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MODELS AND INTEGRAL DIFFERENTIALS OF
HYPERELLIPTIC CURVES

SIMONE MUSELLI

ABSTRACT. Let C : y? = f(x) be a hyperelliptic curve of genus g > 2, defined
over a discretely valued complete field K, with ring of integers Ox. Under
certain conditions on C, mild when residue characteristic is not 2, we explicitly
construct the minimal regular model with normal crossings C/Ox of C. In
the same setting we determine a basis of integral differentials of C, that is an
Ox-basis for the global sections of the relative dualising sheaf we /0, .

1. INTRODUCTION

The purpose of this paper is to construct regular models of hyperelliptic curves
and to describe a basis of integral differentials attached to them. Moreover, we
want these constructions explicit and easy to compute.

1.1. Main results. Let K be a discretely valued field of residue characteristic
p, with discrete valuation v and ring of integers Og. Since regular models do
not change under completion of the base field, we also assume K to be complete.
Fix a separable closure K* of K and let k°/k be the corresponding extension of
residue fields. Suppose C/K is a hyperelliptic curve of genus g > 2 given by a
Weierstrass equation y? = f(z) and write

fl@)=c; [[(z=7).
reR
Definition 1.1 A cluster (for C') is a non-empty subset s C R of the form DNR,
where D is a v-adic disc D = {x € K® | v(z — z) > d} for some z € K® and d € Q.
We denote by ¥ the set of clusters for C.

Let K™ be the maximal unramified extension of K in K® and let I =
Gal(K*®*/K™) be the inertia subgroup. To construct the minimal regular model
with normal crossings of C, we assume C' is y-regular (Definition 4.5) and ¢
is almost rational (Definition 3.25) over K™". Before stating the main result, we
want to discuss some special cases in which these two conditions are satisfied.

First, if either p # 2 or ¢ only contains clusters of odd size, then C'is y-regular
over K™, Second, if K(R)/K is tamely ramified and every cluster s € ¢ is Ix-
invariant, then 3¢ is almost rational over K™ . On the other hand, there are
examples of curves with K (R)/K wildly ramified, but where the cluster picture
is almost rational, e.g., f(z) = aP — p, with p > 3. Finally, if ¢ = 2, then
107/120 Namikawa-Ueno types (|[NU]|) arise from hyperelliptic curves satisfying
the conditions above.

Theorem 1.2 (Theorems 4.16 and 6.4) Let C/K be a hyperelliptic curve as above,
y-regqular over K™ . Suppose ¢ is almost rational over K™ . Then the (rational)
cluster picture of C' uniquely determines:
(i) the minimal regular model with normal crossings C™",
(ii) a basis of integral differentials of C' (see §1.2).
1



2 SIMONE MUSELLI

Note that the model C™® in (i) is defined by giving an explicit open affine
cover. Moreover, if ¢ is not almost rational, a stronger version of Theorem 1.2
still gives a proper flat model of C' (see Theorem 4.12).

Finally, the author believes that an approach similar to that used in this pa-
per could eventually give a full characterisation of minimal models with normal
crossings of hyperelliptic curves (over any discretely valued field).

1.2. Motivation. In this subsection we want to present two important applica-
tions of Theorem 1.2.

Let C be a hyperelliptic curve of genus g > 2 defined over a number field F', and
let J = Jac(C') be the Jacobian of C. The Birch and Swinnerton-Dyer conjecture
for the g-dimensional abelian variety J is

Conjecture 1.3 (Birch and Swinnerton-Dyer conjecture)

Q- Ry-|I(J)|- Cy
lim(s — 1)-"L(J.5) = 2 ()| - TTotoo
s=1 V ’DF|d ’ |J(F)tor8|2

where 1 is the rank, L(J,s) is the L-function, Qy is the period, Ry is the regula-
tor, II(J) is the Shafarevic-Tate group (conjecturally finite), ¢, is the Tamagawa
number for v place of F, Dp is the discriminant of F/Q, and J(F)iors are the
torsion points in J(F).

For any place vt oo of F, let K := F, be the completion of F' at v. First note
that the Tamagawa number at v can be found from the minimal regular model of
Ck, so Theorem 1.2(i) can be applied to compute it in concrete examples.

We now focus on the period Q;. Fix a regular model C/Ok of Cx /K. 1t is
well-known that the K-vector space of regular differentials QéK / 1 (CK) is spanned
by the basis

= <d—x e ngld—m) .
- 2y’ 2y 2y
Consider the global sections of the relative dualising sheaf we /o, . It is an Ok-free
module of rank g that can be viewed as an Of lattice

(1) we 0k (€) C Qe /i (Crc),

since we /o, o = Qch/K. Via (1), we will call the elements of we,o, (C) integral
differentials of C' (at v). In particular, there exists a matrix A, € Myy,(K) such

that A, -w is a basis of integral differentials of C, i.e., an Og-basis of we/0, (C).
Then

Oy = Qo [ 1det A,[; "

The quantity 2, is relatively easy to find in actual computations (see [vB] for
more details). Theorem 1.2(ii) gives an explicit formula to compute the local part
|det A, |, for any v.

A second important application concerns the so-called conductor-discriminant
inequalities. Let K be a complete discretely valued field of residue characteristic
p, with discrete valuation v. Let C'/K be a hyperelliptic curve of genus g > 2 and
let A be the (valuation of the) discriminant of C' associated with this equation.
Moreover, let C/Ok be the minimal regular model of C and let Art(C/Og) denote
the Artin conductor of C. If p # 2, Obus and Srinivasan show in [OS] that

Art(C/Ok) < Agjoges

where A¢/p, is the (valuation of the) minimal discriminant of C. However, this
inequality is often non-sharp. Let A be the matrix above, so that A - w is an
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Ofk-basis of we /o, (C). Define
Amin =g A —(8g+4) - v(det A).

It follows from |Kau, Proposition 2.2(1)] that Ap;, is independent of the choice
of the Weierstrass equation, and easily Apin < Ao,

Conjecture 1.4 With the notation above
AI‘t(C/OK) < Apin.

This conjecture is proved in the genus 2 case due to the work of Liu [LiC].
Furthermore, in the semistable case, Maugeais shows it in [Mau|, and it also
easily follows from [M?D?| and [Kun]. Although Theorem 1.2 does not prove the
inequality, it allows us to compute A, explicitly in many more cases.

1.3. Related works of other authors. Let us keep the notations of §1.1. In
genus 1, thanks to Tate’s algorithm, we have a full understanding of the minimal
regular model of an elliptic curve C (see for example [Sil2, IV.8.2|) . Furthermore,
w is always a basis of integral differentials (|[LiA, Theorem 9.4.35|).

If C has genus 2, then Namikawa and Ueno [NU| and Liu [LiQ| give a full
classification of the possible minimal regular models of C. In [LiC, 1.3], Liu
shows that there exists a Moebius transformation so that w is basis of integral
differentials of the transformed curve. However, note this is a theoretical result,
that is to find such a change of variable we need to know a basis of integral
differentials of C.

The results presented so far work also in residue characteristic equal to 2. If
p is odd, then Liu and Lorenzini show in |[LL| that regular models of C' can be
seen as double cover of well-chosen regular models of IP’}(. Since the latter can be
found by using the MacLane valuations (|[Mac|) approach in [OW]|, this argument
gives a way to describe any regular model of a hyperelliptic curve. However, this
construction is only qualitative (it does not give explicit equations) and it has not
been generalised to the p = 2 case.

If p # 2 and C is semistable, then in [M2D?] the authors construct a minimal
regular model in terms of the cluster picture of C. Note that the components
of the stable model used in this paper are given explicitly. Under the same
assumptions, Kausz [Kau, Proposition 5.5] gives a basis of integral differentials
which Kunzweiler in [Kun| rephrases in terms of the cluster invariants introduced
in [M2D?]. These results can be recovered from Theorem 1.2 (see Corollary 4.19).

If p # 2 and C is semistable over some tamely ramified extension of L/K, then
Faraggi and Nowell [FN] find the minimal regular model of C' with strict normal
crossings taking the quotient of the stable model of Cr, and resolving the (tame)
singularities. However, since they do not give equations for the model they find,
it does not immediately yield all arithmetic invariants, such as a basis of integral
differentials.

The last work we want to recall represents a very important ingredient of the
strategy we will use in this paper (described more precisely in the next subsection).
T. Dokchitser in [Dok| shows that the toric resolution of C' gives a regular model in
case of A,-regularity (|[Dok, Definition 3.9]). This result, used also in [FN], holds
for general curves and in any residue characteristic. In his paper, Dokchitser also
describes a basis of integral differentials since his model is explicit, i.e., given as
open cover of affine schemes. In Corollary 3.24 and Theorem 6.1, we will rephrase
his results for hyperelliptic curves by using cluster picture invariants from §3.



4 SIMONE MUSELLI

1.4. Strategy and outline of the paper. In |Dok|, Dokchitser not only de-
scribes a regular model of C' in case of A,-regularity, but also constructs a proper
flat model Ca without any assumptions on C. Assume C is y-regular and ¢
almost rational over K™ with rational centres wy, ..., w,, € K™ (see Definitions
3.25 and 3.8). Our approach to construct the minimal regular model with normal
crossings of C' is composed by the following steps:

e Consider the z-translated hyperelliptic curves C* /K™ : 3% = f(x + wy),
for h = 1,...,m. For each h, [Dok, Theorem 3.14] constructs a proper
flat model CZ, possibly singular.

e We glue the regular parts of these schemes along common opens, and show
that the result is a proper flat regular model C of Cgnr.

e We give a complete description of what components of the special fibre
of C have to be blown down to obtain the minimal model with normal
crossings C™™ of Cnr.

e Finally, we describe the action of the Galois group Gy = Gal(k®/k) on the
special fibre of C™n,

Since all models CZ are explicitly described, the model C is explicit as well. This
allows us to study the global sections of its relative dualising sheaf w0, (C).

In §2, we present some basic results on Newton polygons related to what is
used in [Dok|. We use them in the following sections. In §3, we recall the most
important notions of [M?D?| and introduce the new definition of rational cluster
picture. Moreover, we compare it with the definitions and results given §2. This
comparison allows us to rephrase the objects in [Dok] in terms of cluster invariants
in §4. In the same section we also state the main theorems which describe a proper
flat model (Theorem 4.12) and the minimal regular model with normal crossings
(Theorem 4.16) of C. Although the description of these models is clear from the
statement of the theorems, its detailed construction is presented only in §5. Here
we use the toric resolution of [Dok|, making concrete the strategy sketched above.
Finally, in §6, Theorem 6.4 describes a basis of integral differentials of C', in terms
of the cluster invariants defined in §3.

Acknowledgements. The author would like to thank his supervisor Tim Dok-
chitser for the very useful conversations, corrections and general advice.

2. NEWTON POLYGON

Let K be a complete field with a discrete valuation v, ring of integers Og,
uniformiser 7, and residue field k of characteristic p. We fix K, an algebraic
closure of K, of residue field k, and we denote by K® the separable closure of K
in K, and by k® its residue field. Note that k° is the separable closure of k in
k. We write Gk, G}, for the Galois groups Gal(K*/K), Gal(k®/k), respectively.
Finally, write K™ for the maximal unramified extension of K.

Let f € K|z| be a polynomial of degree d, say

d
flz) = Z a;z’.
i=0

The Newton polygon of f, denoted NP(f), is
NP(f) = lower convex hull {(,v(a;)), i =0,...,d} C R x (RU{oc0}).
We recall the following well-known result.

Theorem 2.1 Let ig < ... < i be the set of indices in {0,...,d} such that the
points (i, v(aiy)), - - -, (is,v(a;,)) are the vertices of NP(f). For any j =1,...,s,
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denote by p; the slope of the edge of NP(f) which links the points (ij_1,v(ai;_,))
and (ij,v(a;;)). Then f factors over K as a product

f=91-9s
where, for all j=1,...,s,
o the degree of g; s dj =i — 151,

e all the roots of g; have valuation —p; in K.

Remark 2.2. If x| f, then g1 is equal to the maximal power of x which divides
f, NP(g1) can be viewed as a vertical line, and p; = oc.

Corollary 2.3 With the notation of Theorem 2.1, the polynomial f has exactly
d; roots of valuation —p; for all j =1,...,s.

Corollary 2.4 If f = 3" a;2" is irreducible of degree d, then NP(f) is a line linking
the points (0,v(ag)) and (d,v(aq)).

Definition 2.5 (Restriction and reduction) Let f = Zfzo a;x' € Klx] and
consider an edge L of its Newton polygon NP(f). Then L = NP(g;) for some
g; in the factorisation of f of Theorem 2.1. Consider the two endpoints of L
(i1,v(as,)), (i2,v(ai,)), i1 < i2. Denote by p the slope of L and by n the denomi-
nator of p. Define the restriction of f to L to be

flL=>_ anivi, .
>0
Moreover we define the reduction of f (with respect to L) to be the polynomial
flo =7 f|(x ™ x) mod 7 € k[z],
where ¢ = v(a;,) = v(a;,) + (i1 — i2)p.

Remark 2.6. These definitions coincide with the ones given in [Dok, Definitions
3.4, 3.5] when the number of variables n is 1.

Until the end of the section let f € K|[z], consider a factorisation f = g1 -+ gs
as in Theorem 2.1 and denote by L; the Newton polygon of g;.

Remark 2.7. By the lower convexity of NP(f), for all j = 1,...,s, the two poly-
nomials E and m are equal up to units. In particular they define the same
k-scheme in Gy, .

Furthermore, if either z 1 f or j # 1, then « { g; and so z TM and xTTLJ

Definition 2.8 We say that f is NP-reqular if the k-scheme
X, AflL; =0} C G
is smooth for all j =1,...,s.

Lemma 2.9 The polynomial f = g1---gs is NP-regular if and only if g; is NP-
reqular for every j.

Proof. The lemma follows by Remark 2.7. O

We conclude this section with two examples.

Ezample 2.10. Let f = x'' 4+ 927 — 32% + 92° + 812 — 27 € Qs[x]. Then the
Newton polygon of f is
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1
5
i |
1
(11,0)

and 5 roots of valuation

D
&/,
/

/
Qo/is
I\D“/

1

3

Corollary 2.3 implies that f has 6 roots of valuation
L. Furthermore, the two polynomials g; and g in the factorisation f = g; - ga of
_ .5
g2 = z° 4+ 9z — 3.

Theorem 2.1 turn out to be
g1 =2°+9,

f|L2 =x—3 292|L2;

flo, =z —1=golp,  inF3z].

Finally,
f|L1 = 32" —27=-3- 91|L17

and
f|L1 = _12 -1= _(:EQ + 1) = _91|L17
Thus f is NP-regular.
Ezxample 2.11. Let’s do now an example of a polynomial that is not NP-regular.
Let f = 2% 4+ 122° + 362% + 81 € Qs[x]. Then the Newton polygon of f is
v(ai)
(0,4)
& X
P
<4
2
(37 ) \ /02 = _,
7 3
\
i
(9,0)
2 and 6 roots of valuation

3

g2 = x5 +32% +9.
flo, = #* + 12z + 36,

Corollary 2.3 implies that f has 3 roots of valuation
L Furthermore, the two polynomials ¢g; and go in the factorisation f = g1 - go of
gz‘LQ = $2+3$+9;

Theorem 2.1 are (up to units)
g1 =2 +9,

flz, = 2® +122% 4 362 + 81
in Fs[z].

Finally,
gilL, =z +9,
flL, = (24 2)* = go L,

f|L1 :x+1:gl|L17

and
Then f is not NP-regular. In fact, according to Lemma 2.9, go is not NP-regular.
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3. CLUSTERS

Throughout this section let f € K[z] be a separable polynomial and denote by
R the set of its roots and by cy its leading coefficient. Then

f@) = e [l ).
ren
Definition 3.1 ([M?D?, Definition 1.1]) A cluster (for f) is a non-empty subset
5 C R of the form D N R, where D is a v-adic disc D = {z € K | v(z — z) > d}
for some z € K and d € Q. If |s| > 1 we say that s is proper and define its depth
ds to be

ds = min v(r —r’).
r,r'€s

Note that every proper cluster is cut out by a disc of the form
D={zeK|v(x—r)>ds}

for any r € s.
Definition 3.2 ([M2?D?, Definition 1.3]) If ¢ C s is maximal subcluster, then we
say that s’ is a child of s and s is the parent of s/, and we write s’ < 5. Since
every cluster s # R has one and only one parent we write P(s) to refer to the
unique parent of s.

We say that a proper cluster s is minimal if it does not have any proper child.

For two clusters (or roots) 1, 52, we write 51 A 62 for the smallest cluster that
contains them.

Definition 3.3 ([M2D?, Definition 1.4]) A cluster s is odd/even if its size is
odd/even. If |s| = 2, then we say s is a twin. A cluster s is ubereven if it has only
even children.

Definition 3.4 ([M2D?, Definition 1.9]) A centre z, of a proper cluster s is any
element z; € K® such that s = D N ‘R, where
D={zeK|v(r—2z)>ds}
Equivalently, v(r — z5) > ds for all » € 5. The centre of a non-proper cluster
s={r}isr.
Definition 3.5 (|]M?D?, Definition 1.6]) For a cluster s set
Vs 1= U(Cf) + Z dyps-
reR

Definition 3.6 ([M?D?, Definition 1.26]) The cluster picture ¢ of f is the set
of all its clusters. We denote by ) 7 the subset of X of proper clusters.
Definition 3.7 We say that Xy is nested if one of the following equivalent con-
ditions is satisfied:

(i) there exists z € K® such that z is a centre for all proper clusters s € ¥;

(ii) there is only one minimal cluster in X¢;
(iii) every non-minimal proper cluster has exactly one proper child.

Definition 3.8 A rational centre of a cluster s is any element w; € K such that

. B — maxmi W),
g ) = e - w)
If s = {r}, with r € K, then ws = 7.
If ws is a rational centre of a proper cluster s, we define the radius of s to be

ps = 1711161?11(1“ — Wg).
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Definition 3.9 A rational cluster is a cluster cut out by a v-adic disc of the form
D={xe K |v(x—w)>d} withw € K and d € Q.

We define the rational cluster picture El}at C Xy to be the set of rational
clusters. We denote by Zoll}at the subset of E‘}at of proper rational clusters.
Definition 3.10 Given a proper cluster s € X, we define the rationalisation §*
of s to be the rational cluster

s =RN{rec K |v(r—ws) > ps}
where ws is a rational centre of s and p; is its radius.
Lemma 3.11 Let s € El;cat be a proper cluster of rational centre ws. Let &'

be a child of s of rational centre ws (let s = & if it does not exist). Then
(Is| —1s')ps € Z.

Proof. As s € E}at, one has s = s, Then by divides the degree of the minimal
polynomial of 7, for any r € s, with v(ws — ) = ps. Then (|s| — |s'|)ps € Z, where
§=RnN{zecK|v®—ws)>ps}
as required. O

Remark 3.12. Let s € X¢ be a proper Gg-invariant cluster and assume K (s)/K
is tame. Then by [M2D?, Lemma B.1] the cluster s has a centre z; € K and so
ps = ds and s € El}at. On the other hand, if a proper cluster s € X satisfies
ds = ps, then a rational centre w; € K of its is also a centre. Then s is G-
invariant.

Lemma 3.13 Let s be a proper cluster. Then ds > ps.

Proof. First we want to show that

min v(r — ') = max minv(r — 2).
r,r/€s zeKs res

Clearly min, /¢, v(r — ') < max,ecgs minyes v(r — z). Let z; € K® such that

el — ) = el =2

Then, for any r,r’ € s, one has

v(r —r') > min{v(r — z),v(r' — z)} > meinv(r — 2),
s

and so
. / .

min v(r — ') > max minv(r — z),

r,r'€s z€EKS reEs
as wanted.

From
. / . .
ds = min v(r — ') = maxminv(r — z) > maxminv(r — w) = ps,
r,r/€s zeKs res weK reEs

the lemma follows. 0

Lemma 3.14 Let s be a proper cluster with rational centre ws and let t € Xy
satisfying t O s. Then wg is a rational centre of t and p < ps. Furthermore, if s
s a rational cluster and t D s, then py < ps.

Proof. 1t suffices to prove the lemma for t = P(s). Hence we want to show that
min,.c p(s) V(1 — ws) = pp(sy and pp(s) < ps. First of all,

min v(r — ws) < max min v(r —w) = .
reP(s) ( s) < wek reP(s) ( ) = rpe)
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Moreover

= max min v(r —w) < maxminv(r — w) = ps.
Pp(s) = i min v(r —w) < maxmino(r —w) = po

If r € s then v(ws — 1) > ps, by definition of ps. On the other hand, if r € P(s)\s
then fixing 7’ € s we have

v(r—ws) = v(r—r'+1" —ws) > min{v(r—1r"),v(r' —ws)} > min{dp(s), ps} > Pp(s);
by the previous lemma. Thus min,¢ps) v(r — ws) = pp(s), as required.
Now suppose s € E}at with t 2 s. From Definition 3.8, it follows that
{reK|vlx—ws) >psNR=5CtC{xeK|v(x—ws)>p}NRK,
as ws is a rational centre of t. Thus py < ps. O

Lemma 3.15 Every cluster s with ps < ds has no rational subcluster s’ C s.

Proof. Suppose by contradiction there exists s’ € %, ¢’ C s, and fix a rational
centre wy of §'. Then wgy is a rational centre of s by the previous lemma. If
|s'| = 1, then wy is also a centre of s and this contradicts ps < ds; so assume &’
proper. Let 1’ € ' such that v(r' —wy) = py and r € s such that v(r —wy) = ps.
But then ds < v(r — wy + wy — r') = ps again by Lemma 3.14.

In particular, the lemma above shows that if s € X and s’ € E;at is a maximal
rational subcluster of s, then s’ is a child of s. Moreover, the parent of a rational
cluster is rational.

Definition 3.16 We say that a proper rational cluster s € E;at is (rationally)
minimal if it does not have any proper rational subcluster.

Lemma 3.17 Let s,s' € E}at such that s ¢ s. If ws is a rational centre of s then

minv(r — ws) = Psps’-
res’

Proof. By Lemma 3.14 we have

min v(r — ws) = Pspg’-
resAs’

Therefore min,cy v(ws — 1) > pspsr- Suppose by contradiction that

minv(r — wg) =: p > pPsps’-
res’

It follows from Lemma 3.14 that

min V(r — ws) = ps > Pans’

as s’ ¢ 5. But then there exists 7 € (s A§') \ (s Us’) such that v(F — ws) = psps-
Consider the rational cluster

t:=RN{z €K |v(®—ws)>min{p,ps}} € E;at.

Then s,5" C t, but since 7 ¢ t we have s A s’ ¢ t that contradicts the minimality
of s Ng. O

Lemma 3.18 Let t € Xy with at least two children in E}at. Then dy = p € Z
and t € Erfat. More precisely, if 5,58 € El}at such that s C s ANs' D s, then

Pshs’ = U(ws - ws’) = Usps!y

where ws and wy are rational centres of 5 and s’ respectively.
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Proof. Clearly it suffices to prove the second statement as v(ws—wg ) € Z. For our
assumptions ' Z s. Then by Lemma 3.17 there exists r € s’ so that v(r — ws) =
Psns'- Thus,
v(ws — Wy ) = min{v(ws — 1), v(r — We' )} = Psps’,
as
V(r — wy) > pgr > Psps
by Lemma 3.14. Finally, dsnsr = pspsr by Lemma 3.15. O

Definition 3.19 For a proper cluster s set
€ = v(cy) + Z PrAs-
reR
Ezample 3.20. Let f = x'' — 325 + 925 — 27 € Q3[z]. The set of roots of f is
R = {V/3,6V/3,G3V/3, — V3, (3 V/3, ~(3V/3, V13, G: V3, 3 V/3, (33, ¢33},
where (; is a primitive g-th root of unity for ¢ = 3,5. Then the proper clusters of
f are

51 = {%7 C3\?/§7 Cg%}7 52 = {_\3/§7 _C?)\S/gv _C§%}7 53 = 61 U527 9{

with ds, = ds, = %, dsy, = % and dyy = % The graphic representation of the

cluster picture of f is then

[[(ooo)gé)oo)g)éoooooJ

where the subscripts of clusters (represented as circles) are their depths.

Furthermore, note that 0 is a rational centre for all (proper) clusters and we
have ps, = ps, = psy = % and pi = %

Finally, for every cluster s we can also compute v, and ¢g, that are

. 9 . o o o . 1
Vg) = Vs, = 57 Vgy = €51 = €55, = €53 _37 Up = €r = g

Ezample 3.21. Let f = 29 + 1225 + 3622 + 81 € Q3[z] and fix an isomorphism
Q3 ~ C. Then the set of roots of f is

0 = (V32,6 V3%, VB2, (o /3. G /3, (/3. GG V3. (T V3.3 V),

where (; = €™/ i3 a primitive g-th root of unity for ¢ = 3,9. Then the proper
clusters of f are

o1 = {VB,GVGVY, 52 = {GV3,GVB.G U3}
83 = {Cg\g/g7 63%7 ng?’/g}, 54 =59 Us3, ‘R

with dg, = %, dsy, = dsy = %, ds, = %, and dx = % The cluster picture of f is
then

((mm)g ((000);@0@;;)3
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It is easy to see that 0 is a rational centre for all (proper) clusters and that ps, = %,
Psy = Psz = Psyg = PR = % Finally,

_u

1/51*2, Vsy = Vsy =D, Vs, =4, v =23; €5, =4, €5y = €53 = €5, =€Ex = 3.

The goal of this section is to describe the NP-regularity of f € K[x] in terms of
conditions on its cluster picture X .

Lemma 3.22 Suppose that NP(f) =: L has slope —p and let n be the denominator
of p. Then f is NP-regular if and only if all proper clusters s € Xy with |s| > |p|,
U satisfy ds = p.

More precisely, if s € Sy with |s| > |pl, but ds > p, then f|; has a multiple
root U = (Wfp) € k, for some (any) v € 5. The multiplicity of T equals |s|/p®™,
where s = {r € R |u = (%)}. Furthermore, all multiple roots of flr come from
a cluster s as described above.

Proof. Write n = m - p* where p{m. Let ® = {r; | i = 1,..., D} be the set of
roots of f, where D := deg f, and let

r; =u;mP L

be the p-adic expansion of r; (we fix here a choice of ¢/, for ¢ large enough),
where u; € K™ root of unity of order prime to p. Firstly, note that there exists
a proper cluster s with |s| > |p|, and ds > p if and only if there exists a subset
I C {1,...,D} of size |I| > p* such that v(u;, — uy,) > 0 for all iy,ip € I.
Secondly, recall that f is not NP-regular if and only if f|;, has a multiple root in

k. Therefore we will prove that m has a multiple root if and only if there exists
asubset I C {1,..., D} with size |I| > p* and such that v(u;, —u;,) > 0 for all
11,19 € 1.

Let f' € K[z] defined by f'(x) := f|r(z™). By definition of f|z, we have that
f is NP-regular if and only if f’ is NP-regular. Moreover, since

T o= OEnNtD0) f () = 7= W) tDP) f1(nPp) = F in k[a],

and {u; | i = 1,..., D} is the multiset of roots of f, we can assume without loss
of generality that f = f’.

Then we prove the lemma with the additional assumption f(z) = f|p(z"). Let
{t; |7 =1,...,D/n} be the multiset of roots of f|r. Hence there exists an n-to-1
map

¢: {ri} —A{t;},
ri —— 1}

which induces an n-to-1 map

o {uit — {w;}
where t; = w;nm™” + ... is the p-adic expansion of ¢; and u;,w; denote the reduc-
tions to k of wu;, wj, respectively. Note that w; € k are the roots of f|z.

Now, suppose that f is not NP-regular. We want to show that there exists a

subset I C {1,...,D} with |I| > p* such that v(u;, — u;,) > 0 for all iy,iy € I.
Since f is not NP-regular, its reduction f|;, has a multiple root. Then there exist

j1,72 € {1,...,D/n} so that wj = w;, =: w. Hence, by the definition of ¢, we

Here | - |, denotes the standard p-adic absolute value attached to Q, i.e., |z|, = p~*»® for
allz € Q
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have at least 2p* u;’s with same reduction in k& (and such that ¢(u;) = w). Let T
denote the set of their indices. Then |I| > 2p*¥ > p* and v(u;, — u;,) > 0 for all
i1,%2 € I, as required.

Finally, suppose that there exists a subset I C {1,...,D} with |I| > p¥ and
such that v(u;, —u;,) > 0 for all 1,49 € I. This means u;, = u;, for all i1,is € I.
We want to show that m has a multiple root, that is there exist two indices
J1.d2 € {1,..., D/n} such that w;, = wj,. Suppose not and let j € {1,...,D/n}
such that w; = u™ = ¢(u;) for some (all) i € I. Since ¢ is induced by ¢ we have
tj = ¢(r;) =r! for all i € I. Then the polynomial 2" —w; = (2™ — @j)pk € klz],
induced by the factor 2™ — ¢; of f(x), should have a root of order |I| > p¥. This
would imply 2™ — w; inseparable, a contradiction as p { m.

The rest of the lemma follows. O

Theorem 3.23 For all clusters s € Xy denote by \s = min,esv(r), and let b
be the denominator of \s. Then f is NP-regular if and only if all proper clusters
s € Xf with |s| > |As|p, have ds = As.

More precisely, let s € Xy¢ with |s| > |Xs|p but ds > Xs, and let r € s with
v(r) = As. Then f|r, has a multiple root © = (ﬂ%) € k, where L is the (unique)
edge of NP(f) of slope —Xs. The multiplicity of T equals |s°|/p*»®), where s* =
{r ER|u= (g) } Furthermore, for every edge L of NP(f), the multiple roots
ofm come from a proper cluster s as described above.

Proof. Let f = g1 ...g: be a factorisation of Theorem 2.1 and let —p; be the slope
of NP(g;). Denote by R the set of roots of f and by R; the set of roots of g;.
Note that the RR;’s are pairwise disjoint. For every edge L of NP(f) there exists i
such that f|r = g;|r. Hence, by Lemma 2.9 and Lemma 3.22, we need to prove
that there exists a proper cluster s € Xy such that [s| > |As|, and ds > As if
and only if for some ¢ = 1,...,t there exists a proper cluster s; € ¥, such that
|55] > |Xe;|p = |pilp and ds; > As, = p;. We will show that one can choose s = s;.

First of all, note that if s € ¥ contains roots of different valuations, that is
s ¢ MR, for all i, then

ds = min v(r — ') = minv(r) = A\; = min{p; | R; Ns # T}.
r,r'€s rESs

Now suppose there exists a proper cluster s € X such that [s| > |Xs], and
ds > As. For the observation above, the inequality ds > \; implies that s C R; for
some ¢ = 1,...,t. Let D be the v-adic disc such that s = D NR. Since s C R;,
one has s = D NR; which means that s € Xy, as required.

Finally suppose that for some i there exists s; € ¥, such that |s;| > |p;], and
ds; > pi. Let r; € 5;. Then

si={reK|v(x—r)>d,}NR.
Consider the cluster 5 := {z € K | v(z — ;) > ds,} N R of f. Clearly 5; C s.

Therefore

. = i > i =
As; %151111)(7’) > min v(r) = A,

which implies
ds = ds; > p; = As; = As,
where ds = ds; by construction. Again from the observation above the inequality

ds > X\ implies that s is contained in 2R, for some j. As sNR; D 5; NNR; = §;, we
must have s C R;. Thus s = s;, that concludes the proof. U
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Corollary 3.24 Let f € K|[z] be a separable polynomial. Recall the definition of
radius ps of a proper cluster s € ¥y. Let w € K. Then f(x + w) is NP-regular
if and only if all proper clusters s € Xy have rational centre w and those with

|5‘ > |ps’p satisfy ds = ps.

Proof. If f(x + w) is NP-regular, then, from the previous theorem, all proper
clusters s € Xy with |s| > |X\s], have dy = s, where A\; = min,¢; v(r — w). First
let s € X and assume |s| > |As],. Then

ds = As = minv(r — w) < maxminv(r — 2) = ps < ds,

so ds = As = ps, and w is a rational centre of 5. Now assume |s| < |[Ag]p. In
particular A\; ¢ Z, and so

meinv(r —w) = A # v(w — ws),
res

where w; is a rational centre of 5. Then

Ps = meinv(r —w+w—ws) = min{ s, v(w — ws) } < As.
res

Clearly

b = mEE R = 2) 2 plpolrmw) =

that implies ps = A = min,¢s v(r — w). Hence w is a rational centre of s.
On the other hand, if all proper clusters s € X have rational centre w € K then
ps = min,c; v(r — w). Thus f(z + w) is NP-regular again by Theorem 3.23. [

Definition 3.25 We say that X is almost rational if all proper clusters s € Xy
with [s| > |ps|p have ds = ps.

Corollary 3.26 Suppose that K(R)/K is a tame extension. Then Xy is almost
rational if and only if every proper cluster s € Xy is G i -invariant.

Proof. Since K(R)/K is tame, every cluster s € ¥ has |ps], < 1. Therefore the
corollary follows from Remark 3.12. O

Corollary 3.27 Suppose that K(R)/K is a tame extension. Then f(x + w) is
NP-regular for some w € K if and only if X is nested.

Proof. First note that every cluster s € Xy has [ps], < 1, as K(R)/K is tame.
Therefore from Corollary 3.24, we need to prove that X is nested if and only if
all clusters s € Xy have d; = p; and rational centre w, for some w € K. But this
follows from Remark 3.12. O

We conclude this section by showing that the cluster picture (centred at 0)
completely determines the Newton polygon of f.

Definition 3.28 Let z € K A cluster centred at z is a cluster cut out by a v-adic
disc of the form D = {x € K | v(x — z) > d} for some d € Q.
Definition 3.29 Let z € K. The cluster picture centred at z of f is the set 2%

of all clusters centred at z. Write ch for the set X% \ {{z}}.
The cluster picture centred at z is nested, i.e., every cluster s € ch has at most
one child in ¥7%.

Definition 3.30 Let z € K, and let s € Z; be a cluster centred at z. The radius
of s with respect to the centre z is

PR -
pi = rq{lelglv(r z).
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Finally set
€ = v(cr) + Y Pine
reR

Remark 3.31. From the definitions above, if s is a cluster centred at z € K®, then
s=RN{xr € K |v(x—2) > pZ}. But this does not mean z is a centre for s, that
is false in general. For example, R is clearly a cluster centred at any element of
K*®, but any element of valuation lower than the valuation of a root r € R can
not be a centre of fR.

Remark 3.32. Let s € Xy be a proper cluster with centre z and rational centre

w. Then s € E;, ds = p, vs = €, ps = p, and €; = €. Furthermore, s € E}at if
and only if s € Ef.

Lemma 3.33 Let w € K. Then there is a 1-to-1 correspondence between the
clusters in X and the edges of NP(f(z+w)). More explicitly, ifs1 C --- C 5 =R

are the clusters in Ef‘]‘ﬁ, then NP(f(x 4+ w)) has vertices Q;, i =0,...,n, where

o Qu = (des f,v(cy) |

o Qi = (lsil, e — [silp) = (il €2, — Isilo,,), fori=1,..on—1,

w .
oo [0 s o
(17651 - psl) Zf f(w) =0,

and edges L; of slope —pg. linking Q;—1 and Q;.
Proof. Without loss of generality we can assume w = 0. First note that the

coordinates of @, are trivial. Now consider a factorisation f = cy-go-g1---gs of
Theorem 2.1 where the polynomials g; are monic and

)1 ifaqf
P=Nz itz f

Let R; be the set of roots of g;. It follows from the definition of cluster centred
at 0 that

i
n=s, and 5¢:U9‘ij.
Jj=0

Let i=1,...,n — 1. Then the x-coordinate of (); follows as

|si| = Z R = Edeggj = degng.
=0 =0 =0

The y-coordinate of @; equals the sum of v(cs) and the valuation of the constant
term of [i_;  gj, so

n

Qi = | lsil,vlep) + D 1Rylo(ry) |
J=i+1
where r; is any root in ?i;. But since 5; = Ué':o R, we have v(r;) = pgj. Therefore
n n
ler) + Y 1Rlo(ry) = olep) + Y (sl = lsj—1))pd, = €, = lsilpf,.
j=i+1 j=i+1

Moreover,

0 0 0 0
651' - |5i|p57; = 657;+1 - |5i|p57;+1
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‘on 0 _ 0
from the easy computation €5, —¢€;, |

of Qo is trivial, while its y-coordinate equals

= |5 (pgi - pgiﬂ) . Finally the z-coordinate

n n
vler) + D 1Rlo(ry) = vler) + 195108, + [Rolpd, — [90lpf, = €2, — Rols,,
j=1 j=1

that concludes the proof as |FRg| = deg go. O

Notation 3.34 Following the notation of Lemma 3.33, let ¢ € {1,...,n} be such
that s =s;,. We will write L for the edge L;.

4. DESCRIPTION OF A REGULAR MODEL

For the following sections we will use the main definitions, notations and results
of [Dok, §3|.

Throughout this section, let C'/ K be a hyperelliptic curve of genus g > 2, given
by the equation y? = f(x). Recall from [M?D?| that the cluster picture X¢ is $.
Moreover, all definitions and notations attached to X (e.g. Zrat EZ) given in §3
are given for X¢ in the same way (e.g. L2t 3%)).

Thanks to Lemma 3.33 we can eXpllcltly relate the Newton polytope A} of
g(z,y) = y* — f(x + w) and the cluster picture centred at w of f.

Lemma 4.1 Let w € K. Then there is a 1-to-1 correspondence between the
clusters in Ef‘c’i and the faces of the Newton polytope AY associated with gw(:v y) =

y? — f(x +w). More explicitly, if 51 C --- C 5, = R are the clusters in Z“’ then

AY has vertices T,Q;, 1 =0,...,n, where
T =(0,2,0),
* Qn= (IR0 U(Cf));
e Qi = (5,0 ey — |52-]p;‘;+1) fori=1,...,n—1,

_ J(0,0,€) if flw) #0,
e Qo= )
(170765111; —Pif}l) fo(w) =0
and edges L; (i =1,...,n), linking Q;—1 and Q;, and V; (j =0,...,n), linking
Qj and T.
Furthermore, (possible choices for) the slopes of the edges of AY are:

[

SYn . —v(cf)+(\2m|—2g)p5‘4 and s¥ = LS}/n —1J;
[ ]

o (5 (1)) ).

i 2 o foralli=1,...,n—1;
S (=5 (5] 1) o)
[
VO = 0y, ( ) p;‘i) and 5;/0 = LSYO 1];

[ ]

lei =4z, (—% + <[%J + 1) pé‘i) and séi = leLZ - 1],
Joralli=1,...,n. In particular, as 01, is the denominator of p,

)1 of o) is odd,
B0 if dp.€q is even.
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Proof. The first part of the lemma follows from Lemma 3.33. For the second part,
we only need to individuate, for all the edges, the two points Py and P; of [Dok,
Definition 3.12]. It is easy to see that the followings are admissible choices.

e For V; and L; (i =1,...,n), choose Py = (|s;],0) and P, = QMT_lJ ,1).
e For Vj, choose Py = (0,2) and P; = (1,1);

The second part of the lemma then follows from the first one. O

Notation 4.2 Let C be as above and let w € K. For every cluster s € X3
denote by F the face of the Newton polytope A¥ of gy, (z,y) = y* — f(z + w)
that corresponds to s.

Following the notation of Lemma 4.1, let ¢ € {1,...,n} be such that s = s;.
We will write LY, V., Vi* for the edges L;, V;, Vo, respectively.

Example 4.3. Let C' be the hyperelliptic curve over Q3 given by the equation
y? = f(z) where f(z) = 2 — 32% + 92° — 27 is the polynomial of Example 3.20.
Its cluster picture centred at 0 is

(@33909), e0009)

where the subscripts represent the radii with respect to 0. As we can see, E(}
consists of two clusters: s1 of size 6, radius % and 621 =3, and s9 = R of size 11,
radius % and €)= % Therefore the picture of A broken into v-faces will be

T

Va

Vo v

Qo I Q1 I Q2

where T' = (0,2), Qo = (0,0), Q1 = (6,0), and Q2 = (11,0). Denoting the values
of v on vertices, the picture becomes

Before stating the theorems which describe the proper flat model C of C| con-
structed in §5, we need some definitions.

Definition 4.4 Let F/K be an unramified extension and let Yr = @ (i.e., set
of clusters cut out by disk with centre in F'). We define the following quantities:
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s € X, proper
radius Ps = MaXyep Minycs 0(r — w)
bs = denominator of pg
€ = U(Cf) + ngm Pris
D;= 1if bses odd, 2 if bse; even
multiplicity ms= (3 — Ds)bs

parity ps = 1 if |s| is odd, 2 if |s] is even
slope Sy = %(\5|p5 + PspPs — €s)
vs = 2 if 5 is even and €, —|s|ps is odd, 1 otherwise
0 _

ps = 1 if s is minimal and s N F' # &, 2 otherwise
Sg = —€/2+ ps
= 2if p! = 2 and ¢ is odd, 1 otherwise

Definition 4.5 We say that C is y-reqular if either p # 2 or v, = ps for every
proper s € Eg‘t, and ’yg = p? when s minimal.

Lemma 4.6 The hyperelliptic curve C is A,-reqular if and only if C is y-regular
and f is NP-reqular.

Proof. The proof follows from the structure of A,. Indeed, if C' is y-regular and
f is NP-regular, then C is A,-regular by Lemma 4.1. On the other hand, the
converse also holds since if f is NP-regular, then all clusters have rational centre
0 by Theorem 3.23. O

Definition 4.7 Let s € X be a proper cluster and fix ¢ € Z such that c,og—é €.
Define )
5={d e SpU{o}|s <sand Pl - ce ¢ 22},
where @ < s if p? = 2.
The genus g(s) of a rational cluster s € X is defined as follows:
o If Dy =1, then g(s) = 0.
o If D; =2, then 2g(s) + 1 or 2g(s) + 2 equals

5| — s
‘ | Zs’EEF,5’<5 | ‘ + ’5‘
bs

Definition 4.8 Let Egin be the set of rationally minimal clusters of C' and let
> C Egin. For each cluster s € X, fix a rational centre ws; if possible, choose
ws € 5. Let W be the set of these rational centres and define 2V = Uwew Z&-
For any proper cluster s € X" fix a rational centre w, € W. Denote 15 = o for

r € M and define reductions fs(x) € k[z], G € k[y], and for 5 € ¥ also g0 € k[y]
by

T
22 Ps fWV (zbe) = @ H (x+7rs) modm, wu=csllemsrs
r€5\Uy/ s 8

@(y) = yps/"{s - % mod T, U= Cf HTE%\s Ts,

ey 0/~0
g:?(y) = ypg/’)’s - 7l.uqu(Lu) mod , u=cy Hrem\{ws} Ts.
where the union runs through all s € ¥V ¢/ < 5. Finally define the k-schemes
(1) X {@j@} C Gm,k;
(2) X:'YV : gﬁw = O} - Gm,k;
(3) X2:{g0 =0} C Gy ifs e
Notation 4.9 Given a scheme X/Og we will denote by A}, its generic fibre
X Xspec 0 Spec K, and by X its special fibre &' Xgpec 0 Spec k.
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Notation 4.10 If C = Cj U...C, is a chain of P}CS of length r and multiplicities
m; € 7 (meeting transversely), then co € C; is identified with 0 € Cj41, and
0,00 € C are respectively 0 € C7 and co € C).. Finally, if r = 0, then C' = Spec k
and 0 = oo.

Notation 4.11 Let «,a,b € Z, with a > b, and fix % € Q so that

n; MNi+1

Ty 41
ag=—>—2>...> — >
di dit1

do = dy dr — drya

and r minimal. We write P!(a, a, b) for a chain of P}s of length r and multiplicities
ad;. Furthermore, we denote by P!(a, a) the chain P}(a, a, [aa — 1] /).

= ab, with =1,

Theorem 4.12 and Theorem 4.16 will be proved in §5.

Theorem 4.12 Let C'/K be a hyperelliptic curve given by a Weierstrass equation
y? = f(z), and let X, W and YW as in Definition 4.8. Then there exists a proper
flat model C /O of C with normal crossings such that its special fibre Cs/k consists
of 1-dimensional schemes glued along 0-dimensional intersections as follows:

(1) Every proper cluster s € W gives a 1-dimensional closed subscheme T's
of multiplicity ms. If Ts is reducible then Dy = 2, T = T'F UT,, with
I'F =PL, and there is a (birational) morphism Xs x PL — Ts.
(2) Every proper cluster s € YW with Ds = 1 gives the closed subscheme
XV x PL, of multiplicity bs, where XJV x {0} C Ts.
(8) Every proper cluster s € YW such that s # R, gives the closed subscheme
X xP(vs, ss, sﬁ—ps-%) where Xsx {0} C T's and Xsx{co} C I'p(y).
(4) Every cluster s € % gives the closed subscheme X0 x P1(70, —s0) where
X9 x {0} C T (the chain is open-ended).
(5) Finally, the cluster R gives the closed subscheme X x P!(ym, si) where
Xm x {0} C I's (the chain is open-ended).
Furthermore, if X¢ s almost rational and C' is y-reqular, then, by choosing ¥ =
Eg‘in, the model C 1is reqular. In that case, if s is tibereven and €; is even, then
[y ~ X, x P}, otherwise I's is irreducible of genus g(s).

Definition 4.13 Let s € Ygnr. We say that

e 5 is removable if either |s| = 1 or s = R and it has a (rational) child of
size 2g + 1.
e s is contractible if
(1) |s| = 2 and ps ¢ Z, € 0dd, pp(sy < ps — 5; or
(2) s = R of size 29 + 2 with a child ' € Xgnr of size 2¢g, and ps ¢ Z,
U(Cf) odd, py > ps + %5 or
(3) s = R of size 29+ 2, union of its 2 odd proper children s;, 59 € X gnr,
with v(cs) odd, ps; > ps + 1 for i = 1,2.

Notation 4.14 Write > C ¥ gnr for the set of non-removable clusters.

Definition 4.15 Choose rational centres ws for every s € XO], in such a way that
ws € s when p{ = 1, and o (ws) = Wy (s) forallo € Gal(K™/K). Denote rs = “52-

TPs

for € 9 and define gs, g0 € k*[y] as in Definition 4.8, and f(z) € k[z], by

0
227 Ps fs(a:bﬁ) = ﬂuu(u) H (x+7rs) modm, u=cy Hrem\s Ts,
res\Uy/ s 8

where the union runs through all & € ¥, s’ < 5. Let Gy = Stabg, (s), K, =
(K*)% and let ks be the residue field of K,. Then f; € ks[z], s € ks[y], and for
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s minimal g0 € kq[y]. Finally define f; € ks[z] by

fi@) = [ (@~ r2) - Tol)

Wy —Ws

e mod 7.

where Uy =

In the next theorem we describe the minimal regular model of C' with normal
crossings.

Theorem 4.16 (Minimal regular NC model) Let C'/K be a hyperelliptic curve.
Suppose Cgnr is y-reqular and Xo ., is almost rational. Then the minimal reqular
model with normal crossings C™"/Ognr of C has special fibre C™™ /kS described
as follows:

(1) Every s € ) gives a 1-dimensional subscheme Us of multiplicity ms. If s
is dbereven and €5 is even, then I's is the disjoint union of I'y~ ~ P! and
[yt ~ P!, otherwise I's is irreducible of genus g(s) (write T~ =Tyt =T
in this case). The indices r— and r4 are the roots of gs.

(2) Every s € Y with Dy =1 gives open-ended P's of multiplicity bs from T's
indexed by roots of fs.

(8) Every non-mazximal element s € )y gives open-ended chains P! (vs, 55, 85 —
Ps - %) from T's to I'p(s) indeved by roots of gs.

(4) Every minimal element s € 3 gives open-ended chains P*(70,—s9) from
I's indexed by roots of g?.

(5) The mazimal element s € Y gives open-ended chains P! (s, S5) from T'g

indexed by roots of Gs.
(6) Finally, blow down all T's where s is a contractible cluster.

In (3) and (5), a chain indezed by r goes from I'y (to Upg) i (3)).

The Galois group Gy, acts naturally, i.e., for every o € Gy, o(I'}) = Fzg)), and
similarly, on the chains.

If T is irreducible, then its function field is isomorphic to k°(x)y] with the
relation yPs = fo(x).

Remark 4.17. Note that if T's or I'p(s) is reducible then ps/vs = 2.

As an application of Theorem 4.16 we suppose p # 2 and C' to be semistable.
In this setting [M?D?, Theorem 8.5] describes the minimal regular model of C' in
terms of its cluster picture X o. We compare that result with the one obtained
from Theorem 4.16 (Corollary 4.19).

From [M2D?, Definition 1.7], if C' is semistable then

(1) the extension K (R)/K is tamely ramified;
(2) every proper cluster is Gal(K*®/K"™")-invariant;
(3) every principal cluster has ds € Z and v; € 2Z.

It follows from Corollary 3.26 that X¢,.,, is almost rational.

In fact, (1) and (2) imply ps = ds and €5 = v, for any proper cluster s (Remark
3.12). In particular, ¥ xnr = 3. Finally, note that § is the set of odd children of
5 € Y.

Lemma 4.18 Suppose p # 2. Assume C' is semistable and let s € X be a non-
removable cluster. Then ds € %Z. Moreover, ds ¢ Z if and only if vs is odd and
ps = 2. In particular, s is contractible if and only if

(1) |s| =2 and ds & Z; or
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(2) s = R of size 29 + 2 with only 1 proper child s' € X¢ of size 2g, and
ds ¢ Z; or
(3) s =R of size 2g + 2, with exactly 2 odd children, and v(cy) odd.

Proof. Let s € ¥¢ be a non-removable cluster. Clearly we need to study the cases
when s is not principal. First note that ds € %Z by Lemmad.11.

Suppose s = R, even, with exactly 2 children. By Lemma 3.18, dyx € Z. Since
5 is non-removable, one of its children, say s, is principal. Then dy € Z and
vy € 27. Therefore

Vg = Vg — ‘5”(6&/ — ds) € 27.

Assume s is a cotwin. Let s’ denote its proper child. Then v = vy —2¢g(dy —ds).
Since s’ is principal, we have dy € Z, vy € 27Z. Therefore v; is odd if and only if
ds ¢ 7. Moreover, if that happens, then s = R, even.

Finally suppose s is a twin. Then vs = vp(s) +2(ds — dp(s)). We have dp(s) € Z
and vp(s) € 2Z (even if P(s) is not principal, from the first part of this proof).
Thus vs is odd if and only if ds ¢ Z. O

Corollary 4.19 (Minimal regular model (semistable reduction)) Let C/K be a
semistable hyperelliptic curve. The minimal regular model C™ /Ognr of C has
special fibre C"™ /kS described as follows:

(1) Every proper cluster s € ¥¢ gives a 1-dimensional subscheme T's of multi-
plicity ms. If s is dibereven, then Ts is the disjoint union of I's~ ~ P! and
[yt ~ P, otherwise I's is irreducible of genus g(s) (write Tq~ =Tyt =T
in this case). The indices r— and r4 are the roots of Gs.

(2) Every odd proper cluster s € Y¢, |s| < 2g gives a chain of P's of length

L%J Jrom T's to I'p(s) indexed by the root of gs.

(3) Every even proper cluster s, |s| < 2g, gives a chain of P's of length
Lds — dp(s) — %J from Ty~ to I‘;;(s) indexed by r— and a chain of P's of
same length from Tyt to Fg(g) indezed by .

(4) Finally, blow down all T's where s is a contractible cluster.

All components have multiplicity 1, and the absolute Galois group G} acts natu-
rally, as wn Theorem 4.16.

Proof. Let s € Y. From Lemma 4.18, we have Dy = 2, 7355 € Z and if s is

minimal, 70s? € Z. Therefore (2), (4) and (5) of Theorem 4.16 do not give any
components. Finally, as v, = 1 for any s # R and p; ds_;lp ) ¢ %Z, the length of

ds—dp(s)y . .
P (vs, S5, S5 — Ps - %“) in (3) is

ds — dp(s) 1 ds — dP(s) 1
VsSs — Vs Ss_ps'f — 3 = ps'T_Q .

The corollary then follows from Theorem 4.16. g

5. CONSTRUCTION OF THE MODEL

We are going to construct a proper flat model C/Ok of C by glueing models
defined in [Dok, §4]. For this reason we will assume the reader has familiarity
with the definitions and the results presented in that paper. Let us start this
section by describing the strategy we will follow.

Let Zgﬁn be the set of rationally minimal clusters of C' and let ¥ C Zgi“.
For any cluster s € ¥ fix a rational centre ws. If possible, choose w; € 5.2
Let W be the set of all such rational centres and define ¥ := Uwew ¢ For

2This assumption is not necessary for the construction, but it will simplify the following.
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every proper cluster t € % ¥ inductively fix a rational centre wy = ws for
some cluster 6 < t (Lemma 3.14). For every cluster w € W, consider the curve
Cv : y?> = f(x + w), isomorphic to C, and construct the (proper flat) model
CRX/Ok by [Dok, Theorem 3.14]. We will define an open subscheme CX of C{ and
we will show that glueing these schemes along common opens gives a proper flat
model C/Ok of C. Furthermore, if ¥ = Egﬁ“, Y¢ is almost rational and C is
y-regular, then CX is the open subscheme of regular points of CX and therefore C
is also regular.

5.1. Charts. Let © = {s1...,5,,} C S8 be a set of rationally minimal clusters
and let W = {wi,...,wn} be a set of corresponding rational centres, where
wy, € sy, if possible. Define W := [ Egh. Note that for the chioce of the

rational centres wy, the subset of proper clusters of X" coincides with Zq“c‘ih For

any h,l =1,...,m, h # [, define wy; := wp — w;, and write wp; = upwPh, where
up € OF and pp; € Z. Note that pp; = ps,rs, = pin, by Lemma 3.18.

Definition 5.1 Let h=1,...,mandlet t € Zlc”,h be a proper cluster. We say that
a matrix M is associated to tif M = ML:uh ;or M = MV[”’l j (or M = Mvowh ; if
t = sp,). For a matrix M associated to t we denote by d; and Xjs respectively

e the quantity §, =, and the space X, ., if M = M w, ,,
t Ll yi,i+1 ¢ ot

e the quantity 6Vtwh and the space X"vf“h,j,jﬂ if M = MVf“h,j’

e the quantity 5V0wh and the space XJV(;Uh,j,j+1 if M = Mvowh,j'

Finally, denote by

Xk =JXu,
M
the toric scheme defined in [Dok, §4.2].

The following lemma describes all possible matrices associated to t.
Lemma 5.2 Let t € X" be a proper cluster. Consider the face F"". Let Py, P €
72 and n;, d;, k; € Z be as in [Dok, §4] and define
no Nn; % —dit1k; dikit1

§:=96 = — — — d T;,= : )
N T <8 M &-)

for each matriz M associated to t.

e Foralli=0,...,7 v, we have
t
5 —di (| +1) ki diga ([ L] 4+1) ks 1[40
(L) i ([ ] #1) ey L7]
Mpen ;=10 d; —dit1 : Myfh,i =T | pe F4vipa 1 |
—dpt L —kipt — L tkitape pe FHv 1
where Py = ([|t],0), Py = ([I=1/2],1) and 6 = 6, wn = by.
t
e Iftis odd, then for all j =0,... STy n, we have
[t]+1
— |t _MTde MT“de B 1 ) 5 0
Mywn ;= 2 d; —djt1 | My =T | pe2y01 5= 1,
—eetltlpe  ny —Mjt1 p=2; Gl 1
where Py = (|t[,0), Py = (|[tI-1/2],1), § = 6Vtwh =1 and kj = kj41 = 0.
o Ift s even, then for all j =0,...,ryw,, we have
t
—(5% —(%+1>dj—kj% (%+1)dj+1+k’j+1%
Mywn ;= s dj+k; —djr1—kjt1 ;

ee—ltlpy 7y et—|tlpg nj4+1 et ltlpg
0= g kiT— =5 tkit1=—
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1 W1 o
—1
M wy, =T | pr=rj41 %‘-u%ﬂ L,
s S_M 1
Pt—"7; 5 Vi

where Py = (|t],0), Py = (|It-1/2],1) and § = 5V¢wh'
o If f(wy) =0, then for all j =0,... Ty, We have

4 -1 -1 0
1 d; dji1 €s
Mvwh = —2 7dj dj+1 , M‘:&’h _:T p5h+2 Yi+1 7+'Y]+1 1
€sp —Psp, Ty TG+ o psh+2 Yj 7+’YJ 1
where Py = (0,2), P1 = (1,1), 6 = d,wn = 1 and k;j = kj;1 = 0.
0
o If f(wp) # 0, then for all j =0,...,7,w,, we have
0

0 dj —dji1 -1 :1 0
s
Mva,j = 6_6 —d;—k; d]+1+kJ+1 s M‘:d’}}hvj = Tj' Psp HVi+1 Th 1 ,

€sp Mg €5y ]+1 €
2 3 kit =5k pop Y - 1

where Py = (0,2), P = (1,1) and 0 = 5V0wh,

Proof. We follow the notation of [Dok, §4]. Choose the points Py and P; as in
the proof of Lemma 4.1.
First consider the edge Li™ of F{"". From Lemma 4.1 we have

R || )

Then M;ws ; and M;Jh  follow from [Dok, §4.3] as

no 1 Lwh €t |t|
% = 581 ’UFtwh (Pl) — Ukah (P()) = —5 -+ (LzJ + 1) Pt

Now assume t even and consider the edge V;"" of F{"". Since t is even,

ver@ = {0 (§.1). 02}, v=(-5a-5+ )

and (wg,wy) = (—m -1 1) as above. Then M ViR ~and M ih follow again
from [Dok, (4.3)] as
ng I VA

e (It
sy~ 5% _”FZ”*L(P” —ogen(Po) = =5 + <2 +1) P

Similar arguments and computations yield the remaining matrices. O

5.2. Open subschemes. Let h =1,...,m and let t € Egh be a proper cluster.
Let M be a matrix associated to t. Write

mi1 Mz M3 ) mi1 iz 113
M= | mo1 maos moj and M~ = | m91 Mo mog
m31 MmM32 1MM33 m31 Mm32 133

Recall that Xj; = Spec R, where

OK[X:H, Y, Z] OK[X:H, Y:I:l7 Z:I:l]
(7T — Xmasymas Zﬁlas) - (71— — X3y me3 Zﬁl33)
Let [ # h. Set

R

R= K [xil,yil] :

1+ wpy X PR =M11 Y priiias =il Zphmss—msl  {f £ D g, A s/,

THH(X, Y, 2) 5= § 21 st — sy iies —pnaiinas i —pui -
Uth 11—Phl 13Y 21— Phl 2SZ 31— Phl 33+1 1ft25h/\5l’
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a polynomial in R[Y !, Z71]. Note that

it tDspAs then TR(X,Y,Z) L T Wn
xr

it t2spAs then TR(X,Y,Z) L T Wh
Wh

The following two lemmas prove that TH/(X,Y, Z) € R.
Lemma 5.3 Let h,l =1,...,m, with h #1, let t € X" be such that t D sp, A s
and let M be a matrix associated to t. Then
PriM23 — Ma1 > pyeg —ma1 > 0 and  ppymgs —m31 > pyngs — map > 0.
Furthermore if M = M LUk . then
® ppMog — Mo = 0 zf and only if i = e or t =5, N5,
o pymas —ms1 = 0 if and only if t = sp A s;;
if M = M VR - then
o thm23 —mg; >0,
o ppymas —ms1 = 0 if and only if t = s, A s; and j = 0.

Proof. This result follows from Lemma 5.2, which gives us a complete description
of M and M~'. We show it when t is even and M = MVtwh i and leave the other

cases for the reader. First of all recall that pp; = ps, rs; by Lemma 3.18. Then

. . n;
pria3 — Mo = ddji1 | P — pt + o gt > 0djy1 (Psyns, — Pt) > 0,
(Sdo (5dj+1

where 0 = dps. Note that if t =R and j = Tyn then dj;1 = 0 and nj11 = —1.

But the inequality stays true since

PrIM23 — M1 = pyMaog — Mol = —Nnjr1 = 1 > 0.
Similarly,
~ ~ no n;
primss — a1 = 0d; | pr—pr+ | — — == | | > dd;j (ps,ne, — p1) > 0.
ddg  0d;
In particular ppymss —mas; = 0 if and only if t = s, As; and j = 0. ]

Lemma 5.4 Let t € Zgh be a proper cluster such that t 2 sp A sy, and let M be
a matriz associated to t. Then
mao1 — pumzz > 0 and  mz1 — ppmss > 0.
Furthermore, may — ppymeos = 0 if and only if
o M = ML:Uh,i and © = TLhs OF
o t<sp,ANs;, M= MVtth, and j = Ty

Proof. This result follows again from Lemma 5.2. As in the previous lemma, we
show it when t is even and M = M, v o and leave the other cases for the reader.

Let r = Ty Note that ¢ £ fA. Then

no n;

M3l — prMaz = 0d; <Pt — Phl — (MO — M)) > dd; (pP(t) - pﬁh/\sl) > 0.
J

Ny ..
since W -3 d:l = pt — pp(y- Similarly,

~ ~ n n;
Ma1 — ppriMa3 = 0dj41 <Pt — Phl — <6;0 - 5dJ:11>> > ddjv1 (ppy — pui) > 0,
J

In particular ma; — ppymeos = 0 if and only if t < 5, A s; and j = r. O
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Let
Ty (X,Y, 2) = [ TH(X.Y, 2),
I#£h
and define
Vi == Spec RIT}(X,Y,Z)'| € Xy, and XX =V} € XX,

M

where M runs through all matrices associated to some proper cluster t € X",
We can then define the subscheme

Ch = C N Xk < X4,
where Cx* /Ok is the regular model of the hyperelliptic curve C*» : y? = f(z+wp,)
constructed in [Dok, Theorem 3.14| (see [Dok, §4] for the explicit construction).
More concretely, let gy (z,y) := y*> — f(z + wy) and write

v = f(o +wn) = Y™ ZmEn Fy (XY, Z),
as in [Dok, 4.4], and consider the subscheme
R([T}(X.Y,2)"']

Vi
(FI(X,Y, 2)) < Vi

U, := Spec

Then
= JUly c Xk,
M
where M runs through all matrices associated to some proper cluster t € X7

5.3. Glueing. Let h,l =1,...,m, with h # [. Consider the isomorphism

2)  ¢:K |z gt H(x +we) | = K 2Tyt H(x + Who) !
0F#l o#h

sending x — x + wp;, y — y. If £t D s, As; and M is a matrix associated to t,
then ¢ gives

M~ logoM

RY 77N T (X,Y,Z)7] RY ' z7NTH(X,Y,Z)7Y,

which sends
F(X,Y,Z)— F(X -Th(X,Y,z)™ Y - T¥(X,Y, Z)™2, Z .- TH(X,Y, Z)™3).
Hence it induces the isomorphisms
(3) R[Ty(X,Y,2)7"] = RITY(X,Y.2)7, Vi = Vi
Via these maps we see that gp(x,y) = Y”Y*hZ”th]-"J}\‘/I(X, Y, Z) also equals
v g iyt 7 (X (Y -1y, 2 - ().

where TJ@[Z = TA}}[Z(X, Y, Z). Since neither Y nor Z divide TJ\’ZZ(X, Y, Z), we have
ny,, = ny,, Nzn = nz; and

Fia(X.¥.2) = (Tjfysemteaomply (X Ty, (Thy™e. 2 (@)
Hence (3) induces the isomorphisms

RIT,(XY.2)7] o R[TH(X,Y,2)]
FxYz) (X Y.Z)

.Ul =S U,

(4)
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Define the subschemes
hi R oh Rl hi 5
Vv ::UVMLQXA’ UM :=v"neRr CCrr,
M,
where the union runs over all matrices M; associated to some proper cluster
t e S NI (e, t € IV, s, A5y C t). From (2), (3) and (4) we have
isomorphisms of schemes
(5) v = vyt S Ut

Now, U™ c Vh are open subschemes respectively of éxh cX Z for any [ # h.
Glueing the schemes th C XZ respectively along the opens U™ C VM via (5)
gives the schemes C C X. We will show that C/Ox is a proper flat® model of C.

5.4. Generic fibre. We start studying the generic fibre C, of C. Since it is the
glueing of all thn through the glueing maps
hl Ih
v, — U,

induced by (5), we start focusing on (?an for h =1,...,m. In particular, as COX’L
is an open subscheme of C", we study

wp, SWh . Yw Swp,
CAW ~ CAJ] =C"%r \CA,n'
For every choice of a proper cluster t € Egh, and M associated to t, let

R®o, K
(FI(X,Y,2), T} (X,Y,Z))

Py = (C“’h N COZ};J N X = Spec

To study Py we are going to use Lemma 5.2 and the definition of T% (X, Y, Z).
Suppose first t # R and M = M‘/‘wh ;- Then ma3, m33 > 0, so

RYL27Y g Kl 1)
~ Spec ,

(FR(X.Y,2), 15 (XY, 2)) 7 (on(e9).TL, (& + o))

where the product runs over all o # h. Now let t = R and M = MVf“h i If

J # 7ywn, then Py is as in the previous case (since g3, m3z > 0). If j = 7w,
R R

(6) Py = Spec

then ma3 > 0, mos = 0, but ppimeg — me; > 0 by Lemma 5.3. So from the
definition of T#(X,Y, Z) we have once more the equality (6). Similarly, if t = s,
and M = MVOwh I then mss > 0, and Mgy — ppymos > 0 by Lemma 5.4. Hence

we have (6) again.

It remains to study Py when M = Mszh i If i £ L then mog, M3z > 0 and
so Py is as in (6). Let ¢ = rLen- Then mg33 > 0 but both o3 and ppmoz — Moy
equal 0. Hence mo3 = o1 = 0, which also implies mo1; = mgg = 0. Therefore M
defines an isomorphism R[Z~!] ~ K[z*!, 5], which induces

R[Z71] M Kzt g

- o ~ Spec .

(Fy(X,Y,2), Ty (XY, Z)) (gh(;v,y),]_[#h (;v—l—who)>

Py = Spec

Therefore
Kz, y]

(on (). T (@ + wno))

(GRlIN COX’;] = Spec

3Note that the flatness of C is trivial since it is a local property.



26 SIMONE MUSELLI

Regarding CA" as a model over C' via the natural isomorphism C = Cwn, we

have
Klz,y|

(2 = F@): TTopn (2 = )

Thus the generic fibre of C is isomorphic to C.

ou)h —
C~ CAJ7 = Spec

5.5. Special fibre. We now study the structure of the special fibre Cs; of C. As
for the generic fibre, we start considering

wWh Swy,
CA,s ~ CA,s7

for any h = 1,...,m. So for every choice of a proper cluster t € Egh, and M
associated to t, let

Ok[X*LY, 7]
(Fr(X,Y, Z), T} (X,Y, Z), Y28 233 )
Firstly suppose M = MLGh,i. Fix [ # h. If t 2 s; A sp, then by Lemma 5.4, we

have Moy — ppimes > 0 and ma1 — ppymas > 0. Moreover, if Moy — ppyes = 0,
then 4 = r;w;,, which implies 723 = 0 by Lemma 5.2. Therefore
t

Sy = (CX?S ~ C@’;) N Xy = Spec

(7) {Th(X,Y,Z) = Y™ 273 = 0} = g,
from the definition of T]}\l/[l(X, Y, Z). On the other hand, if t D s; A sp, then by
Lemma 5.3, we have ppymaz — o1 > 0 and ppymss — msp > 0. Moreover, if
PriMos — Mo = 0, then ¢ = L which implies m93 = 0 by Lemma 5.2 as above.
Therefore we have (7) again. Now assume instead t = s; A s5. Since py = pp; € Z,
then ppymis — myp = —1, as §yr = 1 and we can choose k; = kjy1 = 0 in the
description of M of Lemma 5.2. Hence
Ty(X,Y,Z) =1+ upX ' = X" (X +uy),
by Lemma 5.3. Thus
OK [X:tl’ Y’ Z]

(Fh(X,Y,2),T1, (X +up) , Y23 2733, 1)
where the product runs over all [ # h such that t = s; A 5p,.

We want to show that Sys consists of singular points of C".
Lemma 5.5 Consider the model CA" /O and let fr(x) = f(x + wp). If

OK[Xi17Ya Z]

Sar = Spec

P € Spec _ _ c e,

P (F]}\L4(X;Y,Z),X+uhl7ym232m3g’ﬂ.) A
for some 1 # h, where (X,Y, Z) = (w,y,7) « Myw, ; for somei=0,....7w
E}L 5l7 sh 5l

then P is a singular point of CA" /O .

If¥={s1,...,8m} = Egﬁn, Yo is almost rational and C' is y-reqular, then the
converse also holds.

Furthermore, if t; € Zgl, t; < sp A\sy, then wyy, 1s a multiple root ofm of order
|, where L = Ly,

Proof. Singular points of Ci" may come from horizontal edges of A¥", corre-
sponding to multiple roots of fj,|r. More precisely, let F' be the splitting field of
[, of ring of integers Op and uniformiser 7p. Then by [Dok, §4.5], P € CA"(OF)

is a singular point if
OF [Xilv Y7 Z]
(Fiy, (XY, 2), X —a, Y™ 7ms g )

1

P € Spec
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for some horizontal edge L of A%, and some multiple root @ of fy,|r. If C is
y-regular, then the structure of the Newton polytope A¥» only allows singular
points as above. By Theorem 3.23, @ is a multiple root of m if and only if
a = (&) where s € Xy, proper with |s| > |As|, and ds > A, 7 € s such that
v(r) = A, and L is the unique edge of NP(fj,) of slope —\s. Let Ry, be the set of
roots of f. Note that we have a bijection

P Xyg, — Xy,
such that
s=RnN{zeK|vz—2)>d = ) =RN{zecK|v(r—w,—2)>d}.
If r € s then r 4+ wy, € 9(s), so for any s,5" € Xy, , |s| = |[1(s)| and if s’ < s then
Y(s') < (s). In particular ds = dys) and

As = 1;[161? v(r) = rgpig) v(r — wp).

Hence wy, is a rational centre of ¥(s) if and only if As = py(s).-

Let @ be a multiple root of fj,|r, and let s € ¥4, associated to @ as above. We
want to prove that if Y is almost rational and ¥ = Egﬁn, then there exists [ # h
so that @ = ug,. Note first wy, is not a rational centre of ¢(s). Indeed, if wy, is a
rational centre of ¢(s), then

[P(s)] = Is] > [Xslp = [Py(s) lp>
d(s) = ds > As = Py(a),

which contradicts our assumptions on Y. As {s1,...,6,} = Egﬁ“, we must have
that w; is a rational centre of ¢(s), for some [ # h. Then w; — w, = wy, is a
rational centre for s. Let r € s with v(r) = As, and let ' = r + wy, € ¥(s). Since
As < py(s) < v(r’ —wp), we have

r’ L
- ) =~ in f.
_ T " — wp Win Ulp
o= = g = .
7]')\5 7'(')\5 7'('>\5 71—)\5—Phl

We want to show As = pp;. Since s; C 1(s) but s, Z ¥(s), we have ¥(s) C s5 A5
and so

Therefore

Phl = Pspns; < Py(s)>
by Lemma 3.14. Moreover, for every root r € 9 (s), one has
v(r —wp) = v(r — w4+ w — wp) = min{v(r —wy), P} = P,
as v(r —wy) > py(s) > Psyns- In particular As = pp.
Now, for any | # h consider s;, and its corresponding cluster 1 ~!(s;) of fj,.

As above v(r — wy,) = pu € Z for every root r € 1~!(s;), so in particular,
[Ap-1(slp < 1. Therefore [~ (s)"| = [ (s1)] > [Ay-1(e))lp, and

dy=r(e) = ot 2 i > P = Ayt (ay);

which implies that @ = wuy, is a multiple root of m where L is the unique edge
of NP(fy) of slope pp;. Since the edge of NP(f3) of slope py; corresponds to Lg ",
the first part of the lemma follows.

Let t; € X%, ¢ < s, A s;. Then

t = {7“ ER| (%ﬁ”ﬁ) ZTm}7
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as v(r —wp) > pp if and only if 5 = ;. Thus the order of uyy; is || by

Theorem 3.23. O

In particular, if ¥ = Egﬁ“, Y.¢ is almost rational and C' is y-regular then COZ"
is regular for every h. Thus C is a regular model of C.
It remains to compute Sy; when M = Mvtwh ;o Fix [ # h. Assume that if

t = s; A sp, then j # 0 and that if t < s5; A s5, then j # Ty By Lemma 5.3 and

Lemma 5.4, we have ppimog — mo1 # 0 and ppiimss — ma1 # 0, that implies (7) as

before. If t = s; Asp, and j = 0, then ppymss — ma1 = 0 but ppymeg — me > 0. So
(Th(X,Y,Z) = Y™ 2m38 = 0} = {TR(X,Y, Z) = Z™ = 0} C Spec R[Y 1.

Similarly, if t < §; A 65 and j = ryw, =: 7, then ma; — ppma3z = 0, however
t
m31 — ppymss > 0. Then

{TH(X,Y,Z) = Y™ 72M = 0} = {TH(X,Y,Z) = Y™ =0} C Spec R[Z7!].
In both cases Sy € Xp, where F' = Fy % ([Dok, Definition 3.7]). Let L = Lg s, ,
and let fi,(z) = f(x + wy) and gp(z,y) = y* — fu(z). By Lemma 5.5, one has

Sy C XFuth DSML,O =4,

5 /\Sh

as gn|r(X,Y) = Y2 = X |0 (X) or Y — Xfy,|L(X), for some a € Z (see Lemma
5.7 for more details). Thus if M = My, j, then Su = 92.

5.6. Components. Now that we have described the special fibre of C, let us

introduce some notation for closed subschemes that compose it. Let t € ¥V, For

any h = 1,...,m such that s, C t recall the definition of X jw,, 1-dimensional
t

closed subscheme of CX’LS. Let
. _ -
XFtwh = XFtwh N CAh.

Denote by I'¢ the 1-dimensional closed subscheme of Cs, result of the glueing of
the subchemes X s of CA" for all h such that t € X7

Lemma 5.6 Let t € X" be a proper cluster and let F = F"". Then mg = 0p.

Proof. Let L = Lff’1 and M = My . Then dp = drdg. The lemma follows as
0r, = by and dp = (3 — Dy) by Lemma 5.2. O

From the lemma above the multiplicity of I'y is m¢. The lemma below gives the
defining equation of I'y on the chart X, for a certain matrix M associated to t.
1

Lemma 5.7 Let fi(x) = f(x +wp) and let L = L™, F = F{"" and M = M.
Let ¢,d € 7 such that pi- ¢+ d = 1/bi. Then the 1-dimensional subscheme Xr
(or X ) on the affine chart Xy is given by

Is] -
YP X T (X)) =0,

where s € BE U{@}, s < t (where @ < t only if t = s, and p, = 2). B
In particular the points in Sy; belong to all the irreducible components of X p.

Proof. Let A" be the Newton polytope of C%# : 4% — f(x+wy,). For its structure,
X is given on Xy by Y — X%f,|1(X), for some b = 1,2 and a € Z. Moreover,
if b =2 then 2— Dy = r; = 0. We prove the converse also holds. Suppose D; = 2,
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that is beeg € 2Z. We want to show that there exists a point P € Z x {1} with
vp(P) € Z. Let ¢,d € Z as in the statement and set P = (cbieg/2,1). Then
UF((Ctht, 0)) €t — (cbtet)pt _ dbtet

P: p—
vr(P) 2 2 2

by Lemma 4.1. Then a follows from the choice of P and Definition 2.5 (choose
ko = ||t|/2] + 1 — cetb/2 and ki = —c for the description of M in Lemma 5.2).
Finally, the last part of the lemma follows from Lemma 5.5. g

€z,

Denote X" := Xjw N CR", Xi := Xywn NCR" and X§ = Xyo NCR"
This notation agrees with Definition 4.8. Indeed, let gn(z,y) = y? — fu(r) and
re = S for any r € t. Then gh’vt“’h = gt gh’v;;l = ggh and gh’L:’hh = fop-

Finally, by Lemma 5.5, if t # s;, the polynomial defining X, w, N Coxh is
t

gh|L;wh (x) . < ﬂ-v/lzu) H’f’et\fh (:L‘ + T{)
ch?étl <t($ + TM) Hretl;ﬁth (x + Tt)
where u = ¢y Hremgzs reand t € B, ) < t for any [. Indeed

mod 7r> = ]"T/V(x),

gnlpen (@) = fulpen () = =iy Treng, (2 + 1) mod
from Lemma 3.33 and uy; = r¢ for every r € ; as v(w; — ) > py, > pt = phi-

Proposition 5.8 Let t € X" and let wy = wy. On the affine open UJ}\}, the
1-dimensional scheme I'y is given by

yPo= I X —am)fV(X)

seinzW

where wy is a rational centre of 5 and upy, := 0.

Proof. Let ¢ € Z be as in Definition 4.7. If t has two or more children in X,
then by = 1, and so ¢ = 0. Hence t is the set of odd rational children and so the
proposition follows from Lemma 5.7 and Lemma 5.5. ]

5.7. Separatedness. It remains to prove that C is a proper scheme. We first
show it is separated. Clearly it suffices to prove that X' /O is separated. Since
the schemes X Z are separated, then the open subschemes X Z are separated as
well by [LiA, Proposition 3.3.9]. Consider the open cover {Vi\}, ar of X. Let
h,l = 1,...,m and let M; and M; be matrices associated to proper clusters
t, € X&' and ¢ € X/ respectively. By [LiA, Proposition 3.3.6] we want to show
. h l .
(i) Vg, NVyy, is affine,
(ii) The canonical homomorphism
Ox(V]\]}h) ®z O;\e(VJf/[l) — OX(VJ\’}Ih N V](@)
is surjective.
The definition of the glueing map 5 implies (i). If h = [, or 5; C t;, or 5, C {4,

then ((ii)) follows from the separatedness of X R and X .. So assume [ # h, and
ty, 4 C sp A s;. Consider the Moebius transformation

Yy

s oy
(Gl xwﬁll 1 Y (CC’LU}:ll + 1)ot!

It sends the curve C'"! to the isomorphic hyperelliptic curve

ch:y? = (xw}:ll + 1)%9+2f (IL‘(:E’LU}:ll + 1)+ wy) .
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lh(:c) D= (xw}:ll + 1)29+2f (IL‘(:E’LU}:ll + 1)_1 + wl)

_ |19 -1 2g+2—|R| T —w 1 Ty
= cjwy, (mwhl +1) H o Tw,, + )
reR~{wp}

every cluster s € X7 such that s C s, A s;, corresponds to a unique cluster

sh ¢ E%h of same size, radius and rational centre 0. Moreover,
1
Eh—Uth Zpﬁh—l-z
r’esh ' ¢sh
Call t;‘ the cluster in E%lh corresponding to t,. Let A be the Newton polytope

of y? — fl'(z) and let X% be its attached toric scheme (defined in [Dok]). Since
t; € s, A5y, the faces Fy, of Ayt and F{? of Af}h are identical by Lemma 4.1 and so

the matrix M := M is also associated to t?. For every o =1,...,m, with o # h,
define
LioWhl if o £ |
Whio = M 7
Wy if o =1,

and write wpjo = uplemlo, where up, € Of and pyi, € Z, ie.

_JHeml if o £, _ JPriF plo— pro i 0 F# L
Uhlo = 0 and  ppio =

iy if o =1, Phi if o=1.
Define
hZO(X Y Z) {

1+ upo X Phlo™13 =111y PhioM23 =21 7 PhloM33 =31 if ) D s,
uhll X M1~ Phio™13Y 21 —PhloM23 31 —PhloM™33 | 1 if t D s,.

We want to show TH°(X,Y,Z) € R. If o = [ then
The(X,Y,7) =TW(X,Y,Z) € R.

So assume o # [. If 5, C {;, then it follows from Lemma 5.3 as 5; A 5, C 51 A s,

=

and So pplo = pro- On the other hand, if s, Z {;, then it follows from Lemma 5.4
as pulo < max{pp, pio}. Let
Ty(X,Y,Z) = [[ Th°(X,Y, 2).
0#h
The Moebius transformation
K[zt gt H(m + wio) 7Y N K[zt gt H (2 + who) ']
0#l o#h
considered above induces an isomorphism

RITH (X, Y, 2)71) 2 RITH (X, Y, 2)7),
sending
X X -TP(X,Y, z)"mu=(gt)ma
Y Y TH(X,Y, Z) ™2 (gtm
Z v Z-TH(X,Y, z) e (gt mas,
Then

Vil .= Spec R[TI(X,Y, Z)™ Y]
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is an open subscheme of XZ‘, isomorphic to ij/[. We can clearly carry out similar
constructions for t, Mj,.

By comparing the Newton polytopes A’ and A we see that the Moebius
transformation

¥ K= g™ T (@ + who) ™' — K= o T [ (@ + wine) ™)
o#h oAl
T —wjy [
y > —y/(wy 'zt
induces a birational map X XZ . ¢ jAh, defined on the open set VZ\%L of X Zl. In
particular, there exists an open set ]ffh of X Z‘ , isomorphic to V]\}}[h via 1/)}:1 0.
Recall the definition of ¢ in (2), which induces the glueing map between VJ{%
and Vl\hh' Since the following diagram

- ¢ -
K[ty (@ +wio) ™) —— Ko™ty Tl (@ + who) ']

Jo [

Koy T on (@ + wio) '] — Koy T, (@ + wing) ]
is commutative, then the surjectivity of
Ox(Viy,) ®z Ox(Vay,) — Ox(Viy, N Vi)
follows from the separatedness of X ZL.

5.8. Properness. By [EGA, 1V.15.7.10|, it remains to show that Cs is proper.
From |LiA, Exercise 3.3.11], we only need to prove that the 1-dimensional sub-
scheme Iy is proper for every t = s, As;. Indeed every other component is entirely
contained in a model C", which is proper (see §5.5). Let t = s, A 5; for some
h,l=1,...,m, with h #£[. For any o = 1,...,m such that s, C t, let t, be the
unique child of t with s, C t, < t. Then I'; is equal to the glueing of the schemes

R[U,(X,Y, Z)""]

S ) M = M;wo ,M wo g,
e (F$(X,Y,2), Z,7) L0, Mo o
and
OXYZ_]'
spec DX YD)
('F]%(X7Y7Z)7Y77T) to 7Vtoo

for all o such that s, C t, through the isomorphism (5) and the glueing maps
in the definition of C°. In particular, for any o as above there exists a natural
birational map s, : I'i--+ X Fo which is defined as the identity morphism on the
dense open I'y N CL°.

Let Y/k be a non-singular curve, let P € Y and let Y ~ {P} -4 I'( be a

non-constant morphism of curves. We want to show that g extends to Y. For
every o as above, X Fue IS proper, so the birational map

Jo:=5,09:Y ~{P} W%Yplwo

extends to a morphism g, : ¥ — thwo.
If

PO = gO(P) S (YF(’LUO ﬁCOXO) = So (Ft ﬂéxo)
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for some o such that s, C t (we will later show this is always the case), then
there exists an open neighbourhood U of P, such that U C (thwo N CDZO) and
is an isomorphism. Since P € g, (U), the map

—1
5l7_, (%)
so (U) _
o1

g, (U) == U "

o

U
50 ol 0

(U) — Ft,

induces an extension Y — I'; of g.
Suppose that P, ¢ XF:UO NCL° for any o such that s, C t. From §5.5 we have

R
(F (XY, 2), 11 (X +ua) , Z, )

where M = MLwo, and the product runs over all [ # o such that t = s, A s5;. In

(8) P, € Sy = Spec

particular P, is a point of each irreducible component of X Fwo by Lemma 5.7.
Let h # o such that X + w,p, vanishes at P,. Let £ be the generic point of Y and
let & = go(&), & = gn(&) be generic points of XFwo and X P respectively. Then

the birational maps s, and sj give

Xppe k(&)
So //j
g /// ¢go
v~ {P} 2= T, = k(YY) ~
~_ sp
. bgp,
X poon k (571)

where we denote by ¢, and ¢4, the homomorphisms between function fields
induced by g, and g. The vertical isomorphism is induced by the map

R[T&(X,KZ)”]HR[TJ\Z(KY’Z)’I]
(F$(X,Y,Z),Z) (Fh(X,Y,2),Z)
which sends (see §5.3)
X + uoh = X -TH(X,Y, Z)™ 4 tpp = X (L4 upoX 1) + uop, = X.

But the rational function X + u,, vanishes at P,, while X does not vanish at P,
by (8). This gives a contradiction, as §,(P) = P, and g, (P) = Pj.

5.9. Genus. Suppose ¥ = {s1,...,8,} = Egﬂn, Yo is almost rational and C is
y-regular. Let t € X" be a proper cluster.

Lemma 5.9 If C is y-regular, then t € &' is dbereven if and only if it equals
the union of its even rational children. Furthermore, if p # 2, every even cluster
5 € Yo s rational.

Proof. Let s € ¢ such that s # ™% = ¢, for some t € Z3*. In particular s™" = t,
and ds # ps = pr. Since Y is almost rational, we must have |s| < |ps|p = |ptlp-
Then v,(b¢) > 1. Let o be an element of the wild inertia subgroup of G . For any
r € 5, we have o(r) € s, since v(r — o(r)) > p; and s < t. Therefore p*»(*) < |s|,
Thus we have showed |s| = p?»(®) | that implies s is odd if p # 2.

It remains to show the first part of the lemma when p = 2. It suffices to show
that every child of a iibereven rational cluster t is rational. Suppose not. Then
2 | by from above, and then t has at most one child in {3 (Lemma 3.18). Let
s € XE'U{o}, s <t Ifs # @ then by Lemma 3.15 it is also a (proper) child of
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t. Let a be the number of non-rational children of t. Then |t| — |s| = a - 2Ur(b0),
Therefore (|t| — |s|)pt is odd by Lemma 3.11. Thus one between pt/y, and ps/~, (or
P[0 if s = @) equals 2. But this is impossible as C' is y-regular. O

Proposition 5.10 Let t € Elcuh with Dy = 2 and let wy = wy,. On the affine open
UJI\} the 1-dimensional scheme Ty is given by

v = T[(X - am)fi(X)
set
where wy is a rational centre of 5 and upy, := 0.
In particular,
(1) if D=1, then Ty ~Pj};
(2) if Dy = 2 and t is tbereven, then T'y over kS is the disjoint union of two
Pls;
(3) in all other cases, Ty is a hyperelliptic curve of genus g(t).

Proof. The first part of the proposition follows from Proposition 5.8.

Since g(X) = [T,ei(X — wn) fi(X) is a separable polynomial, by Lemma 5.9 it
only remains to prove that t equals the union of its even children if and only if
9(X) ek

Suppose t equals the union of its own even rational children. In particular
by = 1 by Lemma 3.18 and so t = & since it is the set of odd rational children.
Therefore t \ | J,.(5 = @, and so fi € k. Thus g € k.

Now suppose g € k. Then t = @ and t = Us<( 5, 5 rational. In particular t has
two or more children in X%, and so by = 1, again by Lemma 3.18. But then f is
the set of odd children of t, and so all rational children of t are even. O

5.10. Minimal regular SNC model. Suppose the base extended curve Cgnr
satisfies the condition of §5.9, and consider the model C/Ognr constructed before.
we want to see what components of Cs can be blown down to obtain the minimal
regular model with normal crossings. Recall [Dok, §5|. Let Xxnr = Erca}t(m and ix
a proper cluster s € Y gnr of rational centre wy,.

Suppose s # s, A s; for all Al = 1,...,m with [ # h. Then I's = Ysth. In
particular, if I's can be blown down then F," is a removable or contractible face.
By Lemma 4.1, we find

e ;" is removable if and only if s = R even with a (rational) child of size
29 + 1.

o ;"M is contractible if and only if either |s| = 2 and § — ps € Z or |s| > 2¢
with a unique (rational) child s’ € Xgnr of size 2g and § — gps € Z.

First of all note that F;’" is removable if and only if 5 is removable. In this case
Fy"™" can be ignored for the construction of Cx" (for any h since s = R), and so s
can be ignored for the construction of C.

Assume now F;"" contractible. We want to understand when I'y can be blown
down. First consider the case |s| = 2 and § — ps € Z. Then Iy intersects other
components of Cy in 2 points (as Vi gives two chains of P's and the edges Vo
and L¢" give no component in CX?S). To have self-intersection —1, I'; has to have
multiplicity > 1. It follows from Lemma 5.6 that ps ¢ Z, as § —ps € Z. Moreover,
by Lemma 3.11, one has ps € %Z. Therefore ¢; is odd and the multiplicity of I'y
is 2. Let r := Tyen and consider the chain

no n Ty Np41

d70>d71>“.>d7r>dr+1
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given by V;". If T’y can be blown down then d; = 1. Since Z—g = —5 + 2ps, we

have dy = 2. In particular d; = 1 if and only if ps — pp(s) = Z—g — Z:—E > % Thus
if |s| = 2, then I's can be blown down if and only if ps & Z, €5 odd, pp(s) < ps —
Note that this is case (1) of Definition 4.13.

Second consider the case |s| = 2g + 2 with a unique proper rational child s’ of
size 2g. The argument is very similar to the previous one. If I'; can be blown
down then it must have multiplicity > 1 and this implies ps ¢ Z again by Lemma
5.6. From Lemma 3.11 it follows that (|s| —|s'|)ps € Z, so ps € 3Z. Then mg = 2
and

1
3

v(cg) €
7 =5 (9t L.
so v(cy) odd. Let r := 7w, and consider the chain
no ni Ny Nr41
—>— >
do ~ dy dy  drgq

n

i = 3T+,
we have dyp = 2. In particular d, = 1 if and only if py — ps = g—g — Z:;: > % Thus
if 5 has size 2g + 2 and it has a unique proper child s’ € X gnr of size 2g, then T';
can be blown down if and only if ps ¢ Z, v(cy) odd, ps > ps + 3. This is case (2)
of Definition 4.13.

Finally, if [s| = 2g+1, s has a proper child s’ € Xnr of size 2g and § —gps € Z,
then ps € Z, as (|s| — |s'|)ps € Z. It follows that ms = 1, but then the self-
intersection of I's is not —1, since it intersects the rest of C; in at least two points
as before. Hence in this case I'y can never be blown down.

Now assume there exists [ # h such that s = s, As;. Then s is not minimal. Let
s},6) € Ygnr be such that s, C s} < s and s C 5] < 5. Suppose L' irreducible.
If |[s] < 2¢g (or, equivalently, s is not the largest non-removable cluster), then
I's intersects at least other 3 components of Cy (given by s ,s), and P(s)). So
it cannot be contracted to obtain a model with normal crossings. The same
argument holds if there exists o # [ such that s, A s = 5. Assume then |s| > 2g
and s, A 5, # s for all 0o #£ [. Then 'y intersects at least other 2 components of
Cs given by V;{:h and V:{” Firstly, if I's can be blown down, then m,; > 1. But

Ps = pni € Z. Then

given by V;. If T’y can be blown down then d,, = 1. Since

%5— \‘|5|2 1J Ps € %Z\Z,
so € odd as well as v(cy). Hence Dy = 1 and I'y ~ P! by Proposition 5.10.
However, if s is odd then this implies that V3" gives a P! intersecting I's. Since
that would be a third component intersecting I's, the cluster s has to be even.
It follows that s = R and |s| = 2g + 2. Now, Ly gives some Pls intersecting
YF;% C Cp",. All these P!s are not in COXLS (and so in C;) if and only if 5} Us) = s.
In particular, s, and s; are either both even or both odd. If s} is even, then
5\/7,% = 2, and so the component given by V;:h has multiplicity at least 2. Once

5

again, the self-intersection of I'; could not be —1 in this case. Assume s} is odd.

Let r := Tyn and consider the chain
0 n n n
N A
do = dy dy ~ drgq

given by V", We want d, = 1. Since
h

Nr41 G |5k | —
d'r—i—l 2 2

1 1
p5€§Z\Z’
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Pyt —Ps

b = - Z:—_ﬁ > % and
similarly for s;. Thus if s has two or more rational children and T's is irreducible
then it can be blown down if and only if v(cs) is odd and s = R is union of its 2
rational children sj, and s), satistying ps > ps + 1, ps; = ps + 1. This is case (3)
of Definition 4.13.

Suppose now I'y reducible. By Proposition 5.10 s is iibereven, ¢; is even and
I is the disjoint union of I'; ~ P! and I'j ~ P!. As before, both I'; and '}
intersect at least other two components (given by the proper children of s). But
then neither I'; nor T’} has self-intersection —1, as ms = 1.

It remains to show that after blowing down all components I's where s is a
contractible cluster, no other component can be blown down. First note that if s
is a contractible cluster, then by = 2 and I'; intersects one or two other components
of multiplicity 1 in two points. If it intersects only one component, then after the
blowing down, the latter will have a node and will not be isomorphic to P'. If
I's intersects two components and those intersect something else in Cg, then they
will not have self-intersection —1 also when I'; is blown down. Therefore suppose
that one of those two does not intersect any other component of C,. If we are in
case (1) or case (2), it is easily to see that this never happens. Then without loss

of generality assume to be in case (3) and that Fs’h is the component that can be

we have d,41 = 2. As before d, = 1 if and only if

blown down once I's has been contracted. This implies s;, = 5;1 and pg, = ps + 1.
But then D;, = 2 and |s,|/2 > 1. Hence g;, > 2 and so I';, cannot be blown
down.

5.11. Galois action. Consider the base extended hyperelliptic curve Cgnr /K™ .
The rational clusters and their corresponding rational centres of Cgnr are then
over K™, Assume X¢,.,, is almost rational and let Em;?m = {s1,...,8mn} be
the set of rationally minimal clusters of Cgnr. Fix a set W = {wy,...,wy} of
corresponding rational centres wy, € K™. By Lemma A.1, we can assume this
choice to be Gi-equivariant, i.e., for any o0 € Gk, one has o(w;) = wy, if and only
if o(s;) = sp.

For any h = 1,...,m, define fr(z) = f(z +wp) € K™ [x] and let C*r /K™ :
y?> = fi(z). Fix 0 € Gg. If o(s;) = sp,, then o(f;) = fr. Now, let t € Eg{m be a
proper cluster. Then o(t) € Eg’;{ e and pg = py(p). In particular, if M is a matrix
associated to t then M is associated to o(t) as well. So o(F},) = FF,. Finally, as
([T (2 + w10) 1) = Ty (& + who) ™" we also have o(T},) = Ty

Hence the natural K™ -isomorphism C%» Z C induces Ognr-isomorphisms
of schemes

cm Lo, cn ey, Ul S Ul
These maps describe the action of o on C (see §5.3). In particular, if s; A s; C t,
then the glueing map (5) and o are equal.

Let s € Era[t{m be a proper cluster, G5 = Stabg, (s), K; = (K%)% and ks be
the residue field of K. Let ws € K, be a rational centre of 5. Let I'; be the regular
1-dimensional scheme defined in §5.6 and let T /ks be the regular 1-dimensional
scheme given by

2 = T[(X - a) fo(X),
s'es

W, —Ws

where Uy, = —5—, and fs as in Definition 4.15. Then there is a natural kS-

isomorphism I'; — Iy by Proposition 5.10. Furthermore, it is actually a k-
isomorphism, since the action of o € Gal(k®/ks) corresponds to the glueing maps
in C and is trivial on I's.
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A similar argument shows that X : {gs = 0}, where w; is the rational centre
chosen in the definition of gs.

6. INTEGRAL DIFFERENTIALS

Let C be a hyperelliptic curve of genus g > 2 defined over K by a Weier-
strass equation y? = f(z). Assume that C is y-regular. It is well-known that
the K-vector space of global sections of the sheaf of differentials of C', namely
HY(C,QL,, ), is spanned by the basis

C/K
dx dz g—1 d:r}
>~ {2y7 2y7 bl 2y

Let C be a regular model of C' over Ok and consider its canonical sheaf we/o,, -
The free Ox-module of its global sections H°(C,we /0y ) can be viewed as an Ok-
lattice of H(C, QlC/K) by [LiA, Corollary 9.2.25(a)]. The aim of this section is
to present a basis of H°(C,we J0x) @s an Of-linear combination of the elements
in w. Note that by [LiA, Corollary 9.2.25(b)| the problem is independent of the
choice of model but it does depend on the choice of the equation y? = f(x) since
the basis w does. Throughout this section let C' and C/Ok be as above.

If C'is Ay-regular, [Dok, Theorem 8.12] gives an Og-basis of H(C,w¢/0, ), as
required. We rephrase it in terms of cluster invariants, by using results of §3.

Theorem 6.1 For any cluster s € X, set A\ = min,c;v(r). Suppose that all
proper clusters s € Yo with |s| > |X\s|p, have ds = As. Let 51 C --- C s, = R be
the proper clusters in E%. For every j =0,...,9 — 1, define

ij:=min{i € {1,...,n} | 2(j +1) <|s]}
and

1 0 . 0
ej = §€5ij - (] + 1)1051]

Then the differentials

idx
) =

o 7=0,...,9—1,

[j = mles
Jorm an O -basis of HO(C,we /0, )-

Proof. The theorem is a consequence of [Dok, Theorem 8.12], Theorem 3.23,
Lemma 4.6 and Lemma 4.1. O

Corollary 6.2 Let w € K. Suppose that all proper clusters s € ¢ have rational
centre w and those with |s| > |ps|, satisfy ds = ps. Let s1 C --- C 5, = R be the
proper clusters in X§. For every j =0,...,9 — 1, define

ij :=min{i € {1,...,n}|2(j +1) < s}
and

1 .
7651']- - (] + ]‘)p5i]-‘

6]‘ 2:2

Then the differentials

jdz

2y j:O,...,g—l,

pj =kl (@ — w)

form an O -basis of HO(C,wc/OK).
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Proof. Let C% : y? = f(z+w) be the hyperelliptic curve isomorphic to C' through
the change of variable y — vy, z +— x 4+ w. By Corollary 3.24 and Lemma 4.6, the
curve C" is Ay-regular and so satisfies the hypothesis of Theorem 6.1 (alterna-
tively they can be checked directly). Therefore
= plelgide _
i 7TJ:L'2y 7=0,...,9—1,

form an Og-basis of H%(C,we /0, ) as a subset of H*(C¥, Q}Jw/K) (that is if C is
regarded as a model of C"). Changing variables concludes the proof. U

From now on, suppose that o is almost rational. Let Egﬁn be the set of
rationally minimal clusters and let W = {ws | s € £} be a corresponding set
of rational centres, where ws € s if possible. For every proper cluster t € X3¢,
choose a minimal cluster s C t and set wy := w;. Consider the regular model C/Ox
of C' of Theorem 4.12 constructed in §5 that the model C by glueing the open

subschemes CX of C{ for w € W. We want to describe the canonical morphism
C —C. Let C¥ : y? = f(x + w) and

v = flo+w) = Y™ 2" F(X,Y, Z),

as in [Dok, 4.4]. Let t € X% be a proper cluster and let M be a matrix associated
to t. Then, on the affine chart X, the projection C' — C¥ is induced by

R w K@ 0)*" = Ky
(‘F}\Z(X7KZ)> ((y/)2 _f(x’—i—w)) <y2 _f<l')) >

where (X,Y,Z) = (2/,y/,7) « M and (2/,y') = (x — w,y). In particular it follows
that (X,Y,Z) = (z —w,y,2) ® M and so

T —w X i1y el 7ms1 X
y | =|Xxmeymegzie | = [V | e M
™ X 13y ™23 7M33 7

For a proper cluster ¢ € 2" recall the definitions of T’y and my.
Proposition 6.3 Let t € Erc?t be a proper cluster. Then®
ordp (x — wg) = Mmypy,
ordpt%"’” = —my (%et — Pt — 1) — 1.
for every proper cluster s € L2, s C t.

Proof. Assume first I' irreducible. Let s € Eg%t proper, s C t. Then from the
proof of [Dok, Proposition 8.1] and Lemma 4.1 it follows that

ordr,(z — ws) = 6pws pi”*,
dx
ordpEZ = —0pws (e —p® —1) - 1.

by |[LiA, Lemma 9.2.17(a)|]. Since ws is a rational centre of t for Lemma 3.14,
Remark 3.32 implies p® = p¢ and €;* = €. Then the proposition follows since
5F£w5 = my.

Suppose now that I'y is reducible. Let L = L",0, let M = M}, and let X,Y, Z
be the transformed variables (X,Y, Z) = (x — ws,y, ) ® M. Consider the open
set U : {Z = 0} of I'y C Cs. Since Z vanishes of order 1 on U, it follows from
Lemma 5.2 that

ordp (z — ws) = m31 = mypy  and  ordpy = M3z = M,

4f I, is reducible, say T'y = I';y UT{, then ordr, (-) means min{ord- (-),ord+ ()}
t t
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as dodpr = my.
By Proposition 5.10 the defining equation of the I'y on U is of the form

V2 - h(X)? = XMsy e zmss — (),
where h(X) € Ox[X] such that h(X)? = f|1(X) € k[X]. Let
Iy = {Y — A(X) = Xy m zis o},
T = {V +h(X) = X™sy™2s zmss — 0},
be the two components of I'y on U. Consider I'; . By [LiA, Corollary 6.4.14|, the

sheaf we /0, is generated on I'{" by

-1

~W(X) 1 =

TNYL137TX71 77~”L237TY71

if this determinant is non-zero. As (mq3,7m23) # (0,0), the determinant above
is non-zero. Recall the polynomials G, H in the proof of [Dok, Proposition 8.1].
Then Go(X,Y,Z) = Y? - G(X)? + Z - E(X,Y, Z), for some polynomial E €
K[X,Y, Z]. Hence
-1
dz>

—h/(X)W(X)+ZEYy 2Y+ZE),

’ T~TL137TX71 7~TL237TY71
“h(X) 1

T~TL137TX71 7’71237TY71

ord— B — —myeg — 1+ ordF; (’

¢ m(x — ws)y?

—hW (X)W X)+ZE 2Y+ZEY,
migmX 1 ggmY ~1

from the proof of [Dok, Proposition 8.1]. This implies that

dz ¢ 1
ordrt_@— mt<2 Pt 1) 1 ordrt_

Then we want to show
‘ —h (X)W(X)+ZE 2Y+ZE},

_ o 777«137|'X71 7“~rL237TY71

ordrl—a(X, Y,Z)=0, aX,Y,2):= (%) ; .
’ﬁllgﬂ'X_l ﬁ’L237TY_1

We have

2(rash! (X)M(X) X +113Y %)+ Z(m13Y By —mas X EYy)
mao3 Xh' (X)-i—’l’;],ldy

mo3 / _ _ ’ _77L23 /
22128 X/ (X)(Y ~h(X)) Z(YEY —ThBXEX)

ma3
Y+ 22 Xh(X)

a(X,Y, 7) =

=2y —

As ordrz Y —h(X)) = ordF;Z = 1, we have

ordy (222 XH/(X) (V = h(X)) - Z (Y By - 22 XEy)) > 1.

mi3 -

Therefore if ordy.- <Y + gngh’(X)) = 0 then ordy—a(X,Y,Z) = 0, as Y is a
unit on U. Suppose by contradiction that ordF; (Y + 2—?2 XhW(X )) > 1. Since

Z 1 (Y + %Xh’(X)), we must have

mi3

(v = (X)) | (Y + Z2X0(X)),

that trivially implies h(X) = X", where n = =18 € Zo. Thus f|1(X) = X*",
but this is impossible since NP(f]1 (X)) # NP(X2"). O
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Theorem 6.4 Let C/K be a hyperelliptic curve of genus g > 2 defined by the
Weierstrass equation y> = f(x) and let C/Og be a reqular model of C. Suppose
C s y-reqular and ¢ is almost rational. For i =0,...,9 — 1 choose inductively
proper clusters s; € X% so that

€ % ¢ i—1
. S E — L E
€; 1= ) st/\ﬁi - mar‘}a(t 9 Pt st/\t )
; texyd :
J=0 J=0

where if s and §' are two possible choices for s; satisfying s C s, then choose
s5; = 5. Then the differentials

i—1
X d .
i = mwieid Ho(x — wsj)i, i=0,...,9—1,
j:

Jorm an Ok -basis of HO(C,we /0, )-

Proof. Since H°(C, we /0y ) is independent of the choice of regular model, we con-
sider C to be the model described in Theorem 4.12 (and constructed in §5).
We first show that the differentials y; are global sections of we /o, . It suffices

to prove they are regular along all components Iy, where t € %" proper. Indeed

for the construction of C and the definition of the e;’s, the differentials p; are
regular along all other components of C; by Corollary 6.2. Fix ¢ =1,...,9g—1
and let j =0,...,7— 1. Let t € %" be a proper cluster. If 5; C t then
ordr (x — ws;) = Mype = MupPs;at,
by Proposition 6.3. If t C s; then wy is a rational centre of s;. Hence
v(wy — ws;) > I¥l€1{1 min{v(r — wy),v(r — ws;) } > min{py, ps, } = ps; = Ps; t-
Therefore Lemma 3.18 implies
ordr,(z — ws,;) > min{ordr (z — wy), ordp (w¢ — ws; ) }
> min{mpg, Mips;atk = Mips;nt-
If 5 ¢_ tand t SZ 55 then
ordr, (z — ws,) = min{mpe, Mips;at} = MiPs; At-
as pt > ps;at- Thus we have proved that
(9) ordr, (T — ws;) 2> Myps;ats where the equality holds if t Z s;.
Therefore it follows from Proposition 6.3 that
i—1 .
t
ordr, pi; > mt(Leij + Zpsjm ——=+p+ 1> -1

, 2
7=0

But
€ i—1 € i—1
lei] =2 |5 — P > pon > 5 TP > psae—1,
j=0 j=0

then ordr pu; > —1, that implies ordr,p; > 0, as required.

Now we need to show that the differentials p; span HO(C,wc/OK), i.e., the
lattice they span is saturated in the global sections of we /o, . Suppose not. Then
there exist I C {0,...,¢9 — 1} and u; € O for i € I such that the differential
%Zz‘el u;p; is regular along T, for every proper cluster t € X%, Let I} C I be
the set of indices ¢ such that v; := e; — |e;| is maximal. Let Io C I be the set
of indices ¢ € I; such that s; is maximal with respect to the inclusion. Define
io := min I3 and denote by I'g the closed subscheme I's, . First we want to show
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that s;, ¢ s; for all j = 0,...,%. Suppose by contradiction that there exists
Jo < ig such that s;, C sj,. Then by the definitions of s;, and s, one has

ig—1 ig—1 ig—1

510 _ =ej > —

psm p., Asjo = €ho Ps jASjy 2 €jo — psjo psj/\sio
Jj=jo+1 Jj=jo+1
Jjo—1 ig—1
6510

> - psm E Ps; Asiy — psjo - g psjl\s,;0

Jj=jo+1

i0—1

551 €s,
0 -70
E st/\410 ezo = PEJO E PJJAJJO

Therefore

i0—1 i0—1
€t 6
max { — Pt — E psj/\t} = €jy = ~ Psjy — § Psjhsjg
ezt 2 =

and this means that s, is a possible choice for the io-th cluster 5. But 5,5 C 55,
so the ig-th cluster should have been s;,, a contradiction. Then s;, ¢ s; for all

j=0,...,ip. From this fact and (9) we have

1
1 €s; =
m:i= OTdFO ;,LL’L() = _m5i0 Yio + msio <6’i0 - 20 + Pslo + Z pﬁj/\sz()) -1
7=0
= —Mg,; Yip — 1<0.

Furthermore,

1
]. 652' .
Ordro ;,LLZ 2 _m5i0 Vi + mﬁio (6i - 20 + pﬁio + E pﬁj/\5i0> -1
Jj=0

2 —msio’}’i -1 2 _m5¢07i0 -1= m,

for all i € I. Let J:= {i € I | ordr,2p; = m}. Then J # @ since ig € J and the
differential %Zz‘eJ u;p; must cancel along I'g. Let ¢ € I. Then ¢ € J if and only
if ordp, % i = m which is equivalent to

651
Ns; — € = — Psiy — E PsjAsig

by the computations above. We want to show that J = I,. We have already noted
that ig € J. Assume i € J, i # ig. Then the equality e; = Es%fp% 723-;%) Ps;Asiy
implies s;, C s;, while it follows from v; = ~;, that ¢ € I;. Hence s; = s;,, as
t9 € Iz, and so ¢ € I. On the other hand, if ¢ € Iy then s; = s;, by definition
and this trivially implies e; = 16510 Psiy — Zj;% Ps;Asig - Moreover, 7y; = ;, as
Iy C I. Therefore J = Is. For any ¢ € Is we have

Yi =", and

Les] = Leio] = i — % — €ig +%io = €i = €ig = — Y Pajnsiy-

J=to

—Zul,uz: uw(ZZl_ui ﬁ(x—wsj)>,

Ps;iA
i€l iely TI=0 I 0

Hence

and since ordFO% Hi, = m < 0 we must have

(10) 0rdr0<z Zﬂ— 1:[1 (z — wﬁj)> > 0.

: Ps;As o
i€l T770 ‘0 j=ig
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Let 41 := max Is. We have already proved that s; ¢ s;, and s;, ¢ s; for any j € I
with 79 < j <14y, as s5;; = 5;,. Therefore for any j € I with i9 < j <41 such that
S; # S;,, We have Ps;nsi, € L and

ordr, (z — ws;) = min{ordr, (z — ws, ), ordr, (ws,, — ws;)}

= Mg, mln{p5i0 ) p5i0/\5i} = Ms; Ps;insi, = ordr, (wﬁj - wﬁzb)?

by Lemma 3.18. Since 5,,5 ASSZO € O, it follows from (10) that

5¢
510
OI'dFO ( Z Uz ﬁzpslo > > 07

i€lo

for some v; € O, where 8; = #{j € I | ip < j < i and s; = s;,}.

To find a contradiction, we will use the explicit description of an open affine
subset of I'g. Let w = Ws, L = L;‘;O, M = My, o, and consider the affine open
subset
R[Ty(X,Y,Z2)7"]
(Fir(X,Y, 2),2)

Ujyr = Spec c I

From Lemma 5.2,
— )P
Z T —w Z /i
vi( 51‘,%') - vi ﬂl/bs’
icl, T icls

which is a unit since, for the structure of A}, the polynomial F};(X,Y,Z) in
{Z = 0} is of the form Y2 — G(X) or Y — G(X) for some non-constant G(X) €
K[X]. This gives a contradiction and concludes the proof. O

We conclude this section with an application of Theorem 6.4.

Ezxample 6.5. Let C be a hyperelliptic curve over Qs of genus 4 described by the
equation y? = f(z), where f(z) = (2® — 3*)(23 +3%)((z — 3)® — 3!!). The cluster
picture of C' is

[(@oo)h@oo)tz)%wu]

where d’q = dtg = %7 dt3 = Py = P2 = Ptz = dt4 = 6’ Py = 1:)% and
dsy = psm = 1. Then C satisfies the hypothesis of Theorem 6.4. Its rational cluster
picture is

(@99000,009),),

where the set of minimal clusters is 3" = {t3,t4}. We choose rational centres
for t3 and t4: wy = 0 and wy, = 3. Since R = t3 A t4, we can choose either
W = Wy OF Wy = wy,. Let us fix wyy = wy, = 0. Then to choose sg, 51, 52, 53 as
in Theorem 6.4 we draw the following table:
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Pe | €t %_Pt %_pt_pﬁoAt *—Pt ZPsJM *—Pt Zpsjm
RN 19 u 1

3 6 6 6 2
el s s % ;

The red numbers indicate that sg = t4, 51 = 5o = t3 and s3 = 9. Thus the
differentials
dx

dx d
5y M2=3-(x =323, pz=(r-3)2"

= 3. —
p1=3 (l’ 3) 2’ %

form a Zs-basis of H(C,w¢/z,), for any regular model C/Zs3 of C.

_ a4 dx
po=3"- 2a

APPENDIX A. RATIONAL CENTRES OVER TAME EXTENSIONS
Let C/K be a hyperelliptic curve given by y* = f(z).

Lemma A.1 Let L/K be a field extension. Consider the base extended curve
CL/L and its associated cluster picture ¥¢,. Let s € Y, be a proper cluster
Gs = Stabg,(s), and K, = (K% If LK,/K; is either the mazimal tamely
ramified extension or the maximal unramified extension, then s has a rational
centre wg € L N K.

Proof. This proof follows the spirit of [M2D?, Lemma B.1]. Write K" for the
maximal unramified extension of K. Let r € s. Then r € K] (/) for b large
enough and some uniformiser 7y of K; (we fix here a choice of {/m;). Write the
p-adic expansion of r as

r = Ut\b/ﬂ'st + ’U/t+1\b/7T5t+1 4+ ...
for a suitable t € Z and u; € K" roots of unity of order prime to p. Let ws € L
be a rational centre of 5. For o € G5 we have o(r) = ws mod 7%, where

Po = RO )

Hence the terms in the p-adic expansions of o(r) and ws agree up to {/ms“s/K bps

Define
w = Z Uy {‘/7751.

I<ex,/rbps

We want to show that w € L. It trivially follows if w = 0. Suppose 0 # w ¢ L,
and that wu, 77510 is the lowest valuation term of the expansion which is not in L.
Without loss of generality we can assume ¢ = lo (consider w' = w37, _; \b/ﬂl)
As v(w — ws) > ps, we have v(ws) = v(w) =t/b. If LK, = K], then b{ ¢, which
gives a contradiction, as v(ws) has to be an integer. On the other hand, if LK is
the maximal tamely ramified extension of K, then p | b, that again contradicts
v(ws) = t/b.

Therefore w is a rational centre of s, as v(w — ws) > ps. We only need to show
it is Gs-invariant. Suppose not, and that wu; \%?Sl is the lowest valuation term
of the expansion which is not Gg-invariant. Note that the denominator of /b is
coprime with p since w € L and L tame. If bt [, then there is some element
o of tame inertia of K which fixes u; € K[ and maps %l to C%l, where
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¢ # 1is a root of unity; this contradicts the fact that o(r) = rmodwh2. If b | I,

then o(r) = ws mod YT/ KOs 50 we must have ¢ K. Then there exists
some element o € Gal(K]"/Kj) so that o(u;) # wuy; this contradicts the fact that
o(r) = r mod /mcKs/KbPs O

REFERENCES

[Dok] T. Dokchitser, Models of Curves over DVRs (2019), available at arXiv:1807.00025.

[ECA] A. Grothendieck, J. A. Dieudonné, Eléments de géométrie algébrique, Institut des Hautes
Etudes Scientifiques, 1960-1967.

[FN] O. Faraggi, S. Nowell, Models of Hyperelliptic Curves with Tame Potentially Semistable
Reduction, preprint, arXiv:1906.06258v2.

[Kau] I. Kausz, A discriminant and an upper bound for w? for hyperelliptic arithmetic surfaces,
Compositio Mathematica 115 (1999), 37-69.

[Kun| S. Kunzweiler, Differential Forms on Hyperelliptic Curves with Semistable Reduction,
preprint, arXiv:1902.07784.

[LiA] Q. Liu, Algebraic geometry and arithmetic curves, Oxford Univ. Press, Oxford, 2002.

[LiC] Q. Liu, Conducteur et discriminant minimal de courbes de genre 2, Compositio Math. 94
(1994), no. 1, 51-79 (French).

[LiM] Q. Liu, Modéles minimaux des courbes de genre deux, J. Reine Angew. Math. 453 (1994),
137-164.

[LiQ] Q. Liu, Quelques erreurs dans la table de: The complete classification of fibers in pencils
of curves [NU], https://www.math.u-bordeaux.fr/ gliu/articles/errata-NU.pdf.

[LL] Q. Liu, D. Lorenzini, Models of curves and finite covers, Compositio Math. 118 (1999), no.
1, 61-102.

[M?D?| T. Dokchitser, V. Dokchitser, C. Maistret, A. Morgan, Arithmetic of Hyperelliptic
Curves over Local Fields, preprint, https://arxiv.org/abs/1808.02936.

[Mac] S. MacLane, A construction for absolute values in polynomial rings, Trans. Amer. Math.
Soc. 40 (1936), no. 3, 363-395.

[Mau] S. Maugeais, Relévement des revetements p-cycliques des courbes rationnelles semi-
stables, Math. Ann. 327 (2003), 365-393, (French).

[NU] Y. Namikawa, K. Ueno, The complete classification of fibres in pencils of curves of genus
two, manuscripta math. 9 (1973), 143-186.

[OS] A. Obus, P. Srinivasan, Conductor-Discriminant inequality for hyperelliptic curves in odd
residue characteristic, preprint, available at arXiv:1910.02589v2.

[OW] A. Obus, S. Wewers, Explicit resolution of weak wild arithmetic surface singularities,
preprint, arxiv:1805.09709.

[Sai] T. Saito, Conductor, discriminant, and the Noether formula of arithmetic surfaces, Duke
Math. J. 57 (1988), no. 1, 151-173.

[Sil2] J. H. Silverman, Advanced Topics in the Arithmetic of Elliptic Curves, Graduate Texts in
Mathematics 151, Springer-Verlag, New York, 1994.

[vB] R. van Bommel, Models of curves: the Birch and Swinnerton-Dyer conjecture and ordinary
reduction, PhD thesis, available at https://openaccess.leidenuniv.nl/handle/1887/66673.

UNIVERSITY OF BRISTOL



	1. Introduction
	1.1. Main results
	1.2. Motivation
	1.3. Related works of other authors
	1.4. Strategy and outline of the paper
	Acknowledgements

	2. Newton polygon
	3. Clusters
	4. Description of a regular model
	5. Construction of the model
	5.1. Charts
	5.2. Open subschemes
	5.3. Glueing
	5.4. Generic fibre
	5.5. Special fibre
	5.6. Components
	5.7. Separatedness
	5.8. Properness
	5.9. Genus
	5.10. Minimal regular SNC model
	5.11. Galois action

	6. Integral differentials
	Appendix A. Rational centres over tame extensions
	References

