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Abstract

Multistable laminates are potential candidates for adaptive structures due

to the existence of multiple stable states. Commonly, such bistable shapes are

generated from the cool-down process of the unsymmetric laminates from the

curing temperature. In this work, we exploit unsymmetric variable stiffness

laminates with curvilinear fiber paths to generate similar bistable shapes as

unsymmetric cross-ply laminates, but with the possibility to tailor the snap-

through loads. Snap-through is a complex phenomenon in that is difficult to

characterize using simple analytical models. An accurate yet computationally

efficient semi-analytical model is proposed to compute the snap-through forces

of bistable variable stiffness (VS) laminates. The differential equations resulting

from the compatibility and the in-plane equilibrium equations are solved with

negligible numerical error using the Differential Quadrature Method (DQM). As

a result, the in-plane stress resultants and the total potential energy is written

in terms of curvatures. The out-of-plane displacements are expressed in the

form of Legendre polynomials where the unknown coefficients of the displace-

ment function are found using the Rayleigh-Ritz formulation. The calculated
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snap-through loads are then compared with the Finite Element (FE) results. A

parametric study is conducted to explore the tailoring capabilities of VS lami-

nates for snap-through loads.

Keywords: Multistability, Variable stiffness composites, Nonlinear plates,

Rayleigh Ritz, Snap-through loads, Residual thermal stresses, Differential

quadrature method

1. Introduction

In the aerospace industry, shape changing capabilities offer significant im-

provement in performance, as compared with fixed geometry and can efficiently

meet different operational requirements. In the recent past, multistable struc-

tures have shown great potential in morphing applications [1, 2, 3, 4, 5, 6, 7],5

especially due to the existence of multiple stable shapes and the ability to remain

in these stable states without any external forces.

Multistable structures can be generated either by utilizing the differential

thermal coefficient of an unsymmetric laminate in orthogonal directions [8],

or as a result of tuning the geometry such as changing Gaussian curvature in10

initially curved shells [9], controlling slit spacing in kirigami-inspired structure

[10] or due to prestressing [11]. However, thermally induced bistable shapes

of unsymmetric laminates often result in a narrow range of shapes limiting its

use in different applications. Haldar et al. [12] observed that variable stiffness

(VS) laminates could be used to generate a wider range of stable shapes than15

that of constant stiffness laminates. Panesar et al. [13, 14] employed a bistable

tow-steered blended laminate to study a morphing trailing edge flap and also

found the optimum fiber direction for maximum out-of-plane displacement and

angle of attack.

A cylindrical bistable configuration without any twisting curvature is typi-20

cally constructed from [0n/90n] unsymmetrical laminate. A similar stable shape

can be also be generated using different options of VS configurations [12, 60].

One such example of VS laminate exhibiting similar cylindrical bistable shape
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as [0n/90n] unsymmetrical laminate is shown in Figure 1.

Snapping in a bistable shell structure is a complex phenomenon, which is25

determined by the interplay between bending and stretching energies. Several

methods have so far been proposed to snap from one stable shape to another,

for example by using external forces [15, 16], electric current [17], magnetic

actuators [18, 19] or induced curvature due to non-mechanical stimuli like tem-

perature and swelling [20, 21]. It has been shown previously that both initial30

curvature and material parameters are two important attributes dictating the

snapping process [22, 23]. Due to their vast augmented design space, VS lami-

nates offer tremendous freedom to tailor material parameters in such a way that

the snapping behavior can be controlled. Thus, in this work, we exploit and

study the dependence of the fiber angle parameters defining curvilinear fiber ori-35

entation on the snap-through loads. It has been previously reported in Diaconu

et al. [24], that even for constant fiber angle laminates, the uniform curva-

ture assumption fails to predict snap-through loads accurately, as the snapping

process involves intermediate non-cylindrical shapes. The same was observed

experimentally by Potter et al. [25]. Higher-order displacement fields are there-40

fore necessary to capture the complex phenomenon of the snap-through event.

However, as observed by Mattioni et al. [26] and Pirrera et al. [15], with such

approximations, the in-plane displacement and strain field expressions lead to

high computational costs. Nonlinear finite element (FE) analysis proves to be

an accurate predictive tool, but the high computational cost may not be suit-45

able for optimization or parametric studies. Therefore, a fast and sufficiently

accurate analytical tool is required to study the snap-through behavior of VS

laminates.

Lamacchia et al. [27] showed that the Differential Quadrature Method

(DQM) proves to be a computationally efficient and robust framework to cap-50

ture the snap-through behavior of constant fiber laminates. The key to this

formulation is to decouple the bending and stretching parts of the total strain

energy, using a semi-inverse constitutive relation. As suggested by Vidoli et al.

[28], it is crucial to solve the membrane problem with negligible numerical error
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to evaluate the stretching energy accurately. To reduce the number of unknowns55

in Lamacchia et al. [27], the in-plane stress resultants are expressed once and

for all in terms of curvatures and thermal strains using the compatibility equa-

tion and the constitutive relations. The total energy is then expressed as a

function of just curvatures and thermal strains. Here we extend the formulation

by Lamacchia et al. [27] and preliminary work done by Haldar et al. [29] for60

VS laminates and derive a computationally efficient and robust technique to

calculate snap-through forces in these laminates.

Snap-through is triggered by applying four concentrated forces at the cor-

ners of a square plate. The contribution of the external forces is subsequently

added to the total energy of the system. Equilibrium states are then found by65

minimizing the total energy. The Hessian of the total potential energy with

respect to the unknown coefficients of the out-of-plane displacement field indi-

cates if the solution is stable or unstable. The developed model is subsequently

compared with FE results. A parametric study is further conducted to explore

the design regimes of VS laminates leading to lower snap-through loads but still70

retaining a similar cool-down shape as a cross-ply laminate.

The novelty of the work revolves particularly around two points. Firstly, a

computationally efficient analytical model is developed to calculate the snap-

through forces for VS laminates in a reasonably accurate way. This model also

helps us to understand the different snap-through modes in VS laminates. Sec-75

ondly, the model is used for the first time to analyze out-of-plane displacements

and snap-through loads for a family of VS-laminates generating similar cylindri-

cal bistable shapes that were until now only possible by using an unsymmetrical

[0n/90n] layup.

The paper is organized into the following sections. Section 2 describes the80

adopted curvilinear fiber trajectory, defining the necessary fiber angle parame-

ters. The following Section 3 describes briefly the adopted methodology followed

by its non-dimensional form in Section 4. The so-called membrane problem,

where the in-plane stresses are calculated numerically using DQM, is described

in Section 5. Section 6 describes the results obtained from the analytical model85
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which are compared with the results obtained from the FE model. The snap-

through loads, as well as the out-of-plane displacements, are calculated in a

parametric study described in Section 7 for the family of VS laminates, whose

cylindrical bistable shapes are similar to those obtained from unsymmetric cross-

ply laminates. Finally, concluding remarks can be found in Section 9.

(a) (b)

Figure 1: Example of bistable shapes generated from an unsymmetric VS laminate

[45〈30|60〉4/45〈−30| − 60〉4]T . The bistable shapes are similar to that obtained from un-

symmetric cross ply laminates.

90

2. Variable stiffness model

With the advent of new fiber placement technologies [30, 31, 32, 33], spatial

variation in the fiber orientation angle can be achieved by placing the fiber in a

curvilinear fashion within the plane of each composite lamina. A considerable

amount of work has been carried out about the mechanical behaviour of com-95

posite laminates with variable fiber orientations. The initial idea of introducing

curvilinear fibers was proposed by Hyer et al. [34, 35], where a laminated square

plate with a central circular hole was investigated using curvilinear fiber paths.

Gürdal and Olmedo [36] adopted a linear variation of fiber paths, and showed

significant improvements in the buckling performance by stiffness tailoring us-100

ing curvilinear fibers. Later, Gürdal [37] also adopted fiber trajectories with

constant curvature based on the definition of circular arcs.

Nonlinear variations of fiber angle have also been adopted by several re-

searchers to enhance the design space, for example using Lagrange polynomi-
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als [38, 39, 40], Bezier curves [41], B-Splines [42, 43] and Lobatto polynomial105

[44, 45]. However, manufacturability constraints should be considered for any

proposed fiber path, to avoid fiber breakage and wrinkling when steering with

a small curvature radius. Some recent works have elucidated the effect of man-

ufacturing constraints on optimal designs of VS laminates [46, 47, 48].

The simple model with a linear variation of fiber angle is widely adopted in110

several works, and has led to manufacturable results. In this paper, the bilinear

fiber variation proposed by Gürdal et al. [49] is extended to a smoother nonlinear

fiber variation at the centroid of the laminate as shown in Figure 2. The original

linear variation by Gürdal et al. [49] imposed a symmetric fiber path around the

centroid of the laminate, which led to a non-differentiable function at this point.115

A smoother transition can obviate numerical errors pertaining to differentiation

of the fiber orientation angle θ near the center of the plate.

The fiber orientation angle θ for the reference fiber path is defined as follows:

θ(x′) = φ+
(T1 − T0)

d

a|x′|3

1 + a(x′)2
+ T0 (1)

where

x′ = x cosφ+ y sinφ. (2)

Figure 3 illustrates different paramaters defining the VS laminate. The angle

parameter T0 refers to the fiber orientation angle at the centroid of the plate120

(point A) whereas T1 refers to the angle at the length d of the plate (point B).

The length d is referred as the ”characteristic length”. The parameter φ is the

angle at which the fiber coordinate system is inclined with the global Cartesian

coordinate system. The other fiber trajectories are constructed by shifting the

reference fiber path in the direction perpendicular to the x′ axis. The standard125

notation to define a particular VS laminate with the abovementioned three

parameters is as follows: φ〈T0|T1〉.

In comparison to the linearly varying fiber angle in the model introduced

by Gürdal et al. [49], an additional parameter a is introduced, which adds

nonlinearity to the variation of fiber orientation angle at the center of the plate.130
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Figure 2: Variation of fiber angle for [45〈15|75〉] a) Bilinear Variation ([49]), b) Nonlinear

Variation with a = 1000

Therefore, the fiber angle variation defined here is similar to the typical linear

variation but with a smoother nonlinear transition of fiber angle at the center

of the plate.
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Figure 3: Parameters defining the curvilinear fiber path ([49])

3. Theoretical Development

3.1. Kinematics135

A material point in the deformed configuration can be expressed as x =

X + u, where u(u, v, w) denotes the displacement vector in the x, y and z

direction, whereas x, X identify the position vectors in the deformed and in

the undeformed reference configuration, respectively. The components of the

displacement vector are defined as [50]:

u(x, y, z) = u0(x, y)−z ∂w0

∂x
, v(x, y, z) = v0(x, y)−z ∂w0

∂y
, w(x, y, z) = w0(x, y) ,

(3)

where the subscript 0 identifies the mid-plane displacements.

The strain components include nonlinear von Kármán strains under the as-

sumption of small strains and moderate rotations and are given by:

εxx =
∂u

∂x
+

1

2

(
∂w

∂x

)2

, εyy =
∂v

∂y
+

1

2

(
∂w

∂y

)2

, γxy =
∂u

∂y
+
∂v

∂x
+
∂w

∂x

∂w

∂y
(4)

which shows the nonlinear strain-displacement relationships. By inserting Eq.
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(3) into Eq. (4), the strain relations can be rearranged as:

ε =


εxx

εyy

γxy

 =


εxx

εyy

εxy

+z


κxx

κyy

κxy

 =


∂u0

∂x + 1
2

(
∂w0

∂x

)2
∂v0

∂y + 1
2

(
∂w0

∂y

)2
∂u0

∂y + ∂v0

∂x + ∂w0

∂x
∂w0

∂y

+z


−∂2w0

∂x2

−∂2w0

∂y2

−2∂2w0

∂x∂y

 = ε+zκ,

(5)

where ε and κ represent the mid-plane strain and curvature vectors, respectively.

3.2. Calculation of total energy140

The total strain energy can be written as:

Π =
1

2

∫
S

[
εTA(x, y)ε

]
dS+

∫
S

[
εTB(x, y)κ

]
dS+

1

2

∫
S

[κD(x, y)κ] dS−
∫
S

N thεdS−
∫
S

M thκdS ,

(6)

where the superscript T denotes vector transpose, N th andM th represent stresses

and moments associated with thermal effects, respectively and dS refers to the

surface element. It should also be noted that as the fiber orientation is a func-

tion of x and y, the ABD matrix also varies with the coordinates of the plate.145

This flexibility to change the stiffness terms of the plate as a function of the

coordinates of the composite gives the designer a wide range of tailoring possi-

bilities. Using the semi-inverse constitutive relations, the strains can be written

in terms of curvatures and stress resultants as follows:

ε = A∗(N +N th) +B∗κ . (7)

The bending and the membrane part of total strain energy can then be decoupled

and written as:

Π =
1

2

Membrane Energy︷ ︸︸ ︷∫
S

[
NTA∗(x, y)N

]
dS+

1

2

Bending Energy︷ ︸︸ ︷∫
S

[
κTD∗(x, y)κ

]
dS

− 1

2

∫
S

[
(N th)TA∗(x, y)N th

]
dS −

∫
S

[
(N th)TB∗(x, y)κ

]
dS

−
∫
S

[
(M th)T Iκ

]
dS ,

(8)
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with150

A∗ := A−1

B∗ := −A−1B

D∗ := D −BTA−1B ,

(9)

where I is the unit matrix. N and M are the vectors containing the resultant

forces and moments respectively. This formulation as shown by Lamacchia et

al. [27] clearly reveals the independent contribution of bending and stretching

parts of the total strain energy. The minimization of Eq. 8 reveals the equilibria

in the admissible space of in-plane and out-of-plane displacements.155

3.3. Membrane Problem

Compatibility of a shallow shell relates the in-plane strains and the curvatures[51,

52].

LA(ε) =
∂2εyy
∂x2

+
∂2εxx
∂y2

− ∂2εxy
∂x∂y

= detκ = κxxκyy − κ2xy/4 , (10)

where detκ denotes the Gaussian curvature. Note that the plate studied in this

work is initially flat and therefore the value of initial curvature is considered to

be zero. The in-plane equilibirum equation can be written as:

divN = 0 on S, N .n = 0 on ∂S , (11)

where n refers to the normal of the plate and ∂S refers to its boundary. By160

combining both the compatibility Eq. 10 and the in-plane equilibrium Eq.

11, the in-plane stress resultants can be expressed in terms of the curvatures,

without the need to introduce separate polynomial functions for the membrane

problem. From the semi-constitutive relation in Eq. 7, the in-plane strains can

be written in terms of stresses and curvatures as:165

LA(A∗N) = detκ− LA

(
A∗N th +B∗κ

)
:= f on S , (12)

where the term LA(A∗N th +B∗κ) is non-zero for VS laminates.

It is important therefore to solve the set of differential equations accurately,

with a good estimation of the in-plane stress resultants. The importance of
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reducing the degrees of freedom by solving the membrane problem only once,

was previously shown by Vidoli [28] and Lamacchia et al. [27]. The membrane170

problem can be solved by applying DQM to Eq. 11 and Eq. 12, where the

individual terms are converted into DQM matrices of weighting coefficients,

which are solved over a Chebyshev-Gauss-Lobatto mesh grid.

4. Non-Dimensional Form

4.1. Formulation175

To minimise the ill-conditioning of the nonlinear model, a non-dimensionalisation

procedure is performed, with (∼) representing the non-dimensionalised form. In

this section, all the components are defined in the dimensionless form. The co-

ordinate axis is defined as x = Lxx̃ and y = Ly ỹ and therefore the displacement

vectors are:180

u = Udũ, v = Vdṽ, w = Wdw̃ . (13)

Further, the strain components can therefore be written in dimensionless quan-

tities as:

ε = Eε̃,κ = Kκ̃ , (14)

where:

• 2Lx and 2Ly are the side lengths of the plate along the Cartesian axes,

• Ud, Vd,Wd are defined as [15, 27] :185

Ud =
1

Lx

√
A∗11A

∗
22D

∗
11D

∗
22

Vd =
1

Ly

√
A∗11A

∗
22D

∗
11D

∗
22

Wd = 4
√
A∗11A

∗
22D

∗
11D

∗
22

(15)

• The in-plane strains and curvatures can be scaled using E and K, as given

below:
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Exx =
1

2

W 2
d

L2
x

, Eyy =
1

2

W 2
d

L2
y

, Exy =
W 2

d

LxLy

Kxx = −Wd

L2
x

,Kyy = −Wd

L2
y

,Kxy = −2
Wd

LxLy

(16)

The thermal forces and the moments can be scaled as: N th = Ñ thτ̃ and M th =

M̃ thτ̃ . Here, τ̃ is defined as:

T − Tref = ∆T0τ̃ , (17)

where T to the current temperature, Tref is the curing temperature and ∆T0

is the difference between curing and room temperature. The thermal force

resultants Ñ th and the moment results M̃ th can be written as:

Ñ th =

nply∑
k=1

∫ zk+1

zk

Qk (x, y)αk (x, y)∆Tdz

M̃ th =

nply∑
k=1

∫ zk+1

zk

Qk (x, y)αk (x, y)∆Tzdz .

(18)

Qk refers to the reduced stiffness matrix whereas αk corresponds to the coeffi-

cient of thermal expansion transformed in the laminate coordinate for the kth

layer.190

Legendre polynomials are used to describe the out-of-plane displacements

w, from which the curvature fields are calculated. The following definition of w

is used:

w̃(x, y) = w̃0(x, y) +

n∑
i=0

n∑
j=0

qijPi(x)Qj(y) , (19)

where w̃0 is the dimensionless out-of-plane displacement at the mid-plane surface

and Pi(x) and Qj(y) are defined as:195

Pi(x) =

l∑
k=0

(
l

k

)(
−l − 1

k

)(
1− x

2

)k

,

Qj(y) =

l∑
k=0

(
l

k

)(
−l − 1

k

)(
1− y

2

)k

.

(20)
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For a 2n-order polynomial, there are (n+1)2 different combinations of shape

functions Pi(x)Qj(y) multiplied with qij unknown parameters. With this ap-

proximation of the out-of-plane displacement w̃, the membrane problem is re-

written in dimensionless form, where the in-plane stresses resultants can be

expressed in terms of the unknown coefficients qij defining w̃.200

4.2. Compatibility Equation

The compatibility equation in the non-dimensional form reads as:

1

2

∂2ε̃yy
∂x̃2

+
1

2

∂2ε̃xx
∂ỹ2

− ∂2ε̃xy
∂x̃∂ỹ

= det κ̃ = κ̃xxκ̃yy − κ̃2xy. (21)

Introducing the operator L̃A which is defined as:

L̃A =

[
1

2

∂2

∂ỹ2
,

1

2

∂2

∂x̃2
,− ∂2

∂x̃∂ỹ

]
, (22)

Eq. 12 can be written in the dimensionless form as:

L̃A(Ñ) = κ̃xxκ̃yy − κ̃2xy − L̃A(E−1A−1Ñ thτ̃) + L̃A(B̃∗κ̃) := f̃ . (23)

The in-plane equilibrium equations can be written as:

(
1

Lx
L̃B(AEÑ) +

1

Ly
L̃C(AEÑ)

)
= 0 on S̃ ∈ [−1, 1]

Ñ .n = 0 on ∂S̃ ,

(24)

where L̃B and L̃C are defined as:

L̃B =


∂

∂x̃
0 0

0 0
∂

∂ỹ

 , L̃C =

0 0
∂

∂ỹ

0
∂

∂ỹ
0.

 (25)

From Eq. 23 and Eq. 24, it is possible to write the in-plane stress resultant Ñ

in terms of the curvatures κ̃ at each point of the DQM grid. Consequently, the

strain energy in its non-dimensional form is:

Π̃ =

∫ 1

−1

∫ 1

−1

(
1

2
ÑT Ã∗Ñ +

1

2
κ̃T D̃∗κ̃− 1

2
τ̃Ãthτ̃ − τ̃B̃thκ̃− τ̃D̃thκ̃

)
dx̃dỹ ,

(26)
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where the non-dimensional material parameters are defined as:

Ã∗ =
LxLy

Πd
ETA∗E, B̃∗ = E−1A−1BK, D̃∗ =

LxLy

Πd
KT D̃∗K

Ãth =
LxLy

Πd

(
Ñ th

)T
A∗Ñ th, B̃th =

LxLy

Πd

(
Ñ th

)T
B∗K, D̃th =

LxLy

Πd

(
M̃ th

)T
K ,

(27)

and

Πd = tr

E 0

0 K

A B

B D

E 0

0 K

 (28)

is a parameter used to scale the total strain energy [15].

4.3. Snap-through205

To model the snap-through, the contribution of the external forces must also

be added in the virtual work equation as:

δṼ = F̃z.δw̃ , (29)

where F̃z is the non-dimensionalized external force applied at the corners of the

bistable plate. The principle of virtual work is written in non-dimensional form

as:

δW̃T = δΠ̃ − δṼ = 0 , (30)

where δW̃T is the scaled total virtual work, δΠ̃ is the first variation of the scaled

strain energy and δṼ refers to the scaled work done by the applied forces.

The unknowns of the displacement field can be easily found using the Rayleigh-

Ritz method. At δW̃T = 0, the minimization of the total energy give the stable

equilibrium shapes.210

∂W̃T (qij)

∂qij
= 0 . (31)

This results in a highly nonlinear system of equations (Eq. (31)) which are

solved using the Newton-Raphson method. Finally, the stability of the com-

puted equilibrium (stable or unstable) evaluated by means of the construction

of the Hessian H, which reads:

H =
∂2W̃T

∂qij∂qkl
, i, j, k, l = 0, ..., n, (32)
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where n is the order of the Legendre polynomial. An equilibrium configuration215

is stable, if and only if the corresponding Hessian matrix (Eq. (32)) is positive

definite.

5. DQM formulation

5.1. Differential Quadrature Method

To solve the system of differential equations resulting from the compatibility220

equation (Eq. 23) and in-plane equilibrium equations (Eq. 24), the Differential

Quadrature Method (DQM) [53] is applied in this work. DQM, first presented

by Bellmann and Casti [54], is a robust quadrature method where the derivatives

of a function at a spatial point are approximated as a weighted sum of all the

functional values at the grid points in the entire domain of the variable. This can225

be applied directly to solve any system of differential equations with boundary

conditions. Raju et al. [55] successfully solved the buckling and post-buckling

of variable angle tow laminates under in-plane shear loading using DQM, and

proved DQM to be an effective tool especially for analyzing simple geometries

without any discontinuity. In DQM, the partial derivatives of a function g(x)230

in matrix form can be written as:

∂g

∂x
= Pxg,

∂g

∂y
= gPT

y ,
∂2g

∂x∂y
= PxgP

T
y

∂2g

∂2x
= Qxg,

∂2g

∂2y
= gQT

y ,
∂4g

∂2x∂2y
= QxgQ

T
y ,

(33)

where P , Q are the DQM coefficients for the first- and second-order partial

derivatives with respect to x and y.

A nonlinear grid distribution as given by Chebyshev-Gauss-Lobatto points

are used in this work to avoid Runga’s phenomenon where oscillations occur at

the edges. The grid distribution is given as follows:

Xi,j =
1

2

[
1− cos

(
i− 1

N − 1
π

)]
, (34)

where i is the number of grid points from 1 to ngx in the x direction and j is

the number of grid point from 1 to ngy in the y-direction.235
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The right hand side of Eq. 23 can be written in the expanded form as:

f̃ = κ̃xxκ̃yy − κ̃2xy +
1

2

(
B̃∗11κ̃xx,yy + B̃∗12κ̃yy,yy + B̃∗13κ̃xy,yy + κ̃xxB̃

∗
11,yy + κ̃yyB̃

∗
12,yy

+ κ̃xyB̃
∗
13,yy + B̃∗21κ̃xx,xx + B̃∗22κ̃yy,xx + B̃∗23κ̃xy,xx + κ̃xxB̃

∗
21,xx + κ̃yyB̃

∗
22,xx

+ κ̃xyB̃
∗
23,xx

)
−
(
B̃∗31κ̃xx,xy + B̃∗32κ̃yy,xy + B̃∗33κ̃xy,xy + κ̃xxB̃

∗
31,xy + κ̃yyB̃

∗
32,xy

+ κ̃xyB̃
∗
33,xy

)
+
(
B̃∗11,yκ̃xx,y + B̃∗12,yκ̃yy,y + B̃∗13,yκ̃xy,y + B̃∗21,xκ̃xx,x + B̃∗22,xκ̃yy,x

+ B̃∗23,xκ̃xy,x − B̃∗31,xκ̃xx,y − B̃∗32,xκ̃yy,y − B̃∗33,xκ̃xy,y − B̃∗31,yκ̃xx,x − B̃∗32,yκ̃yy,x

− B̃∗33,yκ̃xy,x

)
− 1

2

(
Γ11Ñ

th
xx,yy + Γ12Ñ

th
yy,yy + Γ13Ñ

th
xy,yy + Ñ th

xxΓ11,yy + Ñ th
yyΓ12,yy

+ Ñ th
xyΓ13,yy + Γ21Ñ

th
xx,xx + Γ22Ñ

th
yy,xx + Γ23Ñ

th
xy,xx + Ñ th

xxΓ21,xx + Ñ th
yyΓ22,xx

+ Ñ th
xyΓ23,xx

)
+
(
Γ31Ñ

th
xx,xy + Γ32Ñ

th
yy,xy + Γ33Ñ

th
xy,xy + Ñ th

xxΓ31,xy + Ñ th
yyΓ32,xy

+ Ñ th
xyΓ33,xy

)
−
(
Γ11,yÑ

th
xx,y + Γ12,yÑ

th
yy,y + Γ13,yÑ

th
xy,y + Γ21,xÑ

th
xx,x + Γ22,xÑ

th
yy,x

+ Γ23,xÑ
th
xy,x − Γ31,xÑ

th
xx,y − Γ32,xÑ

th
yy,y − Γ33,xÑ

th
xy,y − Γ31,yÑ

th
xx,x − Γ32,yÑ

th
yy,x

− Γ33,yÑ
th
xy,x

)
,

(35)

where Γ = (AE)
−1

.

Eq. 35 is a fourth-order elliptic partial differential equation in terms of the

out-of-plane displacement w, which is expressed in terms of the curvatures. It240

also represents the additional terms arising in case of VS laminates. Eq. 35 in-

volves terms containing multiples of the unknown coefficient qij that are expen-

sive to handle analytically. To increase the computational efficiency, especially

for higher order polynomials, a strategy is applied to separate the unknown

coefficients from the rest of the expression in Eq. 35. The curvatures κ̃xx, κ̃yy245

and κ̃xy can be rearranged in the form:

κ̃xx = Kxq, κ̃yy = Kyq, κ̃xy = Kxyq (36)

Here, Kx,Ky and Kxy are the vectorized form of matrices containing the
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coefficients of qij for κ̃xx, κ̃yy and κ̃xy at each DQM grid point. The vector q

refers to the vector containing the parameters qij as defined in Eq. 20 . By the

definition of the curvatures presented in Eq. 36, it is possible to easily separate250

the unknown terms qij from its constant coefficient, and therefore avoid involv-

ing calculations with unknowns, which ultimately, increases the computationally

efficiency.

On the basis of the combination of the unknown coefficients qij , f̃ can be

separated in the following way:255

f̃ = F1q ⊗ q + F2q + F3 , (37)

where ⊗ is the Kronecker delta product. Such separation of the variable com-

bination can allow one to avoid symbolic calculations and lead to much faster

computations. To systemically depict Eq. 35 in DQM representation, vectoriza-

tion is performed on all the matrix components. IfA, B, X and C are the given

matrices, the equation AXB = C can be written as
(
BT ⊗A

)
X = C. To con-260

vert F1, F2 and F3 into the vectorized form, the Kronecker and the Hadamard

products are applied to Eq. 35, and can be rearrranged in the form of Eq. 37.

The definition of Kronecker Delta product and the Hadamard product can be

found in Appendix A. The term F1 can be written as:

F1 = (Kx ⊗Ky −Kxy ⊗Kxy). (38)

The above equation can be derived by rearraging the terms of Eq. 35 and265

writing it in the form of Eq. 37.
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The terms F2 can be written in the vectorized form as:

F2 =
1

2

((
~B ∗11 ⊗ ~J

)
◦ (Iy ⊗Qy)Kx +

(
~B ∗12 ⊗ ~J

)
◦ (Iy ⊗Qy)Ky

+
(
~B ∗13 ⊗ ~J

)
◦ (Iy ⊗Qy)Kxy +

(
~B ∗11,yy ⊗ ~J

)
◦ (Iy ⊗Kx)

+
(
~B ∗12,yy ⊗ ~J

)
◦ (Iy ⊗Ky) +

(
~B ∗13,yy ⊗ ~J

)
◦ (Iy ⊗Kxy)

+
(
~B ∗21 ⊗ ~J

)
◦ (Qx ⊗ Ix)Kx +

(
~B ∗22 ⊗ ~J

)
◦ (Qx ⊗ Ix)Ky

+
(
~B ∗23 ⊗ ~J

)
◦ (Qx ⊗ Ix)Kxy +

(
~B ∗21,xx ⊗ ~J

)
◦ (Kx ⊗ Ix)

+
(
~B ∗22,xx ⊗ ~J

)
◦ (Ky ⊗ Ix) +

(
~B ∗23,xx ⊗ ~J

)
◦ (Kxy ⊗ Ix)

)
+
((

~B ∗11,y ⊗ ~J
)
◦ (Iy ⊗ Py)Kx +

(
~B ∗12,y ⊗ ~J

)
◦ (Iy ⊗ Py)Ky

+
(
~B ∗13,y ⊗ ~J

)
◦ (Iy ⊗ Py)Kxy +

(
~B ∗21,x ⊗ ~J

)
◦ (Iy ⊗ Px)Kx

+
(
~B ∗22,x ⊗ ~J

)
◦ (Iy ⊗ Px)Ky +

(
~B ∗23,x ⊗ ~J

)
◦ (Iy ⊗ Px)Kxy

)
−
((

~B ∗31 ⊗ ~J
)
◦ (Px ⊗ Py)Kx +

(
~B ∗32 ⊗ ~J

)
◦ (Px ⊗ Py)Ky

+
(
~B ∗33 ⊗ ~J

)
◦ (Px ⊗ Py)Kxy +

(
~B ∗31,xy ⊗ ~J

)
◦ (Kx ⊗ Ix)

+
(
~B ∗32,xy ⊗ ~J

)
◦ (Ky ⊗ Ix) +

(
~B ∗33,xy ⊗ ~J

)
◦ (Kxy ⊗ Ix)

+
(
~B ∗31,x ⊗ ~J

)
◦ (Iy ⊗ Py)Kx +

(
~B ∗32,x ⊗ ~J

)
◦ (Iy ⊗ Py)Ky

+
(
~B ∗33,x ⊗ ~J

)
◦ (Iy ⊗ Py)Kxy +

(
~B ∗31,y ⊗ ~J

)
◦ (Iy ⊗ Px)Kx

+
(
~B ∗32,y ⊗ ~J

)
◦ (Iy ⊗ Px)Ky +

(
~B ∗33,y ⊗ ~J

)
◦ (Iy ⊗ Px)Kxy

)
, (39)

where ◦ is the Hadamard product. The vector ~B ∗ij is generated by stacking

the components of B̃∗ over the grid points of the two-dimensional domain in

a column-wise manner. ~J refers to a row vector defined as: [1, 1, ...., 1]1×ng,

where ng = ngx × ngy representing the total number of grid points. Ix and Iy270

are identity matrices whose sizes depend on the number of grid points in x and

y direction, respectively.

The F3 matrix does not contain any terms of unknown coefficient qij , and
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therefore no vectorization is required.

F3 = − 1

2

(
Γ11Ñ

th
xx,yy + Γ12Ñ

th
yy,yy + Γ13Ñ

th
xy,yy + Ñ th

xxΓ11,yy + Ñ th
yyΓ12,yy

+ Ñ th
xyΓ13,yy + Γ21Ñ

th
xx,xxΓ22Ñ

th
yy,xx + Γ23Ñ

th
xy,xx + Ñ th

xxΓ21,xx + Ñ th
yyΓ22,xx

+ Ñ th
xyΓ23,xx

)
+
(
Γ31Ñ

th
xx,xy + Γ32Ñ

th
yy,xy + Γ33Ñ

th
xy,xy + Ñ th

xxΓ31,xy

+ Ñ th
yyΓ32,xy + Ñ th

xyΓ33,xy

)
−
(
Γ11,yÑ

th
xx,y + Γ12,yÑ

th
yy,y + Γ13,yÑ

th
xy,y

+ Γ21,xÑ
th
xx,x + Γ22,xÑ

th
yy,x + Γ23,xÑ

th
xy,x − Γ31,xÑ

th
xx,y

− Γ32,xÑ
th
yy,y − Γ33,xÑ

th
xy,y − Γ31,yÑ

th
xx,x − Γ32,yÑ

th
yy,x − Γ33,yÑ

th
xy,x

)
.

(40)

From Eq. 23, the force vector can also be expressed as:

Ñ =L̃−1A f̃ = Ñ1q ⊗ q + Ñ2q + Ñ3, (41)

where the introduced coefficient matrices corresponds to:

Ñ1 = L̃−1A (F1) , Ñ2 = L̃−1A (F2) , Ñ3 = L̃−1A (F3) . (42)

With Eq. 41, the force resultant vector can be written only as a function of

unknown coefficients qij in each DQM point. Therefore, with this approach275

no additional shape functions are required to describe the in-plane stresses or

strains as reported in previous works [56, 15].

5.2. Membrane Energy

The calculated in-plane stress resultants from Eq. 41 can be substituted

back into Eq. 26 to calculate the total potential energy. The membrane energy

part can be written as:

Π̃mem =

∫ 1

−1

∫ 1

−1

1

2
ÑT Ã∗Ñdx̃dỹ. (43)

Similar to the differential form, all integration operations on a set of discrete

points can be replaced by a matrix multiplication operation. The approach280

explained by White et al. [57] is adopted in this work to solve the integrals

involved in Eq. 43.
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In a concise manner, Eq. 43 can be written as:

Π̃mem = Pq ⊗ q ⊗ q ⊗ q + Qq ⊗ (q ⊗ q) + Rq ⊗ q + Sq + T. (44)

Here the coefficients P,Q,R, S and T can be correspondingly found from sub-

stituting Eq. 41 in Eq. 43. The derived terms of P,Q,R, S can be found in

Appendix B. They can be rearranged and written in terms of the components285

of the Ã∗ matrix and Ñ1, Ñ2 and Ñ3. The other components of the total

strain energy, namely, the bending energy and the energy due to thermal loads

can be calculated in a straight-forward manner using Eq. 26. The resultant

total energy is a function of unknown coefficients qij . When external loads are

applied, the unknown coefficients qij are found using Eq. 31 to determine the290

equilibrium shapes of the laminate.

For the snap-through problem, external loads are applied to one of the stable

shape generated from the cool-down process. The contribution of the external

load in the total energy is determined using Eq. 29 and Eq. 30. The load is

applied incrementally, and therefore only the energy due to external load changes295

in each increment. The strain energy remains the same and calculations using

DQM are only carried out once. The value of the applied force is gradually

incremented until snap-through occurs. At each load step, using the Rayleigh-

Ritz method all the equilibrium configurations are found. The stability of the

equilibrium configurations is found from the Hessian matrix as defined in Eq.300

32. Before the limit point is detected, the semi-analytical model produces two

stable and one unstable solution. At the limit point where the snap-through

occurs, only one unstable solution is observed.

6. Results

In this section, a square laminate with a length L equal to 200 mm, with305

four layers each of 0.131mm-thick plies of graphite-epoxy prepreg is studied.

The plate is subjected to a temperature difference of ∆T = −180◦ from curing

temperature to room temperature. The material properties at ply-level are
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given as:

E1 = 161 GPa, E2 = 11.38 GPa, G12 = 5.17 GPa

ν12 = 0.3, α1 = −1.8× 10−8/◦C, α2 = 3× 10−5/◦C.
(45)

In the semi-analytical approach, the membrane problem is solved using a Chebyshev-310

Lobatto DQ grid of 29 × 29 nodes. This size of DQ grid is decided based on a

convergence study, finding a balance between sufficient accuracy and computa-

tional effort. An increasing order of Legendre polynomials is used to describe

the out-of-plane displacements.

The investigated VS laminates belong to a family where φ = 45◦ and315

T0 + T1 = 90◦. It was shown in Haldar et al. [12] that this family of VS lami-

nates cools down as a cylindrical shape where the twisting curvature is minimal.

This phenomenon occurs due to the fact that the average fiber orientation in

the first two layers is 0◦ and the last two layers is 90◦ for all VS laminate be-

longing to this family. Therefore, the laminates satisfying the condition φ = 45◦320

and T0 + T1 = 90◦ are considered in this study as they yield similar bistable

shapes as an unsymmetric cross-ply laminate (Table 1). The work presented by

Pirrera et al. [15] is considered as a benchmark for comparison of the results

obtained for straight fiber laminates. It was shown previously by Pirrera et al.

[15] as well as Diaconu et al. [24] that the snap-through event involves very325

complex intermediate unstable shapes where higher order polynomial functions

are required to capture the snap-through loads accurately. Recently, Groh et al.

[58] found further modes near the bifurcation point containing regions of both

stable and unstable parts.

In this study, the out-of-plane corner displacement and the snap-through330

loads are determined using different polynomial orders starting from n = 2

to n = 5. To verify the semi-analytical model, a nonlinear FE analysis is

performed to compare the results using the formulated approach. A total of 96×

96 four-node quadrilateral shell elements (S4R) were used in the commercial FE

software Abaqus to model the cool-down process from the curing temperature335

and the snap-through process of VS laminates. The curvilinear fiber path in
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Figure 4: Applied force direction on the bistable plate.

the variable stiffness composite is approximated by using a piecewise function,

where each element assumes a straight fiber orientation. The corresponding

fiber angle at each element is computed at its centroid from Eq. 1. The chosen

mesh proves to have a good approximation of the curvilinear fiber path. Mesh340

convergence studies show that the adopted mesh size gives sufficiently accurate

results, without much change in the results on further mesh refinement.

A linear eigenvalue buckling problem is solved initially under an uniform

thermal load on the ’perfect’ plate. One of the resulting eigenmodes from the

analysis is applied as an imperfection on the actual geometry of the plate. As a345

Type φ T0 T1 Layup

Straight 45 45 45 [02/902]T

VS-1 45 ±15 ±75 [45〈15|75〉2/45〈−15| − 75〉2]T

VS-2 45 ±30 ±60 [45〈30|60〉2/45〈−30| − 60〉2]T

VS-3 45 ±60 ±30 [45〈60|30〉2/45〈−60| − 30〉2]T

VS-4 45 ±75 ±15 [45〈75|15〉2/45〈−75| − 15〉2]T

Table 1: Fiber orientation and layup data for the investigated straight cross-ply and various

VS laminates
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next step, the cool-down process from curing to room temperature is modeled

using static FE analysis including geometrical nonlinearities. As the composite

plate cools down from curing to room temperature, it warps into one of the

stable configurations. The plate is considered to be fixed at the center node

during the cool-down process to preclude rigid body motions. Subsequently,350

external loads are applied equally at the corner of the obtained stable shape.

The applied loads and the boundary condition is illustrated in Fig. 4. The loads

are applied incrementally in the nonlinear FE framework, and at a particular

value, the plate snaps to the other stable shape. Finally, the applied loads are

removed so that the plate rests back to the second stable shape. A numeri-355

cal stabilization is introduced in the form of viscous forces or damping when

instabilities are detected both in the cool-down and snap-through process, to

facilitate convergence.

The present work is not just concerned in achieving a good correlation with

FE, but also rather focuses on understanding how the snap-through loads vary360

for different VS laminates using a fast and relatively accurate tool, which capture

the important physics of the system. The results can be divided particularly

into three parts. Four different VS laminate with increasing value of T0 are

investigated and compared with a straight fiber laminate, [02/902], which can

alternatively be written as T0 = T1 = 45◦ and φ = 45◦. The layups of the365

investigated VS laminates are reported in Table 1. In the first part, the corner

displacements are reported for the investigated VS laminates and compared

with the corresponding FE results. It has also been shown how the accuracy

improves with increasing order of Legendre polynomials. In the second part,

the in-plane stress resultants solved using DQM are plotted and compared with370

the corresponding FE results. The load displacement curves are plotted and the

snap-through loads are determined for different VS laminates in the third part.

Further, a parametric study is conducted in Section 7 where the value of T0 is

incremented by 5◦, with T1 satisfying T1 = 90− T0 and φ = 45◦. The tailoring

capabilities of the VS laminates are discussed by comparing snap-through loads375

and the corner displacements.
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6.1. Out-of-plane Displacements

The use of VS laminates offers scope to tailor the snap-through loads while

retaining the bistable shapes similar to those obtained from unsymmetric cross-

ply laminates [59]. Such a wide design space creates opportunities for tailoring380

the snap-through loads in a way which is not possible using straight fiber lami-

nates. A comprehensive study on how the out-of-plane displacements and curva-

tures vary with change in the curvilinear fiber orientation is already performed

in Haldar et al. [12].

After the cool-down from curing to room temperature, two stable and one385

unstable solutions are found using the semi-analytical approach described in

Section 3, 4 and 5. The corresponding results are compared with the conducted

FE analyses. Table 2 shows the initial corner displacement of one of the stable

shapes for four different VS laminates. In the table, w1 and w2 refers to the

adjacent corners. For the studied VS laminates, it is found that the diagonally390

opposite corners are equal. This is unlike the straight fiber laminate [02/902]

where the out-of-plane displacements at all the corner points are same.

It can be observed that for all cases, the correlation between FE and the

analytical results improves as the order of the Legendre polynomials increases.

With n = 5, the maximum difference between the FE and the analytical results395

is 4.4% for VS-1, 4.3% for VS-2, 2.9% for VS-3 and 6.9% for VS-4. The corner

displacements of the [02/902] laminate at all the corners are equal.

T0 T1
n = 2 n = 3 n = 4 n = 5 FE

w1 w2 w1 w2 w1 w2 w1 w2 w1 w2

15 75 0.0603 0.0347 0.0502 0.0385 0.0491 0.0381 0.0494 0.0380 0.0481 0.0364

30 60 0.0670 0.0508 0.0643 0.0520 0.0633 0.0510 0.0632 0.0515 0.0608 0.0494

60 30 0.0663 0.0517 0.0658 0.0521 0.0645 0.0502 0.06450 0.0502 0.0627 0.0495

75 15 0.0616 0.0341 0.0531 0.0386 0.0532 0.0341 0.0531 0.0336 0.0497 0.0320

Table 2: Corner displacements: w1 at x = Lx/2, y = Ly/2 and w2 at x = −Lx/2, y = Ly/2

in (m) with increasing polynomial order and nx = ny = 29.
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A comparison on how the stable shapes vary for different VS laminates along

the section x = 0 is shown in Figure 5. All the VS laminates show cylindrical

like stable shape similar to straight fiber [02/902] laminate. The figure shows a400

good agreement between FE and the analytical model with n = 4, where only at

the edges the difference becomes higher, although not more than 1%. A similar

graph is also plotted for the orthogonal section y = 0 (Figure 6). In this section,

it is interesting to observe the difference in the section profile for different VS

laminates. The laminates VS-1 and VS-2 exhibit a bulged out surface and VS-3405

shows a trench-like profile. On the other hand, the section profile VS-4 at y = 0

has both the characteristics of trench and bulged surface. Such undulations in

the profile can be due to local differences in the generated residual stresses in

the plate due to variation in the material properties at each point of the plate.

However, such profile sections can affect how the structures snap-through, as410

observed previously in Haldar et al. [60].

Although, the magnitudes of the out-of-plane displacements in section y = 0

are quite small as compared to section x = 0, the differences between semi-

analytical and FE results increases appreciably (Figure 6c). The model is less

accurate towards the edges, similar to what was observed in the section x = 0.415

However, the nature of the profile in the section y = 0 matches well with the

FE results, for different VS laminates.

6.2. Determination of the In-Plane Stresses

In the present formulation, it is important that the in-plane stress resul-

tants are calculated accurately, as this affects directly the membrane energy420

and consequently, the calculation of the snap-through loads. The in-plane stress

resultants calculated from the differential equation resulting from the coupled

compatibility and the in-plane equilibrium equations (Eq. 12) is found to a have

a closed form analytical solution for generic elliptic planform [9]. Hamouche et

al. [61] claimed that multiplying the solution from the elliptic planform with425

a correction factor can provide a sufficiently good estimation of the in-plane

stresses and the membrane energy for rectangular shaped plates. The in-plane
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(a) (b)

(c)

Figure 5: a) Out-of-plane displacement (w) at the section x = 0 a) using semi-analytical

approach and b) using FE approach c) difference of semi-analytical results with respect to

FEA.

stress resultants, as described in Section 4.3, can be calculated by solving the

in-plane equilibrium equations and the compatibility equation, which in our case

is solved using the aid of DQM. Figure 7 shows the variation of in-plane stress430

resultants across the plate planform obtained using the formulation described

in this paper (left side) and compared with the corresponding FE results (right

side) for the VS-3 laminate using a 5th order polynomial. A good correlation

is obtained in predicting the in-plane stresses of the laminate. However, due

to limited degrees of freedom used in the analytical method, some differences435

in the maximum and minimum magnitudes can be observed. It is clear from
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(a) (b)

(c)

Figure 6: a) Out-of-plane displacement (w) at the section y = 0 a) using semi-analytical

approach and b) using FE approach c) difference of semi-analytical results with respect to

FEA.

Figure 7, where the difference between FE and semi-analytical results is higher

at the edges.

6.3. Snap-Through Loads

On one of the obtained stable shapes from the cool-down process, forces in440

’-z’ direction are applied at each corner points (as illustrated in Fig. 4). Like

in the cool-down step, the plate is considered to be fixed at the center in this

step as well. It has been previously reported [24, 56] that assuming constant

curvatures in analytical models can lead to high discrepancies in the calculation

of snap-through loads. Similar observations are also reported for VS laminates445
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(a) (b)

(c) (d)

(e) (f)

Figure 7: Comparison of the in-plane stress resultants Nxx,Nyy and Nxy ([N/m]) between

DQM (a,c,e) and FE (b,d,f) for VS-3

in Haldar et al. [60]. The snap-through event generally involves intermediate

complex shapes and therefore requires a higher-order polynomial function to

characterize the shape.

In order to trace the equilibrium path, loads are applied to one of the stable
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shapes obtained from the cool-down process. Starting from F = 0N , the loads450

at the corner points are incremented until snap-through is detected. These

analyses are carried out for different polynomial orders. Table 3 shows the

prediction of snap-through loads determined using the semi-analytical model

with different polynomial orders and compares with the results obtained from

nonlinear FE analyses. It can be noticed that with an increase in the polynomial455

order, a convergence could be reached. With n = 5, a good level accuracy is

reached with a difference between FE and analytical results of 4 − 6% for VS

laminates.

Figure 8 shows the difference in the snap-through loads by plotting the

load-displacement curves of the studied VS laminates. As the load is increased,460

the limit point is detected where the structure snaps from one stable shape to

another. The snap-through load of the cross-ply laminate [02/902] compares

well with the values reported by Lamacchia et al. [27]. It is clear from the

figure that changes in the curvilinear fiber configuration can lead to a difference

in the snap-through loads. VS-1 shows the lowest snap-through loads, followed465

by VS-4, VS-2, and VS-3. The constant cross-ply [02/902] shows the highest

snap-through load.

It is observed that laminate VS-2 has 45% lower snap-through force than

the straight cross-ply laminate, with just 14% lower out-of-plane displacement.

There is thus an immense possibility to tailor the snap-through loads without470

changing much the shape of the bistable laminate.

To determine the complete load-displacement curve, a nonlinear finite ele-

ment analysis is conducted in ABAQUS using both static analysis (with sta-

bilization) and the Riks method. The static analysis is equivalent to a force-

controlled test, and the Static-Riks corresponds to the arc-length method. Fig-475

ure 10 shows the load-displacement curve for VS-1 showing ”Static-stabilize” in

red and ”Riks” method in blue. The snap-through forces obtained from both

methods compare well with each other. The Riks method shows the complexity

of the unstable path attained during the snap-through event. The correspond-

ing equilibrium path was traced using the semi-analytical model. The existence480

29



T0 T1 n = 2 n = 3 n = 4 n = 5 FE

15 75 1.97 1.91 1.39 1.31 1.23

30 60 3.36 3.24 2.75 2.64 2.46

60 30 6.22 5.56 3.31 3.29 3.17

75 15 4.66 4.20 2.15 1.90 1.79

45 45 4.98 4.32 3.97 3.65 3.35

Table 3: Snap-through loads–in (N) for different VS laminates with increasing order n of

Legendre polynomial function and comparison with FE.
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Figure 8: Load-displacement curve from semi-analytical method with n = 4 for different VS

laminates and straight fiber laminate.

of several unstable equilibria close to each other (as observed in the FE result

in Fig. 10) makes it very difficult to trace the unstable path using the adopted

semi-analytical approach. Especially for higher orders, where the convergence

of roots becomes more sensitive to each parameter of the Legendre polynomial,

it can be time-consuming and difficult to determine the unstable path. How-485

ever, with a 3rd order Legendre polynomial approximation for the out-of-plane
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Figure 9: Comparison of the load-displacement curve from semi-analytical results with n = 4

and FE results (Static-Stabilize).

displacement, one of the unstable paths could be traced for VS-1. The load-

displacement curve for this laminate is shown in Figure 11, where the dotted

line represents the unstable path. In contrast to the load-displacement curve

found using FEM (Fig. 10), the semi-analytical approach fails to capture the490

complete unstable path.

The stable equilibrium path, however, is traced within reasonable accuracy.

Figure 11 also shows how the equilibrium shape changes at different steps of

the load-displacement curve, starting from a stable configuration and leading

to the snap-through event, where unstable shapes are illustrated, followed by495

the second stable shape. At low values of force F , it can be observed from

both Fig. 8 and Fig. 11 that the stiffness is found to be linear for all VS

laminate. However, in the FE calculation some nonlinearity can be observed

in the load-displacement curve as shown in Fig. 9. An Eulerian description

incorporated in the semi-analytical method might improve the calculations of500

the nonlinear regime. In the FE calculations, as the stiffness is updated in every

step in an incremental manner, it captures the nonlinear behavior very well. It is

also interesting to note that different VS laminates have a different preferential
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mode of snapping. For example, Figure 12a shows the stable equilibrium shape

of VS-1 in the initial state and Figure 12b shows the shape just before snapping.505

Similarly, the initial stable shape for VS-4 can be seen in Figure 12c and the

stable configuration before snapping in Figure 12d. Although the initial shapes

of VS-1 and VS-4 (Figure. 12b and Figure. 12c respectively) are similar, both

of the laminates snap in different modes. This can be compared with the initial

shape and the shape before snapping for the constant stiffness [02/902] laminate,510

as illustrated in Figure 12e and Figure 12f respectively, resulting in different

snap-through loads. The good agreement of the snapping modes for different

VS laminates is found with the FE results (as compared in Fig. 13). It is found

that VS-1 and VS-2 showed similar snapping modes (Fig. 13a) and so does

VS-3 and VS-4 (Fig. 13c).515

Figure 10: Load-displacement curve obtained for VS-1 using Finite Elements. The curve in

red refers to the curve obtained using load-controlled tests (Static-Stabilize) and the curve in

blue refers to the curve from the arc-length method (Static-Riks). The load is applied at one

of the corner point, and the out-of-plane displacement is recorded at the same point.
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Figure 11: Semi-analytical load-displacement diagram showing the intermediate unstable

path for VS-1 with n = 3. The load is applied at one of the corner point, and the out-of-plane

displacement is recorded at the same point.

7. Parametric Study

As the VS laminate defined for this work depends on three different param-

eters φ, T0 and T1, there can be different possibilities to construct VS laminate

layups belonging to the family φ = 45◦ and T0 + T1 = 90◦. Therefore, a para-

metric study is required to understand the effect of the VS angle parameters520

on the corner displacements and the snap-through loads. The main aim of this

investigation is to explore VS fiber configurations that have lower snap-through

loads but at the same time give higher corner displacements when compared

to constant stiffness unsymmetric cross-ply laminates. The same geometry and

material property are considered as in Section 6. It must be noted that for this525

particular family of VS laminate, φ = 45◦ and T0 = 90◦ corresponds to the
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Figure 12: a) Initial contour plot of the bistable plate VS-1 with variable stiffness b) Contour

plot just before snap-through event for VS-1 with variable stiffness c) Initial contour plot of the

bistable plate VS-4 with variable stiffness d) Contour plot just before snap-through event for

VS-4 with variable stiffness e) Initial contour plot of the bistable plate with constant stiffness

[02/902] f) Contour plot just before snap-through event for constant stiffness [02/902]. The

contours represent the out-of-plane surface position [m].

straight fiber laminates [02/902].

A parametric study is conducted where the value of T0 is incremented by

5◦. It can be observed from Figure 14 that certain VS laminates have lower
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(a) (b)

(c) (d)

Figure 13: a) Comparison of snapping modes between the semi-analytical and FE analyses.

a) Semi-analytical results for VS-1 b) FE results for VS-1 c) Semi-analytical results for VS-4

b) FE results for VS-4.

snap-through loads but at the same time higher maximum corner displacement530

than the [02/902] laminate. Here, the snap-through loads are considered as the

total magnitude of forces applied at all the corner points.

For example, improvement in design of a morphing system can be achieved

by using a VS laminate with T0 = 65◦, where the snap-through loads are 18.65%

lower but with 4.1% difference in maximum corner displacement from the con-535

stant stiffness [02/902] laminate.

8. Conclusion

In this paper, the concept of variable stiffness using curvilinear fiber paths

was explored to tailor the snap-through loads of bistable laminates. A robust

and computationally efficient formulation was derived to calculate the snap-540

through loads of VS laminates. A strategy is proposed to separate the unknown
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Figure 14: Parametric study performed on the family φ = 45◦ and T0 + T1 = 90◦ to

investigate the effect of VS angle parameter T0 on the snap-through loads and the maximum

corner displacements.

coefficients of the out-of-plane displacement with the known vectorized terms

emanating from the DQM form of the compatibility and in-plane equilibrium

differential equations. This process leads to a computationally efficient scheme

to determine the snap-through loads. A corresponding FE model was developed545

to compare the results of the formulated analytical method for a family of VS

laminates satisfying φ = 45◦ and T0 + T1 = 90◦. This family of VS laminate is

chosen as we focus on generating these particular shapes for specific morphing

application. Furthermore, the cross-ply straight fiber laminate can be used as

a benchmark to quantify the performance of the VS laminates.550

The out-of-plane displacement at different sections and at the corner points

of four different VS laminates are calculated with the formulated analytical

approach and compared with FE results. With increasing order of Legendre

polynomials, the comparison with FE results improved. The solutions are then

compared with the reference constant stiffness laminate: [02/902]. As the for-555

mulation focuses on solving the membrane energy with sufficient accuracy, the
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in-plane stress resultants solved using the aid of DQM are plotted on the plane

of the plate and compared using the in-plane stress resultants btained from the

FE results. Different types of undulations were found at the section x = 0

for various VS laminates, although a cylindrical profile was observed for all VS560

laminates at the section y = 0. The snap-through loads of the investigated VS

laminates are also calculated with increasing orders of Legendre polynomials.

At n = 5, good convergence is reached with the results obtained from FE anal-

ysis. The load-displacement curves are plotted for different VS laminates and

the straight fiber laminate. It is observed that laminate VS-2 has 45% lower565

snap-through force than the straight cross-ply laminate, with just 14% lower

out-of-plane displacement. It is interesting to observe that different VS lami-

nates have a different preferential mode of snapping. It is the interplay between

the bending and the stretching energies as well the presence of local undulations

in the initial stable shape that leads to the difference in the snap-through loads.570

Some discrepancies between the semi-analytical and FE results are found for in

the stable shapes and the snap-through behavior of the different bistable VS

laminates. However, with such lower degrees of freedom when compared to FE,

the model captures the inherent mechanics of multistable VS laminates in a

quite satisfactory manner. The polynomial order can be increased to improve575

the accuracy, however, this comes at the cost of computational effort due to

increased unknowns in the energy term.

The tailoring concept is further explored by conducting a parametric study,

where the value of T0 is incremented by 5◦ with T1 = 90 − T0 and φ = 45◦.

It is observed that with VS laminates, there can be an immense possibility to580

tailor the snap-through loads without much change in the bistable mode shapes.

For example, improvement in the design of a morphing system can be made by

using T0 = 65◦, where the snap-through loads are lower but with a small dif-

ference in the maximum out-of-plane displacement from the constant stiffness

[02/902] laminate. Such snap-through tailoring makes VS laminates a promising585

alternative to be used in efficient morphing systems. This tool developed in this

paper provides a good basis for designers to explore the vast design space avail-
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able using VS laminates. Full exploitation of the tailoring capabilities shown by

VS laminates can be possible by using appropriate optimization tools with this

semi-analytical method.590
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Appendix A600

If A and B are matrices of size m×n, where [A] = aij and [B] = bij the

Hadamard product is given as:

(A ◦B) = [aijbij ] (46)

The Kronecker delta product of a matrix A of size m × n where [A] = aij

and matrix B of size p× q is defined as:

A⊗B =


a11B . . . a1nB

...
. . .

...

am1B amnB


Appendix B

The value of P,Q,R,S and T from Eq. 44 is given as follows:

P =

∫ 1

−1

∫ 1

−1

1

2
(A11 ◦ (N1)xx ◦ (N1)xx +A12 ◦ (N1)xx ◦ (N1)yy +A13 ◦ (N1)xx ◦ (N1)xy

+A21 ◦ (N1)yy ◦ (N1)xx +A22 ◦ (N1)x ◦ (N1)xx +A23 ◦ (N1)yy ◦ (N1)xy

+ A31 ◦ (N1)xy ◦ (N1)xx +A32 ◦ (N1)xy ◦ (N1)yy +A33 ◦ (N1)xy ◦ (N1)xy) dx̃dỹ

(47)

Q =

∫ 1

−1

∫ 1

−1
(A11 ◦ (N1)xx ◦ (N2)xx +A12 ◦ (N1)xx ◦ (N2)yy +A13 ◦ (N1)xx ◦ (N2)xy

+A21 ◦ (N1)yy ◦ (N2)xx +A22 ◦ (N1)yy ◦ (N2)yy +A23 ◦ (N1)yy ◦ (N2)xy

+A31 ◦ (N1)xy ◦ (N2)xx +A32 ◦ (N1)xy ◦ (N2)yy +A33 ◦ (N1)xy ◦ (N2)xy) dx̃dỹ

(48)
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R =

∫ 1

−1

∫ 1

−1

1

2
(A11 ◦ (N2)xx ◦ (N2)xx +A12 ◦ (N2)xx ◦ (N2)yy +A13 ◦ (N2)xx ◦ (N2)xy

+A21 ◦ (N2)yy ◦ (N2)xx +A22 ◦ (N2)x ◦ (N2)xx +A23 ◦ (N2)yy ◦ (N2)xy

+A31 ◦ (N2)xy ◦ (N2)xx +A32 ◦ (N2)xy ◦ (N2)yy +A33 ◦ (N2)xy ◦ (N2)xy)

+ (A11 ◦ (N1)xx ◦ (N3)xx +A12 ◦ (N1)xx ◦ (N3)yy +A13 ◦ (N1)xx ◦ (N3)xy

+A21 ◦ (N1)yy ◦ (N3)xx +A22 ◦ (N1)yy ◦ (N3)yy +A23 ◦ (N1)yy ◦ (N3)xy

+A31 ◦ (N1)xy ◦ (N3)xx +A32 ◦ (N1)xy ◦ (N3)yy +A33 ◦ (N1)xy ◦ (N3)xy) dx̃dỹ

(49)

S =

∫ 1

−1

∫ 1

−1
(A11 ◦ (N2)xx ◦ (N3)xx +A12 ◦ (N2)xx ◦ (N3)yy +A13 ◦ (N2)xx ◦ (N3)xy

+A21 ◦ (N2)yy ◦ (N3)xx +A22 ◦ (N2)yy ◦ (N3)yy +A23 ◦ (N2)yy ◦ (N3)xy

+A31 ◦ (N2)xy ◦ (N3)xx +A32 ◦ (N2)xy ◦ (N3)yy +A33 ◦ (N2)xy ◦ (N3)xy) dx̃dỹ

(50)

T =

∫ 1

−1

∫ 1

−1

1

2
(A11 ◦ (N3)xx ◦ (N3)xx +A12 ◦ (N3)xx ◦ (N3)yy +A13 ◦ (N3)xx ◦ (N3)xy

+A21 ◦ (N3)yy ◦ (N3)xx +A22 ◦ (N3)x ◦ (N3)xx +A23 ◦ (N3)yy ◦ (N3)xy

+A31 ◦ (N3)xy ◦ (N3)xx +A32 ◦ (N3)xy ◦ (N3)yy +A33 ◦ (N3)xy ◦ (N3)xy) dx̃dỹ

(51)
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