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ABSTRACT 22 

We present a case study demonstrating the use of an “L”-shaped downhole fibre-23 

optic array to monitor microseismicity. We use a relatively simple method to detect 24 

events from continuous waveform data, and develop a workflow for manual event 25 

location. Locations are defined with a cylindrical coordinate system, with the 26 

horizontal axis of the DAS cable being the axis of symmetry. Events are located using 27 

three manual “picks”, constraining (1) the zero-offset “broadside” channel to the 28 

event (2) the P-S wave arrival time difference at the broadside channel, and (3) the 29 

angle, q of the event from the array. Because the one-component DAS array is 30 

unable to record P-wave energy on the broadside channel, the P-wave pick is made 31 

indirectly by ensuring that the modeled P- and S-wave moveout curves match the 32 

observed data. The q angle requires that signal is observed on the vertical part of the 33 

array, in our case this is possible because an engineered fiber, rather than standard 34 

telecommunications fiber, provided a significant reduction in the noise level. 35 

Because only three picks need to be made, our manual approach is significantly 36 

more efficient than equivalent manual processing of downhole geophone data, where 37 

picks for P- and S-waves must be made for each receiver. We find that the located 38 

events define a tight cluster around the injection interval, indicating that this 39 

approach provides relatively precise and accurate event locations. A surface 40 

microseismic array was also used at this site, which detected significantly fewer 41 

events, the locations of which had significantly greater scatter than the DAS array 42 

locations. We conclude by examining some other aspects of the DAS microseismic 43 

data, including the presence of multiple events within very short time windows, and 44 

the presence of converted phases that appear to represent scattering of energy from 45 

the hydraulic fractures themselves.  46 



47 



INTRODUCTION 48 

The use of fiber-optic cables as Distributed Acoustic Sensing (DAS) arrays for 49 

recording downhole seismic data is becoming increasingly common. The predominant 50 

application thus far has been for Vertical Seismic Profiling (e.g., Parker et al., 2014; 51 

Mateeva et al., 2014; Daley et al., 2016). However, the use of DAS for microseismic 52 

monitoring during hydraulic fracturing has also shown significant potential (e.g., 53 

Webster et al., 2016; Molteni et al., 2017; Karrenbach et al., 2017, 2019; Mondanos 54 

and Coleman, 2019).  55 

DAS arrays provide a number of advantages over downhole geophones. The fiber-56 

optic cable can be placed behind the casing of a well, such that a well can be used 57 

both to monitor, and to inject or produce fluid, with minimal intervention. While 58 

geophones can be placed behind casing, this is rarely done in practice. Moreover, 59 

DAS array “channels” (individual recording points) can be closely spaced along the 60 

fiber (typically spacing is at the scale of meters), so a single cable installed along a 61 

well provides very high data fold. Downhole geophone arrays for microseismic 62 

monitoring typically use 10 – 50 geophones (e.g., Maxwell et al., 2010), whereas a 63 

DAS array provides 1000s of channels. Surface-based microseismic monitoring (e.g., 64 

Chambers et al., 2010) typically uses thousands of stations – however, in such settings 65 

the stations are separated from the reservoir by thousands of meters of overburden 66 

rock, which effects the ability of the array to both detect and locate microseismic 67 

events.   68 

However, DAS arrays also pose several challenges for effective microseismic 69 

monitoring. DAS arrays provide a single component (1C) of measurement, providing 70 

axial strain along the cable, while geophone arrays provide three-component (3C) 71 



data, such that the particle motion of the arriving seismic waves can be observed and 72 

used to aid in the event location process (e.g., Jones et al., 2010). The single-73 

component nature of DAS array data creates additional challenges because it cannot 74 

record waves traveling perpendicular to the array (so-called broadside arrivals). This 75 

is because P-waves travelling perpendicular to the array have no strain component 76 

oriented along the cable, and while broadside S waves can, depending on their 77 

polarisation, have a component of particle motion along the axis of the cable, the 78 

strain rate imparted is also zero, and so no signal is recorded (Baird et al., 2019).  79 

The high data fold described above as an advantage also presents a challenge for 80 

DAS arrays. Microseismic data are most effective when used in real time to guide 81 

operational decisions (e.g., Clarke et al., 2019). Therefore, large amounts of data must 82 

be handled quickly to provide real-time microseismic monitoring using a DAS array.     83 

In this paper we present a case study of microseismic acquired with a DAS array. 84 

We use a simple but effective procedure to detect events, and develop a processing 85 

workflow to manually pick and locate events. In this case example an engineered 86 

fiber-optic cable was used, which increases the Rayleigh light back-scatter, resulting 87 

in improved sensitivity, and thus more signal observed across the array. This allowed 88 

signals to be recorded on both the horizontal and vertical parts of an “L”-shaped 89 

array, and thereby resolving the angular ambiguity that is otherwise present for a 90 

single-component, linear-shaped array. A surface-based geophone array was also used 91 

to acquire microseismic data at this site, allowing us to compare the performance of 92 

the DAS array to other types of microseismic data. We also highlight some interesting 93 

aspects of microseismic waveforms that can be observed with the high-fold downhole 94 

acquisition provided by a DAS array.   95 

 96 



Case Study Description 97 

In this paper we present results from a DAS array used to monitor hydraulic 98 

fracturing. Figure 1 shows the monitoring setup. Multiple horizontal wells were 99 

drilled from a single pad, and a fiber-optic cable was installed behind casing in one of 100 

the wells. We have continuous monitoring data over a period of 200 minutes as a 101 

single stage of hydraulic fracturing was conducted in an adjacent well, sampled at 102 

2000 Hz. To give an idea of the data volumes generated by DAS arrays, this 200 103 

minute period covering a single fracturing stage comprises 40 GB of raw data (stored 104 

as 16-bit integer Numpy “.npz” arrays, a compressed binary format containing only 105 

the data array and no metadata).     106 



 107 

Figure 1: Monitoring setup for our case study. Two horizontal wells are drilled from 108 

the same pad to a depth of 3370 m. The dashed grey line shows the monitoring well in 109 

which the fiber-optic cable was deployed – the active channels of the DAS array are 110 

marked by the red line. The solid black line shows the hydraulic fracturing well. 111 

Fracturing stages were conducted along the well – here we present data from a single 112 

stage, marked in green. We define the x- and y- axes as running parallel and 113 

perpendicular to the well trajectories.  114 



   115 

DAS arrays make use of Rayleigh scattering of light along a fiber-optic cable. An 116 

interrogator unit emits a pulse of laser light into the cable and computes the strain rate 117 

along the cable from phase changes within the backscattered energy. Initial DAS 118 

deployments commonly used conventional fiber-optic cable, which is designed 119 

primarily to transmit telecommunication signals, and therefore to minimize scattering. 120 

However, the latest generation of DAS arrays use fiber-optic cables designed 121 

specifically for the purpose, and therefore scatter a larger proportion of the light pulse. 122 

This produces a significant improvement in the signal quality (Richter et al., 2019). 123 

This case study uses a Silixa Carina® Sensing System engineered cable and 124 

interrogator. A direct comparison between cable types is not possible in this case as 125 

no conventional cable was deployed alongside the engineered fiber. However, the 126 

engineered cable and interrogator system were able to detect clear signals for most of 127 

our detected events along both the horizontal and vertical parts of the cable, even for 128 

events that are a substantial distance (approximately 1 km) from the vertical part of 129 

the well. This has often not been the case for previous DAS microseismic cases, 130 

where signals have typically been detected only in the horizontal part of the cable, 131 

unless events were particularly large, or close to the vertical part of the array (e.g., 132 

Webster et al., 2016; Karrenbach et al., 2017; 2019). Unless, signals are recorded on 133 

both vertical and horizontal parts of the array, the event position cannot be fully 134 

constrained. We note that, as DAS interrogator technology continues to develop, it 135 

may be the case that the technology improves to the point that the noise level, even 136 

with standard telecommunications fiber, falls below the lower seismic noise floor, at 137 

which point the choice of fibre will become immaterial.      138 



The total fiber-optic cable length in the monitoring well was 5,673 m, although 139 

data were recorded from the lower 3958 m only. The gauge length for each channel in 140 

10 m, with each “channel” being spaced at 2.028 m, giving 1952 total channels. Data 141 

from the first 60 and last 37 channels were very noisy, and were removed from our 142 

analysis, leaving 1855 channels. The first 650 channels were in the vertical section of 143 

the well, channels 650 to 900 were in the build (i.e. curved) section of the well, and 144 

channels 900 and greater were in the horizontal section, giving the overall DAS array 145 

an “L” shape (Figures 1 and 2). We use a 1D block velocity model, derived from a 146 

sonic log acquired in a nearby vertical well (Figure 3), where the velocity of each 147 

block, spaced at 10 m intervals, is taken as the mean of the sonic log within this 148 

interval.  149 

 150 

 151 
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(b) 155 

Figure 2: Example microseismic event recorded by the DAS array. The moveout of 156 

the P- and S-wave arrivals can be observed on both the horizontal and vertical parts 157 

of the array. A second event is also visible within the coda of the first. In (b) we show 158 

the stack of absolute values over all traces (S(t)). The background noise falls below 159 

our detection threshold of ten (green dashed line), while the microseismic events 160 

exceed it.  161 

 162 

Surface-based microseismic data were also acquired at this site, using a large 163 

number of surface geophones and a beamforming approach (e.g., Chambers et al., 164 

2010). In total, 49 events were recorded by the surface array during the period studied 165 

here. The event catalogue generated from the surface array was provided to us, 166 

however the original waveforms were not available. Therefore, we are reliant on the 167 

catalogue as provided to the operator by a processing contractor, and we are not able 168 

to make an independent quality assessment of the surface microseismic data. 169 

Evidently, this does not make for an ideal comparison, since we are not able to rule 170 

out the surface array detection performance or location accuracy being affected by the 171 

selection of processing method, such as by a poor choice of velocity model, for 172 

example. Nevertheless, microseismic acquisition of this type using a large surface 173 



array with events detected via a beamforming algorithm represents a relatively 174 

standard practice for the industry (e.g., Chambers et al., 2010; Duncan and Eisner, 175 

2010), and the dataset represents an example of the typical data quality produced by 176 

commercial providers, and so makes for a relevant comparison with the DAS array.  177 

Similarly, while the surface array provides a useful means of comparing the typical 178 

quality of data provided by different types of monitoring arrays, we are not able to 179 

directly compare the recorded waveforms, nor can we attempt a joint analysis of the 180 

microseismicity using both arrays.  181 

 182 

 183 

Figure 3: The 1D block velocity model for P and S waves. The dashed grey line at 184 

3367 m marks the mean depth of the horizontal portion of the monitoring well.  185 

 186 

DETECTING AND LOCATING MICROSEISMIC EVENTS USING DAS 187 

Event Detection 188 



When downhole geophones are used for microseismic monitoring, event detection 189 

methods are similar to those used to detect earthquakes with global seismometer 190 

networks. Identification of spikes in running short-term average/long-term average 191 

ratios (STA/LTA) is probably the most often-used approach for event detection (e.g., 192 

Allen, 1978): if STA/LTA values exceed a specified threshold simultaneously on a 193 

sufficient number of stations, a potential event is declared (e.g., Lomax et al., 2012). 194 

Alternatively, other statistical measures such as the Akaike Information Criteria (e.g., 195 

Sleeman and van Eck, 1999), signal polarity (e.g., Kurzon et al., 2014), or kurtosis 196 

(e.g., Tselentis et al., 2012) are commonly used.  197 

These methods require a running computation of statistical parameters on a trace-198 

by-trace basis. This will be computationally expensive for real-time analysis of DAS 199 

array data consisting of thousands of channels. Current research is focussed on using 200 

machine learning to identify microseismic events in DAS data, treating the raw data 201 

as a 2D image in space and time and using image-recognition software to detect 202 

events (e.g., Binder and Chakraborty, 2019).  203 

Here we use a more “rough-and-ready” approach to event detection. Figure 2 204 

shows an example event, and Figure 2b shows the sum of the absolute values of the 205 

recorded data over all channels: 206 

 𝑆(𝑡) = ∑ |()(*)|
+
),-

.
, 207 

where n is the number of channels, and si(t) is the signal recorded on channel i at time 208 

t. We apply a low-pass filter at 300 Hz to supress high-frequency noise as the sole 209 

pre-processing step prior to this operation. Although the recorded arrivals move out 210 



across the array with time, the array has sufficient spatial sampling such that a clear 211 

pulse is seen on the stacked trace where a signal is present, whereas noise on 212 

individual traces is supressed by the averaging procedure represented by the stacking. 213 

We use this as the basis of our event detection, selecting candidate events when the 214 

stack exceeds a selected threshold, in this case a value of S(t) > 10, based on typical 215 

stack values when no signal is present (Figure 2b).  216 

Where the stack exceeds this threshold we declare a potential event, saving the 217 

preceding 0.25 s of data, and the following 1.0 s of data, for further analysis. This 218 

approach produced 384 triggers. Manual analysis of these triggers showed that 42 219 

were coherent noise spikes (see Figure 4). The cause of these spikes has not as yet 220 

been determined, and we do not consider them further here.  221 

The remaining 342 triggers were all microseismic events, a rate of event 222 

occurrence of an event approximately every 35 s. Therefore, all of the triggers 223 

identified by this simple detection method were from coherent “events” (either a 224 

microseismic event or a noise spike event); none were produced by the random 225 

background noise. Of these, 90% were microseismic events and 10% were noise 226 

spikes. Despite the simplistic nature of our detection mechanism, this was sufficient 227 

for manual processing purposes, finding a substantial number of events detected with 228 

a minimal number of false positives. DAS arrays produce large volumes of data, 229 

which would be computationally expensive to process if done in the same way as 230 

geophone data. However, here we show that simple alternatives can provide effective 231 

performance, taking advantage of the high data fold to supress background noise and 232 

identify coherent signals. That said, we re-iterate the fact that the current state-of-the-233 

art methods include the use of machine-learning-based image recognition software to 234 



identify events, treating the data plotted in space and time (e.g., Figure 2) as a 2D 235 

image (e.g., Binder and Chakraborty, 2019); the use of migration-based methods to 236 

focus observed arrivals at source locations; and the use of full waveform inversion.     237 

 238 

(a) 239 

 240 

(b) 241 

Figure 4: Noise spike identified by out detection algorithm. A spike is seen on channel 242 

1290, extending to the end of the cable with zero moveout. A small event is also 243 

visible, although it is not large enough to be picked up by the detection method.  244 

Noise spike

Small event



 245 

Manual Event Location 246 

The simplest and most commonly-used method for locating microseismic events 247 

recorded with downhole geophones is to make picks, either manually or using an 248 

auto-picker (e.g., Lomax et al., 2012) of the P- and S-wave arrival times at each 249 

receiver, and invert these for the best-fitting event location that minimizes the 250 

residuals between observed and modelled travel times. Note that throughout this 251 

paper, we use an Eikonal solver (Sethian and Popovici, 1999) to model travel times 252 

through the 1D velocity model shown in Figure 3.    253 

With over 1,900 individual channels, however, it is clear that manual picking of 254 

this kind as done by, for example, Karrenbach et al. (2019) may be impractical for 255 

rapid analysis of DAS microseismic data. Guided or semi-automatic interactive 256 

picking could have a role to play here. Picks could be made automatically on a trace-257 

by-trace basis, but this will again be computationally expensive to do, and with 1C 258 

data it may be difficult to determine whether automated picks represent P- or S-wave 259 

arrivals, whereas the orthogonal polarity of these phases can be used as a 260 

discriminator when 3C data are available (e.g., Oye and Roth, 2003).  261 

Instead, we develop a manual processing workflow that takes advantage of the fact 262 

that, for DAS array data, events can be located using a cylindrical coordinate system 263 

with the longitudinal axes running along the horizontal portion of the fiber (Figure 5).  264 

The first coordinate is the nearest channel to the event, rc, which can be identified 265 

as the channel at the apex of the hyperbolic P- and S-wave moveout curves. We also 266 



refer to this as the broadside, or zero-offset, channel, as this is the point at which the 267 

arrivals are travelling at 90o to the cable axis.  268 

The distance of the event from the array, dS-P, is defined by the difference in arrival 269 

times between the P- and S-waves at the zero-offset channel. This distance will also 270 

affect the shape of the P- and S-wave moveout hyperbolae across all channels. These 271 

parameters, rc and dS-P, define a circular event locus around the cable – the position of 272 

the event around this circle is constrained by the polar angle q within the polar 273 

coordinate system defined in Figure 5,  defined in this case as the angle clockwise 274 

from the vertical.  275 

 276 
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 279 

(b) 280 

Figure 5: Schematic representation of our event location procedure. In (a) the event 281 

location (grey symbol) is defined by three coordinates (representing a cylindrical 282 

coordinate system with longitudinal axis along the horizontal portion of the well), 283 

shown as a 3D projection (left), and along (upper right) and perpendicular to (lower 284 

right) the fiber axis. The position of the nearest (i.e. broadside) channel along the 285 

cable, rc, the distance of the event from the cable, which is determined from the 286 

differential arrival times between P and S waves, dS-P, and the angle q. In (b) we show 287 

the three picks that are necessary to define these coordinates: the mid-point of the S 288 

wave hyperbola, the times of the first P  and S wave arrivals, and the position of the 289 

arrivals on the vertical part of the array, which are primarily determined by the q 290 

angle.    291 
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We consider some practicalities of locating events in this way below. Firstly, we 293 

note that only three “picks” need to be made to locate an event: the apexes of the P- 294 

and S-wave arrival hyperbolae, and the q angle of the event from well (Figure 5). 295 

Therefore, despite the substantially larger volumes of data involved, manual 296 

processing of DAS microseismic data actually becomes faster than manual picking of 297 

geophone data, where P- and S-wave picks must be made for each station (so, for 298 

example, with a 12-geophone array, 24 individual picks must be made).  299 

Figure 6 shows a close-up view of the P- and S-wave hyperbolae apexes. We note 300 

a loss of P-wave energy at apex position. This is because the P waves are arriving 301 

broadside to the cable, and so there is no component of motion along the cable to be 302 

recorded. This presents a challenge with respect to picking both the time and the 303 

broadside channel for the P-wave apex. In contrast, at the S-wave apex we observe a 304 

polarity flip in the S wave, caused because the DAS array records strain-rate along the 305 

cable, rather than particle velocity.  306 

 307 
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Figure 6: Close-up view of the apexes of the P- and S-wave hyperbolae for an 308 

example event. There is a loss of broadside P-wave energy at the apex. The S-wave 309 

component experiences a polarity flip at the apex, which is used to pick the zero-offset 310 

channel, and the S-wave arrival time at the apex. The loss of P-wave energy means 311 

that the P-wave arrival time at the apex cannot be picked directly. Nevertheless, this 312 

pick can be made and adjusted such that the modeled P- (solid green line) and S-wave 313 

(dashed green line) arrival times match the observed data. Note that a second 314 

polarity flip is also observed in the S-wave arrival at channel 1530 – this is likely to 315 

be a source mechanism effect.  316 

 317 

Figure 7 shows a synthetic S-wave arrival generated using the SAVA (Köhn et al., 318 

2015) finite-difference code (see Baird et al. (2019) for full model details). The 319 

wavefield is sampled at regularly-spaced intervals along a modelled cable. Figure 7a 320 

shows the particle velocity vectors for a horizontally polarised S-wave – the particle 321 

velocity is parallel to the cable axis. Figure 7b shows the resulting particle motion 322 

velocities parallel to the cable axis – velocity is maximised at the broadside channel. 323 

However, Figure 7c shows the resulting strain-rate, which is what the DAS array 324 

records. At the broadside channel, this is a stationary point, i.e., 0. The polarity of the 325 

strain-rate is flipped across the broadside point. This phenomenon therefore provides 326 

a simple way of identifying the apex or broadside channel, as the reversal in S-wave 327 

polarity is usually fairly easy to observe and manually pick, as shown in Figure 6.  328 

 329 



 330 

Figure 7: Modeled particle velocities from a broadside SH-wave arrival. The particle 331 

velocity is maximised at the broadside point. However, the DAS array records strain 332 

rate, the spatial derivative of particle velocity – this is zero at the broadside point, 333 

with a polarity flip on either side.    334 

 335 

Having picked the zero-offset channel, and the S-wave arrival time at this channel, 336 

we return to consider the zero-offset P-wave arrival time which, as described above, 337 

cannot be directly observed as the DAS array cannot record broadside P-wave energy. 338 

However, this parameter defines the distance of the event from the array, which 339 

affects the moveout of both the P-wave and S-wave arrivals across the entire array. 340 

Therefore, rather than attempting to make a P-wave pick on the broadside trace, 341 

where the P-wave arrival is not visible, we select and adjust a P-wave arrival time 342 

such that the modeled arrival time curves for both P and S phases match the moveout 343 

across the array in the observed data (e.g., Figure 6).  344 
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The final parameter that must be defined is q, the polar angle of the cylindrical 345 

coordinate system defined in Figure 5. The effect of q on the arrival times is 346 

demonstrated in Figure 8: the principal impact is on the vertical portion of the array, 347 

since the position of the event above, below or to the side of the array will have a 348 

significant impact on the distance to the vertical portion of the well. Therefore, we are 349 

able to adjust q until a match between the modeled and observed arrival times is 350 

obtained. This match is assessed manually, rather than with any qualitative criteria, 351 

since qualitative criteria would require automatic picks that, as described above, we 352 

wish to avoid for a rapid, manual event location workflow.  353 

Evidently, this requires that the signal is recorded on the vertical part of the array, 354 

which in our case study is achieved by the combination of interrogator and engineered 355 

fiber-optic cable, as opposed to standard telecommunications cables, providing 356 

improved sensitivity across the array (see Case Study description). The use of this 357 

method will therefore be limited by the size of event from which arrivals on the 358 

vertical part of the array will be visible above the noise levels. For this dataset, we do 359 

not have a response function to convert amplitudes recorded by the DAS array from 360 

instrument units into a physical unit from which magnitudes could be determined, and 361 

so we are not able to comment directly on the distance-magnitude relationships over 362 

which such signals could be identified. Nevertheless, we note that for this dataset, 363 

almost all of the detected events had signal that could be observed on the vertical part 364 

of the array, which in this case is approximately 1000 m from the active stage. Taking 365 

a wider view, the detectability of signals on the vertical part of the array will be 366 

strongly dependent on the velocity and attenuation structure at a given site, and on the 367 

background noise conditions.  368 



Similarly, the approach outlined here relies on a velocity model that is accurate 369 

over quite a wide spatial extent, since travel times must be simulated from potential 370 

event locations to every receiver channel. Here, we assumed and 1D block model, and 371 

found that it performed reasonably well, as demonstrated by the fit between modeled 372 

and observed travel times (e.g., Figures 6 and 8). However, as the volume of rock 373 

considered grows larger, the ability of a 1D model to represent it grows smaller, and 374 

3D models may be required. Again, the extent to which this is the case will vary on a 375 

site by site basis.  376 

Finally, we note that in Figure 8, q has a small but noticeable effect on the 377 

moveout curves within the horizontal part of the array as well. This is because the 378 

position of the event above or below the array will determine the layer(s) within the 379 

1D layered velocity model that the arrivals travel through. Therefore, some degree of 380 

iteration may be required to search for the combination of P-wave arrival time pick 381 

and the q angle that produces the best fit to the observed wavefield moveout. In this 382 

case we anticipate that events will primarily occur near to the injection depths, and so 383 

the need for iteration can be minimised by making an appropriate assumption for the 384 

q angle when making the initial P wave pick, although this step is not a necessary 385 

condition, as evidenced by our location of some events (Cluster 3, see below) a 386 

significant distance above the injection well.      387 

Moreover, the dependence of the wavefield moveout on the q angle raises the 388 

possibility that the angular ambiguity may be resolvable even in cases where signals 389 

are not recorded on the vertical part of the array (Baird et al., 2019). This would 390 

clearly require a detailed and well-constrained knowledge of the anisotropic velocity 391 

model above and below the array, since this effect is relatively small.  392 



The remaining location ambiguity, once the three parameters described above have 393 

been constrained, is one of mirror symmetry across the plane defined by the well 394 

trajectory. Events in equivalent positions on either side of this plane will produce 395 

identical arrival times, and therefore they cannot be discriminated. Here we resolve 396 

this ambiguity by placing all events on the southern side of the array, in the direction 397 

of the hydraulic fracture treatment well. This ambiguity is no different to the 180o 398 

ambiguity produced by a single 1D geophone array where the particle motion is used 399 

to define the event azimuth from the well. For geophone arrays, Jones et al. (2010) 400 

demonstrated a way of resolving this using the particle motion dip, although in many 401 

cases this issue is resolved by, as we do here, placing the events on the side of the 402 

array towards the treatment zone. While the 3C particle motion recorded by 403 

geophones always provides this option of using the Jones et al. (2010) method, for 404 

DAS arrays this ambiguity could only be resolved if recordings were made in multiple 405 

monitoring wells simultaneously (e.g., Williams et al., 2017).   406 

 407 



 408 

Figure 8: Example event showing how the angle q of the event from the array impacts 409 

the P-wave (dashed lines) and S-wave (solid lines) arrival times. The purple-shaded 410 

lines show modeled arrivals for 0 < q < 180o in 45o increments, shown by the 411 

coloured dots around the well (viewed along its horizontal axis) in the inset panel, as 412 

well as the preferred angle of q = 110o for this event. The primary effect of q is on the 413 

arrivals on the vertical part of the array (channels 1 – 650). However, we note that q 414 

also has a smaller effect on the moveout within the horizontal part of the well – this is 415 

because events from above, below and to the side of the well may travel through rocks 416 

with different velocities (see Figure 3).    417 

 418 

RESULTS   419 

We perform the manual location procedure described above for all 342 detected 420 

events. Figure 9 shows the resulting locations. Events are clustered around the 421 



perforation interval, as might be expected during hydraulic fracturing, extending to 422 

either side of the well perpendicular to its trajectory (parallel to the y axis). In depth, 423 

the events are found at the depth of the well and extending down to 100 m below. We 424 

do not have any data regarding the geomechanical conditions at this site, or of the 425 

hydraulic fracturing treatment parameters. Nevertheless, these observations match 426 

what might typically be expected from a normal hydraulic fracture, with event 427 

locations originating at the perforations and tracking the propagation of hydraulic 428 

fractures away from the well.  429 

In more detail, we subdivide the events into three clusters (Figure 9): C1 contains 430 

the largest number of events. It is sited at the further end of the perforation interval, 431 

and extends parallel to the y axis roughly 300 m north and 170 m south of the well. 432 

Most of the earlier events during stimulation are found in this cluster. The second 433 

cluster, C2, is found at the nearer end of the perforation interval, again extending 434 

parallel to the y axis. There is a distinct shift in the focus of microseismicity from C1 435 

to C2 during the stimulation period. We interpret these clusters as representing the 436 

growth of multiple hydraulic fractures from the well. Finally, six events are observed 437 

to occur in a separate cluster, again trending parallel to the y axis, roughly 300 m 438 

further along, to the south of, and 400 m shallower than the treatment well. Our 439 

interpretation is that this corresponds to a pre-existing feature that is perhaps being 440 

reactivated by poro-elastic stress transfer produced by the hydraulic fracturing (e.g., 441 

Deng et al., 2016). We note that in the surface microseismic data, which covers 442 

multiple stages within the well, this C3 feature experiences microseismicity during 443 

many of the stages. The purpose of this paper is not to provide a detailed 444 

interpretation of the microseismicity – nevertheless these observations serve to show 445 

the quality of observation that can be provided by a DAS array used for microseismic 446 



monitoring, providing sufficient numbers of events detected, and sufficient precision 447 

of event location, to characterise hydraulic fractures in detail.  448 

 

(a) 

 

 (b) 

Figure 9: Map view (a) and cross-section (b) of the event locations as provided by the 449 

manual picking approach. Events are colored by occurrence time, the monitoring well 450 

is shown with a solid black line, the hydraulic fracturing well by the dashed line, and 451 

the perforation interval is shown by the light blue line. Events are grouped into three 452 

clusters as indicated.  453 

  454 

DISCUSSION   455 

Comparison with Surface Microseismic Events 456 

Surface-based microseismic monitoring was also acquired at this site, and this 457 

provides an opportunity to compare the performance of the different array types. 458 

During the period of study, the surface array detected and located 49 events. We use 459 

the event origin times to co-identify events detected by each array, where we assume 460 

C1C2

C3

Perfs

C1 & C2

C3
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that an event is co-identified by both the surface and DAS arrays if it has origin times 461 

within a window of 1.0 s are found in both catalogues. In some cases, multiple DAS 462 

events are observed within a very short time window (see the section on Multiple 463 

Repeating Events). In such cases, we select the event with the largest amplitudes on 464 

the DAS array as being that which was most likely to be observed by the surface 465 

array.   466 

 Of the 49 events detected at the surface, 43 were also identified by the DAS array 467 

using the method described above, a detection rate of 88 %. In comparison, of the 342 468 

events detected by the DAS array, only 43 were detected by the surface array, a 13 % 469 

detection rate. Clearly, the DAS array provides a marked improvement in event 470 

detection – this is not surprising since the DAS array is considerably closer to the 471 

source region, and so signal strength will be higher.  472 

Figure 10 compares the locations of the DAS array and surface-recorded 473 

microseismic events. In a broad sense, both arrays produce similar results – the more 474 

distant cluster C3 is seen in both cases, while the remainder of the events are found 475 

near to the well perforation. However, the event cloud produced by the surface array 476 

is considerably more diffuse than the DAS array locations, with the majority of events 477 

being placed to the south of the well, and up to 500 m away. In contrast, the DAS 478 

array locations are more tightly clustered, and spread more evenly to the north and 479 

south of the treatment well. The precision of event location is such that two clear sub-480 

clusters (C1 and C2 in Figure 9) can be identified, which is not possible for the more 481 

diffuse event cloud produced by the surface array. In depth view, the surface 482 

microseismic events are scattered over more than 200 m above and below the 483 

treatment well, whereas the DAS array events are all found at the depth of the well, or 484 



to within 100 m below it. The increased uncertainty in depth for surface vs downhole 485 

arrays in particular is a well-acknowledged issue (e.g., Eisner et al., 2009).   486 

The C3 events are found to be systematically 200 m shallower by the DAS array in 487 

comparison to the surface microseismic. Without an independent way of ground-488 

truthing, it is not possible to ascertain which of these locations is more accurate.  489 

Overall, the tight clustering of the DAS array locations around the injection 490 

interval speaks to the improved precision of these locations in comparison to the 491 

surface microseismic, where event locations are much more scattered. The increased 492 

precision allows improved interpretation of the observed microseismicity, for 493 

example in identifying the two sub-clusters around the perforations, which we have 494 

interpreted as representing multiple hydraulic fractures extending from the 495 

perforations.  496 

 497 
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 (b) 

Figure 10: Map view (a) and cross-section (b) comparing event locations from the 498 

DAS array (light grey) and surface microseismic array (black). Dashed lines link the 499 
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same event located by each array. The two wells are shown by the solid and dashed 500 

black lines, while the perforation interval is marked in pink.  501 

 502 

Multiple Repeating Events 503 

Figure 11a shows an example microseismic event detected using the detection 504 

method outlined above. Closer inspection of these waveforms shows that in fact this 505 

“event” consists of four repeating events all occurring within approximately 0.6 s. 506 

Repeating events of this nature were common within the dataset studied here, and 507 

could be identified by visual inspection of the wavefield images, where the P- and S-508 

wave moveout curves characteristic of an event could be seen easily. Figure 11b 509 

shows the same data, but decimated to a single trace per 20 m of array, approximating 510 

what might be recorded for the same sequence of events by a geophone array. 511 

Because the P- and S-wave arrivals from the multiple events overlap, it becomes 512 

difficult to separate and identify them in the geophone data.    513 

 514 



 515 

(a) 516 

 517 

(b) 518 

Figure 11: Example of multiple events occurring within a short time window – in this 519 

case four events occur within approximately 0.6 s. Each P- (red lines) and S-wave 520 

(green lines) arrival is marked. The separate events are relatively easy to identify in 521 



the DAS array data (a) through their characteristic moveout curves. In (b) we show 522 

the equivalent data as it would appear on a geophone array, with 16 stations spaced 523 

every 20 m. Because the P- and S-wave phases from different events overlap, it 524 

becomes challenging to identify the different events.   525 

 526 

   527 

Reservoir Imaging and Subsurface Scatterers 528 

Dyer et al. (2008) showed that pre-existing structures within a reservoir can scatter 529 

microseismic energy. These scatterers can be identified by migration-type algorithms 530 

applied to the coda of microseismic waveforms. Both Dyer et al. (2008) and 531 

Reshetnikov et al. (2015) have applied such methods to the microseismic data 532 

recorded using geophone arrays at the Basel geothermal project, finding structures, 533 

presumed to be fault zones, that scatter the seismic energy. Similarly, Grechka et al. 534 

(2017) applied a migration approach to image hydraulic fractures causing scattering 535 

of seismic energy in the Bakken Shale formation.  536 

The advantage of this type of approach is that it enables the detection of structures 537 

within the reservoir not identified directly by microseismic event locations. Lin and 538 

Zhang (2016) demonstrate this concept using synthetic data and show that, as might 539 

be expected, the quality of the migration image will improve substantially as both the 540 

aperture of the array and the data fold increase. The above studies were all based on 541 

geophone arrays, which have limited aperture and fold. Therefore, identification of 542 

scattering in DAS array data, where both the fold and the aperture are significantly 543 



larger, could provide a significant improvement in our ability to image reservoir 544 

structures.  545 

The high spatial sampling of the microseismic wavefield provided by makes it 546 

relatively easy to identify scattered phases. Figure 12 shows an example of such. A 547 

coherent arrival is observed (green line in Figure 12a), trailing the P-wave arrival by 548 

approximately 0.01 s at its apex, which is positioned off-centre relative to the event 549 

itself. The moveout gradient of this arrival is steeper (i.e. indicating a slower velocity) 550 

than the P-wave curves, indicating that it may be an S wave. We model the arrival 551 

time for a phase that travels as a P wave from the event hypocentre to a scattering 552 

point that is centred on the perforation interval, at a distance of 225 m to the north of 553 

the well, before being scattered as an S wave to be recorded along the array (as shown 554 

in Figure 12b). We find that this modeled arrival time (green line in Figure 12a) 555 

produces a very close match to the observed scattering. The position of this scattering 556 

point is consistent with where one might expect the tips of the hydraulic fractures to 557 

be positioned, and our inference is that the observed arrival represents the scattering 558 

of the microseismic waveform as it interacts with a hydraulic fracture.  559 

It is beyond the scope of this paper to perform a full migration imaging study on 560 

this dataset (as performed by Grechka et al., 2017, for example), and we note that 561 

imaging of this kind will suffer from the same inherent angular ambiguity as event 562 

locations unless the scattered energy can be recorded on both the vertical and 563 

horizontal parts of the fiber, or if more than one fiber is used to acquire data from 564 

adjacent wells. Nevertheless, we note that the large aperture and data fold provided by 565 

DAS array data offers significant potential for improved microseismic imaging 566 

compared to downhole geophone arrays, and that the high spatial sampling of the 567 



wavefield allows scattered phases to be identified relatively easily. Therefore the 568 

possibilities identified here merit further investigation.     569 

 570 

 571 

(a) 572 



 573 

(b) 574 

Figure 12: Example of scattering observed within a microseismic waveform. In (a) we 575 

show the recorded data from the event shown by the orange circle in map view in (b). 576 

The pink curve in (a) shows the modeled P-wave arrival, while the green curve shows 577 

the modeled arrival for a P- to S-wave conversion being scattered from the point 578 

marked by the blue pentagon on (b). In (a) we observe an arrival that initiates at 579 

channel 1,240 and follows the modeled P-to-S conversion travel-time very closely. 580 

Solid and dashed lines in (b) show the monitoring and treatment wells, respectively.  581 

 582 

CONCLUSIONS   583 

We present a case study demonstrating the use of DAS array data to detect and 584 

locate microseismic events during hydraulic fracturing. We use a relatively simple 585 

P

Scattered S



algorithm to detect events, which nevertheless takes advantage of the high fold 586 

provided by DAS array data, enabling us to detect a large number of events (on 587 

average an event per 35 s) with a minimal rate of false positive detection. While more 588 

involved approaches to event detection are being developed, this shows that simple, 589 

computationally inexpensive methods can be successful.  590 

We develop a manual procedure to locate events. Locations are defined within a 591 

cylindrical coordinate system along the horizontal axis of the array. The location is 592 

determined by picking the broadside (or zero-offset) channel, which can be identified 593 

by a characteristic S-wave polarity reversal, and the apexes of the P- and S-wave 594 

arrivals, such that the modelled moveout matches that observed in the data. The angle 595 

q of the event from the array is constrained from the arrival times on the vertical part 596 

of the array. The use of an engineered fibre and improved interrogator provides a 597 

substantial improvement in signal strength such that this is possible.  598 

The resulting event locations are found to be closely constrained around the 599 

perforation interval, with the exception of a more distant cluster of events, which may 600 

represent re-activation of a pre-existing structure via poroelastic effects. Within the 601 

event cloud, location precision is such that features can be resolved within it, which 602 

we interpret as the propagation of multiple hydraulic fractures.  603 

We compare the DAS array locations to those provided by a surface microseismic 604 

array. The DAS array is able to detect many more events than the surface array. 605 

Moreover, the DAS array locations are much more tightly clustered around the 606 

perforations, whereas the surface-based event locations are much more scattered, such 607 

that it is difficult to identify details within the event cloud. While an independent 608 



ground-truth is not possible, it seems apparent that the DAS array locations have 609 

much greater precision than those provided by the surface array.  610 

Finally, we explore some features of further interest within the DAS data. We note 611 

that many events appear to occur as repeating events tightly clustered in time, with 612 

multiple events per second. Because the different phases generated by such sequences 613 

will overlap in time, identifying this with geophone data may be more challenging. 614 

However, the distinctive shapes of the P- and S-wave moveout curves on a DAS array 615 

allow them to be identified. While we do not attempt further interpretation here, this 616 

observation of multiple repeating events may have significance for understanding 617 

hydraulic fracture propagation and microseismic event nucleation.  618 

The wide aperture and high fold of DAS data should be ideally suited for using 619 

microseismic waveforms to image reservoirs using migration-based techniques to 620 

image scattering points (such as faults or existing hydraulic fractures). Although we 621 

do not perform a migration analysis in this study, we note that in our data we are able 622 

to observe scattered phases that are consistent with P-wave to S-wave conversions 623 

from the tips of the hydraulic fractures. However, scattered phases would need to be 624 

observed on both the vertical and horizontal parts of the well, or on multiple adjacent 625 

arrays, for locations of scattering points to be fully constrained.   626 

We anticipate that the various advantages described above, plus some of the 627 

logistical benefits of using DAS arrays, will mean that this method will become 628 

increasingly common for microseismic monitoring. If so, we anticipate that 629 

observations such as these will become increasingly important for imaging subsurface 630 

reservoirs.        631 

 632 
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