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In this paper, we propose a unified framework for designing static analysers based on program synthesis. For this
purpose, we identify a fragment of second-order logic with restricted quantification that is expressive enough

to model numerous static analysis problems (e.g., safety proving, bug finding, termination and non-termination

proving, refactoring). As our focus is on programs that use bit-vectors, we build a decision procedure for this

fragment over finite domains in the form of a program synthesiser. We provide instantiations of our framework

for solving a diverse range of program verification tasks such as termination, non-termination, safety and

bug finding, superoptimisation and refactoring. Our experimental results show that our program synthesiser

compares positively with specialised tools in each area as well as with general-purpose synthesisers.
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1 INTRODUCTION
Fundamentally, every static program analysis is searching for a program proof. For safety analysers

this proof takes the form of a program invariant [31], for bug finders it is a counter-model [25],

for termination analysis it can be a ranking function [40], whereas for non-termination it is a

recurrence set [50]. Algorithmic methods for the computation of each of these proofs was subject to

extensive research resulting in a multitude of specialised techniques. This specialisation complicates

combinations of techniques, and precludes synergies between their implementations.

In this paper, we propose a program synthesis-based framework for designing program analysers.

This framework allows implementing new analyses easily by only providing a description of the

corresponding program proofs. This essentially enables a declarative way of designing program

analyses, where we specify what we want to achieve rather than the details of how to achieve it.

In order for a program analysis problem to be solved with our framework, it must be expressible

in a fragment of second-order logic with restricted quantification, which we call the synthesis
fragment. We show that the synthesis fragment is general enough to capture many such problems

by providing instantiations of our framework for the following diverse set of tasks:
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• Safety – none of the assertions in the program can fail.

• Danger – at least one of the assertions can fail.

• Termination – all of the loops terminate on all inputs.

• Non-termination – some loop does not terminate on some input.

• Superoptimisation – finding the optimal equivalent code for an existent sequence of instruc-

tions.

• Refactoring – making structured changes to existing code that improve its non-functional

properties but leave its externally observable behaviour unchanged.

• Digital controller generation – generating digital controllers for a given continuous plant

model that are correct by construction.

In order to solve the problems expressed in the synthesis fragment, we have built a novel program

synthesiser. As opposed to general-purpose synthesisers, ours is specialised for program analysis

in the following three dimensions (identified as the three key dimensions in program synthesis

by [46]):

1. Expression of user intent Our specification language is a fragment of C, which results in

concise specifications of static analyses. Using our tool to build a program analyser only requires

providing a generic specification of the problem to solve. Our experiments show that this results

in specifications that are an order of magnitude smaller than the equivalent specifications with

general-purpose program synthesisers.

2. Space of programs over which to search For finite-state programs, the language in which

we synthesise our programs is universal, i.e. every finite function is computed by at least one

program in our language. Our solution language also has first-class support for programs that
compute multiple outputs as well as constants. The former allows the direct encoding of lexicographic

ranking functions of unbounded dimension [30], whereas the latter improves the efficiency when

synthesising programs with non-trivial constants (as shown by our experimental results).

3. The search technique An important aspect of our synthesis algorithm is how we search the

space of candidate programs. We parameterise the solution language, which induces a lattice of

progressively more expressive languages. As well as giving us an automatic search procedure, this

parametrisation greatly increases the efficiency of our system since languages low down the lattice

are very easy to decide safety for.

Our contributions
• We define the synthesis fragment (Sec. 2.2) and show that its decision problem over finite

domains is NEXPTIME-complete (Sec. 4.1).

• We build a program synthesiser specialised for program analysis. While we focus on the

synthesis of loop-free programs over bit-vectors, which are sufficient for most of our program

analysis use cases, we also illustrate how to extend our synthesiser for generating programs

with potentially unbounded loops over heap containers (Sec. 5.5).

• We show how the synthesis fragment can be used to express several program analysis

problems, e.g., safety (Sec. 5.1), termination (Sec. 5.2), non-termination (Sec. 5.3), bug finding

(Sec. 5.4), refactoring (Sec. 5.5), digital controller generation (Sec. 5.6).

• We propose the use of second-order tautologies for avoiding unsatisfiable instances when

solving program analysis problems with program synthesis (Sec. 6.1).

• We implemented the program synthesiser and tried it on a set of static analysis problems.

Our experimental results show that, on benchmarks generated from static analysis, our

program synthesiser compares positively with specialised tools in each area as well as with

general-purpose synthesisers (Sec. 6).
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This paper is a revised version of a publication at LPAR [36], extended with details on proving

termination and non-termination of programs from [35], on bug finding from [33], on refactoring

from [32] and on controller synthesis from [1]. As part of the revision, we provide new details on

the implementation of the program synthesiser as well as a new instantiation of our framework for

proving safety and finding bugs.

2 PROGRAM ANALYSIS USING THE SYNTHESIS FRAGMENT OF SECOND-ORDER
LOGIC

2.1 Three Examples
Program analysis problems can be reduced to the problem of finding solutions to a second-order

constraint [35, 45, 49]. In this section, we briefly discuss the constraints generated when proving

safety, termination and non-termination. Note that this section is meant to only give a brief

description of the encoding of some program analyses and, later in the paper, we will present the

actual instantiations of our framework for all those exemplars (Sections 5.1 to 5.6).

When describing analyses that process programs with loops, we will characterise each loop by

its initial state I , guard G and transition relation T .

Safety invariants Safety checking is one of the most basic program analysis tasks. Given a

safety assertionA, a safety invariant is a set of states S that is inductive with respect to the program’s

transition relation, and that excludes an error state. A predicate S is a safety invariant iff it satisfies

the following criteria:

∃S .∀x ,x ′.I (x ) → S (x ) ∧ (1)

S (x ) ∧G (x ) ∧T (x ,x ′) → S (x ′) ∧ (2)

S (x ) ∧ ¬G (x ) → A(x ) (3)

Conjunct (1) says that each state reachable on entry to the loop is in the set S , and in combination

with conjunct (2) shows that every state that can be reached by the loop is in S . The final conjunct (3)
says that if the loop exits while in an S-state, the assertion A is not violated.

Termination Termination of a loop can be encoded as the following formula, where R is a

ranking function (R : X → Y is a ranking function for the transition relationT if Y is a well-founded

set with order > and R is injective and monotonically decreasing with respect to T ):

∃R.∀x ,x ′.G (x ) ∧T (x ,x ′) → R (x )>0 ∧ R (x )>R (x ′)

Non-termination Similarly, the constraint expressing a loop’s non-termination can be expressed

as follows:

∃N ,C,x0.∀x .N (x0)∧ (4)

N (x ) → G (x )∧ (5)

N (x ) → T (x ,C (x )) ∧ N (C (x )) (6)

Here, N denotes a recurrence set, i.e., a nonempty set of states such that for each s ∈ N there exists

a transition to some s ′ ∈ N , and C is a Skolem function that chooses the successor x ′.

2.2 The Synthesis Fragment
We have given three examples of logical formulations of specific static analysis problems. We now

identify a logic expressive enough to encode those formulas and to extend to further, similar program

ACM Transactions on Programming Languages and Systems, Vol. 0, No. 0, Article 0. Publication date: 2018.
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analysis problems. We refer to the logic as the synthesis fragment1, a fragment of second-order

logic with restrictions on the use of quantification.

Definition 2.1 (Synthesis Fragment (SF )). A formula is in the synthesis fragment iff it is of the

form

∃P .Qx .σ (x ,P )

where each element P (of the vector P ) ranges over functions, eachQ is either ∃ or ∀, each x ranges

over ground terms and σ is a quantifier-free formula.

If a pair (x ,P ) is a satisfying model for a formula in the synthesis fragment, then we write

(x ,P ) |= σ . For the remainder of the presentation, we drop the vector notation and write x for x ,
with the understanding that all quantified variables range over vectors.

3 SOLVING THE SYNTHESIS FRAGMENT USING PROGRAM SYNTHESIS
A satisfying model for a formula in SF is an assignment mapping each of the second-order variables

to some function of the appropriate type and arity. We are interested in generating programs that

compute these functions. For this purpose, we make use of program synthesis.
The synthesis problem is given in the form of a specification σ , which is a function taking a

program P and input x as parameters and returning a boolean telling us whether P did “the right

thing” on input x . Basically, the synthesis problem is to determine the truth of the formula given in

Definition 2.1.

Definition 3.1 (Synthesis Formula). A synthesis formula is of the form:

∃P .∀x .σ (x , P ).

Note that, as opposed to Definition 2.1, the first order variables in the synthesis formula are all

universally quantified.

While SF is obviously undecidable, we can sketch the design of an incomplete solver for it: we

will convert the SF satisfiability problem into an equisatisfiable synthesis problem, which we will

then solve with a program synthesiser. This design will be elaborated next, followed by describing

how to instantiate it for the synthesis finite-state programs in Sec. 4 and for synthesising programs

with unbounded loops in Sec. 5.5.

3.1 Our synthesis algorithm
We use Counterexample Guided Inductive Synthesis (CEGIS) [3, 17, 76] to find a program satisfying

our specification. Algorithm 1 is divided into two procedures: synth and verif, which interact via

a finite set of test vectors inputs.

The synth procedure tries to find an existential witness P that satisfies the partial specification:

∃P .∀x ∈ inputs.σ (x , P )

If synth succeeds in finding a witness P , this witness is a candidate solution to the full synthesis

formula. We pass this candidate solution to verif, which determines whether it does satisfy the

specification on all inputs by checking satisfiability of the verification formula:

∃x .¬σ (x , P )

If this formula is unsatisfiable, the candidate solution is in fact a solution to the synthesis formula

and so the algorithm terminates. Otherwise, the witness x is an input on which the candidate

solution fails to meet the specification. This witness x is added to the inputs set and the loop

1
We will discuss the relation with program synthesis in Sec. 3
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ALGORITHM 1: Abstract refinement algorithm

1 function Synth(inputs)
2 (i1, . . . , iN ) ← inputs;
3 query← ∃P .σ (i1, P ) ∧ . . . ∧ σ (iN , P );
4 result← Decide(query);
5 if result.satisfiable then
6 return result.model;

7 else return UNSAT ;

8 function Verif(P)
9 query← ∃x .¬σ (x , P );

10 result← Decide(query);
11 if result.satisfiable then
12 return result.model;

13 else return VALID;

14 function Refinement Loop

15 inputs← ∅;
16 while true do
17 candidate← Synth(inputs);
18 if candidate = UNSAT then
19 return UNSAT ;

20 result← Verif(candidate);
21 if result = valid then
22 return candidate;

23 else inputs← inputs ∪ result;

Synth Verif Done

Candidate program

Counterexample input

Valid

Fig. 1. Abstract synthesis refinement loop

iterates again. It is worth noting that each iteration of the loop adds a new input to the set of inputs

being used for synthesis. The refinement loop is described in Fig 1.

3.2 Program generation strategies
An important aspect of our synthesis algorithm is the manner in which we search the space of

candidate programs. We employ the following strategies in parallel:

(1) Explicit Proof Search. The simplest strategy for finding candidates is to just exhaustively

enumerate them all, starting with the shortest and progressively increasing the number of

instructions.

(2) Symbolic Bounded Model Checking. Another complete method for generating candidates is to

simply use BMC on the synth.c program.

(3) Genetic Programming and Incremental Evolution. Our final strategy is genetic programming

(GP) [18, 65].

The third option provides an adaptive way of searching through the space of programs for an

individual that is “fit” in some sense. We measure the fitness of an individual by counting the

number of tests in inputs for which it satisfies the specification. To bootstrap GP in the first

iteration of the CEGIS loop, we generate a population of random programs. We then iteratively

evolve this population by applying the genetic operators crossover and mutate. Crossover

ACM Transactions on Programming Languages and Systems, Vol. 0, No. 0, Article 0. Publication date: 2018.
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combines selected existing programs into new programs, whereas mutate randomly changes parts

of a single program. Fitter programs are more likely to be selected.

Rather than generating a random population at the beginning of each subsequent iteration of the

CEGIS loop, we start with the population we had at the end of the previous iteration. The intuition

here is that this population contained many individuals that performed well on the k inputs we

had before, so they will probably continue to perform well on the k + 1 inputs we have now. In the

parlance of evolutionary programming, this is known as incremental evolution [44].

4 SYNTHESIS FOR PROGRAM VARIABLES WITH BIT-VECTOR DOMAINS
Programming languages such as C and Java use numerical data types with finite ranges, and give

semantics to the arithmetic operators using fixed-width binary encodings, otherwise known as

bit-vectors. We are interested in solving static analysis problems for these programming languages.

For this purpose, we investigate the special case of the synthesis fragment over finite domains

(Sec 4.1) followed by using finite-state program synthesis in order to decide it (Sec 4.2).

4.1 The synthesis fragment over finite domains
When interpreting the ground terms over a finite domainD, the synthesis fragment is decidable

and its decision problem is NEXPTIME-complete.

Theorem 4.1 (SFD is NEXPTIME-complete). For an instance of Definition 2.1 with n first-
order variables, where the ground terms are interpreted over D, checking the truth of the formula is
NEXPTIME-complete.

Proof. For this proof we make use of Fagin’s Theorem [39], which says that the class of sets A
recognisable in time ∥A∥k , for some k , by a nondeterministic Turing machine is exactly the class of

sets definable by existential second-order sentences.

In order to apply Fagin’s Theorem, we must establish the size of the universe implied by it. Since

Definition 2.1 uses n D variables, the universe is the set of interpretations of the n variables. This

set has size |D|n , and so by Fagin’s Theorem, Definition 2.1 over finite domains defines exactly

the class sets recognisable in ( |D|n )k time by a nondeterministic Turing machine. This is the

class NEXPTIME, and so checking validity of an arbitrary instance of Definition 2.1 over D is

NEXPTIME-complete. □

We write SFD to denote the synthesis fragment over a finite domainD. The finite-state synthesis

problem checks the truth of of the formula given in the following Definition.

Definition 4.2 (Finite Synthesis Formula). A finite synthesis formula is of the form:

∃P .∀x ∈ D.σ (x , P ),

where D is a finite domain.

Note that, as opposed to the synthesis formula (Definition 3.1), the first order variables in the

finite synthesis formula are interpreted over a finite domain D.

Satisfiability of SFD can be reduced to finite-state program synthesis, as shown by Theorem 4.3.

Theorem 4.3 (SFD is Polynomial Time Reducible to Finite Synthesis). Every instance of
Definition 2.1, where the ground terms are interpreted over D is polynomial-time reducible to a finite
synthesis formula (i.e., an instance of Definition 4.2).

Proof. We first Skolemise the instance of Definition 2.1 to produce an equisatisfiable second-

order sentence with the first-order part only having universal quantifiers (i.e., bring the formula

into Skolem normal form). This process will have introduced a function symbol for each first
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order existentially quantified variable and would have taken linear time. Now we just existentially

quantify over the Skolem functions, which again takes linear time and space. The resulting formula

is an instance of Definition 4.2. □

Corollary 4.4. Finite-state program synthesis is NEXPTIME-complete.

4.2 A decision procedure for SFD based on program synthesis
We will now show how the generic construction of Section 3 can be instantiated to produce a

finite-state program synthesiser. A natural choice for such a synthesiser would be to work in the

logic of quantifier-free propositional formulae and to use a propositional SAT or SMT-BV solver as

the decision procedure. However, we propose a slightly different tack, which is to use a decidable

fragment of C as a “high level” logic. We call this fragment C
−
. The characteristic property of a

C
−
program is that safety can be decided for it using a single query to a Bounded Model Checker.

A C
−
program is just a C program with the following restrictions:

(i) all loops in the program must have a constant bound;

(ii) all recursion in the program must be limited to a constant depth;

(iii) all arrays must be statically allocated (i.e., not using malloc), and be of constant size.

C
−
programs may use nondeterministic values, assumptions and types with arbitrary but fixed

width.

Since each loop is bounded by a constant, and each recursive function call is limited to a constant

depth, a C
−
program necessarily terminates and in fact does so in O (1) time. If we call the largest

loop bound k , then a Bounded Model Checker with an unrolling bound of k will be a complete

decision procedure for the safety of the program. For a C
−
program of size l and with largest loop

bound k , a Bounded Model Checker will create a SAT problem of size O (lk ). Conversely, a SAT
problem of size s can be converted trivially into a loop-free C

−
program of size O (s ). The safety

problem for C
−
is therefore NP-complete, which means it can be decided fairly efficiently for many

practical instances.

4.3 Encoding the synthesis problem
We now express the synth and verif formulae as safety properties of C

−
programs as shown in

Fig. 3.

In the synth portion of the CEGIS loop, we construct a program synth.c, which takes as

parameters a candidate program P and test inputs. The program contains an assertion which fails iff

P meets the specification for each of the inputs. Finding a new candidate program is then equivalent

to checking the safety of synth.c. The synth program is a C
−
program, which means we can check

its safety with Bounded Model Checking (BMC).

A candidate solution P is written in a simple RISC-like language L, whose syntax is given in

Fig. 2. The exact C
−
encoding of an L program is shown in Fig. 4. Note that we use bit-vector types

of configurable size: BV(n) denotes a bit-vector type of size n bits and its semantics are equivalent

to an unsigned int type of the corresponding bit width n.
The prog_t structure encodes a program, which is a sequence of instructions. The parameter

a is the number of arguments the program takes. The i-th instruction has opcode ops[i], left
operand params[i*2] and right operand params[i*2 + 1]. An operand refers to either a program

constant, a program argument or the result of a previous instruction, and its value is determined at
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0:8 Cristina David, Pascal Kesseli, Daniel Kroening, and Matt Lewis

Integer arithmetic instructions:

add a b sub a b mul a b div a b
neg a mod a b min a b max a b

Bitwise logical and shift instructions:

and a b or a b xor a b
lshr a b ashr a b not a

Unsigned and signed comparison instructions:

le a b lt a b sle a b
slt a b eq a b neq a b

Miscellaneous logical instructions:

implies a b ite a b c

Floating-point arithmetic:

fadd a b fsub a b fmul a b fdiv a b

Fig. 2. The language L

runtime as follows:

val (x ) =




x < a the x th program argument

a ≤ x < a + c consts[x − a]

x ≥ a + c the result of the (x − a − c )th instruction

Since any instruction whose operands are all constants can always be eliminated (since its result

is a constant), we know that a loop-free program of minimal length will not contain any instructions

with two constant operands. Therefore the number of constants that can appear in a minimal

program of length l is at most l .
A program is well formed if no operand refers to the result of an instruction that has not

been computed yet, and if each opcode is valid. We add a well-formedness constraint of the form

params[i] <= (a+c+2*i) for each instruction. It should be noted that this requires a linear

number of well-formedness constraints. If all of these constraints are satisfied, the program is

well-formed in that sense.

We supply an interpreter for L, which is written in C
−
. The signature of this interpreter is

void exec(prog_t p, int in[N], int out[M]). Here, out is an output parameter.

Best encoding A sequence of instructions (as our L programs) is certainly a natural encoding

of a program, but we might wonder if it is the best encoding for our candidate programs. We can

show that for a reasonable set of instruction types (i.e. valid opcodes), this encoding is optimal in a

sense we will now discuss. An encoding E takes a function f . For a given set of functions F we are

interested in the worst-case behaviour of the encoding E, that is we are interested in the quantity

|E (F ) | = max{|E ( f ) | | f ∈ F }

If for every encoding E ′, we have that

|E (F ) | ≤ |E ′(F ) |

then we say that E is an optimal encoding for F . Similarly if for every encoding E ′, we have

O ( |E (F ) |) ⊆ O ( |E ′(F ) |)

we say that E is an asymptotically optimal encoding for F .
The next lemma shows that languages with ITE are universal and optimal encodings for finite

functions.

ACM Transactions on Programming Languages and Systems, Vol. 0, No. 0, Article 0. Publication date: 2018.
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1 void synth ( ) {

2 prog_ t p = nondet ( ) ;

3 in t i n [N] , out [M] ;

4

5 assume ( we l l fo rmed ( p ) ) ;

6

7 i n = t e s t 1 ;

8 exec ( p , in , out ) ;

9 assume ( check ( in , out ) ) ;

10 . . .

11 i n = t e s tN ;

12 exec ( p , in , out ) ;

13 assume ( check ( in , out ) ) ;

14

15 a s s e r t ( f a l s e ) ;

16 }

1 void v e r i f ( p rog_ t p ) {

2 in t i n [N] = nondet ( ) ;

3 in t out [M] ;

4

5 exec ( p , in , out ) ;

6 a s s e r t ( check ( in , out ) ) ;

7 }

Fig. 3. The synth and verif formulae expressed as a C− program

1 typedef BV(4) op_t ; / / An op c od e
2 typedef BV(w ) word_t ; / / An L−word
3 typedef BV(log

2
⌈c + l + a⌉) param_t ; / / An ope rand

4

5 s t ruc t prog_ t {

6 op_t ops [l ] ; / / The o p c o d e s
7 param_t params [l ∗ 2 ] ; / / The o p e r and s
8 word_t c on s t s [c ] ; / / The program c o n s t a n t s
9 }

Fig. 4. The C− structure we use to encode an L program

Lemma 4.5 (Universal and Optimal Encodings for Finite Functions). For an imperative
programming language including instructions for testing equality of two values (EQ) and an if-then-else
(ITE) instruction, any total function f : S→ S can be computed by a program of size O ( |S| log |S|)
bits.

Proof. Any function f is computed by the following program, where f (0) , f (1) , etc., denote

elements in S (as opposed to recursive calls):

t1 = EQ(x, 1)
t2 = ITE(t1, f(1), f(0))
t3 = EQ(x, 2)
t4 = ITE(t3, f(2), t2)
...
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As it computes f , both the input and output of this program are elements in S. Note that l , the
length of the program, is equal to 2 × |S| as there are two instructions (i.e., an EQ and an ITE)

corresponding to each element in S.

Each operand of each instruction in the program above refers to either an element of S (i.e., the

f (0) , f (1) , etc., above) or the result of a previous instruction (where we have at most l instructions).
Then, each operand can be encoded in log

2
( |S| + l ) = log

2
(3 × |S|) bits. So each instruction can be

encoded in O (log |S|) bits and there are O ( |S|) instructions in the program, so the whole program

can be encoded in O ( |S| log |S|) bits. □

Lemma 4.6. Any representation that is capable of encoding an arbitrary total function f : S→ S

must require Ω( |S| log |S|) bits to encode some functions.

Proof. There are |S| |S | total functions f : S → S. Therefore by the pigeonhole principle, any

encoding that can encode an arbitrary function must use at least log
2
( |S| |S | ) = Ω( |S| log

2
|S|) bits

to encode some function. □

From Lemma 4.5 and Lemma 4.6, we can conclude that encoding an arbitrary total function

requires Θ( |S| log |S|) bits. Since any set of instruction types that include ITE uses O ( |S| log |S|)
bits, any such instruction set is an asymptotically optimal function encoding for total functions

with finite domains. This is interesting, since intuitively one would expect that a language including

loops would be able to encode functions using less space than a language without loops, but as we

have seen, L achieves the optimal bound of Θ( |S| log |S|) bits, despite having no looping constructs.

Theorem 4.7. Our representation for candidate programs as an L program as shown in Fig. 4 is
asymptotically optimally concise – there is no encoding that produces asymptotically shorter programs.

Proof. From Lemma 4.5 and Lemma 4.6. □

4.4 Parametrising the search space
A key feature of our search algorithm that applies to all three aforementioned strategies is

parametrising the solution language, which induces a lattice of progressively more expressive

languages. We start by attempting to synthesise a program at the lowest point on this lattice and

increase the parameters until we reach a point at which the synthesis succeeds.

As well as giving us an automatic search procedure, this parametrisation greatly increases the

efficiency of our system since languages low down the lattice are very easy to decide safety for. If

a program can be synthesised in a low-complexity language, the whole procedure finishes much

faster than if synthesis had been attempted in a high-complexity language.

We use the following parameters.

• Program Length: l . The first parameter we introduce is program length, denoted by l . At each
iteration we synthesise programs of length exactly l . We start with l = 1 and increment l
whenever we determine that no program of length l can satisfy the specification. When we

do successfully synthesise a program, we are guaranteed that it is of minimal length since we

have previously established that no shorter program is correct.

• Word Width:w . A solution program runs on a virtual machine that is parametrised by the

word width, that is, the number of bits in each internal register and immediate constant.

• Number of Constants: c . By minimising the number of constants appearing in a program,

we are able to use a particularly efficient program encoding that speeds up the synthesis

procedure substantially.
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Synth

succeeds?

Verif

succeeds?

c < l?

Done!

Verif

succeeds

for small

words?

c := c + 1
c := 0

l := l + 1

Genera-

lisation?

Parameters

unchanged

Refinement

Yes

No

Yes

No

Yes

No

Yes

No

YesNo

Fig. 5. Decision tree for increasing parameters of L

4.5 Adjusting the search parameters
The key to our automation approach is to come up with a sensible way in which to adjust the

parameters of the solution language in order to cover all possible programs. Two important

components in this search are the adjustment of parameters and the generalisation of candidate

solutions. We discuss them both next.

After each round of synth, we may need to adjust the parameters. The logic for these adjustments

is given as a tree in Fig. 5.

Whenever synth fails, we consider which parameter might have caused the failure. There are

two possibilities: either the program length l was too small, or the number of allowed constants c
was. If c < l , we just increment c and try another round of synthesis, but allowing ourselves an

extra program constant. If c = l , there is no point in increasing c any further. This is because no

minimal L-program has c > l , for if it did there would have to be at least one instruction with

two constant operands. This instruction could be removed (at the expense of adding its result as

a constant), contradicting the assumed minimality of the program. So if c = l , we set c to 0 and

increment l , before attempting synthesis again.

If synth succeeds but verif fails, we have a candidate program that is correct for some inputs

but incorrect on at least one input. However, it may be the case that the candidate program is

correct for all inputs when run on a machine with a small word size. Thus, we try to generalise the

solution to a bigger word size, as explained in the next paragraph. If the generalisation is able to

find a correct program, we are done. Otherwise, we need to increase the word width of the machine

we are currently synthesising for.

4.6 Generalisation of candidate solutions
It is often the case that a program which satisfies the specification on a machine withw = k will

continue to satisfy the specification when run on a machine withw > k . For example, the program

in Fig. 6 isolates the least-significant bit of a word. This is true irrespective of the word size of the

machine it is run on – it will isolate the least-significant bit of an 8-bit word just as well as it will a

32-bit word. An often successful strategy is to synthesise a program for a machine with a small
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1 in t i s o l a t e _ l s b ( in t x ) {

2 return x & −x ;

3 }

Example:

x = 1 0 1 1 1 0 1 0

-x = 0 1 0 0 0 1 1 0

x & -x = 0 0 0 0 0 0 1 0

Fig. 6. A tricky bit-vector program

BV(m,m) → BV(n,n) (1)

BV(m − 1,m) → BV(n − 1,n) (2)

BV(m + 1,m) → BV(n + 1,n) (3)

BV(x ,m) → BV(x ,n) (4)

BV(x ,m) → BV(x ,m)·BV(0,n −m) (5)

BV(x ,m) → BV(x ,m)· . . . ·BV(x ,m)︸                          ︷︷                          ︸
n
m times

(6)

Fig. 7. Rules for extending anm-bit wide number to an n-bit wide one

word size and then to check whether the same program is correct when run on a machine with a

full-sized word.

The only wrinkle here is that we will sometimes synthesise a program that contains constants.

If we have synthesised a program with w = k , the constants in the program will be k-bits wide.
To extend the program to an n-bit machine (with n > k), we need some way of deriving n-bit-wide
numbers from k-bit ones. We present 6 heuristic strategies in Fig. 7 to perform this operation. Here,

BV(v,n) denotes an n-bit wide bit-vector holding the value v and b· c marks the concatenation of

bit-vectors b and c . Rule 1 transforms the value m of length m (e.g. an 8-bit number with value 8) to

the value n of length n (e.g. a 32-bit number with value 32). Rules 2 and 3 follow a similar strategy

form − 1 amdm + 1 respectively. Rule 4 simply extends the bit width, but maintains the same

integer value. Rule 5 pads the extended values with 0 at its end, and rule 6 repeats the bit pattern

of the original value up to the extended size. While these six heuristic rules do not represent a

complete set, they were chosen because they performed well in our experiments.

4.7 Termination of program synthesis
For sinite-state synthesis, if a specification is unsatisfiable, the algorithm still terminates with an

“unsatisfiable” verdict. Intuitively, we can observe that any total function taking n bits of input is

computed by some program of at most 2
n
instructions. Therefore every satisfiable specification has

a solution with at most 2
n
instructions. This means that if we ever need to increase the length of

the candidate program we search for beyond 2
n
, we can terminate, safe in the knowledge that the

specification is unsatisfiable.

Although this gives us a theoretical termination condition for unsatisfiable instances, in practice

the program synthesiser may not terminate. In order to avoid such cases, we use the approach

described in Sec. 6.1.

4.8 Soundness, Completeness and Efficiency
We will now state soundness and completeness results for the SFD solver.

Theorem 4.8. Alg 1 is sound – if it terminates with witness P , then P |= σ .

Proof. The procedure synth terminates only if synth returns “valid”. In that case, ∃x .¬σ (x , P )
is unsatisfiable and so ∀x .σ (x , P ) holds. □
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Theorem 4.9. Alg 1 with the stopping condition described in Sec 4.7 is complete when instantiated
with C− as a background theory – it will terminate for all specifications σ .

Proof. Since the explicit search routine enumerates all programs (as can be seen by induction

on the program length l), it will eventually enumerate a program that meets the specification on

whatever set of inputs are currently being tracked, since by assumption such a program exists.

Additionally, since safety of C
−
programs is decidable, the query in verif will always provide an

answer. □

According to Theorems 4.8 and 4.9, Algorithm 1 is sound and complete when instantiated with

C
−
as a background theory and using the stopping condition of Sec 4.7. This construction therefore

gives as a decision procedure for SFD.

Runtime as a function of solution size We note that the runtime of our solver is heavily

influenced by the length of the shortest program satisfying the specification. If a short proof exists,

then the solver will find it quickly. This is particularly useful for program analysis problems, where,

if a proof exists, then most of the time many proofs exist and some are short ([60] rely on a similar

remark about loop invariants).

We will now show that the number of iterations of the CEGIS loop is a function of the Kol-

mogorov complexity of the synthesised program. Let us first recall the definition of the Kolmogorov

complexity of a function f :

Definition 4.10 (Kolmogorov complexity). The Kolmogorov complexity K ( f ) is the length of the

shortest program that computes f .

We can extend this definition slightly to talk about the Kolmogorov complexity of a synthesis

problem in terms of its specification:

Definition 4.11 (Kolmogorov complexity of a synthesis problem). The Kolmogorov complexity of a

program specification K (σ ) is the length of the shortest program P such that P is a witness to the

satisfiability of σ .

Let us consider the number of iterations of the CEGIS loop n required for a specification σ .
Since we enumerate candidate programs in order of length, we are always synthesising programs

with length no greater than K (σ ) (since when we enumerate the first correct program, we will

terminate). So the space of solutions we search over is the space of functions computed by L-

programs of length no greater than K (σ ). Let’s denote this set L(K (σ )). Since there are O (2K (σ ) )
programs of length K (σ ) and some functions will be computed by more than one program, we have

|L(K (σ )) | ≤ O (2K (σ ) ).
Each iteration of the CEGIS loop distinguishes at least one incorrect function from the set of

correct functions, so the loop will iterate no more than |L(K (σ )) | times. Therefore another bound

on our runtime is NTIME
(
2
K (σ )
)
.

5 INSTANCES OF PROGRAM ANALYSES USING SYNTHESIS
We now give details of how to use synthesis to solve several program analysis problems.

5.1 Building a Safety Prover
In order to use the program synthesis based framework to construct a safety prover, we must first

look at the formulation of safety invariants (which is inside the synthesis fragment).

Safety invariants Given a safety assertionA, a safety invariant is a set of states S that is inductive
with respect to the program’s transition relation, and that excludes an error state. A predicate S
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Definition 5.1 (Safety Invariant [SI]).

∃S .∀x ,x ′.I (x ) → S (x ) ∧

S (x ) ∧G (x ) ∧ B (x ,x ′) → S (x ′) ∧

S (x ) ∧ ¬G (x ) → A(x )

Fig. 8. Existence of a safety invariant for a single loop

1 while ( x > 0 ) {

2 x = ( x − 1 ) & x ;

3 }

1 y = 1 ;

2

3 while ( x > 0 ) {

4 x = x − y ;

5 }

(a) (b)

1 while ( x > 0 ) {

2 x ++ ;

3 }

1 while ( i < M | | j < N) {

2 i = i + 1 ;

3 j = j + 1 ;

4 }

(c) (d)

Fig. 9. Termination examples – (a) is taken from [28], (d) is taken from [70]

is a safety invariant iff it satisfies the criteria in Figure 8. The first criterion says that each state

reachable on entry to the loop is in the set S , the second that every state that can be reached by the

loop is in S . The final criterion says that if the loop exits while in an S-state, the assertion A is not

violated.

Example 5.2. The program in Fig. 16(a) is safe as x and y are inequal regardless how many times

y gets incremented inside the loop (x is already ahead by 1). Thus, the safety invariant that our

framework synthesises is S (x ,y) = x,y.

As we are only dealing with over-approximations, the generation of constraints corresponding

to proving the safety of a program with nested loops is straightforward and we will not cover it in

the paper.

5.2 Building a Termination Prover
In this section, we describe how to use our program synthesis based framework in order to build a

termination prover. In Sec. 2, we have presented the constraint required when proving unconditional

termination of an isolated loop. Next, we provide more details on how to model both conditional

and unconditional termination for programs with potentially nested loops using the synthesis

fragment. We start by introducing some preliminary notions on termination proving.

A program P is represented as a transition system with state space X and transition relation

T ⊆ X × X . For a state x ∈ X with T (x ,x ′) we say x ′ is a successor of x under T .

ACM Transactions on Programming Languages and Systems, Vol. 0, No. 0, Article 0. Publication date: 2018.



Program Synthesis for Program Analysis 0:15

Definition 5.3 (Unconditional termination). A program is said to be unconditionally terminating if

there is no infinite sequence of states x1,x2, . . . ∈ X with ∀i . T (xi ,xi+1).

We can prove that the program is unconditionally terminating by finding a ranking function

for its transition relation. Not every terminating program has a computable ranking function [79].

However, since we are restricting our attention to programs with finite state spaces, our halting

problem is decidable, as every terminating, finite-state program does have a computable ranking

function.

Definition 5.4 (Ranking function). A function R : X → Y is a ranking function for the transition

relation T if Y is a well-founded set with order > and R is injective and monotonically decreasing

with respect to T . That is to say:

∀x ,x ′ ∈ X .T (x ,x ′) ⇒ R (x ) > R (x ′)

Definition 5.5 (Lexicographic ranking function). For Y = Zm
, we say that a ranking function

R : X → Y is lexicographic if it maps each state in X to a tuple of values such that the loop

transition leads to a decrease with respect to the lexicographic ordering for this tuple. The total

order imposed on Y is the lexicographic ordering induced on tuples of Z ’s. So for y = (z1, . . . , zm )
and y ′ = (z ′

1
, . . . , z ′m ):

y > y ′ ⇐⇒ ∃i ≤ m.zi > z ′i ∧ ∀j < i .zj = z ′j

Wenote that if the program under analysis operates overmathematical integers, some termination

arguments require lexicographic ranking functions, or alternatively, ranking functions whose co-

domain is a countable ordinal, rather than justN. Since we focus on the case of finite-space programs,

in principle we do not need to construct lexicographic ranking functions – it would be sufficient

to find a ranking function whose co-domain is at least as large as the state space of the program

under analysis. However due to technicalities of our implementation, it would be difficult for us

to synthesise programs whose output words were larger than their input words, so it is easier to

generated lexicographic ranking functions where each component of the ranking function is a

fixed width word. Synthesising a lexicographic ranking function producing an N -tuple of k-bit
words is of course equivalent to synthesising a ranking function producing a single Nk-bit word.

5.2.1 Unconditional termination. We will begin our discussion by showing how to encode in the

synthesis fragment the termination of a program consisting of a single loop with no nesting. For

the time being, a loop L(G,T ) is defined by its guard G and body T such that states x satisfying

the loop’s guard are given by the predicateG (x ). The body of the loop is encoded as the transition

relation T (x ,x ′), meaning that state x ′ is reachable from state x via a single iteration of the loop

body. For example, the loop in Figure 9 (a) is encoded as:

G (x ) = {x | x > 0}

T (x ,x ′) = {⟨x ,x ′⟩ | x ′ = (x − 1) &x }

We will abbreviate this with the notation:

G (x ) ≜ x > 0

T (x ,x ′) ≜ x ′ = (x − 1) &x

A loop L(G,T ) is unconditionally terminating iff it eventually terminates regardless of the state it

starts in. To prove unconditional termination, it suffices to find a ranking function for T ∩ (G × X ),
i.e., T restricted to states satisfying the loop’s guard.

As the existence of a ranking function is equivalent to the satisfiability of the formula [UT] in
Fig. 10, a satisfiability witness is a ranking function and thus a proof of L’s unconditional termination.
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Definition 5.6 (Unconditional Termination [UT]).

∃R.∀x ,x ′.G (x ) ∧T (x ,x ′) → R (x ) > 0 ∧ R (x ) > R (x ′)

Fig. 10. Formula encoding the termination of a single loop

Returning to the program from Figure 9 (a), we can see that the corresponding synthesis formula

[UT] is satisfiable, as witnessed by the function R (x ) = x . Thus, R (x ) = x constitutes a proof that

the program in Figure 9 (a) is unconditionally terminating.

Note that different formulations for unconditional termination are possible. We are aware of

a proof rule based on transition invariants, i.e., supersets of the transition relation’s transitive

closure [45]. This formulation assumes that the second-order logic has a primitive predicate for

disjunctive well-foundedness. By contrast, our formulation in Definition 5.6 does not use a primitive

disjunctive well-foundedness predicate.

5.2.2 Nested loops. If a loop L(G,T ) has another loop L′(G ′,T ′) nested inside it, we cannot

directly use [UT] to express the termination of L. This is because the single-step transition relation

T must include the transitive closure of the inner loop T ′∗, and we do not have a transitive closure

operator in our logic. Therefore to encode the termination of L, we construct an over-approximation

To ⊇ T and use this in formula [UT] to specify a ranking function. Rather than explicitly construct

To using, for example, abstract interpretation, we add constraints to our formula that encode the

fact that To is an over-approximation of T , and that it is precise enough to show that R is a ranking

function.

As the generation of such constraints is standard and covered by several other works [45, 49],

we will not provide the full algorithm, but rather illustrate it through the example in Figure 11.

For the current example, the termination formula is given on the right side of Figure 11: To is a
summary of L1 that over-approximates its transition relation; R1 and R2 are ranking functions for

L1 and L2, respectively.

1 L1 :

2 while ( i <n ) {

3 j = 0 ;

4

5 L2 :

6 while ( j ≤ i ) {

7 j = j + 1 ;

8 }

9

10 i = i + 1 ;

11 }

∃To ,R1,R2.∀i, j,n, i
′, j ′,n′.

i < n → To (⟨i, j,n⟩, ⟨i, 0,n⟩) ∧

j ≤ i ∧To (⟨i
′, j ′,n′⟩, ⟨i, j,n⟩) → R2 (i, j,n) > 0 ∧

R2 (i, j,n) > R2 (i, j + 1,n) ∧

To (⟨i
′, j ′,n′⟩, ⟨i, j + 1,n⟩) ∧

i < n ∧To (⟨i, j,n⟩, ⟨i
′, j ′,n′⟩) ∧ j ′ > i ′ → R1 (i, j,n) > 0 ∧

R1 (i, j,n) > R1 (i + 1, j,n)

Fig. 11. A program with nested loops and its termination formula
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Definition 5.7 (Conditional Termination Formula [CT]).

∃R,W .∀x ,x ′.I (x ) ∧G (x ) →W (x ) ∧

G (x ) ∧W (x ) ∧T (x ,x ′) →W (x ′) ∧ R (x ) > 0 ∧ R (x ) > R (x ′)

Fig. 12. Formula encoding conditional termination of a loop

5.2.3 Conditional termination. Sometimes the termination behaviour of a loop depends on the

rest of the program. That is to say, the loop may not terminate if started in some particular state,

but that state is not actually reachable on entry to the loop. The program as a whole terminates,

but if the loop were considered in isolation we would not be able to prove that it terminates. We

must therefore encode a loop’s interaction with the rest of the program in order to do a sound

termination analysis.

Let us assume that we have done some preprocessing of our program which has identified loops,

straight-line code blocks and the control flow between these. In particular, the control flow analysis

has determined which order these code blocks execute in, and the nesting structure of the loops.

Given a loop L(G,T ), if L’s termination depends on the state it begins executing in, we say that

L is conditionally terminating. The information we require of the rest of the program is a predicate

I which over-approximates the set of states that L may begin executing in. That is to say, for each

state x that is reachable on entry to L, we have I (x ).
Then, if formula [CT] in Fig. 12 is satisfiable, two witnesses are returned:

• W is an inductive invariant of L that is established by the initial states I if the loop guard G
is met.

• R is a ranking function for L as restricted byW – that is to say, R need only be well founded

on those states satisfyingW ∧G . SinceW is an inductive invariant of L, function R is strong

enough to show that L terminates from any of its initial states.

The invariantW is called a supporting invariant for L and R proves termination relative toW .

We require that I ∧G is strong enough to establish the base case ofW ’s inductiveness.

Example 5.8. Conditional termination is illustrated by the program in Figure 9 (b), which is

encoded as:

I (⟨x ,y⟩) ≜ y = 1

G (⟨x ,y⟩) ≜ x > 0

T (⟨x ,y⟩, ⟨x ′,y ′⟩) ≜ x ′ = x − y ∧ y ′ = y

If the initial states I are ignored, this loop cannot be shown to terminate, since any state with y = 0

and x > 0 would lead to a non-terminating execution.

However, formula [CT] is satisfiable, as witnessed by:

R (⟨x ,y⟩) = x

W (⟨x ,y⟩) ≜ y = 1

This constitutes a proof that the program as a whole terminates, since the loop always begins

executing in a state that guarantees its termination.

ACM Transactions on Programming Languages and Systems, Vol. 0, No. 0, Article 0. Publication date: 2018.



0:18 Cristina David, Pascal Kesseli, Daniel Kroening, and Matt Lewis

5.2.4 Bit-vector semantics vs. integer semantics. While computer programs manipulate fixed-

width machine integers (bit-vectors) and IEEE floats, the majority of existing termination analyses

are designed to work with mathematical integers and reals [10, 16, 29, 54, 64, 71].

Thus, when applied to bit-vector programs, these techniques ignore the wrap-around behaviour

caused by overflows, which can be unsound. For illustration, the loop Fig. 9(c) is terminating for

bit-vectors since x will eventually overflow and become negative. Conversely, the same program is

non-terminating using integer arithmetic since x > 0→ x + 1 > 0 for any integer x . Conversely,
the loop in Fig. 9(d) breaks the assumption that bit-vector and integer semantics are identical “the

other way”: it terminates for integers but not for bit-vectors. If each of the variables is stored in an

unsigned k-bit word, the following entry state will lead to an infinite loop:

M = 2
k − 1, N = 2

k − 1, i = M, j = N − 1

Our termination prover takes into consideration the wrap-around behaviour caused by overflows

and thus provides acurate results for programs running on physical computers.

5.3 Building a Non-termination Prover
Dually to termination, we might want to consider the non-termination of a loop. If a loop terminates,

we can prove this by finding a ranking function witnessing the satisfiability of formula [UT]. What

then would a proof of non-termination look like?

Since our program’s state space is finite, a transition relation induces an infinite execution

iff some state is visited infinitely often, or equivalently ∃x .T + (x ,x ). Deciding satisfiability of

this formula directly would require a logic that includes a transitive closure operator, •+. Rather

than introduce such an operator, we will characterise non-termination using the synthesis formula

[ONT] (Definition 5.10, Figure 13) encoding the existence of an (open) recurrence set, i.e., a nonempty

set of states N such that for each s ∈ N there exists a transition to some s ′ ∈ N [50].

If this formula is satisfiable, N is an open recurrence set for L, which proves L’s non-termination.

The issue with this formula is the additional level of quantifier alternation as compared to the

synthesis fragment (it is an ∃∀∃ formula). To eliminate the innermost existential quantifier, we

introduce a Skolem function C that chooses the successor x ′, which we then existentially quantify

over. This results in formula [SNT] (Definition 5.12, Figure 13).

This extra second-order term introduces some complexity to the formula, which we can avoid if

the transition relation T is deterministic.

Definition 5.9 (Determinism). A relationT is deterministic iff each state x has exactly one successor

under T :

∀x .∃x ′.T (x ,x ′) ∧ ∀x ′′.T (x ,x ′′) → x ′′ = x ′

In order to describe a deterministic program in a way that still allows us to sensibly talk about

termination, we assume the existence of a special sink state s with no outgoing transitions and

such that ¬G (s ) for any of the loop guardsG . The program is deterministic if its transition relation

is deterministic for all states except s .
When analysing a deterministic loop, we can make use of the notion of a closed recurrence set

introduced by Chen et al. in [20]: for each state in the recurrence set N , all of its successors must be

in N . The existence of a closed recurrence set is equivalent to the satisfiability of formula [CNT]
in Definition 5.11, which is already in the synthesis fragment without needing Skolemization.

We note that if T is deterministic, every open recurrence set is also a closed recurrence set

(since each state has at most one successor). Thus, the non-termination problem for deterministic

transition systems is equivalent to the satisfiability of formula [CNT] from Figure 13.
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So if our transition relation is deterministic, we can say, without loss of generality, that non-

termination of the loop is equivalent to the existence of a closed recurrence set. However, if T is

non-deterministic, it may be that there is an open recurrence set but not closed recurrence set.

To see this, consider the following loop:

1 while ( x != 0 ) {

2 y = nondet ( ) ;

3 x = x−y ;

4 }

It is clear that this loop has many non-terminating executions, e.g. the execution where nondet()

always returns 0. However, each state has a successor that exits the loop, i.e., when nondet()

returns the value currently stored in x. Thus, this loop has an open recurrence set, but no closed

recurrence set and hence we cannot give a proof of its non-termination with [CNT] and instead

must use [SNT].

Definition 5.10 (Non-Termination – Open Recurrence Set [ONT]).

∃N ,x0.∀x .∃x
′.N (x0) ∧

N (x ) → G (x ) ∧

N (x ) → T (x ,x ′) ∧ N (x ′)

Definition 5.11 (Non-Termination – Closed Recurrence Set [CNT]).

∃N ,x0.∀x ,x
′.N (x0) ∧

N (x ) → G (x ) ∧

N (x ) ∧T (x ,x ′) → N (x ′)

Definition 5.12 (Non-Termination – Skolemized Open Recurrence Set [SNT]).

∃N ,C,x0.∀x .N (x0) ∧

N (x ) → G (x ) ∧

N (x ) → T (x ,C (x )) ∧ N (C (x ))

Fig. 13. Formulae encoding the non-termination of a single loop

5.3.1 Nested loops. Dually to termination, when proving non-termination, we need to under-

approximate the loop’s body and apply formula [CNT]. Under-approximating the inner loop can

be done with a nested existential quantifier, resulting in ∃∀∃ alternation, which we could eliminate

with Skolemization. However, we observe that unlike a ranking function, the defining property of

a recurrence set is non relational – if we end up in the recurrence set, we do not care exactly where

we came from as long as we know that it was also somewhere in the recurrence set. This allows us

to cast non-termination of nested loops as the formula shown in Figure 14, which does not use a

Skolem function.

If the formula on the right-hand side of the figure is satisfiable, then L1 is non-terminating, as

witnessed by the recurrence set N1 and the initial state x0 in which the program begins executing.

There are two possible scenarios for L2’s termination:
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• If L2 is terminating, then N2 is an inductive invariant that reestablished N1 after L2 stops
executing: ¬G2 (x ) ∧ N2 (x ) ∧ P2 (x ,x

′) → N1 (x
′).

• If L2 is non-terminating, then N2 ∧G2 is its recurrence set.

1 L1 :

2 while (G1 ) {

3 P1 ;

4

5 L2 :

6 while (G2 ) {

7 B2 ;

8 }

9

10 P2 ;

11 }

∃N1,N2,x0.∀x ,x
′.

N1 (x0) ∧

N1 (x ) → G1 (x ) ∧

N1 (x ) ∧ P1 (x ,x
′) → N2 (x

′) ∧

G2 (x ) ∧ N2 (x ) ∧ B2 (x ,x
′) → N2 (x

′) ∧

¬G2 (x ) ∧ N2 (x ) ∧ P2 (x ,x
′) → N1 (x

′)

Fig. 14. Formula encoding non-termination of nested loops

5.4 Building a Bug Finder
Dually to proving safety, another problem of interest is the one of finding bugs. Ideally, if a bug

exists, we would want a proof in the form of a concrete execution trace leading to it. Then, the

question is how to encode the existence of such a trace in the synthesis fragment? We achieve this

by introducing the notion of a danger invariant, which can be seen as a compact representation of

an error trace [33].

The existence of a danger invariant D must show that if the loop exits having started in a D-state,
an assertion will certainly fail. We require that a danger invariant is inductive with respect to

the loop, and that it holds in some initial state, although it need not hold in every initial state.

A predicate D is a danger invariant for the loop I ,G,B,A iff:

∃x .I (x ) ∧ D (x ) (7)

∀x .D (x ) ∧G (x ) → ∃x ′.B (x ,x ′) ∧ D (x ′) (8)

∀x .D (x ) ∧ ¬G (x ) → ¬A(x ) (9)

Conversely to the definition of a safety invariant where all the initial states had to be in the

invariant, 7 says that there exists some D-state in which the loop can begin executing. For the

induction, 8 says that each D-state can reach at least one other D-state via an iteration of the loop.

Finally, 9 says that if the loop exits while in a D-state, the assertion fails.

However this is not quite enough to conclude that the assertion does fail, since we have not yet
established that the loop terminates from any D-state – thus we are in the situation where the

danger invariant denotes either an assertion violation or the presence of a recurrence set. We refer

to this as a total danger invariant.
If we want to only prove an assertion violation, we must additionally infer a ranking function R

(i.e., a function that is bounded and monotonically decreasing with respect to the transition

relation B), resulting in a partial danger invariant as captured in Definition 5.13.
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Definition 5.13 (Partial Danger Invariant Formula [DI]).

∃D,R,x0.∀x .∃x
′.I (x0) ∧ D (x0) ∧

D (x ) ∧G (x ) → B (x ,x ′) ∧ D (x ′) ∧

R (x ) > 0 ∧ R (x ) > R (x ′) ∧

D (x ) ∧ ¬G (x ) → ¬A(x )

Definition 5.14 (Skolemized Danger Invariant Formula [SDI]).

∃D,R, S,x0.∀x .I (x0 ∧ D (x0) ∧

D (x ) ∧G (x ) → B (x , S (x )) ∧ D (S (x )) ∧

R (x ) > 0 ∧ R (x ) > R (x ′) ∧

D (x ) ∧ ¬G (x ) → ¬A(x )

Fig. 15. Existence of a danger invariant for a single loop

Removing the quantifier alternation In the definition of a danger invariant, in order to

specify that from each D-state we can reach another by iterating the loop once, we require an extra

quantifier alternation. Consequently, the formula [DI] is not in the synthesis fragment. As our goal

is to express everything in the synthesis fragment, which we can solve, we need to eliminate the

extra level of quantifier alternation.

If the transition relation B is deterministic, then we do not need the quantifier alternation, since

each x has exactly one successor x ′. Thus, we can just replace the inner ∃x ′ in the formula [DI]
by ∀x ′. However if B is non-deterministic, we must find a Skolem function which resolves the

non-determinism by telling us exactly which successor is to be chosen on each iteration of the loop.

This is shown in the formula [SDI] of Definition 5.14.

Example 5.15. In program (b) in Fig. 16, any execution trace violates the assertion unless the

nondeterministic choices (denoted by “*”) are such that y is incremented once less than x . One
danger proof for this program is ((0, 1), y+1, (x < y, 1000000−x )). This means that D (x ,y) = x < y
holds in the initial state where x = 0 and y = 1, and it is inductive with respective to the loop’s

body if the nondeterministic choices are given by the Skolem functions Sy (x ,y) = y + 1 and

Sx (x ,y) = x + 1, respectively. That is:

∀x ,y,x ′.x < y → x ′ = Sx (x ,y) ∧ x
′ < Sy (x ,y)

The ranking function is R (x ,y) = 1000000 − x .
Program (c) is similar to (b), with the exception that x is incremented in each iteration and the

assertion is now negated. This example is more intricate as the danger invariant needs to capture

the evolution of x and y from the the initial state where they are not equal to a final state where

there are (and hence they cause the assertion to fail).

One danger proof for program (c) contains D (x ,y) = y = (x < 1?1 : x ) and R (x ,y) = 1000000−x .
Essentially, this invariant says thaty must not be incremented for the first iteration of the loop (until

x reaches the value 1), and from that point, for the rest of the iterations, y gets always incremented

such that x = y. For this case, D is a compact and elegant representation of exactly one feasible

counterexample trace. The witness Skolem function that we get is Sy (x ,y) = (x < 1?y : y + 1).
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1 x = 1 ; y = 0 ;

2 while ( x < 1 0 0 0 ) {

3 x ++ ;

4 i f ( ∗ ) y ++ ;

5 }

6

7 a s s e r t ( x != y ) ;

(a)

1 x = 0 ; y = 1 ;

2 while ( x < 1000000 ) {

3 i f ( ∗ ) x ++ ;

4 i f ( ∗ ) y ++ ;

5 }

6

7 a s s e r t ( x == y ) ;

(b)

1 x = 0 ; y = 1 ;

2 while ( x < 1000000 ) {

3 x ++ ;

4 i f ( ∗ ) y ++ ;

5 }

6

7 a s s e r t ( x != y ) ;

(c)

Fig. 16. Safe and buggy examples

5.5 Building a Refactoring/Superoptimisation Tool
For all the program analysis problems considered up until now, it was sufficient to synthesise straight

line code. Conversely, in this section we are interested in refactoring code that has unbounded

loops and we must therefore be able to synthesise programs with loops. For this purpose, in this

section we present an extension of the program synthesis approach described in the rest of the

paper.

Program refactoring requires performing changes to an existing code with the goal of improving

it with respect to some non-behavioural criteria, but leave its externally observable behaviour

unchanged. Given an original code Code , we want to synthesise Code ′ such that, for any initial

program configuration Ci , Code and Code
′
produce the same final configuration Cf , i.e., they are

observationally equivalent as expressed in Fig. 17. We will refer to the equality between the final

program configurations Cf and C ′f as configEquiv.
Note that in this section we consider heap allocated containers and, consequently, we consider

a program configuration C to consist of assignments to all the scalar variables plus a heap repre-

sentation
2
mapping all the pointer variables to their corresponding heap addresses. We use the

notation Code (Ci ,Cf ) to denote the fact that Ci is the initial program configuration before Code
starts executing and Cf is the final configuration at the end of the execution (similar for Code ′).

We use a particular refactoring as demonstrator for our idea. Nearly everymodern Java application

constructs and processes collections. A key algorithmic pattern when using collections is iteration

over the contents of the collection. We distinguish external from internal iteration.
To enable external iteration, a Collection provides the means to enumerate its elements by

implementing Iterable. Clients that use an external iterator must advance the traversal and request

the next element explicitly from the iterator. External iteration has a few shortcomings:

• Is inherently sequential, and must process the elements in the order specified by the collection.

This bars the code from using concurrency to increase performance.

2
More details about the heap configuration can be found in [32].
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Definition 5.16 (Refactoring [SR]).

∃Code ′.∀Ci ,Cf , c
′
f .Code (Ci ,Cf ) ∧Code

′(Ci ,C
′
f ) ⇒ Cf = C

′
f

Fig. 17. Refactoring specification

1 I n t e g e r r e s u l t = n u l l ;

2 L i s t < I n t e g e r > da t a = ge tDa ta ( ) ;

3 for ( in t e l : d a t a )

4 i f ( e l % 2 == 0 ) {

5 r e s u l t = e l ;

6 break ;

7 }

Fig. 18. Find element in list using external iteration

1 L i s t < I n t e g e r > newLis t = ge tDa ta ( ) ;

2 Opt iona l < I n t e g e r > r e s u l t = l i s t . s t ream ( )

3 . f i l t e r ( e l −> e l % 2 )

4 . f i n d F i r s t ( ) ;

Fig. 19. Find element in list using Java 8 Streams

• Does not describe the intended functionality, only that each element is visited. Readers must

deduce the actual semantics, such as finding an element or transforming each item, from the

loop body.

The alternative to external iteration is internal iteration, where instead of controlling the iteration,

the client passes an operation to perform to an internal iteration procedure, which applies that

operation to the elements in the collection based on the algorithm it implements. Examples of

internal iteration patterns include finding an element by a user-provided predicate or transforming

each element in a list using a provided transformer. In order to enable internal iteration, Java SE 8

introduces a new abstraction called Stream that lets users process data in a declarative way. The

Stream package provides implementations of common internal iteration algorithms such as foreach,
find and sort using optimised iteration orders and even concurrency where applicable. Users can

thus leverage multicore architectures transparently without having to write multithreaded code.

Internal iterations using Stream also explicitly declare the intended functionality through domain-

specific algorithms. A call to Java 8 find using a predicate immediately conveys the code’s intent,

whereas an externally iterating f or loop implementing the same semantics is more difficult to

understand. Figures 18 and 19 illustrate this difference for the same find semantics.

Next, we explain the main steps of our refactoring procedure, where we only consider partial

equivalence, i.e. given the same inputs, two programs return equal outputs, unless at least one of

them does not terminate [43].
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(i) First, we reduce the partial equivalence check to checking the partial correctness of the

following triple:

{Ci } Code {configEquiv}
Essentially, we check that, starting with a configuration Ci , every terminating trace ends up in

a state where configEquiv holds (remember that configEquiv denotes equality between the final

program configurations in the original code and the refactored code, respectively).

(ii) Given some logical encoding, the aforementioned correctness check can be further reduced

to checking the implication Post (Ci ,Code ) ⇒ configEquiv, where Post computes the postcondition

ofCode starting from the initial program configurationCi . While it is easy to compute the postcon-

dition Post (Ci ,Code ) for loop-free code,Code will most probably contain (potentially nested) loops.

In such situations, we must find safety invariant Inv that make the postcondition configEquiv hold.

For illustration, we provide the constraint corresponding to the scenario where the original code is

denoted by a loop L(G,T ):

∃configEquiv, Inv .∀Ci ,x ,x
′.Ci (x ) ⇒ Inv (x )∧

Inv (x ) ∧G (x ) ∧T (x ,x ′) ⇒ Inv (x ′)∧

Inv (x ) ∧ ¬G (x ) ⇒ configEquiv (x )

(iii)We synthesise both the safety invariant Inv and configEquiv. We use a heap graph encoding

for configEquiv and define the JST logic over this representation. An informal description of JST

is provided Fig. 20 and a set of example properties in JST over our graph encoding is provided in

Fig. 21. Since JST contains representations for all supported operations in the Java 8 Stream library,

transforming a synthesised JST program to Java 8 Streams is a trivial mapping. More details on the

exact logical encoding are given in [32]. Given that configEquiv is a postcondition of the original

code, the refactored code is guaranteed to be equivalent to the original one by construction.

The notions of program refactoring and superoptimisation are closely related as they both aim at

improving existent code with respect to some criteria but leave its externally observable behaviour

unchanged. Thus, the same synthesis specification given in Fig. 17 is applicable to both problems.

5.6 Synthesising digital controllers
As a further examplar, we show how to use our synthesis framework to generate stable digital

controllers for a given model of a physical plant. In particular, we are interested in closed-loop

feedback architectures, where outputs of discrete plantG (z) are fed back and compared to a reference

signal towards which a controller C (z) should steer [6]. Fig. 22 depicts a typical closed-loop digital

control system.

We consider systems with a single input and a single output (SISO) given as transfer functions.

In such a setting, the discretized plant, G (z) and the digital controller, C (z), are given as fractions,

with denominators Gd (z) and Cd (z), respectively, and nominators Gn (z) and Cn (z), respectively.
We are interested in synthesising feedback digital controllers that make the closed-loop system

asymptotically stable. Asymptotic stability is a property that amounts to convergence of the model

executions to an equilibrium point, starting from any states in a neighborhood of the point. In order

to prove stability, we will use Jury’s criterion [6]. Essentially, Jury’s criterion is a means to determine

the stability of a linear discrete time system by analysis of the coefficients of its characteristic

polynomial, S (z), which can be computed as:

S (z) = Cn (z)Gn (z) +Cd (z)Gd (z);

Let’s now assume that the characteristic polynomial has the following form:

S (z) = a0z
N + a1z

N−1 + . . . + aN−1z + aN = 0,a0 , 0
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Next, the following Jury matrixM = [mi j ](2N−2)×N is built from S (z) coefficients:

M =

*.....
,

V (0)

V (1)

...

V (N−2)

+/////
-

,

where V (k ) = [v (k )
i j ]2×N such that:

v (0)
i j =

{
aj−1, if i = 1

v0

(1) (N−j+1), if i = 2

v (k )
i j =




0, if j > n − k

v (k−1)
1j −v (k−1)

2j .
v (k−1)
11

v (k−1)
21

, if j ≤ n − k and i = 1

vk
(1) (N−j+1), if j ≤ n − k and i = 2

where k ∈ Z, such that 0 < k < N − 2. Observe that S (z) is the characteristic polynomial of a

stable system if and only if the following four conditions hold: R1 : S (1) > 0; R2 : (−1)
N S (−1) > 0;

R3 : |a0 | < aN ; R4 :m11 > 0 ∧m31 > 0 ∧m51 > 0 ∧ . . . ∧m (2N−3) (1) > 0.

Thus, the specification for the controller synthesis is:

∃C .∀z.R1 (z) ∧ R2 (z) ∧ R3 (z) ∧ R4 (z) (10)

We illustrate our approach with a classical cruise control example from the literature [5]. We are

given a discrete plant model (with a time step of 0.2 s), represented by the following z-expression:

G (z) =
0.0264

z − 0.9998
.

By providing specification 10 to our program synthesiser, we synthesise the following controller:

C (z) =
11.035202z2+5.846100z+4.901855

1.097901z2+0.063110z+0.128357
.

Given that we only want to illustrate the synthesis approach, we do not discuss in this section

the numerical representation of the plant and the truncation and rounding errors introduced by it.

More details about this can be found in [1] and [2].

6 IMPLEMENTATION AND EXPERIMENTAL RESULTS
We implemented our decision procedure for SFD in several tools, which we discuss in this section.

6.1 Avoiding Unsatisfiable Instances
As described in Sec. 4.8, our program synthesiser is efficient at finding satisfying assignments,

when such assignments have low Kolmogorov complexity. However, if a formula is unsatisfiable,

the procedure may not terminate in practice. This illustrates one of the current shortcomings of our

program synthesis based decision procedure: we can only conclude that a formula is unsatisfiable

once we have examined candidate solutions up to a very high length bound.

However, we note that many interesting properties of programs can be expressed as tautologies.

For illustration, let us consider that we are trying to prove that a loop L terminates. Thus, following

Sections 5.2 and 5.3, we can construct two formulae: one that is satisfiable iff L is terminating and

another that is satisfiable iff L is non-terminating. We will call these formulae ϕ and ψ , respec-
tively, and we denote by PN and PT the proofs of non-termination and termination, respectively:

∃PT .∀x ,x
′.ϕ (PT ,x ,x

′) and ∃PN .∀x .ψ (PN ,x ).
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We can combine these: (∃PT .∀x ,x
′.ϕ (PT ,x ,x

′)) ∨ (∃PN .∀x .ψ (PN ,x )).
Which simplifies to: ∃PT , PN .∀x ,x

′,y.ϕ (PT ,x ,x
′) ∨ψ (PN ,y).

Since L either terminates or does not terminate, this formula is a tautology in the synthesis

fragment. Thus, either PN or PT must exist. Similarly, when proving safety, a program is either safe

of has a bug. In this manner we avoid the bad case where we try to synthesise a solution for an

unsatisfiable specification.

6.2 Limitations
We present in this chapter an experimental evaluation for each of our prover implementations. Our

benchmark suite is based on publicly accessible benchmarks, such as SVCOMP. Since all of our

tools are research prototypes, we are unable to maintain support for all C language features and

have to exclude certain benchmarks from the experiment. Most importantly, the current front-end

implementations to not support arrays and are limited to non-nested loops where invariants need

to be synthesised.

6.3 Termination and non-termination
The program synthesis based termination and non-termination prover is named Juggernaut and

was run on 47 benchmarks taken from the literature and the termination-crafted-lit directory of

SV-COMP’15 [77]. We omitted exactly those SVCOMP’15 benchmarks that made use of arrays

or recursion. We do not have arrays in our logic and we had not implemented recursion in our

frontend (although the latter can be syntactically rewritten to our input format). Note that these

experiments include those from [35].

To provide a comparison point, we also ran ARMC [75] on the same benchmarks. Each tool was

given a time limit of 180 s, and was run on an unloaded 8-core 3.07 GHz Xeon X5667 with 50GB of

RAM. The results of these experiments are given in Table 1.

It should be noted that the comparison here is imperfect, since ARMC is solving a different

problem – it checks whether the program under analysis would terminate if run with unbounded

integer variables, while we are checking whether the program terminates with bit-vector variables.

This means that ARMC’s verdict differs from ours in 3 cases (due to the differences between integer

and bit-vector semantics). There are a further 7 cases where our tool is able to find a proof and

ARMC cannot, which we believe is due to our more expressive proof language. In 3 cases, ARMC

times out while our tool is able to find a termination proof. Of these, 2 cases have nested loops

and the third has an infinite number of terminating lassos. This is not a problem for us, but can be

difficult for provers that enumerate lassos.

On the other hand, ARMC is much faster than our tool. While this difference can partly be

explained by much more engineering time being invested in ARMC, we feel that the difference is

probably inherent to the difference in the two approaches – our solver is more general than ARMC,

in that it provides a complete proof system for both termination and non-termination, which comes

at the cost of efficiency.

Of the 46 benchmarks, 2 use nonlinear operations in the program (loop6 and loop11), and 5

have nested loops (svcomp6, svcomp12, svcomp18, svcomp40, svcomp41). Juggernaut handles the

nonlinear cases correctly and rapidly. It solves 4 of the 5 nested loops in less than 30 s, but times

out on the 5th.

In conclusion, these experiments confirm our conjecture that program synthesis can be used

effectively to prove termination and non-termination. In particular, for programs with nested loops,

nonlinear arithmetic and complex termination arguments, the versatility given by a general purpose

solver is very valuable.
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6.4 Safety and danger
To evaluate our safety and danger synthesis, we have implemented the Dangerzone module for

the bounded model checker CBMC 5.5. We ran the resulting prover on 50 programs from the

loop-acceleration and loops directories in SV-COMP 2016 [78]. We picked this specific category

as it has benchmarks with deep bugs and we were interested in challenging our hypothesis that

danger invariants are well-suited to expose deep bugs and can complement the capabilities of

existing approaches such as BMC. Unfortunately we had to exclude programs that make use of

arrays, since these are not yet supported by the synthesiser. In addition to this, we also introduced

altered versions of the selected SV-COMP 2016 benchmarks with extended loop guards to create

deeper bugs, challenging our hypothesis even further. These are benchmarks loop1 to loop11. All
danger and safety benchmarks are available for download: https://www.cs.ox.ac.uk/files/9174/

cegis_danger_benchmarks.zip.

For each benchmark we try to synthesise both a partial danger invariant (i.e., a danger invari-

ant, a ranking function, an initial state and Skolem functions witnessing the nondeterminism

corresponding to partial correctness in Def. 5.14) and a total danger invariant (i.e., a danger in-

variant, an initial state and Skolem functions as given by equations 7, 8 and 9 in Sec. 5.4). To

provide a comparison point, we also ran two state-of-the-art bounded model checking (BMC)

tools, CBMC 5.5 and SMACK+CORRAL 1.5.1 [52] on the same benchmarks. In addition to this,

we ran the benchmarks against CPAchecker 1.4 [13], the overall winner of SV-COMP 2015, and

Seahorn 2.6 [51], the second-placed tool in the loops category after CPAchecker. We reproduced

each tool’s SV-COMP 2015 configuration, with small alterations to account for the benchmarks

where we increased loop guards. Finally, we manually translated the benchmarks to be compatible

with Microsoft’s Static Driver Verifier Research Platform (SDVRP [8]) with the Yogi 2.0 [69] back

end. Yogi’s main algorithms are Synergy, Dash, Smash and Bolt.

We say that a benchmark contains a deep bug if it is only reachable after at least 1’000’000

unwindings. Each tool was given a time limit of 300 s, and was run on a 12-core 2.40GHz Intel

Xeon E5-2440 with 96GB of RAM. The full result table of these experiments is given in Tab. 2.

The results demonstrate that the Dangerzone module outperforms all other tools on programs

with deep bugs. It solves 37 (partial) and 38 (total) out of the 50 benchmarks in standalone mode,

and 46 when used with CBMC. By itself, CBMC only finds 27, SMACK+CORRAL 24, CPAchecker

26 and Seahorn 31 bugs. This result can be explained by the fact that the complexity of finding a

danger invariant is orthogonal to the number of unwindings necessary to reach it. Dangerzone’s

success is not determined by how deep the bug is, but by the complexity of the invariant describing

it. As a result, we perform comparably on both deep and shallow bugs and are able to expose 18

out of the 20 deep bugs in the benchmark set. This supports our hypothesis that danger invariants

are well-suited for this category of errors.

6.5 Superoptimisation
We implemented our superoptimiser as the kalashnikov tool. To evaluate the tool we used the 29

bit-vector programs from [57] and [48]. The majority of these are “bit twiddling hacks” taken from

Hacker’s Delight [82]. The code we used to perform the experiments, along with the benchmarks, is

available at http://www.cprover.org/kalashnikov. We performed our experiments on a 4-core,

2.40 GHz Xeon E5-2665 with 32GB of RAM.

To give a reference point, we present the results given for brahma on the same benchmarks, as

reported in [48] and [57]. These experiments were performed on an 8-core, 1.86GHz Xeon with

3
https://github.com/diffblue/cbmc/archive/bbae05d8faecfec18a42724e72336d8f8c4e3d8d.zip
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4GB of RAM. We could not re-run the tools as they are unavailable and we could not get copies

from the authors.

The results of our experiments are given in Table 3. Column 1 gives the runtime reported for

each benchmark in [48], column 2 gives the number of instructions in the synthesised program,

and column 3 contains a ✗ when Brahma needed user assistance to solve a benchmark. Columns 4

through 7 give the same information, but with the data taken from [57]. Column 5 gives the runtimes

for the version of Brahma from [57] which implemented the semibiased optimisation. Finally,

column 8 gives the runtime for Kalashnikov and column 9 gives the number of instructions in the

program synthesised by Kalashnikov. The results can be divided into three categories, as follows:

Kalashnikov synthesises a shorter program than Brahma: This happens in 4 of the 29

cases. This case is illustrated by benchmark p29, given in Fig. 23. The specification here is a piece

of obfuscated code taken from the Conficker worm [73], and our goal is to synthesise an equivalent

program which is easier to understand. The obfuscated code uses several tricks, including an

apparently unbounded loop. As illustrated in Fig. 24, Brahma is able to produce an equivalent

program consisting of four instructions using shifts and addition, whereas kalashnikov is able

to produce the minimal program y * 45. It is also worth noting that the specification fed to

kalashnikov was just the obfuscated code, with no further preprocessing needed.

Kalashnikov is unable to synthesise a program: This happens in 8 of the 29 cases. In each

case, Brahma needs user guidance to synthesise the program.

Brahma and Kalashnikov have similar runtimes: It was not clear from just looking at

the runtime numbers whether any of the tools was significantly faster than the others, so we

performed a Wilcoxon signed-rank test. For each pair of tools (kalashnikov vs. each of the

brahma configurations), the Wilcoxon test was unable to reject the null hypothesis (that the tools

are equally fast) at the p=0.05 level. In other words, there is no statistically significant difference in

the speed of kalashnikov and brahma.

6.6 Refactoring
We provide an implementation of our refactoring decision procedure, which we have named Kayak.

It currently supports refactorings from Java external iterators to Streams for integer collections

only. This is due to the limitations of our Java front-end based on CBMC, which will be extended in

future work. We employed the GitHub Code Search to find relevant Java classes that contain integer

collections with refactoring opportunities to streams. The queries were specified conservatively as

to not exceed the CBMC front-end capabilities and we manually ruled out search results which

cannot be implemented using the Java 8 Stream specification. We used the following search queries

on 8/8/2016:

• List <Integer>+for+if+break++language%3AJava&type=Code
• List <Integer>+while+it+remove&type=Code

• List <Integer>+while+add

We found 50 code snippets with loops from the results that fit these restrictions. We compare

Kayak against the Integrated Development Environments IntelliJ IDEA 2016.1
4
and NetBeans 8.2

5
.

Both match Java code against pre-configured external iteration patterns and transform the code

to a stream expression if they concur. We manually inspect each transformation for both tools

to confirm correctness. Since Kayak’s software synthesis can be a time-consuming process, we

4
https://www.jetbrains.com/idea/

5
https://netbeans.org/
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impose a time limit of 300 s for each benchmark. All experiments were run on a 12-core 2.40GHz

Intel Xeon E5-2440 with 96GB of RAM.

The detailed results are illustrated in Tab. 4. Our results show that Kayak outperforms pattern-

based approaches by a significant margin: Kayak finds 76% of all possible refactorings, whereas

IntelliJ only transforms 20% of the benchmarks successfully, and NetBeans only 24%. This is due to

the fact that there are many common Java paradigms, such as ListIterator or Iterator :: remove,

for which IntelliJ IDEA and NetBeans contain no pre-configured pattern and thus has no way of

refactoring. This renders the algorithm inherently conservative and yields fewer loop transfor-

mations. On the other hand, if IntelliJ does find a match, it transforms the program safely and

instantaneously, even in cases where Kayak failed to synthesise a program within the allotted time

limit. If Kayak found a valid refactoring, it did so within an average of 8.5 s.

We find that the majority of timeouts for Kayak are due to an incomplete instruction set in the

synthesis process. We plan to implement missing instructions as the program progresses out of its

research prototype phase into an industrial refactoring tool set. A link to all benchmarks used in

the experiment is provided in the footnote
6
.

6.7 Controller synthesis
We implemented the tool DSSynth to use our synthesis algorithm to generate controller implemen-

tations for benchmarks selected from literature. The first set of benchmarks uses the discrete plant

of a cruise control model for a car, and accounts for rolling friction, aerodynamic drag, and the

gravitational disturbance force [5]. The second set of benchmarks considers a simple spring-mass

damper [81]. A third set of benchmarks uses a physical plant for satellite applications [41]. Satellites

require attitude (pose) control for orientation of antennas and sensors w.r.t. earth. The satellite

attitude control is typically used for three-axis attitude tracking, but here we consider only one

axis at a time. The final set of benchmarks considers a generic plant which is typically used for

evaluating stability margins [58, 59].

We give the runtimes required to synthesise a stable controller for each benchmark in Table 5.

Here, Plant is the discrete or continuous plant model, Benchmark is the name of the employed

benchmark, I and F represent the number of integer and fractional bits of the stable controller,

respectively, while Gen and No-Gen denote the time (in seconds) required to synthesise a stable

controller for the given plant with and without generalisation (generalisation was described in

Sec 4.6), respectively.

The generalisation is based on word-width and model features. For the latter, the generalisation-

based configuration abstracts away fixed point errors which may occur in the model of the plant

during the synthesis stage and only considers them during generalisation in order to verify whether

a candidate solution holds for plants with error models. The No-Gen configuration does not apply

generalisation and models fixed point errors directly in the synthesis phase. For the majority of our

benchmarks, the generalising configuration is much faster than the non-generalising one, which

the latter timing-out in 13 out of 15 cases (we used a time-out of 8 hours).

The median runtime for our benchmark set is 197 s, implying that DSSynth can synthesise

half of the controllers in less than 5 minutes. Overall, the average synthesis time amounts to

approximately 30 minutes. The synthesised controllers were confirmed to be stable outside of

our model representation using MATLAB. A link to the full experimental environment, including

scripts to reproduce the results, all benchmarks and the DSSynth tool, is provided in the footnote.
7

6
https://www.cs.ox.ac.uk/files/9188/cbmc-trunk-diffblue-jst-fse-2017.tar.gz

7
https://www.cs.ox.ac.uk/files/9187/control-synthesis-benchmarks.tar.gz
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alias(h,x ,y): do x and y point to the same node in heap h?
size (h,x ,y): what is the length of the list segment from x to y in h?
дet (h,x , i ): what is the value stored in the i-th node of the list

pointed by x in heap h?
h′ = add (h,x , i,v ): obtain h′ from h by inserting value v at position i in

the list pointed by x .
h′ = add_last (h,x ,v ): equivalent to add (h,x , size (h,x ,null),v )

h′ = set (h,x , i,v ): obtainh′ fromh by setting the value of the i-th element

in the list pointed by x to v .
h′ = remove(h,x ): obtain h′ from h by removing the node pointed by x .

In h′, x and all its aliases will point to the successor of

the removed node.

exists (h,x ,y, λv .P (v )): is there any valuev in the list segment x→∗y such that

P (v ) holds?
f orall (h,x ,y, λv .P (v )): is it the case that for all values v1 . . .vn in the list seg-

ment x→∗y, P (v1) . . . P (vn ) hold?
h′ = sorted (h,x ,y, ret ): obtain h′ from h by sorting the elements stored in the

list segment x→∗y in the list ret (h′ will contain both

the list segment x→∗y and the list ret ).
h′ = f ilter (h,x ,y, λv .P (v ), ret ): obtain h′ from h by creating a new list ret containing

all the elements in the list segment x→∗y that match

the predicate P .
max (h,x ,y): what is the maximum value stored in the list segment

x→∗y?
min(h,x ,y): what is the minimum value stored in the list segment

x→∗y?
h′ =map (h,x ,y, λv . f (v ), ret ): obtain h′ from h by applying the mapping function f

to each value in the list segment x→∗y and storing the

result in the list pointed by ret .
h′ = skip (h,x ,y,done,n, ret ): obtain h′ by creating a new list ret containing the re-

maining elements of the list segment x→∗y after dis-

carding the first n elements (done denotes the number

of elements that were already skipped).

h′ = new (h,x ) obtain h′ from h by assigning x to point to null.
equalLists (h,x ,y,h′,a,b) is list segment x→∗y in heap h equal to list segment

a→∗b in heaph′ (i.e., do they contain the same elements

in the same order)?

h′ = дetIterator (h,x , i, it ) obtain heap h′ by creating a new iterator it that points
to the i-th element in the list pointed-to by x .

Fig. 20. Informal Description of JST
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H1 :

3 −1 5 9 □x

y

H2 :

3 −1 5 9

3 □

□x

y

l

alias (H1,x ,y) = false

f orall (H1,x ,y, λv .v≤4) = false

exists (H1,x ,null, λv .v= − 1) = true

size (H1,x ,null) = 4

min(H1,x ,y) = −1

max (H1,x ,y) = 9

H2 = f ilter (H1,x ,y, λv .v > 0, l )

f orall (H2, l ,null, λv .v>0) = true

Fig. 21. JST Example

Reference OutputController
C(z)

Plant
G(z)

+
-

Fig. 22. Typical Closed-loop Control System

1 in t ob f u s c a t e d ( in t y ) {

2 in t a =1 , b =0 , z =1 , c =0 ;

3 while ( 1 ) {

4 i f ( a == 0 ) { i f ( b == 0 ) { y=z+y ; a = ! a ; b = ! b ; c = ! c ;

5 i f ( ! c ) break ; } e l se { z=z+y ; a = ! a ; b = ! b ; c = ! c ;

6 i f ( ! c ) break ; } } e l se { i f ( b == 0 ) { z=y << 2 ;

7 a = ! a ; } e l se { z=y << 3 ; a = ! a ; b = ! b ; } }

8 }

9 return z ;

10 }

Fig. 23. Obfuscated C code
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Table 1. Termination and non-termination experimental results

ARMC Juggernaut

Benchmark Expected Verdict Time Verdict Time

loop1.c ✓ ✓ 0.06s ✓ 1.3s

loop2.c ✓ ✓ 0.06s ✓ 1.4s

loop3.c ✓ ✓ 0.06s ✓ 1.8s

loop4.c ✓ ✓ 0.12s ✓ 2.9s

loop5.c ✓ ✓ 0.12s ✓ 5.3s

loop6.c ✓ ✓ 0.05s ✓ 1.2s

loop7.c [19] ✓ ? 0.05s ✓ 8.3s

loop8.c ✓ ? 0.06s ✓ 1.3s

loop9.c ✓ ✓ 0.11s ✓ 1.6s

loop10.c ✓ ✗ 0.05s ✓ 1.3s

loop11.c ✗ ✓ 0.05s ✗ 1.4s

loop43.c [30] ✓ ✓ 0.07s ✓ 1.5s

loop44.c [30] ✗ ? 0.05s ✗ 10.5s

loop45.c [30] ✓ ✓ 0.12s ✓ 4.3s

loop46.c [30] ✓ ? 0.05s ✓ 1.5s

loop47.c ✓ ✓ 0.10s ✓ 1.8s

loop48.c ✓ ✓ 0.06s ✓ 1.4s

loop49.c ✗ ? 0.05s ✗ 1.3s

Avery-FLOPS2006-Table1_true-termination.c [7] ✓ ✓ 0.11s ✓ 2.3s

aviad_true-termination.c ✓ ✓ 0.05s ✓ 1.5s

Ben-Amram-LMCS2010-Ex2.3_true-termination.c [9] ✓ ✓ 0.15s ✓ 146.4s

BradleyMannaSipma-CAV2005-Fig1-modified_false-termination.c [14] ✗ ✗ 0.09s ✗ 2.1s

BradleyMannaSipma-ICALP2005-Fig1_true-termination.c [15] ✓ ✓ 0.38s – T/O

BrockschmidtCookFuhs-CAV2013-Fig1_true-termination.c [19] ✓ – T/O ✓ 29.1s

BrockschmidtCookFuhs-CAV2013-Introduction_true-termination.c ✓ ✓ 0.09s ✓ 5.5s

[19]

BrockschmidtCookFuhs-CAV2013-Fig1_true-termination.c [21] ✓ ? 0.05s – T/O

CookSeeZuleger-TACAS2013-Fig1_true-termination.c [30] ✓ ✓ 0.10s ✓ 1.5s

CookSeeZuleger-TACAS2013-Fig7a_true-termination.c [30] ✓ ✓ 0.11s ✓ 4.5s

CookSeeZuleger-TACAS2013-Fig7b_true-termination.c [30] ✓ ✓ 0.20s ✓ 14.6s

gcd1_true-termination.c [38] ✓ – T/O ✓ 10.9s

genady_true-termination.c ✓ ? 0.07s ✓ 35.1s

GulwaniJainKoskinen-PLDI2009-Fig1_true-termination.c [47] ✓ – T/O ✓ 30.8s

HarrisLalNoriRajamani-SAS2010-Fig1_true-termination.c [53] ✓ ? 0.12s – T/O

HarrisLalNoriRajamani-SAS2010-Fig3_true-termination.c [53] ✓ ✓ 0.06s ✓ 2.2s

KroeningSharyginaTsitovichWintersteiger-CAV2010-Fig1_true-termination.c ✓ ✓ 0.05s – T/O

[64]

LarrazOliverasRodriguez-CarbonellRubio-FMCAD2013-Fig1_true-termination.c ✓ ? 0.27s – T/O

[66]

Masse-VMCAI2014-Fig1b_true-termination.c ✓ ? 0.05s – T/O

min_rf_true-termination.c ✓ ✓ 0.26s ✓ 3.2s

NoriSharma-FSE2013-Fig7_true-termination.c [70] ✗ ✓ 0.11s – T/O

NoriSharma-FSE2013-Fig8_true-termination.c [70] ✓ ✓ 0.13s – T/O

PodelskiRybalchenko-VMCAI2004-Ex2_true-termination.c ✓ ? 0.05s – T/O

[71]

TelAviv-Amir-Minimum_true-termination.c ✓ ✓ 0.16s ✓ 2.1s

Toulouse-MultiBranchesToLoop_true-termination.c ✓ ✓ 0.25s – T/O

Urban-WST2013-Fig2-modified1000_true-termination.c [80] ✓ ? 0.07s ✓ 25.5s

Urban-WST2013-Fig2_true-termination.c [80] ✓ ? 0.07s ✓ 25.5s

UrbanMine-ESOP2014-Fig3_true-termination.c ✓ ✓ 0.22s – T/O

Correct 28 35

Incorrect for bit-vectors 3 0

Unknown 13 0

Timeout 3 12

Key: ✓= terminating, ✗= non-terminating, ? = unknown (inconclusive verdict)
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Table 2. Safety and danger experimental results

SV-COMP’15 Dangerzone 5.5
3

Benchmark Deep CBMC SMACK+ CPA- Sea- Yogi Standalone with CBMC

Bugs 5.5 CORRAL checker horn 2.0 Partial Total Partial Total

1.5.1 1.4 2.6-svn

const_false-unreach-call1
∗

– 1.15 s ✗ ✗ 33.21 s ✗ 9.09 s 0.55 s 1.15 s 0.55 s

const_true-unreach-call1
∗

– 1.80 s ✗ 4.01 s 0.55 s 10.09 s 5.45 s 0.64 s 1.80 s 0.64 s

const_false-unreach-call1_10
∗

– 0.36 s 3.40 s 3.54 s 0.43 s ✗ 4.26 s 0.66 s 0.36 s 0.36 s

const_false-unreach-call1_1000003
∗† ✓ 252.42 s ✗ ✗ ✗ ✗ 0.62 s 1.07 s 0.62 s 1.07 s

diamond_false-unreach-call1 – 1.13 s 22.58 s 28.25 s 0.90 s ✗ 12.94 s 39.20 s 1.13 s 1.13 s

diamond_true-unreach-call1 – ✗ ✗ 4.36 s ✗ 9.19 s ✗ ✗ ✗ ✗
diamond_false-unreach-call2 – 0.21 s 6.18 s ✗ 0.90 s 14.46 s ✗ 65.14 s 0.21 s 0.21 s

diamond_true-unreach-call2 – ✗ ✗ 56.71 s ✗ ✗ ✗ ✗ ✗ ✗
for_bounded_loop1_false- ✓ ✗ ✗ ✗ ✗ 14.24 s ✗ ✗ ✗ ✗
unreach-call_true-termination

functions_false-unreach-call1
∗ ✓ ✗ ✗ ✗ ✗ ✗ 1.36 s 1.08 s 1.36 s 1.08 s

functions_true-unreach-call1
∗ ✓ ✗ ✗ 56.70 s 0.29 s 136.48 s 0.76 s 0.83 s 0.76 s 0.83 s

multivar_false-unreach-call1
∗

– 0.15 s 1.18 s 2.12 s 0.43 s ✗ 1.23 s 0.60 s 0.15 s 0.15 s

multivar_true-unreach-call1 – ✗ ✗ 1.45 s 0.30 s 10.58 s 1.53 s 1.30 s 1.53 s 1.30 s

multivar_false-unreach-call1_100
∗

– 0.18 s 1.15 s 2.11 s 0.52 s ✗ 1.12 s 0.66 s 0.18 s 0.18 s

overflow_false-unreach-call1
∗ ✓ ✗ ✗ ✗ ✗ ✗ 4.07 s 5.32 s 4.07 s 5.32 s

overflow_true-unreach-call1 ✓ ✗ ✗ 58.22 s 0.27 s ✗ 1.43 s 1.45 s 1.43 s 1.45 s

phases_false-unreach-call1
∗ ✓ ✗ ✗ ✗ ✗ ✗ 79.41 s 3.81 s 79.41 s 3.81 s

phases_true-unreach-call1 ✓ ✗ ✗ 58.29 s ✗ 12.27 s 2.01 s 1.88 s 2.01 s 1.88 s

phases_false-unreach-call2 – 0.16 s 1.20 s 2.15 s 1.15 s 12.87 s ✗ 3.67 s 0.16 s 0.16 s

phases_true-unreach-call2 – ✗ ✗ 56.39 s ✗ ✗ 0.75 s 0.70 s 0.75 s 0.70 s

simple_false-unreach-call1
∗ ✓ ✗ ✗ ✗ ✗ ✗ 7.56 s 4.36 s 7.56 s 4.36 s

simple_true-unreach-call1 ✓ ✗ ✗ 58.31 s 0.21 s 28.12 s 1.56 s 1.52 s 1.56 s 1.52 s

simple_false-unreach-call2 – 0.15 s 1.15 s 2.13 s 1.11 s 12.52 s 8.12 s 0.88 s 0.15 s 0.15 s

simple_true-unreach-call2 – ✗ 11.55 s 1.45 s 0.21 s 11.51 s 0.51 s 0.41 s 0.51 s 0.41 s

simple_false-unreach-call3 – 0.15 s 1.12 s 2.21 s 1.03 s ✗ 13.6 s 2.59 s 0.15 s 0.15 s

simple_true-unreach-call3 – ✗ ✗ 57.32 s 0.22 s ✗ 1.10 s 1.15 s 1.10 s 1.15 s

simple_false-unreach-call4
∗ ✓ ✗ ✗ ✗ ✗ 11.77 s 1.56 s 0.63 s 1.56 s 0.63 s

simple_true-unreach-call4 ✓ ✗ ✗ 58.24 s 0.21 s ✗ 0.50 s 0.48 s 0.50 s 0.48 s

terminator_03_false-unreach-

– 0.18 s 3.02 s ✗ 1.13 s 12.52 s 3.93 s 0.85 s 0.18 s 0.18 s

call_true-termination

terminator_03_false-unreach- ✓ 0.18 s 0.97 s ✗ 12.48 s 1.49 s 0.98 s 0.98 s 0.18 s 0.18 s

call_true-termination_1000003
†

underapprox_false-unreach-call1
∗

– 0.38 s 3.27 s 2.83 s 1.07 s ✗ ✗ ✗ 0.38 s 0.38 s

underapprox_true-unreach-call1 – 1.41 s 11.98 1.46 s 0.16 s 14.02 s ✗ ✗ 1.41 s 1.41 s

underapprox_false-unreach-call2
∗

– 0.37 s 3.08 s 2.59 s 0.84 s ✗ 1.63 s 0.76 s 0.37 s 0.37 s

underapprox_true-unreach-call2 – 1.36 s 12.39 s 1.44 s 0.16 s 12.32 s 0.76 s 0.73 s 0.76 s 0.73 s

loop1
∗ ✓ 46.59 s ✗ ✗ ✗ 12.05 s 1.62 s 0.91 s 1.62 s 0.91 s

loop2
∗† ✓ ✗ ✗ ✗ ✗ ✗ 88.83 s 8.36 s 88.83 s 8.36 s

loop3
† ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

loop4 – 0.54 s 0.15 s ✗ ✗ ✗ ✗ ✗ 0.54 s 0.54 s

loop5
† ✓ 292.64 s ✗ ✗ ✗ ✗ 170.94 s 3.05 s 170.94 s 3.05 s

loop6 – 0.16 s 1.16 s 2.23 s 0.42 s 13.25 s 15.87 s 1.22 s 0.16 s 0.16 s

loop7 – 0.97 s 1.33 s 12.92 s 0.89 s 13.26 s 0.59 s 0.52 s 0.59 s 0.52 s

loop8
† ✓ ✗ ✗ ✗ ✗ ✗ 2.67 s 0.83 s 1.92 s 0.96 s

loop9
† ✓ ✗ ✗ ✗ ✗ ✗ 5.41 s 1.69 s 5.41 s 1.69 s

loop10
† ✓ ✗ ✗ ✗ ✗ ✗ 3.86 s 1.14 s 3.86 s 1.14 s

loop11 – 0.18 s 1.15 s 2.18 s 0.42 s 12.39 s 0.48 s 0.68 s 0.48 s 0.58 s

sum01_bug02_false-unreach-

– 0.40 s 1.23 s ✗ 0.30 s ✗ ✗ ✗ 0.40 s 0.40 s

call_true-termination

sum01_bug02_sum01_bug02_base.case_

– 0.29 s 1.13 s ✗ 0.27 s ✗ ✗ ✗ 0.29 s 0.29 s

false-unreach-call_true-termination

sum04_false-unreach-

– 0.43 s 3.19 s ✗ 0.31 s ✗ ✗ ✗ 0.43 s 0.43 s

call_true-termination

trex02_false-unreach-

– 0.16 s 1.15 s ✗ 0.23 s ✗ 37.17 s 19.59 s 0.16 s 0.16 s

call_true-termination

trex03_false-unreach-

– 0.17 s 1.19 s ✗ 0.27 s 10.30 s ✗ 2.47 s 0.17 s 0.17 s

call_true-termination

Solved 28 24 26 31 21 37 40 46 46

Avg. Time 21.57 s 4.04 s 20.75 s 2.02 s 12.89 s 13.52 s 4.60 s 8.46 s 1.11 s

Key: ✗= no result/time-out, * = contains doomed loop head, †= extended loop guard
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Table 3. Superoptimisation and deobfuscation experimental results

Problem PLDI Brahma ICSE Brahma Kalashnikov

Runtime #Lines Aut. Random Semibiased #Lines Aut. Runtime #Lines

p1 3.20s 2 1.48s 0.80s 2 2.71s 2
p2 3.60s 2 7.35s 4.75s 2 2.24s 2
p3 1.40s 2 1.60s 0.65s 2 1.92s 2
p4 3.30s 2 1.65s 0.86s 2 2.71s 2
p5 2.20s 2 3.92s 2.28s 2 2.77s 2
p6 2.40s 2 6.22s 1.64s 2 2.23s 2
p7 1.00s 3 1.39s 0.50s 3 6.38s 3
p8 1.40s 3 2.20s 1.42s 3 6.73s 3
p9 5.80s 3 4.95s 8.75s 3 ✗ 15.14s 3
p10 76.10s 3 13.99s 7.82s 3 ✗ 18.59s 3
p11 57.10s 3 24.31s 17.13s 3 ✗ 15.17s 3
p12 67.80s 3 279.49s 48.16s 3 ✗ 16.21s 3
p13 6.20s 4 32.50s 9.97s 4 ✗ 12.56s 3
p14 59.60s 4 167.84s 18.07s 4 ✗ 81.87s 4
p15 118.90s 4 228.78s 33.53s 4 ✗ 104.97s 4
p16 62.30s 4 66.93s 23.92s 4 ✗ 49.90s 4
p17 78.10s 4 163.82s 65.45s 4 56.56s 4
p18 45.90s 6 ✗ 214.14s 82.53s 6 ✗ 8.71s 3
p19 34.70s 6 ✗ N/A N/A – T/O –

p20 108.40s 7 ✗ 1074.04s 285.56s 7 ✗ T/O –

p21 28.30s 8 ✗ N/A N/A – T/O –

p22 279.00s 8 ✗ N/A N/A – T/O –

p23 1668.00s 10 ✗ N/A N/A – T/O –

p24 224.90s 12 ✗ T/O 372.74s 12 ✗ T/O –

p25 2778.70s 16 ✗ N/A N/A – T/O –

p26 N/A – 14.32s 6.66s 4 ✗ T/O –

p27 N/A – 217.34s 26.51s 4 ✗ 54.28s 4
p28 N/A – 1.38s 24.24s 3 ✗ 1.80s 2
p29 N/A – 5.28s 5.92s 4 ✗ 8.78s 1

Brahma’s output

1 in t r e cove r ed ( in t y ) {

2 in t z = y << 2 ;

3 y = z + y ;

4 z = y << 3

5 y = z + y ;

6 return z ;

7 }

Kalashnikov’s output

1 in t r e cove r ed ( in t y ) {

2 return y ∗ 4 5 ;

3 }

Fig. 24. De-obfuscating C code
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Table 4. Refactoring experimental results

Benchmark IntelliJ NetBeans JSA

Npeople ✗ ✗ ✓
TestStack ✗ ✗ ✓
RemoveDuplicates ✗ ✗ ✓
TreeSetIteratorRemoveTest ✗ ✗ ✓
ListRemove ✗ ✗ ✗

Chympara ✗ ✗ ✓
Sort ✗ ✗ ✓
SimpleArrayListTest ✗ ✗ ✓
Esai ✗ ✗ ✓
RemoveDuringIteration ✗ ✗ ✓
Solution (1) ✗ ✗ ✓
Solution (2) ✗ ✗ ✓
ExerciseTwo ✗ ✗ ✗

CutSticks ✗ ✗ ✓
A_1 ✗ ✗ ✓
ExerciseThree ✓ ✗ ✓
Solution ✓ ✗ ✓
CollectionFilter ✗ ✗ ✓
CutSticks (1) ✗ ✓ ✗

CutSticks (2) ✗ ✓ ✓
Question3_5 ✗ ✗ ✓
CutSticks (3) ✗ ✗ ✓
CollectionTest ✗ ✗ ✓
ListIteration ✗ ✗ ✓
ListSetIteratorTest ✗ ✗ ✗

TestIterator (1) ✓ ✗ ✓
TestIterator (2) ✗ ✓ ✓
IteratorMain ✗ ✗ ✓
FilterUneven ✗ ✗ ✓
CheckedListBash ✓ ✗ ✓
DataPacking ✗ ✗ ✓
TestArrayList ✗ ✗ ✓
ArrayUtils ✗ ✓ ✗

GenPrime ✗ ✗ ✓
T1E3R (1) ✗ ✗ ✓
T1E3R (2) ✗ ✗ ✗

Solution (3) ✗ ✗ ✗

Euler68m ✗ ✗ ✓
CombinationSum (1) ✓ ✓ ✓
CombinationSum (2) ✓ ✓ ✓
Euler2 ✓ ✓ ✓
Sets ✓ ✓ ✗

Filter ✓ ✓ ✓
Ex8 ✗ ✗ ✓
Test ✗ ✗ ✗

Gray Code ✗ ✗ ✓
Problem3 ✗ ✗ ✗

Distance ✓ ✓ ✗

DistributedNumberOfInboundEdges ✗ ✓ ✓
Eratosthenes ✗ ✗ ✗

Total 10 11 38
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Table 5. Controller synthesis experimental results

# Plant Benchmark I F Gen No-Gen

1 G1 CruiseControl02 4 16 17 s ✗

2 G1 CruiseControl02
†

4 16 46 s ✗
3 G2 SpringMassDamper 15 16 28 s ✗

4 G2 SpringMassDamper
†

15 16 ✗ ✗
5 G3 SatelliteB2 3 7 7 s ✗

6 G3 SatelliteB2
†

3 7 ✗ 6601 s

7 G3 SatelliteC2 3 5 2 s ✗

8 G3 SatelliteC2
†

3 5 ✗ 76 s

9 G4a a_ST1_IMPL1 16 4 2704 s ✗
10 G4a a_ST1_IMPL2 16 8 538 s ✗
11 G4a a_ST1_IMPL3 16 12 12 s ✗
12 G4b a_ST2_IMPL1 16 4 318 s ✗
13 G4b a_ST2_IMPL2 16 8 967 s ✗
14 G4b a_ST2_IMPL3 16 12 9798 s ✗
15 G4c a_ST3_IMPL1 16 4 6304 s ✗

✗= time-out, † = with uncertainty
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6.8 Discussion of synthesis process
To help understand the role of the different solvers involved in the synthesis process, we provide a

breakdown of how often each solver “won”, i.e., was the first to return an answer. This breakdown

is given in Table 6a. We see that GP provides about 80% of the candidates, whereas CBMC provides

20%. The benchmark analysis suggests that GP progresses along the counterexample trajectory

much more quickly, but CBMC is very effective at pushing GP out of local minima.

Table 6. Breakdown of successful candidate generation and runtime per phase

(a) Found candidates per back end

CBMC GP

19.74% 80.26%

(b) Runtime per phase

synth verif

98.40% 1.60%

Table 6b provides a breakdown of where the CEGIS runtime is spent. Over 98% of the time is

spent in the synthesis phase, leaving less than 2% for the verification phase. This suggests that the

task of verifying an existing solution is almost negligible when compared to than of generating a

candidate solution satisfying a set of given counterexamples.

6.9 Comparison to SyGuS
In order to compare Kalashnikov to other synthesis engines, we translated the 20 safety bench-

marks into the SyGuS format [4] for the bit-vector theory. We then ran the following solvers:

• The enumerative CEGIS solver eSolver, winner of the SyGuS 2014 competition. We have

used the version from the SyGuS GitHub repository on 5/7/2015.

• The program synthesiser in CVC4 by [74], winner of the SyGuS 2015 competition. We have

used the version for the SyGuS 2015 competition on the StarExec platform.

We could not compare against ICE-DT [42], the winner of the invariant generation category in

the SyGuS 2015 competition, as it does not seem to offer support for bit-vectors. Our comparison

only uses 20 of the 96 benchmarks, as we had to manually convert from our specification format (a

subset of C) into the SyGuS format. Moreover, our choice of benchmarks was also restricted by

the fact that we could not express lexicographic ranking functions of unbounded dimension in the

SyGuS format, which we require for our termination benchmarks.

The results of these experiments are given in Table 7, which contains the number of benchmarks

solved correctly, the number of timeouts, the number of crashes (exceptions thrown by the solver),

the mean time to successfully solve and the total number of lines in the 20 specifications.

Since the eSolver tool crashed on many of the instances we tried, we reran the experiments

on the StarExec platform to check that we had not made mistakes setting up our environment,

however the same instances also caused exceptions on StarExec.

An important point to notice in Table 7 is that Kalashnikov specifications are significantly

more concise than SyGuS specifications, as witnessed by the total size of the specifications: the

Kalashnikov specifications are around 11% of the size of the SyGuS ones. Overall, we can see that

Kalashnikov performs better on these benchmarks than eSolver and CVC4, which validates our

claim that Kalashnikov is suitable for program analysis problems.

We noticed that for a lot of the cases in which eSolver and CVC4 timed out, Kalashnikov

found a solution that involved non-trivial constants. Since the SyGuS format represents constants

in unary (as chains of additions), finding programs containing constants, or finding existentially
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Table 7. Comparison of Kalashnikov, eSolver and CVC4 on a subset of the safety benchmarks

#Solved #TO #Crashes Avg. time Spec. size

Kalashnikov 18 2 0 11.3 s 341

eSolver 7 5 8 13.6 s 3140

CVC4 5 13 2 32.3 s 3140

quantified first order variables is expensive. Kalashnikov’s strategies for finding and generalising

constants make it much more efficient at this subtask.

7 RELATEDWORK
7.1 Program synthesis
Program synthesis is the mechanised construction of software that provably satisfies a given

specification. Synthesis tools promise to relieve the programmer from thinking about how the

problem is to be solved; instead, the programmer only provides a compact description of what is
to be achieved. Foundational research in this area has been exceptionally fruitful, beginning with

Alonzo Church’s work on the Circuit Synthesis Problem in the sixties [23]. Algorithmic approaches

to the problem have frequently been connected to automated theorem proving [61, 67]. Recent

developments include an application of Craig interpolation to synthesis by [55].

In their seminal paper, [48] describe Brahma, which is a program synthesiser for loop-free

programs over bit-vectors. One of the key differences between our work and Brahma is that Brahma

is designed to be used by a human operator who can help guide the synthesis process, while

our synthesiser is fully automatic. While Brahma uses a fixed set of components and encodes a

program by finding appropriate “wiring" between the components, our tool finds SSA programs of

arbitrary length. One important advantage of this encoding is that it does not require the user of

the synthesiser to include in their specification details such as how many addition operations may

appear in the program. This is key in enabling us to use the synthesiser as a black-box backend for

a plethora of use cases.

A recent successful approach to program synthesis is Syntax Guided Synthesis (SyGuS) [4]. The

SyGuS synthesisers supplement the logical specification with a syntactic template that constrains

the space of allowed implementations. Thus, each semantic specification is accompanied by a

syntactic specification in the form of a grammar. In contrast to SyGuS, our program synthesiser

is general-purpose as it has an universal target language such that no syntactic restriction of the

output needs to be provided. A more detailed comparison of these different directions in program

synthesis as well as an investigation of current challenges in the field can be found in [34].

Other second-order solvers are introduced by [45] and [12]. As opposed to ours, these are

specialised for Horn clauses and the logic they use is undecidable. [83] present a decision procedure

for a logic related to the synthesis fragment, the Quantified bit-vector logic, which is a many sorted

first-order logic formula where the sort of every variable is a bit-vector sort. It is possible to reduce

formulae in the synthesis fragment over finite domains to Effectively Propositional Logic [37], but

the reduction would require additional axiomatization and would increase the search space, thus

defeating the efficiency we are aiming to achieve.

7.2 Program termination
When surveying the area of program termination chronologically, we observe an initial focus on

monolithic approaches based on a single measure shown to decrease over all program paths [14, 71],

followed by more recent techniques that use termination arguments based on Ramsey’s theorem [27,
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29, 72]. The latter proof style builds an argument that a transition relation is disjunctively well

founded by composing several small well-foundedness arguments. Themain benefit of this approach

is the simplicity of local termination measures in contrast to global ones. For instance, there are

cases in which linear arithmetic suffices when using local measures, while corresponding global

measures require nonlinear functions or lexicographic orders.

One drawback of the Ramsey-based approach is that the validity of the termination argument

relies on checking the transitive closure of the program, rather than a single step. As such, there is

experimental evidence that most of the effort is spent in reachability analysis [29, 64], requiring the

support of powerful safety checkers: there is a tradeoff between the complexity of the termination

arguments and that of checking their validity.

As Ramsey-based approaches are limited by the state of the art in safety checking, recent research

by [64] and [30] reverts to more complex termination arguments that are easier to check. Following

the same trend, the ranking functions we synthesise may involve nonlinearity and lexicographic

orders: we do not commit to any particular syntactic form, and do not use templates. Furthermore,

our approach allows us to simultaneously search for proofs of non-termination, which take the form

of recurrence sets.

7.3 Bug finding
Static bug finders that use techniques such as BoundedModel Checking (BMC) search for proofs that

safety can be violated and have the attractive property that once an assertion fails, a counterexample

trace is returned, which can be inspected by the user [24]. The counterexample is thus the proof that

an assertion violation occurs. In order to construct such a danger proof, bounded model checkers

compute underapproximations of the reachable program states by progressively unwinding the

transition relation. The downside of this approach is that static bug finders fail to scale when

analysing programs with bugs that require many iterations of a loop. The computational effort

required to discover an assertion violation (i.e., to obtain an intersection with the small ellipse

labelled “error states”) typically grows exponentially with the depth of the bug.

Notably, the scalability problem is not limited to procedures that implement BMC. Approaches

based on a combination of over- and underapproximations such as predicate abstraction [26]

and lazy abstraction with interpolants [68] are not optimised for finding deep bugs either. The

reason for this is that they can only detect counterexamples with deep loops after the repeated

refutation of increasingly longer spurious counterexamples. The analyser first considers a potential

error trace with one loop iteration, only to discover that this trace is infeasible. Consequently,

the analyser increases the search depth, usually by considering one further loop iteration. This

repeated unwinding suffers from the same exponential blow-up as BMC.

Danger invariants allow proving the existence of a bug without explicitly showing an error trace.

This allows for much more compact and intuitive proofs, which in turn allows for much more

scalable analyses that do not suffer from false alarms.

With respect to the verification of temporal properties, a danger invariant for a loop with an

assertionA essentially proves the CTL property EF¬A over the loop. While there exist CTL verifiers

based on a reduction to exist-forall quantified Horn clauses [11, 12], we specialise the concept for

finding deep bugs and describe a modular constraint generation technique over arbitrary programs,

rather than for transition systems.

Another successful technique for finding deep bugs without false alarms is loop acceleration [62,

63]. This approach works by taking a single path at a time through a loop, computing a symbolic

representation of the exact transitive closure of the path (an accelerator) and adding it back into

the program before using an off-the-shelf bug finder such as a bounded model checker. Loop

acceleration requires that each accelerated path can be represented in closed-form by a polynomial
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over the program variables, which is not always possible. In contrast, danger invariants are complete

– a program has a corresponding danger invariant iff it has a bug. Loop acceleration could be used

in concert with danger invariants, since if an accelerator can be found, it is the strongest inductive

fact about a loop and as such makes a good candidate danger invariant.

7.4 Program refactoring
Cheung et al. describe a system that automatically transforms fragments of application logic into

SQL queries [22]. Moreover, similar to our approach, the authors rely on synthesis technology to

generate invariants and postconditions that validate their transformations (a similar approach is

presented in [56]). The main difference (besides the actual goal of the work, which is different from

ours) to our work is that the lists they operate on are immutable and do not support operations

such as remove. Capturing the potential side effects caused by such operations is one of our work’s

main challenges.

8 CONCLUSIONS
We have shown that the synthesis fragment is well-suited for a variety of program analysis tasks by

applying it to directly encode safety, danger, liveness, refactoring and superoptimisation properties.

We built a decision procedure for SFD via a reduction to finite-state program synthesis. The

synthesis algorithm is optimised for program analysis and uses a combination of symbolic model

checking, explicit state model checking and stochastic search. An important strategy is generalisa-

tion – we find simple solutions that solve a restricted case of the specification, then try to generalise

to a full solution.We evaluated the program synthesiser on several static analysis problems, showing

the tractability of the approach.
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