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ABSTRACT: We outline a conceptual blueprint that provides di-

rect and atom economical access to a wide range of complex poly-
heterocycles. Our method capitalizes on the ambiphilic reactivity
of rhodacyclopentanones that arise upon exposure of cyclopro-
panes to Rh(I)-catalysts and CO. Using this approach, a wide array
of polycyclizations are achieved, including variants that involve
powerful dearomatizations and medium ring formations.

Expeditious strategies for the assembly of complex heterocycles
are of significant value to synthetic chemists. In particular, there is
high demand for protocols that generate challenging scaffolds, such
as medium rings, spi-rich systems and complex polycycles.
Within this context, we have developed a suite of by-product free
processes where cyclopropane-derived metallacycles engage teth-
ered m-unsaturates or nucleophiles in cycloadditions? or “capture-
collapse” heterocyclizations,® respectively.* The latter exploits the
electrophilicity of rhodacyclopentanones | that arise upon directing
group controlled carbonylative C-C bond activation of aminocyclo-
propanes 1 (Scheme 1A).5 These can be accessed with a variety of
substitution patterns and, where appropriate, in enantiopure form.
Our heterocyclizations harness these features to provide high levels
of regioselectivity and stereospecificity in the formation of chal-
lenging 7- and 8-membered N-heterocycles 2.% These are generated
from key metallacyclic intermediate 11 by a sequence of C-Nu re-
ductive elimination (to 111) and protodemetallation.

The C-C bond activation triggered heterocyclizations we have
developed so far generate one new ring, where C-H bond formation
is the terminating step (111 to 2). If protodemetallation could be
averted then the tantalizing opportunity of using C(sp®)-Rh(1)-in-
termediates related to 111 in subsequent C-C bond formations
would emerge (Scheme 1B). This design offers tremendous flexi-
bility because a wide range of endo- or exo-polycyclizations can be
envisaged by varying the nature and position of the electrophile.
Significantly, this approach uses the rhodacyclopentanone as a
linchpin for the assembly of two rings rather than one — its electro-
philicity enables the first annulation, whereas its latent nucleo-
philicity facilitates the second (via IV/V). Accordingly, the
rhodacyclopentanone functions as a synthetic equivalent to am-
biphilic synthon VI (Scheme 1C), with this reactivity mode un-
veiled simply by carbonylative C-C bond activation of the easily
installed aminocyclopropane moiety. In this report, we outline ex-
tensive studies concerning this broad concept. These results show
how C-C bond activation of simple functionality can enable by-
product free access to powerful and unusual reactivity patterns.®

The development of the polycyclizations in Scheme 1B was
driven by the observation that cyclopropane 3a is converted to

Scheme 1. Polyheterocycles via rhodacyclopentanones.
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complex polycycle 4a in 10% yield when exposed to
[Rh(cod)2]OTf (7.5 mol%), P(3,5-(CF3)2CeéH3)s (15 mol%),
PhOCH2CO2H (30 mol%) and CO (1 atm) at 140 °C (Table 1A).
This process can be rationalized by invoking endo-polycyclization
of key alkyl-Rh(I) intermediate VII (cf. V) onto the C2-C3 n-sys-
tem of the indole (vide infra). Extensive studies were undertaken to
improve efficiency; ultimately, we found that the combination of
[Rh(cod)2]JOTf (7.5 mol%) and 4-NMe2CsHaCO2H (30 mol%) de-
livers 4a in 81% yield. The inclusion of phosphine ligands resulted
in reduced yields, and neutral Rh-sources were ineffective. The
acid additive had the most profound effect, with 4-
Me2NCsH4CO2H (30 mol%) emerging as optimal from a broad



screen (see the Sl). Higher or lower CO pressures offered no bene-
fits and lower reaction temperatures were ineffective. The inclusion
of Na2S04 as a desiccant provided a small but reproducible bene-
fit.”

Table 1. Dearomatizing endo-polycyclizations of indole sys-
tems.
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The process has broad scope with respect to the indole unit (Table
1A). Systems 3c-j possessing electronically diverse substituents
generated polycycles 4c-j in good to excellent yield. Substitution
at C7 results in diminished efficiencies such that 4k was formed in
only 21% yield. The process can be transferred to substituted ami-
nocyclopropanes (Table 1B); for example, polycyclization of
trans-1,2-disubstituted systems 3I-n generated 41-n with excellent
levels of diastereo- and regiocontrol. These features arise from se-
lective cleavage of the less hindered proximal C-C bond a of 3I-n,
followed by transfer of cyclopropane stereochemistry to the prod-
uct.® The starting materials are easily accessed in enantioenriched
form, and this allowed enantiospecific conversion of 3m to 4m
(98.5:1.5 e.r.). Polycyclizations of trisubstituted cyclopropanes 30
and 3p resulted in efficient desymmetrization to provide 40 and 4p

with exquisite levels of diastereocontrol (Table 1C). For non-sym-
metrical system 3¢, C-C bond activation was selective for benzylic
C-C bond a leading to regioselective generation of 4q, again with
complete diastereocontrol.

The processes in Table 1 validate the conceptual blueprint in
Scheme 1B, and also provide a notable contribution to indole
dearomatization chemistry.® Uniquely, the method enables the con-
current formation of two C-C bonds at C-2 (i.e. “dual C-H func-
tionalization”)'% such that this position formally functions as a car-
bene equivalent (Table 1D). Prior methods for accessing similar
structures require preinstallation of a substituent at C-2.1* Other
catalytic dual functionalizing indole dearomatizations usually gen-
erate new C-C/C-X bonds at both C-2 and C-3.12

Polycyclization of 3a in the presence of D20 (300 mol%) deliv-
ered deuterio-3aa and deuterio-4aa in 32% and 42% vyield, respec-
tively (Equation 1). For deuterio-3aa, deuterium incorporation was
observed at C2-H (17%) and C3-H (43%). Exchange at these posi-
tions is dependent on the presence of the Rh-catalyst but not the
cyclopropane (Equation 4) or the acid additive (see the Sl); these
data support exchange by reversible C-H activation of 3a. For deu-
terio-4aa, deuterium incorporation was observed at C2-H (27%),
C11-Ha (20%) and C11-Hb (49%). When the same reaction was run
for 72 hours, a similar pattern of deuterium incorporation was ob-
served (Equation 2). Deuterium incorporation at C11-Hp of deu-
terio-4aa/4ab likely occurs at the stage of 3a because similar levels

Scheme 2. Mechanistic Experiments.

Equation 1:

0.49D 920D 027D H0.43D
Standard Conditions HbHao H 017D
mz (NapSO, was omitted) - 1—< N—h
> +
N)~ P D,0 (300 moi%) N N)~ P
N 24h N H &N
Bn o ‘Bn Bn
3a deuterio-4aa deuterio-3aa
42% Yield 32% Yield
Equation 2: 014D 921 p
0.39 D HHO W
Standard Conditions
3a (NaySO4 was omitted) - 5 3
D,0 (300 mol%) ’;}_N H
72h \
o Bn
Equation 3: deuterio-4ab, 64% Yield
° Standard Conditions 0\ H0.13D
S\ (NaySO4 was omitted) 3 <
o~ AN
N . N R
D,0 (300 mol%
N " ’ (24h " SN
Bn o] Bn
4a deuterio-4ac, 98% Yield
Equation 4:
H0.45D
Standard Conditions
©j\> (NaySO,4 was omitted) NNH 027D
N D,0 (300 mol%) N
/~Me z 5 -
N 24h Ve
o} L [o] \
no cyclopropane unit Bn
ethyl-3a deuterio-ethyl-3a, 97% Yield
Equation 5:
0.06 D 905D
D (>0.97) 0.21 DH H 0 H
N Standard Conditions A 5
g P o
N N
° ‘Bn 0)_ 'Bn
deuterio-3ab deuterio-4ad, 71% Yield
Equation 6:
Reaction time varied 0.
m"' /D under Standard Conditions \:}—\
N Klkp = 1.21 NN
o)‘ N\A N
Bn o Bn
3aldeuterio-3ac 4a



of exchange are observed at C3-H of this system. When 4a was re-
subjected to the reaction conditions, but in the presence of D20,
deuterium incorporation was observed at C2-H, likely due to enoli-
zation (Equation 3). Deuterium incorporation at C11-Ha of deu-
terio-4aa/4ab is consistent with syn-carbometallation of the C2-C3
n-system (from VII) prior to protodemetallation. The necessary
proton originates from either the acid additive or C2-H of 3a. When
deuterio-3ab was exposed to standard conditions, the deuterium la-
bel was transferred predominantly to C11-Hp (Equation 5). Finally,
exposure of equimolar quantities of 3a and deuterio-3ac to stand-
ard conditions revealed a small KIE (kn/kp = 1.21), suggesting that
C-H cleavage is not turnover limiting (Equation 6).13

Scheme 3. DFT analysis of C-C bond activation and C-C
bond forming pathways.?
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@ Calculations performed at the B3PW91-D3BJ/6-
311+G(2d,p),Rh(LANTZ(f))/SMD(DCB)//B3PW91-
D3BJ/6-31G(d),Rh(MWB28) level of theory, with thermochemi-
cal corrections calculated at T = 403 K and a 1 M standard state.

The experiments above are consistent with a pathway involving
stereoretentive protodemetallation of a C11-alkyl-Rh(1) species. To
provide insight into (a) the mode of C-C bond activation and (b)
the C-C bond forming sequence from the rhodabicycle (cf. 1), we
undertook DFT studies (Scheme 3). The detail of the ligand envi-

ronment around rhodium cannot be confirmed, and so the calcula-
tions are informative purely from a comparative viewpoint. It is
also challenging to compare the relative stabilities of intermediates
with different overall charge (neutral vs cationic);*4 accordingly,
we rely on the observation that C-H metallation is reversible, such
that A and B are not separated by more than a few kcal mol* and
zero points in energy can be set for these species (Scheme 3A). Di-
rected C-C bond activation of A to form E is endergonic (AG =7.1
kcal mol ) with a barrier of 22.5 kcal mol. Migratory insertion of
CO proceeds with a lower barrier (12.7 kcal mol vs 15.4 kcal mol-
! for E to A) to provide rhodacyclopentanone H (AG = -22.1 kcal
mol™).15 Equation 4 suggests that a C2-H metallation complex akin
to B is accessible; however, C-C bond activation from this (via D)
is discounted due to the higher energy barrier (AG = 32 kcal mol
1. Accordingly, we favor a carbonyl directed C-C bond activation
pathway for the generation of H, from which C2-H metallation (cf.
Equation 6) provides | (Scheme 3B). Two different sequences
could lead to alkyl-Rh(l) species P. In one scenario, 5-ring C(sp?)-
C(sp®) reductive elimination to M is followed by carbometallation
of the indole C2-C3 n-system via O. Both steps have high barriers
(32.4 and 31.9 kcal mol). The second option is in accord with Ta-
ble 1A, and is supported by Scheme 2, Equation 5. Here, 8-ring
C(sp?)-C(sp?) reductive elimination to L is followed by carbo-
metallation of the indole n-system via N. Both steps are accessible
with barriers of 17.8 and 23.5 kcal mol, respectively. Thus, the
analysis supports a sequence involving C(sp?)-C(sp?) reductive
elimination from I. Additional evidence discounting the alternate
C(sp?)-C(sp®) reductive elimination pathway lies in the observation
that products arising from decarbonylation of intermediates of type
M have not been observed.'® The relative facility of C(sp?)-C(sp?)
vs C(sp?)-C(sp®) reductive elimination from Rh(IIl) has been
demonstrated in other studies.’” It is striking that this reactivity
facet overrides the energetic penalty associated with formation of a
strained 8-membered ring (L).1® The role of the acid additive (4-
NMe2CsH4CO2H) is likely to facilitate protodemetallation of P; al-
ternate or additional roles are possible (e.g. as a carboxylate ligand
facilitating CMD-type conversion of H to 1).1°

The mechanistic pathway proposed above suggested that further
polycyclizations should be achievable by carbometallation of other
n-unsaturated units at the stage of V11 (see Table 1A). In particular,
we envisaged accessing distinct ring systems via exo-selective trap-
ping of this intermediate (cf. Scheme 1B, 5 to 6). To this end
alkenyl and alkynyl systems 3r and 5a were exposed to carbonyla-
tive polycyclization conditions, but in the presence of P(4-FCsHa)3
(15 mol%), an additive that suppresses the dearomatization pro-
cesses in Table 1 (Table 2A). 3r afforded solely dearomatization
product 4r, and the product of alkene carbometallation was not ob-
served. Conversely, cyclization of 5a, which contains a strongly
coordinating alkyne, led to 6a in 26% yield and the corresponding
dearomatization product was not observed. 6a formed as a single
geometric isomer, which is consistent with syn-stereospecific al-
kyne carbometallation from V11.2° When these processes were con-
ducted without P(4-FCeHa)s (cf. Table 1) 4r formed in 42% yield
whereas 6a was not observed. Optimization of 5a to 6a was
achieved primarily by switching the P-ligand to P(3,5-
(CHa3)2CsHs3)s; using this modification 6a was generated in 55%
yield (Table 2B). This protocol extended to a variety of related pol-
ycyclizations, which provided indole and pyrrole systems 6b-e in
39-82% yield. When 5d to 6d was run in the presence of D20, deu-
terium incorporation (10%) was observed only at the alkenyl C-H
(see the SI).% This is consistent with the second ring forming via a
syn-carbometallation-protodemetallation sequence from an inter-
mediate akin to VII.

The processes above provided the impetus for exploring the
scope of the nucleophilic component (Table 2B). 2-Carbamoyl in-
dole, pyrrole and benzofurans are also effective and 6f-i were gen-
erated in 43-67% yield. Exo-selective polycyclizations via the C-2



position of heteroarenes with C3 directing groups led to 6j-n; here,
competing cyclization via C4 was not observed. By blocking C-2,
pyrrole 50 could be induced to cyclize via C-4 to provide 60 in 40%

Table 2. Exo-polycyclizations.

(A) Development of a prototype process:
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N
\ P(4-FCgHy)3 (15 mol%) \\l" 7
PN e
4-NMe,CgH4CO,H (30 mol% \<_>:
° N NaZSO4 (100 mol%), DCB (0.1 M)
K/\/ (1atm), 72h, 120 °C
3r (alkene) or 5a (alkyne) l
o
X
{
&N RN

4r, 27% Yield
from 3r from 5a

6a, 26% Yield
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5m, Ar = 3-furyl

5n, Ar = 3-thienyl

50, Ar = 3-(2-Me)-pyrrolyl
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(C) Polycyclization involving C-N reductive elimination:
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yield. Use of less nucleophilic arenes (e.g. N-benzoyl) for the first
ring formation was unsuccessful. Rh-catalyzed 8-membered ring
formations have been reported previously, but they are not trans-
ferable to the polycyclizations described here.?

Other types of bond formation can be incorporated into these cas-
cades. Directed rhodacyclopentanone formation from 5p was fol-
lowed by N-H metallation to generate VIII (Table 2C). At this
stage, 7-ring C-N reductive elimination occurs prior to alkyne hy-
drometallation and protodemetallation, which afforded 6p in 73%
yield. This example is unique because reductive elimination (a)
generates a C-N rather than a C-C bond, and (b) provides a 7- rather
than 8-membered ring. To examine scope further, we subjected 1,3-
diene 5qg to polycyclization conditions (Table 2D). Remarkably,
this led to 8,7-fused ring system 6q as a single diastereomer. Here,
formation of the first ring likely follows a pathway akin to that out-
lined earlier. However, the second ring formation is most easily ra-
tionalized via a mechanistically distinct hydrometallation pathway,
wherein protonation of the alkyl-Rh(l) intermediate provides
Rh(111)-hydride 1X.2® Hydrometallation of the 1,3-diene generates
a Rh-z-allyl which undergoes C-C reductive elimination to 6q. The
intermediacy of Rh-m-allyl species is favored because T—oc—n
isomerization can account for the switch from the trans-C3-C4
linkage in 5q to the cis-geometry in 6q.2*

In summary, the latent ambiphilic reactivity of rhodacyclopenta-
nones can be harnessed for the design of polycyclization cascades.
The key intermediates are unveiled by carbonylative C-C bond ac-
tivation of cyclopropanes, an initiating motif that is otherwise sta-
ble and can be accessed easily (if required) in a stereocontrolled
manner. The method offers high flexibility for the construction of
diverse polyheterocycles that are challenging or inaccessible using
other methods. We anticipate that reactivity platforms of the type
outlined here will be of increasing importance for accessing molec-
ular scaffolds that lie in underexplored regions of chemical space.
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