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indicate that the simple stomata of

modern bryophytes are a result of
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SUMMARY
The origin of land plants was accompanied by new adaptations to life on land, including the evolution of sto-
mata—pores on the surface of plants that regulate gas exchange. The genes that underpin the development
and function of stomata have been extensively studied in model angiosperms, such as Arabidopsis. How-
ever, little is known about stomata in bryophytes, and their evolutionary origins and ancestral function remain
poorly understood. Here, we resolve the position of bryophytes in the land plant tree and investigate the
evolutionary origins of genes that specify stomatal development and function. Our analyses recover bryo-
phyte monophyly and demonstrate that the guard cell toolkit is more ancient than has been appreciated pre-
viously.We show that a range of core guard cell genes, including SPCH/MUTE, SMF, and FAMA,map back to
the common ancestor of embryophytes or even earlier. These analyses suggest that the first embryophytes
possessed stomata that were more sophisticated than previously envisioned and that the stomata of bryo-
phytes have undergone reductive evolution, including their complete loss from liverworts.
INTRODUCTION

The colonization of land by plants was a foundational event in the

history of life on Earth, opening up entirely new niches for the

diversification of terrestrial life and permanently changing the

carbon cycle [1]. Land plants (embryophytes) are amonophyletic

lineage that evolved from within freshwater streptophyte algae,

radiating c. 470–515 mya [2, 3]. Recent work suggests that their

closest living relatives among streptophytes are the Zygnema-

tales [2, 4, 5], including filamentous forms, such as Spirogyra.

The conquest of land involved adaptations to drier andmore var-

iable environments and, as plants diversified and became larger,

subsequently involved the evolution of transport systems and

more efficient means of resource capture [6, 7]. One pivotal

adaptation of early land plants was stomata, microscopic valves

that occur on the aerial tissues of most land plants. Following the

evolution of the cuticle, stomata enabled the entry of carbon

dioxide and the exit of water vapor, allowing plants to exist in

more arid and variable conditions [1]. Although the development

and function of stomata in the model angiosperm Arabidopsis

thaliana are well described (Figure S2), the evolutionary

origins and ancestral function of stomata remain less well

understood [8–12].

Distinguishing between alternative hypotheses of stomatal

evolution is challenging for two main reasons. First, not all land

plants possess stomata [11], and when present, stomatal func-

tion and morphology vary substantially, from single binucleate

stomata in Funaria [13] to stomata with subsidiary cells in horse-

tails [14] and kidney-shaped stomata in flowering plants, such as

Arabidopsis [15]. Second, the evolutionary relationships among
Current Biology 30, 2001–2012, J
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modern land plants, and the positions of the stomata-bearing

and lacking lineages, remain uncertain.

Long-standing phylogenetic hypotheses place bryophytes

(mosses, liverworts, and hornworts) as a grade at the base of

vascular plants (tracheophytes), a group containing flowering

plants (angiosperms), gymnosperms, ferns, horsetails, and lyco-

phytes [6, 16]. By contrast, recent analyses suggest that mosses

and liverworts form a sister clade to all other embryophytes [2,

17] or that bryophytes form a monophyletic sister group to tra-

cheophytes [18, 19]. These alternative phylogenetic hypotheses

are central to testing hypotheses of stomatal evolution because

liverworts and some mosses lack stomata. Stomata could have

been gained once in the common ancestor of land plants and

then lost [8, 20, 21], or alternatively, they might have been gained

several times independently [11, 22, 23]. Here, we set out to

resolve the phylogeny of land plants, determine the evolutionary

history of genes that underpin stomatal development and func-

tion, and infer the nature of the first stomata.

RESULTS

The recent publication of new genomes and transcriptomes from

the 1KP project [19], including an improved sampling of key

bryophyte lineages, provides an opportunity to re-evaluate the

best supported phylogeny of land plants. We used the orthology

inference tool OrthoFinder [24] in combination with manual gene

family curation (see STAR Methods) to identify 151 single-copy

orthologs from 162 Viridiplantae genomes and transcriptomes,

including 143 land plants and 19 algal outgroups. Analysis of

the concatenated alignment under the best-fitting LG+C60+G+F
une 8, 2020 ª 2020 The Author(s). Published by Elsevier Inc. 2001
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model in IQ-Tree [25] resulted in the topology shown in Figure 1,

in which bryophytes were monophyletic with maximal support

(100% bootstrap). Zygnematales branched sister to embryo-

phytes, consistent with previous findings [2, 4, 5] (reviewed in

[6, 12]).

Bryophyte monophyly demands a reappraisal of early stoma-

tal evolution because it supports the hypothesis that all modern

stomata are homologous; that is, stomata evolved once in the

common ancestor of land plants, and liverworts and some

mosses later lost them secondarily [23]. Based on gene expres-

sion analyses [26, 27] and a review of the literature [21] (Data S1I),

we identified a set of genes that are implicated in stomatal devel-

opment (14 genes) and function (18 genes)—a guard cell ‘‘tool-

kit’’ (see STAR Methods). Many of the genes in the guard cell

toolkit belong to largemultigene families. In investigating their or-

igins, key questions relate to the conservation of orthologs, not

just homologs, of the Arabidopsis genes across the embryo-

phyte tree.

Orthologs are homologous genes that diverged at a speciation

event [28, 29], such as the TMM and TPK1 genes of Arabidopsis

and Physcomitrella patens (Figure 2). Paralogs are genes that

diverged at a duplication event, such as the ABI1 and MYB60

genes of Arabidopsis (Figure 2). Gene or genome duplication

can give rise to a situation inwhich two ormore genes in one spe-

cies are orthologous to a single gene in an outgroup species,

such as PHOT1 and PHOT2 in Arabidopsis to the single PHOT

gene in Physcomitrella; these Arabidopsis genes are co-ortho-

logs of the Physcomitrella gene. This evolutionary perspective

is useful because orthologs are more likely than co-orthologs

and paralogs to have conserved functions [30], enabling us to

draw more reliable inferences about gene function across the

embryophyte tree. That said, independent histories of gene

duplication and loss in different lineages lead to a spectrum of re-

lationships among gene family members in embryophytes, and

so, in what follows, we interpret gene tree topologies and their

implications for shared functions conservatively. To identify or-

thologs of the Arabidopsis guard cell toolkit in other embryo-

phytes, we inferred gene family phylogenies for each toolkit

member and then inferred gene origins, duplications, losses,

and orthology relationships by comparison to the species tree

(Figure 1), using the approach illustrated in Figure 2.

Phylogenetic analyses suggested that orthologs of 7 out of the

14 genes involved in stomatal development were present in the

last common ancestor of embryophytes (Figure 3A). Moreover,

an additional four gene families were predicted to have a single

orthologous representative in that common ancestor but, due

to duplications in the angiosperm lineage, are represented by

two co-orthologous genes in Arabidopsis (Figure 2A), where

the majority of experimental characterization has been carried

out. For these families, the inference of shared function in the

ancestor is weaker because gene duplications are sometimes

followed by functional divergence [30]. For example, our ana-

lyses indicate that ERECTA was present as a single copy in the

embryophyte ancestor; a gene duplication in the stem lineage

of angiosperms then gave rise to ERECTA and ERL1+2, with a

subsequent duplication giving rise to ERL1 and ERL2. Arabidop-

sis ERL1, 2 and ERECTA are collectively co-orthologous to a set

of ERECTA genes [31] in Physcomitrella and other bryophytes

that emerged from bryophyte-specific duplications (Figure S11;
2002 Current Biology 30, 2001–2012, June 8, 2020
see supplemental data on FigShare). Overall, the results suggest

that there has been extensive secondary loss of stomatal devel-

opmental orthologs during the diversification of land plants.

The basic-helix-loop-helix (bHLH) family of proteins, specif-

ically SPCH, MUTE, and FAMA, governs stomatal development

in angiosperms (Figure 6A). Analyses of bHLH gene family evolu-

tion have identified SPCH,MUTE, and FAMA homologs in bryo-

phytes and have suggested that these sequences form a clade

within the broader bHLH evolutionary tree [21]. Our updated

bHLH phylogeny (Figure 4) resolves the relationships within

that clade to suggest that the common ancestor of embryo-

phytes already possessed SMF, FAMA, and a single gene

ancestral to both SPCH and MUTE (SPCH/MUTE). This infer-

ence is supported by our phylogenetic analysis and the pres-

ence, in modern lycophytes, of orthologs of both SMF and

FAMA (Figure 4). This single gene duplicated in the angiosperm

stem lineage after divergence from gymnosperms to form

SPCH andMUTE. These duplicationsmay have been associated

with functional divergence, as reported for the KNOX genes of

land plants (reviewed in [6]). Considerable lineage-specific los-

ses then ensued: SMF was lost in most tracheophyte lineages

and FAMA and SPCH/MUTE were lost in all bryophytes. As

some branches in the bHLH tree had low or moderate bootstrap

support, we tested the alternative hypothesis that FAMA, SPCH,

and MUTE evolved from SMF following the bryophyte/tracheo-

phyte divergence using an approximately unbiased (AU) test;

this alternative was rejected (AU = 0.009).

The most conserved guard cell toolkit gene is SCRM/2, with

orthologs detected in all lineages except two highly derived liver-

worts, Monoclea gottschei and Riccia berychiana (Figure 3A).

The Physcomitrella SCRM protein has been shown to interact

with SMF and to function in stomatal development [9]. Two paral-

ogous genes in Arabidopsis, SCRM1 and SCRM2, evolved

recently (�17.3 mya) from this single-copy form via a gene dupli-

cation [32]; all other plants surveyed, including those without sto-

mata, possess at least one copy of the gene, with some having

experienced lineage-specific duplications. This ubiquitous pres-

ence of SCRM/2 may be due to an alternative role it plays in the

plant cell; one possibility is a role in cold tolerance [33], although

the genetic link to this process has recently been challenged [34].

The hypothesized stomatal development pathway for the com-

mon ancestor of extant embryophytes is reconstructed (Fig-

ure 6C), using the pattern of presence and absence of orthologs

in Figure 3A.

Lineage-specific loss was also observed in the EPF family of

proteins (Figure S4A). Orthologs of EPF1 were identified in Phys-

comitrella and Selaginella moellendorffii, which suggests that the

duplication that generated EPF1 and EPF2 also pre-dated the

divergence of bryophytes and tracheophytes. Bootstrap support

for the EPF1 clade was 60%, although EPF2 received stronger

support at 81%. The phylogeny of mature cleaved EPF1 and

EPF2 also supported the conclusion of the full-length sequence

analyses, albeit with lower bootstrap support (61% and 63%,

respectively; Figure S4B). The maximum likelihood tree is

consistent with the presence of both EPF1 and EPF2 genes in

the embryophyte ancestor, with subsequent loss of EPF2 in all

lineages other than angiosperms and EPF1 in most bryophytes

and some early-diverging tracheophytes (this scenario is de-

picted in Figure 3). However, bootstrap support for the key



Figure 1. A Species Tree of Land Plants

and Their Algal Relatives Provides Robust

Support for Bryophyte Monophyly

The maximum likelihood tree was inferred from a

concatenation of 151 orthologs conserved across

162 Viridiplantae genomes and transcriptomes

using IQ-Tree [25]. The Bayesian information cri-

terion (BIC) was used to select the best-fitting

substitution model (LG+C60+G+F). All branches

that did not receive 100% bootstrap support are

indicated with red branches—full tree file is pro-

vided in the data supplement.
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A B Figure 2. Tracing the Evolution of Stomatal

Toolkit Genes

(A) Relations among homologous genes in modern

plant species. (Co), co-ortholog; (O), ortholog. (i) A

single-copy ortholog conserved between Arabi-

dopsis and Physcomitrella is shown. (ii) Due to a

duplication in the Arabidopsis lineage, the two

Arabidopsis genes are co-orthologous to a single

gene in Physcomitrella. (iii) Due to a duplication

prior to the divergence of bryophytes and tra-

cheophytes, two paralogous gene families are

conserved in Arabidopsis and Physcomitrella;

within each paralogous clade, single-copy ortho-

logs are conserved between Arabidopsis and

Physcomitrella. In real data, independent gene

losses can obscure these relationships, and sin-

gle-gene phylogenies can be used to distinguish

orthology from paralogy. Dark-blue circles indicate

duplication events, and light-blue circles indicate

speciation events.

(B) Gene family origins on the embryophyte tree. (i)

A single-copy ortholog is present in lycophytes

and bryophytes; drawing the gene tree into the

species tree reveals a secondary loss in euphyl-

lophytes. (ii) A single-copy ortholog is conserved

across embryophytes but was duplicated in the

angiosperm stem lineage, leading to a two-to-one

co-orthologous relationship between the angio-

sperm and other embryophyte sequences. (iii) In

many families, we observe a more complex

evolutionary history involving multiple duplications

and independent losses.
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branches is low to moderate, and an AU test could not reject the

alternative scenario in which EPF1 and EPF2 arose from a

tracheophyte-specific duplication following the divergence of

bryophytes and tracheophytes (AU = 0.813). Under this scenario,

the EPF gene in the embryophyte common ancestor would

instead represent a pre-duplication ortholog of Arabidopsis

EPF1/2.

We also observed losses of EPF1, EPF2, and TMM in two tra-

cheophytes that have secondarily lost stomata, namely the

angiosperm Zostera marina, which has previously been reported

to have lost these and other stomatal development genes [35]

and the lycophyte Isoëtes tegetiformans (Data S1A). As EPF1/2

and TMM are negative regulators of stomatal development, their

loss during stomatal reduction likely occurred subsequent to the

deletion of positive regulators. Consistent with this view, double

mutants of epf1 and tmm in Physcomitrella did not lead a

decrease in the number of stomata on the sporophyte capsule

[31], suggesting that the deletion of genes that promote stomatal
2004 Current Biology 30, 2001–2012, June 8, 2020
development likely represents the first

stage of stomatal loss. Interestingly,

EPF1/2 and TMM were the only genes

lost in both Isoëtes and Zostera, indi-

cating that the loss of stomata in these

distinct lineages was associated with a

loss of different positive regulators.

Next, we investigated the origins of

genes involved in stomatal function in

Arabidopsis. Our analysis suggested that
only 6 out of the 18 functional components of the guard cell tool-

kit had orthologs in the embryophyte common ancestor (Fig-

ure 3B). Although homologs of several additional components

(ABI1, PHOT1, and HT1) have been described in Physcomitrella

[36], our analysis indicates that these gene families have under-

gone duplications in the angiosperm stem lineage (ABI1) and

gymnosperm/angiosperm stem lineage (PHOT1 and HT1),

respectively. As gene duplication is often associated with func-

tional change [30], it is difficult to ascribe the functions of these

Arabidopsis genes to the ancestral stomataphyte, despite the

presence of gene family members (‘‘pre-duplication’’ orthologs;

see Figure 3) in both bryophytes and tracheophytes. In the tra-

cheophytes, 11 out of the 18 functional genes in the toolkit

have undergone duplications, and all of these genes have a sin-

gle conserved homolog from the same gene family dating back

to the root of embryophytes (Data S1A).

Phylogenetic analysis of stomatal function genes has recently

been undertaken by Sussmilch et al. [37]. Their analysis of the
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Figure 3. The Presence and Absence of Or-

thologous Genes Involved in Stomatal

Development and Function

(A and B) Single-copy orthologs (solid circles) are

conserved as a single gene in modern plants and

likely perform the same function. Pre-duplication

orthologs (striped circles) are genes that were

present in a single copy in the embryophyte

ancestor but were later duplicated in some (but not

all) lineages; a number of characterized stomatal

toolkit genes in Arabidopsis fall into this category.

Single-copy orthologs of 6/18 genes involved in

stomatal function (B) and 7/14 genes involved in

stomatal development (A) were already present in

the embryophyte common ancestor. Pre-duplica-

tion orthologs of an additional 11 functional and 4

developmental genes were also present in the

stem lineage of land plants, although some of their

stomata-specific functions may have evolved

subsequent to gene duplication in the angiosperm

or spermatophyte lineages. See also Figure S2 and

Data S1A–S1F.
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light signaling kinase BLUS1 suggested that the gene originated

in the common ancestor of angiosperms. Our results agree that

BLUS1 originated in a gene duplication in the angiosperm stem

lineage but also highlight that BLUS1 has a closely related and

highly conserved pre-duplication ortholog dating back to the

streptophyte algae (Figure S3A). BLUS1 interacts with the photo-

tropin PHOT1 in blue light signaling [38]. Interestingly, PHOT1

exhibits a similar phylogeny to BLUS1, with a duplication in the

ancestor of angiosperms leading to PHOT1 and PHOT2, which

are co-orthologous to a single gene in other embryophytes (Fig-

ure S3B). The single phototropin in Marchantia polymorpha,

which is an ortholog of PHOT1/2 (Figure S3B), has been found

to partially rescue the function of an Arabidopsis phot1/phot2

mutant and thus act as a general photoreceptor [39]. Thus, it is

possible that the ortholog of BLUS1 also performs a less specific

signaling role in non-angiosperm embryophytes (Figure S3A).

Orthologs of guard cell ABA signaling pathway genes date

back to the ancestor of embryophytes (PDR3 and SLAC1) or

earlier in archaeplastid evolution (OST1 and GORK; Figure 3B).

Moreover, phylogenies of additional components of the

pathway, such as ABI1 and CDPK6, highlight the presence of

conserved orthologs in the ancestral lineage. The presence of

these genes might suggest that the ability to control guard cell

turgor was present in the ancestral embryophyte.

In order to maximize taxon sampling across the plant tree,

many (162 of 175) of the datasets we analyzed are transcrip-

tomes rather than complete genomes. Ortholog absence from

transcriptome data does not imply absence from genomes but

could instead reflect a lack of expression, and this effect could

inflate the inferred rate of secondary loss near the tips of the

tree. To investigate discrepancies between genome and tran-

scriptome data, we performed a complementary analysis solely

using predicted protein sequences from complete genomes

(Data S1C and S1F). The results were consistent with our full

analysis, with 6/14 development genes and 8/18 functional
genes already predicted to be present at the embryophyte root

(Data S1C). We also observed the same numbers of gene losses

in Marchantia polymorpha for both the genome only and full an-

alyses for both development genes (5 lost) and functional genes

(2 lost). To complement our manually curated gene tree and or-

tholog inferences, we repeated our analyses using the auto-

mated ortholog inference method OrthoFinder [24] (Supple-

mental Information).

DISCUSSION

Our analyses provide additional support for the hypothesis of

bryophyte monophyly [3, 18, 19, 40] and suggest that the sto-

mata of bryophytes and some early-diverging tracheophytes

evolved by secondary reduction from an ancestral form with

higher gene content through loss of genes controlling develop-

ment and function. Our results are consistent with the hypothesis

that the stomata of the ancestral embryophyte were more similar

to those of modern tracheophytes than bryophytes [2, 12], spe-

cifically with the reconstruction of the ancestral development

pathway being more similar to Arabidopsis than Physcomitrella

(Figure 5). The reconstruction suggests that some of the genes

that govern one cell spacing (a developmental process that sep-

arates stomata by at least one cell) [41] and epidermal patterning

pathways of Arabidopsis were present in the ancestral embryo-

phyte (Figure 6C) and are conserved throughout the evolutionary

history of land plants, corroborating the findings of Chater et al.

[21] and Caine et al. [31]. In addition to the presence of TMM,

ERECTA, and EPF1 in the ancestor of embryophytes, our recon-

structions suggest that EPF2, SPCH/MUTE, FAMA, and POLAR

also date back to the last common ancestor of embryophytes

and, therefore, that the stomata of Physcomitrella evolved by

reduction from a more tracheophyte-like ancestor. Our results

are consistent with the hypothesis that the embryophyte com-

mon ancestor already possessed actively controlled stomata,
Current Biology 30, 2001–2012, June 8, 2020 2005



Figure 4. Rooted Phylogenetic Gene Tree for the bHLH Family of Genes, Including SPCH, MUTE, and FAMA

(A) Amaximum likelihood tree rooted on a gene duplication in the bHLH family that likely pre-dated the divergence of bryophytes and tracheophytes, based on the

presence of both clades on either side of the root. By the same reasoning, the root of the SMF/FAMA clademaps at least to the embryophyte root, and so the gene

duplication giving rise to the SMF/FAMA and SPCH/MUTE families must also pre-date the divergence of embryophytes. This suggests that SPCH/MUTE has

been secondarily lost in bryophytes. The duplication of SPCH/MUTE to form SPCH and MUTE occurred in angiosperms after their divergence from gymno-

sperms. The presence of lycophyte sequences within the SMF clade is the key data point, suggesting that SMF dates back to the ancestor of all embryophytes

(and not just bryophytes), with the same being true for duplicated sister clade FAMA (branch has 88% bootstrap support). Thus, the phylogeny of the bHLH family

suggests that the last common ancestor of embryophytes had an ortholog of SMF, FAMA, and a protein that resembles both SPCH and MUTE (SPCH/MUTE). *,

multiple bHLH genes present. Bootstrap support values for key branches are noted.

(B) Graphical representation of the logic used to determine history of the gene family; faded lines represent gene loss.
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with key regulators of the stomatal closure signaling pathway in

response to ABA pre-dating the divergence between tracheo-

phytes and bryophytes (Figure 3) [20]. It has been proposed

that this reductive evolution may not be unique to guard cells

but may also have occurred in other elements of bryophyte

biology, such as in the evolution of the vascular system [12].
2006 Current Biology 30, 2001–2012, June 8, 2020
It is worth noting that our evolutionary reconstruction of ances-

tral stomata is likely incomplete, because we are limited by what

is known about the genes that specify stomata in angiosperms,

particularly Arabidopsis. Genes that are not found in angio-

sperms but that specify stomata in other plant lineages are there-

fore absent from our reconstruction. The variable distribution of
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Figure 5. Rooted Phylogenetic Gene Tree for the SHAKER Family of Genes, Including GORK, SKOR, KAT, and AKT Ion Channels

(A) The tree is rooted on a gene duplication that pre-dated the divergence of embryophytes from their closest algal relatives, giving rise to the GORK/SKOR and

KAT/AKT gene families.GORK and SKOR arose from a recentBrassica-specific gene duplication, andmost embryophytes (including angiosperms) have a single

gene, here called GORK/SKOR. Close relatives of Brassicas have functioning stomata but only have the single copy (GORK/SKOR), suggesting that the protein

was already integral for stomata function prior to the duplication. Sequenced mosses do not possess GORK/SKOR orthologs; given the presence of liverwort

sequences in the GORK/SKOR clade, this implies that the GORK/SKOR gene was lost secondarily in mosses. Note that, although the maximum likelihood tree

places KAT3 at the base of the radiation of AKT/KAT ion channels, an alternative position sister to KAT1/2 was not rejected by AU test (AU = 0.166).

(B) Graphical representation of the logic to determine gene family history; faded lines represent gene loss.
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orthologs across stomata-bearing land plants, and the recent

evolutionary origins of some Arabidopsis components by gene

duplication (e.g., SPCH, MUTE, ERECTA, and YODA), raise the

possibility that uncharacterized genes in bryophytes and early-

diverging tracheophytes may play important roles in the devel-

opment and function of stomata and may have contributed to

stomatal origins and early evolution.

The presence of orthologs of genes regulating stomatal devel-

opment and function in liverworts provides further evidence for

the hypothesis that stomata pre-dated the split between bryo-

phytes and tracheophytes (Figure 3A) and that liverworts are de-

scended from stomata-bearing ancestors [2, 40]. Extant early-

diverging liverworts, such as Treubia lacunose, lack both sto-

mata and air pores [41], suggesting that air pores evolved later

during liverwort diversification. That is, stomata were lost in the

liverwort lineage after its divergence from other bryophytes,

the common ancestor of modern liverworts possessed neither
stomata nor air pores, and air pores evolved subsequently during

the diversification of liverworts [43]. Cumulatively, these ana-

lyses suggest that the liverwort air pore is distinct from stomata

in terms of both evolutionary origin and function. It is possible

that, due to the moist environment favored by extant liverworts,

the need to actively regulate water loss was reduced. In this sce-

nario, the selective pressure to retain energetically expensive

guard cells [44] would be relaxed. The evolution of the static air

pore in more derived liverworts [43, 45] might have provided a

conduit for gas exchange without the unnecessary and costly

active control of guard cell turgor pressure.

An alternative scenario for the origin of the liverwort air pore is

that they evolved to facilitate interaction with prokaryotic symbi-

onts. Work by Alcaraz and colleagues showed that the air pores

of the Marchantia harbor methylotrophic bacteria [46]. Interest-

ingly, liverworts, such as Blasia, which lack both air pores and

stomata, have dome-shaped structures known as auricles on
Current Biology 30, 2001–2012, June 8, 2020 2007



Figure 6. Stomatal Development Pathways for Arabidopsis thaliana and Physcomitrella patens and Reconstruction of the Ancestral Stoma-

taphyte Pathway

(A) Stomatal developmental pathway in Arabidopsis thaliana—figure adapted from [42].

(B) Hypothesized stomatal developmental pathway of Physcomitrella was created by analyzing the presence of orthologs shared with the Arabidopsis devel-

opmental pathway (Figure 3A).

(legend continued on next page)
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the ventral surface, which are occupied by cyanobacterial col-

onies [47]. Further investigation into the genetic underpinnings

of the auricle and the air pore may provide insights into the evo-

lution and function of these structures.

In summary, our analyses suggest that stomata are a homolo-

gous, evolutionarily ancient structure that evolved once in the

common ancestor of all land plants. The stomata of early em-

bryophytes were morphologically and functionally more sophis-

ticated than previously envisioned, and bryophyte stomata un-

derwent reductive evolution. Key developmental and functional

genes were lost in mosses and hornworts, and the structures

were entirely lost from the last common ancestor of modern liv-

erworts and some early-diverging mosses. The results suggest

that the liverwort air pore evolved subsequent to stomatal loss,

likely for a different function.
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Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, TomWil-

liams (tom.a.williams@bristol.ac.uk).

Data and Code Availability
All proteomeand transcriptomedatawas downloaded fromNCBI and the 1KPproject [40, 48, 52, 53] respectively. All query sequences,

multiple sequence alignments and Newick tree files are available on FigShare https://doi.org/10.6084/m9.figshare.10298117, 10.6084/

m9.figshare.10298093 and 0.6084/m9.figshare.10298078.v1 respectively. Custom Python scripts that were used to handle sequence

data and automate BLAST searches have been made available at https://github.com/Brogan-Harris/Phylogenomics.

Materials Availability
There are no materials to report.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Sequence data
A local dataset was compiled from proteomes downloaded from NCBI and transcriptomes from the 1KP project [40, 48, 52, 53]. The

dataset consisted of amino acid sequence data from 177 species of plants and green algae (Data S1G).

Guard cell toolkit
We defined the guard cell toolkit by reference to published mutant phenotypes, functional analyses and gene expression data. For

genes whose products are involved in stomatal function in Arabidopsis, we required both (i) greater expression in guard cells than in

pavement cells and (ii) a published mutant phenotype. Our toolkit therefore represents a conservative, high-confidence estimate of

the suite of genes that specify guard cell development and function in Arabidopsis. The expression levels of guard cell genes were

identified from data published by Bauer et al., and Bates et al. [26, 27]. These genes were then cross-referenced with molecular

studies to ensure that they were implicated in guard cell function. Genes involved in stomatal development are more difficult to iden-

tify because they are not necessarily highly expressed in mature guard cells, and expression data is not always available for the rele-

vant developmental stage. Therefore, genes whose products are involved in stomatal development were identified by review of the

literature on guard cell development. The assembled toolkit and the associated references [54–97] are presented in Data S1I.

METHOD DETAILS

Comparison of manual curated orthology groups and automated approach (Orthofinder)
To complement our manually curated gene tree and ortholog inferences, we repeated our analyses using the automated ortholog

inference method OrthoFinder [24]. Where families could be directly compared, the results agreed (Data S1A–S1E). However, the

OrthoFinder analysis was unable to resolve orthology and paralogy relationships among 10 of the functional genes and one devel-

opmental gene, YODA, that are part of large multigene families in plants, returning very large families (> 1000 members) whose
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histories are difficult to interpret because sequence alignment and tree inference is challenging (Data S1B and S1E). We therefore

focus on the manually curated datasets in the results section.

Phylogenetic analysis
Species tree inference

151 single copy orthologswere identifiedwith Orthofinder [24]; in-paralogswere removedwith a custompython script (https://github.

com/Brogan-Harris/Phylogenomics). The single copy orthologs were aligned using MAFFT [49] and trimmed with BMGE 4.0 with a

BLOSUM40 matrix [50]. The 151 multiple sequence alignments were then concatenated into a super matrix using a custom python

code (https://github.com/Brogan-Harris/Phylogenomics). A bootstrapped maximum likelihood phylogeny was inferred in IQ-Tree

[25], using BIC to select the best-fitting substitution model (LG+C60+G+F; as site heterogeneity is a pervasive feature of plant

sequence evolution [2]), and empirical profilemixturemodels (C10-C60), whichmodel site-specific biochemical constraints and often

improvemodel fit, were included in themodel search. The tree was rooted in accordance with previous published studies [2, 4, 5, 40].

Gene tree inference

BLAST searches for toolkit components using an e-value cut-off of 1e-20 were undertaken on the local dataset described in the

‘Sequence data’ section. Homologous sequences were aligned using MAFFT [49]. The multiple sequence alignments were then

trimmed using BMGE 4.0 with a BLOSUM30 matrix [50] to identify and remove poorly aligning positions. Bootstrapped maximum

likelihood phylogenies were inferred in IQ-Tree [25], using BIC to select the best-fitting substitution model, and as site heterogeneity

is a pervasive feature of plant sequence evolution [2], empirical profile mixture models (C10-C60), which model site-specific

biochemical constraints and often improve model fit, were included in the model search. Trees were rooted in accordance with

the most up to date species tree [2, 19], and the species tree presented in Figure 1 to infer gene origins, duplications and losses

of analyzed genes. Trees were visualized and edited in ITOL [51].

QUANTIFICATION AND STATISTICAL ANALYSIS

Sequence similarity was quantified using BLASTP E-values. Best-fitting phylogenetic models were selected according to the

Bayesian Information Criterion implemented in IQ-Tree ([25]). Branch supports were estimated using UFBoot2 [98] bootstrapping

in IQ-Tree. We used approximately-unbiased (AU) tests [99] to compare support for the scenarios of gene family evolution discussed

in the text, using the maximum likelihood tree that satisfied the relevant topological constraint for comparison in each case.
e2 Current Biology 30, 2001–2012.e1–e2, June 8, 2020
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