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MODELS AND INTEGRAL DIFFERENTIALS OF
HYPERELLIPTIC CURVES

SIMONE MUSELLI

Abstract. Let C : y2 = f(x) be a hyperelliptic curve of genus g ≥ 2, defined
over a discretely valued complete field K, with ring of integers OK . Under
certain conditions on C, mild when residue characteristic is not 2, we explicitly
construct the minimal regular model with normal crossings C/OK of C. In
the same setting we determine a basis of integral differentials of C, that is an
OK-basis for the global sections of the relative dualising sheaf ωC/OK

.

1. Introduction

The purpose of this paper is to construct regular models of hyperelliptic curves
and to describe a basis of integral differentials attached to them. Moreover, we
want these constructions explicit and easy to compute.

1.1. Main results. Let K be a discretely valued field of residue characteristic
p, with discrete valuation v and ring of integers OK . Since regular models do
not change under completion of the base field, we also assume K to be complete.
Fix a separable closure Ks of K and let ks/k be the corresponding extension of
residue fields. Suppose C/K is a hyperelliptic curve of genus g ≥ 2 given by a
Weierstrass equation y2 = f(x) and write

f(x) = cf
∏
r∈R

(x− r).

Definition 1.1 A cluster (for C) is a non-empty subset s ⊂ R of the form D∩R,
where D is a v-adic disc D = {x ∈ Ks | v(x− z) ≥ d} for some z ∈ Ks and d ∈ Q.
We denote by ΣC the set of clusters for C.

Let Knr be the maximal unramified extension of K in Ks and let IK =
Gal(Ks/Knr) be the inertia subgroup. To construct the minimal regular model
with normal crossings of C, we assume C is y-regular (Definition 4.5) and ΣC

is almost rational (Definition 3.25) over Knr. Before stating the main result, we
want to discuss some special cases in which these two conditions are satisfied.

First, if either p 6= 2 or ΣC only contains clusters of odd size, then C is y-regular
over Knr. Second, if K(R)/K is tamely ramified and every cluster s ∈ ΣC is IK-
invariant, then ΣC is almost rational over Knr. On the other hand, there are
examples of curves with K(R)/K wildly ramified, but where the cluster picture
is almost rational, e.g., f(x) = xp − p, with p > 3. Finally, if g = 2, then
107/120 Namikawa-Ueno types ([NU]) arise from hyperelliptic curves satisfying
the conditions above.

Theorem 1.2 (Theorems 4.16 and 6.4) Let C/K be a hyperelliptic curve as above,
y-regular over Knr. Suppose ΣC is almost rational over Knr. Then the (rational)
cluster picture of C uniquely determines:

(i) the minimal regular model with normal crossings Cmin,
(ii) a basis of integral differentials of C (see §1.2).
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2 SIMONE MUSELLI

Note that the model Cmin in (i) is defined by giving an explicit open affine
cover. Moreover, if ΣC is not almost rational, a stronger version of Theorem 1.2
still gives a proper flat model of C (see Theorem 4.12).

Finally, the author believes that an approach similar to that used in this pa-
per could eventually give a full characterisation of minimal models with normal
crossings of hyperelliptic curves (over any discretely valued field).

1.2. Motivation. In this subsection we want to present two important applica-
tions of Theorem 1.2.

Let C be a hyperelliptic curve of genus g ≥ 2 defined over a number field F , and
let J = Jac(C) be the Jacobian of C. The Birch and Swinnerton-Dyer conjecture
for the g-dimensional abelian variety J is

Conjecture 1.3 (Birch and Swinnerton-Dyer conjecture)

lim
s→1

(s− 1)−rL(J, s) =
ΩJ ·RJ · |X(J)| ·

∏
v-∞ cv√

|DF |d · |J(F )tors|2

where r is the rank, L(J, s) is the L-function, ΩJ is the period, RJ is the regula-
tor, X(J) is the Shafarevic-Tate group (conjecturally finite), cp is the Tamagawa
number for v place of F , DF is the discriminant of F/Q, and J(F )tors are the
torsion points in J(F ).

For any place v -∞ of F , let K := Fv be the completion of F at v. First note
that the Tamagawa number at v can be found from the minimal regular model of
CK , so Theorem 1.2(i) can be applied to compute it in concrete examples.

We now focus on the period ΩJ . Fix a regular model C/OK of CK/K. It is
well-known that theK-vector space of regular differentials Ω1

CK/K
(CK) is spanned

by the basis
ω =

(
dx

2y
, x

dx

2y
, . . . , xg−1 dx

2y

)
.

Consider the global sections of the relative dualising sheaf ωC/OK . It is an OK-free
module of rank g that can be viewed as an OK lattice

(1) ωC/OK (C) ⊂ Ω1
CK/K

(CK),

since ωC/OK |C = Ω1
CK/K

. Via (1), we will call the elements of ωC/OK (C) integral
differentials of C (at v). In particular, there exists a matrix Av ∈Mg×g(K) such
that Av · ω is a basis of integral differentials of C, i.e., an OK-basis of ωC/OK (C).
Then

ΩJ = Ω∞,ω ·
∏
v

|detAv|−1
v .

The quantity Ω∞,ω is relatively easy to find in actual computations (see [vB] for
more details). Theorem 1.2(ii) gives an explicit formula to compute the local part
|detAv|v for any v.

A second important application concerns the so-called conductor-discriminant
inequalities. Let K be a complete discretely valued field of residue characteristic
p, with discrete valuation v. Let C/K be a hyperelliptic curve of genus g ≥ 2 and
let ∆ be the (valuation of the) discriminant of C associated with this equation.
Moreover, let C/OK be the minimal regular model of C and let Art(C/OK) denote
the Artin conductor of C. If p 6= 2, Obus and Srinivasan show in [OS] that

Art(C/OK) ≤ ∆C/OK ,

where ∆C/OK is the (valuation of the) minimal discriminant of C. However, this
inequality is often non-sharp. Let A be the matrix above, so that A · ω is an
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OK-basis of ωC/OK (C). Define

∆min := g ·∆− (8g + 4) · v(detA).

It follows from [Kau, Proposition 2.2(1)] that ∆min is independent of the choice
of the Weierstrass equation, and easily ∆min ≤ ∆C/OK .

Conjecture 1.4 With the notation above

Art(C/OK) ≤ ∆min.

This conjecture is proved in the genus 2 case due to the work of Liu [LiC].
Furthermore, in the semistable case, Maugeais shows it in [Mau], and it also
easily follows from [M2D2] and [Kun]. Although Theorem 1.2 does not prove the
inequality, it allows us to compute ∆min explicitly in many more cases.

1.3. Related works of other authors. Let us keep the notations of §1.1. In
genus 1, thanks to Tate’s algorithm, we have a full understanding of the minimal
regular model of an elliptic curve C (see for example [Sil2, IV.8.2]) . Furthermore,
ω is always a basis of integral differentials ([LiA, Theorem 9.4.35]).

If C has genus 2, then Namikawa and Ueno [NU] and Liu [LiQ] give a full
classification of the possible minimal regular models of C. In [LiC, 1.3], Liu
shows that there exists a Moebius transformation so that ω is basis of integral
differentials of the transformed curve. However, note this is a theoretical result,
that is to find such a change of variable we need to know a basis of integral
differentials of C.

The results presented so far work also in residue characteristic equal to 2. If
p is odd, then Liu and Lorenzini show in [LL] that regular models of C can be
seen as double cover of well-chosen regular models of P1

K . Since the latter can be
found by using the MacLane valuations ([Mac]) approach in [OW], this argument
gives a way to describe any regular model of a hyperelliptic curve. However, this
construction is only qualitative (it does not give explicit equations) and it has not
been generalised to the p = 2 case.

If p 6= 2 and C is semistable, then in [M2D2] the authors construct a minimal
regular model in terms of the cluster picture of C. Note that the components
of the stable model used in this paper are given explicitly. Under the same
assumptions, Kausz [Kau, Proposition 5.5] gives a basis of integral differentials
which Kunzweiler in [Kun] rephrases in terms of the cluster invariants introduced
in [M2D2]. These results can be recovered from Theorem 1.2 (see Corollary 4.19).

If p 6= 2 and C is semistable over some tamely ramified extension of L/K, then
Faraggi and Nowell [FN] find the minimal regular model of C with strict normal
crossings taking the quotient of the stable model of CL and resolving the (tame)
singularities. However, since they do not give equations for the model they find,
it does not immediately yield all arithmetic invariants, such as a basis of integral
differentials.

The last work we want to recall represents a very important ingredient of the
strategy we will use in this paper (described more precisely in the next subsection).
T. Dokchitser in [Dok] shows that the toric resolution of C gives a regular model in
case of ∆v-regularity ([Dok, Definition 3.9]). This result, used also in [FN], holds
for general curves and in any residue characteristic. In his paper, Dokchitser also
describes a basis of integral differentials since his model is explicit, i.e., given as
open cover of affine schemes. In Corollary 3.24 and Theorem 6.1, we will rephrase
his results for hyperelliptic curves by using cluster picture invariants from §3.
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1.4. Strategy and outline of the paper. In [Dok], Dokchitser not only de-
scribes a regular model of C in case of ∆v-regularity, but also constructs a proper
flat model C∆ without any assumptions on C. Assume C is y-regular and ΣC

almost rational over Knr with rational centres w1, . . . , wm ∈ Knr (see Definitions
3.25 and 3.8). Our approach to construct the minimal regular model with normal
crossings of C is composed by the following steps:

• Consider the x-translated hyperelliptic curves Ch/Knr : y2 = f(x+ wh),
for h = 1, . . . ,m. For each h, [Dok, Theorem 3.14] constructs a proper
flat model Ch∆, possibly singular.
• We glue the regular parts of these schemes along common opens, and show
that the result is a proper flat regular model C of CKnr .
• We give a complete description of what components of the special fibre
of C have to be blown down to obtain the minimal model with normal
crossings Cmin of CKnr .
• Finally, we describe the action of the Galois group Gk = Gal(ks/k) on the
special fibre of Cmin.

Since all models Ch∆ are explicitly described, the model C is explicit as well. This
allows us to study the global sections of its relative dualising sheaf ωC/OK (C).

In §2, we present some basic results on Newton polygons related to what is
used in [Dok]. We use them in the following sections. In §3, we recall the most
important notions of [M2D2] and introduce the new definition of rational cluster
picture. Moreover, we compare it with the definitions and results given §2. This
comparison allows us to rephrase the objects in [Dok] in terms of cluster invariants
in §4. In the same section we also state the main theorems which describe a proper
flat model (Theorem 4.12) and the minimal regular model with normal crossings
(Theorem 4.16) of C. Although the description of these models is clear from the
statement of the theorems, its detailed construction is presented only in §5. Here
we use the toric resolution of [Dok], making concrete the strategy sketched above.
Finally, in §6, Theorem 6.4 describes a basis of integral differentials of C, in terms
of the cluster invariants defined in §3.

Acknowledgements. The author would like to thank his supervisor Tim Dok-
chitser for the very useful conversations, corrections and general advice.

2. Newton polygon

Let K be a complete field with a discrete valuation v, ring of integers OK ,
uniformiser π, and residue field k of characteristic p. We fix K, an algebraic
closure of K, of residue field k, and we denote by Ks the separable closure of K
in K, and by ks its residue field. Note that ks is the separable closure of k in
k. We write GK , Gk for the Galois groups Gal(Ks/K), Gal(ks/k), respectively.
Finally, write Knr for the maximal unramified extension of K.

Let f ∈ K[x] be a polynomial of degree d, say

f(x) =
d∑
i=0

aix
i.

The Newton polygon of f , denoted NP(f), is

NP(f) = lower convex hull {(i, v(ai)), i = 0, . . . , d} ⊂ R× (R ∪ {∞}).
We recall the following well-known result.

Theorem 2.1 Let i0 < . . . < is be the set of indices in {0, . . . , d} such that the
points (i0, v(ai0)), . . . , (is, v(ais)) are the vertices of NP(f). For any j = 1, . . . , s,
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denote by ρj the slope of the edge of NP(f) which links the points (ij−1, v(aij−1))
and (ij , v(aij )). Then f factors over K as a product

f = g1 · · · gs,

where, for all j = 1, . . . , s,
• the degree of gj is dj = ij − ij−1,
• all the roots of gj have valuation −ρj in K.

Remark 2.2. If x | f , then g1 is equal to the maximal power of x which divides
f , NP(g1) can be viewed as a vertical line, and ρ1 =∞.

Corollary 2.3 With the notation of Theorem 2.1, the polynomial f has exactly
dj roots of valuation −ρj for all j = 1, . . . , s.

Corollary 2.4 If f =
∑
aix

i is irreducible of degree d, then NP(f) is a line linking
the points (0, v(a0)) and (d, v(ad)).

Definition 2.5 (Restriction and reduction) Let f =
∑d

i=0 aix
i ∈ K[x] and

consider an edge L of its Newton polygon NP(f). Then L = NP(gi) for some
gi in the factorisation of f of Theorem 2.1. Consider the two endpoints of L
(i1, v(ai1)), (i2, v(ai2)), i1 < i2. Denote by ρ the slope of L and by n the denomi-
nator of ρ. Define the restriction of f to L to be

f |L =
∑
i≥0

ani+i1x
i.

Moreover we define the reduction of f (with respect to L) to be the polynomial

f |L = π−cf |L(π−nρx) mod π ∈ k[x],

where c = v(ai1) = v(ai2) + (i1 − i2)ρ.

Remark 2.6. These definitions coincide with the ones given in [Dok, Definitions
3.4, 3.5] when the number of variables n is 1.

Until the end of the section let f ∈ K[x], consider a factorisation f = g1 · · · gs
as in Theorem 2.1 and denote by Lj the Newton polygon of gj .

Remark 2.7. By the lower convexity of NP(f), for all j = 1, . . . , s, the two poly-
nomials f |Lj and gj |Lj are equal up to units. In particular they define the same
k-scheme in Gm,k.

Furthermore, if either x - f or j 6= 1, then x - gj and so x - gj |Lj and x - f |Lj .

Definition 2.8 We say that f is NP-regular if the k-scheme

XLj : {f |Lj = 0} ⊂ Gm,k

is smooth for all j = 1, . . . , s.

Lemma 2.9 The polynomial f = g1 · · · gs is NP-regular if and only if gj is NP-
regular for every j.

Proof. The lemma follows by Remark 2.7. �

We conclude this section with two examples.

Example 2.10. Let f = x11 + 9x7 − 3x6 + 9x5 + 81x − 27 ∈ Q3[x]. Then the
Newton polygon of f is
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i

v(ai)

(11, 0)

(6, 1)

(0, 3)
ρ1 = − 1

3
L1

ρ2 = − 1
5

L2

Corollary 2.3 implies that f has 6 roots of valuation 1
3 and 5 roots of valuation

1
5 . Furthermore, the two polynomials g1 and g2 in the factorisation f = g1 · g2 of
Theorem 2.1 turn out to be

g1 = x6 + 9, g2 = x5 + 9x− 3.

Finally,

f |L1 = −3x2 − 27 = −3 · g1|L1 , f |L2 = x− 3 = g2|L2 ;

and

f |L1 = −x2 − 1 = −(x2 + 1) = −g1|L1 , f |L2 = x− 1 = g2|L2 in F3[x].

Thus f is NP-regular.

Example 2.11. Let’s do now an example of a polynomial that is not NP-regular.
Let f = x9 + 12x6 + 36x3 + 81 ∈ Q3[x]. Then the Newton polygon of f is

i

v(ai)

(9, 0)

(3, 2)

(0, 4)
ρ
1 = − 2

3L
1

ρ2 = − 1
3

L2

Corollary 2.3 implies that f has 3 roots of valuation 2
3 and 6 roots of valuation

1
3 . Furthermore, the two polynomials g1 and g2 in the factorisation f = g1 · g2 of
Theorem 2.1 are (up to units)

g1 = x3 + 9, g2 = x6 + 3x3 + 9.

Finally,
f |L1 = x3 + 12x2 + 36x+ 81 f |L2 = x2 + 12x+ 36,

g1|L1 = x+ 9, g2|L2 = x2 + 3x+ 9;

and
f |L1 = x+ 1 = g1|L1 , f |L2 = (x+ 2)2 = g2|L2 in F3[x].

Then f is not NP-regular. In fact, according to Lemma 2.9, g2 is not NP-regular.
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3. Clusters

Throughout this section let f ∈ K[x] be a separable polynomial and denote by
R the set of its roots and by cf its leading coefficient. Then

f(x) = cf
∏
r∈R

(x− r).

Definition 3.1 ([M2D2, Definition 1.1]) A cluster (for f) is a non-empty subset
s ⊂ R of the form D ∩R, where D is a v-adic disc D = {x ∈ K | v(x − z) ≥ d}
for some z ∈ K and d ∈ Q. If |s| > 1 we say that s is proper and define its depth
ds to be

ds = min
r,r′∈s

v(r − r′).

Note that every proper cluster is cut out by a disc of the form

D = {x ∈ K | v(x− r) ≥ ds}
for any r ∈ s.

Definition 3.2 ([M2D2, Definition 1.3]) If s′ ( s is maximal subcluster, then we
say that s′ is a child of s and s is the parent of s′, and we write s′ < s. Since
every cluster s 6= R has one and only one parent we write P (s) to refer to the
unique parent of s.

We say that a proper cluster s is minimal if it does not have any proper child.
For two clusters (or roots) s1, s2, we write s1 ∧ s2 for the smallest cluster that

contains them.

Definition 3.3 ([M2D2, Definition 1.4]) A cluster s is odd/even if its size is
odd/even. If |s| = 2, then we say s is a twin. A cluster s is übereven if it has only
even children.

Definition 3.4 ([M2D2, Definition 1.9]) A centre zs of a proper cluster s is any
element zs ∈ Ks such that s = D ∩R, where

D = {x ∈ K | v(x− zs) ≥ ds}.
Equivalently, v(r − zs) ≥ ds for all r ∈ s. The centre of a non-proper cluster
s = {r} is r.
Definition 3.5 ([M2D2, Definition 1.6]) For a cluster s set

νs := v(cf ) +
∑
r∈R

dr∧s.

Definition 3.6 ([M2D2, Definition 1.26]) The cluster picture Σf of f is the set
of all its clusters. We denote by Σ̊f the subset of Σf of proper clusters.

Definition 3.7 We say that Σf is nested if one of the following equivalent con-
ditions is satisfied:

(i) there exists z ∈ Ks such that z is a centre for all proper clusters s ∈ Σf ;
(ii) there is only one minimal cluster in ΣC ;
(iii) every non-minimal proper cluster has exactly one proper child.

Definition 3.8 A rational centre of a cluster s is any element ws ∈ K such that

min
r∈s

v(r − ws) = max
w∈K

min
r∈s

v(r − w).

If s = {r}, with r ∈ K, then ws = r.
If ws is a rational centre of a proper cluster s, we define the radius of s to be

ρs = min
r∈s

v(r − ws).
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Definition 3.9 A rational cluster is a cluster cut out by a v-adic disc of the form
D = {x ∈ K | v(x− w) ≥ d} with w ∈ K and d ∈ Q.

We define the rational cluster picture Σrat
f ⊆ Σf to be the set of rational

clusters. We denote by Σ̊rat
f the subset of Σrat

f of proper rational clusters.

Definition 3.10 Given a proper cluster s ∈ Σf , we define the rationalisation srat

of s to be the rational cluster

srat = R ∩ {x ∈ K | v(x− ws) ≥ ρs},
where ws is a rational centre of s and ρs is its radius.

Lemma 3.11 Let s ∈ Σrat
f be a proper cluster of rational centre ws. Let s′

be a child of s of rational centre ws (let s′ = ∅ if it does not exist). Then
(|s| − |s′|)ρs ∈ Z.

Proof. As s ∈ Σrat
f , one has s = srat. Then bs divides the degree of the minimal

polynomial of r, for any r ∈ s, with v(ws− r) = ρs. Then (|s| − |s′|)ρs ∈ Z, where

s′ = R ∩ {x ∈ K | v(x− ws) > ρs},
as required. �

Remark 3.12. Let s ∈ Σf be a proper GK-invariant cluster and assume K(s)/K
is tame. Then by [M2D2, Lemma B.1] the cluster s has a centre zs ∈ K and so
ρs = ds and s ∈ Σrat

f . On the other hand, if a proper cluster s ∈ Σf satisfies
ds = ρs, then a rational centre ws ∈ K of its is also a centre. Then s is GK-
invariant.

Lemma 3.13 Let s be a proper cluster. Then ds ≥ ρs.

Proof. First we want to show that

min
r,r′∈s

v(r − r′) = max
z∈Ks

min
r∈s

v(r − z).

Clearly minr,r′∈s v(r − r′) ≤ maxz∈Ks minr∈s v(r − z). Let zs ∈ Ks such that

max
z∈Ks

min
r∈s

v(r − z) = min
r∈s

v(r − zs).

Then, for any r, r′ ∈ s, one has

v(r − r′) ≥ min{v(r − zs), v(r′ − zs)} ≥ min
r∈s

v(r − zs),

and so
min
r,r′∈s

v(r − r′) ≥ max
z∈Ks

min
r∈s

v(r − z),

as wanted.
From

ds = min
r,r′∈s

v(r − r′) = max
z∈Ks

min
r∈s

v(r − z) ≥ max
w∈K

min
r∈s

v(r − w) = ρs,

the lemma follows. �

Lemma 3.14 Let s be a proper cluster with rational centre ws and let t ∈ Σf

satisfying t ⊇ s. Then ws is a rational centre of t and ρt ≤ ρs. Furthermore, if s
is a rational cluster and t ) s, then ρt < ρs.

Proof. It suffices to prove the lemma for t = P (s). Hence we want to show that
minr∈P (s) v(r − ws) = ρP (s) and ρP (s) ≤ ρs. First of all,

min
r∈P (s)

v(r − ws) ≤ max
w∈K

min
r∈P (s)

v(r − w) = ρP (s).
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Moreover

ρP (s) = max
w∈K

min
r∈P (s)

v(r − w) ≤ max
w∈K

min
r∈s

v(r − w) = ρs.

If r ∈ s then v(ws−r) ≥ ρs, by definition of ρs. On the other hand, if r ∈ P (s)rs
then fixing r′ ∈ s we have

v(r−ws) = v(r−r′+r′−ws) ≥ min{v(r−r′), v(r′−ws)} ≥ min{dP (s), ρs} ≥ ρP (s),

by the previous lemma. Thus minr∈P (s) v(r − ws) = ρP (s), as required.
Now suppose s ∈ Σrat

f with t ) s. From Definition 3.8, it follows that

{x ∈ K | v(x− ws) ≥ ρs} ∩R = s ( t ⊆ {x ∈ K | v(x− ws) ≥ ρt} ∩R,

as ws is a rational centre of t. Thus ρt < ρs. �

Lemma 3.15 Every cluster s with ρs < ds has no rational subcluster s′ ( s.

Proof. Suppose by contradiction there exists s′ ∈ Σrat
C , s′ ( s, and fix a rational

centre ws′ of s′. Then ws′ is a rational centre of s by the previous lemma. If
|s′| = 1, then ws′ is also a centre of s and this contradicts ρs < ds; so assume s′

proper. Let r′ ∈ s′ such that v(r′−ws′) = ρs′ and r ∈ s such that v(r−ws′) = ρs.
But then ds ≤ v(r − ws′ + ws′ − r′) = ρs again by Lemma 3.14.

In particular, the lemma above shows that if s ∈ Σf and s′ ∈ Σrat
f is a maximal

rational subcluster of s, then s′ is a child of s. Moreover, the parent of a rational
cluster is rational.

Definition 3.16 We say that a proper rational cluster s ∈ Σrat
f is (rationally)

minimal if it does not have any proper rational subcluster.

Lemma 3.17 Let s, s′ ∈ Σrat
f such that s′ * s. If ws is a rational centre of s then

min
r∈s′

v(r − ws) = ρs∧s′ .

Proof. By Lemma 3.14 we have

min
r∈s∧s′

v(r − ws) = ρs∧s′ .

Therefore minr∈s′ v(ws − r) ≥ ρs∧s′ . Suppose by contradiction that

min
r∈s′

v(r − ws) =: ρ > ρs∧s′ .

It follows from Lemma 3.14 that

min
r∈s

v(r − ws) = ρs > ρs∧s′

as s′ * s. But then there exists r̃ ∈ (s ∧ s′) r (s ∪ s′) such that v(r̃−ws) = ρs∧s′ .
Consider the rational cluster

t := R ∩
{
x ∈ K | v(x− ws) ≥ min{ρ, ρs}

}
∈ Σrat

f .

Then s, s′ ⊆ t, but since r /∈ t we have s ∧ s′ * t that contradicts the minimality
of s ∧ s′. �

Lemma 3.18 Let t ∈ Σf with at least two children in Σrat
f . Then dt = ρt ∈ Z

and t ∈ Σrat
f . More precisely, if s, s′ ∈ Σrat

f such that s ( s ∧ s′ ) s′, then

ρs∧s′ = v(ws − ws′) = ds∧s′ ,

where ws and ws′ are rational centres of s and s′ respectively.
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Proof. Clearly it suffices to prove the second statement as v(ws−ws′) ∈ Z. For our
assumptions s′ 6⊆ s. Then by Lemma 3.17 there exists r ∈ s′ so that v(r − ws) =
ρs∧s′ . Thus,

v(ws − ws′) = min{v(ws − r), v(r − ws′)} = ρs∧s′ ,

as
v(r − ws′) ≥ ρs′ > ρs∧s′

by Lemma 3.14. Finally, ds∧s′ = ρs∧s′ by Lemma 3.15. �

Definition 3.19 For a proper cluster s set

εs := v(cf ) +
∑
r∈R

ρr∧s.

Example 3.20. Let f = x11 − 3x6 + 9x5 − 27 ∈ Q3[x]. The set of roots of f is

R = { 3
√

3, ζ3
3
√

3, ζ2
3

3
√

3,− 3
√

3,−ζ3
3
√

3,−ζ2
3

3
√

3,
5
√

3, ζ5
5
√

3, ζ2
5

5
√

3, ζ3
5

5
√

3, ζ4
5

5
√

3},

where ζq is a primitive q-th root of unity for q = 3, 5. Then the proper clusters of
f are

s1 = { 3
√

3, ζ3
3
√

3, ζ2
3

3
√

3}, s2 = {− 3
√

3,−ζ3
3
√

3,−ζ2
3

3
√

3}, s3 = s1 ∪ s2, R

with ds1 = ds2 = 5
6 , ds3 = 1

3 and dR = 1
5 . The graphic representation of the

cluster picture of f is then

5
6

5
6 1

3 1
5

1

where the subscripts of clusters (represented as circles) are their depths.
Furthermore, note that 0 is a rational centre for all (proper) clusters and we

have ρs1 = ρs2 = ρs3 = 1
3 and ρR = 1

5 .
Finally, for every cluster s we can also compute νs and εs, that are

νs1 = νs2 =
9

2
, νs3 = εs1 = εs2 = εs3 = 3, νR = εR =

11

5
.

Example 3.21. Let f = x9 + 12x6 + 36x3 + 81 ∈ Q3[x] and fix an isomorphism
Q3 ' C. Then the set of roots of f is

R = { 3
√

32, ζ3
3
√

32, ζ2
3

3
√

32, ζ9
3
√

3, ζ2
9

3
√

3, ζ4
9

3
√

3, ζ5
9

3
√

3, ζ7
9

3
√

3, ζ8
9

3
√

3},

where ζq = e2πi/q is a primitive q-th root of unity for q = 3, 9. Then the proper
clusters of f are

s1 = { 3
√

32, ζ3
3
√

32, ζ2
3

3
√

32}, s2 = {ζ9
3
√

3, ζ4
9

3
√

3, ζ7
9

3
√

3},
s3 = {ζ2

9
3
√

3, ζ5
9

3
√

3, ζ8
9

3
√

3}, s4 = s2 ∪ s3, R

with ds1 = 7
6 , ds2 = ds3 = 5

6 , ds4 = 1
2 , and dR = 1

3 . The cluster picture of f is
then

7
6

5
6

5
6 1

2 1
3

1
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It is easy to see that 0 is a rational centre for all (proper) clusters and that ρs1 = 2
3 ,

ρs2 = ρs3 = ρs4 = ρR = 1
3 . Finally,

νs1 =
11

2
, νs2 = νs3 = 5, νs4 = 4, νR = 3; εs1 = 4, εs2 = εs3 = εs4 = εR = 3.

The goal of this section is to describe the NP-regularity of f ∈ K[x] in terms of
conditions on its cluster picture Σf .

Lemma 3.22 Suppose that NP(f) =: L has slope −ρ and let n be the denominator
of ρ. Then f is NP-regular if and only if all proper clusters s ∈ Σf with |s| > |ρ|p
1 satisfy ds = ρ.

More precisely, if s ∈ Σf with |s| > |ρ|p but ds > ρ, then f |L has a multiple
root u =

(
r
πρ

)
∈ k, for some (any) r ∈ s. The multiplicity of u equals |s|/pvp(n),

where s = {r ∈ R | u =
(
r
πρ

)
}. Furthermore, all multiple roots of f |L come from

a cluster s as described above.

Proof. Write n = m · pk where p - m. Let R = {ri | i = 1, . . . , D} be the set of
roots of f , where D := deg f , and let

ri = uiπ
ρ + . . .

be the p-adic expansion of ri (we fix here a choice of
√̀
π, for ` large enough),

where ui ∈ Knr root of unity of order prime to p. Firstly, note that there exists
a proper cluster s with |s| > |ρ|p and ds > ρ if and only if there exists a subset
I ⊆ {1, . . . , D} of size |I| > pk such that v(ui1 − ui2) > 0 for all i1, i2 ∈ I.
Secondly, recall that f is not NP-regular if and only if f |L has a multiple root in
k. Therefore we will prove that f |L has a multiple root if and only if there exists
a subset I ⊆ {1, . . . , D} with size |I| > pk and such that v(ui1 − ui2) > 0 for all
i1, i2 ∈ I.

Let f ′ ∈ K[x] defined by f ′(x) := f |L(xn). By definition of f |L, we have that
f is NP-regular if and only if f ′ is NP-regular. Moreover, since

f := π−(v(cf )+Dρ)f(πρx) = π−(v(cf ′ )+Dρ)f ′(πρx) =: f ′ in k[x],

and {ui | i = 1, . . . , D} is the multiset of roots of f , we can assume without loss
of generality that f = f ′.

Then we prove the lemma with the additional assumption f(x) = f |L(xn). Let
{tj | j = 1, . . . , D/n} be the multiset of roots of f |L. Hence there exists an n-to-1
map

φ : {ri} // {tj}

ri
� // rni

,

which induces an n-to-1 map

φ : {ui} // {wj}

ui
� // umi

,

where tj = wjπ
nρ + . . . is the p-adic expansion of tj and ui, wj denote the reduc-

tions to k of ui, wj , respectively. Note that wj ∈ k are the roots of f |L.
Now, suppose that f is not NP-regular. We want to show that there exists a

subset I ⊂ {1, . . . , D} with |I| > pk such that v(ui1 − ui2) > 0 for all i1, i2 ∈ I.
Since f is not NP-regular, its reduction f |L has a multiple root. Then there exist
j1, j2 ∈ {1, . . . , D/n} so that wj1 = wj2 =: w. Hence, by the definition of φ, we

1Here | · |p denotes the standard p-adic absolute value attached to Q, i.e., |x|p = p−vp(x) for
all x ∈ Q
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have at least 2pk ui’s with same reduction in k (and such that φ(ui) = w). Let I
denote the set of their indices. Then |I| ≥ 2pk > pk and v(ui1 − ui2) > 0 for all
i1, i2 ∈ I, as required.

Finally, suppose that there exists a subset I ⊂ {1, . . . , D} with |I| > pk and
such that v(ui1 − ui2) > 0 for all i1, i2 ∈ I. This means ui1 = ui2 for all i1, i2 ∈ I.
We want to show that f |L has a multiple root, that is there exist two indices
j1, j2 ∈ {1, . . . , D/n} such that wj1 = wj2 . Suppose not and let j ∈ {1, . . . , D/n}
such that wj = umi = φ(ui) for some (all) i ∈ I. Since φ is induced by φ we have
tj = φ(ri) = rni for all i ∈ I. Then the polynomial xn −wj = (xm −wj)p

k ∈ k[x],
induced by the factor xn − tj of f(x), should have a root of order |I| > pk. This
would imply xm − wj inseparable, a contradiction as p - m.

The rest of the lemma follows. �

Theorem 3.23 For all clusters s ∈ Σf denote by λs = minr∈s v(r), and let b
be the denominator of λs. Then f is NP-regular if and only if all proper clusters
s ∈ Σf with |s| > |λs|p have ds = λs.

More precisely, let s ∈ Σf with |s| > |λs|p but ds > λs, and let r ∈ s with
v(r) = λs. Then f |L has a multiple root u =

(
r
πλs

)
∈ k, where L is the (unique)

edge of NP(f) of slope −λs. The multiplicity of u equals |s0|/pvp(b), where s0 ={
r ∈ R | u =

(
r
πλs

)}
. Furthermore, for every edge L of NP(f), the multiple roots

of f |L come from a proper cluster s as described above.

Proof. Let f = g1 . . . gt be a factorisation of Theorem 2.1 and let −ρi be the slope
of NP(gi). Denote by R the set of roots of f and by Ri the set of roots of gi.
Note that the Ri’s are pairwise disjoint. For every edge L of NP(f) there exists i
such that f |L = gi|L. Hence, by Lemma 2.9 and Lemma 3.22, we need to prove
that there exists a proper cluster s ∈ Σf such that |s| > |λs|p and ds > λs if
and only if for some i = 1, . . . , t there exists a proper cluster si ∈ Σgi such that
|si| > |λsi |p = |ρi|p and dsi > λsi = ρi. We will show that one can choose s = si.

First of all, note that if s ∈ Σf contains roots of different valuations, that is
s * Ri for all i, then

ds = min
r,r′∈s

v(r − r′) = min
r∈s

v(r) = λs = min{ρi | Ri ∩ s 6= ∅}.

Now suppose there exists a proper cluster s ∈ Σf such that |s| > |λs|p and
ds > λs. For the observation above, the inequality ds > λs implies that s ⊆ Ri for
some i = 1, . . . , t. Let D be the v-adic disc such that s = D ∩R. Since s ⊆ Ri,
one has s = D ∩Ri which means that s ∈ Σgi , as required.

Finally suppose that for some i there exists si ∈ Σgi such that |si| > |ρi|p and
dsi > ρi. Let ri ∈ si. Then

si = {x ∈ K | v(x− ri) ≥ dsi} ∩Ri.

Consider the cluster s := {x ∈ K | v(x − ri) ≥ dsi} ∩ R of f . Clearly si ⊆ s.
Therefore

λsi = min
r∈si

v(r) ≥ min
r∈s

v(r) = λs,

which implies
ds = dsi > ρi = λsi ≥ λs,

where ds = dsi by construction. Again from the observation above the inequality
ds > λs implies that s is contained in Rj for some j. As s∩Ri ⊃ si ∩Ri = si, we
must have s ⊆ Ri. Thus s = si, that concludes the proof. �
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Corollary 3.24 Let f ∈ K[x] be a separable polynomial. Recall the definition of
radius ρs of a proper cluster s ∈ Σf . Let w ∈ K. Then f(x + w) is NP-regular
if and only if all proper clusters s ∈ Σf have rational centre w and those with
|s| > |ρs|p satisfy ds = ρs.

Proof. If f(x + w) is NP-regular, then, from the previous theorem, all proper
clusters s ∈ Σf with |s| > |λs|p have ds = λs, where λs = minr∈s v(r − w). First
let s ∈ Σf and assume |s| > |λs|p. Then

ds = λs = min
r∈s

v(r − w) ≤ max
z∈K

min
r∈s

v(r − z) = ρs ≤ ds,

so ds = λs = ρs, and w is a rational centre of s. Now assume |s| ≤ |λs|p. In
particular λs /∈ Z, and so

min
r∈s

v(r − w) = λs 6= v(w − ws),

where ws is a rational centre of s. Then

ρs = min
r∈s

v(r − w + w − ws) = min{λs, v(w − ws)} ≤ λs.

Clearly
ρs = max

z∈K
min
r∈s

v(r − z) ≥ min
r∈s

v(r − w) = λs,

that implies ρs = λs = minr∈s v(r − w). Hence w is a rational centre of s.
On the other hand, if all proper clusters s ∈ Σf have rational centre w ∈ K then

ρs = minr∈s v(r − w). Thus f(x+ w) is NP-regular again by Theorem 3.23. �

Definition 3.25 We say that Σf is almost rational if all proper clusters s ∈ Σf

with |s| > |ρs|p have ds = ρs.

Corollary 3.26 Suppose that K(R)/K is a tame extension. Then Σf is almost
rational if and only if every proper cluster s ∈ Σf is GK-invariant.

Proof. Since K(R)/K is tame, every cluster s ∈ Σf has |ρs|p ≤ 1. Therefore the
corollary follows from Remark 3.12. �

Corollary 3.27 Suppose that K(R)/K is a tame extension. Then f(x + w) is
NP-regular for some w ∈ K if and only if Σf is nested.

Proof. First note that every cluster s ∈ Σf has |ρs|p ≤ 1, as K(R)/K is tame.
Therefore from Corollary 3.24, we need to prove that Σf is nested if and only if
all clusters s ∈ Σf have ds = ρs and rational centre w, for some w ∈ K. But this
follows from Remark 3.12. �

We conclude this section by showing that the cluster picture (centred at 0)
completely determines the Newton polygon of f .

Definition 3.28 Let z ∈ K. A cluster centred at z is a cluster cut out by a v-adic
disc of the form D = {x ∈ K | v(x− z) ≥ d} for some d ∈ Q.

Definition 3.29 Let z ∈ K. The cluster picture centred at z of f is the set Σz
f

of all clusters centred at z. Write Σ̊z
f for the set Σz

f r {{z}}.
The cluster picture centred at z is nested, i.e., every cluster s ∈ Σz

f has at most
one child in Σz

f .

Definition 3.30 Let z ∈ K, and let s ∈ Σ̊z
f be a cluster centred at z. The radius

of s with respect to the centre z is

ρzs = min
r∈s

v(r − z).



14 SIMONE MUSELLI

Finally set
εzs := v(cf ) +

∑
r∈R

ρzr∧s.

Remark 3.31. From the definitions above, if s is a cluster centred at z ∈ Ks, then
s = R∩ {x ∈ K | v(x− z) ≥ ρzs}. But this does not mean z is a centre for s, that
is false in general. For example, R is clearly a cluster centred at any element of
Ks, but any element of valuation lower than the valuation of a root r ∈ R can
not be a centre of R.

Remark 3.32. Let s ∈ Σf be a proper cluster with centre z and rational centre
w. Then s ∈ Σz

f , ds = ρzs , νs = εzs , ρs = ρws , and εs = εws . Furthermore, s ∈ Σrat
f if

and only if s ∈ Σw
f .

Lemma 3.33 Let w ∈ K. Then there is a 1-to-1 correspondence between the
clusters in Σ̊w

f and the edges of NP(f(x+w)). More explicitly, if s1 ⊂ · · · ⊂ sn = R

are the clusters in Σ̊w
f , then NP(f(x+ w)) has vertices Qi, i = 0, . . . , n, where

• Qn = (deg f, v(cf )),
• Qi = (|si|, εwsi − |si|ρ

w
si) = (|si|, εwsi+1

− |si|ρwsi+1
), for i = 1, . . . , n− 1,

• Q0 =

{
(0, εws1) if f(w) 6= 0,

(1, εws1 − ρ
w
s1) if f(w) = 0,

and edges Li of slope −ρwsi linking Qi−1 and Qi.

Proof. Without loss of generality we can assume w = 0. First note that the
coordinates of Qn are trivial. Now consider a factorisation f = cf · g0 · g1 · · · gs of
Theorem 2.1 where the polynomials gj are monic and

g0 =

{
1 if x - f
x if x | f

.

Let Rj be the set of roots of gj . It follows from the definition of cluster centred
at 0 that

n = s, and si =
i⋃

j=0

Rj .

Let i = 1, . . . , n− 1. Then the x-coordinate of Qi follows as

|si| =
i∑

j=0

|Rj | =
i∑

j=0

deg gj = deg
i∏

j=0

gj .

The y-coordinate of Qi equals the sum of v(cf ) and the valuation of the constant
term of

∏n
j=i+1 gj , so

Qi =

|si|, v(cf ) +
n∑

j=i+1

|Rj |v(rj)

 ,

where rj is any root inRj . But since si =
⋃i
j=0 Rj , we have v(rj) = ρ0

sj . Therefore

v(cf ) +
n∑

j=i+1

|Rj |v(rj) = v(cf ) +
n∑

j=i+1

(|sj | − |sj−1|)ρ0
sj = ε0si − |si|ρ

0
si .

Moreover,
ε0si − |si|ρ

0
si = ε0si+1

− |si|ρ0
si+1
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from the easy computation ε0si−ε
0
si+1

= |si|
(
ρ0
si − ρ

0
si+1

)
. Finally the x-coordinate

of Q0 is trivial, while its y-coordinate equals

v(cf ) +

n∑
j=1

|Rj |v(rj) = v(cf ) +

n∑
j=1

|Rj |ρ0
sj + |R0|ρ0

s1 − |R0|ρ0
s1 = ε0s1 − |R0|ρ0

s1 ,

that concludes the proof as |R0| = deg g0. �

Notation 3.34 Following the notation of Lemma 3.33, let i ∈ {1, . . . , n} be such
that s = si. We will write Lws for the edge Li.

4. Description of a regular model

For the following sections we will use the main definitions, notations and results
of [Dok, §3].

Throughout this section, let C/K be a hyperelliptic curve of genus g ≥ 2, given
by the equation y2 = f(x). Recall from [M2D2] that the cluster picture ΣC is Σf .
Moreover, all definitions and notations attached to Σf (e.g. Σrat

f , Σz
f ) given in §3

are given for ΣC in the same way (e.g. Σrat
C , Σz

C).
Thanks to Lemma 3.33 we can explicitly relate the Newton polytope ∆w

v of
g(x, y) = y2 − f(x+ w) and the cluster picture centred at w of f .

Lemma 4.1 Let w ∈ K. Then there is a 1-to-1 correspondence between the
clusters in Σ̊w

C and the faces of the Newton polytope ∆w
v associated with gw(x, y) =

y2 − f(x+ w). More explicitly, if s1 ⊂ · · · ⊂ sn = R are the clusters in Σ̊w
C then

∆w
v has vertices T ,Qi, i = 0, . . . , n, where
• T = (0, 2, 0),
• Qn = (|R|, 0, v(cf )),
• Qi = (|si|, 0, εwsi+1

− |si|ρwsi+1
) for i = 1, . . . , n− 1,

• Q0 =

{
(0, 0, εws1) if f(w) 6= 0,

(1, 0, εws1 − ρ
w
s1) if f(w) = 0,

and edges Li (i = 1, . . . , n), linking Qi−1 and Qi, and Vj (j = 0, . . . , n), linking
Qj and T .

Furthermore, (possible choices for) the slopes of the edges of ∆w
v are:

•
sVn1 = δVn

−v(cf )+(|R|−2g)ρwR
2 and sVn2 = bsVn1 − 1c;

•

sVi1 = δVi

(
− εwsi

2 +
(⌊
|si|
2

⌋
+ 1
)
ρwsi

)
,

sVi2 = δVi

(
−
εwsi+1

2 +
(⌊
|si|
2

⌋
+ 1
)
ρwsi+1

) for all i = 1, . . . , n− 1;

•
sV0

1 = δV0

(
εws1
2 − ρ

w
s1

)
and sV0

2 = bsV0
1 − 1c;

•

sLi1 = δLi

(
− εwsi

2 +
(⌊
|si|
2

⌋
+ 1
)
ρwsi

)
and sLi2 = bsLi1 − 1c,

for all i = 1, . . . , n. In particular, as δLi is the denominator of ρwsi ,

rLi =

{
1 if δLiε

w
si is odd,

0 if δLiε
w
si is even.
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Proof. The first part of the lemma follows from Lemma 3.33. For the second part,
we only need to individuate, for all the edges, the two points P0 and P1 of [Dok,
Definition 3.12]. It is easy to see that the followings are admissible choices.

• For Vi and Li (i = 1, . . . , n), choose P0 = (|si|, 0) and P1 =
(⌊
|si|−1

2

⌋
, 1
)
.

• For V0, choose P0 = (0, 2) and P1 = (1, 1);

The second part of the lemma then follows from the first one. �

Notation 4.2 Let C be as above and let w ∈ K. For every cluster s ∈ Σw
C

denote by Fws the face of the Newton polytope ∆w
v of gw(x, y) = y2 − f(x + w)

that corresponds to s.
Following the notation of Lemma 4.1, let i ∈ {1, . . . , n} be such that s = si.

We will write Lws , V w
s , V w

0 for the edges Li, Vi, V0, respectively.

Example 4.3. Let C be the hyperelliptic curve over Q3 given by the equation
y2 = f(x) where f(x) = x11 − 3x6 + 9x5 − 27 is the polynomial of Example 3.20.

Its cluster picture centred at 0 is

1
3 1

5

1

where the subscripts represent the radii with respect to 0. As we can see, Σ0
f

consists of two clusters: s1 of size 6, radius 1
3 and ε0s1 = 3, and s2 = R of size 11,

radius 1
5 and ε0s2 = 11

5 . Therefore the picture of ∆ broken into v-faces will be

Q0 Q1 Q2

T

L1 L2

V0 V1

V2

where T = (0, 2), Q0 = (0, 0), Q1 = (6, 0), and Q2 = (11, 0). Denoting the values
of v on vertices, the picture becomes

3 1 0

0

Before stating the theorems which describe the proper flat model C of C, con-
structed in §5, we need some definitions.

Definition 4.4 Let F/K be an unramified extension and let ΣF = Σrat
CF

(i.e., set
of clusters cut out by disk with centre in F ). We define the following quantities:
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s ∈ ΣF , proper
radius ρs = maxw∈F minr∈s v(r − w)

bs = denominator of ρs
εs = v(cf ) +

∑
r∈R ρr∧s

Ds= 1 if bsεs odd, 2 if bsεs even
multiplicity ms= (3−Ds)bs
parity ps = 1 if |s| is odd, 2 if |s| is even
slope ss = 1

2(|s|ρs + psρs − εs)
γs = 2 if s is even and εs−|s|ρs is odd, 1 otherwise
p0
s = 1 if s is minimal and s ∩ F 6= ∅, 2 otherwise
s0
s = −εs/2 + ρs
γ0
s = 2 if p0

s = 2 and εs is odd, 1 otherwise

Definition 4.5 We say that C is y-regular if either p 6= 2 or γs = ps for every
proper s ∈ Σrat

C , and γ0
s = p0

s when s minimal.

Lemma 4.6 The hyperelliptic curve C is ∆v-regular if and only if C is y-regular
and f is NP-regular.

Proof. The proof follows from the structure of ∆v. Indeed, if C is y-regular and
f is NP-regular, then C is ∆v-regular by Lemma 4.1. On the other hand, the
converse also holds since if f is NP-regular, then all clusters have rational centre
0 by Theorem 3.23. �

Definition 4.7 Let s ∈ ΣF be a proper cluster and fix c ∈ Z such that cρs− 1
bs
∈ Z.

Define
s̃ = {s′ ∈ ΣF ∪ {∅} | s′ < s and |s

′|
bs
− cεs /∈ 2Z},

where ∅ < s if p0
s = 2.

The genus g(s) of a rational cluster s ∈ ΣF is defined as follows:
• If Ds = 1, then g(s) = 0.
• If Ds = 2, then 2g(s) + 1 or 2g(s) + 2 equals

|s| −
∑

s′∈ΣF ,s′<s |s′|
bs

+ |s̃|.

Definition 4.8 Let Σmin
C be the set of rationally minimal clusters of C and let

Σ ⊆ Σmin
C . For each cluster s ∈ Σ, fix a rational centre ws; if possible, choose

ws ∈ s. Let W be the set of these rational centres and define ΣW =
⋃
w∈W Σw

C .
For any proper cluster s ∈ ΣW fix a rational centre ws ∈W . Denote rs = ws−r

πρs for
r ∈ R and define reductions fs(x) ∈ k[x], gs ∈ k[y], and for s ∈ Σ also g0

s ∈ k[y]
by

x2−p0
sfWs (xbs) = u

πv(u)

∏
r∈s\

⋃
s′<s s

′

(x+ rs) mod π, u = cf
∏
r∈R\s rs,

gs(y) = yps/γs − u
πv(u) mod π, u = cf

∏
r∈R\s rs,

g0
s (y) = yp

0
s/γ

0
s − u

πv(u) mod π, u = cf
∏
r∈R\{ws} rs.

where the union runs through all s′ ∈ ΣW , s′ < s. Finally define the k-schemes
(1) Xs : {gs = 0} ⊂ Gm,k;
(2) XW

s : {fWs = 0} ⊂ Gm,k;
(3) X0

s : {g0
s = 0} ⊂ Gm,k if s ∈ Σ.

Notation 4.9 Given a scheme X/OK we will denote by Xη its generic fibre
X ×Spec OK Spec K, and by Xs its special fibre X ×Spec OK Spec k.
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Notation 4.10 If C = C1 ∪ . . . Cr is a chain of P1
ks of length r and multiplicities

mi ∈ Z (meeting transversely), then ∞ ∈ Ci is identified with 0 ∈ Ci+1, and
0,∞ ∈ C are respectively 0 ∈ C1 and ∞ ∈ Cr. Finally, if r = 0, then C = Spec k
and 0 =∞.

Notation 4.11 Let α, a, b ∈ Z, with a > b, and fix ni
di
∈ Q so that

αa =
n0

d0
>
n1

d1
> . . . >

nr
dr

>
nr+1

dr+1
= αb, with

∣∣∣∣ni ni+1

di di+1

∣∣∣∣ = 1,

and r minimal. We write P1(α, a, b) for a chain of P1
ks of length r and multiplicities

αdi. Furthermore, we denote by P1(α, a) the chain P1(α, a, bαa− 1c/α).

Theorem 4.12 and Theorem 4.16 will be proved in §5.

Theorem 4.12 Let C/K be a hyperelliptic curve given by a Weierstrass equation
y2 = f(x), and let Σ, W and ΣW as in Definition 4.8. Then there exists a proper
flat model C/OK of C with normal crossings such that its special fibre Cs/k consists
of 1-dimensional schemes glued along 0-dimensional intersections as follows:

(1) Every proper cluster s ∈ ΣW gives a 1-dimensional closed subscheme Γs

of multiplicity ms. If Γs is reducible then Ds = 2, Γs = Γ+
s ∪ Γ−s , with

Γ±s = P1
k, and there is a (birational) morphism Xs × P1

k → Γs.
(2) Every proper cluster s ∈ ΣW with Ds = 1 gives the closed subscheme

XW
s × P1

k, of multiplicity bs, where XW
s × {0} ⊂ Γs.

(3) Every proper cluster s ∈ ΣW such that s 6= R, gives the closed subscheme
Xs×P1(γs, ss, ss−ps ·

ρs−ρP (s)

2 ) where Xs×{0} ⊂ Γs and Xs×{∞} ⊂ ΓP (s).
(4) Every cluster s ∈ Σ gives the closed subscheme X0

s × P1(γ0
s ,−s0

s) where
X0

s × {0} ⊂ Γs (the chain is open-ended).
(5) Finally, the cluster R gives the closed subscheme XR × P1(γR, sR) where

XR × {0} ⊂ Γs (the chain is open-ended).
Furthermore, if ΣC is almost rational and C is y-regular, then, by choosing Σ =
Σmin
C , the model C is regular. In that case, if s is übereven and εs is even, then

Γs ' Xs × P1
k, otherwise Γs is irreducible of genus g(s).

Definition 4.13 Let s ∈ ΣKnr . We say that
• s is removable if either |s| = 1 or s = R and it has a (rational) child of
size 2g + 1.
• s is contractible if

(1) |s| = 2 and ρs /∈ Z, εs odd, ρP (s) ≤ ρs − 1
2 ; or

(2) s = R of size 2g + 2 with a child s′ ∈ ΣKnr of size 2g, and ρs /∈ Z,
v(cf ) odd, ρs′ ≥ ρs + 1

2 ; or
(3) s = R of size 2g+ 2, union of its 2 odd proper children s1, s2 ∈ ΣKnr ,

with v(cf ) odd, ρsi ≥ ρs + 1 for i = 1, 2.

Notation 4.14 Write Σ̊ ⊂ ΣKnr for the set of non-removable clusters.

Definition 4.15 Choose rational centres ws for every s ∈ Σ̊, in such a way that
ws ∈ s when p0

s = 1, and σ(ws) = wσ(s) for all σ ∈ Gal(Knr/K). Denote rs = ws−r
πρs

for r ∈ R and define gs, g0
s ∈ ks[y] as in Definition 4.8, and fs(x) ∈ ks[x], by

x2−p0
sfs(x

bs) = u
πv(u)

∏
r∈s\

⋃
s′<s s

′

(x+ rs) mod π, u = cf
∏
r∈R\s rs,

where the union runs through all s′ ∈ Σ̊, s′ < s. Let Gs = StabGK (s), Ks =

(Ks)Gs , and let ks be the residue field of Ks. Then fs ∈ ks[x], gs ∈ ks[y], and for
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s minimal g0
s ∈ ks[y]. Finally define f̃s ∈ ks[x] by

f̃s(x) =
∏
s′∈s̃

(
x− us′,s

)
· fs(x),

where us′,s =
ws′−ws

πρs mod π.

In the next theorem we describe the minimal regular model of C with normal
crossings.

Theorem 4.16 (Minimal regular NC model) Let C/K be a hyperelliptic curve.
Suppose CKnr is y-regular and ΣCKnr is almost rational. Then the minimal regular
model with normal crossings Cmin/OKnr of C has special fibre Cmin

s /ks described
as follows:

(1) Every s ∈ Σ̊ gives a 1-dimensional subscheme Γs of multiplicity ms. If s
is übereven and εs is even, then Γs is the disjoint union of Γ

r−
s ' P1 and

Γ
r+
s ' P1, otherwise Γs is irreducible of genus g(s) (write Γ

r−
s = Γ

r+
s = Γs

in this case). The indices r− and r+ are the roots of gs.
(2) Every s ∈ Σ̊ with Ds = 1 gives open-ended P1s of multiplicity bs from Γs

indexed by roots of fs.
(3) Every non-maximal element s ∈ Σ̊ gives open-ended chains P1(γs, ss, ss −

ps ·
ρs−ρP (s)

2 ) from Γs to ΓP (s) indexed by roots of gs.
(4) Every minimal element s ∈ Σ̊ gives open-ended chains P1(γ0

s ,−s0
s) from

Γs indexed by roots of g0
s .

(5) The maximal element s ∈ Σ̊ gives open-ended chains P1(γs, ss) from Γs

indexed by roots of gs.
(6) Finally, blow down all Γs where s is a contractible cluster.

In (3) and (5), a chain indexed by r goes from Γrs (to ΓrP (s) in (3)).

The Galois group Gk acts naturally, i.e., for every σ ∈ Gk, σ(Γrs) = Γ
σ(r)
σ(s) , and

similarly, on the chains.
If Γs is irreducible, then its function field is isomorphic to ks(x)[y] with the

relation yDs = f̃s(x).

Remark 4.17. Note that if Γs or ΓP (s) is reducible then ps/γs = 2.

As an application of Theorem 4.16 we suppose p 6= 2 and C to be semistable.
In this setting [M2D2, Theorem 8.5] describes the minimal regular model of C in
terms of its cluster picture ΣC . We compare that result with the one obtained
from Theorem 4.16 (Corollary 4.19).

From [M2D2, Definition 1.7], if C is semistable then
(1) the extension K(R)/K is tamely ramified;
(2) every proper cluster is Gal(Ks/Knr)-invariant;
(3) every principal cluster has ds ∈ Z and νs ∈ 2Z.

It follows from Corollary 3.26 that ΣCKnr is almost rational.
In fact, (1) and (2) imply ρs = ds and εs = νs for any proper cluster s (Remark

3.12). In particular, ΣKnr = ΣC . Finally, note that s̃ is the set of odd children of
s ∈ ΣC .

Lemma 4.18 Suppose p 6= 2. Assume C is semistable and let s ∈ ΣC be a non-
removable cluster. Then ds ∈ 1

2Z. Moreover, ds /∈ Z if and only if νs is odd and
ps = 2. In particular, s is contractible if and only if

(1) |s| = 2 and ds /∈ Z; or
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(2) s = R of size 2g + 2 with only 1 proper child s′ ∈ ΣC of size 2g, and
ds /∈ Z; or

(3) s = R of size 2g + 2, with exactly 2 odd children, and v(cf ) odd.

Proof. Let s ∈ ΣC be a non-removable cluster. Clearly we need to study the cases
when s is not principal. First note that ds ∈ 1

2Z by Lemma3.11.
Suppose s = R, even, with exactly 2 children. By Lemma 3.18, dR ∈ Z. Since

s is non-removable, one of its children, say s′, is principal. Then ds′ ∈ Z and
νs′ ∈ 2Z. Therefore

νs = νs′ − |s′|(ds′ − ds) ∈ 2Z.
Assume s is a cotwin. Let s′ denote its proper child. Then νs = νs′−2g(ds′−ds).

Since s′ is principal, we have ds′ ∈ Z, νs′ ∈ 2Z. Therefore νs is odd if and only if
ds /∈ Z. Moreover, if that happens, then s = R, even.

Finally suppose s is a twin. Then νs = νP (s) + 2(ds−dP (s)). We have dP (s) ∈ Z
and νP (s) ∈ 2Z (even if P (s) is not principal, from the first part of this proof).
Thus νs is odd if and only if ds /∈ Z. �

Corollary 4.19 (Minimal regular model (semistable reduction)) Let C/K be a
semistable hyperelliptic curve. The minimal regular model Cmin/OKnr of C has
special fibre Cmin

s /ks described as follows:
(1) Every proper cluster s ∈ ΣC gives a 1-dimensional subscheme Γs of multi-

plicity ms. If s is übereven, then Γs is the disjoint union of Γ
r−
s ' P1 and

Γ
r+
s ' P1, otherwise Γs is irreducible of genus g(s) (write Γ

r−
s = Γ

r+
s = Γs

in this case). The indices r− and r+ are the roots of gs.
(2) Every odd proper cluster s ∈ ΣC , |s| ≤ 2g gives a chain of P1s of length⌊ds−dP (s)−1

2

⌋
from Γs to ΓP (s) indexed by the root of gs.

(3) Every even proper cluster s, |s| ≤ 2g, gives a chain of P1s of length⌊
ds − dP (s) − 1

2

⌋
from Γ

r−
s to Γ

r−
P (s) indexed by r− and a chain of P1s of

same length from Γ
r+
s to Γ

r+
P (s) indexed by r+.

(4) Finally, blow down all Γs where s is a contractible cluster.
All components have multiplicity 1, and the absolute Galois group Gk acts natu-
rally, as in Theorem 4.16.

Proof. Let s ∈ ΣC . From Lemma 4.18, we have Ds = 2, γsss ∈ Z and if s is
minimal, γ0

s s
0
s ∈ Z. Therefore (2), (4) and (5) of Theorem 4.16 do not give any

components. Finally, as γs = 1 for any s 6= R and ps
ds−dP (s)

2 ∈ 1
2Z, the length of

P1(γs, ss, ss − ps ·
ds−dP (s)

2 ) in (3) is⌊
γsss − γs

(
ss − ps ·

ds − dP (s)

2

)
− 1

2

⌋
=

⌊
ps ·

ds − dP (s)

2
− 1

2

⌋
.

The corollary then follows from Theorem 4.16. �

5. Construction of the model

We are going to construct a proper flat model C/OK of C by glueing models
defined in [Dok, §4]. For this reason we will assume the reader has familiarity
with the definitions and the results presented in that paper. Let us start this
section by describing the strategy we will follow.

Let Σmin
C be the set of rationally minimal clusters of C and let Σ ⊆ Σmin

C .
For any cluster s ∈ Σ fix a rational centre ws. If possible, choose ws ∈ s.2
Let W be the set of all such rational centres and define ΣW :=

⋃
w∈W Σw

C . For

2This assumption is not necessary for the construction, but it will simplify the following.
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every proper cluster t ∈ ΣW r Σ inductively fix a rational centre wt = ws for
some cluster s < t (Lemma 3.14). For every cluster w ∈ W , consider the curve
Cw : y2 = f(x + w), isomorphic to C, and construct the (proper flat) model
Cw∆/OK by [Dok, Theorem 3.14]. We will define an open subscheme C̊w∆ of Cw∆ and
we will show that glueing these schemes along common opens gives a proper flat
model C/OK of C. Furthermore, if Σ = Σmin

C , ΣC is almost rational and C is
y-regular, then C̊w∆ is the open subscheme of regular points of Cw∆ and therefore C
is also regular.

5.1. Charts. Let Σ = {s1 . . . , sm} ⊆ Σmin
C be a set of rationally minimal clusters

and let W = {w1, . . . , wm} be a set of corresponding rational centres, where
wh ∈ sh, if possible. Define ΣW :=

⋃m
h=1 Σwh

C . Note that for the chioce of the
rational centres wh, the subset of proper clusters of Σwh

C coincides with Σ̊wh
C . For

any h, l = 1, . . . ,m, h 6= l, define whl := wh − wl, and write whl = uhlπ
ρhl , where

uhl ∈ O×K and ρhl ∈ Z. Note that ρhl = ρsh∧sl = ρlh, by Lemma 3.18.

Definition 5.1 Let h = 1, . . . ,m and let t ∈ Σwh
C be a proper cluster. We say that

a matrix M is associated to t if M = ML
wh
t ,i or M = MV

wh
t ,j (or M = MV

wh
0 ,j if

t = sh). For a matrix M associated to t we denote by δM and XM respectively
• the quantity δLwht

and the space Xσ
L
wh
t ,i,i+1

if M = ML
wh
t ,i,

• the quantity δV wht
and the space Xσ

V
wh
t ,j,j+1

if M = MV
wh
t ,j ,

• the quantity δV wh0
and the space Xσ

V
wh
0 ,j,j+1

if M = MV
wh
0 ,j .

Finally, denote by
Xh

∆ =
⋃
M

XM ,

the toric scheme defined in [Dok, §4.2].

The following lemma describes all possible matrices associated to t.

Lemma 5.2 Let t ∈ Σwh
C be a proper cluster. Consider the face Fwht . Let P0, P1 ∈

Z2 and ni, di, ki ∈ Z be as in [Dok, §4] and define

δ := δM , γi :=
n0

δd0
− ni
δdi

and Ti =

( 1
δ
−di+1ki diki+1

0 δdi+1 0
0 0 δdi

)
,

for each matrix M associated to t.
• For all i = 0, . . . , rLwht

, we have

ML
wh
t ,i =

(
δ −di

(⌊
|t|
2

⌋
+1
)

+ki di+1

(⌊
|t|
2

⌋
+1
)
−ki+1

0 di −di+1

−δρt ni
δ
−kiρt −ni+1

δ
+ki+1ρt

)
, M−1

L
wh
t ,i

= Ti·

 1
⌊
|t|
2

⌋
+1 0

ρt
εt
2

+γi+1 1

ρt
εt
2

+γi 1

,
where P0 = (|t|, 0), P1 = (b|t|−1/2c, 1) and δ = δLwht

= bt.
• If t is odd, then for all j = 0, . . . , rV wht

, we have

MV
wh
t ,j =

(
−|t| − |t|+1

2
dj
|t|+1

2
dj+1

2 dj −dj+1

−εt+|t|ρt nj −nj+1

)
, M−1

V
wh
t ,j

= Tj ·

(
1

|t|+1
2

0

ρt−2·γj+1
εt
2
−|t|·γj+1 1

ρt−2·γj εt
2
−|t|·γj 1

)
,

where P0 = (|t|, 0), P1 = (b|t|−1/2c, 1), δ = δV wht
= 1 and kj = kj+1 = 0.

• If t is even, then for all j = 0, . . . , rV wht
, we have

MV
wh
t ,j =

 −δ |t|
2

−
(
|t|
2

+1
)
dj−kj |t|2

(
|t|
2

+1
)
dj+1+kj+1

|t|
2

δ dj+kj −dj+1−kj+1

−δ εt−|t|ρt
2

nj
δ
−kj εt−|t|ρt2

−
nj+1
δ

+kj+1
εt−|t|ρt

2

,
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M−1

V
wh
t ,j

= Tj ·

 1
|t|
2

+1 0

ρt−γj+1
εt
2
− |t|

2
γj+1 1

ρt−γj εt
2
− |t|

2
γj 1

,
where P0 = (|t|, 0), P1 = (b|t|−1/2c, 1) and δ = δV wht

.
• If f(wh) = 0, then for all j = 0, . . . , rV wh0

, we have

MV
wh
0 ,j =

(
1 dj −dj+1

−2 −dj dj+1

εsh−ρsh nj −nj+1

)
, M−1

V
wh
0 ,j

= Tj ·

( −1 −1 0

ρsh+2·γj+1
εsh
2

+γj+1 1

ρsh+2·γj
εsh
2

+γj 1

)
,

where P0 = (0, 2), P1 = (1, 1), δ = δV wh0
= 1 and kj = kj+1 = 0.

• If f(wh) 6= 0, then for all j = 0, . . . , rV wh0
, we have

MV w
0 ,j =

(
0 dj −dj+1

−δ −dj−kj dj+1+kj+1

δ
εsh
2

nj
δ

+kj
εsh
2
−
nj+1
δ
−kj+1

εsh
2

)
, M−1

V
wh
0 ,j

= Tj ·

( −1 −1 0

ρsh+γj+1
εsh
2

1

ρsh+γj
εsh
2

1

)
,

where P0 = (0, 2), P1 = (1, 1) and δ = δV wh0
.

Proof. We follow the notation of [Dok, §4]. Choose the points P0 and P1 as in
the proof of Lemma 4.1.

First consider the edge Lwht of Fwht . From Lemma 4.1 we have

ν = (1, 0,−ρt) and (wx, wy) =

(
−
⌊
|t|
2

⌋
− 1, 1

)
.

Then ML
wh
t ,i and M

−1

L
wh
t ,i

follow from [Dok, §4.3] as

n0

δd0
=

1

δ
s
L
wh
t

1 = vFwht
(P1)− vFwht

(P0) = −εt
2

+

(⌊
|t|
2

⌋
+ 1

)
ρt.

Now assume t even and consider the edge V wh
t of Fwht . Since t is even,

V wh
t (Z) =

{
(|t|, 0),

(
|t|
2
, 1

)
, (0, 2)

}
, ν =

(
−|t|

2
, 1,−εt

2
+
|t|
2
ρt

)
and (wx, wy) =

(
− |t|2 − 1, 1

)
as above. Then MV

wh
t ,j and M−1

V
wh
t ,j

follow again
from [Dok, (4.3)] as

n0

δd0
=

1

δ
s
V
wh
t

1 = vFwht
(P1)− vFwht

(P0) = −εt
2

+

(
|t|
2

+ 1

)
ρt.

Similar arguments and computations yield the remaining matrices. �

5.2. Open subschemes. Let h = 1, . . . ,m and let t ∈ Σwh
C be a proper cluster.

Let M be a matrix associated to t. Write

M =

m11 m12 m13

m21 m22 m23

m31 m32 m33

 and M−1 =

m̃11 m̃12 m̃13

m̃21 m̃22 m̃23

m̃31 m̃32 m̃33


Recall that XM = Spec R, where

R =
OK [X±1, Y, Z]

(π −Xm̃13Y m̃23Zm̃33)
↪→ OK [X±1, Y ±1, Z±1]

(π −Xm̃13Y m̃23Zm̃33)

M' K
[
x±1, y±1

]
.

Let l 6= h. Set

T hlM (X,Y, Z) :=

{
1 + uhlX

ρhlm̃13−m̃11Y ρhlm̃23−m̃21Zρhlm̃33−m̃31 if t ⊇ sh ∧ sl,

u−1
hl X

m̃11−ρhlm̃13Y m̃21−ρhlm̃23Zm̃31−ρhlm̃33 + 1 if t 6⊇ sh ∧ sl,
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a polynomial in R[Y −1, Z−1]. Note that

if t ⊇ sh ∧ sl then T hlM (X,Y, Z)
M7−→ x+ whl

x
,

if t 6⊇ sh ∧ sl then T hlM (X,Y, Z)
M7−→ x+ whl

whl
.

The following two lemmas prove that T hlM (X,Y, Z) ∈ R.

Lemma 5.3 Let h, l = 1, . . . ,m, with h 6= l, let t ∈ Σwh
C be such that t ⊇ sh ∧ sl

and let M be a matrix associated to t. Then

ρhlm̃23 − m̃21 ≥ ρtm̃23 − m̃21 ≥ 0 and ρhlm̃33 − m̃31 ≥ ρtm̃33 − m̃31 ≥ 0.

Furthermore if M = ML
wh
t ,i then

• ρhlm̃23 − m̃21 = 0 if and only if i = rLwht
or t = sh ∧ sl,

• ρhlm̃33 − m̃31 = 0 if and only if t = sh ∧ sl;
if M = MV

wh
t ,j then

• ρhlm̃23 − m̃21 > 0,
• ρhlm̃33 − m̃31 = 0 if and only if t = sh ∧ sl and j = 0.

Proof. This result follows from Lemma 5.2, which gives us a complete description
of M and M−1. We show it when t is even and M = MV

wh
t ,j , and leave the other

cases for the reader. First of all recall that ρhl = ρsh∧sl by Lemma 3.18. Then

ρhlm̃23 − m̃21 = δdj+1

(
ρhl − ρt +

(
n0

δd0
− nj+1

δdj+1

))
> δdj+1 (ρsh∧sl − ρt) ≥ 0,

where δ = δM . Note that if t = R and j = rV whR
then dj+1 = 0 and nj+1 = −1.

But the inequality stays true since

ρhlm̃23 − m̃21 = ρtm̃23 − m̃21 = −nj+1 = 1 > 0.

Similarly,

ρhlm̃33 − m̃31 = δdj

(
ρhl − ρt +

(
n0

δd0
− nj
δdj

))
≥ δdj (ρsh∧sl − ρt) ≥ 0.

In particular ρhlm̃33 − m̃31 = 0 if and only if t = sh ∧ sl and j = 0. �

Lemma 5.4 Let t ∈ Σwh
C be a proper cluster such that t 6⊇ sh ∧ sl, and let M be

a matrix associated to t. Then

m̃21 − ρhlm̃23 ≥ 0 and m̃31 − ρhlm̃33 > 0.

Furthermore, m̃21 − ρhlm̃23 = 0 if and only if
• M = ML

wh
t ,i and i = rLwht

, or
• t < sh ∧ sl, M = MV

wh
t ,j, and j = rV wht

.

Proof. This result follows again from Lemma 5.2. As in the previous lemma, we
show it when t is even and M = MV

wh
t ,j , and leave the other cases for the reader.

Let r = rV wht
. Note that t 6= R. Then

m̃31 − ρhlm̃33 = δdj

(
ρt − ρhl −

(
n0

δd0
− nj
δdj

))
> δdj

(
ρP (t) − ρsh∧sl

)
≥ 0.

since n0
δd0
− nr+1

δdr+1
= ρt − ρP (t). Similarly,

m̃21 − ρhlm̃23 = δdj+1

(
ρt − ρhl −

(
n0

δd0
− nj+1

δdj+1

))
≥ δdj+1

(
ρP (t) − ρhl

)
≥ 0,

In particular m̃21 − ρhlm̃23 = 0 if and only if t < sh ∧ sl and j = r. �
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Let
T hM (X,Y, Z) :=

∏
l 6=h

T hlM (X,Y, Z),

and define

V h
M := Spec R[T hM (X,Y, Z)−1] ⊂ XM , and X̊h

∆ :=
⋃
M

V h
M ⊆ Xh

∆,

where M runs through all matrices associated to some proper cluster t ∈ Σwh
C .

We can then define the subscheme

C̊wh∆ := Cwh∆ ∩ X̊h
∆ ⊂ Xh

∆,

where Cwh∆ /OK is the regular model of the hyperelliptic curve Cwh : y2 = f(x+wh)
constructed in [Dok, Theorem 3.14] (see [Dok, §4] for the explicit construction).
More concretely, let gh(x, y) := y2 − f(x+ wh) and write

y2 − f(x+ wh) = Y nY,hZnZ,hFhM (X,Y, Z),

as in [Dok, 4.4], and consider the subscheme

UhM := Spec
R
[
T hM (X,Y, Z)−1

](
FhM (X,Y, Z)

) ⊂ V h
M .

Then
C̊wh∆ =

⋃
M

UhM ⊂ X̊h
∆,

where M runs through all matrices associated to some proper cluster t ∈ Σwh
C .

5.3. Glueing. Let h, l = 1, . . . ,m, with h 6= l. Consider the isomorphism

(2) φ : K

x±1, y±1,
∏
o 6=l

(x+ wlo)
−1

 '−→ K

x±1, y±1,
∏
o 6=h

(x+ who)
−1


sending x 7→ x + whl, y 7→ y. If t ⊇ sh ∧ sl and M is a matrix associated to t,
then φ gives

R[Y −1, Z−1, T lM (X,Y, Z)−1]
M−1◦φ◦M−−−−−−−→ R[Y −1, Z−1, T hM (X,Y, Z)−1],

which sends

F (X,Y, Z) 7→ F (X · T hlM (X,Y, Z)m11 , Y · T hlM (X,Y, Z)m12 , Z · T hlM (X,Y, Z)m13).

Hence it induces the isomorphisms

(3) R[T lM (X,Y, Z)−1]
'−→ R[T hM (X,Y, Z)−1], V h

M
'−→ V l

M .

Via these maps we see that gh(x, y) = Y nY,hZnZ,hFhM (X,Y, Z) also equals

Y nY,l · ZnZ,l · (T hlM )nY,lm12+nZ,lm13F lM
(
X · (T hlM )m11 , Y · (T hlM )m12 , Z · (T hlM )m13

)
,

where T hlM = T hlM (X,Y, Z). Since neither Y nor Z divide T hlM (X,Y, Z), we have
nY,h = nY,l, nZ,h = nZ,l and

FhM (X,Y, Z) = (T hlM )nY,lm12+nZ,lm13F lM
(
X (T hlM )m11 , Y (T hlM )m12 , Z (T hlM )m13

)
.

Hence (3) induces the isomorphisms

(4)
R
[
T lM (X,Y, Z)−1

](
F lM (X,Y, Z)

) '−→
R
[
T hM (X,Y, Z)−1

](
FhM (X,Y, Z)

) , UhM
'−→ U lM .
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Define the subschemes

V hl :=
⋃
Ml

V h
Ml
⊆ X̊h

∆, Uhl := V hl ∩ Cwh∆ ⊆ C̊wh∆ ,

where the union runs over all matrices Ml associated to some proper cluster
t ∈ Σwh

C ∩ Σwl
C (i.e., t ∈ ΣW , sh ∧ sl ⊆ t). From (2), (3) and (4) we have

isomorphisms of schemes

(5) V hl '−→ V lh, Uhl
'−→ U lh.

Now, Uhl ⊂ V hl are open subschemes respectively of C̊wh∆ ⊂ X̊h
∆ for any l 6= h.

Glueing the schemes C̊wh∆ ⊂ X̊h
∆ respectively along the opens Uhl ⊂ V hl via (5)

gives the schemes C ⊂ X . We will show that C/OK is a proper flat3 model of C.

5.4. Generic fibre. We start studying the generic fibre Cη of C. Since it is the
glueing of all C̊wh∆,η through the glueing maps

Uhlη −→ U lhη

induced by (5), we start focusing on C̊wh∆,η for h = 1, . . . ,m. In particular, as C̊wh∆

is an open subscheme of Cwh∆ , we study

Cwh∆,η r C̊
wh
∆,η = Cwh r C̊wh∆,η.

For every choice of a proper cluster t ∈ Σwh
C , and M associated to t, let

PM :=
(
Cwh r C̊wh∆,η

)
∩XM = Spec

R⊗OK K(
FhM (X,Y, Z), T hM (X,Y, Z)

) .
To study PM we are going to use Lemma 5.2 and the definition of T hM (X,Y, Z).

Suppose first t 6= R and M = MV
wh
t ,j . Then m̃23, m̃33 > 0, so

(6) PM = Spec
R[Y −1, Z−1](

FhM (X,Y, Z), T hM (X,Y, Z)
) M' Spec

K[x±1, y±1]

(gh(x, y),
∏
o (x+ who))

,

where the product runs over all o 6= h. Now let t = R and M = MV
wh
t ,j . If

j 6= rV whR
, then PM is as in the previous case (since m̃23, m̃33 > 0). If j = rV whR

,
then m̃33 > 0, m̃23 = 0, but ρhlm̃23 − m̃21 > 0 by Lemma 5.3. So from the
definition of T hlM (X,Y, Z) we have once more the equality (6). Similarly, if t = sh
and M = MV

wh
0 ,j , then m̃33 > 0, and m̃21 − ρhlm̃23 > 0 by Lemma 5.4. Hence

we have (6) again.
It remains to study PM whenM = ML

wh
t ,i. If i 6= rLwht

, then m̃23, m̃33 > 0 and
so PM is as in (6). Let i = rLwht

. Then m̃33 > 0 but both m̃23 and ρhlm̃23 − m̃21

equal 0. Hence m̃23 = m̃21 = 0, which also implies m21 = m23 = 0. Therefore M
defines an isomorphism R[Z−1] ' K[x±1, y], which induces

PM = Spec
R[Z−1](

FhM (X,Y, Z), T hM (X,Y, Z)
) M' Spec

K[x±1, y](
gh(x, y),

∏
o 6=h (x+ who)

) .
Therefore

Cwh r C̊wh∆,η = Spec
K[x, y](

gh(x, y),
∏
o 6=h (x+ who)

) .
3Note that the flatness of C is trivial since it is a local property.
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Regarding Cwh∆ as a model over C via the natural isomorphism C
∼−→ Cwh , we

have
C r C̊wh∆,η = Spec

K[x, y](
y2 − f(x),

∏
o 6=h (x− wo)

) .
Thus the generic fibre of C is isomorphic to C.

5.5. Special fibre. We now study the structure of the special fibre Cs of C. As
for the generic fibre, we start considering

Cwh∆,s r C̊
wh
∆,s,

for any h = 1, . . . ,m. So for every choice of a proper cluster t ∈ Σwh
C , and M

associated to t, let

SM :=
(
Cwh∆,s r C̊

wh
∆,s

)
∩XM = Spec

OK [X±1, Y, Z](
FhM (X,Y, Z), T hM (X,Y, Z), Y m̃23Zm̃33 , π

) .
Firstly suppose M = ML

wh
t ,i. Fix l 6= h. If t 6⊇ sl ∧ sh, then by Lemma 5.4, we

have m̃21 − ρhlm̃23 ≥ 0 and m̃31 − ρhlm̃33 > 0. Moreover, if m̃21 − ρhlm̃23 = 0,
then i = rLwht

, which implies m̃23 = 0 by Lemma 5.2. Therefore

(7) {T hlM (X,Y, Z) = Y m̃23Zm̃33 = 0} = ∅,
from the definition of T hlM (X,Y, Z). On the other hand, if t ) sl ∧ sh, then by
Lemma 5.3, we have ρhlm̃23 − m̃21 ≥ 0 and ρhlm̃33 − m̃31 > 0. Moreover, if
ρhlm̃23− m̃21 = 0, then i = rLwht

, which implies m̃23 = 0 by Lemma 5.2 as above.
Therefore we have (7) again. Now assume instead t = sl ∧ sh. Since ρt = ρhl ∈ Z,
then ρhlm̃13 − m̃11 = −1, as δM = 1 and we can choose ki = ki+1 = 0 in the
description of M of Lemma 5.2. Hence

T hlM (X,Y, Z) = 1 + uhlX
−1 = X−1 (X + uhl) ,

by Lemma 5.3. Thus

SM = Spec
OK [X±1, Y, Z]

(FhM (X,Y, Z),
∏
l (X + uhl) , Y m̃23Zm̃33 , π)

⊂ Cwh∆ ,

where the product runs over all l 6= h such that t = sl ∧ sh.
We want to show that SM consists of singular points of Cwh∆ .

Lemma 5.5 Consider the model Cwh∆ /OK and let fh(x) = f(x+ wh). If

P ∈ Spec
OK [X±1, Y, Z]

(FhM (X,Y, Z), X + uhl, Y m̃23Zm̃33 , π)
⊂ Cwh∆ ,

for some l 6= h, where (X,Y, Z) = (x, y, π) •ML
wh
sh∧sl

,i for some i = 0, . . . , rLwhsh∧sl
,

then P is a singular point of Cwh∆ /OK .
If Σ = {s1, . . . , sm} = Σmin

C , ΣC is almost rational and C is y-regular, then the
converse also holds.

Furthermore, if tl ∈ Σwl
C , tl < sh∧sl, then ulh is a multiple root of fh|L of order

|tl|, where L = Lwhsh∧sl .

Proof. Singular points of Cwh∆ may come from horizontal edges of ∆wh
v , corre-

sponding to multiple roots of fh|L. More precisely, let F be the splitting field of
f , of ring of integers OF and uniformiser πF . Then by [Dok, §4.5], P ∈ Cwh∆ (OF )
is a singular point if

P ∈ Spec
OF [X±1, Y, Z]

(FhML,i
(X,Y, Z), X − α, Y m̃23Zm̃33 , πF )

,
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for some horizontal edge L of ∆wh
v , and some multiple root α of fh|L. If C is

y-regular, then the structure of the Newton polytope ∆wh
v only allows singular

points as above. By Theorem 3.23, α is a multiple root of fh|L if and only if
α =

(
r
πλs

)
where s ∈ Σfh proper with |s| > |λs|p and ds > λs, r ∈ s such that

v(r) = λs, and L is the unique edge of NP(fh) of slope −λs. Let Rh be the set of
roots of fh. Note that we have a bijection

ψ : Σfh −→ Σf ,

such that

s = Rh ∩{x ∈ K | v(x− z) > d} ⇒ ψ(s) = R∩{x ∈ K | v(x−wh− z) > d}.
If r ∈ s then r + wh ∈ ψ(s), so for any s, s′ ∈ Σfh , |s| = |ψ(s)| and if s′ < s then
ψ(s′) < ψ(s). In particular ds = dψ(s) and

λs = min
r∈s

v(r) = min
r∈ψ(s)

v(r − wh).

Hence wh is a rational centre of ψ(s) if and only if λs = ρψ(s).
Let α be a multiple root of fh|L and let s ∈ Σfh associated to α as above. We

want to prove that if ΣC is almost rational and Σ = Σmin
C , then there exists l 6= h

so that α = ulh. Note first wh is not a rational centre of ψ(s). Indeed, if wh is a
rational centre of ψ(s), then

|ψ(s)| = |s| > |λs|p = |ρψ(s)|p,
dφ(s) = ds > λs = ρφ(s),

which contradicts our assumptions on ΣC . As {s1, . . . , sm} = Σmin
C , we must have

that wl is a rational centre of ψ(s), for some l 6= h. Then wl − wh = wlh is a
rational centre for s. Let r ∈ s with v(r) = λs, and let r′ = r + wh ∈ ψ(s). Since
λs < ρψ(s) ≤ v(r′ − wl), we have(

r′

πλs

)
=

(
wl
πλs

)
in f.

Therefore

α =

(
r

πλs

)
=

(
r′ − wh
πλs

)
=

(
wlh
πλs

)
=

(
ulh

πλs−ρhl

)
.

We want to show λs = ρhl. Since sl ⊆ ψ(s) but sh 6⊆ ψ(s), we have ψ(s) ( sh ∧ sl
and so

ρhl = ρsh∧sl < ρψ(s),

by Lemma 3.14. Moreover, for every root r ∈ ψ(s), one has

v(r − wh) = v(r − wl + wl − wh) = min{v(r − wl), ρhl} = ρhl,

as v(r − wl) ≥ ρψ(s) > ρsh∧sl . In particular λs = ρhl.
Now, for any l 6= h consider sl, and its corresponding cluster ψ−1(sl) of fh.

As above v(r − wh) = ρhl ∈ Z for every root r ∈ ψ−1(sl), so in particular,
|λψ−1(sl)|p ≤ 1. Therefore |ψ−1(sl)

wh | = |ψ−1(sl)| > |λψ−1(sl)|p, and
dψ−1(sl) = dsl ≥ ρsl > ρhl = λψ−1(sl),

which implies that α = ulh is a multiple root of fh|L where L is the unique edge
of NP(fh) of slope ρhl. Since the edge of NP(fh) of slope ρhl corresponds to L

wh
sh∧sl ,

the first part of the lemma follows.
Let tl ∈ Σwl

C , tl < sh ∧ sl. Then

tl =
{
r ∈ R |

(
r−wh
πρhl

)
= ulh

}
,
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as v(r − wh) > ρhl if and only if r−wh
πρhl = ulh. Thus the order of uhl is |tl| by

Theorem 3.23. �

In particular, if Σ = Σmin
C , ΣC is almost rational and C is y-regular then C̊wh∆

is regular for every h. Thus C is a regular model of C.
It remains to compute SM when M = MV

wh
t ,j . Fix l 6= h. Assume that if

t = sl ∧ sh then j 6= 0 and that if t < sl ∧ sh then j 6= rV wht
. By Lemma 5.3 and

Lemma 5.4, we have ρhlm̃23− m̃21 6= 0 and ρhlm̃33− m̃31 6= 0, that implies (7) as
before. If t = sl ∧ sh and j = 0, then ρhlm̃33− m̃31 = 0 but ρhlm̃23− m̃21 > 0. So

{T hlM (X,Y, Z) = Y m̃23Zm̃33 = 0} = {T hlM (X,Y, Z) = Zm̃33 = 0} ⊂ Spec R[Y −1].

Similarly, if t < sl ∧ sh and j = rV wht
=: r, then m̃21 − ρhlm̃23 = 0, however

m̃31 − ρhlm̃33 > 0. Then

{T hlM (X,Y, Z) = Y m̃23Zm̃33 = 0} = {T hlM (X,Y, Z) = Y m̃23 = 0} ⊂ Spec R[Z−1].

In both cases SM ⊆ XF , where F = Fwhsl∧sh ([Dok, Definition 3.7]). Let L = Lwhsl∧sh ,
and let fh(x) = f(x+ wh) and gh(x, y) = y2 − fh(x). By Lemma 5.5, one has

SM ⊆ XF
wh
sl∧sh

∩ SML,0
= ∅,

as gh|F (X,Y ) = Y 2−Xafh|L(X) or Y −Xafh|L(X), for some a ∈ Z (see Lemma
5.7 for more details). Thus if M = MV

wh
t ,j , then SM = ∅.

5.6. Components. Now that we have described the special fibre of C, let us
introduce some notation for closed subschemes that compose it. Let t ∈ ΣW . For
any h = 1, . . . ,m such that sh ⊆ t recall the definition of XF

wh
t

, 1-dimensional
closed subscheme of Cwh∆,s. Let

X̊F
wh
t

:= XF
wh
t
∩ C̊wh∆ .

Denote by Γt the 1-dimensional closed subscheme of Cs, result of the glueing of
the subchemes X̊F

wh
t

of C̊wh∆,s for all h such that t ∈ Σwh
C .

Lemma 5.6 Let t ∈ Σwh
C be a proper cluster and let F = Fwht . Then mt = δF .

Proof. Let L = Lwht and M = ML,0. Then δF = δLd0. The lemma follows as
δL = bt and d0 = (3−Dt) by Lemma 5.2. �

From the lemma above the multiplicity of Γt is mt. The lemma below gives the
defining equation of Γt on the chart XM , for a certain matrix M associated to t.

l

Lemma 5.7 Let fh(x) = f(x+ wh) and let L = Lwht , F = Fwht and M = ML,0.
Let c, d ∈ Z such that ρt · c + d = 1/bt. Then the 1-dimensional subscheme XF

(or X̊F ) on the affine chart XM is given by

Y Dt −X
|s|
bt
−cεtfh|L(X) = 0,

where s ∈ Σwh
C ∪ {∅}, s < t (where ∅ < t only if t = sh and p0

sh
= 2).

In particular the points in SM belong to all the irreducible components of XF .

Proof. Let ∆wh
v be the Newton polytope of Cwh : y2−f(x+wh). For its structure,

XF is given on XM by Y b −Xafh|L(X), for some b = 1, 2 and a ∈ Z. Moreover,
if b = 2 then 2−Dt = rL = 0. We prove the converse also holds. Suppose Dt = 2,



MODELS AND INTEGRAL DIFFERENTIALS OF HYPERELLIPTIC CURVES 29

that is btεt ∈ 2Z. We want to show that there exists a point P ∈ Z × {1} with
vF (P ) ∈ Z. Let c, d ∈ Z as in the statement and set P = (cbtεt/2, 1). Then

vF (P ) =
vF ((cbtεt, 0))

2
=
εt − (cbtεt)ρt

2
=
dbtεt

2
∈ Z,

by Lemma 4.1. Then a follows from the choice of P and Definition 2.5 (choose
k0 = b|t|/2c+ 1− cεtbt/2 and k1 = −c for the description of M in Lemma 5.2).

Finally, the last part of the lemma follows from Lemma 5.5. �

Denote XW
t := XL

wh
t
∩ C̊wh∆ , Xt := XV

wh
t
∩ C̊wh∆ and X0

sh
:= XV 0

sh
∩ C̊wh∆ .

This notation agrees with Definition 4.8. Indeed, let gh(x, y) = y2 − fh(x) and
rt = wh−r

πρt for any r ∈ t. Then gh|V wht
= gt, gh|V 0

sh
= g0

sh
and gh|Lwhsh

= fsh .

Finally, by Lemma 5.5, if t 6= sh the polynomial defining XL
wh
t
∩ C̊wh∆ is

gh|Lwht
(x)∏

th 6=tl<t(x+ uhl)
=

( u
πv(u)

∏
r∈t\th(x+ rt)∏

r∈tl 6=th
(x+ rt)

mod π

)
= fWt (x),

where u = cf
∏
r∈R/∈s rt and tl ∈ Σwl

C , tl < t for any l. Indeed

gh|Lwht
(x) = fh|Lwht

(x) = u
πv(u)

∏
r∈t\th(x+ rt) mod π

from Lemma 3.33 and uhl = rt for every r ∈ tl as v(wl − r) ≥ ρtl > ρt = ρhl.

Proposition 5.8 Let t ∈ Σwh
C and let wt = wh. On the affine open UhM , the

1-dimensional scheme Γt is given by

Y Dt =
∏

s∈t̃∩ΣW

(X − ulh)fWt (X)

where wl is a rational centre of s and uhh := 0.

Proof. Let c ∈ Z be as in Definition 4.7. If t has two or more children in Σrat
C ,

then bt = 1, and so c = 0. Hence t̃ is the set of odd rational children and so the
proposition follows from Lemma 5.7 and Lemma 5.5. �

5.7. Separatedness. It remains to prove that C is a proper scheme. We first
show it is separated. Clearly it suffices to prove that X/OK is separated. Since
the schemes Xh

∆ are separated, then the open subschemes X̊h
∆ are separated as

well by [LiA, Proposition 3.3.9]. Consider the open cover {V h
M}h,M of X . Let

h, l = 1, . . . ,m and let Mh and Ml be matrices associated to proper clusters
th ∈ Σwh

C and tl ∈ Σwl
C respectively. By [LiA, Proposition 3.3.6] we want to show

(i) V h
Mh
∩ V l

Ml
is affine,

(ii) The canonical homomorphism

OX (V h
Mh

)⊗Z OX (V l
Ml

) −→ OX (V h
Mh
∩ V l

Ml
)

is surjective.
The definition of the glueing map 5 implies (i). If h = l, or sl ⊂ th, or sh ⊂ tl,
then ((ii)) follows from the separatedness of X̊h

∆ and X̊ l
∆. So assume l 6= h, and

th, tl ( sh ∧ sl. Consider the Moebius transformation

ψl : x 7→ x

xw−1
hl + 1

, y 7→ y

(xw−1
hl + 1)g+1

.

It sends the curve Cwl to the isomorphic hyperelliptic curve

Chl : y2 = (xw−1
hl + 1)2g+2f

(
x(xw−1

hl + 1)−1 + wl
)
.
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As

fhl (x) : = (xw−1
hl + 1)2g+2f

(
x(xw−1

hl + 1)−1 + wl
)

= cfw
|R|
hl (xw−1

hl + 1)2g+2−|R|
∏

r∈Rr{wh}

r − wl
wlh

(
xw−1

hl +
r − wl
r − wh

)
,

every cluster s ∈ Σwl
C such that s ( sh ∧ sl, corresponds to a unique cluster

sh ∈ Σ0
Chl

of same size, radius and rational centre 0. Moreover,

εsh = v(cfhl
) +

∑
r′∈sh

ρsh +
∑
r′ /∈sh

v(r′) = εs.

Call thl the cluster in Σ0
Chl

corresponding to th. Let ∆lh
v be the Newton polytope

of y2 − fhl (x) and let X lh
∆ be its attached toric scheme (defined in [Dok]). Since

tl ( sh∧ sl, the faces Ftl of ∆wl
v and Fthl

of ∆lh
v are identical by Lemma 4.1 and so

the matrix M := Ml is also associated to thl . For every o = 1, . . . ,m, with o 6= h,
define

whlo =

{
wlowhl
who

if o 6= l,

whl if o = l,

and write whlo = uhloπ
ρhlo , where uhlo ∈ O×K and ρhlo ∈ Z, i.e.

uhlo =

{
ulouhl
uho

if o 6= l,

uhl if o = l,
and ρhlo =

{
ρhl + ρlo − ρho if o 6= l,

ρhl if o = l.

Define

T̃ hloM (X,Y, Z) :=

{
1 + uhloX

ρhlom̃13−m̃11Y ρhlom̃23−m̃21Zρhlom̃33−m̃31 if tl ⊇ so,

u−1
hloX

m̃11−ρhlom̃13Y m̃21−ρhlom̃23Zm̃31−ρhlom̃33 + 1 if tl 6⊇ so.

We want to show T̃ hloM (X,Y, Z) ∈ R. If o = l then

T̃ hloM (X,Y, Z) = T hlM (X,Y, Z) ∈ R.
So assume o 6= l. If so ⊆ tl, then it follows from Lemma 5.3 as sl ∧ so ( sl ∧ sh
and so ρhlo = ρlo. On the other hand, if so 6⊆ tl, then it follows from Lemma 5.4
as ρhlo ≤ max{ρhl, ρlo}. Let

T̃ hlM (X,Y, Z) :=
∏
o 6=h

T̃ hloM (X,Y, Z).

The Moebius transformation

K[x±1, y±1,
∏
o 6=l

(x+ wlo)
−1]

ψl−→ K[x±1, y±1,
∏
o 6=h

(x+ whlo)
−1]

considered above induces an isomorphism

R[T lM (X,Y, Z)−1]
M−1◦ψl◦M−−−−−−−→ R[T̃ hlM (X,Y, Z)−1],

sending

X 7→ X · T hlM (X,Y, Z)−m11−(g+1)m21 ,

Y 7→ Y · T hlM (X,Y, Z)−m12−(g+1)m22 ,

Z 7→ Z · T hlM (X,Y, Z)−m13−(g+1)m23 .

Then
Ṽ lh
M := Spec R[T̃ hlM (X,Y, Z)−1]
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is an open subscheme of X lh
∆ , isomorphic to V l

M . We can clearly carry out similar
constructions for th, Mh.

By comparing the Newton polytopes ∆lh
v and ∆hl

v , we see that the Moebius
transformation

ψ : K[x±1, y±1,
∏
o 6=h

(x+ whlo)
−1] −→ K[x±1, y±1,

∏
o 6=l

(x+ wlho)
−1]

x 7−→ −w2
hl/x

y 7−→ −y/(w−1
hl x)g+1

induces a birational map Xhl
∆ X lh

∆ , defined on the open set Ṽ hl
Mh

of Xhl
∆ . In

particular, there exists an open set Ṽ lh
Mh

of X lh
∆ , isomorphic to V h

Mh
via ψ−1

h ◦ ψ.
Recall the definition of φ in (2), which induces the glueing map between V l

Ml

and V h
Mh

. Since the following diagram

K[x±1, y±1,
∏
o 6=l(x+ wlo)

−1] K[x±1, y±1,
∏
o 6=h(x+ who)

−1]

K[x±1, y±1,
∏
o 6=h(x+ whlo)

−1] K[x±1, y±1,
∏
o 6=l(x+ wlho)

−1]

φ

ψl ψh

ψ

is commutative, then the surjectivity of

OX (V h
Mh

)⊗Z OX (V l
Ml

) −→ OX (V h
Mh
∩ V l

Ml
)

follows from the separatedness of X lh
∆ .

5.8. Properness. By [EGA, IV.15.7.10], it remains to show that Cs is proper.
From [LiA, Exercise 3.3.11], we only need to prove that the 1-dimensional sub-
scheme Γt is proper for every t = sh∧sl. Indeed every other component is entirely
contained in a model Cwh∆ , which is proper (see §5.5). Let t = sh ∧ sl for some
h, l = 1, . . . ,m, with h 6= l. For any o = 1, . . . ,m such that so ⊂ t, let to be the
unique child of t with so ⊆ to < t. Then Γt is equal to the glueing of the schemes

Spec
R[Uo(X,Y, Z)−1](
FoM (X,Y, Z), Z, π

) , M = MLwot ,0,MV wot ,0,

and

Spec
R[Uo(X,Y, Z)−1](
FoM (X,Y, Z), Y, π

) , M = MV woto
,rV woto

,

for all o such that so ⊂ t, through the isomorphism (5) and the glueing maps
in the definition of Cwo∆ . In particular, for any o as above there exists a natural
birational map so : Γt XFwot

which is defined as the identity morphism on the
dense open Γt ∩ C̊wo∆ .

Let Y/k be a non-singular curve, let P ∈ Y and let Y r {P} g−→ Γt be a
non-constant morphism of curves. We want to show that g extends to Y . For
every o as above, XFwot

is proper, so the birational map

go := so ◦ g : Y r {P} XFwot

extends to a morphism go : Y −→ XFwot
.

If
Po := go(P ) ∈

(
XFwot

∩ C̊wo∆

)
= so

(
Γt ∩ C̊wo∆

)
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for some o such that so ⊂ t (we will later show this is always the case), then
there exists an open neighbourhood U of Po such that U ⊆

(
XFwot

∩ C̊wo∆

)
and

so so|Us−1
o (U)

is an isomorphism. Since P ∈ g−1
o (U), the map

g−1
o (U)

go|U
g−1
o (U)−−−−−−→ U

(
so|U

s−1
o (U)

)−1

−−−−−−−−−→ s−1
o (U) ↪→ Γt,

induces an extension Y −→ Γt of g.
Suppose that Po /∈ XFwot

∩ C̊wo∆ for any o such that so ⊂ t. From §5.5 we have

(8) Po ∈ SM = Spec
R

(FoM (X,Y, Z),
∏
l (X + uol) , Z, π)

,

where M = MLwot
, and the product runs over all l 6= o such that t = so ∧ sl. In

particular Po is a point of each irreducible component of XFwot
by Lemma 5.7.

Let h 6= o such that X + uoh vanishes at Po. Let ξ be the generic point of Y and
let ξo = go(ξ), ξh = gh(ξ) be generic points of XFwot

and XF
wh
t

respectively. Then
the birational maps so and sh give

XFwot

Y r {P} Γt

XF
wh
t

g

so

sh

=⇒

k
(
ξo
)

k(Y )

k
(
ξh
)

φgo
'

φgh

where we denote by φgo and φgh the homomorphisms between function fields
induced by go and gh. The vertical isomorphism is induced by the map

R[T oM (X,Y, Z)−1](
FoM (X,Y, Z), Z

) −→ R[T hM (X,Y, Z)−1](
FhM (X,Y, Z), Z

)
which sends (see §5.3)

X + uoh 7→ X · T hoM (X,Y, Z)m11 + uoh = X
(
1 + uhoX

−1
)

+ uoh = X.

But the rational function X + uoh vanishes at Po, while X does not vanish at Ph
by (8). This gives a contradiction, as go(P ) = Po and gh(P ) = Ph.

5.9. Genus. Suppose Σ = {s1, . . . , sm} = Σmin
C , ΣC is almost rational and C is

y-regular. Let t ∈ Σwh
C be a proper cluster.

Lemma 5.9 If C is y-regular, then t ∈ Σrat
C is übereven if and only if it equals

the union of its even rational children. Furthermore, if p 6= 2, every even cluster
s ∈ ΣC is rational.

Proof. Let s ∈ ΣC such that s 6= srat = t, for some t ∈ Σrat
C . In particular srat = t,

and ds 6= ρs = ρt. Since ΣC is almost rational, we must have |s| ≤ |ρs|p = |ρt|p.
Then vp(bt) > 1. Let σ be an element of the wild inertia subgroup of GK . For any
r ∈ s, we have σ(r) ∈ s, since v(r − σ(r)) > ρt and s < t. Therefore pvp(bt) ≤ |s|.
Thus we have showed |s| = pvp(bt), that implies s is odd if p 6= 2.

It remains to show the first part of the lemma when p = 2. It suffices to show
that every child of a übereven rational cluster t is rational. Suppose not. Then
2 | bt from above, and then t has at most one child in Σrat

C (Lemma 3.18). Let
s ∈ Σrat

C ∪ {∅}, s < t. If s 6= ∅ then by Lemma 3.15 it is also a (proper) child of
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t. Let a be the number of non-rational children of t. Then |t| − |s| = a · 2vp(bt).
Therefore (|t| − |s|)ρt is odd by Lemma 3.11. Thus one between pt/γt and ps/γs (or
p0
t/γ0

t if s = ∅) equals 2. But this is impossible as C is y-regular. �

Proposition 5.10 Let t ∈ Σwh
C with Dt = 2 and let wt = wh. On the affine open

UhM the 1-dimensional scheme Γt is given by

Y Dt =
∏
s∈t̃

(X − ulh)ft(X)

where wl is a rational centre of s and uhh := 0.
In particular,
(1) if Dt = 1, then Γt ' P1

k;
(2) if Dt = 2 and t is übereven, then Γt over ks is the disjoint union of two

P1s;
(3) in all other cases, Γt is a hyperelliptic curve of genus g(t).

Proof. The first part of the proposition follows from Proposition 5.8.
Since g(X) =

∏
s∈t̃(X − ulh)ft(X) is a separable polynomial, by Lemma 5.9 it

only remains to prove that t equals the union of its even children if and only if
g(X) ∈ k.

Suppose t equals the union of its own even rational children. In particular
bt = 1 by Lemma 3.18 and so t̃ = ∅ since it is the set of odd rational children.
Therefore tr

⋃
s<t s = ∅, and so ft ∈ k. Thus g ∈ k.

Now suppose g ∈ k. Then t̃ = ∅ and t =
⋃

s<t s, s rational. In particular t has
two or more children in Σrat

C , and so bt = 1, again by Lemma 3.18. But then t̃ is
the set of odd children of t, and so all rational children of t are even. �

5.10. Minimal regular SNC model. Suppose the base extended curve CKnr

satisfies the condition of §5.9, and consider the model C/OKnr constructed before.
we want to see what components of Cs can be blown down to obtain the minimal
regular model with normal crossings. Recall [Dok, §5]. Let ΣKnr = Σrat

CKnr
and ix

a proper cluster s ∈ ΣKnr of rational centre wh.
Suppose s 6= sh ∧ sl for all h, l = 1, . . . ,m with l 6= h. Then Γs = XF

wh
s

. In
particular, if Γs can be blown down then Fwhs is a removable or contractible face.
By Lemma 4.1, we find

• Fwhs is removable if and only if s = R even with a (rational) child of size
2g + 1.
• Fwhs is contractible if and only if either |s| = 2 and εs

2 − ρs ∈ Z or |s| > 2g
with a unique (rational) child s′ ∈ ΣKnr of size 2g and εs

2 − gρs ∈ Z.
First of all note that Fwhs is removable if and only if s is removable. In this case
Fwhs can be ignored for the construction of Cwh∆ (for any h since s = R), and so s
can be ignored for the construction of C.

Assume now Fwhs contractible. We want to understand when Γs can be blown
down. First consider the case |s| = 2 and εs

2 − ρs ∈ Z. Then Γs intersects other
components of Cs in 2 points (as V wh

s gives two chains of P1s and the edges V wh
0

and Lwhs give no component in Cwh∆,s). To have self-intersection −1, Γs has to have
multiplicity > 1. It follows from Lemma 5.6 that ρs /∈ Z, as εs2 −ρs ∈ Z. Moreover,
by Lemma 3.11, one has ρs ∈ 1

2Z. Therefore εs is odd and the multiplicity of Γs

is 2. Let r := rV whs
and consider the chain

n0

d0
>
n1

d1
> · · · > nr

dr
>
nr+1

dr+1
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given by V wh
s . If Γs can be blown down then d1 = 1. Since n0

d0
= − εs

2 + 2ρs, we
have d0 = 2. In particular d1 = 1 if and only if ρs − ρP (s) = n0

d0
− nr+1

dr+1
≥ 1

2 . Thus
if |s| = 2, then Γs can be blown down if and only if ρs /∈ Z, εs odd, ρP (s) ≤ ρs− 1

2 .
Note that this is case (1) of Definition 4.13.

Second consider the case |s| = 2g + 2 with a unique proper rational child s′ of
size 2g. The argument is very similar to the previous one. If Γs can be blown
down then it must have multiplicity > 1 and this implies ρs /∈ Z again by Lemma
5.6. From Lemma 3.11 it follows that (|s| − |s′|)ρs ∈ Z, so ρs ∈ 1

2Z. Then ms = 2
and

v(cf )

2
=
εs
2
− (g + 1)ρs /∈ Z,

so v(cf ) odd. Let r := rV wh
s′

and consider the chain

n0

d0
>
n1

d1
> · · · > nr

dr
>
nr+1

dr+1

given by V wh
s′ . If Γs can be blown down then dr = 1. Since nr+1

dr+1
= − εs

2 +(g+1)ρs,
we have d0 = 2. In particular dr = 1 if and only if ρs′ −ρs = n0

d0
− nr+1

dr+1
≥ 1

2 . Thus
if s has size 2g + 2 and it has a unique proper child s′ ∈ ΣKnr of size 2g, then Γs

can be blown down if and only if ρs /∈ Z, v(cf ) odd, ρs′ ≥ ρs + 1
2 . This is case (2)

of Definition 4.13.
Finally, if |s| = 2g+1, s has a proper child s′ ∈ ΣKnr of size 2g and εs

2 −gρs ∈ Z,
then ρs ∈ Z, as (|s| − |s′|)ρs ∈ Z. It follows that ms = 1, but then the self-
intersection of Γs is not −1, since it intersects the rest of Cs in at least two points
as before. Hence in this case Γs can never be blown down.

Now assume there exists l 6= h such that s = sh∧sl. Then s is not minimal. Let
s′h, s

′
l ∈ ΣKnr be such that sh ⊆ s′h < s and sl ⊆ s′l < s. Suppose Γs irreducible.

If |s| ≤ 2g (or, equivalently, s is not the largest non-removable cluster), then
Γs intersects at least other 3 components of Cs (given by s′h, s

′
l, and P (s)). So

it cannot be contracted to obtain a model with normal crossings. The same
argument holds if there exists o 6= l such that so ∧ sh = s. Assume then |s| > 2g
and so ∧ sh 6= s for all o 6= l. Then Γs intersects at least other 2 components of
Cs given by V wh

s′h
and V wl

s′l
. Firstly, if Γs can be blown down, then ms > 1. But

ρs = ρhl ∈ Z. Then
εs
2
−
⌊
|s| − 1

2

⌋
ρs ∈

1

2
Z r Z,

so εs odd as well as v(cf ). Hence Ds = 1 and Γs ' P1 by Proposition 5.10.
However, if s is odd then this implies that V wh

s gives a P1 intersecting Γs. Since
that would be a third component intersecting Γs, the cluster s has to be even.
It follows that s = R and |s| = 2g + 2. Now, Lwhs gives some P1s intersecting
XF

wh
s
⊂ Cwh∆,s. All these P

1s are not in C̊wh∆,s (and so in Cs) if and only if s′h∪s′l = s.
In particular, s′h and s′l are either both even or both odd. If s′h is even, then
δV wh

s′
h

= 2, and so the component given by V wh
s′h

has multiplicity at least 2. Once

again, the self-intersection of Γs could not be −1 in this case. Assume s′h is odd.
Let r := rV whs

and consider the chain
n0

d0
>
n1

d1
> · · · > nr

dr
>
nr+1

dr+1

given by V wh
s′h

. We want dr = 1. Since

nr+1

dr+1
= −εs

2
+
|s′h| − 1

2
ρs ∈

1

2
Z r Z,
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we have dr+1 = 2. As before dr = 1 if and only if
ρs′
h
−ρs
2 = n0

d0
− nr+1

dr+1
≥ 1

2 and
similarly for s′l. Thus if s has two or more rational children and Γs is irreducible
then it can be blown down if and only if v(cf ) is odd and s = R is union of its 2
rational children s′h and s′l, satisfying ρs′h ≥ ρs + 1, ρs′l ≥ ρs + 1. This is case (3)
of Definition 4.13.

Suppose now Γs reducible. By Proposition 5.10 s is übereven, εs is even and
Γs is the disjoint union of Γ−s ' P1 and Γ+

s ' P1. As before, both Γ−s and Γ+
s

intersect at least other two components (given by the proper children of s). But
then neither Γ−s nor Γ+

s has self-intersection −1, as ms = 1.
It remains to show that after blowing down all components Γs where s is a

contractible cluster, no other component can be blown down. First note that if s
is a contractible cluster, then bs = 2 and Γs intersects one or two other components
of multiplicity 1 in two points. If it intersects only one component, then after the
blowing down, the latter will have a node and will not be isomorphic to P1. If
Γs intersects two components and those intersect something else in Cs, then they
will not have self-intersection −1 also when Γs is blown down. Therefore suppose
that one of those two does not intersect any other component of Cs. If we are in
case (1) or case (2), it is easily to see that this never happens. Then without loss
of generality assume to be in case (3) and that Γs′h

is the component that can be
blown down once Γs has been contracted. This implies sh = s′h and ρsh = ρs + 1.
But then Dsh = 2 and |sh|/2 ≥ 1. Hence gsh ≥ 2 and so Γsh cannot be blown
down.

5.11. Galois action. Consider the base extended hyperelliptic curve CKnr/Knr.
The rational clusters and their corresponding rational centres of CKnr are then
over Knr. Assume ΣCKnr is almost rational and let Σmin

CKnr
= {s1, . . . , sm} be

the set of rationally minimal clusters of CKnr . Fix a set W = {w1, . . . , wm} of
corresponding rational centres wh ∈ Knr. By Lemma A.1, we can assume this
choice to be GK-equivariant, i.e., for any σ ∈ GK , one has σ(wl) = wh if and only
if σ(sl) = sh.

For any h = 1, . . . ,m, define fh(x) = f(x + wh) ∈ Knr[x] and let Cwh/Knr :
y2 = fh(x). Fix σ ∈ GK . If σ(sl) = sh, then σ(fl) = fh. Now, let t ∈ Σwl

CKnr
be a

proper cluster. Then σ(t) ∈ Σwh
CKnr

and ρt = ρσ(t). In particular, if M is a matrix
associated to t then M is associated to σ(t) as well. So σ(F lM ) = FhM . Finally, as
σ(
∏
o 6=l(x+ wlo)

−1) =
∏
o 6=h(x+ who)

−1 we also have σ(T lM ) = T hM .
Hence the natural Knr-isomorphism Cwh

σ−→ Cwl induces OKnr -isomorphisms
of schemes

Cwh∆
σ−→ Cwl∆ , C̊wh∆

σ−→ C̊wl∆ , UhM
σ−→ U lM .

These maps describe the action of σ on C (see §5.3). In particular, if sh ∧ sl ⊆ t,
then the glueing map (5) and σ are equal.

Let s ∈ Σrat
CKnr

be a proper cluster, Gs = StabGK (s), Ks = (Ks)Gs and ks be
the residue field ofKs. Let ws ∈ Ks be a rational centre of s. Let Γs be the regular
1-dimensional scheme defined in §5.6 and let Γ̃s/ks be the regular 1-dimensional
scheme given by

Y Dt =
∏
s′∈s̃

(X − us′s)fs(X),

where us′s =
ws′−ws

πρs , and fs as in Definition 4.15. Then there is a natural ks-
isomorphism Γs → Γ̃s by Proposition 5.10. Furthermore, it is actually a ks-
isomorphism, since the action of σ ∈ Gal(ks/ks) corresponds to the glueing maps
in C and is trivial on Γs.
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A similar argument shows that Xs : {gs = 0}, where ws is the rational centre
chosen in the definition of gs.

6. Integral differentials

Let C be a hyperelliptic curve of genus g ≥ 2 defined over K by a Weier-
strass equation y2 = f(x). Assume that C is y-regular. It is well-known that
the K-vector space of global sections of the sheaf of differentials of C, namely
H0(C,Ω1

C/K), is spanned by the basis

ω =
{
dx

2y
, x

dx

2y
, . . . , xg−1 dx

2y

}
.

Let C be a regular model of C over OK and consider its canonical sheaf ωC/OK .
The free OK-module of its global sections H0(C, ωC/OK ) can be viewed as an OK-
lattice of H0(C,Ω1

C/K) by [LiA, Corollary 9.2.25(a)]. The aim of this section is
to present a basis of H0(C, ωC/OK ) as an OK-linear combination of the elements
in ω. Note that by [LiA, Corollary 9.2.25(b)] the problem is independent of the
choice of model but it does depend on the choice of the equation y2 = f(x) since
the basis ω does. Throughout this section let C and C/OK be as above.

If C is ∆v-regular, [Dok, Theorem 8.12] gives an OK-basis of H0(C, ωC/OK ), as
required. We rephrase it in terms of cluster invariants, by using results of §3.

Theorem 6.1 For any cluster s ∈ ΣC , set λs = minr∈s v(r). Suppose that all
proper clusters s ∈ ΣC with |s| > |λs|p have ds = λs. Let s1 ⊂ · · · ⊂ sn = R be
the proper clusters in Σ0

C . For every j = 0, . . . , g − 1, define

ij := min{i ∈ {1, . . . , n} | 2(j + 1) ≤ |si|}

and

ej :=
1

2
ε0sij
− (j + 1)ρ0

sij
.

Then the differentials

µj = πbejcxj
dx

2y
j = 0, . . . , g − 1,

form an OK-basis of H0(C, ωC/OK ).

Proof. The theorem is a consequence of [Dok, Theorem 8.12], Theorem 3.23,
Lemma 4.6 and Lemma 4.1. �

Corollary 6.2 Let w ∈ K. Suppose that all proper clusters s ∈ ΣC have rational
centre w and those with |s| > |ρs|p satisfy ds = ρs. Let s1 ⊂ · · · ⊂ sn = R be the
proper clusters in Σw

C . For every j = 0, . . . , g − 1, define

ij := min{i ∈ {1, . . . , n} | 2(j + 1) ≤ |si|}

and

ej :=
1

2
εsij − (j + 1)ρsij .

Then the differentials

µj = πbejc(x− w)j
dx

2y
j = 0, . . . , g − 1,

form an OK-basis of H0(C, ωC/OK ).
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Proof. Let Cw : y2 = f(x+w) be the hyperelliptic curve isomorphic to C through
the change of variable y 7→ y, x 7→ x+w. By Corollary 3.24 and Lemma 4.6, the
curve Cw is ∆v-regular and so satisfies the hypothesis of Theorem 6.1 (alterna-
tively they can be checked directly). Therefore

µj = πbejcxj
dx

2y
j = 0, . . . , g − 1,

form an OK-basis of H0(C, ωC/OK ) as a subset of H0(Cw,Ω1
Cw/K) (that is if C is

regarded as a model of Cw). Changing variables concludes the proof. �

From now on, suppose that ΣC is almost rational. Let Σmin
C be the set of

rationally minimal clusters and let W = {ws | s ∈ Σmin
C } be a corresponding set

of rational centres, where ws ∈ s if possible. For every proper cluster t ∈ Σrat
C ,

choose a minimal cluster s ⊆ t and set wt := ws. Consider the regular model C/OK
of C of Theorem 4.12 constructed in §5 that the model C by glueing the open
subschemes C̊w∆ of Cw∆ for w ∈ W . We want to describe the canonical morphism
C → C. Let Cw : y2 = f(x+ w) and

y2 − f(x+ w) = Y nY ZnZFwM (X,Y, Z),

as in [Dok, 4.4]. Let t ∈ Σw
C be a proper cluster and let M be a matrix associated

to t. Then, on the affine chart XM the projection C → Cw∆ is induced by

R(
FwM (X,Y, Z)

) M−→ K[(x′)±1, (y′)±1]

((y′)2 − f(x′ + w))

'−→ K[x±1, y±1]

(y2 − f(x))
,

where (X,Y, Z) = (x′, y′, π) •M and (x′, y′) = (x−w, y). In particular it follows
that (X,Y, Z) = (x− w, y, z) •M and sox− wy

π

 =

Xm̃11Y m̃21Zm̃31

Xm̃12Y m̃22Zm̃32

Xm̃13Y m̃23Zm̃33

 =

XY
Z

 •M−1.

For a proper cluster t ∈ Σrat
C recall the definitions of Γt and mt.

Proposition 6.3 Let t ∈ Σrat
C be a proper cluster. Then4

ordΓt(x− ws) = mtρt,

ordΓt
dx
y = −mt

(
1
2εt − ρt − 1

)
− 1.

for every proper cluster s ∈ Σrat
C , s ⊆ t.

Proof. Assume first Γt irreducible. Let s ∈ Σrat
C proper, s ⊆ t. Then from the

proof of [Dok, Proposition 8.1] and Lemma 4.1 it follows that

ordΓt(x− ws) = δFwst
ρws
t ,

ordΓt

dx

2y
= −δFwst

(
1
2ε
ws
t − ρ

ws
t − 1

)
− 1.

by [LiA, Lemma 9.2.17(a)]. Since ws is a rational centre of t for Lemma 3.14,
Remark 3.32 implies ρws

t = ρt and εws
t = εt. Then the proposition follows since

δFwst
= mt.

Suppose now that Γt is reducible. Let L = Lws
t , 0, let M = ML and let X,Y, Z

be the transformed variables (X,Y, Z) = (x − ws, y, π) •M . Consider the open
set U : {Z = 0} of Γt ⊂ Cs. Since Z vanishes of order 1 on U , it follows from
Lemma 5.2 that

ordΓt(x− ws) = m̃31 = mtρt and ordΓty = m̃32 = mt
εt
2 ,

4If Γt is reducible, say Γt = Γ−t ∪ Γ+
t , then ordΓt(·) means min{ord

Γ−
t

(·), ord
Γ+
t

(·)}
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as d0δM = mt.
By Proposition 5.10 the defining equation of the Γt on U is of the form

Y 2 − h(X)2 = Xm̃13Y m̃23Zm̃33 = 0,

where h(X) ∈ OK [X] such that h(X)2 = f |L(X) ∈ k[X]. Let

Γ−t := {Y − h(X) = Xm̃13Y m̃23Zm̃33 = 0},
Γ+
t := {Y + h(X) = Xm̃13Y m̃23Zm̃33 = 0},

be the two components of Γt on U . Consider Γ−t . By [LiA, Corollary 6.4.14], the
sheaf ωC/OK is generated on Γ−t by∣∣∣∣ −h′(X) 1

m̃13πX
−1 m̃23πY

−1

∣∣∣∣−1

dZ

if this determinant is non-zero. As (m̃13, m̃23) 6= (0, 0), the determinant above
is non-zero. Recall the polynomials G0, H in the proof of [Dok, Proposition 8.1].
Then G0(X,Y, Z) = Y 2 − G(X)2 + Z · E(X,Y, Z), for some polynomial E ∈
K[X,Y, Z]. Hence

ordΓ−t

dx

π(x− ws)y2
= −mtεt − 1 + ordΓ−t

(∣∣∣−h′(X)h(X)+ZE′X 2Y+ZE′Y
m̃13πX−1 m̃23πY −1

∣∣∣−1
dZ

)
from the proof of [Dok, Proposition 8.1]. This implies that

ordΓ−t

dx

2y
= −mt

(εt
2
− ρt − 1

)
− 1− ordΓ−t

∣∣∣−h′(X)h(X)+ZE′X 2Y+ZE′Y
m̃13πX−1 m̃23πY −1

∣∣∣∣∣∣ −h′(X) 1

m̃13πX−1 m̃23πY −1

∣∣∣ .

Then we want to show

ordΓ−t
a(X,Y, Z) = 0, a(X,Y, Z) :=

∣∣∣−h′(X)h(X)+ZE′X 2Y+ZE′Y
m̃13πX−1 m̃23πY −1

∣∣∣∣∣∣ −h′(X) 1

m̃13πX−1 m̃23πY −1

∣∣∣ .

We have

a(X,Y, Z) =
2(m̃23h′(X)h(X)X+m̃13Y 2)+Z(m̃13Y E′Y −m̃23XE′X)

m̃23Xh′(X)+m̃13Y

= 2Y −
2
m̃23
m̃13

Xh′(X)(Y−h(X))−Z
(
Y E′Y −

m̃23
m̃13

XE′X

)
Y+

m̃23
m̃13

Xh′(X)
.

As ordΓ−t
(Y − h(X)) = ordΓ−t

Z = 1, we have

ordΓ−t

(
2 m̃23
m̃13

Xh′(X) (Y − h(X))− Z
(
Y E′Y − m̃23

m̃13
XE′X

))
≥ 1.

Therefore if ordΓ−t

(
Y + m̃23

m̃13
Xh′(X)

)
= 0 then ordΓ−t

a(X,Y, Z) = 0, as Y is a

unit on U . Suppose by contradiction that ordΓ−t

(
Y + m̃23

m̃13
Xh′(X)

)
≥ 1. Since

Z -
(
Y + m̃23

m̃13
Xh′(X)

)
, we must have

(Y − h(X)) |
(
Y + m̃23

m̃13
Xh′(X)

)
,

that trivially implies h(X) = Xn, where n = − m̃13
m̃23
∈ Z≥0. Thus f |L(X) = X2n,

but this is impossible since NP(f |L(X)) 6= NP(X2n). �
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Theorem 6.4 Let C/K be a hyperelliptic curve of genus g ≥ 2 defined by the
Weierstrass equation y2 = f(x) and let C/OK be a regular model of C. Suppose
C is y-regular and ΣC is almost rational. For i = 0, . . . , g − 1 choose inductively
proper clusters si ∈ Σrat

C so that

ei :=
εsi
2
−

i∑
j=0

ρsj∧si = max
t∈Σrat

C

{
εt
2
− ρt −

i−1∑
j=0

ρsj∧t

}
,

where if s and s′ are two possible choices for si satisfying s′ ⊂ s, then choose
si = s. Then the differentials

µi = πbeic
i−1∏
j=0

(x− wsj )
dx

2y
, i = 0, . . . , g − 1,

form an OK-basis of H0(C, ωC/OK ).

Proof. Since H0(C, ωC/OK ) is independent of the choice of regular model, we con-
sider C to be the model described in Theorem 4.12 (and constructed in §5).

We first show that the differentials µi are global sections of ωC/OK . It suffices
to prove they are regular along all components Γt, where t ∈ Σrat

C proper. Indeed
for the construction of C and the definition of the ei’s, the differentials µi are
regular along all other components of Cs by Corollary 6.2. Fix i = 1, . . . , g − 1
and let j = 0, . . . , i− 1. Let t ∈ Σrat

C be a proper cluster. If sj ⊆ t then

ordΓt(x− wsj ) = mtρt = mtρsj∧t,

by Proposition 6.3. If t ( sj then wt is a rational centre of sj . Hence

v(wt − wsj ) ≥ min
r∈t

min{v(r − wt), v(r − wsj )} ≥ min{ρt, ρsj} = ρsj = ρsj∧t.

Therefore Lemma 3.18 implies

ordΓt(x− wsj ) ≥ min{ordΓt(x− wt), ordΓt(wt − wsj )}
≥ min{mtρt,mtρsj∧t} = mtρsj∧t.

If sj * t and t * sj then

ordΓt(x− wsj ) = min{mtρt,mtρsj∧t} = mtρsj∧t.

as ρt > ρsj∧t. Thus we have proved that

(9) ordΓt(x− wsj ) ≥ mtρsj∧t, where the equality holds if t 6⊂ sj .

Therefore it follows from Proposition 6.3 that

ordΓtµi ≥ mt

(
beic+

i−1∑
j=0

ρsj∧t −
εt
2

+ ρt + 1

)
− 1.

But

beic ≥
⌊
εt
2
− ρt −

i−1∑
j=0

ρsj∧t

⌋
>
εt
2
− ρt −

i−1∑
j=0

ρsj∧t − 1,

then ordΓtµi > −1, that implies ordΓtµi ≥ 0, as required.
Now we need to show that the differentials µi span H0(C, ωC/OK ), i.e., the

lattice they span is saturated in the global sections of ωC/OK . Suppose not. Then
there exist I ⊆ {0, . . . , g − 1} and ui ∈ O×K for i ∈ I such that the differential
1
π

∑
i∈I uiµi is regular along Γt, for every proper cluster t ∈ Σrat

C . Let I1 ⊆ I be
the set of indices i such that γi := ei − beic is maximal. Let I2 ⊆ I be the set
of indices i ∈ I1 such that si is maximal with respect to the inclusion. Define
i0 := min I2 and denote by Γ0 the closed subscheme Γsi0

. First we want to show
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that si0 6⊂ sj for all j = 0, . . . , i0. Suppose by contradiction that there exists
j0 < i0 such that si0 ( sj0 . Then by the definitions of si0 and sj0 one has

εsj0
2
− ρsj0 −

i0−1∑
j=0

ρsj∧sj0 = ej0 − ρsj0 −
i0−1∑
j=j0+1

ρsj∧sj0 ≥ ej0 − ρsj0 −
i0−1∑
j=j0+1

ρsj∧si0

≥
εsi0
2
− ρsi0 −

j0−1∑
j=0

ρsj∧si0 − ρsj0 −
i0−1∑
j=j0+1

ρsj∧si0

=
εsi0
2
−

i0∑
j=0

ρsj∧si0 = ei0 ≥
εsj0
2
− ρsj0 −

i0−1∑
j=0

ρsj∧sj0 .

Therefore

max
t∈Σrat

C

{
εt
2
− ρt −

i0−1∑
j=0

ρsj∧t

}
= ei0 =

εsj0
2
− ρsj0 −

i0−1∑
j=0

ρsj∧sj0 ,

and this means that sj0 is a possible choice for the i0-th cluster si0 . But si0 ( sj0 ,
so the i0-th cluster should have been sj0 , a contradiction. Then si0 6⊂ sj for all
j = 0, . . . , i0. From this fact and (9) we have

m := ordΓ0

1

π
µi0 = −msi0

γi0 +msi0

(
ei0 −

εsi0
2

+ ρsi0 +

i0−1∑
j=0

ρsj∧si0

)
− 1

= −msi0
γi0 − 1 < 0.

Furthermore,

ordΓ0

1

π
µi ≥ −msi0

γi +msi0

(
ei −

εsi0
2

+ ρsi0 +
i−1∑
j=0

ρsj∧si0

)
− 1

≥ −msi0
γi − 1 ≥ −msi0

γi0 − 1 = m,

for all i ∈ I. Let J := {i ∈ I | ordΓ0
1
πµi = m}. Then J 6= ∅ since i0 ∈ J and the

differential 1
π

∑
i∈J uiµi must cancel along Γ0. Let i ∈ I. Then i ∈ J if and only

if ordΓ0
1
πµi = m which is equivalent to

γi = γi0 and
εsi
2
−

i∑
j=0

ρsj∧si = ei =
εsi0
2
− ρsi0 −

i−1∑
j=0

ρsj∧si0

by the computations above. We want to show that J = I2. We have already noted
that i0 ∈ J . Assume i ∈ J , i 6= i0. Then the equality ei =

εsi0
2 −ρsi0−

∑i−1
j=0 ρsj∧si0

implies si0 ⊆ si, while it follows from γi = γi0 that i ∈ I1. Hence si = si0 , as
i0 ∈ I2, and so i ∈ I2. On the other hand, if i ∈ I2 then si = si0 by definition
and this trivially implies ei = 1

2εsi0 − ρsi0 −
∑i−1

j=0 ρsj∧si0 . Moreover, γi = γi0 as
I2 ⊆ I1. Therefore J = I2. For any i ∈ I2 we have

beic − bei0c = ei − γi − ei0 + γi0 = ei − ei0 = −
i−1∑
j=i0

ρsj∧si0 .

Hence
1

π

∑
i∈I2

uiµi =
1

π
µi0

(∑
i∈I2

ui

π
∑i−1
j=i0

ρsj∧si0

i−1∏
j=i0

(x− wsj )

)
,

and since ordΓ0
1
πµi0 = m < 0 we must have

(10) ordΓ0

(∑
i∈I2

ui

π
∑i−1
j=i0

ρsj∧si0

i−1∏
j=i0

(x− wsj )

)
> 0.
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Let i1 := max I2. We have already proved that sj 6⊂ si0 and si0 6⊂ sj for any j ∈ I
with i0 ≤ j ≤ i1, as si1 = si0 . Therefore for any j ∈ I with i0 ≤ j ≤ i1 such that
sj 6= si0 , we have ρsj∧si0 ∈ Z and

ordΓ0(x− wsj ) = min{ordΓ0(x− wsi0
), ordΓ0(wsi0

− wsj )}
= msi0

min{ρsi0 , ρsi0∧si} = msi0
ρsj∧si0 = ordΓ0(wsj − wsi0

),

by Lemma 3.18. Since
wsj−wsi0

π
ρsj∧si0

∈ O×K , it follows from (10) that

ordΓ0

(∑
i∈I2

vi
(x− wsi0

)βi

π
βiρsi0

)
> 0,

for some vi ∈ O×K , where βi = #{j ∈ I | i0 ≤ j < i and sj = si0}.
To find a contradiction, we will use the explicit description of an open affine

subset of Γ0. Let w = wsi0
, L = Lwsi0

, M = ML,0, and consider the affine open
subset

UwM = Spec
R[TwM (X,Y, Z)−1](
FwM (X,Y, Z), Z

) ⊂ Γt.

From Lemma 5.2, ∑
i∈I2

vi
(x− w)βi

π
βiρsi0

=
∑
i∈I2

viX
βi/bs ,

which is a unit since, for the structure of ∆w
v , the polynomial FwM (X,Y, Z) in

{Z = 0} is of the form Y 2 −G(X) or Y −G(X) for some non-constant G(X) ∈
K[X]. This gives a contradiction and concludes the proof. �

We conclude this section with an application of Theorem 6.4.

Example 6.5. Let C be a hyperelliptic curve over Q3 of genus 4 described by the
equation y2 = f(x), where f(x) = (x3 − 34)(x3 + 34)((x− 3)3 − 311). The cluster
picture of C is

t1 t2 t3
t4

R

1

where dt1 = dt2 = 11
6 , dt3 = ρt1 = ρt2 = ρt3 = 4

3 , dt4 = 25
6 , ρt4 = 11

3 and
dR = ρR = 1. Then C satisfies the hypothesis of Theorem 6.4. Its rational cluster
picture is

t3 t4 R

1

where the set of minimal clusters is Σmin
C = {t3, t4}. We choose rational centres

for t3 and t4: wt3 = 0 and wt4 = 3. Since R = t3 ∧ t4, we can choose either
wR = wt3 or wR = wt4 . Let us fix wR = wt3 = 0. Then to choose s0, s1, s2, s3 as
in Theorem 6.4 we draw the following table:
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ρt εt
εt
2
− ρt

εt
2
− ρt − ρs0∧t

εt
2
− ρt −

1∑
j=0

ρsj∧t
εt
2
− ρt −

2∑
j=0

ρsj∧t

t3
4

3
11

25

6

19

6

11

6

1

2

t4
11

3
17

29

6

7

6

1

6
−5

6

R 1 9
7

2

5

2

3

2

1

2

The red numbers indicate that s0 = t4, s1 = s2 = t3 and s3 = R. Thus the
differentials

µ0 = 34 · dx
2y
, µ1 = 33 · (x− 3)

dx

2y
, µ2 = 3 · (x− 3)x

dx

2y
, µ3 = (x− 3)x2 dx

2y

form a Z3-basis of H0(C, ωC/Z3
), for any regular model C/Z3 of C.

Appendix A. Rational centres over tame extensions

Let C/K be a hyperelliptic curve given by y2 = f(x).

Lemma A.1 Let L/K be a field extension. Consider the base extended curve
CL/L and its associated cluster picture ΣCL. Let s ∈ ΣCL be a proper cluster
Gs = StabGK (s), and Ks = (Ks)Gs. If LKs/Ks is either the maximal tamely
ramified extension or the maximal unramified extension, then s has a rational
centre ws ∈ L ∩Ks.

Proof. This proof follows the spirit of [M2D2, Lemma B.1]. Write Knr
s for the

maximal unramified extension of Ks. Let r ∈ s. Then r ∈ Knr
s ( b
√
πs) for b large

enough and some uniformiser πs of Ks (we fix here a choice of b
√
πs). Write the

p-adic expansion of r as

r = ut b
√
πs
t + ut+1

b
√
πs
t+1 + . . .

for a suitable t ∈ Z and ut ∈ Knr
s roots of unity of order prime to p. Let ws ∈ L

be a rational centre of s. For σ ∈ Gs we have σ(r) ≡ ws mod πρsK , where

ρs = max
w∈L

min
r∈s

v(r − w).

Hence the terms in the p-adic expansions of σ(r) and ws agree up to b
√
πs
eKs/Kbρs .

Define
w =

∑
l<eKs/Kbρs

ul b
√
πs
l.

We want to show that w ∈ L. It trivially follows if w = 0. Suppose 0 6= w /∈ L,
and that ul0 b

√
πs
l0 is the lowest valuation term of the expansion which is not in L.

Without loss of generality we can assume t = l0 (consider w′ = w−
∑

l<l0
ul b
√
πs
l).

As v(w −ws) ≥ ρs, we have v(ws) = v(w) = t/b. If LKs = Knr
s , then b - t, which

gives a contradiction, as v(ws) has to be an integer. On the other hand, if LKs is
the maximal tamely ramified extension of Ks, then p | b, that again contradicts
v(ws) = t/b.

Therefore w is a rational centre of s, as v(w−ws) ≥ ρs. We only need to show
it is Gs-invariant. Suppose not, and that ul b

√
πs
l is the lowest valuation term

of the expansion which is not Gs-invariant. Note that the denominator of l/b is
coprime with p since w ∈ L and L tame. If b - l, then there is some element
σ of tame inertia of Ks which fixes ul ∈ Knr

s and maps b
√
πs
l to ζ b

√
πs
l, where
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ζ 6= 1 is a root of unity; this contradicts the fact that σ(r) ≡ rmodπρsK . If b | l,
then σ(r) ≡ ws mod b

√
πs
eKs/Kbρs , so we must have ul /∈ Ks. Then there exists

some element σ ∈ Gal(Knr
s /Ks) so that σ(ul) 6= ut; this contradicts the fact that

σ(r) ≡ r mod b
√
πs
eKs/Kbρs . �
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