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Engineering structures are often designed using detailed Fi-
nite Element (FE) models. Although these models can cap-
ture nonlinear effects, performing nonlinear dynamic analy-
sis using FE models is often prohibitively computationally
expensive. Nonlinear reduced-order modelling provides a
means of capturing the principal dynamics of an FE model
in a smaller, computationally cheaper Reduced-Order Model
(ROM). One challenge in formulating nonlinear ROMs is the
strong coupling between low- and high-frequency modes, a
feature we term quasi-static coupling. An example of this
is the coupling between bending and axial modes of beams.
Some methods for formulating ROMs require that these high-
frequency modes are included in the ROM, thus increasing
its size and adding computational expense. Other methods
can implicitly capture the effects of the high-frequency modes
within the retained low-frequency modes; however, the re-
sulting ROMs are normally sensitive to the scaling used to
calibrate them, which may introduce errors. In this paper,

∗Corresponding author.

quasi-static coupling is first investigated using a simple os-
cillator with nonlinearities up to the cubic order. Reduced-
order models typically include quadratic and cubic nonlin-
ear terms, however here it is demonstrated mathematically
that the ROM describing the oscillator requires higher-order
nonlinear terms to capture the modal coupling. Novel ROMs,
with high-order nonlinear terms, are then shown to be more
accurate, and significantly more robust to scaling, than stan-
dard ROMs developed using existing approaches. The ro-
bustness of these novel ROMs is further demonstrated using a
clamped-clamped beam, modeled using commercial FE soft-
ware.

1 Introduction
Many modern engineering structures are required to op-

erate in extreme environments, or are designed with operat-
ing envelopes that go beyond the regions where linear behav-
ior can be assumed. For example, the skin panels of hyper-
sonic aircraft experience extreme thermal, aerodynamic and
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acoustic loads [1, 2]; similarly, highly flexible aircraft have
great potential for improved aerodynamic efficiency, but the
large deflections they exhibit lead to highly nonlinear behav-
ior [3]. These extreme structures and environments require
nonlinear dynamic behavior to be considered at many stages
of the design process.

Numerous tools and techniques may be employed for
analysing nonlinear dynamic behavior. For example, ana-
lytical approaches – such as the harmonic balance, multiple
scales and normal form methods [4–6] – allow the responses
of nonlinear systems to be analysed in detail and approxi-
mate solutions to be found explicitly [7]. Alternatively, nu-
merical continuation techniques allow nonlinear responses to
be computed accurately and efficiently without the need for
analytical treatment [8, 9]. These analytical and numerical
techniques are typically applied to the nonlinear equations of
motion describing a structure; however, in engineering dis-
ciplines, Finite Element (FE) models are often used, rather
than explicit equations of motion, to model structures. Al-
though FE analysis allows models of highly complex struc-
tures to be developed efficiently, using the models directly to
predict nonlinear dynamic behavior is often extremely com-
putationally expensive [10]. Nonlinear reduced-order mod-
elling provides a means of capturing the properties of a struc-
ture that govern the nonlinear dynamic behavior of interest.
These Reduced-Order Models (ROMs) take the form of low-
order systems of nonlinear equations of motion which may
be interrogated using the aforementioned analytical and nu-
merical tools, allowing for detailed, and computationally ef-
ficient, analysis of complex structures.

As described in the review by Mignolet et al. [11], tech-
niques for nonlinear model-order reduction may be separated
into two main categories: direct, where the nonlinear equa-
tions of motion of the full-order system are known and ac-
cessible; and indirect, where the equations of motion are in-
accessible or are not explicitly formulated. The focus of the
current paper is on indirect methods, which may be applied
to any commercial FE software that allows nonlinear static
solutions to be computed, such as Abaqus [12].

The two main indirect methods for nonlinear reduced-
order modelling are the enforced displacement and applied
loads methods. These two approaches have the same objec-
tive: to determine the relationship between the modal forces
(i.e. forces in the shapes of the linear modes) and modal dis-
placements, and use this relationship to calibrate an assumed
nonlinear stiffness model. In both cases, it is therefore as-
sumed that the dynamics of interest may be captured by a
limited number of linear modal coordinates, which form the
ROM basis. The enforced displacement method, which was
first developed by Muravyov and Rizzi [13, 14], determines
the modal force-displacement relationship by applying a set
of modal displacements to the FE model and measuring the
forces required to achieve these displacements. The applied
loads procedure, first introduced by Segalman et al. [15, 16],
instead applies a series of loads to the FE model and mea-
sures the resulting displacements.

Whilst the applied loads and enforced displacement ap-
proaches may seem equivalent, a number of differences have

been noted. For example, the enforced displacement method
is relatively insensitive to the amplitude of the displacements
used to calibrate the model [13]. However, this method does
not capture the effects of the coupling between membrane
and axial modes and, as such, typically requires multiple ax-
ial modes to be explicitly included in the ROM basis [17].
On the other hand, the applied loads procedure is able to
capture the membrane stretching effect implicitly; however,
the resulting ROM is often sensitive to the amplitudes of the
modal forces used for calibrating it [2]. As such, the ROM
may be tuned using the forcing amplitudes. The mechanism
that governs this coupling has recently been explored by Tar-
taruga et al. [18].

This paper investigates the mechanism that under-
pins quasi-static coupling between low- and high-frequency
modes of nonlinear systems. Quasi-static coupling describes
coupling between modes of a system that causes the behavior
of one mode to be dictated by another. Membrane stretching
is an example of quasi-static coupling – i.e. the axial modes
are assumed to be a function of the membrane modes – but a
more general term is employed here to account for similar ef-
fects in systems without membrane-like features, such as the
simple oscillator considered as a motivating example in §2.
The effect of quasi-static coupling is investigated in detail us-
ing the applied loads procedure, and it is demonstrated that a
ROM that is insensitive to the forcing amplitude may exist.
Specifically, it is demonstrated that this coupling causes the
order of the nonlinearity of the ROM to increase – i.e. even
though the full-order system contains only cubic nonlinear-
ities, the ROM must include nonlinearities of order higher
than cubic in order to accurately capture its response. This is
in contrast with existing approaches, where the nonlinearity
in the ROMs is limited to the cubic order [11]. It is demon-
strated that using a higher-order of nonlinearity in the ROM
not only leads to a more robust parametric fitting procedure
using the applied loads method, but that the resulting ROMs
can be significantly more accurate.

The paper is structured as follows: §2 introduces a sim-
ple, 2-DoF oscillator which exhibits a quasi-static coupling
between its two modes – this is used as a motivating exam-
ple to demonstrate the effect of including higher orders of
nonlinearity in the ROMs. This system is again considered
in §3 and, after formalising the quasi-static coupling, it is
used to demonstrate that an exact ROM – i.e. a ROM that
is invariant to the amplitude of the static loads – does ex-
ist, but that it requires a high order of nonlinearity in the
ROM. The backbone curves (or, equivalently, the nonlinear
normal modes) are used to compare the accuracy of the dif-
ferent ROMs. Finally, in §4, the approach is demonstrated
using a clamped-clamped beam, modeled in the commercial
FE software Abaqus. This further highlights the robustness
that is gained from including higher orders of nonlinearity in
ROMs of more complex structures, thus eliminating the need
for fine-tuning and extending the applicability of the result-
ing ROM to a wider range of operating conditions.
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2 A simple, strongly coupled oscillator
Quasi-static coupling describes when the linear modes

of a system are coupled such that the motion of one mode
may be expressed as a function of another. For example, as
shown in Fig. 1, the tip of a thin, cantilever beam will move
towards the root of the beam when bending with a large de-
flection. This may be viewed as an axial displacement of
the beam; however, this axial motion is a function of verti-
cal deflection, rather than an independent behavior (provided
the axial stiffness is much greater than the vertical stiffness).
A beam is considered in §4, however, first, a conceptually
simple system is used to demonstrate the quasi-static cou-
pling effects and examine their influence on the process of
reduced-order modelling.

Fig. 1. A schematic depicting the axial motion of the tip of a can-
tilever beam undergoing a large deflection. The dashed-red line
shows the path of the tip of the beam.

2.1 A simple two-degree-of-freedom oscillator
Figure 2 shows a schematic of a simple, one-mass os-

cillator that is free to move in the horizontal (x) and ver-
tical (y) directions. It is constrained by two springs with
lengths `1 = 0.1 m and `2 = 0.1 m respectively, and linear
stiffness parameters k1 = 10 N m−1, and k2 = 1000 N m−1,
respectively. When x = y = 0, these springs are orthogo-
nal and in equilibrium. It is assumed that this is a point
mass (m = 0.1 kg), and hence does not rotate; as a result,
this system has two degrees-of-freedom. This structure has
previously been considered by Touzé et al. [19], and used to
demonstrate a reduced-order modelling procedure in [20].

m

k1

k2

`1

`2

x

y

Fig. 2. A schematic diagram of a two-degree-of-freedom, single-
mass oscillator, used as a simple motivating example.

As the two springs are orthogonal and have no preten-
sion, the first linear mode of the system is captured by a
purely horizontal (x-direction) motion, whilst the motion of
the second mode is purely vertical (y-direction). As k2� k1,
the second linear natural frequency is considerably greater
than the first. Additionally, if the mass is deflected horizon-
tally (i.e. in the first mode), the strong coupling between the
modes (due to the geometry of the system) will cause a de-
flection in the vertical direction (i.e. the second mode). For
small dynamic displacements in the first mode, the mass will
follow an arced path – as shown in Fig. 31. This response
clearly shows a displacement in the vertical direction; how-
ever, rather than being an independent degree-of-freedom,
the vertical displacement may be considered to be a function
of the horizontal displacement, i.e. y = f (x). This is analo-
gous to the cantilever beam shown in Fig. 1, which also ex-
hibits two strongly coupled modes with a large difference in
their natural frequencies (i.e. the bending and axial modes).
Note that in the extreme case of k2→ ∞, this system will
represent a pendulum constrained by a spring – a system
with only one degree-of-freedom (DoF), and which exhibits
a similar response to that shown in Fig. 3.

Fig. 3. A free, periodic response of the two-degree-of-freedom os-
cillator. This is shown in the projection of the horizontal displacement,
x, against the vertical displacement, y, parameterised in time.

The equations of motion of the 2-DoF system in Fig. 2
are written

mẍ+Fx (x,y) = 0 , (1a)
mÿ+Fy (x,y) = 0 , (1b)

where Fx and Fy describe the restoring forces of the springs
in the x- and y-displacements respectively. These restoring
forces lead to coupling between the x- and y-directions; how-
ever, as previously discussed, they do not generate a linear
coupling force. Therefore, the linear modal coordinates may

1As this is a periodic response of the conservative system, this motion
represents a nonlinear normal mode – i.e. a point on the backbone curve that
emanates from the horizontal linear mode.
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be written as q1 = mx and q2 = my which, when substituted
into Eqs. (1) may be approximated to

q̈1 +ω
2
1q1 +α1q2

1 +α2q1q2 +α3q2
2 +α4q3

1+

α5q2
1q2 +α6q1q2

2 +α7q3
2 = 0 , (2a)

q̈2 +ω
2
2q2 +β1q2

1 +β2q1q2 +β3q2
2 +β4q3

1+

β5q2
1q2 +β6q1q2

2 +β7q3
2 = 0 , (2b)

where the parameters are given in Table 1. Note that, for sim-
plicity, the nonlinear terms have been truncated to the third
(cubic) order, using a Taylor series expansion. Although this
approximate model is no longer an exact reflection of the
dynamics of the system, it does still exhibit the strong quasi-
static coupling between the modes, which allows this effect
to be investigated for a mathematically simple model.

Table 1. The coefficients of the equations of motion, Eqs. (2).

Coefficient Value

ω1 10

α1 0

α2 106

α3 5000

α4 5×107

α5 0

α6 −1.01×108

α7 0

Coefficient Value

ω2 100

β1 5×105

β2 104

β3 0

β4 0

β5 −1.01×108

β6 0

β7 5×105

2.2 Overview of nonlinear reduced-order modelling
A nonlinear reduced-order model has fewer degrees-of-

freedom than the original, full-order system – in this case,
Eqs. (2) are treated as the full-order system. The ROM must
accurately reproduce the dynamic behavior of the full-order
system over a specific region, such as a range of response
frequencies. For the case of the simple oscillator, the region
of interest is defined as responses in the vicinity of the first
linear natural frequency2. The reduced-order modelling ap-
proach developed here assumes that the full-order equations
of motion are unknown – which is often the case when a non-
linear structure is modeled using commercial FE software.
Therefore, the reduction methodology should not require ac-
cess to the full-order equations of motion. For the simple
example considered here, the full-order equations of motion,
Eqs. (2), are known, however these will not be explicitly used
to calibrate the ROMs. Note that in §4 an FE model is used
as a full-order model – a case where the full-order equations
of motion are not known explicitly.

2As discussed later, the region of interest corresponds to NNMs repre-
sented by the first backbone curve of the system.

The reduced-order modelling procedure used here is the
applied loads method, which is implemented as follows:

1. Select the modal basis and parametrised form of the non-
linear functions (a polynomial series is typically used).

2. Apply a series of static load cases to the full-order
model. These loads should be applied to the modes that
are included in the ROM.

3. Measure the modal displacements that result from these
load cases for the modes included in the ROM.

4. Estimate the parameters of the nonlinear functions using
the force and displacement data.

Note that the number of load cases must be equal to, or
greater than, the number of unknown parameters in the non-
linear functions. Therefore, a larger ROM (i.e. with more
degrees-of-freedom) or a higher-order of nonlinearity will
require a larger number of load cases. Normally, the non-
linear function is described using a series of quadratic and
cubic functions [11, 21] – i.e. higher-order polynomials are
not typically included.

2.3 Motivating results for the simple oscillator
The applied loads method is now used to find ROMs de-

scribing the full-order model of the oscillator, Eqs. (2). As
previously discussed, the responses in the region of the first
linear natural frequency are of interest; hence the ROM con-
sists of a single mode, q1. A typical ROM, with nonlineari-
ties up to the cubic order is therefore of the form

q̈1 +ω
2
1q1 + γ2q2

1 + γ3q3
1 = 0 , (3)

where parameters γ2 and γ3 are to be estimated (it is assumed
that the linear natural frequency may be obtained separately).
Equation (3) is referred to here as the 3rd-order ROM and
may be considered as the standard expansion used in the
literature. An additional, and novel, ROM with nonlinear
terms up to the 9th order is also used for comparison3. This
is termed the 9th-order ROM and is of the form

q̈1 +ω
2
1q1 + γ2q2

1 + γ3q3
1 + γ4q4

1 + γ5q5
1+

γ6q6
1 + γ7q7

1 + γ8q8
1 + γ9q9

1 = 0 . (4)

The 9th-order ROM has six additional parameters that must
be estimated and hence requires the computation of addi-
tional static solutions.

For both ROMs, the force-displacement data are ob-
tained by applying static loads to the first mode (i.e. the
only mode included in the ROMs) of the full-order model,
i.e. solving

ω
2
1q1 +α1q2

1 +α2q1q2 +α3q2
2 +α4q3

1+

α5q2
1q2 +α6q1q2

2 +α7q3
2 = FSFq1 , (5a)

ω
2
2q2 +β1q2

1 +β2q1q2 +β3q2
2 +β4q3

1+

β5q2
1q2 +β6q1q2

2 +β7q3
2 = 0 , (5b)

3The motivation for this particular order of ROM is described in §3.
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for q1 and q2, where Fq1 is the set of forces and FS is the
force scale factor. Here, the sets of forces are evenly spaced
between −1 and +1, and match the number of unknown pa-
rameters in the 9th-order model4, i.e.

Fq1 =

{
−1 ,
−5
7

,
−3
7

,
−1
7

,
1
7
,

3
7
,

5
7
, 1
}
. (6)

These are then scaled using the force scale factor, FS.
Once the displacements, resulting from the applied

loads, have been found using the full-order model, the
ROM parameters are estimated in a least-squares sense. For
the 3rd-order ROM, this involves finding γ2 and γ3 using
the expression γ2q2

1 + γ3q3
1 = FSFq1−ω2

1q1, which may be
achieved using (

γ2
γ3

)
= A−1c1 , (7)

where the ith rows of A and c1 are populated with the results
of the ith load case, i.e.

A =


[

q2
1, q3

1
]

Fq1=−1[
q2

1, q3
1
]

Fq1=−5/7
...[

q2
1, q3

1
]

Fq1=+1

 , (8a)

c1 =


[

FSFq1−ω2
1q1
]

Fq1=−1[
FSFq1−ω2

1q1
]

Fq1=−5/7
...[

FSFq1−ω2
1q1
]

Fq1=+1

 . (8b)

A similar expression is used to find the parameters of the
9th-order ROM, where A and c1 measure {8×8} and {8×1}
respectively.

Figure 4 shows how the cubic parameter, γ3, of the
3rd- and 9th-order ROMs varies with the force scale fac-
tor, FS. The maximum force scaling factor considered here,
FS = 0.16, corresponds to an absolute static displacement of
approximately 0.17 `1 and 0.02 `2 in the x- and y-directions
respectively. As previously noted in studies of the applied
loads procedure, [2, 22], the parameters of the system are
dependent on the force scale factor. This is clearly seen in
Fig. 4 where, for the 3rd-order ROM, γ3 varies significantly.
As a result, the force scale factor must be carefully chosen
to obtain an accurate model of the system. This large vari-
ation in γ3 illustrates a fundamental issue with the structure
of the function used to approximate the nonlinear restoring
forces in the ROM. The cubic parameter of the 9th-order

4Note that, typically, ROMs are calibrated using a minimum number of
load cases, e.g. 2 for a single-DOF 3rd-order ROM. However, here each
ROM utilises 8 load cases, which allows for a direct comparison between
ROMs of different orders.

Fig. 4. The effect of force scale factor, FS, on the cubic parameter,
γ3, of the two ROMs. Note that each dot represents a γ3 value for
a given force scale factor. The circles denote specific force scale
factors, at FS = {0.01,0.1,0.15}, that are used to compute the
backbone curves shown in Fig. 5.

ROM, however, appears to be less sensitive, implying that
this model is more robust to this choice of force scale factor.
Note that, typically, only one force scale factor is chosen to
calibrate the ROM – multiple scale factors are used here to
demonstrate the effect of this choice on the parameter values.

A backbone curve is a locus of conservative, periodic
responses (i.e. a locus of nonlinear normal modes) and cap-
tures the fundamental dynamic behavior of a nonlinear sys-
tem [23]. As such, backbone curves may be used as a means
of assessing the accuracy of ROMs [22]. The backbone curve
of the two ROMs, calibrated using three different scale fac-
tors, are shown in Fig. 55. These are compared to the first
backbone curve (i.e. the backbone curve emerging from the
first linear natural frequency) of the full-order model. It is
clear that the 9th-order ROMs are more accurate than the 3rd-
order ROMs. Additionally, as indicated in Fig. 4, the 9th-
order ROMs are significantly more robust to the choice of
force scale factor – at this scale, it is difficult to differen-
tiate between these backbone curves. As shown in Fig. 4,
the cubic parameter of the 3rd- and 9th-order ROMs becomes
equivalent at low force scale-factors, demonstrating that the
difference between the backbone curves of these ROMs is
driven by the higher-order terms (considered in detail in
the following section). These results motivate the need for
higher-order nonlinear terms in the ROM.

Recalling that the nonlinearities of the full-order system,
Eqs. (2), are truncated at the third order, it may seem counter-
intuitive that the dynamics are best captured by a 9th-order
ROM. The following section explores how the quasi-static
coupling between the two modes leads to a ROM that re-
quires a higher-order of nonlinearity than the full-order sys-
tem.

5These have been computed using the MATLAB R©-based numerical
continuation software Continuation Core (COCO) [9].
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Fig. 5. A comparison between the two ROMs, calibrated using dif-
ferent force scale factors, FS, using the first backbone curve. These
are compared to the first backbone curve of the full-order model, rep-
resented by the solid-black line. The blue and red lines represent
the 3rd- and 9th-order ROMs respectively, whilst the solid, dashed
and dotted-dashed lines denote the three different force scale factors
used to calibrate the ROMs. These are shown in the projection of the
response frequency, Ω, against the amplitude of displacement of the
first mode, Q1. The response frequency is defined as Ω = 2πT−1,
where T is the period of the response, and the displacement ampli-
tude is defined as Q1 = (max{q1}−min{q1})/2.

3 Accounting for quasi-static coupling in nonlinear
reduced-order models

3.1 The effect of quasi-static coupling on the order of
nonlinear terms

When a force is applied in the first mode of the 2-DoF
oscillator, the resulting static deflection in the first mode is
accompanied by a static deflection in the highly stiff second
mode, such that the oscillator follows an arced path, as pre-
viously illustrated in Fig. 3. This modal coupling may be
approximated as quasi-static, i.e. the second mode may re-
spond dynamically6, but is constrained by the stiffness cou-
pling with the first mode, which may be captured statically.
Reducing the order of the full model7 therefore cannot rely
on the assumption that q2 is small – i.e. removing all q2-
dependent terms in the full-order q1 equation (Eq. (2a)) will
not lead to an accurate ROM. Instead, reducing the order of
Eqs. (2) relies on the assumption that the inertial term, q̈2,
is small in relation to the stiffness components in the sec-
ond modal equation of motion, Eq. (2b). This allows the
dynamics of the second mode to be neglected, without re-
quiring the displacement to be negligible. When the second

6In the presence of a dynamic interaction (e.g. internal resonance), the
participating modes must be included as independent DoFs in the ROM.

7Note that here we define the order of the nonlinearity as the maximum
order of the polynomial in the restoring forces.

linear natural frequency is significantly larger than the first,
i.e. ω2� ω1, this assumption is reasonable, and does not re-
quire q2 to be small in relation to q1. By assuming that q̈2 ≈ 0
(as is done when the loads are applied to the static system in
Eqs. (5)), the second equation of the static full-order system,
Eq. (5b), allows the second mode to be written as a function
of q1, i.e.

q2 = f (q1 ,ω2 , β1 , β2 , . . .) , (9)

where ω2 and βi are the second linear natural frequency and
nonlinear parameters of Eq. (5b), respectively. This may be
approximated to a Jth-order polynomial function of q1, i.e.

q2 ≈
J

∑
j=2

A jq
j
1 , (10)

where A j = A j (ω2 , β1 , β2 , . . .), i.e. the constants A j depend
upon the second linear natural frequency and nonlinear pa-
rameters but are independent of the force applied to the sys-
tem or q1. As such, the values A j may be considered fixed
for a given set of system parameters. Note that no linear
term is included in Eq. (10) as q1 and q2 must, by definition,
be linearly independent. Substituting Eq. (10) into the first
equation of the full-order model, Eq. (2a), leads to the ROM

q̈1 +ω
2
1q1 +

3J

∑
j=2

γ jq
j
1 = 0 , (11)

where

γ2 = α1 , (12a)
γ3 = α4 +A2α2 , (12b)
γ4 = A2α5 +A2

2α3 +A3α2 , (12c)
γ5 = A2

2α6 +2A2A3α3 +A3α5 +A4α2 , (12d)
γ6 = A3

2α7 +2A2A3α6 +2A2A4α3 +A2
3α3 + (12e)

A4α5 +A5α2 ,

γ7 = 3A2
2A3α7 +2A2A4α6 +2A2A5α3 +A2

3α6 + (12f)
2A3A4α3 +A5α5 +A6α2 ,

...
...

Note that when J = 3, Eq. (11) is the same as the 9th-order
ROM considered earlier, Eq. (4).

Equations (12) show that the ROM parameters, γi, are
only dependent on the quasi-static coupling parameters8, A j,
and the nonlinear parameters, αk. As such, the ROM param-
eters are independent of the force scale factor. This demon-
strates that the ROM is fixed for the system and should not

8The term quasi-static coupling parameter is adopted here as the quasi-
static coupling function, Eq. (10), reflects the assumption of quasi-static
coupling between the modes.
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vary with the force scale factor. It should also be highlighted
that this ROM has a significantly higher-order of nonlinear-
ity than the full-order equations of motion (recalling that the
nonlinear terms in the full-order model do not go beyond the
cubic order). Furthermore, assuming that q2 is a function
of q1, will always lead to a higher-order polynomial in the
ROM, as this quasi-static coupling function must be nonlin-
ear.

For this simple, 2-DoF system, the ROM parameters, γi,
may be computed directly. From Eqs. (12), these require the
parameters A j, which, as previously discussed, may be com-
puted using the second equation of motion of the full-order
model, Eq. (2b), and assuming that the inertial term is negli-
gible. Note that this would not be practical for larger, more
complex systems, and would not be possible for FE models
where the full-order equations of motion are not accessible.

As the lowest order of nonlinearity in the full-order sys-
tem is quadratic, the quasi-static coupling parameter A j can-
not contribute to the parameter γi where i < j+1. This can
be seen in Eqs. (12), where A2 does not contribute to γ2, and
A3 does not contribute to γ2 or γ3, etc. As such, the ROM
parameters up to γ9 can be computed precisely by finding q2
as a function of q1 up to order J = 8, from Eq. (10). These
parameters are given in Table 2.

Table 2. Values of parameters for the function of q2 in terms of q1,
Eq. (10), and the general reduced-order model, Eq. (11).

A j Value

A2 −50

A3 50

A4 −5.051×105

A5 1.010×106

A6 −5.096×109

A7 1.528×1010

A8 −5.129×1013

γ j Value

γ2 0

γ3 0

γ4 6.250×107

γ5 −7.576×1011

γ6 1.768×1012

γ7 −1.020×1016

γ8 3.440×1016

γ9 −1.285×1020

Table 2 shows that the quadratic and cubic parameters,
γ2 and γ3, of the reduced-order model are both zero. Recall-
ing that the full-order equations of motion contain quadratic
and cubic terms, this may seem surprising and further high-
lights the importance of including higher-order terms for fit-
ting. This also demonstrates why, for low scale factors, the
3rd-order ROM tends towards a linear system, as seen in
Fig. 5. Note, however, that γ2 = γ3 = 0 is not a feature that
is common to all ROMs as seen in §4, where a beam with
clamped end-conditions is considered.

In all but the simplest of systems it is not practical to
compute the ROM coefficients by directly solving the un-
modeled modes in terms of the modes retained in the ROM,

and for many FE models it is not possible to access the equa-
tions of motion. For more complex systems these parameters
may still be estimated using the least-squares fit, shown pre-
viously in §2.3, which will require a truncation of the order
of the nonlinearity in the ROM. This will introduce an er-
ror, which is likely to increase as the force scale factor is
increased (as the neglected higher-order terms will become,
relatively, more significant as the displacement increases).
However, this may be viewed as an approximation error,
rather than a tuning of the model, as the “target” γi are in-
variant with force scale factor.

3.2 Reduced-order models of the simple oscillator
Figure 6 shows the relative errors between the true

(i.e. using Eq. (12)) and estimated parameters (using Eqs. (7)
and (8)) of the 3rd- and 9th-order ROMs. These errors are
defined as (γ̂i− γ̄i)/γ̄i, where γ̄i and γ̂i denote the true and
estimated values of γi respectively. As γ̄2 = γ̄3 = 0, the esti-
mated values, rather than the relative errors, of γ̂2 and γ̂3 are
shown. Also note that the plot of the estimated values of γ3,
for the two different ROMs, was shown previously in Fig. 4.

Figure 6 further demonstrates that the 9th-order ROM
is significantly more robust to the force scale factor, FS, than
the 3rd-order model. However, Fig. 6 does reveal that there is
some error associated with the estimation of the 9th-order pa-
rameters, and that this error increases with FS. As previously
discussed, this is due to the higher-order terms becoming,
relatively, more significant at higher force scale factors. The
magnitude of these errors appears to increase with the order
of the term; however, for the range of force scale factors con-
sidered here, these errors remain small. This is because the
relative significance of the corresponding polynomial term
is small, as discussed in the following section and shown in
Fig. 8. Assuming that the terms above the 9th-order are neg-
ligible, this suggests that the 9th-order fit should give consis-
tently accurate results, even at low force scale factors.

Estimating γi by fitting Fq1 to a polynomial function of
q1 (using, for the 3rd-order case, Eqs. (7) and (8)) allows the
ROM to be formulated and the responses of the modes cap-
tured by the ROM (q1 in this example) to be computed. As
with the Implicit Condensation and Expansion method, in-
troduced by Hollkamp and Gordon [21], an additional step
allows the dynamics of the unmodeled modes (q2 in this in-
stance) to be estimated. This requires the parameters, A j, of
the quasi-static coupling function, Eq. (10). These may be
estimated using the displacements q2 that result from static
load cases applied to q1 – note that the first step where the pa-
rameters γi are found, used the first modal displacements, q1,
but disregarded the second mode, q2. Therefore, the parame-
ters A j may be estimated without the need for any additional
load cases and, for the 3rd-order ROM, this may be computed
using

(
A2
A3

)
= A−1c2 , (13)
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Fig. 6. The values and relative errors of the estimated parameters of the 3rd- and 9th-order ROMs, represented by blue and red dots
respectively. These are shown in the projection of the force scale factor, FS, against the value or relative error of the ROM parameter, γi.
The true values of parameters γ2 and γ3 are zero (see Table 2) and hence the estimated values, rather than relative errors, are shown. All
remaining panels, for γ4→9, show the relative errors of the estimated values.

where

c2 =


[

q2
]

Fq1=−1[
q2
]

Fq1=−5/7
...[

q2
]

Fq1=+1

 , (14)

and A is as defined in Eq. (8). A similar expression is used
for the 9th-order ROM.

Figure 7 shows the first backbone curve of the oscilla-
tor in terms of the amplitudes of the first and second modes,
Q1 and Q2 respectively. The projection of the first modal
amplitude, in Fig. 7(a), was shown previously in Fig. 5. In
Fig. 7(b), q2 has been found using a 3rd- and 9th-order poly-
nomial fit (for the 3rd- and 9th-order ROMs respectively) to
q1 – i.e. Eq. (10). The values of parameters A j differ between
the force scale factors and ROMs. As previously discussed
for the Q1-projection, the backbone curve of the 9th-order
ROMs (red lines in Fig. 7(a)) show a much better agree-
ment with that of the full-order model (black line) than that
of the 3rd-order ROMs (blue lines). This trend is also seen
in the projection of the second modal amplitude, Q2, shown
in Fig. 7(b). In both projections, the backbone curves of the
9th-order ROMs overlap, demonstrating the robustness of the
fit of q2 with respect to the force scale factor, FS. It should
be acknowledged that, to some degree, it is unsurprising that
higher-order expressions enable a better fit; however, it is the
physical justification for this that is paramount.

3.3 Comparing the accuracy of different orders of non-
linear reduced-order models

The 9th-order ROM has been shown to give signifi-
cantly more accurate backbone curve results, and a signif-
icant increase in robustness to force scale factor, in com-
parison to the 3rd-order ROM. This demonstrates the advan-
tages of selecting a high order of nonlinearity in the reduced-
order model, even when the full-order model has a relatively
low order of nonlinearity. As previously discussed, the 9th-
order of nonlinearity captures the effects of all terms in the
quasi-static coupling function, Eq. (10), up to the third order,
i.e. for J = 3. However, it has also been noted that the terms
in the ROM with a very high order are likely to be less signifi-
cant. This implies that a lower-order of nonlinearity (i.e. less
than 9th-order) in the ROM may still be able to accurately
capture the dynamics of the full-order system. This is firstly
investigated by inspecting the magnitudes of the terms in the
9th-order ROM at different response amplitudes.

Figure 8 compares the magnitudes of the polynomial
terms for three different points on the backbone curve. The
magnitude of the nth-order term is calculated as max{|γnqn

1|},
where the true value of γn is used, from Table 2, and the
backbone curve is computed using the full-order model. The
labels on the axes of the inset panels denote the term or-
der. Note that the 2nd- and 3rd-order terms are not shown
as γ2 = γ3 = 0, hence their magnitudes must be zero. Fig-
ure 8 clearly demonstrates that, for the three points shown
here, the 5th-order term is dominant. The 7th-order term be-
comes more significant at higher amplitudes, whilst the 9th-
order term is negligible at lower amplitudes, and very small
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Fig. 7. A comparison between the two ROMs, calibrated using different force scale factors (FS) using the first backbone curve. These
backbone curves are shown in the projection of response frequency, Ω, against the first and second modal displacement amplitudes, Q1 and
Q2, in panels (a) and (b) respectively. These modal amplitudes are defined as Qi = (max{qi}−min{qi})/2. These are compared to
the first backbone curve of the full-order model, represented by the solid-black line. The blue and red lines represent the 3rd- and 9th-order
ROMs respectively.

Fig. 8. A comparison of the relative magnitudes of the nonlinear
terms in the ROM, for three different points on the backbone curve.
The black line shows the backbone curve of the full-order system and
the three black dots denote the three responses used for comparison.
The inset panels show the relative magnitudes of the terms, for terms
4 to 9, where the nth term is given by γnqn

1.

at higher amplitudes. Of the even-valued terms, the 4th-order
term is relatively significant, particularly at low amplitudes,
whilst the 6th- and 8th-order terms are negligible for all three
points shown9.

The observation that the high-order terms appear to be
small, from Fig. 8, implies that a lower-order (i.e. lower than
9th-order, but higher than 3rd-order) ROM may give good
accuracy. This is now investigated by comparing all orders
of ROM, from the 3rd to the 9th. As before, each ROM uses
8 evenly distributed load cases.

Figure 9 shows the backbone curves predicted by ROMs

9Note that this analysis requires the true solution to be known, and hence
cannot typically be applied prior to estimating the terms.

of different orders, all found using a force scale factor of
FS = 0.1. Panels (a1) and (a2) compare the 3rd- and 4th-
order ROMs, represented by dashed-blue and solid-red lines
respectively, to the full-order model, represented by a solid-
black line. These results show that the addition of the 4th-
order term only allows for a small improvement to the accu-
racy of the backbone curve. This is to be expected as, from
Fig. 8, the 5th-order term is the most significant term but is
not included in either the 3rd- or 4th-order ROMs.

Figures 9(b1) and 9(b2) compare the first backbone
curve of the 5th- to the 9th-order ROMs to that of the full-
order model. These are significantly more accurate than the
3rd- and 4th-order ROMs, shown in Figs. 9(a1) and 9(a2).
This is primarily due to the presence of a 5th-order nonlinear
term (previously identified as the most significant term) in
all ROMs of order 5 and above. Comparing the 5th- and 6th-
order ROMs reveals that the addition of the 6th-order term
results in a small change – reflecting the observation from
Fig. 8 that the 6th-order term is negligible. Likewise, the 7th-
and 8th-order backbone curves are indistinguishable, as the
8th-order term is also negligible. As the 7th-order term is
significant, however, the 7th-and 8th-order ROMs do show a
significant improvement compared to the lower orders. Fi-
nally, the 9th-order ROM leads to an improvement in accu-
racy; however, this improvement is minor, due to the size of
the 9th-order term.

From this it can be concluded that, whilst the 9th-order
ROM is required to fully-capture the cubic description of q2
in terms of q1 (i.e. for J = 3), the effect of the 9th-order term
is negligible. A very good fit in the backbone curve may still
be achieved with a 7th-order model, and a 5th-order model
also provides a good fit. Overall, this demonstrates that a
higher-order will lead to a greater accuracy but, if a lower-
order is desired (for example, if a limited number of load
cases, and hence parameters, are available) then a good ac-
curacy may still be achieved.

In summary, this section has demonstrated that the
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Fig. 9. A comparison between the backbone curves of different order ROMs. The 3rd- and 4th-order ROMs are compared to the full-order
model in panels (a1) and (a2) – shown in the projection of frequency, Ω, against the first and second modal amplitudes, Q1 and Q2,
respectively. Similarly, the 5th-to-9th-order ROMs are compared to the full-order models in panels (b1) and (b2). These ROMs have been
computed using a force scale factor of FS = 0.1.

quasi-static coupling between the two linear modes of the
simple, 2-DoF oscillator leads to a higher-order of nonlin-
earity in the ROM than in the full-order equations of motion.
Whilst a higher-order ROM does require additional param-
eters for fitting, it is significantly more robust to the force
scale factor and produces significantly more accurate back-
bone curves for the case considered here. The following sec-
tion extends this analysis to a clamped-clamped beam, mod-
eled using the FE software Abaqus [12].

4 Application to a finite element model
The 3rd- and 9th-order single-mode ROMs of a geomet-

rically nonlinear clamped-clamped beam, modeled using the
FE software Abaqus [12], are now considered. The beam
has a length, width and height (h) of 650 mm, 30 mm and
2 mm respectively, and is constructed of steel with a Young’s
modulus, shear modulus and density of 210 GPa, 80 GPa and
7850 kg m−3 respectively. The beam is modeled using 130
beam elements of type B32 [12], resulting in 1554 DoFs. Its
first mode, which is the only mode retained in the ROMs,
corresponds to the first bending mode of the beam and has
a linear natural frequency of ω1 ≈ 158 rad s−1. Note that the
single-mode ROMs computed here, aim to capture the salient
behavior of the beam in the vicinity of the first nonlinear
normal mode, and are used to investigate the coupling be-
tween the low-frequency (bending) and high-frequency (ax-
ial) modes – they are not intended to fully describe the dy-
namics of the system, for example by capturing dynamic in-
teractions such as internal resonances.

The static solution data used to construct the ROMs
were obtained by applying a static force proportional to
the first modeshape, and projecting the resulting physical
displacement of the beam, onto the mass-normalised lin-
ear modeshapes. Similar to the approach described in §2.3,
both the 3rd- and 9th-order ROMs constructed for each force
scale factor (FS), utilise 8 pairs of force-displacement data,
in which the reduced modal force applied to the beam is
equally distributed between −FS and +FS. The minimum
force scale factor considered here, FS = 8.7, corresponds
to the force required to achieve a maximum displacement
of ∼ 1mm = 0.5h in the underlying linear system. This
value was found to produce optimal results for a single-
mode ROM of a clamped-clamped beam in [22], where
the sensitivity to the scaling factor was demonstrated us-
ing Gordon and Hollkamp’s [2] Constant Linear Displace-
ment method of scaling. The maximum force scale fac-
tor considered here, FS = 100, extends beyond the optimal
value, and corresponds to a linear maximum displacement
of ∼ 11.5mm = 5.75h, and an actual (nonlinear) maximum
displacement (wmax) of ∼ 3.64mm = 1.82h.

4.1 Modal coupling
Figure 10 shows the displacement of the first mode, q1,

against the displacements of two axial modes, q59 and q101 –
i.e. the 59th and 101st modes. These modal displacements are
reached when forces are applied in only the first mode, hence
the axial displacements are only triggered due to the cou-
pling with the first mode. As these modes are significantly
stiffer than the first (i.e. ω59/ω1 ≈ 316 and ω101/ω1 ≈ 632),
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this coupling may be assumed to be quasi-static, as seen in
the simple oscillator considered previously. There is a clear
similarity between the free periodic response of the simple
oscillator, shown previously in Fig. 3, and the modal dis-
placements in Fig. 10.

Fig. 10. The static displacements of the first bending mode (q1)
and two axial modes (q59 and q101) when the structure is subjected
to forces in the first mode.

Figure 11 shows the corresponding energy of the two
axial modes as a percentage of the energy of the first
mode, plotted against the displacement of the first mode10.
These are calculated using a linear energy integral, i.e.
En = 0.5ω2

nq2
n, for n = 1, 59, 101. Even though the force was

only applied to the first mode of the beam, the amount of
energy induced in the highly stiff axial modes is relatively
large. This highlights the significance of the axial modes in
the response of the beam, even when operating at frequencies
much lower than their natural frequencies.

Fig. 11. The ratio of the energy of two axial modes (E59 and E101)
to the energy of the first mode (E1), plotted against the static dis-
placement of the first mode.

10As the response of the axial modes is symmetric, only positive displace-
ments are shown here.

4.2 Single-mode reduced-order model results
Figure 12 shows the estimated parameters of the 3rd-

and 9th-order ROMs of the clamped-clamped beam for force
scale factors in the range FS = [8.7, 100]. The top-left panel
shows that both the 3rd- and 9th-order ROMs predict a
quadratic parameter, γ2, that is close to zero, regardless of
the scale of the load applied. This is expected, as the struc-
ture is symmetric.

The cubic parameter, γ3, of the 3rd-order ROM (repre-
sented by blue dots) varies significantly as the force scale fac-
tor is increased. The cubic parameter in the 9th-order ROM,
meanwhile, remains close to a fixed value, suggesting that it
is less sensitive to the force scale factor. This agrees with
the findings of the simple oscillator, considered in previous
sections.

The even-valued parameter γ4 (only present in the 9th-
order ROM) fluctuates around relatively small values11. The
term corresponding to this parameter may be considered neg-
ligible, which, again, is expected due to the symmetric nature
of the beam.

In contrast, the odd-valued parameter γ5 is more than 10
orders of magnitude larger than γ4, and the trend it exhibits
is qualitatively similar to that of γ3. The significance of this
term is also later verified in Fig. 14, further justifying the
need for nonlinear terms of order higher than cubic. Given
the magnitude of the quintic monomial in the ROM, relative
to the cubic one, the effect of the variation in γ5 is small,
resulting in a robust ROM as the force scale factor varies.

Figure 13 shows a comparison of the backbone curves
of the 3rd- and 9th-order ROMs, calibrated using three dif-
ferent force scale factors (FS = {8.7, 50, 100}). Note that, as
the backbone curve of the full-order FE model is unknown,
it is not compared to that of the ROMs in this case. The fig-
ure demonstrates the sensitivity of the 3rd-order ROMs to the
force scaling factor, which can lead to inaccurate response
predictions when the proper scaling is not chosen. In con-
trast, the 9th-order ROMs result in backbone curves that re-
main practically indistinguishable as the scale factor varies.

It should also be highlighted that the 9th-order ROMs
produce results similar to those obtained using the optimal
3rd-order ROM (FS = 8.7), as reported in [22]. This high-
lights the accuracy, as well as robustness of the 9th-order
ROMs, which can eliminate the need for detailed tuning of
the scaling factor for each specific application.

Figure 14 shows the backbone curve predicted by the
9th-order ROM, calibrated using a force scale factor of
FS = 100. Similarly to Fig. 8, the inset panels represent the
magnitude of the nonlinear term for three different points on
the backbone curve. The figure demonstrates that the cubic
terms are dominant in all three responses, which largely jus-
tifies the use of 3rd-order ROMs in similar studies in the liter-
ature, especially for lower response amplitudes. However, it
is highlighted that the odd-valued higher-order nonlinearities
become increasingly significant at higher amplitudes. This
indicates that, as with the simple oscillator, a ROM with an

11Note that, whilst γ4 = O(104), the corresponding ROM term will be
insignificant, i.e. γ4q4

1 = O(10−8), since q1 = O(10−3).
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Fig. 12. The values of the estimated parameters of the 3rd- and 9th-
order ROMs, represented by blue and red dots respectively. These
are shown in the projection of the force scale factor, FS, against the
value of the ROM parameter, γi. The circles denote specific force
scale factors, at FS = {8.7,50,100}, that are used to compute the
backbone curves shown in Fig. 13.

Fig. 13. A comparison between the two ROMs, calibrated using dif-
ferent force scale factors, FS, using the first backbone curve. The
blue and red lines represent the 3rd- and 9th-order ROMs respec-
tively, whilst the solid, dashed and dotted-dashed lines denote the
three different force scale factors used to calibrate the ROMs.

order of nonlinearity that is higher than 3rd-order is required
to robustly and accurately capture the backbone curve at high
amplitudes.

Fig. 14. A comparison of the relative magnitudes of the nonlinear
terms in the ROM, for three different points on the backbone curve.
The black line shows the backbone curve of the 9th-order ROM and
the three black dots denote the three responses used for comparison.
The inset panels show the relative magnitudes of the terms, for terms
2 to 9, where the nth term is given by γnqn

1.

5 Conclusions

This paper has demonstrated that the dynamic coupling
between high- and low-frequency modes of a system can be
approximated as a quasi-static interaction. If this coupling
is sufficiently strong, the effect of the high-frequency modes
must be accounted for in the reduced-order models of the
low-frequency modes; however, they do not need to be mod-
eled as independent DoFs. Specifically, it has been shown
that quasi-static coupling introduces higher orders of nonlin-
earity in the ROMs, beyond the order of nonlinearity present
in the full-order model. It has been demonstrated that in-
cluding higher-order nonlinear terms leads to a significant
increase in the accuracy of the ROMs – determined by com-
paring the backbone curves of a conceptually simple, 2-DoF
oscillator. Furthermore, these higher-order ROMs are signif-
icantly more robust to the force scale factor used to calibrate
the parameters of the ROMs. These findings have also been
validated by computing ROMs of a clamped-clamped beam,
modeled using commercial FE software.

Although ROMs with higher orders of nonlinearity are
computationally more expensive to calibrate, their invariance
to force scale factor makes them more robust and removes
the need for any tuning of the force scale factor. Addition-
ally, higher force scale factors may be used to calibrate these
ROMs, thus removing the need to extrapolate the responses
of the models beyond their calibrated domain. This further
adds to the robustness and trustworthiness of the higher-order
ROMs. Future work will include investigating the robustness
of the quasi-static coupling approximation for the case where
the frequencies of the modes are less separated.
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[19] Touzé, C., Thomas, O., Chaigne, A., 2004, “Hard-
ening/softening behavior in non-linear oscillations of
structural systems using non-linear normal modes,” J.
Sound Vib., 273(1–2), pp. 77–101.
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