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Abstract:  

The presence of randomly distributed measurement errors in scale scores such as those 

used in educational and behavioural assessments implies that careful adjustments are 

required to statistical model estimation procedures if inferences are required for ‘true’ 

as opposed to ‘observed’ relationships. In many cases this requires the use of external 

values for ‘reliability’ statistics or ‘measurement error variances’ which may be provided 

by a test constructor or else inferred or estimated by the data analyst. Popular measures 

are those described as ‘internal consistency’ estimates and sometimes other measures 

based on data grouping. All such measures, however, make particular assumptions that 

may be questionable but are often not examined. In this paper we focus on scaled 

scores derived from aggregating a set of indicators, and set out a general 

methodological framework for exploring different ways of estimating reliability statistics 

and measurement error variances, critiquing certain approaches and suggesting more 

satisfactory methods in the presence of longitudinal data. In particular, we explore the 

assumption of local (conditional) item response independence and show how a failure of 

this assumption can lead to biased estimates in statistical models using scaled scores as 

explanatory variables. We illustrate our methods using a large longitudinal dataset of 

mathematics test scores from Queensland, Australia. 
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1. Introduction 

 In practice, one or more explanatory variables in linear and generalised linear models are 

often measured with error. It is well known that if inference is required about the 

relationship for the underlying ‘true’ values, then using the observed ‘error-full’ values will 

generally lead to biased and inconsistent inferences. A number of standard procedures for 

handling such data have been suggested (Fuller, 2006), as well as more advanced 

procedures, such as the SIMEX method (Cook and Stefanski, 1994, Carroll et al., 1996) and 

more recent Bayesian procedures (see for example Goldstein et al., 2017). For all of these 

procedures it is assumed that a good estimate of the measurement error distribution is 

available. In this paper we consider the case where the explanatory variables subject to 

measurement error are scaled scores derived from a set of indicators, for example a set of 

binary correct/incorrect responses in an educational test or a set of agree/disagree 

questions in an attitude scale. In many educational and behavioural models such error-full 

explanatory variables are used, based on rating scales or test scores, for example, in the 

case of value-added school performance models (Leckie and Goldstein, 2019).  We focus on 

such cases where the explanatory variable is the sum of a set of, typically binary, indicators.  

 

For continuous explanatory variables, or pseudo-continuous variables treated as 

continuous, a major issue in all these procedures is obtaining a satisfactory estimate of the 

reliability or measurement error variance and this paper is devoted to a discussion of 

different approaches with recommendations of what would be appropriate in the context of 

longitudinal data. We consider in detail the linear regression model where explanatory 

variables include variables with measurement error and where we also have variables 

measured at different occasions on the same individual units. Our examples are largely 

drawn from education but are readily applicable to other areas. In the next section we 

formally introduce the measurement error model, and for completeness, briefly discuss how 

knowledge of the measurement error distribution enables consistent estimation of the 

model parameters.  

We note that our proposed procedure, despite our focus on scaled scores, is generally 

applicable, as described in later sections, to scores or ordered classifications however 

derived. A general IV approach to estimation with measurement errors is given by Meier et 
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al. (2017) but they do not study the specific case of scaled scores, and the exposition in the 

present paper is original  

2. A basic measurement error model 

We begin by assuming a simple normal linear regression model where the measurement 

error model can be written as 

𝑥𝑖 = 𝑋𝑖 + 𝑚𝑖  .         (1) 

Here, capital letters refer to the true values, lower case letters refer to the observed values, 

and mi denotes the measurement error for the explanatory variable Xi . We also assume 𝑦𝑖 =

𝑌𝑖, that is, and without loss of generality, we assume no measurement error in the response. 

We also make the standard assumption used in measurement error models, that 𝑋𝑖, 𝑚𝑖  are 

independent of each other and the 𝑚𝑖 are mutually independent. 

The model of interest (MOI) is 

𝑌𝑖|𝑋𝑖 = 𝛽0 + 𝛽1𝑋𝑖 + 𝑒𝑋         (2) 

whereas what we observe is 

𝑌𝑖|𝑥𝑖 = 𝛼0 + 𝛼1𝑥𝑖 + 𝑒𝑥.        (3) 

The subscript 𝑖 has been dropped in some cases for ease of expression. 

Write 𝑚𝑖~𝑁(0, 𝜎𝑚
2 ),   𝑋𝑖~𝑁(𝜇, 𝜎𝑋

2), 𝑅 =
𝜎𝑋

2

(𝜎𝑋
2 + 𝜎𝑚

2 )
⁄      

and in this simple model we have 𝑅 = 𝛼1 𝛽1⁄ , where R is known as the ‘reliability’ of 𝑥𝑖. 

Clearly, if we have a good estimate for 𝑅 or 𝜎𝑚
2  we can use (3), based on the observed data, 

to obtain a consistent estimator of 𝛽1. As discussed above, there is an extensive literature 

about such ‘reliability’ or more accurately, measurement error, corrections and the model 

specified by (1)-(3) is known as the classical measurement error model. A major problem, 

however, remains in that it is not always straightforward to obtain good estimates for 𝑅 or 

𝜎𝑚
2 .  Our discussion focusses on obtaining estimates for these quantities. First, however, we 

briefly discuss the target population.  

 

We note that the reliability depends upon both the measurement error variance and the 

population distribution of the true (and observed) values. Either or both properties, and 

therefore the reliability, may vary by subpopulation where a subpopulation is defined as the 

target of interest, for example females. Even when the reliability does not change across 
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subgroups, the measurement error distribution will do so if the observed variances differ. 

Thus, when fitting models to data with heterogeneous measurement errors this should be 

incorporated, else a failure to accommodate these can itself lead to biases. Goldstein et al 

(2017) discuss how this may be done and we also provide an elaboration below. 

For generalised linear models where the response is, for example, binary, estimation will 

generally be more complex but for our purposes no new features are introduced. In 

particular for Bayesian generalised linear models, we can simply introduce an extra step 

when fitting the model of interest in the appropriate MCMC algorithm to sample, 

conditional on the value of the response, from an underlying latent normal distribution so 

that the modified response is normal (Goldstein et al., 2017).  

3. Estimating the measurement error variance 

Where we have independent replications of the measurements with errors, it is generally 

possible to obtain direct estimates of the measurement error variance by utilising the 

variation between replicates. For example, replicate measurements of baby length at a 

health clinic.  In the case of scaled scores, however, especially with cognitive measurements, 

this will not be possible largely due to familiarity, memory or learning effects. We now 

examine two different approaches to this problem.  

 

3.1 Internal consistency estimation methods 

This approach is used extensively in psychology and education for scaled scores where a 

variable is scored by summing a set of constituent parts. Thus, an attainment score might 

consist of a set of binary correct/incorrect items with each scored 1 if correct and 0 if 

incorrect. The item scores are typically summed to form a total score. Reliabilities are then 

estimated using what might be termed a pseudo-replication method as follows (Lord and 

Novick, 2008). 

Consider a variable derived as follows: 

𝑥𝑖 = ∑ 𝑝𝑖𝑗
𝑘
𝑗=1            (4) 

where we assume for simplicity that 𝑝𝑖𝑗 takes the values (0,1) for a k-item test. If we divide 

the test items at random into two (approximately) equal groups and we assume that, for 

any given testee, the response to one item is independent of the response to any other 
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item, an assumption of conditional or local independence, then we can treat the total scores 

from each group as an independent replicate and hence obtain an estimate for the ‘half 

test’, between-replicate covariance. Thus, for the whole test score, an equivalent estimate 

of the measurement covariance would simply be four times this value. If we now take all 

possible such splits, this leads to the standard Kuder-Richardson (KR20) (a special case of 

‘Cronbach’s alpha’ that applies to binary items) estimate of reliability that can be written as 

𝛼 = (𝑘 (𝑘 − 1))(1 − (∑ 𝑃𝑗(1 − 𝑃𝑗))/𝜎𝑥
2𝑘

𝑗=1 )⁄           (5) 

where 𝑃𝑗 is the proportion of the sample with correct answers to item j. We note that there 

is no inherent assumption of ‘unidimensionality’ necessary here. The underlying concept is 

one where the ratio of true to observed score is conditioned on the set of sampled 

individuals and correlated item sets. As the number of items increases so the reliability 

estimate will tend to 1.0. However, the conditional independence assumption is crucial. We 

can see this by considering the two half-test total scores as 𝑑1, 𝑑2 where we have 

 𝑣𝑎𝑟(𝑑𝑖1 − 𝑑𝑖2) = 𝑣𝑎𝑟(𝑑𝑖1) + 𝑣𝑎𝑟(𝑑𝑖2) − 2𝑐𝑜𝑣(𝑑𝑖1, 𝑑𝑖2).     (6) 

 

The last term in (6) is zero conditional on individual true ability independence, but if this 

conditional independence assumption is violated, for example if the covariance is positive, 

as might often be the case if a (perceived) correct answer to an item increases the 

probability of a correct response to following items, the estimator in (5) will tend to 

overestimate the reliability. In effect, internal consistency estimates are attempting to 

estimate the sampling variance associated with the sum (or mean) of k item responses 

where the probability of a positive item response is determined by a, possibly complex, 

function of item ‘difficulty’ and each individual’s ‘true’ ability. In the simulation reported 

below we provide one example of such an underlying model which allows for positive 

dependency among item responses and shows that ignoring this leads to an overestimate of 

the reliability using internal consistency estimates. One particular problem with this 

approach is that there is typically no way to validate the conditional independence 

assumption. This leads us to consider an alternative approach based on the use of 

instrumental variables. 
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3.2 Instrumental variable (IV) estimation 

Consider first the case of a simple regression model as in (2). Suppose we have a variable Z 

where we assume a linear model relating 𝑥 to 𝑍, namely 

𝑥𝑖 = 𝛾0 + 𝛾1𝑍𝑖 + 𝑒𝑧 ,       𝛾1 ≠ 0,          (7) 

where Z is uncorrelated with the random terms in (2). We shall return to this key 

assumption below. A two-stage procedure can be used, where the predicted values 𝑥�̂� from 

(7) replace the explanatory variable,  𝑋𝑖, in the model of interest (2) to obtain consistent 

estimates for the parameters of that model. It can be shown that the parameter 𝛽1 is 

estimated by (𝑍𝑇𝑥)−1𝑍𝑇𝑦 with estimated covariance matrix 𝑐𝑜𝑣(𝛽1̂) ≅

𝜎𝑧
2(𝑍𝑇𝑥)−1(𝑍𝑇𝑍)(𝑥𝑇𝑍)−1 where 𝜎𝑧

2 is estimated from the empirical residuals in the 

regression of 𝑦 𝑜𝑛 �̂�.  The estimate for the reliability is then obtained as 𝑅𝑥 = 𝛼1/𝛽1. 

Where we have several explanatory variables measured with error and where the 

measurement errors may be correlated, 𝑋 and 𝑍 are now vectors and without loss of 

generality we assume that Z contains both variables with measurement error and those 

without, for whom the measurement error variance is zero. The estimators then have the 

same form as those given above.   We also have the usual estimator from (3), 𝑐𝑜𝑣(�̂�1) =

𝜎𝑒𝑥
2 (𝑥𝑇𝑥)−1, which allows us to obtain consistent estimators for the variances and 

covariances of the measurement errors via differencing, and hence we can form the 

measurement error matrix. A detailed description of such IV estimators can be found in 

Carroll et al. (2006, Chapter 6), who also provide a detailed description of estimation 

methods where measurement error exists. 

 

We can also consider joint IV model estimation rather than the two-stage procedure, 

although the latter will generally be satisfactory for large samples. Write 

 𝑌𝑖 = 𝛽0 + 𝛽1(𝛾0 + 𝛾1𝑍𝑖) + 𝑒𝑋 

𝑥𝑖 = 𝛾0 + 𝛾1𝑍𝑖 + 𝑒𝑥,       𝛾1 ≠ 0,    

𝑍𝑖 = 𝛿0 + 𝑒𝑍           (8) 

𝐸(𝑒𝑋𝑒𝑥) ≠ 0, 𝐸(𝑒𝑥𝑒𝑍) = 𝐸(𝑒𝑋𝑒𝑍) = 0.  

The likelihood is then proportional to the separate likelihood contributions from these three 

sub-models and we can fit, for example, a Bayesian model with suitable, say diffuse, priors 

using MCMC to update the parameters, in particular 𝛽1.  
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It may be the case, as suggested above, that the measurement error variance depends on 

further factors, assumed to be measured without error, for example it may differ for males 

and females. In simple cases a separate analysis for each group may be satisfactory, but in 

general we may wish to model the dependency. In this case these variables can be added to 

the first two lines of (8) or in the equivalent 2-stage procedure, with suitable interaction 

terms where necessary, that allow 𝛽1 to vary as a function of these factors. These varying 

measurement errors can be incorporated for measurement error adjustment within the 

final model of interest, even if they do not explicitly appear in that model.  

 

As a simple example suppose we have sex (𝑆) coded (0: male;1: female). In our 2-stage 

procedure we first estimate the prediction model 

𝑥𝑖 = 𝛾0 + 𝛾1𝑍𝑖 + 𝛾2𝑆𝑖 + 𝛾3𝑍𝑖𝑆𝑖 + 𝑒𝑥  

𝑌𝑖 = 𝛽0 + 𝛽1(𝛾0 + 𝛾1𝑍𝑖 + 𝛾2𝑆𝑖 + 𝛾3𝑍𝑖𝑆𝑖) + 𝑒𝑋       (9) 

which is then compared with the model for the observed predictor 

𝑌𝑖 = 𝛼0 + 𝛼1𝑥𝑖 + 𝛼2𝑆𝑖 + 𝛼3𝑆𝑖𝑥𝑖 + 𝑒𝑋
∗   

for each value of 𝑆. In the simple case this provides separate estimates for each sex. The 

assumption that the IV Z is uncorrelated with the random residual terms in the first two 

lines of (9) needs to be discussed and justified in practice. In the case we consider in this 

paper, where a distal variable is used as the IV, we can typically appeal to the existence of a 

relatively long time gap to ensure that Z is uncorrelated with m in (1). We now consider the 

conditions where the second assumption 𝐸(𝑍𝑒𝑋) = 0, will be satisfied, at least 

approximately. 

 

3.3 Assumptions for IV estimation 

We consider for simplicity the multivariate normal case  

(
𝑦
𝑋
𝑍

)~𝑁(0, Ω),    Ω = (

𝜎1
2

𝑐12 𝜎2
2

𝑐13 𝑐23 𝜎3
2

).      (10) 
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We allow for the possibility that the IV variable Z may or may not have its own independent 

measurement errors and this is also the case for 𝑦. To satisfy the assumption 𝐸(𝑍𝑒𝑋) = 0 

we require 

𝐸(𝑍(𝑦 − 𝑐23𝑋)) = 𝜎2
2𝑐13 − 𝑐23𝑐12 = 0  

or equivalently in terms of correlations 𝜌13 − 𝜌23𝜌12 = 0.     (11) 

We shall return to a discussion of this assumption in our simulation and example. The 

assumption that Z is uncorrelated with the measurement errors, in the case of longitudinal 

data, will typically be satisfied by a suitable choice of distal measure, implying that any 

direct path from the observed distal measure to Z operates solely through the true value of 

the distal measure. We shall return to this issue.  

 

3.3 IV grouping estimators 

A commonly advocated, but typically unsatisfactory, IV method is the so-called grouping 

procedure, first suggested by Wald (1940). This is based upon dividing the observed data 

into groups but is typically put forward without reference to certain basic assumptions that 

are required. Since it is sometimes advocated (see below), in this section we briefly explain 

the procedure and demonstrate, in a straightforward fashion, the problems associated with 

its use in practice.  

 

The standard measurement error model is written as in (1) 

𝑥𝑖 = 𝑋𝑖 + 𝑚𝑖 , 𝑦𝑖 = 𝑌𝑖  

where capital letters refer to the true values, and we assume no measurement error in the 

response. The model of interest is, as before 

𝐸(𝑌𝑖|𝑋) = 𝛽0 + 𝛽1𝑋𝑖          (12) 

whereas what we observe is 

 𝐸(𝑌𝑖|𝑥𝑖) = 𝛼0 + 𝛼1𝑥𝑖.        (13) 

The proposed Wald (1940) instrumental variable estimator for the true regression slope 𝛽1 

can be written as  

[𝐸(𝑦𝑖|𝑥𝑖 > 𝜇) −  𝐸(𝑦𝑖|𝑥𝑖 ≤ 𝜇)]/[ 𝐸(𝑥𝑖|𝑥𝑖 > 𝜇) −  𝐸(𝑥𝑖|𝑥𝑖 ≤ 𝜇)]           (14) 

where expectations are replaced by observed means and 𝜇 is taken as the median of 𝑥𝑖. 

For a simple regression model given by 
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𝐸(𝑋2𝑖) = 𝛽0 + 𝛽1𝑋1𝑖  

it follows that, for the n observations in the interval [a,b] and replacing 𝑋1 with the observed 

means, then we can write 

(
1

𝑛
) ∑ 𝑋2𝑖𝑖 =(

1

𝑛
)(𝑛𝛽0 + 𝛽1 ∑ 𝑋1𝑖𝑖 ) =  𝛽0 + 𝛽1(

1

𝑛
) ∑ 𝑋1𝑖𝑖 .    (15) 

In other words, over the interval, the point defined by the means of the response and 

explanatory variables lies on the regression line. This will thus be the case for both models 

(12) and (13). Hence, for the estimator implied by (14) where the groups are defined by the 

median of the observed x, the respective means below and above the median both lie on 

the line defined by the observed regression (13) so that (14) in fact estimates the observed 

regression slope and not the true one. This will generally be true for all grouping estimators, 

including methods that use weighted functions of (x,Y) where the weights are defined using 

x rather than X (e.g. Durbin, 1953). The problem is that the conditioning is of necessity 

based upon the observed values of the explanatory variable rather than the unknown true 

values.  

 

Wald (1940, p.294-295) distinguishes two rules. The first groups the sample on the observed 

x values around the median (or some other value). The second rule considers the case 

where the sample can be grouped on the basis of the true values. He points out that the 

first rule is invalid since the grouping is not independent of the measurement errors and 

then assumes that the measurement error itself (m) is bounded by an interval [−𝑐, 𝑐] and 

that all the values 𝑥𝑖 , 𝑖 = 1, … . , 𝑁, lie outside the interval 

[𝜇 − 𝑐, 𝜇 + 𝑐] .         (16) 

Clearly in this case those observed to be above the median (based on the observed data but 

in expectation equal to the median of the true data) are the same set as those true values 

above the median and likewise for those below the median. Wald (1940) then shows  that if 

the probability that m lies outside the above interval is negligible (as is the proportion of 

observed x lying inside the interval  [𝜇 − 𝑐, 𝜇 + 𝑐] ), then clearly the means defined 

according to his rule 1, on which (12) is based, will be good approximations to the true 

means and hence gives us a consistent estimator of the true slope. A similar set of 

assumptions for consistency is also required for the procedures suggested by Bartlett (1949) 
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and Durbin (1954). Neyman and Scott (1951) derive a similar, although more general, result 

for grouping estimators. 

 

The major problem is that condition (16) will only hold for certain distributions, typically 

where the density around the median is a minimum. Otherwise, for example for unimodal 

symmetric distributions such as the normal, and also for unimodal skew distributions, the 

value of c would need to be very small so that the measurement error variability likewise 

would need to be very small. Thus, where the true values follow a standard normal 

distribution with a sample size of just 1000 and using a measurement error of just 0.05 

implying a reliability of about 0.95, the mean absolute value of the differences between 

successive observed values is about 0.006, whereas the mean absolute value of the 

measurement errors is about 0.2 which is actually, with a very high probability, greater than 

any difference between successive observed values. In other words, for assumption (16) to 

hold to a good approximation, we would require such a small value of c that we could 

anyway effectively ignore measurement errors. 

 

In the standard econometrics literature that quotes these grouping IV methods, (see for 

example Johnston, 1972, Cameron and Trivedi, 2005), one does not, unfortunately, find 

reference to condition (16), despite the fact that it does appear to be crucial. Fuller (2006, 

chap 1.6) does mention it, but just in passing. 

4. Using distal test scores as IVs 

In Section 5 we discuss an example using longitudinal education achievement data from 

Queensland, Australia. This uses a distal test score as an instrumental variable, namely a 

measure of attainment at year 3 of schooling when estimating the reliability of a year 5 

attainment score. We tend to obtain estimates of R that are approximately 10% lower than 

those obtained using internal consistency estimates. One potential inference from this is 

that the assumption upon which the internal consistency measures are based, that of local 

independence, may be invalid since, as we have shown in Section 3.1, a positive dependency 

between items biases upwards internal consistency measures, and in a separate paper we 

look at ways of estimating a parameter for the dependency. This lack of independence will 

also lead to biases in the case of measures based upon latent variable models. One of these 
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is the Omega coefficient (McDonald 1999) that posits a unidimensional factor model for the 

set of items, fixes the factor variance at 1.0 and then derives the reliability from the set of 

factor loadings. Item response models such as the Rasch model adopt a similar approach 

and in all these cases local independence is assumed.   It is this independence assumption 

rather than the unidimensionality assumption that is important. If the local independence 

assumption fails, then these coefficients like Cronbach’s alpha, will not produce consistent 

estimates of reliability. Moreover, the estimate of the true score variance will depend 

crucially on the assumed model form, even if we do have independence.  In the next section 

we shall demonstrate the effect of dependency among items using a simulation for a set of 

binary item responses.  

4.1 A simulation for distal score IV estimation 

We demonstrate the use of distal scores through a simulation where we assume we have 

data on 10,000 individuals measured at three occasions (for example three successive years 

of primary schooling) with correlated true scores across occasions and a sample of items 

chosen from a distribution of test items to produce a set of binary response items with 

increasing amounts of dependency. We fit the internal consistency estimates and compare 

with the true reliabilities as determined by the data generating mechanism and with the 

distal IV estimates.   

Each test score is based on a k = 30 item test.  For convenience we assume a latent probit 

model where the probability of observing a correct response 𝑦𝑖𝑗,𝑡 = 1 for individual i to item 

j at occasion t =(1, 2, 3) is modelled as follows. 

 

We have covarying true scores 𝜃𝑖,1, 𝜃𝑖,2, 𝜃𝑖,3 across three occasions distributed as  

(

𝜃𝑖,1

𝜃𝑖,2

𝜃𝑖,3

) ~𝑁 {(
0
0
0

) , (
0.25

𝑞 0.25

4𝑞2 𝑞 0.25

)}     (18) 

where the one-occasion apart covariance q will take the values (0.1, 0.125, 0.150, 0.175) 

corresponding to one-occasion apart correlations 𝜌12 = 𝜌23  as (0.4, 0.5, 0.6, 0.7),  and two-

occasion apart correlations 𝜌13 (0.16, 0.25, 0.36, 0.49). We note that this covariance pattern 

will generate consistent IV estimates satisfying (11), and because the Bernoulli responses 



 

12 Measurement error estimation  

are sampled independently across occasions the remaining assumption in (8) for consistency 

of IV remains valid. 

 

The probability of observing a correct response 𝑦𝑖𝑗,𝑡 = 1 for item j at a given occasion, is 

defined as 

𝑝𝑖𝑗,𝑡 = ∫ 𝜙(𝑧)𝑑𝑧,    
𝜃𝑖,𝑡−𝛼𝑗,𝑡

−∞
        (19) 

where 𝜙(𝑧) is the standard normal distribution, and we sample the response 𝑦𝑖𝑗,𝑡 as (0,1) 

from a Bernoulli distribution with this probability. The parameters 𝜃𝑖,𝑡, 𝛼𝑗,𝑡 represent 

individual ability and item difficulty respectively. We use this simple model for illustration 

purposes only, but our general results will apply for more complex models. Model (19) is 

essentially the probit version of the common ‘1 parameter’ (logistic) item response model 

(Rasch model). Thus for each individual we obtain 30 binary responses and the sum of these 

responses is the observed score.  The observed score for individual i is defined as  

𝑦𝑖,𝑡 =  ∑ 𝑦𝑖𝑗,𝑡

30

𝑗=1

 

and the observed score variance for each occasion is then estimated from the observed 

scores simulated for 10,000 students.  

 

We assume that basic measurement error is introduced as a result of the item sampling, and 

there is no further measurement error. For each individual and occasion, we therefore 

simulate N draws for the items, where we choose N=250, and obtain, at occasion t, N values 

of 𝑝𝑖𝑗,𝑡. From these 𝑝𝑖𝑗,𝑡 we sample from the Bernoulli distribution to obtain a (0,1) 

response, say 𝑦𝑖𝑗,𝑡, for an item and compute the test score ∑ 𝑦𝑖𝑗,𝑡
𝑘
𝑗=1  by summing the binary 

responses for the items.  The average of these scores over the N draws is taken as the 

individual’s true value from which we obtain the between-individual true score variance at 

each occasion. For each individual and occasion, we compute the between-draw variance 

for the test score ∑ 𝑦𝑖𝑗,𝑡
𝑘
𝑗=1  and average these over individuals to obtain an estimate of the 

measurement error variance. An estimate of the reliability is then computed using the 

simulated true score variance and the simulated observed score variance. Also, for each 

draw we compute the internal consistency estimate based upon the 𝑦𝑖𝑗,𝑡 and average these 

across draws. The IV estimates of reliability are also computed. 
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We assume that test candidates work through the test items in order. To induce 

dependency across item responses we proceed as follows. Starting with item 1 we note 

whether the outcome is a success or not. If the former, then to sample the second item 

response we modify 𝜃𝑖𝑡 − 𝛼𝑗𝑡 by adding a chosen value c where, of course, c = 0 implies 

local independence. If the previous response is a failure, then we subtract this value c. We 

note that, unlike a standard autoregressive formulation, this dependency respects the item 

ordering and is not symmetrical. We then sample the response to item 2 and repeat the 

process, until we have sampled all items. The simulations were implemented using Stata 

software, version 15 (StataCorp, 2017). The model (19) for item 1 thus becomes 

𝐸(𝑦𝑖1) = 𝑝𝑟𝑜𝑏(𝑦𝑖1 = 1) = 𝑝𝑖1(𝜃𝑖, 𝛼1)= ∫ 𝜙(𝑧)𝑑𝑧 , 𝜙~𝑁(0,1)   
𝜃𝑖−𝛼1

−∞
 

and for 𝑗 > 1 

𝑝𝑖𝑗(𝜃𝑖 , 𝛼𝑗) = 𝐸(𝑦𝑖,𝑗−1)(∫ 𝜙(𝑧)𝑑𝑧) + [1 − 𝐸(𝑦𝑖,𝑗−1)](∫ 𝜙(𝑧)𝑑𝑧)).   
𝜃𝑖−𝛼𝑗−𝑐

−∞
   

𝜃𝑖−𝛼𝑗+𝑐

−∞
 (20) 

In Table 1 we compare the reliability estimates based on the true score variance and the 

observed score variance as generated from the simulation. Our principal interest lies in 

understanding how each procedure operates under different amounts of inter-item 

dependency, represented by increasing values of the parameter c=(0, 0.25, 0.50, 0.75, 1.0). 

 

Table 1 shows that in the case of independence among items (c=0) the true reliability, based 

on the simulated true scores relative to the simulated observed scores, is well approximated 

by the internal consistency estimate of reliability.  

 

(Table 1 here) 

 

Increasing the value of c leads to overestimation of the true reliability by the internal 

consistency estimate whereas the IV estimator of reliability R(IV) decreases with 𝑐, and 

closely approximates the true reliability that also decreases with 𝑐. As is evident from this 

Table, upward biases of some 20% can be obtained from use of coefficient alpha, with 

corresponding biases for parameter estimates in models based on such alpha estimates.  

Here, 𝜌12 is the one-occasion apart Pearson correlation between the true scores implied by 

q. Intuitively, we can envisage that as c increases, the underlying value 𝜃𝑖 + 𝑐 − 𝛼𝑗  and 𝜃𝑖 −
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𝑐 − 𝛼𝑗 generating the set of observed (0,1) responses are dominated by c so that the 

variation due to the true parameters 𝜃𝑖  decreases and hence the (true) reliability decreases. 

We note that even relatively small values of c (on the standard normal probability scale) are 

associated with marked changes in the reliability. We note that (19) and (20) are here used 

to explore the behaviour of the reliability as the adjacent item association changes. It is in 

fact a simple case of a novel class of item response models that has received little if any 

attention in the psychometric literature. We shall return to this model in the discussion, 

noting again that here, for our purposes, it is introduced simply to demonstrate the effect of 

a violation of the conditional independence assumption. 

4.1.1 Simulating IV estimates 

We now consider a simulation for IV estimates that allows the assumption given by (11) to 

be violated. We assume that the IV is uncorrelated with measurement errors at another 

occasion, as discussed in Section 3.2. We have simulated normally distributed observed 

scores at 3 occasions 𝑡 = 1,2,3 each with zero mean and variance 1.0. The reliability of the 

observed scores at occasion 1 and 3 is set equal to 0.8. The reliability of the observed scores 

at occasion 2, 𝑅2, is allowed to vary across the different conditions of the simulation study. 

The first order correlations between the true scores 𝜌12 and 𝜌23 are set equal to 0.5. The 

assumption (11) will hold when the second order correlation 𝜌13 is equal to 0.25, the 

product of the first order correlations. We shall vary this correlation across the different 

conditions of the simulation study. We conduct seven simulation studies. In studies 1, 2 and 

3 we set 𝑅2 to be 0.7, 0.8 and 0.9 respectively. In all three cases we set 𝜌13 = 0.25 and so in 

these studies (11) holds. In studies 4, 5, 6, and 7 we set 𝑅2 = 0.8, but we vary 𝜌13 to be 

0.15, 0.20, 0.30, and 0.35, respectively. Thus, in these four studies the assumption (11) fails 

to differing degrees. In each study we conduct 1000 replications.  

 

(Table 2 here) 

Table  2 shows that the 50th(�̂�2) percentile, the median estimate of 𝑅2, is unbiased in 

studies 1-3 where we set the correlation between the first and third and occasion true 

scores 𝜌13 to be 0.25 (and therefore (11) holds), but where we vary the reliability of the 

second occasion observed scores 𝑅2. However, the 50th(�̂�2) percentile is biased upwards in 

studies 4 and 5 where we lower the correlation between the first and third and occasion 



 

15 Measurement error estimation  

true scores 𝜌13 from 0.25 to 0.15 and 0.20, and is biased downwards in studies 6 and 7 

where we raise the correlation between the first and third and occasion true scores 𝜌13 

from 0.25 to 0.30 and 0.35. It illustrates the importance for the correlation assumptions of 

the proposed IV estimate. 

5. An example using NAPLAN data for Queensland 

Since 2008, the Australian National Assessment Program–Literacy and Numeracy (NAPLAN) 

has been used to report progress in student achievement and to compare the performances 

of different groups and is a major focus of Australian education policy. In this example we 

use Numeracy data for the Queensland cohort of pupils who participated in NAPLAN in Year 

3 in 2011, Year 5 in 2013 and Year 7 in 2015, with approximately 53,000 students from 1,400 

government and non-government elementary schools. See Cumming, Goldstein and Hand 

(2019) for more details. In the present analyses we have only used individuals with scores 

present at all occasions in our models which reduces the sample size to approximately 

50,000. We have independently normalised each of the scale scores. 

 

We see from the simulation results that if the local independence assumption fails and item 

responses have a positive dependency (e.g students have a run of successes), then internal 

consistency estimators such as KR20 may overestimate reliability. In general we might 

expect the conditional independence assumption to be false for a number of reasons, not 

least that a student with a given ‘true’ attainment who happens, at a particular session, to 

answer an item incorrectly will often be aware of this, especially when items are ordered by 

difficulty, and this is likely to influence their propensity to correctly answer subsequent 

items.  For the IV method, since we are using a year 3 score as the IV, it seems reasonable to 

assume that it is uncorrelated with the measurement error in the year 5 score. We also 

would argue that it is likely to have a negligible correlation with the residual in the model of 

interest which uses the year 7 score as a response with the year 5 score as a covariate, so 

that (11) will  be satisfied. This residual measures the relative progress made by a student 

given their attainment at year 5. We also carry out some sensitivity analysis around this 

assumption. 
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We estimate the reliabilities as follows. In the first stage, for each attainment test we first 

regress the year 5 score on the year 3 corresponding score. This provides predicted values 

for the year 5 scores and these are then used as the covariate in a regression with year 7 

score as outcome. The year 7 score is also regressed on the observed year 5 score and the 

reliability is obtained from the ratio of the regression coefficients as described in section 

3.2. We have also tried adding further predictors for the year 5 score and fitting simple 2-

level random-intercept multilevel models with the year 5 school identifying the second 

level, but the estimates hardly change. Additionally, we have studied reliability by student 

characteristics such as gender and indigenous status, and obtain very similar results. 

(Table 3 here) 

Table 3 shows the results for both distal IV estimates and internal consistency estimates for 

a set of numeracy test scores. 

The estimates for the IV procedure are all lower by between 4% and 10% of the internal 

consistency estimates consistent with the argument that the alpha coefficients are biased 

upwards in the presence of positive item dependence, given that some dependency is to be 

expected. We also note that the IV estimates do not depend on any assumptions about the 

internal test score structure such as local independence, since they operate at the level of 

the test score. To illustrate the importance of independence among measurement errors, in 

Table 4 we compare the use of a contemporaneous measurement at year 5, the numeracy 

total, as the IV for the four subtests where by definition the subtest measurement errors are 

a component of the measurement error for the total score, so violating the conditional 

independence assumption. 

(Table 4 here) 

We see that the use of the same year total maths score leads to overestimates of reliability 

relative to the internal consistency estimates, as well as the IV estimates where Year 3 score 

is used as the instrument; up to about 20%. If we use a different subtest score as IV that is 

measured at the same time as the target variable we also find that the estimate of reliability 

tends to increase. In other words it appears that the observed IV test score contains less 

measurement error than using a distal test score so that we are not fully correcting for it 

(assuming the distal test score gives consistency), because the test score at the same time 

shares measurement error with the IV measure and the score that is predicted from it will 

also contain the shared measurement error.  
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As expected, the reliability estimates also increase with the number of test items. Using as 

additional IV variables, measures from different domains to predict year 5 scores, gives 

results that are very similar. Nevertheless, in practice it is recommended that the sensitivity 

of the IV estimates is explored using different combinations of IV predictors. To illustrate we 

have used different combinations of IV variables for the year 5 measurement test score 

estimate where we have also used available year 9 scores. The results are given in Table 5. 

(Table 5 here)  

We see from Table 5 that all three prediction models that use the year 3 measurement give 

similar results, suggesting that a value that is the mean of these, 0.64, would be a suitable 

value, with perhaps a sensitivity analysis using the minimum and maximum of all the 

estimates, which in this case should include the internal consistency estimate.  

5.1 Fitting the model of interest 

Table 6 shows the changes to the model of interest for a simple 2-level random-intercept 

multilevel model (students within schools) where the measurement score at year 7 is the 

response and the corresponding score at year 5, together with gender and indigenous status 

are covariates, both being binary variables. We have fitted our measurement error model 

(1)-(3) assuming four different reliability values, from completely reliable (R=1.0) to a low 

value (R=0.58).  

(Table 6 here) 

We see that for the range of values of R chosen, there is a far smaller effect associated with 

Indigenous status than in the unadjusted analysis (R=1). In particular, as the value of R 

decreases, so the lower progress made by indigenous students is more confined to those 

students with higher year 5 scores. A similar finding holds for female students. Over the 

range of values of R (<1) it appears that with decreasing values of R the apparent effect due 

to Indigenous status gets smaller. This clearly is of considerable relevance educationally and 

illustrates the importance of paying attention to obtaining good estimates of reliability and 

measurement error variances. The value of R given by coefficient alpha is close to the 

median value suggested from Table 6, and this may be somewhat reassuring for those 

studies that have relied upon such an estimate, but not a good reason for not exploring 

alternatives such as IV procedures. 
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6. Discussion 

We have illustrated, that with suitable longitudinal data, instrumental variable estimates of 

test score reliability can provide reasonable values for reliabilities that can then be used in 

further models to adjust for test score measurement error. While our focus has been on 

scaled scores, illustrated using binary component items, the IV estimates we propose are 

generally applicable to scores however derived. 

In the case of administrative data collected for accountability purposes, such as the NAPLAN 

data in Australia, there will generally be a lack of cross sectional variables suitable for use as 

instruments, but there will typically be longitudinal data that can be utilised to estimate 

measurement error. Both IV estimators and internal consistency estimators make particular, 

but different, assumptions about the underlying relationships. The analyst can adopt a 

conservative procedure as suggested in the preceding section by conducting a range of 

sensitivity analysis over the range of estimates, but we may also be able to study the 

plausibility of the different assumptions, using data that are available. 

In the case of longitudinal distal IV estimation, we have the problem of choosing a suitable 

IV variable. One possible procedure would be to construct or choose a set of scale scores at 

each longitudinal occasion with increasing numbers of items to reflect increasing reliability 

values. We would then examine the expression given in (11) (using the actual observed 

values for the correlations) and utilise these to extrapolate to a test with a high enough 

number of items to approximate a reliability of 1.0 and thus to infer whether condition (11) 

holds, at least approximately. Where standardised tests or scale scores are used in research 

studies, careful attention should be paid, by test and scale constructors, to providing 

plausible estimates of measurement error distribution parameters, and the use of IV 

estimators in addition to existing methods,  can be helpful. When results from analyses that 

use such measures are reported, it should also become standard practice to discuss the role 

of measurement errors. 

Where suitable IV variables exist within the dataset being analysed, then these can be 

utilised directly as in model (8). Because the existence of such variables is likely to be 

uncommon,  a more general approach is to provide analysts with suitable estimates for 
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measurement error or reliability derived for the measurements being used, by test 

constructors. 

The IV estimators are useful where conditional independence assumptions for scaled scores 

are likely to be violated, but also in the common case where item data to compute internal 

consistency measures are unavailable or where there is some doubt about the validity of 

any measures that may be supplied by, for example, test constructors. Our simulations 

demonstrate that when the assumption of conditional independence is violated and there is 

positive dependency between items standard internal consistency estimators such as 

Cronbach’s alpha are likely to be biased upwards, although in our practical example the 

difference seems no larger than about 10%. Nevertheless, it would seem prudent to require 

providers of external reliability estimates based upon coefficient alpha or similar 

procedures, to justify that assumption, since there are clearly situations when it would be 

expected to fail such as when the probability of a correct response to an item is deliberately 

designed to rely upon a correct response to a previous item. 

In our exposition and simulation we have considered a standard case where an individual 

responds to a pre-existing common set of test items. In other cases, such as computer 

adaptive testing (CAT) the next item in a test for an individual will depend on their previous 

responses. Thus the ‘c’ parameter in our simulation will itself be a function of previous 

responses, for example reflecting positive correlations between items followed by a 

negative one. Although our IV procedure does not depend explicitly on parameters such as 

‘c’, since it operates at the total score level, it would be an interesting piece of further 

research to ascertain the effect on, for example, the estimate of coefficient alpha. 

The estimation algorithm is that described by Goldstein et al. (2017) and is available from 

the first author. It is implemented in MATLAB (Mathworks, 2019). The code used for 

generating the simulated data is written in Stata (Statacorp, 2017) and is available from the 

second author.  

Finally, we note that in our simulation we have introduced what appears to be a novel 

elaboration of the standard probit one parameter item response model (Rasch model) 

which allows for a simple form if item dependency. Further work on fitting such a model and 

more complex unidimensional and multidimensional models is planned, especially with a 
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view to exploring the extent to which such models may be useful in the estimation of 

reliability. 
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TABLES 

  

Table 1. Reliability estimates for 30 items from 3-occasion longitudinal data: means for 
simulated 250 draws from each of 10,000 iterations, for selected values of q and c. 
Also given in brackets are standard errors (SE) for the IV estimates. The rows labelled 
‘R(true)’ refer to the value of R derived directly from the simulated true scores and the 
simulated observed scores. The rows labelled ‘R(alpha)’ are those estimates obtained 
using coefficient alpha estimates (internal consistency). The rows labelled ‘R(IV)’ are 
those obtained from the proposed instrumental variable estimator. 

 c=0 c=0.25 c=0.50 c=0.75 c=1.0 

q=0.1, ρ12=0.40 

R (true) 0.815 0.809 0.791 0.762 0.727 

R(alpha) 0.815 0.868 0.901 0.926 0.945 

R(IV) 

R(IV) SE 

0.858 

(0.042) 

0.765 

(0.036) 

0.777 

(0.039) 

0.717 

(0.044) 

0.730 

(0.049) 

q=0.125, ρ12=0.50 

R (true) 0.818 0.807 0.793 0.765 0.729 

R(alpha) 0.818 0.867 0.903 0.926 0.945 

R(IV) 

R(IV) SE 

0.800 

(0.023) 

0.777 

(0.022) 

0.796 

(0.025) 

0.763 

(0.025) 

0.707 

(0.028) 

q=0.15, ρ12=0.60 

R (true) 0.811 0.805 0.790 0.761 0.731 

R(alpha) 0.811 0.865 0.901 0.925 0.946 

R(IV) 

R(IV) SE 

0.812 

(0.016) 

0.809 

(0.018) 

0.801 

(0.018) 

0.769 

(0.019) 

0.739 

(0.022) 

q=0.175, ρ12=0.70 

R (true) 0.815 0.807 0.791 0.765 0.729 

R(alpha) 0.815 0.866 0.902 0.927 0.945 

R(IV) 

R(IV) SE 

0.818 

(0.011) 

0.794 

(0.011) 

0.778 

(0.013) 

0.748 

(0.013) 

0.730 

(0.017) 
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Table 2. Reliability estimates obtained using IV with simulated data. 1,000 

replications were used. Quantile estimates for the reliability of the second occasion 

measurement are shown for different sample sizes and occasion 2 reliabilities 𝑅2 and 

correlation between occasion 1 & 3 true scores 𝜌13. 

Study N 𝑅2 𝜌13 𝜎13 50th(�̂�2) 2.5th(�̂�2) 97.5th(�̂�2) 

1 1000 0.70 0.25 0.20 0.695 0.532 0.950 

2 1000 0.80 0.25 0.20 0.803 0.631 1.067 

3 1000 0.90 0.25 0.20 0.900 0.707 1.205 

4 1000 0.80 0.15 0.12 1.320 0.931 2.303 

5 1000 0.80 0.20 0.16 0.996 0.751 1.486 

6 1000 0.80 0.30 0.24 0.664 0.528 0.841 

7 1000 0.80 0.35 0.28 0.572 0.458 0.709 

 

Table 3. Reliability estimates comparing Cronbach’s alpha with observed year 5 patterns 
and IV methods based upon year 3 scores as instrumental variable in the regression of year 
7 on year 5 scores. 

 Algebra, 

Function & 

Pattern 

(4 items)* 

Measurement, 

Chance and 

Data 

(13 items) 

Number 

(13 items) 

Space 

(10 items) 

Numeracy 

Total 

(40 items) 

Year 5 IV 0.403 0.648 0.625 0.528 0.793 

(0.790)** 

Year 5 

coefficient 

alpha 

0.449 0.678 0.681 0.576 0.864 

* No year 3 algebra so year 5 regressed on Total numeracy at year 3.  **The term in brackets 
is based upon using a 2-level model. 
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Table 4. Reliability estimates year 5 subtest scores with IV as year 5 total numeracy 

score. 

 Algebra, 

Function & 

Pattern (4 

items) 

Measurement, 

Chance and Data 

(13 items) 

Number (13 

items) 

Space (10 items) 

Year 5 IV 0.512 0.799 0.647 0.673 

 

Table 5. Reliability estimates for measurement test score at 5 years using different 
combinations of IV variables. All models are additive linear regression models. 

IV variables predicting year 5 measure score Reliability estimate 

Year 3 measurement chance and data 0.648 

Year 9 measurement chance and data 0.585 

Year 3 total numeracy 0.722 

Year 3 total numeracy + year 3 measurement chance 

and data 

0.645 

Year 3 total numeracy + year 9 measurement chance 

and data * 

0.616 

Year 3 measurement + year 9 measurement chance 

and data 

0.655 

* A model that also included the year 3 measurement chance and data was fitted but the 
latter coefficient was small and not significant at 5%. 

 

 

 

 

 

 

 

 

Table 6. Measurement score at year 7 related to year 5 measurement score, gender and 
indigenous status. Differing reliability values for year 5 score. Year 7 reliability set to 0.75. 
Standard errors in brackets. Burn in = 100, iterations = 250. 
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covariate R=1 R=0.72 R=0.64 R=0.58 

Intercept 0.009 (0.008) -0.039 (0.008) -0.058 (0.009) -0.077 (0.007) 

Year 5 score 0.658 (0.005) 0.947 (0.007) 1.067 (0.008) 1.170 (0.015) 

Female -0.038 (0.007) 0.022 (0.007) 0.046 (0.009) 0.067 (0.007) 

Indigenous -0.283 (0.020) -0.072 (0.022) 0.017 (0.021) 0.099 (0.021) 

Year 5 x female -0.059 (0.007) -0.086 (0.009) -0.088 (0.009) -0.086 (0.009) 

Year 5 x Indigenous. -0.088 (0.015) -0.088 (0.019) -0.077 (0.019) -0.065 (0.019) 

Female x indigenous 0.000 (0.003) -0.024 (0.027) -0.023 (0.029) -0.021 (0.026) 

𝜎𝑒
2 0.386 (0.002) 0.268 (0.003) 0.217 (0.002) 0.170 (0.006) 

𝜎𝑢
2 0.030 (0.002) 0.030 (0.002) 0.030 (0.002) 0.030 (0.002) 

𝜎𝑒
2 is between student variance, 𝜎𝑢

2 is between school variance.  

 

 

 

 

 


