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Chapter 1
Bayesian Methods for Intelligent Task
Assignment in Crowdsourcing Systems

Edwin Simpson, Stephen Roberts

Abstract
In many decision-making scenarios, it is necessary to aggregate information from

a number of different agents, be they people, sensors or computer systems. Each
agent may have complementary analysis skills or access to different information,
and their reliability may vary greatly. An example is using crowdsourcing to em-
ploy multiple human workers to perform analytical tasks. This chapter presents a
an information-theoretic approach to selecting informative decision-making agents,
assigning them to specific tasks and combining their responses using a Bayesian
method. For settings in which the agents are paid to undertake tasks, we introduce
an automated algorithm for selecting a cohort of agents (workers) to complete in-
formative tasks, hiring new members of the cohort and identifying those members
whose services are no longer needed. We demonstrate empirically how our intelli-
gent task assignment approach improves the accuracy of combined decisions while
requiring fewer responses from the crowd.

1.1 Introduction

In many scenarios, decisions must be made by combining information from a num-
ber of different agents, be they people, sensors or computer systems. These agents
may possess useful analytical skills that cannot easily be replicated, or they may
have access to complementary information. For example, the fields of crowdsourc-
ing and citizen science often employ human annotators to classify a dataset, since
people have sophisticated pattern-recognition and reasoning skills and the ability
to learn new tasks given simple, natural language instructions. A large number of
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annotators can be used to compensate for the limited time that each person can ded-
icate to the labelling task, and for the use of non-expert and potentially untrusted
individuals. Agents may also provide diverse observations for applications such as
situation awareness, where information can be obtained from mobile sensors, cam-
eras and human reporters to build an overview of events in a particular scenario. By
obtaining and aggregating information from a pool of decision-making agents, we
can form a combined decision, such as a classification or an action, taking advan-
tage of the wealth of existing skills, knowledge and abilities of the decision-making
agents.

Weak control: 
select agent/task pairs 

for further analysis

Agents
Combine Decisions

Objects

Agent with weak 
control capability

Fig. 1.1 Overview of the intelligent tasking problem: how to assign tasks to agents given current
combined decisions.

The canonical situation we consider in this chapter is depicted in Figure 1.1,
showing a crowd of agents providing making decisions about a set of objects, which
can be data points, text documents, images, locations in space and time, or other
items about which a decision is required. The right-hand side of the diagram shows
an agent that combines decisions from the crowd, then exerts weak control to influ-
ence the assignment of agents to objects, represented in the diagram by connecting
arrows. Weak control consists of suggestions and rewards for completing tasks that
meet the weak controller’s goals, and is used in situations where the controller can-
not force agents to complete particular tasks. Such a situation occurs when working
with human agents, who may choose whether to accept or reject tasks, but may be
directed toward completing tasks that are informative to the combiner.

Our previous work [22] focused on principled, Bayesian methods for aggregat-
ing responses from multiple decision-making agents, and inferring agent reliability.
In this chapter we consider the complete system for selecting informative agents,
assigning them to specific tasks and combining their responses. Both the choice of
task and the suitability of an agent’s skills for that particular task affect the utility
of the information we can obtain. By deploying agents effectively, we can minimise
the number of responses required to confidently learn a set of target decisions. This
allows us to analyse larger datasets, reduce the time taken or decrease costs such as
payments required by workers in a crowdsourcing system. We therefore propose an
information-theoretic approach, intelligent tasking, to estimate approximately op-
timal task assignments, which can exploit additional descriptive information ob-
tained through computational analysis of the objects or environment of interest. For
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settings in which the agents are paid to undertake tasks, we introduce an automated
method for selecting a cohort of agents (workers) to complete informative tasks, hir-
ing new members of the cohort and identifying those members whose services are
no longer needed. The results demonstrate clear advantages over more simplistic ap-
proaches, but also indicate opportunities for future work, for example to automate
agent training and motivate human analysts.

This chapter begins by looking at related work on information aggregation sys-
tems and whether they account for these issues. A case study is then introduced
for a crowdsourcing system in which it is important to select and deploy agents
efficiently. In this scenario, we wish to classify a large dataset given a small sub-
set of unreliable, crowdsourced labels. To do so, we extract features from the ob-
jects and use the crowdsourced subset of labels to learn how the features relate to
the target classes. To handle the unreliability of the crowdsourced labels, we pro-
pose extending a Bayesian approach to decision aggregation, namely Dynamic In-
dependent Bayesian Classifier Combination (DynIBCC) [22], to augment discrete
agent decisions with continuous object features in the range [0,1]. This extension is
demonstrated with the crowdsourcing case study, attaining strong performance with
limited data. We then introduce an intelligent tasking framework for optimising the
deployment of agents, balancing the cost of each task with a desire to maximise
information gain. This framework naturally negotiates the need to explore and ex-
ploit the agents’ skills. The approach is used to develop the Hiring and Firing algo-
rithm, which addresses the need to select both tasks and agents in a unified manner,
and shows promising results in our experiments. The final section of this chapter
discusses opportunities for extending intelligent tasking by considering delayed re-
wards, including those obtained through training and motivation of human agents.

1.2 Related Work

In many existing systems, there is no attempt to select agents to perform particular
tasks based on ability or diversity of skills. In Citizen Science applications, such as
Galaxy Zoo [25], the aim is to assign more agents to a task until a clear combined
decision has been made. For example, Galaxy Zoo Supernovae [24], prioritises ob-
jects that have no classifications, and does not request labels for those that already
have a sufficient number of answers that agree. The remaining objects are prioritised
according to the probability of a positive example. Thus, the system uses a heuristic
method to label uncertain objects. The choice of whether to hire more agents to clas-
sify a Galaxy Zoo object is addressed by [15] using a partially-observable Markov
Decision process (POMDP), but this choice is not tailored to the individual agents,
which are not modelled in their approach.

Related work on crowdsourcing has considered the problem of selecting trust-
worthy workers. Web-based crowdsourcing platforms such as Amazon Mechanical
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Turk (AMT)1 allow workers to receive payments for tasks presented through its web
interface, but have been shown to suffer from unreliable workers, including spam-
mers who guess random answers to complete tasks more rapidly for money [5; 14].
Some systems focus on rejecting unreliable workers, but assume constant reliabil-
ity [21; 14; 18]. For example, [21] provides a mechanism for blocking spammers
on the fly. In [18], various algorithms are presented for inferring a single reliability
metric, where priors can be set to identify workers as spammers or hammers, i.e.
trustworthy workers. A method proposed by [14] infers a single error and bias mea-
sure per agent for blocking unreliable workers. Since these methods do not model
the changing worker dynamics, they in effect treat agents’ distant past responses
as a significant indication of current reliability. Thus they are unable to account for
learning, boredom, or the movement of agents who are mobile observers. Worker
dynamics are addressed by [9], who demonstrate how to reject poor performers from
a pool of workers by thresholding a changing reliability value.

In other work on crowdsourcing by [20], tasks are allocated to either humans
or artificial agents according to speed, cost and quality constraints. However, the
system makes decisions according to prior knowledge about agent types rather than
observing the abilities of individuals.

The methods discussed above are restricted to iteratively filtering workers, and
do not consider the choice of task, e.g. which object to label, which affects the
amount of information learned about the target decisions and can influence future
behaviour of agents. Most of these methods assign scalar reliability scores [9; 18;
14], so are unable to consider how a worker’s reliability varies between types of
task, which may be due to their expertise or boredom with a particular type of task.
For example, a bored worker may be reinvigorated by completing a different kind
of task. Therefore, there are advantages to using a representation of the agents’
reliability that accounts for different task types. One such model is a confusion
matrix, employed by DynIBCC [22] and related methods [21; 14; 18; 8], in which
each row characterises an agent’s behaviour with a certain type of task. Each entry in
the confusion matrix captures the likelihood of a particular response given the type
of task. DynIBCC introduces dynamic confusion matrices that capture variations in
reliability over both time and task type. We therefore consider DynIBCC as a model
for making combined decisions within the intelligent tasking approach proposed in
this chapter.

Several pieces of related work have considered active learning with crowdsourc-
ing. Active learning in this context refers to the iterative process of deciding which
objects to label, and choosing a labeller, accounting for the potential unreliability of
the labeller. In [28], a strategy is developed for binary classification where agents are
selected based on how confident they are likely to be for a particular task. However,
reliable confidence measures are often unavailable, especially for human agents,
and offers no way of handling over-confident or under-confident agents. The work
of [6] implements a learning strategy for ranking problems that seeks to maximise
expected information gain over both the model and the target variables, introducing

1 See https://www.mturk.com
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a heuristic parameter to balance the exploitation and exploration of the reliability
model of the workers. In summary, the related work has not yet produced a princi-
pled, unified approach for adaptively selecting individual agents to perform specific
decision-making tasks. The remainder of this chapter develops a methodology to
account for these factors, beginning in the next section with a case study, to which
we our techniques will be applied.

1.3 Case Study: TREC Crowdsourcing Challenge

The work in this chapter relates to an information aggregation problem that re-
quires the efficient use of unreliable workers. As an example of such a problem,
we consider the 2012 TREC Crowdsourcing challenge2, which was a competition
to determine whether documents in a given dataset were relevant to a set of 10
search queries. The complete dataset contains 15,424 documents and 18,260 doc-
ument/query pairs that must be confirmed as true or false. Each search query has
a detailed description of a very specific information need, so that it is not possi-
ble to confidently judge relevance by searching for a short text string. Examples of
topic titles include “definition of creativity” and “recovery of treasure from sunken
ships”, with the descriptions that follow specifying the query more precisely. The
documents were compiled into the TREC 8 corpus, originally sourced from the Fi-
nancial Times, Los Angeles Times and Federal Register.

The aim of the challenge was to use crowdsourcing to obtain accurate docu-
ment relevance classifications, so no training examples were provided for the given
queries. However, with a large number of document/query pairs, it is desirable to re-
duce the number of relevance judgements we need to obtain from the crowd to limit
the time and cost taken to classify the complete dataset. Given a subset of crowd-
sourced training examples, we can use textual features extracted from the documents
to predict the labels of documents that have not been processed by the crowd. These
predictions could potentially be used to prioritise documents for further crowdsourc-
ing, for example, where their classification is most uncertain. This chapter therefore
presents an approach that employs more expensive human agents only when neces-
sary, using cheaper automated techniques when possible, aggregating both types of
information.

Bayesian Classifier Combination is an effective approach to aggregating re-
sponses from unreliable agents, and has been used in separate applications to com-
bine nominal decisions made by people [22] and to aggregate binary textual fea-
tures [17], by treating features in the same way as responses from agents. However,
textual features may also include unbounded discrete variables, such as word counts,
or continuous variables, such as probabilities. It may not be possible to compress all
kinds of feature to a small number of categories without losing important informa-
tion. It is unclear how to choose a threshold for converting a continuous variable to

2 The Text REtrieval Conference, or TREC, consists of several competitions. For the crowdsourc-
ing challenge, see https://sites.google.com/site/treccrowd/.
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a discrete value, so an additional optimisation step may be required to find suitable
thresholds. To address this issue, the next section extends the Dynamic Independent
Bayesian Classifier Combination (DynIBCC) model [22] to handle continuous fea-
tures in the range [0,1], thereby enabling the use of DynIBCC for the TREC Crowd-
sourcing challenge. The following section then presents the results of the compe-
tition, and discusses some of the crowdsourcing issues arising in this scenario that
motivate a unified intelligent tasking approach.

1.4 DynIBCC for Combining Probabilities

Dynamic Independent Bayesian Classifier Combination (DynIBCC) has been
shown to be an effective method for aggregating decisions from multiple agents,
while learning how their reliability varies over time [22]. Tracking changing agent
behaviour allows DynIBCC to account for human agents who learn or become bored
with repetitive crowdsourcing tasks, for example. DynIBCC handles uncertainty in
the model and the combined decisions using the principled mathematical frame-
work of Bayesian inference. This section begins by explaining the DynIBCC model
and showing how it can be extended to accommodate a mixture of discrete variables
and continuous variables in the range [0,1]. The following subsection then describes
an efficient inference algorithm for DynIBCC, which outputs posterior distributions
over a set of target decisions, and over a model of the individual agents’ behaviour.

The graphical model for the modified DynIBCC approach is shown in Fig-
ure 1.2 and is described as follows. The aim is to infer a set of target decisions
t= {ti|i= 1, ..,N}, given a set of agents’ responses c= {c(k)i |i= 1, ..,N,k = 1, ..,K},
and features y = {y( f )

i |i = 1, ...,N, f = 1, ..,F}. As with standard DynIBCC pro-
posed in [22], target decisions ti are drawn from a multinomial distribution with
proportions .

The variables in the blue plate on the left relate to the agents k = 1, ..,K, and
are also the same as standard DynIBCC. The likelihood of response c(k)i from agent
k to object i is given by the confusion matrix, ⇧(k)

t . Each element of this matrix
represents their probability of response given an object with a particular target class
ti = j, at a time t:

p(k)
t, j,l = p(c(k)i = l|ti = j) (1.1)

where l = 1, ..,L is an index into possible agent responses, j = 1, ..,J is an index
into the ground truth target decisions and p(c(k)i = l) represents the probability of
a particular value l of the variable c(k)i . The notation p() is used throughout to rep-
resent the probability of a variable. The subscript t is the time-step at which agent
k labelled object i, so is a position in a sequence of responses from k. Here, we as-
sume that each response by an agent occurs at a separate discrete time-step, but we
could also consider time-steps that represent user sessions or periods in which agents
supply multiple responses. The time-dependent confusion matrix ⇧

(k)
t captures the



1 Bayesian Methods for Intelligent Task Assignment in Crowdsourcing Systems 7

Fig. 1.2 Graphical model for DynIBCC extended to accommodate continuous features. Dashed
arrows indicate dependencies on nodes at other time-steps. The zig-zag line means ti is a switch
that selects parameters from P (k)

t . The shaded node represents observed values. Circular, hollow
nodes are variables with a distribution. Square nodes are variables instantiated with point values.
The blue, left-hand plate corresponds to agents k = 1, ..,K, who each produce a discrete response
c(k)i with a probability ⇧(k)

t,ti , which is selected by the value of a target decision, ti. Parameter ⇧(k)
t,ti

is drawn at time-step t from a Dirichlet distribution with hyperparameters A(k)
t . The yellow, lower-

middle plate corresponds to the target objects i = 1, ..,N, and the red, right-hand plate corresponds
to object features f = 1, ..,F . Each object feature has a latent discrete value x( f )

i , which is drawn
with probability R( f )

t,ti , selected by target value ti. Parameter R( f )
t,ti is drawn at time-step t from

a Dirichlet distribution with hyperparameters B( f )
t . The target decisions are drawn from class

proportions , with hyperparameter‘⌫0.

changing relationship between responses from k and the target decisions we wish to
infer. The use of confusion matrices allows us to treat the agents’ responses as data,
so we can include agents whose responses are correlated with the target decision but
are not direct estimates of that decision. We can also include responses that are the
opposite of what we expect, and agents whose predictive accuracy varies between
different target classes.

The Bayesian treatment of the model requires us to account for uncertainty in
model parameters, including  and ⇡

(k)
t, j , by placing a distribution over their val-

ues. Therefore, we assume a Dirichlet distribution for , with hyperparameters ⌫0.
For the confusion matrices, the jth row ⇡

(k)
t, j of ⇧(k)

t has a Dirichlet prior whose

hyperparameters form a matrix A
(k)
t .

The model is extended from that of through the addition of the right-hand plate,
shaded pink, which relates to continuous features. For features f = 1, ..,F we ob-
serve a probability vector y( f )

i of a latent response variable x( f )
i , which may take

values l = 1, ..,L. In effect, we could view these observed probabilities as spread-
ing a single response between multiple discrete values. Each feature, f , has time-
dependent confusion matrix, R( f )

t = {⇢( f )
t, j | j = 1, ..,J}, where each row ⇢

( f )
t, j is a
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parameter vector for a categorical distribution with elements

r( f )
t, j,l = p(x( f )

i = l|ti = j,R( f )
t ,t = r(i, f )), (1.2)

where r(i, f ) maps the object index i to time t at which the feature f was recorded
for i. For many features, it may be appropriate to assume a static confusion matrix.
However, dynamics may be important if the target decisions undergo concept drift,
or the feature is a sensor reading for a moving target object. The rows in the con-
fusion matrix each have a Dirichlet prior with hyperparameters �( f )

t, j . The matrix of

hyperparameters for all target values j is referred to as B( f )
t = {�( f )

t, j | j = 1, ..,J}.
Features are modelled using confusion matrices in a similar manner to agents, but

are separated here for clarity since the discrete value x( f )
i is unobserved. As with the

agents’ responses, model assumes conditional independence of features given the
target labels t. The observed vector y( f )

i describes a categorical distribution over
the feature value, such that y( f )

i,l = p(x( f )
i = l).

To write the complete model we first define some notation. We define the sets of
all agents’ confusion matrices for all time-steps as R = {R( f )

t |t = 1, ..,T ( f ), f =

1, ...,F} and all features’ confusion matrices for all time-steps as ⇧ = {⇧(k)
t |t =

1, ..,T ( f ),k = 1, ...,K}. Since the order in which an agent sees the objects can vary,
the time-steps are referenced by the subscript t = s(i, l), which is the time-step at
which agent k classified object i. The complete model for the extended DynIBCC is
represented by the joint distribution:

p(t,y,c,,R,⇧|B0,A0,⌫0) =
N

’
i=1

(
kti

K

’
k=1

p(k)

s(i,k),ti,c
(k)
i
.

F

’
f=1

L

Â
l=1

y( f )
i r( f )

r(i, f ),ti,l

)
p(|⌫0)

N

’
t=1

J

’
j=1

(
K

’
k=1

p
⇣
⇡
(k)
t, j |↵

(k)
t, j

⌘
p
⇣
↵

(k)
t, j|↵

(k)
t�1, j

⌘
.

F

’
f=1

p
⇣

r( f )
t, j |�

( f )
t, j

⌘
p
⇣
�
( f )
t, j |�

( f )
t�1, j

⌘)
,

(1.3)

where A0 = {A(k)
0 |k = 1, ..,K} is the set of prior hyperparameters for all agents’

confusion matrices at the first time-step, and B0 = {B( f )
0 | f = 1, ..,F} is the set of

prior hyperparameters for all features’ confusion matrices at the first step.

1.4.1 Variational Inference Algorithm for DynIBCC

Given the model described above, we require an inference algorithm to evaluate
the posterior distribution over the unknown variables, given a set of responses from
the crowd c and features of the objects y. The goal of inference is to estimate the
unknown target decisions t and model parameters ⇧ , R, and . A principled yet
efficient inference algorithm can be derived using variational Bayesian (VB) infer-
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ence and is described in detail in [22]. This method obtains distributions over the
unknown variables in either an unsupervised or semi-supervised manner, naturally
exploiting any training examples of ti that are available. We initialise the algorithm
by setting starting values for expectations with respect to the target decisions and
model parameters. The algorithm then operates in an iterative manner, alternating
between two steps until convergence:

1. Update approximate posterior distributions over the model parameters, ⇧ , R
and , given the current estimates of expected values of the target decisions t.
For any known training examples, use the true values rather than expectations.

2. Update approximate posterior distributions over the unknown target decisions,
t, given the current estimates of expectations with respect to the model param-
eters, ⇧ , R and .

In step 1, the computational cost is dominated by the total number of responses all
agents, Nresponses), and the amount of feature data. Updating terms relating to ⇧
therefore has complexity O(NresponsesJ), where J is the number of target classes.
Updating the terms relating to R has complexity O(NFJ), where N is the number
of objects and F is the number of features. The second step scales similarly with
O(NresponsesJ +NFJ). Thus the algorithm’s costs can be seen as growing linearly
with the amount of data and number of possible target class values. Much of the
updating can be performed in parallel, since the updates corresponding to each target
decision ti are independent of the updates for other objects i, and each series of
confusion matrices ⇧(k) or R( f ) is similarly updated independently of the others.

The number of iterations required by VB depends on the initial values used,
since if these values are close to the final estimates, few iterations will be required.
Therefore if we receive a new observation from the crowd, we can perform an ef-
ficient update by restarting the iterative process from our previous estimates, as-
suming that a single observation will change the posterior distribution only a small
amount. In [22], the VB algorithm was compared using real crowdsourcing data
to another Bayesian approach, Gibbs’ sampling, which is a Markov-Chain Monte
Carlo method [11]. When applied to a sample of this dataset containing 10,000
crowdsourced responses and 660 target objects, the VB algorithm required at most
10 iterations and 0.4 seconds to converge on a standard desktop workstation, while
performing Bayesian inference using required 170 iterations and 3.33 seconds to
obtain the same accuracy. At the same time, the Gibbs’ sampling algorithm did not
substantially increase the accuracy of results compared to the VB algorithm. There-
fore the VB algorithm provides an accurate, scalable, fully-Bayesian method for
updating our posterior distribution online as new labels are received from a crowd.

This extended variant of DynIBCC allows us to obtain agent responses for only
a subset of objects, but predict target decisions for all objects, including those that
have not been labelled directly by the crowd. In situations such as the TREC chal-
lenge, we have descriptive features for all objects, such as the words in the text, so
we can use this method to learn the feature confusion matrices R. The Bayesian
approach quantifies the uncertainty in the feature confusion matrices, along with the
other parameters and latent variables in the model. As the next sections will show,
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this allows us to evaluate the utility of obtaining additional labels from agents to
reduce this uncertainty and increase our confidence in the target decisions.

1.5 TREC Results using DynIBCC + Text Features

The TREC crowdsourcing challenge was addressed through the novel application of
the extended DynIBCC approach. This method allowed the entire corpus of 15,424
documents to be classified with no a priori training labels, by combining 2,500
crowdsourced labels (16% of the corpus) with 2000 textual features for each doc-
ument. crowdsourced labels were supplied to DynIBCC from Amazon Mechanical
Turk (AMT), where human agents completed tasks involving reading a document,
then determining a label, which was either one of ten search queries or the op-
tion “none of the above”. Further details of the crowdsourcing system are described
in [23].

The system also provided textual features from the documents using Latent
Dirichlet Allocation (LDA) [4]. LDA infers a distribution over topics for each doc-
ument according to the words it contains, so that in this implementation, each docu-
ment is associated with a vector of 2000 probability values. These probability values
are treated as observations y of feature values, which are combined with the crowd-
sourced responses, c, using the Bayesian Classifier Combination method described
in the previous section, referred to here as simply DynIBCC.

The system was evaluated by examining 18,260 document/query pairs, which
were verified by a committee as true or false matches [26]. Using the same set of
crowdsourced labels, DynIBCC was compared to a two-stage naı̈ve Bayes method
[23], referred to here as 2StageNB. For this experiment, the confusion matrices in
DynIBCC were fixed so that they did not vary over time. The two-stage method
used a training phase to learn likelihood distributions for binary features given each
target class, treating the crowdsourced labels as reliable classifications. Unlabelled
documents were ignored during the training step and priors were not placed over
the model parameters. In the prediction phase, the two-stage method uses the fea-
ture likelihood distributions to predict the correct search queries for all documents
in the corpus. The results of DynIBCC and the two-stage method were also com-
pared to the systems used by other competitors, which obtained different sets of
crowdsourced responses using a variety of approaches.

The results are given in [26] and summarised in Table 1.1 by the area under the
receiver operating characteristic curve (AUC). The AUC can be seen as an over-
all measure of classification efficacy that is independent of the frequency of each
class. The AUC gives the probability that the classifier will assign a randomly cho-
sen positive example a higher probability of being positive than a randomly chosen
negative example. The AUC is calculated from the receiver operating characteristic
(ROC) [10], which is a plot of a classifier’s true positive rate against false positive
rate for different values of a threshold used to convert the classifier’s predictions to
discrete class values. Each point on the ROC curve therefore corresponds to a par-
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ticular threshold value. All of the classifier’s predictions below that value are taken
as negative classifications, and all those above are assumed to be positive. The true
positive rate at a particular threshold is the fraction of positive examples correctly
identified by the classifier, while the false positive rate is the fraction of negative
candidates incorrectly classified as positive. Thus the ROC curve and AUC account
for the possibility that we may wish to vary the threshold to optimise the false posi-
tive rate and true positive rate for a particular application. The original publication of

Method No. Labels Collected Mean AUC Described in

DynIBCC 2500 0.806 The current section
2StageNB 2500 0.774 The current section
SSEC3inclML 30312 0.914 [19]
UIowaS02r 3520 from crowd + 129

sets of past results
0.881 [12]

NEUNugget12 N/A 0.748 [1]
BUPTPRISZHS 54780 0.597 [29]
INFLB2012 N/A 0.517 N/A
yorku12cs03 N/A 0.479 [13]

Table 1.1 Area under receiver operating characteristic curve (AUC) for competitors in the TREC
Crowdsourcing challenge. DynIBCC refers to the method proposed in this chapter, while the sim-
pler two-stage method is 2StageNB. The other method names refer to systems developed by TREC
competitors; the important competitors are described in the text.

results [27] did not evaluate the AUCs for runs labelled UIowaS02r, BUTPRISZHS,
INFLB2012, and yorku12cs03, as these methods produced only binary classifica-
tions.

In comparison with the two-stage aggregator, the results show the superior
performance of DynIBCC. A likely cause of this increased performance is that
DynIBCC accounts for unreliability in the confusion matrices and the crowdsourced
labels. In contrast, the two-stage classifier trains the model by assuming these labels
are correct and makes predictions assuming that all confusion matrices have been
confidently learned.

Both DynIBCC and 2StageNB outperformed several other approaches, although
various elements of the crowdsourcing system may have contributed to the sys-
tem’s overall performance. None of the other competitors used a Bayesian decision
combination method to account for uncertainty in model parameters relating to the
crowd’s responses or textual features.

Two competitors – SSEC3inclML and UIowaS02r – outperformed DynIBCC
by using a substantially larger amount of data. No limit was placed on the bud-
get allowed for the competition, nor on the number of labels the crowd could pro-
vide. SSEC3inclML [19] labelled every document at least once, obtaining a total
of 30,312 labels. Their intention was to obtain reliable labels by using an expert
information analyst to train an in-house crowd. Machine Learning techniques anal-
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ysed text features to flag up possible errors after all documents had been labelled
once, so that those documents could be re-labelled. UIowaS02r [12], exploited rele-
vance judgements submitted to a previous competition for the same documents and
queries. First, the system ranked the documents in an estimated order of relevance by
combining the rankings from 129 earlier submissions. Then, for each query, the 10
highest ranked documents were marked as positive examples for those queries. The
remaining documents were labelled iteratively in batches of 20 using crowdsourc-
ing, in order of increasing rank. Once an entire batch had been marked irrelevant, no
more batches were sent to the crowd for that search query. While 3,520 labels were
extracted from the crowd, which is approximately 40% more than for DynIBCC, a
far larger number of relevance judgements were contained in the data used from the
earlier competition (the exact number is not given).

The superior outcomes of SSEC3inclML and UIowaS02r may stem primarily
from the far larger numbers of relevance judgements used. However, training the
crowd was also a key feature in SSEC3inclML, and both methods focused on la-
belling difficult or uncertain documents. The information learnt by DynIBCC could
be used to select particular documents for crowdsourcing or automatically train un-
reliable agents, since DynIBCC computes confidence in the target labels t and fea-
ture confusion matrices R, and models the reliability of agents through the confu-
sion matrices, ⇧ . This would require DynIBCC to be run as new labels are received
from the crowd.

50 100 150 200 250 300 350

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Accuracy of AMT Workers over Time

No. Responses

A
c
c
u
r
a
c
y

Fig. 1.3 Accuracy of 16 Amazon Mechanical Turk human agents over time, as inferred by
DynIBCC-VB. The agents all completed at least 7 out of 10 screening tests correctly. However,
note the variation in abilities between agents that is inferred over a longer period. Also note the
different changes in accuracy over time.
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Since the error rates of the agents affect the accuracy of combined decisions, we
performed additional post-hoc analysis using DynIBCC to examine the reliability of
the agents. We ran DynIBCC over the final set of crowdsourced responses, given the
correct decisions, assuming that the confusion matrices vary over time according to
the dynamic model described in [23]. The confusion matrices were then summarised
by a single accuracy value at at each time-step t , calculated as

at =
J

Â
j=1

8
<

:
E[p(k)

t, j, j]

ÂL
l=1,l 6= j E[p

(k)
t, j,l ]

E[k j]

9
=

; , (1.4)

where E[.] is an expected value, as estimated by the variational Bayes inference
algorithm for DynIBCC (Section 1.4). Figure 1.3 plots the accuracy at over time,
showing significant variation and changes to agents. The system used to crowd-
source labels for DynIBCC and 2StageNB employed a simple screening step, in
which agents completed ten documents, for which the correct labels were known.
Agents were then employed if their accuracy on the test tasks was greater than 0.67.
Agents were initialised with the same values for A(k)

0 to give an expected accuracy
of a0 = 0.67. However, the post-hoc analysis inferred accuracies ranging from ap-
proximately 0.35 to 0.96. While some agents appear to have improved over time,
there are also those that deteriorate, four of which do so before they stop providing
more labels. This perhaps suggests a loss of interest in the highly repetitive tasks,
although a thorough investigation of AMT agent behaviour is required to determine
the causes of behavioural changes.

The large variation in agent reliability shown in Figure 1.3, suggests that intelli-
gent selection of agents is important, particularly when the budget or time is limited.
The communities found within a large citizen science application (see [22]) previ-
ously demonstrated the large variation in agents’ behaviour in a different context,
while related work described in Section 1.2 also identifies problems with spammers
in AMT. The varying accuracies shown in Figure 1.3 point to the need for on-going
agent selection to maintain an effective pool of agents.

The remainder of the chapter therefore focuses on a theoretically-motivated in-
telligent tasking approach for agent selection and task assignment. Such a method
should be able to make effective decisions when only a small dataset is available,
as is the case at the start of the crowdsourcing process when few labels have been
received from the crowd.

1.6 A Utility Function for Intelligent Tasking

Intelligent tasking is an information-theoretic approach to determining the optimal
action when aggregating information in a multi-agent system. The remainder of this
chapter focuses on two key problems that intelligent tasking can solve: (1) selecting
informative analysis tasks for agents that enable a model such as DynIBCC to learn
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the target decisions confidently with minimal crowdsourced labels; (2) selecting
and maintaining a reliable pool of agents who can be assigned to analysis tasks
and provide informative responses. The core idea is that every action, such as an
agent responding to an object, can be evaluated by a utility function that defines
value in terms of information gain. Each action consists of an agent, k, performing
a task, i, depending on the application. In a citizen science scenario such as Galaxy
Zoo Supernovae [24], task indexes typically correspond to data points or images
that must be analysed. In scenarios involving mobile agents, tasks may also include
moving to observe from a particular location. Besides such information-gathering
tasks, agents can also take actions that may lead to rewards in the future, such as
carrying out training exercises. It is assumed that the overall goal of the information
gathering exercise is to learn the values of a set of target variables, t and that each
action generates a new observation, c(k)i . We can define a utility function for the
result of an agent k performing task i given previous responses c and object features
y:

U(k, i|c) =
N

Â
i=1

I(ti ;c(k)i |c,y), (1.5)

where I() refers to the Kullback-Leibler Information Gain [16]. Kullback-Leibler
Information Gain is a suitable choice for defining our utility function because it
quantifies the amount of information learned about the target decision ti if we can
predict ti using p(ti |c(k)i ,c,y) rather than p(ti |c,y). It is defined as:

I(ti ;c(k)i |c,y) =
J

Â
j=1

p(ti = j|c(k)i ,c,y) ln

 
p(ti = j|c(k)i ,c,y)

p(ti = j|c,y)

!
. (1.6)

If the logarithms used in this equation are base e, the information gain is measured in
nats, and if base 2 is used, the units are bits. Hence we can measure the information
obtained from an agent and compare this quantity to the information provided by
other agents and by other labelling tasks. Kullback-Leibler Information Gain also
depends on the terms in the conditions c,y, i.e. what we already know, so that
information is only valued if it is complementary to what we have already learned.

The true value of the utility function can only become known once we observe
the value of c(k)i . Intelligent tasking therefore refers to any algorithm that directs
agents to tasks that maximise the expected utility:
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where H(x) is the Shannon entropy, which evaluates the uncertainty of a random
variable x by giving the amount of information learned about x by observing its
value. When logarithms are taken to base e, the entropy is measured in nats. The
expected information gain is therefore the expectation with respect to the label c(k)i
of the reduction in entropy of the target decision ti . This expected information gain
can also be referred to as the mutual information between a response c(k)i and a target
decision ti .

If we take the decision that maximises the expected utility Û(k, i|c), we are also
minimising a loss function that is the negative of the utility function. The Bayesian
decision rule means we take the decision that minimises the expected loss, which is
an admissible decision rule, i.e. there is no better decision given our loss function
and current knowledge [2]. Thus, given that we have defined utility according to
Equation (1.5), the optimal action is to choose the agent-task pair that maximises
Equation (1.7). However, Equation (1.5) is a greedy utility function, i.e. one that
considers only the immediate utility of the next action taken by an agent. If we
use the greedy utility function to assign agents to tasks iteratively as each task is
completed, we are operating with a greedy strategy. Such a greedy strategy is sub-
optimal, meaning that it may not result in the maximum reduction in uncertainty
in the target decisions over multiple iterations. This sub-optimality occurs because
the utility function does not consider how the immediate response will affect later
decisions, nor how future observations might affect the current choice. Therefore,
using the greedy strategy to select objects for an agent to analyse will optimise the
only the utility of the current assignment, rather than future assignments. However,
it leads to far more scalable algorithms and has been shown to be approximately
as good as the optimal algorithm for minimising the number of labels required in
an Active Learning scenario [7]. In applications such as citizen science, it may be
necessary to propose several tasks for an agent, since control over the agents is
limited to the ability to make suggestions, which may be rejected.

The terms in Equation (1.7) can be obtained by learning the DynIBCC model,
or indeed any other Bayesian decision combination model. It is important to use
a model that accounts for uncertainty in the model parameters, otherwise we will
underestimate the entropy in the target decisions, H(ti |c,y), so that the informa-
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tion gain predictions are not meaningful. The term p(ti = j|c,y) can be estimated
by running the DynIBCC algorithm with the current set of observations. The terms
p(ti = j|c,y,c(k)i = l) are calculated by re-running the algorithm for each possible
value of c(k)i = l, which is added as a simulated observation to the current observa-
tions. To encourage rapid convergence of the estimates for p(ti = j|c,y,c(k)i = l),
we can initialise all variables relating to model parameters ⇧ , R and  to their final
values from the earlier run of the algorithm used to estimate p(ti = j|c,y). If the
addition of a single crowdsourced label c(k)i causes only small changes to the dis-
tribution over the target decisions t, then the algorithm in Section 1.4 will require
very few iterations to converge. Section 1.7 explains further how we can use Equa-
tion (1.7) to develop a practical method for selecting agents and analysis tasks in a
crowdsourcing application.

1.6.1 Exploitation and Exploration

This section considers some important properties of Equation (1.7), which defines
the expected utility of obtaining a label c(k)i from agent k for target decision i. This
utility function naturally balances the value of both exploitation and exploration of
the model. Exploitation refers to using the current model to to learn target decisions
t from new crowdsourced responses, while exploration means learning the model
itself. When using DynIBCC, exploration involves learning the confusion matrices
⇧ that describe the agents’ behaviour. Exploration is needed to produce a good
model that we can then exploit to determine which agents are most informative, and
which objects they should analyse. It is therefore important for a utility function to
trade-off between these two cases, which Equation (1.7) achieves without including
separate terms for exploration and exploitation. To see how Equation (1.7) balances
exploitation and exploration, we consider as follows two scenarios where we take a
new label c(k)i for object i.

As the confidence in our model increases, our estimate of the agent’s reliabil-
ity becomes more certain and the entropy over the confusion matrix H(⇡(k)

j )! 0.
With a confident model, we place more value on exploitation, so we expect to see
higher utility for an object i where the target decision ti is uncertain, because we
expect the biggest change between H(ti|c,y) and H(ti|c,y,c(k)i = l) when initial
entropy H(ti|c,y) is high. In contrast, the value of exploration decreases because
we can learn little about the model from c(k)i , so for another object i that agent k
does not supply a new response to, there is little difference between H(ti |c,y) and
H(ti |c,y,c(k)i = l). A numerical example of the agent in this scenario is shown in
Tables 1.2 to 1.4. The agent k = 1 in Table 1.3 has highest utility in Table 1.4 if we
exploit the model by assigning agent 1 to the uncertain object i = 1.

As confidence in our model decreases, the uncertainty over the agent’s reliability
increases, so the entropy H(⇡(k)

j ) ! •. If we do not have a certain model of how
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the response from agent k relates to the target decision ti, the amount we can learn
about ti from agent k is low. Thus the entropy H(ti|c,y,c(k)i = l) of ti on observing
c(k)i = l would change little from the initial entropy H(ti|c,y), and hence Equation
(1.7) would include a low utility for exploiting the model of agent k to learn ti. How-
ever, if the target decision ti is already known with high confidence, observing the
agent’s response to object i informs us about their confusion matrix ⇡

(k)
j and reduces

the entropy H(⇡(k)
j ). This can cause an expected reduction in entropy for an object

i previously classified by agent k, so that the initial entropy H(ti |c,y) is higher than
the expected entropy given c(k)i , which is ÂL

c(k)i =1
p(c(k)i = l|c,y)H(ti |c,y,c(k)i = l).

Thus the utility function includes the value of exploring the model through learning
about objects that were previously analysed by agent k. The target objects that allow
us to explore a model can be gold-labelled tasks, where the ground truth is assumed
to be known with certainty, or silver-labelled tasks), where our model has inferred
the target decision with high confidence from previous crowdsourced responses. Ta-
ble 1.3 shows an uncertain agent k = 2, which has highest expected utility in Table
1.4 if it analyses object i = 3, for which the target decision is known with high cer-
tainty and is an example of a silver task. As an alternative to approaches that insert
gold tasks, silver tasking avoids the need to obtain expert labels that can be treated
as ground truth. By using expected information gain, Equation (1.7) provides an au-
tomatic method of selecting silver tasks when appropriate, allowing us to explore a
model in a completely unsupervised situation. By defining the expected utility in

Obj. ID i = 1 i = 2 i = 3
Unlabelled, uncer-
tain

Incorrectly labelled High certainty

Entropy in target
decision, H(ti|c,y)

2.3 2.3 0.5448

Table 1.2 Numerical example of utility: uncertainty in target decisions for a set of example objects,
measured using Shannon entropy H (nats).

Agent ID k = 1 k = 2 k = 3
Reliable, certain
confusion matrix

Uncertain
confusion matrix

Unreliable, certain
confusion matrix

Entropy in con-
fusion matrix,
H(⇡(k)|c,y)

0.6 12.8 1.2

Table 1.3 Numerical example of utility: uncertainty in agents’ confusion matrices, measured using
Shannon entropy H (nats).
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Object ID
i = 1 i = 2 i = 3

Agent ID: k = 1 20 10 ⇡ 0
k = 2 ⇡ 0 ⇡ 0 4.7
k = 3 ⇡ 0 ⇡ 0 ⇡ 0

Table 1.4 Numerical example of utility: the expected utility of each agent analysing each object,
given by the expected information gain for pairs of agents k and objects i. Note how k = 1 has
a well-known confusion matrix so can be exploited to label an uncertain document, while k = 2
has an uncertain confusion matrix that must be explored by labelling a well-known document. The
unreliable agent has low value in either case, so can be fired in exchange for a new agent.

Equation (1.7) as a sum of expected information gain for all target decisions, we
avoid the need for any explicit exploitation/exploration parameters, as the balance
arises naturally. The next section develops an intelligent tasking algorithm employs
our definition of expected utility to simultaneously maintain a reliable workforce
while selecting informative analysis tasks.

1.7 Hiring and Firing for Crowdsourcing

This section develops an intelligent tasking algorithm suitable for task and agent se-
lection in the TREC crowdsourcing scenario. The approach lays the foundations for
more comprehensive intelligent tasking algorithms that tackle additional decision-
making problems in multi-agent systems, such as training and motivating people.
As a basis, the aim is to select task assignments that maximise the expected utility
given in Equation (1.7), in order to learn a set of target decisions with confidence
using a minimal number of crowdsourced responses. This section begins by outlin-
ing a number of assumptions that allow us to develop a tractable intelligent tasking
algorithm for applications such as the crowdsourcing case study considered earlier
in this chapter.

The first assumption is that multiple tasks can be carried out concurrently by
different agents. While it may seem preferable to use only the best agent available,
in practice this agent is unknown and it is desirable to use several agents to obtain
responses more quickly to meet time constraints. When few gold labels are avail-
able, observing multiple agents improves the model’s ability to distinguish reliable
agents, since agents that agree are less likely to be guessing answers at random.
The algorithm proposed in this section therefore assumes a fixed pool size, Npoolsize,
which is the number of agents currently employed.

The second assumption is that after an agent completes a task, they can either be
re-hired immediately or fired permanently. This arises because if there is a delay in
presenting new tasks, agents on platforms such as Amazon Mechanical Turk (AMT)
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are likely to find an alternative application to work on, so cannot be re-hired after a
period of no tasks.

The final assumption is that new agents are always available to be hired to replace
fired agents or those that choose to leave, and that there is no penalty when replacing
agents. This assumption is suited to large crowdsourcing platforms such as AMT,
where a very large number of agents are easily accessible at any time.

Given the above assumptions, we can specify an algorithm that maintains a pool
of trustworthy agents by replacing those who are uninformative with new agents.
The algorithm should aim to make the optimal decision each time a new response
from an agent is observed: either hire the agent to perform the optimal task for that
agent, or fire the agent and hire a new agent to perform the optimal task for a new
agent. To make this decision, the algorithm evaluates Equation (1.7) multiple times
to determine the expected utility of assigning different objects to the current agent
and to a new, unknown agent from whom we have not yet observed any responses. In
the case that the unknown agent has higher expected utility, they are hired to replace
the current agent. The expected utility Û(u, i|c,y) of the unknown agent, u, depends
on the prior distributions over each row of the confusion matrix ⇡

(u)
j . Informative

priors can be set by observing the performance of agents in the same crowdsourcing
system on a previous set of documents, and taking a mean of their response counts.
The magnitude of the counts must then be reduced so that the variance of ⇡

(u)
j

matches the sample variance of the observed agents.

1.7.1 Hiring and Firing Algorithm

The Hiring and Firing algorithm for intelligent task assignment operates according
to the following steps:

1. Initialise the set of hired agents, H = /0, and idle hired agents, Hidle = /0.
2. Run DynIBCC over current set of data, {c,y} to obtain probabilities of labels

for all objects. Initially, crowd responses c are empty, and we only see features
y.

3. Calculate Û(k, i|c,y) for all tasks, i, and all available agents, k 2Hidle and for
an unknown new agent, u.

4. Set Ntoassign = Npoolsize �Nhired +Nidle where Ntoassign is the number of agents
to assign, and Npoolsize is the desired agent pool size, Nhired is the number of
agents we currently have in our pool, and Nidle is the number of agents in our
pool that are not currently working on a task. The number to assign is therefore
the shortfall in the current agent pool plus the number of idle agents.

5. While Ntoassign > 0:

a. Where k 2 {Widle,u} is any available agent, including an unknown agent,
u, choose the assignment (k, i) that maximises the expected utility, (k, i) =
argmax

k,i
Û(k, i|c,y). The chosen agent is hired to do task i. Do not consider
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any tasks that are currently being completed by other agents, as the other
responses are likely to significantly reduce the utility of any repeated assign-
ments.

b. Remove i from the list of possible task assignments for this iteration to avoid
repeating the task.

c. If k is not the unknown agent, remove k from Widle as they are no longer idle.
d. Set Ntoassign = Ntoassign �1.

6. Any agents remaining in Hidle are fired and removed from H and Hidle
7. Send the selected task/agent pairs to the crowdsourcing system for agents to

complete in parallel; await responses.

a. Any agents who have not yet been hired or fired can complete tasks assigned
to u. When an unknown agent accepts a task, they are added to the pool, H ,
and are no longer treated as unknown.

b. A time-out occurs if a task is not completed within a specified period. The
assigned agent is then removed from H , and the process is repeated from
Step 2 to hire a replacement agent.

c. On receiving a new label from agent k, add k to Hidle, then repeat from Step
2.

In Step 7c, the first iteration will result in Hidle containing only the first agent to
complete their task. In subsequent iterations, multiple agents could have been added
to Hidle while the other steps of the algorithm were being computed. A delay in Step
7c before repeating could be added to wait for more idle agents before the algorithm
is repeated, but the delay should not be long enough to dissuade agents from com-
pleting more tasks. Alternatively, multiple iterations of the algorithm could run in
parallel as each agent completes a task, so that Hidle typically contains only one
agent. Assuming that each assignment is made using all labels currently available
from agents, and the best agent/task pair is chosen from those currently available,
the algorithm is the locally-optimal greedy approach. That is, we cannot improve the
expected utility of the next assignment by using any other decision rule. This pro-
cess combines the screening of agents with selection of informative tasks, avoiding
the need for a separate method to test and screen agents periodically.

1.7.2 Computational Complexity

In the hiring and firing algorithm presented above, step 3 is the most computation-
ally expensive part as it requires us to calculate the utility Û(k, i|c,y) for all avail-
able workers and tasks. In the worst case this requires O(NpoolsizeNJL) calculations
of Û(k, i|c,y), where we have Npoolsize hired workers, N possible analysis tasks, J
target class values and L possible response values from the crowd. Within each of
these calculations we must update the DynIBCC model using the VB algorithm.
The number of iterations required is typically small even for large datasets, and



1 Bayesian Methods for Intelligent Task Assignment in Crowdsourcing Systems 21

the calculations required for each iteration scale with O(NresponsesJ +NFJ), where
Nresponses is the total number of responses received from the crowd.

When dealing with large numbers of objects, the computational cost of Step 3
can be reduced by considering only a subset of objects. This allows us to reduce
the O(NpoolsizeN) term to O(NpoolsizeNsubset), where Nsubset is a small constant and
no longer grows if we have more objects to analyse. For a fair comparison between
agents, the same subset should be used for all agents in one iteration. The aim is to
use a computationally less costly method to obtain a subset of tasks that contains
at least one with expected utility, Û(k, i|c,y), close to that of the locally-optimal
task. In theory, we can improve over selecting tasks for agents entirely at random by
simply using the hiring and firing approach to choose objects from a random subset.

It is possible to select a subset of candidate tasks in an informed way by con-
sidering relationships between objects with similar features and crowd responses.
Objects with similar features are likely to have similar utility, since they will have
similar posterior distributions over their target decisions, and a new crowdsourced
response would affect those posteriors by a similar amount. Therefore, by sampling
the utility function at different points in feature space, we can search for objects that
are close to the locally-optimal expected utility.

To explore the whole feature space, we can obtain a representative sample by
first grouping similar objects into clusters, then selecting a representative object
from each cluster. In the case of the TREC document corpus, each cluster would
represent documents with similar word features and similar topics. If we use small,
highly-specific clusters, we are more likely to sample points that are close to the
optimum, but the size of Nsubset will increase. It may also be possible to optimise
our choice of task by repeatedly selecting and evaluating subsets of documents, thus
improving expected utility over that of the initial subset.

The following experiments show that we can obtain good performance by run-
ning a clustering algorithm once for each iteration of hiring and firing before step
3. We then choose a representative object from each cluster at random. This allows
us to fix the size of subset Nsubset for which the hiring and firing algorithm must
evaluate expected utility. The experiments below use K-means clustering [3] with
k = N/25. This approach explores the feature space while avoiding redundant com-
parisons of highly similar object-agent pairs. Hence, we can limit computational
cost while selecting tasks that provide higher expected information gain than ran-
dom selection.

1.8 Hiring and Firing Experiments

The Hiring and Firing algorithm is compared with four other methods described
below using simulated agents on 600 documents from the TREC crowdsourcing
dataset. Of the documents selected, 37 belong to topic 427 from the TREC8 dataset,
while the rest are randomly selected from documents that were not marked as rele-
vant to the above topic. This experiment combines the same LDA features used in
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Section 1.5 with the simulated agent responses. The experiment was repeated over
20 datasets, each including different irrelevant documents; each algorithm was run
once over all of the datasets.

1.8.1 Simulated Agents

This experiment used simulated agents so that equivalent behaviour can be repli-
cated for each of the algorithms tested. As with the TREC crowdsourcing scenario,
agents are assigned documents by a centralised decision maker, and label them as
relevant to topic 427 or not relevant. The agents’ responses are drawn from a cat-
egorical distribution with a predefined probability of drawing the true category for
a document. As new agents are hired, the probability of drawing the true category
is initialised to either 0.95, 0.8, or 0.5, chosen at random. The initial accuracy cy-
cles through these values as new agents are generated. Thus the hired agents have
mixed reliability from very accurate to uninformative. The ideal performance of the
algorithms is to fire all but the most reliable agents.

To test the ability of the algorithms to deal with deterioration in behaviour, the
agents switch abruptly to an uninformative mode after between 10 and 25 iterations.
In the uninformative mode, the correct and incorrect target labels are chosen at ran-
dom. This shift represents agents changing their behaviour in an attempt to game
the system, becoming bored and clicking answers at random; it is also similar to
the situation where a physical agent or sensor moves and can no longer observe the
target object.

The pool size is set to 5 agents. For each run, 10 initial responses are drawn for
each agent for randomly chosen documents, and the same set of initial responses is
supplied to bootstrap all the algorithms tested. These initial responses are theoreti-
cally not required to run the Hiring and Firing algorithm or the alternative methods,
but saves the computation time of running the algorithms while little information is
available to make informed decisions.

1.8.2 Alternative Methods

The Hiring and Firing algorithm (HF) was compared to a simpler method, referred
to here as online screening (OS), which is similar to that proposed by [9]. The OS
method dynamically tracks the accuracy of agents’ responses using DynIBCC, and
agents are fired when their accuracy drops below a certain threshold. This can be
seen as a simplification of the hiring and firing algorithm, in which the approxi-
mate utility is replaced by a scalar accuracy value, independent of the distribution
over a task’s target decision. For these experiments, the accuracy is calculated using
Equation (1.4) applied to the DynIBCC model updated as each response is received.
Agents are compared against the unknown agent, whose accuracy is determined
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from the prior confusion matrices, so is in effect a fixed threshold. If an agent is
hired, their next task is chosen at random. Thus the computational cost of OS is
lower than that of HF, since it does not calculate the expected utility for different
pairs of agents and tasks. Comparing against the online screening approach high-
lights the advantage of selecting informative tasks for specific agents.

Method Name Agent Model Active Selection? Hiring and Firing?

HF DynIBCC Yes Yes
HFStatic Static IBCC Yes Yes
AS DynIBCC Yes No
OS DynIBCC No, random assignment Yes
Random DynIBCC No, random assignment No

Table 1.5 Features of methods tested for selecting agents and tasks.

We also compared HF with random task selection with no firing (Random), active
selection with no firing (AS), and Hiring and Firing using a static agent model (HF-
Static). The AS method assigns documents to agents intelligently using the same
utility function as Hiring and Firing. However, all original agents are kept on the
books and no new agents are recruited. This simpler method does not save any com-
putation costs but is included to show the advantage of replacing agents using HF
when they become unreliable. HFStatic uses a static variant of DynIBCC to combine
agent responses with text features, which assumes agent reliability is constant [22].
The static method effectively assumes that all responses are made at the same time-
step. This allows more rapid computation, since we do not need to account for the
dependencies between confusion matrices at each time-step. Hence, the calculations
in step 1 of the VB algorithm in Section 1.4.1 can be performed in parallel. Table
1.5 is an overview of the properties of each algorithm. The controlled conditions of
the experiment were intended to show the benefits of each property of the complete
Hiring and Firing algorithm: the ability to track changing performance; intelligent
task selection; and choosing new agents when current agents are not informative.

1.8.3 Results with TREC Documents

Each time new responses were obtained from the simulated crowd, DynIBCC was
run to update the combined class decisions (for HFStatic, static IBCC is used in-
stead). The performance was then measured at each iteration by calculating the re-
ceiver operating characteristic (ROC) [10] of the combined results, then calculating
the area under the curve (AUC). As explained in Section 1.5, the AUC summarises
the probability that a randomly chosen positive example is assigned a higher proba-
bility than a negative example.
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Fig. 1.4 AUC as a function of the number of labels received from agents when using different
task assignment algorithms. The top panel shows the mean AUC over 20 runs, the middle panel
plots the runs with highest final AUC, and the bottom panel plots the runs with the lowest final
AUC. crowdsourced labels are combined with LDA text features from TREC to classify unlabelled
documents. Note the faster increase in AUC with Hiring and Firing (HF and HFStatic) compared to
active learning with no agent selection (AS), online screening of agents assigned to random tasks
(OS), and random assignment with no agent screening (Random). The HF method using a dynamic
model of agent behaviour outperforms HFStatic.
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Figure 1.4 shows the mean AUC over 20 runs as a function of iterations for the
methods in Table 1.5. The HF method has the best performance with a final mean
AUC of 0.69, compared to its nearest competitor, the static variant of HF, with 0.67.
These two are significantly better than for OS, which does not actively select tasks,
with 0.51. Note that for a long period, the mean AUC of all methods is below 0.5 and
a lot of time is spent recovering from this position. A difficulty in this experiment is
that there were only 37 relevant documents and 600 responses from the simulated
crowd, but 2000 LDA features.

After 125 iterations, none of the original set of agents is informative. Examining
the mean AUCs in Figure 1.4, the continuing improvement of HF and HFStatic after
125 iterations shows that they must have fired and hired new agents. This contrasts
with AS, which does not improve after the agents become uninformative. OS also
diverges from HF and HFStatic at 300 iterations, but continues to increase grad-
ually. The Random method diverges from HF and OS around 70 iterations, when
some agents start to become uninformative. The AS and Random methods stagnate
after a period of time, as they are unable to fire agents and the entire pool eventually
becomes uninformative. After 125 labels, all of the original agents are uninforma-
tive and AS and Random cannot attain a high AUC. Note that while Random moves
closer to 0.5, i.e. expressing complete uncertainty, the AS method decreases to be-
low 0.4 for a period.

In the middle panel of Figure 1.4, we show the best individual run for each
method, while the bottom panel shows the worst. This highlights the significant
differences in performance between runs. In its best run, HF reaches 0.98 AUC,
which follows from a starting AUC close to random around 0.5. In contrast, the
worst performance starts with a much lower AUC, near to 0.3, indicating that the
bootstrap labels contained a number of errors that result in the model producing the
reverse of the correct decisions. The worst-case AUC for HF increases steadily, in
contrast to the other methods, which do not show a clear increase in the worst case
within 550 iterations. Decreases in the AUC for HFStatic, OS and AS suggest that
the responses are consolidating an incorrect model.

The Shannon entropy H can be used to measure the confidence of predictions
as new labels are obtained from the crowd, and as such is useful for monitoring an
active learning process used by a crowdsourcing system. The total Shannon entropy
Htotal for all document labels t, given observations c, is defined by

Htotal(t) =�
N

Â
i=1

J

Â
j=1

p(ti = j|c) ln p(ti = j|c). (1.8)

Figure 1.5 shows the mean over 20 runs of the total Shannon entropy of t for the
present experiment. All methods see continued decreases in entropy, with HF and
HFStatic improving most rapidly. For some runs, the AUCs for AS continued to
decrease after the entire agent pool was uninformative; however, the entropy stops
decreasing rapidly after 125 iterations, at the point where none of the new crowd
responses obtained by AS are informative.
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Fig. 1.5 Shannon entropy of the target labels as a function of the number of labels received from
the crowd. crowdsourced labels are combined with LDA document features from TREC to classify
documents that have not been labelled by the crowd. Entropy is averaged over 20 runs. Note the
significantly faster learning rates of the Hiring and Firing approaches (HF and HFStatic) compared
to active learning with no agent selection (AS), online screening of agents assigned to random tasks
(OS), and random assignment with no agent screening (Random).

1.8.4 Synthetic Dataset

In a separate experiment, the methods HF, HFStatic, OS and Random were re-run
over synthetic features to explore whether the LDA features themselves contributed
to the variations in performance over multiple runs. It is possible that for some
datasets, there were too few features that had sufficient correlation with the target
labels. With many unreliable labels and few relevant documents, it is also possi-
ble that clusters of negative documents could be identified as the positive group.
Synthetic features were drawn from Beta distributions to ensure that the only latent
structure in the features related to the target labels. Documents could be relevant to
one of three search queries or to none. For each query, there were 15 features with
a high probability of values close to one. The remaining 205 features were drawn
at random, independent of the query relevance. Hence the features had weak but
known correlation with the search queries.

1.8.5 Results with Synthetic Data

Figure 1.6 shows the mean AUCs over 10 runs. Similar patterns are observed for HF
and HFStatic as with the LDA features. In the best and worst cases, HFStatic pro-
duced better results than HF, although it was worse on average. OS is less extreme
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Fig. 1.6 AUC as a function of the number of crowdsourced labels received using different task
assignment algorithms. AUC measures classifier performance combining synthetic features with
crowdsourced labels. Top panel shows mean AUC over 10 repetitions and 3 topic labels. Middle
panel shows the individual run with highest mean AUC over 3 topic labels. Bottom panel shows
the run with lowest mean AUC over 3 topic labels. Note the faster increase in AUC with Hiring
and Firing (HF and HFStatic) compared to online screening of agents assigned to random tasks
(OS), and random assignment with no agent screening (Random). Note also that the HF method,
which uses a dynamic model of agent behaviour outperforms HFStatic.
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but continues to be overtaken by both Hiring and Firing methods. HF therefore pro-
duced the most consistent results.

Figure 1.7 gives an example of the hiring and firing process in HF. The plot
shows the approximate utility Û(k, i) of the optimal task i for three example work-
ers. Agents k = 1 and k = 2 are reliable throughout the experiment and are hired
throughout by all methods. Agent k = 3 appears to become gradually less informa-
tive until being fired by HF at time step 87. The gradual nature of the change is
likely to be because the model requires a number of observations to become certain
about the unreliability of the agent, but may also relate to a behaviour change in
agent 3.
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Fig. 1.7 Maximum expected information gain calculated using Equation (1.7) for each of three
example agents. The expected information gain is maximised by selecting the most informative
task for that particular agent. Note that the expected information gain for agent 3 decreases at first
gradually, then more suddenly, before being fired since its expected utility drops below that of
hiring a new agent. This decrease occurs either as the system learns more information about the
agent, or as their behaviour changes.

1.8.6 Summary of Results

The Hiring and Firing algorithm is the first iteration of the Intelligent Tasking ap-
proach, and these simulated experiments demonstrate its advantages over more basic
alternatives. HF gains a significant improvement over alternatives through intelli-
gent task selection, hiring new agents effectively, and responding quickly to agent
dynamics.

HF and HFStatic have sharper increases in the mean AUCs compared to the OS
method, although the latter must replace some unreliable agents since it continues
to improve gradually. The different behaviour may result from the hiring and firing
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algorithms selecting documents intelligently, or from better filtering of uninforma-
tive agents. Unlike OS, all three methods using active document selection, i.e. HF,
HFStatic and AS, have rapid decreases in entropy, indicating that we obtain a more
confident model by selecting tasks intelligently using our expected utility function
(see Equation (1.7)). A further advantage of HF over OS may be more clearly re-
alised in a scenario where agents have different skill levels for different types of
task. The HF approach uses the full confusion matrix to evaluate agents, rather than
the single reliability value used by OS. This enables the system to discriminate be-
tween agents with similar overall accuracy but different behaviours and therefore
unequal utility.

The variation between best and worst cases suggests that the initial set of re-
sponses is critical, particularly in this case where one class occurs much more rarely.
It may be possible to improve the hiring and firing algorithm by by selecting the
first set of tasks intelligently. To find positive examples more quickly in real-world
crowdsourcing systems, we could also introduce weak prior information about the
features, for example, by looking at the relationship between features and keywords
in the search query. This would allow the intelligent tasking method to select initial
sets of documents for crowdsourcing that are more likely to be relevant.

When using the synthetic dataset with 250 features, the differences in perfor-
mance between each run were less extreme than with 2000 LDA features. This
highlights the importance of extracting useful features a priori, especially in the
absence of training data.

In the average and best cases, HFStatic also improves throughout the experiment,
but more slowly than fully dynamic HF. Since the model assumes agents are static,
agents that have become uninformative will not be detected until their average con-
fusion matrix over all submitted tasks is worse than that of the unknown agent. In
contrast, DynIBCC is able to detect changes rapidly, as shown in [22]. The worst
case for HFStatic with TREC data (Figure 1.4) shows the AUC declining over time,
which may represent a complete failure to fire uninformative agents. The inclusion
of agent dynamics in the DynIBCC model appears to produce more reliable and
timely intelligent tasking decisions.

HF reduces entropy at a comparable rate to HFStatic. However, HF uses the
DynIBCC model, which has more degrees of freedom than the static IBCC model
used by HFStatic, so we might expect it to be more difficult to learn with a high de-
gree of confidence. These results suggests that the more complex DynIBCC model
can be learned equally fast as the static model in practical applications.

Further experiments with real agents in a crowdsourcing system are needed to test
the performance differences with real behavioural changes and different pool sizes.
Ideally, the experiments should be expanded to larger numbers of target values (e.g.
more search queries) to better compare the use of confusion matrices with single
accuracy measures, such as that used in the OS method.
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1.9 Discussion and Future Work

This chapter focused on the efficient deployment of agents for decision-making
tasks through the use of descriptive feature data and weak control. First, the potential
of DynIBCC to combine continuous-valued features and human agents’ responses
was shown, demonstrating how this enables efficient analysis of a large dataset in the
absence of training examples. Then, an information-theoretic viewpoint was taken
to enable the intelligent assignment of tasks to agents in multi-agent systems, result-
ing in the Hiring and Firing algorithm for crowdsourcing applications such as the
TREC challenge. This algorithm was shown to select tasks and agents effectively,
outperforming more simplistic approaches. A number of avenues for future work are
discussed below, involving the scalability of our algorithms and encouraging more
informative agent responses through training and motivation.

Computation time is a significant obstacle that may require more drastic approx-
imations if intelligent tasking is to be applied to larger datasets or to account for
future utility. At each iteration, the number of comparisons to be made grows with
the number of possible agent-task pairs, but the cost of each comparison also grows
with larger problems. First, consider that the number of DynIBCC runs grows lin-
early with the number of target values (search queries in TREC). Each DynIBCC-
VB run consists of a number of iterations, the complexity of which is difficult to
describe, partly because it depends on the initial values. With a single new response
it is possible to restart the algorithm, adding the new response to the previous data,
and since a single update is unlikely to change the variables significantly, we expect
to run only a small number of iterations. A single DynIBCC-VB iteration is linear
in the total number of agents’ decisions plus the number of features multiplied by
the number of objects. In the experiments above, documents were clustered to re-
duce computational cost, which fixes the number of pairs to compare, but does not
address the scalability of DynIBCC iterations themselves. This may benefit from
further approximating each DynIBCC update.

The document clustering step currently uses a fixed number of clusters, chosen to
limit the computation time of each iteration of Hiring and Firing. In future the choice
of number of clusters could be treated as a meta-decision, which could be optimised
by weighing the expected information gain from using more clusters against the
expected time cost and risk of losing agents.

The priors over the confusion matrices provide a benchmark for deciding whether
to hire or fire agents, which is fixed before the algorithm is started according to
our prior knowledge of similar agents. In future, this prior could be adapted as we
observe more agents completing the current set of tasks, which would reduce the
need to obtain data to set informative priors when running a new application, and
would allow for behavioural shifts in a whole pool of agents. Therefore, a method
is required for updating the prior hyperparameters A0 so that the distribution over
a new agent’s confusion matrix ⇧(k) tends toward the distribution over recently
observed agents in the same pool as more such agents are observed.

For reasons of scalability, the algorithm presented here uses a greedy utility func-
tion. However, intelligent tasking can naturally be extended to consider rewards
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over a longer period. This would enable an intelligent tasking algorithm to natu-
rally select training exercises or stimulating tasks that do not have high immediate
utility, but may increase the productivity of the agents over the longer term. Fu-
ture work is needed to investigate methods for inferring the utility of training tasks
and the information gained by motivating agents through the choice of task. The
information-theoretic framework proposed in this chapter naturally accommodates
such enhancements by allowing the improvements in agents to be measured in terms
of information learned about the variables of interest. Thus, intelligent tasking forms
a principled basis for decision making in information aggregation scenarios.
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