep faults, and thermal evolution of organic 
matter are the dominant causes of low contents of hydrocarbons and high contents of nitrogen in 
shale gas from the Southeast Chongqing region (Figure 12A). 

Based on nitrogen isotope analysis results, the nitrogen in the Xiuwu Basin comes not only from 
the atmosphere, but also from the superdeep zone of crust and upper mantle zone. Combined with 
previous studies [31], the Xiuwu Basin is not far from the junction of the South China and North 
China plates, which made the basin easily affected by magmatic activity caused by the collision 
between the two plates. On the one hand, the magmatism carried nitrogen originating from the upper 
mantle and superdeep crust into the Lower Cambrian shale reservoir, which caused an increase in 
nitrogen content. On the other hand, with the heat flow value increasing continuously, abnormally 
high temperatures not only made the Wangyinpu and Guanyintang Formation shale enter the 
graphitization stage, but also reduced the adsorption capacity of shale gas. Both of these processes 
promoted shale gas loss. Therefore, the detachment layers at the bottom of the Lower Cambrian, shale 
stratification planes which extensively developed faults in the vertical direction, and magmatism 
during the Jurassic are the reasons for the low contents of hydrocarbons and high contents of nitrogen 
and in shale gas from the Xiuwu Basin (Figure 12B). 

Figure 11. Historical map of ancient heat flow in the Xiuwu Basin (modified from Li et al., 2016).

4.5. Destruction Model for Shale Gas Reservoirs in Areas of Active Plate Movement

From the above analysis, there are three main sources of nitrogen in shale reservoirs under complex
tectonic settings: From the atmosphere carried by surface water, produced in mature and high mature
stages of organic matter evolution, from the superdeep zone of crust, and from the upper mantle zone.
Due to strong tectonic activity, it is easier for the strata to form channels for gas migration. In the
lateral direction, stratification planes and detachment layers became the main channels for atmospheric
nitrogen into shale reservoirs and methane dissipation, while in the vertical direction, faults are the
main channels for entry of nitrogen and methane dissipation, such as the development of deep faults
in the Southeast Chongqing region and the opening of the Late Cretaceous–Paleogene faults in the
Xiuwu Basin.

Based on nitrogen isotope analysis results, the nitrogen in the southeastern Chongqing region
not only comes from the atmosphere, but also from the thermal evolution process of organic matter.
On the one hand, when the maturity of organic matter reaches the stage of graphitization, its brittleness
changes and the OM-pores collapse under the overlying pressure, resulting in fewer pores, smaller pore
size, and bad storage capacity. Then, the strata begin to uplift, causing the development of faults,
denudation of the overlying strata, and the escape of hydrocarbon gas. On the other hand, since the
adsorption capacity of nitrogen is stronger than methane, part of the nitrogen produced during the
thermal evolution of organic matter is adsorbed on the surface of OM-pores and retained in shale
reservoirs [54,55]. In summary, detachment layers at the bottom of the Lower Cambrian in the lateral
direction, shale stratification planes, vertical deep faults, and thermal evolution of organic matter are
the dominant causes of low contents of hydrocarbons and high contents of nitrogen in shale gas from
the Southeast Chongqing region (Figure 12A).

Based on nitrogen isotope analysis results, the nitrogen in the Xiuwu Basin comes not only from
the atmosphere, but also from the superdeep zone of crust and upper mantle zone. Combined with
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previous studies [31], the Xiuwu Basin is not far from the junction of the South China and North China
plates, which made the basin easily affected by magmatic activity caused by the collision between the
two plates. On the one hand, the magmatism carried nitrogen originating from the upper mantle and
superdeep crust into the Lower Cambrian shale reservoir, which caused an increase in nitrogen content.
On the other hand, with the heat flow value increasing continuously, abnormally high temperatures
not only made the Wangyinpu and Guanyintang Formation shale enter the graphitization stage,
but also reduced the adsorption capacity of shale gas. Both of these processes promoted shale gas
loss. Therefore, the detachment layers at the bottom of the Lower Cambrian, shale stratification planes
which extensively developed faults in the vertical direction, and magmatism during the Jurassic are
the reasons for the low contents of hydrocarbons and high contents of nitrogen and in shale gas from
the Xiuwu Basin (Figure 12B).
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Figure 12. Destruction model for shale gas reservoirs in areas of active plate movement: (A) Southeast
Chongqing region in the Upper Yangtze area; (B) Xiuwu Basin in the Lower Yangtze area.

The Xiuwu Basin and Southeast Chongqing region are representative blocks within the complex
tectonic backgrounds of the Upper and Lower Yangtze areas. This model can be used to explain the
occurrence of low contents of hydrocarbon and high contents of nitrogen phenomena in the Upper and
Lower Yangtze areas and in tectonically active regions. Due to the limitation of oil and gas production
technology, such shale gas reservoirs cannot achieve effective commercial development. In shale gas
exploration, the location of wells in such models should be avoided.

5. Conclusions

(1) The main sources of nitrogen in the Southeast Chongqing region is the thermal evolution of
organic matter and atmosphere. Large-scale tectonic events in the research area caused extensive
thrust faults and detachment layers, which destroyed the already-formed shale gas reservoir.
The shale stratification planes and partial graphitization of organic matter accelerated the
methane dissipation. In the meantime, nitrogen originating from the atmosphere intruded into
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the shale reservoir and mixed with nitrogen produced by thermal evolution of organic matter in
the reservoir.

(2) The main sources of nitrogen in Xiuwu Basin are the superdeep crust, upper mantle,
and atmosphere. Intensive tectonic activities and magmatism in the research area promoted the
development of thrust faults and detachment layers and resulted in a tremendous loss of gaseous
hydrocarbons. Meanwhile, nitrogen originating from the atmosphere and mantle intruded into
the shale reservoir. Besides, the shale stratification planes also provided migration channels for
nitrogen and methane.

(3) The destruction models of shale gas reservoir in areas of active plate movement were summarized.
These models can be used to explain the phenomena of low contents of hydrocarbon and high
contents of nitrogen in the Yangtze regions. In shale gas exploration, the locating of wells in such
models should be avoided.
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