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Abstract 

   Deep learning models have become a popular mode to classify electrocardiogram (ECG) data. 

Investigators have used a variety of deep learning techniques for this application. Herein, a detailed 

examination of deep learning methods for ECG arrhythmia detection is provided. Approaches used 

by investigators are examined, and their contributions to the field are detailed. For this purpose, 

journal papers have been surveyed according to the methods used. In addition, various deep 

learning models and experimental studies are described and discussed. A five-class ECG dataset 

containing 100,022 beats was then utilized for further analysis of deep learning techniques. The 

constructed models were examined with this dataset, and results are presented. This study therefore 

provides information concerning deep learning approaches used for arrhythmia classification, and 

suggestions for further research in this area. 

 
Keywords: Arrhythmia detection, deep learning, ECG classification, CNN, LSTM. 

 
1. Introduction 

 

   Arrhythmias are an important group of cardiovascular disorder. An arrhythmia may occur on its 

own or in conjunction with other cardiovascular diseases [1]. Because of the high mortality rates 

in heart disease, early diagnosis and definitive differentiation of arrhythmias are important to 

patient treatment [2]. The most commonly used solution for arrhythmia detection is with the 

recording of the electrocardiogram (ECG), which displays the electrical activity of the heart over 
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time from electrodes placed on the skin. The ECG leads, which capture the electrical potential of 

the heart from different angles and positions, can be used to indicate disease state via abnormalities 

in waveforms or rhythms [3]. The ECG is a record of the electrical characteristics of the heartbeat 

and has become one of the most important tools in the diagnosis of heart disease. It is crucial to 

diagnose a broad spectrum of abnormalities, from arrhythmia to acute coronary syndrome [4]. It 

contains much information not only about the structure of the heart, but also concerning the 

function of the electrical conduction system [5]. Different types of arrhythmias correspond to 

different patterns that can be represented by different ECG waveforms [6]. These patterns contain 

information about heart function and condition. Therefore, monitoring and recognition of ECG 

signals is an important issue in biomedicine [7]. 

Arrhythmia can be represented by a slow, rapid, or irregular heartbeat, and can be grouped as 

life-threatening versus non-life-threatening. According to the association for the advancement of 

medical instrumentation (AAMI), non-life-threatening arrhythmias can be divided into five main 

classes: non-ectopic (N), supraventricular ectopic (S), ventricular ectopic (V), fusion (F), and 

unknown (Q) [8]. Automatic arrhythmia detection based on the ECG provides great convenience 

as it does not require physicians to manually analyze the signals, and also helps people monitor 

heart conditions using wearable devices. Automated accurate arrhythmia detection requires 

machine assistance in the treatment of cardiovascular diseases [3]. 

Advances in machine learning have enabled the efficient development of computer-based 

diagnostic (CAD) systems and their application to many areas. The development of intelligent 

systems in the field of health, the processing of large amounts of raw data, and obtaining 

meaningful results from these data are of great interest [7]. Computer-aided interpretation has 

become increasingly essential in the field of healthcare since it recognized more than 50 years ago 

[4]. With the emergence of these systems, the workload of cardiologists has diminished, and the 

computational effectiveness and accuracy of disease detection have increased. In order to minimize 

visual errors and to compensate for manual interpretation, researchers began developing CAD 

systems to assist in the diagnosis using the ECG [5]. An effective CAD system requires a powerful 

pattern classifier, as well as a salient feature extractor that can extract significant information from 

the hidden layers of raw data [9]. Conventional methods require the use of handcrafted features 

for signal preprocessing, waveform detection, feature extraction, and classification. The encoded 

features are generally designed and selected by trial-and-error or experience. Therefore, these 
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systems require more specific expertise in various domains and hence obtaining useful features is 

a time-consuming process. Deep learning techniques have been developed to overcome these 

difficulties and to provide improved detection rate without the use of fixed coded features [10]. 

Traditional neural network methods [11-17] and kernel-based classifiers [18-20] were among 

the most commonly used methods for arrhythmia data classification. These methods generally use 

inputs obtained by feature extraction instead of raw input signals. Since the desired high 

performance of raw input data could not be achieved, prior research focused on feature extraction 

methods rather than network structure. Time, frequency, statistical and non-linear properties are 

obtained by such approaches as the wavelet transform, Fourier transform, and higher order spectra 

(HOS) [21-24, 67-70]. Due to the high dimensionality of feature vectors resulting from 

transformation methods, the size of these feature vectors is reduced with statistical approaches or 

techniques such as PCA. Deep learning techniques, which have recently become popular in 

machine learning, provide an effective means for knowledge gathering without need of feature 

engineering [25]. Deep learning structures using sufficient ECG input and dataset training have 

the potential to learn all previously important manual features, as well as previously unknown 

features [4]. In the field of machine learning, efficient use of multi-layer networks has been 

achieved due to both the introduction of effective approaches to solve optimization problems, as 

well as hardware advances such as implementation of graphical processing units. Innovative 

approaches for error propagation and developing techniques such as batch normalization, residual 

connections, and depthwise separable convolution, have facilitated the training of networks with 

many layers [26]. This area, a new sub-branch of machine learning called deep learning, has 

rapidly proliferated, leading to successful applications to process the ECG [27].   

In this study, we examined the studies in the literature which have utilized deep learning 

methods for processing ECG signals. The contributions of these studies to the field are 

emphasized, and the methods proposed by them are analyzed. We also presented several 

applications on a heartbeat dataset containing 100,022 beats in five classes, for the purpose of 

evaluating commonly used deep learning techniques. This paper provided a comprehensive 

information on the classification of ECG signals using deep learning techniques which is the state-

of-art techniques by implementing various models. We have also reviewed many related articles, 

identified the current challenges, suggested possible solutions, and delineated the popular trends 

with critical recommendations.  



 

4 
 
 

2. Material and Methods 

 
We employed ECG data from five different classes, containing 100,022 beats obtained from 

the MIT-BIH arrhythmia database, to evaluate deep learning techniques commonly used in the 

literature. The results were analyzed by applying various applications - from basic models to more 

complex models.  

2.1. ECG Dataset 

 
We have used 100,022 ECG beats from PhysioNet MIT-BIH Arrhythmia public database [28] 

for the evaluation of deep learning models. The MIT-BIH arrhythmia database includes N, S, V, 

F and Q main classes with each class having many sub-classes. We have used few groups in these 

classes for this work. These groups are chosen as they are widely used in the literature. The beats 

in our used dataset consist of five classes: normal beats (N), atrial premature beats (APB), left 

bundle branch block (LBBB), right bundle branch block (RBBB) and premature ventricular 

contraction (PVC). ECG data from modified limb lead II signals were organized into segments 

with 260 samples. Segments (one single beat) of continuous beats of  48 half-hour records of 47 

patients were used for this work. The signals in each segment consist of 99 samples before the R 

peak, and 160 samples after the pulses. Beats tags were annotated by multiple cardiologists. Table 

1 exhibits the classes, the number of pulses, and waveform examples of these classes in the 

arrhythmia data. 

 
Table 1. Classes, number of beats, and waveform examples in the arrhythmia dataset. 

Beat Types Number of 
Patients 

Number of 
Beats Waveform Sample 

1. Normal Beats (N) 

47 

75020 
 

2. Atrial Premature Beat (APB) 2546 
 

3. Left Bundle Branch Block (LBBB) 8072 
 

4. Right Bundle Branch Block 
(RBBB) 7255 
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5. Premature Ventricular Contraction 
(PVC) 7129 

 
 

2.2. Experimental Setup 

 
In the application of deep learning techniques, we have used the Keras with TensorFlow 

backend Deep Learning Library. Raw ECG signals were first scaled in the range of 0-1, and then 

standardized. The scikit-learn library was used for pre-processing. An early stopping technique 

was utilized to determine how long the learning process would continue. With this technique, loss 

values are monitored, and the training process is stopped when model begins to overfit. Thus, 

learning was stopped so that overfitting problems do not occur for each network. Few common 

hyper-parameter adjustments of models are determined for learning rate value of 0.001, and batch 

size of 128. Optimizers and other parameters are varied depending on the examined networks. The 

related adjustments are presented separately in each experimental study. The computer used in the 

experimental studies has an Intel Core i7-7700HQ 2.81GHz CPU, 16GB memory and 8GB 

NVIDIA GeForce GTX 1070 graphics card. To ensure consistency in all experimental studies, the 

data was divided into 80% training, 10% validation and 10% testing, and the same datasets were 

used in all proposed models. In order to take into account the imbalanced data distributions in the 

classes during the training of the models, a class weight was assigned to each class using the scikit-

learn library. Accuracy, Sensitivity, Specificity, Precision, and F-Score performance metrics were 

used to evaluate the results obtained for the test data. 

3. Applications and Review 

 
In this section, a comprehensive examination has been carried out for arrhythmia detection from 

basic deep learning models and more complex network models. Under the deep learning 

techniques, the studies for arrhythmia analysis are detailed, and some of these techniques are 

applied on arrhythmia datasets, with the results then being evaluated. 

3.2 Deep Neural Networks 
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Deep neural networks (DNN) are classical neural networks (NN) that are hierarchically bound 

and that contain many hidden layers [30]. In the arrhythmia classification problem, classical NN 

approaches and SVM classifiers have been replaced by DNN based classification models. DNN 

networks [31] input by raw ECG signals do not require preliminary feature extraction. The use of 

some temporal features in combination with raw signals has been shown to improve the 

performance of deep networks [32, 33]. However, it should not be ignored that there is an 

additional cost in the stages of obtaining temporal features as RR interval. The denoising 

autoencoder (DAE) and stacked denoising autoencoder (SDAE) [33, 34, 35, 36] approaches are 

frequently used to feed DNN classifiers with more suitable features, in contrast to the capability 

of shallow classifiers. The representations obtained from hidden layers of autoencoders are input 

to the Softmax layer, and classification operations are performed. Some studies have used the 

active learning structure to identify the most valuable beats for the DNN fine-tuning process [33, 

34, 35]. In order to avoid overfitting during learning, effective solutions have been presented that 

fuse existing and previous Softmax outputs [33]. In addition, there are studies suggesting the use 

of one-dimensional ECG signals in model inputs by converting them into time-frequency images 

[36]. In studies using DNN, the effects of layer increments on classification have been an important 

parameter to address. 

In our investigation, described herein, we studied a simple model with single hidden layer 

versus deeper models, to observe the behavior of end-to-end DNN structures, and the number of 

parameters useful for networks in arrhythmia classification. The inputs of these models consisted 

of raw ECG signals, and their output was composed of five ECG classes. Fig.1 shows graphs of 

the performance of a classical NN with a single hidden layer of 128 units in the training phase, 

along with several parameters (activation function, optimizer, and loss function). 
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Figure 1. An illustration of the effects of activation functions, optimizers and loss functions on learning for a single 
hidden layer network. b) Sigmoid, MSE loss, and SGD optimizer, c) ReLU, MSE loss, and SGD optimizer, d) ReLU, 
MSE loss, and Adam optimizer, e) ReLU, categorical cross entropy loss, and Adam optimizer.  

 

In the NN-1 model (see Fig.1 (b)), the graph of loss values during the training phase showed 

that the model performance improved in small steps, and this process is time consuming. This 

result caused by the derivative, which becomes too small because the values of the selected 

sigmoid activation function are too high or too low. Also, it can lead to the vanishing gradient 

problem which is common in gradient-based learning methods. Training of the NN-1 network 

could be completed at approximately 2000 epochs. Each epoch lasted 2s on average. This means 

approximately 1 hour of training would be needed with our existing GPU hardware. In CPU mode, 

considering that this time decelerates, the cost of training will increase considerably. When the 

ReLU activation function (see Fig.1 (c)), which is frequently used in deep learning rather than the 

sigmoid function in the NN-2 network, was selected (see Fig.1 (c)), and the gradient was updated 

with small values, so that the learning phase duration was approximately 1200 epochs. In the NN-

3 and NN-4 networks, when the Adam optimizer (Fig.1 (d)) is selected, unlike the NN-2 model 

(Fig.1 (d)), it completes learning by decreasing to 0.005 values in a very short time period of 

approximately 11 epochs. The ReLU activation function and the Adam optimizer have improved 

both detection performance and time cost. 

In Fig.2, the graphs of training performances on the ECG data of the models with 2, 3, and 5 

hidden layers are given, respectively, to observe the effect of layer increase on classification. These 
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models are termed DNN-1, DNN-2 and DNN-3, respectively. The hidden layer units in these 

models are 128, and the activation functions are selected as ReLU and Adam optimizer. 
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Figure 2. DNN models designed in the study and some performance graphs of these models during the training 
stages. a) The DNN models, b) Loss graphs and c) Accuracy graphs. 
 

The increase in the number of layers using the existing arrhythmia dataset had a positive effect 

on the training stage. On the other hand, with the increase in the depth of the layer, the performance 

of the model was improved. We have provided various performance criteria to evaluate the trained 

models on unseen test data. The performance values are given in Table 2. 

 
Table 2. Performance values of DNN and NN models on arrhythmia test data.  
 

Models 
Total 

Training 
Time 

Overall 
Sensitivity 

(%) 

Overall 
Specificity 

(%) 

Overall 
Precision 

(%) 

Overall F-
Score 
(%) 

Overall 
Accuracy 

(%) 
NN-1 4000 sec 89.66 98.70 93.93 91.63 97.73 
NN-2 2290 sec 94.30 99.23 97.54 95.77 98.73 
NN-3 22 sec 93.02 99.13 97.73 95.02 98.56 
NN-4 22 sec 94.22 99.21 97.48 95.69 98.67 
DNN-1 24 sec 95.34 99.34 97.50 96.37 98.85 
DNN-2 36 sec 95.89 99.43 97.76 96.78 98.99 
DNN-3 36 sec 96.45 99.53 97.72 97.05 99.11 
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The best accuracy performance of 99.11% was achieved with the DNN-3 model with five hidden 

layers. The sigmoid activation function used in the NN-1 model and the SGD optimizer led to a 

prolonged training period with very small changes in gradient. According to these results, besides 

the increase in the number of layers, the ReLU activation function and Adam optimizer have a 

significant effect on the performance of DNN networks.  

3.2 Convolutional Neural Networks 

 
The process of learning differential representations to map input data to target outputs is the 

basic step of machine learning. Traditional machine learning methods use various hand-engineered 

features to obtain representations of input data. In the case of deep learning, there is an automatic 

learning process from the low-level representations obtained from multiple layers, to the higher 

abstract representations in the training stage (see Fig.3) [25]. Convolutional neural networks learn 

useful representations of input data in an end-to-end structure using the convolution operator. 

AlexNet's success in the ImageNet [37] competition in 2012 has made CNN applications popular, 

and their use in the medical field has become widespread. 

Feature 
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Figure 3. A simple 1D convolutional neural network structure which has convolution, pooling and fully-connected 
layering. 

 

As the feature extraction process, which plays a critical role in ECG signal classification, is 

automated with convolutional neural networks, the use of CNN has become widespread in this 

field. These networks are used to classify patient-specific beats [6, 38] and long duration ECG 

signals containing multiple rhythm classes [39, 40, 66], to detect different interval ECG segments 

[41], atrial fibrillation [41-48], and different types of ECG beats [8, 49]. 
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Models in CNN-based arrhythmia classification studies are prepared at depths reaching 9-layers 

[8], 11-layers [41], 16-layers [40] and 34-layers [39, 42]. In these models, there are many 

hierarchically connected layers where the feature maps obtained with convolutional layers are sub-

sampled with pooling layers and fully connected layers in the last stage of the model. In addition 

to these layers, regularized layers such as batch normalization and dropout are also employed [6, 

39, 40, 45]. These make the model more resistant to overfitting, so that the learning process is 

more effective. As layer size increases, optimization of the network becomes more difficult. 

Rajpurkar et al. [39] have employed residual network-like shortcut connections in 34-tier models 

to solve this problem in arrhythmia classification. Another difficulty in designing the networks is 

to determine the filter length and number of convolution layers. Filter length is usually selected in 

small sizes, such as 3 × 1 or 5 × 1. The main reasons for this are reduction of calculation cost and 

ability to distinguish signals with small differences between them [6]. Yet, it is seen that these 

filter lengths are chosen to be larger in networks designed for long duration signals. For example, 

Yildirim et al. [40] used a 50 × 1 size filter in the first convolution layer for 10 sec ECG signals, 

and Rajpurkar et al. [39] used a filter length of 16 × 1 in convolution layers for 30 sec. The filter 

numbers are generally selected as multiples of two. Lu et al. [49] showed that variable learning 

rate is more beneficial than constant rate learning. In addition, imbalance data in some arrhythmia 

datasets may yield misleading results in classifier performance [5, 49]. Jiang et al. [5] discussed 

this problem in detail in heartbeat classification, and proposed three different solution methods. 

Herein, in order to evaluate the performance of the operation of CNN networks on ECG input 

signals according to the number of layers, the models in Fig.4 with different size layers are 

designed and developed. 
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Figure 4. Detailed layer representations of CNN models constructed for experimental studies. 

 

While designing these models, only CNN base layers such as convolution, sub-sampling and 

dense layers were used. The convolution layer numbers of the models were increased and the layer 

parameters were designed to be the same. Our aim is to observe the impact of deepening CNN 

networks on existing data. The filter numbers are set to increase continuously to 32, 64, 128, and 

256. Kernel sizes 5, 3, 5, and 3 were chosen, respectively. The CNN networks designed for the 

experimental study were trained on the arrhythmia data separately, and changes in accuracy and 

loss values for the training and validation sets are given in Fig.5. 
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Figure 5. Performance graphs of CNN networks on the arrhythmia dataset during the training phase. a) Accuracy 
graphs (training and validation), b) Loss values (training and validation). 
 

For the data analyzed, there were no significant differences between CNN performances during 

the training phase. However, it was found that the best performance was obtained for the CNN-4 

model containing four convolution layers. Accordingly, it can be said that more distinctive 

representations of the input data are obtained due to the increase in number of layers. The values 

of some performance criteria on the test data of the models are given in Table 3. The F1-score and 

sensitivity values for  APB class were  at  low levels as compared to other classes. The main reason 

for this may be that this class has the least amount of data. 
 

Table 3. The performance values of deep models on arrhythmia test data. 

Model Classes 
Performance Values 

Acc (%) Sen (%) Spe (%) Prec (%) F-Score 
(%) 

Overall 
Acc (%) 

CNN-1 

APB 99.37 79.83 99.87 94.28 86.46 

98.93 
LBBB 99.84 99.10 99.91 98.97 99.04 
N 99.08 99.61 97.44 99.18 99.39 
RBBB 99.88 99.70 99.90 98.70 99.20 
PVC 99.64 97.37 99.82 97.77 97.57 

CNN-4 

APB 99.57 86.29 99.91 96.39 91.06 

99.16 
LBBB 99.86 98.97 99.94 99.35 99.16 
N 99.33 99.76 98.01 99.36 99.56 
RBBB 99.88 99.56 99.91 98.84 99.20 
PVC 99.63 97.09 99.83 97.90 97.50 
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Although the widespread use of CNN networks is based upon end-to-end classification, the 

feature maps obtained from the intermediate layers of these models are rich in information. 

Therefore, many of the traditional machine learning methods are of interest for the feature 

extraction stage. By using appropriate feature selection and size reduction methods on attributes 

obtained from low-to-high level by convolution, useful input sets for shallow or deep classifiers 

can be obtained [5, 48-51]. In addition, some handcrafted features are added to the feature set in 

order to improve classification performance [49, 50]. In a scenario as presented in Fig.6, the 

features obtained from a convolution layer are combined by means of the fusion process, and the 

useful features and classifier inputs selected by various approaches can analyze these features. 
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Fig 6. An illustration of employing CNN models to extract features from ECG input signals. 

 

Pourbabaee et al. [48] used a CNN network as a feature extractor for the detection of 

paroxysmal atrial fibrillation. They obtained better results than the end-to-end CNN model by 

training the features of fully connected layers with the K-NN classifier. Lu et al. [49] classified the 

random forest classifier by fusing the CNN and PQRST features for arrhythmic signals. He stated 

that these fused features gave better results than CNN features. Golrizkhatami et al. [50] used 

arrhythmia detection with three sub-classifier systems using some handcrafted features, along with 

features from different CNN layers. Fan et al. [43] utilized two 13-layer CNN networks in parallel, 
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and concatenated the final pooling layer features, then performed the learning process of the model 

in fully connected layers. An illustration of the obtained convolutional feature maps for the CNN-

4 model is displayed in Fig.7. 
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Figure 7. Feature maps obtained from convolution layers of the CNN-4 model. a) raw input signal, b) feature maps 
of the first convolution layer, c) features of the second convolution layer, d) features of the third convolution layer, 
and e) features of the final convolution layer. 
 

Since the ECG is 1-dimensional, 1D CNN network models can be used on these data without 

any conversion. The widespread use of 2D CNN architecture for image problems has led to the 

emergence of models that work effectively on large datasets. Thus, instead of difficulties 

encountered in designing new models such as layer and parameter setting, existing models are 

adapted to existing problems. The conversion of ECG signals to 2-D representative images and 

the classification by application of known models (such as AlexNet, GoogleNet, and ResNet) have 

become widespread [1, 44, 46, 49, 52, 53]. In these conversion processes, frequency spectra of 

signals and 2-D images of frequency and time functions are generally obtained. An illustration 

showing process steps is given in Fig.8. 



 

15 
 
 

0 50 100 150 200 250
900

1000

1100

1200

1300

1400

0 1 2 3 4 5
Frequency

5

10

15

20

Original ECG Signal
Spectrograms

2D CNN 
Models

(AlexNet, VggNet, 
DenseNet etc )

Samples

A
m

pl
itu

de
 (µ

V
)

Ti
m

e

Images
25

Width

H
ei

gh
t

 
Fig 8. A block diagram illustrating the acquisition of representations of 1D ECG signals for processing with the 2D 

CNN model. 
 

By converting ECG data into two-dimensional representations, many profound learning 

techniques applied on images can be used. The short-time Fourier Transform (STFT) approach is 

frequently used to obtain time-frequency representations. In this method, spectral changes are 

obtained as a function of time by applying the Fourier transform on all segments in the dedicated 

window size. These changes are used by converting to image information [52, 54]. Apart from 

STFT, there are other techniques for converting ECG signals into 2D representations. Cao et al. 

[47] utilized sub-sampling at different scales by decomposing segmented samples to improve CNN 

performance in AF detection. Zhai et al. [52] employed the 2D-CNN structure with the dual-beat 

coupling matrix. Rajput et al. [53] incorporated both wavelet and STFT transformations and 

classified arrhythmia data by converting them to image data. It has also been shown in several 

studies that arrhythmia inputs converted to 2D representations have advantages over 1D CNN 

models [1, 52]. 

 

3.3 Long Short-Term Memory Networks 

 
CNNs are powerful in learning representations on input data. However, for sequential signals 

such as the ECG, it is important to consider long and short term dependencies. Since classical 

neural networks do not contain memory units, they are insufficient to learn these dependencies. 

With this in mind, recurrent neural network (RNN) architectures have been created by adding an 

internal memory to feedforward neural networks [55, 56]. Although RNNs are successful in short-

term memory operations, they have failed to learn long-term dependencies. The most important 

reason for this is the vanishing gradient problem. LSTM networks have been introduced by 

Hochreiter and Schmidhuber [57] to solve the problem of vanishing gradient, one of the major 
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difficulties in performing long-term memory. Thanks to the gates (input, forget and output) in the 

LSTM, the model can be taught using backpropagation through time to avoid gradient problems. 

In Fig. 9, an illustration of the LSTM structure is given. 
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Figure 9. A block representation of the operating structure of the LSTM cell. 
 
 

As with many sequential problems, LSTM networks have been used effectively in the 

classification of arrhythmia signals. Faust et al. [58] have proposed an LSTM network that utilizes 

heart rate (HR) signals as input for the recognition of AF and normal signals. Gao et al. [59] used 

an LSTM model with focal loss to classify imbalanced arrhythmia data. Yildirim et al. [29] 

proposed a wavelet transform-based layer to improve the performance of LSTM networks. With 

this layer, the wavelet coefficients are used as additional features of the signal. 

Yildirim et al. [40] employed a coded features-based LSTM approach to classify arrhythmia 

data. In their study, they first converted the raw signals of 260 samples into 32-dimensional 

encoded features with an 18-layer convolutional autoencoder. They achieved 99% accuracy by 

feeding these encoded features into the deep LSTM network. Due to the CAE structure, LSTM 

networks have significantly reduced the computation time to classify arrhythmia data. However, 

the CAE structure they used to obtain the encoded features is both complex and time-consuming 

for coding. Similarly, an interesting study utilizing LSTM networks as a feature extractor is 
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described by Hou et al. [60]. They employed an LSTM-based autoencoder model for arrhythmia 

recognition, and input the high-level features to the SVM classifier. 

In order to compare the performance of LSTM networks in the classification of arrhythmia data, 

we have prepared different LSTM models that will work on our ECG dataset. These models are 

commonly used in LSTM based classification problems. Vanilla LSTM (see Fig.10 (a)) with a 

single LSTM layer, and stacked LSTM models containing multiple LSTM layers (see Fig.10 (b)) 

were created to contain 32 memory units. In addition, the bidirectional LSTM (BLSTM) model 

(see Fig.10 (c)), which takes forward and backward sequences as input, was implemented. It is 

also possible to obtain hidden state outputs for each input time step in the LSTM networks. In the 

Keras environment, this adjustment is made with the return sequences parameter in LSTM layers. 

In our study, we used “False” and “True” states to observe the effect of this parameter. The hyper-

parameters (learning rate, batch-size, etc.) of these models are the same as in previous models.  
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Figure 10. Three different LSTM models constructed for experimental studies. a) Vanilla LSTM, b) Stacked LSTM 
and c) Stacked bidirectional LSTM 
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Figure 11. Accuracy graphs of LSTM models during training. a) Vanilla LSTM, b) Vanilla LSTM with return 
sequences, c) Stacked LSTM, d) Bidirectional LSTM. 
 
 
Table 4. The performance values of Vanilla LSTM, Vanilla LSTM with return sequences, Stacked LSTM, and 
Bidirectional LSTM models. 

Models 
Training 
Time per 

epochs 

Overall 
Sensitivity 

(%) 

Overall 
Specificity 

(%) 

Overall 
Precision 

(%) 

Overall 
F-Score 

(%) 

Overall 
Accuracy 

(%) 
Vanilla LSTM 
(return_sequences=True) 245 sec 86.92 97.94 90.97 88.41 95.71 

Vanilla LSTM 
(return_sequences=False) 247 sec 96.44 99.48 97.35 96.87 98.98 

Stacked LSTM 504 sec 96.41 99.52 97.91 97.12 99.12 
Bidirectional LSTM 1071 sec 96.64 99.55 97.32 96.96 99.00 

 
 

From the results (Fig. 11 and Table 4), obtaining the hidden state for each input time step 

(return_sequences is true) and the stacked use of LSTM layers both increase performance 

accuracy. However, the number of LSTM layers added to the model doubled the computation time. 

Furthermore, the performance of the BLSTM model for the dataset we used underperformed the 

stacked LSTM structure in terms of both time cost and detection accuracy. 
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In order to reduce the cost of computing and improve the performance of LSTM networks, 

hybrid techniques have been developed. In particular, CNN and LSTM networks are widely 

preferred for this purpose [10, 61, 62]. The main objective of CNN-LSTM networks is to create 

powerful models of input data by combining both representative learning and sequence learning 

(see Fig.12). Oh et al. [10] proposed a CNN-LSTM model for the classification of variable length 

arrhythmia data. Andersen et al. [61] have proposed a CNN-LSTM model that uses RR interval 

segments as input for the classification of AF and normal ECG signals. They stated that the use of 

RR segments instead of raw ECG to model inputs reduces the network computational cost. Warric 

et al. [62] proposed a CNN-LSTM model using the raw ECG input for the AF detection problem. 

In addition to LSTM models, different RNN models are employed for arrhythmia recognition. 

Wang [63] used a CNN-modified Elman neural network (MENN) hybrid for classification of AF 

signals. Guo et al. [64] utilized CNN and gated recurrent units (GRU) for inter-patient SVEB and 

VEB arrhythmia detection. 

 
As a final experiment in this study, we designed a CNN-LSTM model for both arrhythmia data 

and sequence learning. In this model, we have added an LSTM network with 32 memory units to 

the CNN-4. The structure and performance graphs of this model are presented in Fig.12. 
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Figure 12. Representation and sequence learning approach. a) Block representation of the model b) Performance 
graphs of the model.  
 

When the values of the performance criteria for the CNN-LSTM model were examined (see 

Table 5), a 99.26% overall accuracy yielded a better result than other models. In addition, each 

epoch time of the CNN-LSTM model requires 294 seconds to complete, which is similar to that 

of the vanilla LSTM model. In general, although high performance (sensitivity, precision, and F1-

Score)  is obtained for all classes except for  APB class. The recognition performance is better for 

classes such as NSR where the number of beats are more. Fewer number of data in other classes 

and the presence of inappropriate signals in the dataset may lead to misclassifications. Models tend 

to achieve better performance with more data in each class. 

 
Table 5. The performance values of the CNN-LSTM model on test data. 

Classes Accuracy 
(%) 

Sensitivity 
(%) 

Specificity 
(%) 

Precision 
(%) 

F1 Score 
(%) 

Overall 
Accuracy 

(%) 
APB 99.61 89.51 99.86 94.46 91.92 

99.26 LBBB 99.85 99.61 99.86 98.48 99.04 
NSR 99.43 99.69 98.60 99.55 99.62 
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RBBB 99.94 99.56 99.96 99.56 99.56 
PVC 99.69 97.37 99.87 98.32 97.84 

 
 
4. Discussion 
 

The researchers conducted their studies on the classes suggested by AAMI standards. Few 

researchers have frequently used deep learning models on two rhythm classes such as 

supraventricular ectopic beat (SVEB or S) and ventricular ectopic (VEB or V) [38, 33, 36, 34, 35, 

5, 6, 52, 64]. In SVEB and VEB detection process, different records of the same dataset were  used 

to distinguish the events from non-SVEB and non-VEB. Similarly, studies on the detection of 

atrial fibrillation (AF) is increasing [42, 47, 58, 61, 62, 63]. Besides, deep models were frequently 

used for the classification of beats (Normal, LBBB, RBBB, APC, PVC, Paced, etc.) and 

arrhythmia classes [1, 3, 7, 10, 29, 59, 66]. Interpatient signals were  used to train these models. 

However, few studies have focused on the patient-specific performance of the models because the 

beats of the patients showed different characteristics [6, 33, 36, 38]. 

Few state-of-the-art ECG classification studies are given in Table 6. Deep learning approaches 

used in these studies are: deep neural networks (DNN) [31-36], denoising autoencoders (DAE) [5, 

33- 36], convolutional autoencoders (CAE) [29], CNN [1, 5 , 6, 8, 64, 38-40, 42, 45, 64], LSTM 

[39, 29, 58] and CNN-LSTM [3, 10, 62]. Researchers often design new models with different layer 

sizes, or they try to improve the input to the model. For example, Guo et al. [64] have made ECG 

classification by adding dense connections to the standard CNN structure, and thus allowing the 

use of all former layer outputs. Hannun et al. [4] and Rajpurkar et al. [39] used the CNN structure 

by adding shortcut connections as it was used in the residual structure. Oh et al. [66] employed a 

modified U-net model, which is often used for image segmentation studies. In addition, researchers 

had the opportunity to employ common models used for image processing by simply converting 

the one-dimensional signal data into two-dimensional data [1, 52]. Various preprocessing 

techniques are used on ECG records before feeding the models. Few common preprocessing 

operations are removing noise [8, 59,], removing baseline-wondering [32, 35, 36, 64], 

normalization [3, 8, 10, 59] segmentation [8, 10, 31, 32, 36, 52, 66] and feature extraction [31, 32, 

35]. 

Most of the studies have been carried out using the public databases. One of the most important 

problems encountered in these datasets is the data imbalance problem. Researchers have proposed 
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various approaches to deal with this situation. Acharya et al. [8] preferred to produce synthetic 

data to overcome imbalance data. These synthetic data were obtained by changing the standard 

deviation, and Z-score mean calculated from the original ECG signals. Jiang et al. [5] also 

produced synthetic data, but they oversampled the minority class data. They trained their model 

with unmodified balanced dataset, and then they fed the model with the unbalanced data to perform 

classification with fine-tuning process. Similarly, Lu et al. [49] obtained a balanced dataset by 

increasing the number of minority classes with the random over sampler method. For the 

imbalanced data problem, Guo et al. [59] reduced the contribution of normal ECG samples during 

training phase by using the focal loss. Another significant difficulty in public datasets is that these 

datasets usually contain records of a small number of subjects for few classes. Datasets with  more 

number of subjects contribute better and stable results. For example, Hannun et al. [4] and 

Rajpurkar et al. [39] used the dataset containing long duration records for large number of patients. 

They reported an efficient model better than the cardiologist’s performance using a well trained 

model. 

In this study, we have analyzed literature reports that use deep learning on arrhythmia ECG 

data. Some important observations obtained as a result of these examinations are as follows: 

- It is an important advantage to classify raw ECG signals with deep learning based systems 

without using any manual feature extraction. However, some studies have shown that the use 

of certain temporal features (i.e., RR interval) along with raw signals improves model 

performance [32, 33, 58]. 

-  Imbalance of ECG datasets is an important problem. Because there is much data in some 

classes as compared to other classes, it can give misleading information concerning model 

performance. Some researchers have focused on this problem and proposed solutions [5, 8, 

49, 59]. 

- Much recent research in this area has focused on CNN modeling. In our experimental studies, 

both representation and sequential features of ECG signals improve classification 

performance. Hence, efficient hybrid models can provide more distinctive features from ECG 

signals. 

- The most important problem evident for CNN modeling is the design of a suitable structure 

for various datasets. Development of the layer parameters and hyperparameters are an 

important optimization problem in the formulation of a deep network. For this purpose, 
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models similar to the effective models prepared on big data in image processing should be 

created for ECG analysis. Therefore, effective results can likely be obtained in this field with 

a transfer learning approach. 

- The methods of converting ECG signals to 2-D images by some researchers for the use of 

models trained on two-dimensional images for one-dimensional ECG datasets are of interest 

[1, 44, 46, 49, 52, 53]. The investigations in this field can be used effectively in arrhythmia 

classification by utilizing deep models trained on large image datasets. 

- Another interesting application in this field would be to employ distinctive models for shallow 

classification by incorporating deep models as the feature extractors. With this approach, the 

advantages of shallow classification can be utilized. 

- Two different approaches are used, namely signal-wise and subject-wise, during performance 

evaluation. The main problem of the signal-wise approach is that the performance of the model 

is high due to the fact that the signals belonging to the same subject can be included in both 

the training and test sets. Therefore, subject-wise evaluations can give more accurate results 

about the generalization ability of the model. However, the subject number should be 

sufficient for this approach. 

- In a real life scenario, ECG signals have a noisy structure. In the approaches used in the 

literature, noise elimination is performed with various pre-processing techniques. Since these 

pre-processing steps add additional computational cost, more robust models are needed. 

-  Deep learning models perform well when run on databases containing large amounts of 

quality information. Consequently, conducting research on recently established large ECG 

datasets [4, 39, 66] may lead to more effective models. 

 

For future studies, research should be expanded on the correct and efficient clinical 

applications of models created with deep learning techniques. For this purpose, research should be 

carried out in critical areas such as the integration of models into cloud and mobile systems. In 

addition, the development of models that work with integrated low power consumption wearable 

technologies is an important research area. Another important issue that will be needed in the use 

of these technologies is data security. Research on the protection of personal data stored and 

transmitted in cloud systems is critical. It is obvious that new approaches that will emerge in 

parallel with the advances in the field of deep learning can help in the advancement of the field. 
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Furthermore, handcrafted feature extraction and research progress with shallow classifiers are 

necessary for progress in this area. With the increase of public databases and the increase of the 

data of specific classes in this direction, it will be a vital source of motivation for deep learning 

approaches to produce more successful results in the future. Finally, what features are taken into 

account during the diagnostic process, due to the black-box nature of deep learning methods, is an 

important question mark. For this reason, research on parameters that the models should consider 

for input data will play a significant role in developing more reliable methods. 

Some of the recent ECG classification studies are given in Table 6 using the deep learning 

technique. When these studies are examined, it is evident that CNN models are preferred over 

other methods. Besides the difficulties in the design and parameter adjustment of CNN models, 

the high computational cost is the most crucial disadvantage of these networks. They also require 

a big dataset for proper training, which is the another drawback. Furthermore, hybrid models such 

as CNN-LSTM tend to produce successful results. An important problem in the use of LSTM 

models is the high resource utilization. This technique requires more time and cost compared to 

other methods. The most important disadvantage in  using the deep learning methods are the 

requirement of costly hardwares  such as graphics processing unit (GPU),  layer and parameter 

optimizations are difficult when developing multi-layer models. Effective techniques such as 

transfer learning, residual connections and data augmentation will help to overcome these 

problems over time. 
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5. Conclusions 
 
   This study comprised a comprehensive review and evaluation of deep learning techniques for 

arrhythmia classification. Peer-reviewed journal articles that utilized deep learning for arrhythmia 

detection were examined and discussed. An experimental study was presented to provide 

information concerning techniques that make deep learning effective for arrhythmia detection. In 

order to examine the performance of the proposed approaches, we constructed deep learning 

models for categorization of a five-class arrhythmia ECG dataset. We presented results for various 

deep learning models for arrhythmia detection, and suggested solutions to some important 

problems in the field. 
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