
 Lau, M. K., Pasquier, T., & Seltzer, M. (2020). Rclean: A Tool for Writing
Cleaner, More Transparent Code. Journal of Open Source Software, 5(46),
[1312]. https://doi.org/10.21105/joss.01312

Publisher's PDF, also known as Version of record

License (if available):
CC BY

Link to published version (if available):
10.21105/joss.01312

Link to publication record in Explore Bristol Research
PDF-document

This is the final published version of the article (version of record). It first appeared online via Open Journals at
https://joss.theoj.org/papers/10.21105/joss.01312 . Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Explore Bristol Research

https://core.ac.uk/display/322476573?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.21105/joss.01312
https://doi.org/10.21105/joss.01312
https://research-information.bris.ac.uk/en/publications/rclean(d68d0d76-56ee-4346-929e-e3d3a8defaee).html
https://research-information.bris.ac.uk/en/publications/rclean(d68d0d76-56ee-4346-929e-e3d3a8defaee).html

Rclean: A Tool for Writing Cleaner, More Transparent
Code
Matthew K. Lau1, Thomas F. J.-M. Pasquier2, 3, and Margo Seltzer4

1 Harvard Forest, Harvard University 2 Department of Computer Science, University of Bristol 3
School of Engineering and Applied Science, Harvard University 4 Department of Computer Science,
University of British Columbia

DOI: 10.21105/joss.01312

Software
• Review
• Repository
• Archive

Editor: Daniel S. Katz
Reviewers:

• @danielskatz

Submitted: 07 February 2019
Published: 16 February 2020

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC-BY).

Introduction

The growth of programming in the sciences has been explosive in the last decade. This has
facilitated the rapid advancement of science through the agile development of computational
tools. However, concerns have begun to surface about the reproducibility of scientific research
in general (Baker, 2016) and the potential issues stemming from issues with analytical software
(Stodden, Seiler, & Ma, 2018). Specifically, there is a growing recognition across disciplines
that simply making data and software “available” is not enough and that there is a need to
improve the transparency and stability of scientific software (Pasquier et al., 2018).
At the core of the growth of scientific computation, the R statistical programming language
has grown exponentially to become one of the top ten programming languages in use today. At
its root R is a statistical programming language. That is, it was designed for use in analytical
workflows, and the majority of the R community is focused on producing code for idiosyncratic
projects that are results oriented. Also, R’s design is intentionally at a level that abstracts many
aspects of programming that would otherwise act as a barrier to entry for many users. This
is good in that there are many people who use R with little to no formal training in computer
science or software engineering, but these same users can also be frequently frustrated by
code that is fragile, buggy, and complicated enough to quickly become obtuse even to the
authors. The stability, reproducibility, and re-use of scientific analyses in R would be improved
by refactoring, which is a common practice in software engineering (Martin, 2009). From this
perspective, tools that can lower the time and energy required to refactor analytical scripts
and otherwise help to “clean” code, but abstracted enough to be easily accessible, could have
a significant impact on scientific reproducibility across all disciplines (Visser et al., 2015).
To provide support for easier refactoring in R, we have created Rclean. The Rclean package
provides tools to automatically reduce a script to the parts that are specifically relevant to
a research product (e.g., a scientific report, academic talk, research article, etc.) Although
potentially useful to all R coders, it was designed to ease refactoring for scientists who use R
but do not have formal training in software engineering.

Methods

The goal of Rclean is to provide a set of tools that help someone reduce and organize code
based on results. More often then not, when someone is writing an R script, the intent
is to produce a set of results, such as a statistical analysis, figure, table, etc. This set of
results is always a subset of a much larger set of possible ways to explore a dataset, as there
are many statistical approaches and tests, let alone ways to create visualizations and other
representations of patterns in data. This commonly leads to lengthy, complicated scripts

Lau et al., (2020). Rclean: A Tool for Writing Cleaner, More Transparent Code. Journal of Open Source Software, 5(46), 1312. https:
//doi.org/10.21105/joss.01312

1

https://doi.org/10.21105/joss.01312
https://github.com/openjournals/joss-reviews/issues/1312
https://github.com/ropensci/Rclean
https://doi.org/10.5281/zenodo.3665732
http://danielskatz.org/
https://github.com/danielskatz
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.01312
https://doi.org/10.21105/joss.01312

from which researchers manually subset results, but likely never to be refactored because of
the difficulty in disentangling the code needed to produce some results and not others. The
‘Rclean’ package uses an automated technique based on data provenance to analyze existing
scripts and provide ways to identify and extract code to produce a desired output.

Data Provenance

All of these processes rely on the generation of data provenance. The term provenance means
information about the origins of some object. Data provenance is a formal representation of
the execution of a computational process (https://www.w3.org/TR/prov-dm/), to rigorously
determine the the unique computational pathway from inputs to results (Carata et al., 2014).
To avoid confusion, note that “data” in this context is used in a broad sense to include all
of the information generated during computation, not just the data that are collected in a
research project that are used as input to an analysis. Having the formalized, mathematically
rigorous representation that data provenance provides guarantees that the analyses that Rcl
ean conducts are theoretically sound. Most importantly, because the relationships defined by
the provenance can be represented as a graph, it is possible to apply network search algorithms
to determine the minimum and sufficient code needed to generate the chosen result in the
clean function.
There are multiple approaches to collecting data provenance, but Rclean uses “prospective”
provenance, which analyzes code and uses language specific information to predict the rela-
tionship among processes and data objects. Rclean relies on a library called CodeDepends
to gather the prospective provenance for each script. For more information on the mechanics
of the CodeDepends package, see (Temple Lang, Peng, Nolan, & Becker, 2020). To get an
idea of what data provenance is, take a look at the code_graph function. The plot that it
generates is a graphical representation of the prospective provenance generated for Rclean .

Figure 1: Network diagram of the prospective data provenance generated for an example script.
Arrows indicate which lines of code (numbered) produced which objects (named).

Lau et al., (2020). Rclean: A Tool for Writing Cleaner, More Transparent Code. Journal of Open Source Software, 5(46), 1312. https:
//doi.org/10.21105/joss.01312

2

https://www.w3.org/TR/prov-dm/
https://doi.org/10.21105/joss.01312
https://doi.org/10.21105/joss.01312

In the future, it would also be useful to extend the existing framework to support other
provenance methods. One such possibility is retrospective provenance, which tracks a compu-
tational process as it is executing. Through this active, concurrent monitoring, retrospective
provenance can gather information that static prospective provenance can’t. Greater details
of the computational process would enable other features that could address some challenges,
such as processing information from comments, parsing control statements, and replicating
random processes. However, using retrospective provenance comes at a cost. In order to
gather it, the script needs to be executed. When scripts are computationally intensive or con-
tain bugs that stop execution, then retrospective provenance can not be obtained for part or all
of the code. Some work has already been done in the direction of implementing retrospective
provenance for code cleaning in R (see http://end-to-end-provenance.github.io).

Software Availability

The software is currently hosted on GitHub, and we recommend using the devtools library
(Wickham, Hester, & Chang, 2019) to install directly from the repository (https://github.
com/ROpenSci/Rclean). The package is open-source and welcomes contributions. Please
visit the repository page to report issues, request features or provide other feedback.

Discussion

We see promise in connecting Rclean with other clean code and reproducibility tools. One
example is the reprex package, which provides a simple API for sharing reproducible examples
(Bryan, Hester, Robinson, & Wickham, 2019). Another possibility is to help transition scripts
to function, package and workflow creation and refactoring via toolboxes like drake (Landau,
2020). Rclean could provide a reliable way to extract parts of a larger script that would be
piped to a simplified reproducible example, in the case of reprex, or, since it can isolate the
code from inputs to one or more outputs, be used to extract all of the components needed to
write one or more functions that would be a part of a package or workflow, as is the goal of
drake. To conclude, we hope that Rclean makes writing scientific software easier for the R
community. We look forward to feedback and help with extending its application, particularly
in the area of reproducibility. To get involved, report bugs, suggest features, please visit the
project page.

Acknowledgments

This work was improved by discussions with ecologists at Harvard Forest and through the
helpful review provided by the ROpenSci community, particularly Anna Krystalli, Will Landau,
and Clemens Schmid. Much of the work was funded by US National Science Foundation grant
SSI-1450277 for applications of End-to-End Data Provenance.

References

Baker, M. (2016). 1,500 scientists lift the lid on reproducibility. Nature, 533, 452–454.
doi:10.1038/533452a

Bryan, J., Hester, J., Robinson, D., & Wickham, H. (2019). reprex: Prepare Reproducible
Example Code via the Clipboard. Retrieved from https://CRAN.R-project.org/package=
reprex

Lau et al., (2020). Rclean: A Tool for Writing Cleaner, More Transparent Code. Journal of Open Source Software, 5(46), 1312. https:
//doi.org/10.21105/joss.01312

3

http://end-to-end-provenance.github.io
https://github.com/ROpenSci/Rclean
https://github.com/ROpenSci/Rclean
https://doi.org/10.1038/533452a
https://CRAN.R-project.org/package=reprex
https://CRAN.R-project.org/package=reprex
https://doi.org/10.21105/joss.01312
https://doi.org/10.21105/joss.01312

Carata, L., Akoush, S., Balakrishnan, N., Bytheway, T., Sohan, R., Seltzer, M., & Hopper, A.
(2014). A Primer on Provenance. Queue, 12(3), 10–23. doi:10.1145/2602649.2602651

Landau, W. M. (2020). drake: A Pipeline Toolkit for Reproducible Computation at Scale.
Retrieved from https://CRAN.R-project.org/package=drake

Martin, R. (2009). Clean code: a handbook of agile software craftsmanship (p. 431).
Pasquier, T., Lau, M. K., Han, X., Fong, E., Lerner, B. S., Boose, E. R., Crosas, M., et

al. (2018). Sharing and Preserving Computational Analyses for Posterity with encapsu-
lator. Computing in Science & Engineering, 20(4), 111–124. doi:10.1109/MCSE.2018.
042781334

Stodden, V., Seiler, J., & Ma, Z. (2018). An empirical analysis of journal policy effectiveness
for computational reproducibility. Proceedings of the National Academy of Sciences of the
United States of America, 115(11), 2584–2589. doi:10.1073/pnas.1708290115

Temple Lang, D., Peng, R., Nolan, D., & Becker, G. (2020). CodeDepends: Analysis of R
Code for Reproducible Research and Code Comprehension. Retrieved from https://github.
com/duncantl/CodeDepends

Visser, M. D., McMahon, S. M., Merow, C., Dixon, P. M., Record, S., & Jongejans, E.
(2015). Speeding Up Ecological and Evolutionary Computations in R; Essentials of High
Performance Computing for Biologists. (F. Ouellette, Ed.)PLOS Computational Biology,
11(3), e1004140. doi:10.1371/journal.pcbi.1004140

Wickham, H., Hester, J., & Chang, W. (2019). devtools: Tools to Make Developing R
Packages Easier. Retrieved from https://CRAN.R-project.org/package=devtools

Lau et al., (2020). Rclean: A Tool for Writing Cleaner, More Transparent Code. Journal of Open Source Software, 5(46), 1312. https:
//doi.org/10.21105/joss.01312

4

https://doi.org/10.1145/2602649.2602651
https://CRAN.R-project.org/package=drake
https://doi.org/10.1109/MCSE.2018.042781334
https://doi.org/10.1109/MCSE.2018.042781334
https://doi.org/10.1073/pnas.1708290115
https://github.com/duncantl/CodeDepends
https://github.com/duncantl/CodeDepends
https://doi.org/10.1371/journal.pcbi.1004140
https://CRAN.R-project.org/package=devtools
https://doi.org/10.21105/joss.01312
https://doi.org/10.21105/joss.01312

	Introduction
	Methods
	Data Provenance
	Software Availability

	Discussion
	Acknowledgments
	References

