
                          Johnson, T., Podder, M., & Skerman, F. (2019). Random tree
recursions: Which fixed points correspond to tangible sets of trees?
Random Structures and Algorithms. https://doi.org/10.1002/rsa.20895

Peer reviewed version

Link to published version (if available):
10.1002/rsa.20895

Link to publication record in Explore Bristol Research
PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online
via WIley at https://onlinelibrary.wiley.com/doi/abs/10.1002/rsa.20895 . Please refer to any applicable terms of
use of the publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the
published version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Explore Bristol Research

https://core.ac.uk/display/322476203?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1002/rsa.20895
https://doi.org/10.1002/rsa.20895
https://research-information.bris.ac.uk/en/publications/28e7019f-b308-480c-81d6-4c18234baf39
https://research-information.bris.ac.uk/en/publications/28e7019f-b308-480c-81d6-4c18234baf39


ar
X

iv
:1

80
8.

03
01

9v
2 

 [
m

at
h.

PR
] 

 1
2 

Se
p 

20
19

RANDOM TREE RECURSIONS: WHICH FIXED POINTS

CORRESPOND TO TANGIBLE SETS OF TREES?

TOBIAS JOHNSON, MOUMANTI PODDER, AND FIONA SKERMAN

Abstract. Let B be the set of rooted trees containing an infinite binary subtree starting
at the root. This set satisfies the metaproperty that a tree belongs to it if and only if
its root has children u and v such that the subtrees rooted at u and v belong to it. Let
p be the probability that a Galton–Watson tree falls in B. The metaproperty makes p

satisfy a fixed-point equation, which can have multiple solutions. One of these solutions
is p, but what is the meaning of the others? In particular, are they probabilities of the
Galton–Watson tree falling into other sets satisfying the same metaproperty? We create
a framework for posing questions of this sort, and we classify solutions to fixed-point
equations according to whether they admit probabilistic interpretations. Our proofs use
spine decompositions of Galton–Watson trees and the analysis of Boolean functions.

1. Introduction

A seminal problem in discrete probability is to determine the probability of survival of
a Galton–Watson tree. For the sake of simplicity, suppose that the offspring distribution
is Poi(λ), and denote the tree by Tλ. Let Tinf denote the set of infinite rooted trees. Let
p denote the survival probability, given by P[Tλ ∈ Tinf]. The typical solution gives p as a
fixed point of a map as follows: Let Z be the number of children v of the root of Tλ such
that the subtree rooted at v is infinite. Each subtree is infinite with probability p, just like
the original tree. Thus Z ∼ Poi(pλ) by Poisson thinning. Since Tλ is infinite if and only if
Z ≥ 1,

p = 1− e−λp. (1)

As is well known (see [3]), when λ > 1, this equation has two solutions, and the positive one
is the true value of p. In arriving at (1), the only property of Tinf we used was that t ∈ Tinf
if and only if there exists some child v of the root of t such that the subtree descending from
v is in Tinf. Let us call this the metaproperty of Tinf that yields (1).

Again, let Tλ be a Galton–Watson tree with child distribution Poi(λ). It is natural to
ask if there is some other set of trees T0 satisfying the metaproperty such that P[Tλ ∈ T0] is
the other solution to (1), which is 0. A bit of thought reveals that T0 = ∅ fits this criteria.
Vacuously, t ∈ ∅ if and only if the root of t has a child whose subtree is in ∅, and clearly
P[Tλ ∈ ∅] = 0. Thus, the metaproperty yields an equation with two solutions, and each
solution gives the probability under the Galton–Watson measure of a set of trees satisfying
the metaproperty. Indeed, we will later see that Tinf and ∅ are the only two sets of trees

2010 Mathematics Subject Classification. 60J80, 60J85.
Key words and phrases. Galton–Watson tree, fixed point, tree automaton, interpretation, recursive dis-

tributional equation, endogeny.
T.J. received support from NSF grants DMS-1401479 and DMS-1811952. M.P. acknowledges partial

support from NSF CAREER grant CCF:AF-1553354.

1

http://arxiv.org/abs/1808.03019v2


2 TOBIAS JOHNSON, MOUMANTI PODDER, AND FIONA SKERMAN

.2

.4

.6

.8

1

1 2 3 4 5
0

p

λ

Figure 1. A plot showing all p satisfying (2) for given λ. For λ < λcrit ≈
3.35, the only solution to (2) is p = 0. For λ = λcrit, there are two solutions
for p, and for λ > λcrit, there are three.

satisfying the metaproperty, up to measure zero changes under the Galton–Watson measure
with child distribution Poi(λ) (see Remark 1.2 for more discussion on measure zero changes).

This work was motivated by a nearly identical example that is more difficult to resolve.
This time, we consider sets of trees B where t ∈ B if and only if the root of t has at least
two children u and v whose subtrees are in B. Let us call this metaproperty the at-least-two
rule. Suppose p = P[Tλ ∈ B] for some set of trees B obeying the at-least-two rule. Invoking
Poisson thinning and self-similarity as in the first example, we get

p = 1− e−λp(1 + λp). (2)

As explained in [23], which investigated the existence of a giant 3-core in a random graph,
there is a critical parameter λcrit ≈ 3.35 where this equation changes behaviour (see Fig-
ure 1). For all λ > 0, there is a trivial solution to (2) given by p = 0. When λ < λcrit,
this is the only solution. At λ = λcrit, a second solution emerges, and when λ > λcrit there
are three solutions. (We prove these statements in Example 5.5.) Let B0 be the set of all
trees that contain an infinite binary subtree starting at the root. Note that B0 satisfies the
at-least-two rule. It was shown by Dekking [8] (also see [22]) that P[Tλ ∈ B0] is the largest
solution to (2) when λ > λcrit, shown in green in Figure 1. An immediate intuition as to
why the green curve is the one corresponding to P[Tλ ∈ B0] is that this is the only curve
which is increasing in λ. Another set of trees obeying the at-least-two rule is the empty
set. Obviously, P[Tλ ∈ ∅] = 0, the smallest solution to (2), shown in red in Figure 1. Joel
Spencer posed the question that set this work in motion: is there a set of trees to go with the
middle solution (shown in blue in Figure 1)? More formally, the question asks the following:

Question 1.1 (Spencer). Let Tλ be a Galton–Watson tree with child distribution Poi(λ).
Say that a set of trees B follows the at-least-two rule if t ∈ B if and only if the root of t
has two children u and v such that the subtrees rooted at u and v are also in B. Suppose
that λ > λcrit. Does there exist a set of trees B following the at-least-two rule such that
P[Tλ ∈ B] is the middle solution of (2)?

We answer this question in the negative. More generally, our main result, Theorem 1.7,
gives the answer to any question of this form. In the language of this paper, it is a criterion
for which fixed points of tree automata admit interpretations. In this example, the tree au-
tomaton refers to the at-least-two metaproperty. For the Galton–Watson child distribution
Poi(λ), the fixed points of this automaton are the solutions to (2). An interpretation corre-
sponds to a set of trees following the metaproperty given by the automaton. Theorem 1.7
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shows that B0 and ∅ are the only two sets of trees following the at-least-two rule, up to
measure zero changes under the Galton–Watson measure with child distribution Poi(λ).

Remark 1.2. It is important that we consider sets of trees satisfying a metaproperty only
up to measure zero changes under a Galton–Watson measure with a given child distribution.
For example, let T be the set of trees that contain an infinite binary subtree somewhere
within them (i.e., not necessarily starting from the root). This set satisfies our original
metaproperty: a tree is in T if and only if its root has at least one child initiating a tree
in T . But on its face, T is neither Tinf nor ∅, which we claimed were the only sets of
trees satisfying this metaproperty. The solution to this apparent paradox is that from the
perspective of the Galton–Watson tree Tλ with child distribution Poi(λ), the set T is in fact
equivalent to either Tinf or ∅. For λ < λcrit, there is zero probability that Tλ lies in T , and
hence T is a measure zero change away from ∅. For λ ≥ λcrit, the tree Tλ falls in T with
probability 1 given that Tλ is infinite. Hence T is a measure zero change away from Tinf in
this case.

1.1. Summary of main result. We start by giving a nonrigorous version of our main
result, since it will take some effort to state all the definitions we need for a formal statement.
A tree automaton is a set of rules determining the colour of a parent vertex in a tree from the
colour of its children. Let Σ be a finite set representing the possible colours. The automaton
corresponding to the at-least-two rule acts on colours Σ = {0, 1}, assigning colour 1 to the
parent if and only if it has at least two children of colour 1. A fixed point of a tree automaton
is a probability distribution ~ν on Σ such that if a Galton–Watson tree is generated and the
children of the root are assigned i.i.d.-~ν colours, then the colour of the root induced by the
automaton is also distributed as ~ν. For the example presented earlier, the fixed points have
the form Bernoulli(p), where p satisfies (2). To define an interpretation of a tree automaton,
suppose we have a map ι : T → Σ, where T is the space of rooted trees. Now, imagine
colouring each vertex v in an arbitrary tree by applying ι to the subtree rooted at v. If the
resulting colouring of the tree is always consistent with the rules given by the tree automaton,
then we call the map an interpretation of the automaton. We saw two interpretations in
our earlier example: the first mapped a tree to 0 or 1 depending on whether it contained an
infinite binary tree starting at its root, and the second mapped all trees to 0.

It is not hard to see that the colour of a Galton–Watson tree assigned by an interpretation
of an automaton must be distributed as a fixed point of the automaton (see Lemma 1.4).
For example, if ι is the first interpretation described above and T is a Galton–Watson tree
with child distribution Poi(λ), then ι(T ) is distributed as Bernoulli(p2), where p2 is the
largest solution to (2). Our main result flips this around, letting us determine for a given
fixed point ~ν whether there exists an interpretation ι such that ι(T ) ∼ ~ν.

The criterion is based on an object we call the pivot tree. Essentially, first generate the
Galton–Watson tree to level n. Then, randomly colour the vertices at level n by sampling
independently from the given fixed point. Apply the automaton to colour the vertices at
levels 0 to n − 1. Now, call a vertex pivotal for this colouring if altering its colour and
recolouring all of its ancestors by the automaton alters the colour of the root (see Figure 2).
The set of all pivotal vertices to level n then forms a random subtree of the original Galton–
Watson tree. There is a natural way to extend this construction beyond a fixed n to give a
(possibly) infinite tree, the pivot tree, which turns out to be multitype Galton–Watson.

Loosely speaking, the main result of this paper is that when |Σ| = 2, a given fixed point of
a tree automaton has a corresponding interpretation if and only if the associated pivot tree is
subcritical or critical (or equivalently, if it is almost surely finite). If so, then it has precisely
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Figure 2. The first three levels of a tree coloured consistently with the at-
least-two automaton given in Example 1.3. Red denotes state 0 and green
denotes state 1. Vertices in bold are pivotal, meaning that flipping their
colours and recolouring above them according to the automaton causes the
root to flip colours.

one interpretation, up to measure zero changes with respect to the Galton–Watson measure.
This criterion is quite practical to check, and we do so for the at-least-two automaton and
some other examples in Section 5.

When 3 ≤ |Σ| < ∞, we prove only that a subcritical pivot tree implies existence of an
interpretation. We believe that our approach in this paper can be adapted to prove that
a supercritical pivot tree implies nonexistence of an interpretation, but there are several
complications (see Remark 4.16).

We now proceed to define these terms more formally. We then state our main results in
Section 1.8.

1.2. Notation. We define T to be the set of locally finite, ordered, rooted trees (ordered
means that an ordering is given for the children of each vertex). This set can be viewed as
a metric space (see [19, Exercise 5.2]), which we endow with its Borel σ-algebra to make a
measure space. Our results will be for Galton–Watson trees with general child distributions,
sometimes under mild moment conditions. We will typically denote the tree by T and the
child distribution by χ. We always assume that χ puts positive probability on {2, 3, . . .}, so
that T is a true tree. For any tree t ∈ T , we let V (t) denote its vertex set and Rt its root.
Let t(v) denote the subtree of t made up of v and its descendants. We let t|n denote the tree
obtained by truncating t beyond its nth generation and [t]n ⊆ T the set of trees that match
t up to the nth generation, where the root is considered to belong to generation 0. Let Ln(t)
denote the set of all nodes of t in generation n, and let ℓn(t) = |Ln(t)|. We abbreviate Ln(T )
by Ln and ℓn(T ) by ℓn.

We will often work with coloured trees, defined as a pair (t, τ) consisting of a tree t ∈ T
together with a colouring τ : V (t) → Σ. We denote the space of coloured trees as Tcol, taking
the set of colours Σ as fixed in advance. For (t, τ) ∈ Tcol, let [t, τ ]n ⊆ Tcol denote the set of
coloured trees that match (t, τ) up to the nth generation.

1.3. Tree automata. Let Σ denote a finite set, to be thought of as colours or states. A
tree automaton on the states Σ is essentially a set of rules for determining the state of a
parent in the tree from the states of its children. Formally, we define an automaton as a
map A : NΣ

0 → Σ, where N0 = N ∪ {0}. The vector ~n =
(

nσ : σ ∈ Σ
)

∈ N
Σ
0 represents the

count of children in each state, and A(~n) represents the state assigned to the parent.

Example 1.3 (At-least-two automaton). We define an automaton A on states Σ = {0, 1}
that assigns state 1 to the parent if and only if at least two of its children have state 1. For-
mally, the automaton is the map (n0, n1) 7→ 1{n1 ≥ 2}. As we mentioned, this automaton
is implicit in Question 1.1.
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Tree automata are of interest in logic and theoretical computer science. In these settings,
they typically act on trees with vertex labels rather than plain trees, and there are some
restrictions on them. See [7] and [17, Chapter 7] for more details on automata for finite trees,
and [27, Section 6] for more on infinite trees. Tree automata can be used to determine which
sets of trees can be defined by a given logic. For example, call a set of trees regular if there
exists a tree automaton so that a tree falls into the set if and only if the automaton assigns
its root one of a set of accepted states. A set of finite trees is definable in monadic second-
order logic if and only if it is regular [17, Theorem 7.30, Theorem 7.34]. A similar statement
holds for infinite trees as well [27, Theorem 6.19]. We will revisit logic in Section 1.9, after
we state our results.

For a given tree t, we say that an assignment of colours τ : V (t) → Σ is compatible with
the automaton A if for every v ∈ V (t), we have

τ(v) = A(~n), (3)

where ~n = (nσ : σ ∈ Σ) and nσ is the number of children of v that are coloured σ under τ . If
t is finite, there is only one colouring compatible with A. At each leaf, this colouring takes
the value A(0, . . . , 0), and then the automaton determines the colours of all other vertices.
When t is infinite, however, there are typically many assignments compatible with a given
automaton.

1.4. Interpretations. An interpretation of an automaton is a deterministic classification of
trees into the states of Σ such that the state of a tree can be computed from the states of the
subtrees descending from the children of its root, according to the rules of the automaton.
For example, assign a tree state 1 if it contains an infinite binary subtree starting at its root,
and assign it state 0 otherwise. This is an interpretation of the at-least-two automaton of
Example 1.3, since a tree t has state 1 if and only if its root Rt has at least two children
u, v with subtrees t(u), t(v) in state 1.

Formally, we define an interpretation as follows. Let χ be a probability measure on the
nonnegative integers, and let GW(χ) denote the Galton–Watson measure on T with child
distribution χ. We call a measurable map ι : T → Σ an interpretation of the automaton A
under GW(χ), if for a.e.-GW(χ) tree t ∈ T , the colouring τ : V (t) → Σ, defined as

τ(v) = ι(t(v)), for all v ∈ V (t), (4)

is compatible with A. Typically, we will call ι an interpretation of A without mentioning
GW(χ), since the offspring distribution will be fixed throughout. For many interpretations,
including our example of assigning a tree 1 if it contains an infinite binary subtree from
the root, the compatibility condition holds for every tree in T , and the measure GW(χ) is
irrelevant.

1.5. Fixed points and their connections with interpretations. Let T ∼ GW(χ). If
ι : T → Σ is an interpretation of the automaton A under GW(χ), then the distribution
of ι(T ) is constrained by the self-similarity of T . For example, if χ ∼ Poi(λ) and ι is
an interpretation of the at-least-two automaton of Example 1.3, then ι(T ) ∼ Bernoulli(p),
where p satisfies (2).

We now describe these constraints on the distribution of ι(T ) when ι is an interpretation of
a general automatonA and T ∼ GW(χ). LetD denote the set of all probability distributions
on Σ (as Σ is finite, D is a finite-dimensional simplex). We define a map Ψ: D → D that
we call the automaton distributional map corresponding to A and χ, as follows. Fix ~x ∈ D.
Consider a random tree whose root has children according to χ. To each child, mutually
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independently, we attach a random state in Σ that follows the distribution ~x. For every
realization of this random procedure, we determine the state at the root using the rules of
the automaton A. We then set Ψ(~x) to be the distribution of the random state thus induced
at the root.

Lemma 1.4. Let T ∼ GW(χ). If ι is an interpretation for the tree automaton A, then the
distribution of ι(T ) is a fixed point of the automaton distribution map Ψ.

Proof. Let the distribution of ι(T ) be ~y = (yσ : σ ∈ Σ) ∈ D. Let τ : V (T ) → Σ be the
assignment defined by τ(v) = ι(T (v)) for all v ∈ V (T ), which is almost surely compatible
with A by definition of interpretation.

Under the labeling τ , the state of the root RT is distributed as ~y, since τ(RT ) = ι(T ).
On the other hand, RT has children according to the distribution χ; each of these children
has an independent copy of T descending from it. So, from the definition of τ , the children
of RT have i.i.d. labels distributed as ~y. Hence the corresponding label at the root is Ψ(~y),
by definition of Ψ. This shows that Ψ(~y) = ~y, which is what we claimed. �

For all tree automata, the automaton distribution map Ψ has at least one fixed point.
This holds because Ψ is a continuous map from a finite-dimensional simplex to itself, and
so the Brouwer fixed-point theorem guarantees the existence of a fixed point.

For a given automaton A and child distribution χ, suppose ~ν is some fixed point of Ψ. We
call ι an interpretation of the automaton A corresponding to ~ν if ι is indeed an interpretation
of A and ι(T ) ∼ ~ν. It is not hard to show that up to measure zero changes, there is at most
one interpretation corresponding to a given fixed point (see Proposition 1.6). If such an
interpretation exists, we call ~ν interpretable; otherwise, we call it rogue. Our main results
are a criterion for determining whether a given fixed point is rogue or interpretable when
|Σ| = 2 (Theorem 1.7), as well as a sufficient condition for interpretability for |Σ| ≥ 3
(Theorem 1.8). To state this criterion, we must define the two randomly coloured trees
explained in the next two sections.

1.6. The random state tree. Fix a child distribution χ, automaton A, and a fixed point
~ν of the resulting automaton distributional map Ψ. The random state tree associated with
~ν is a coloured Galton–Watson tree. We write it as (T, ω), where ω : V (T ) → Σ is a random
colouring of the tree T . It is defined by the following properties:

(i) T ∼ GW(χ);
(ii) for every n, the conditional distribution of

(

ω(v) : v ∈ Ln

)

given T |n is i.i.d. ~ν;
(iii) ω is almost surely compatible with A.

Proposition 1.5. These properties uniquely determine the distribution of (T, ω).

Essentially, the random state tree is defined up to height n by generating the first n
levels of T , colouring the leaves i.i.d. ~ν, and then colouring the first n− 1 levels of the tree
according to the automaton. The distributions of coloured trees generated by this procedure
turn out to be consistent for different values of n, which is a consequence of ~ν being a fixed
point of Ψ. Kolmogorov’s extension theorem then shows the existence of the distribution of
the entire coloured tree. This is shown in detail in the proof of Proposition 1.5, which we
give in Section 2.

The colouring of the vertices of the random state tree is reminiscent of an interpretation,
which also yields a colouring of the tree via (4). But note that for a given fixed point of
Ψ, the random state tree colouring always exists, and it is a random colouring (on top of
the randomness of the tree). On the other hand, given a fixed point of Ψ, there may be
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no interpretations associated with it; if there is an interpretation, the colouring it yields is
deterministic given the tree.

1.7. Definition of the pivot tree. We now describe the pivot tree, leaving its formal
definition to Section 2.3. Consider some vertex of (T, ω), and imagine changing its colour
and then recolouring all the vertices above it according to the rule of the automaton. We
call this recolouring operation a switching. If the switching changes the colour at the root,
then we call the vertex pivotal for (T, ω). It is not hard to see that a vertex can only be
pivotal if its parent is pivotal. The subgraph of T induced by the pivotal vertices is thus a
subtree, which we call the pivot tree Tpiv. As we will see in Proposition 2.4, the pivot tree
is a multitype Galton–Watson tree.

We mention that the pivot tree is a bit more complicated when there are more than
two states, because a vertex can change colours in more than one way. However, to state
Theorem 1.8, we need only use the pivot tree with maximal target set, in which a vertex
is pivotal if its colour can be switched to any other colour with the result of changing the
colour of the root in any way.

1.8. The main result. For all of our results, fix a child distribution χ, an automaton A on a
finite set of states Σ, and let Ψ: D → D be the automaton distributional map corresponding
to A and χ, defined in Section 1.5.

First, as we mentioned, there is at most one interpretation for each fixed point:

Proposition 1.6. If ι, ι′ : T → Σ are interpretations of A under GW(χ) corresponding to
the same fixed point of the automaton distribution map, then ι = ι′ a.e.-GW(χ).

Now, we give our main results. Let ~ν be a fixed point of Ψ. We assume that the support
of the probability distribution ~ν is all of Σ; that is, as a vector, all entries of ~ν are nonzero.
This is in fact no restriction, since if ~ν is supported on a subset of Σ, we can simply remove
the extra elements of Σ and view A as an automaton on this smaller set. Recall that the
pivot tree associated with ~ν is a multitype Galton–Watson tree, which will be proven in
Proposition 2.4. We define a multitype Galton–Watson tree to be subcritical, critical, or
supercritical depending on whether its matrix of mean offspring sizes has spectral radius
smaller than, equal to, or greater than 1 (see Section 2.4).

Theorem 1.7. Suppose that |Σ| = 2 and χ has finite logarithmic moment. Then ~ν admits
an interpretation if and only if the pivot tree associated with ~ν is subcritical or critical.

This theorem completely classifies fixed points as interpretable or rogue when |Σ| = 2. It
is practical to apply (see Section 5 for some examples), since it only takes a computation to
check the criticality of a given Galton–Watson tree.

When |Σ| ≥ 3, we give only a sufficient condition for existence of an interpretation.

Theorem 1.8. If the pivot tree with maximal target set associated with ~ν is subcritical, then
~ν admits an interpretation.

Our full version of this result, Proposition 3.1, is actually slightly stronger and applies in
some cases when the pivot tree is critical (see Remark 3.6).

1.9. Connections to other work. This work has some concrete connections with mathe-
matical logic. We start by defining first-order and monadic second-order logic on trees. A
sentence in the first-order language for rooted trees is a finite combination of the following:

• a constant symbol R representing the root;



8 TOBIAS JOHNSON, MOUMANTI PODDER, AND FIONA SKERMAN

• a function π where π(v) represents the parent of vertex v;
• a relation =, denoting equality of vertices;
• the Boolean connectives;
• existential and universal quantifications over vertices.

For example, a valid first order sentence is that some vertex has exactly one child, which is
expressed in the formal language by

∃x ∃y
(

(π(y) = x) ∧
(

∀z (π(z) = x =⇒ z = y)
)

)

.

The monadic second-order language adds

• existential and universal quantifications over sets of vertices;
• the relation ∈, denoting set membership.

For example, the following sentence states that the tree is infinite:

∃S ∀x
(

(x ∈ S) =⇒
(

∃y (π(y) = x) ∧ (y ∈ S)
)

)

.

The quantifier depth of a sentence in either language is the maximal depth of nesting of
existential and universal qualifiers. In the example above, the quantifier depth is 3.

Using Ehrenfeucht games, one can partition the set of rooted trees into finitely many
types by the relation that two trees have the same type if they have the same truth value
for all first-order sentences of quantifier depth at most k (see [17, Chapter 3]). Call this
partition the rank-k types. One can do the same replacing first-order logic with monadic
second-order logic, producing the MSO rank-k types [17, Section 7.2]. In both cases, one
can deduce the type of a given tree t from the types of the trees rooted at the children of
the root of t. This gives rise to tree automata on the set of rank-k and MSO rank-k types,
both of which have interpretations given by mapping a tree to its type.

In [24, 25], this automaton is investigated for the first-order case. The most fundamental
result of [25] is that its automaton distribution map is a contraction and hence has a unique
fixed point. As a consequence, since the at-least-two property has multiple fixed points,
the property of a tree containing an infinite binary tree starting from its root cannot be
expressed in first-order logic. We discuss this further in Section 5.3. Our initial motivation
for this paper was to make sense of the meaning of multiple fixed points.

Our work also has some connections to the theory of recursive distributional equations
(RDEs) as developed by Aldous and Bandyopadhyay [1]. A prototypical example of an RDE
is for the height of a Galton–Watson tree. Given a child distribution, let N be the number
of children of the root. Then the height of the tree H satisfies the distributional equation

H
d
= 1 +max(H1, . . . , HN ),

where H1, H2, . . . are independent copies of H .
For a given tree automaton, the automaton distribution map Ψ defines an RDE. For any

choice of fixed point ~ν, the random state tree (T, ω) is an example of an object introduced
by Aldous and Bandyopadhyay called a recursive tree process (RTP). RTPs are classified as
endogenous or nonendogenous, which for (T, ω) corresponds to whether ω(RT ) is measurable
with respect to T . In Proposition 2.2, we show that this is equivalent to interpretability of
~ν. Thus, Theorems 1.7 and 1.8 can be viewed as criteria for the endogeny of an RTP, for
RTPs in a certain class. This work or extensions of it might prove useful, as the endogeny
of RTPs is an actively pursued topic (see [13, 4, 2, 16], for example).

Two very recent papers have a similar flavour as ours. In [6], the authors consider critical
Galton–Watson trees conditioned to have n vertices. Each vertex of the tree is given a label
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from a finite set. The label of a parent is a function of the labels of the children along with
an independent set of randomness. (This is also the case with Aldous and Bandyopadhyay’s
definition of a recursive tree process.) The main result of the paper is a limit theorem for
the distribution of the label of the root as n → ∞.

The paper [20] considers Galton–Watson trees labeled by elements of [0, 1], cut off at
level 2n. Leaves are assigned independent labels sampled uniformly from [0, 1]. Then, the
label at a parent at an even generation is the minimum of its children’s labels; at an odd
generation, it is the maximum of its children’s labels. This models a game in which two
players take turns, one trying to make the score big and one trying to keep it small. The
paper classifies possible limit distributions for the label at the root as n → ∞. It also
investigates endogeny, the question of whether the value at the root is determined by the
structure of the tree.

1.10. Outline. In Section 2, we first establish basic properties of interpretations, fixed
points, the random state tree, and the pivot tree used throughout this paper. In Section 3,
we prove the first direction of Theorem 1.7, existence of an interpretation when the pivot
tree is almost surely finite. The main tool for this is the Kahn–Kalai–Linial inequality
from the theory of Boolean functions [14]. The other direction of Theorem 1.7 is proven in
Section 4 using the spine decomposition technique pioneered by Lyons, Peres, and Pemantle
[18]. Finally, in Section 5, we apply these results to answer Question 1.1. We also give
examples exhibiting a phase transition between interpretable and rogue for a fixed point as
the child distribution of the tree is varied. In Section 6, we discuss some open questions.

2. Foundational properties of our objects

In this section, we fix a child distribution χ, an automaton A on a set of states Σ, and a
fixed point ~ν of the automaton distributional map Ψ: D → D determined by A and χ. We
will demonstrate some of the basic properties of fixed points, interpretations, the random
state tree, and the pivot tree.

2.1. The random state tree. We now give the proof of Proposition 1.5, establishing
the existence of the random state tree (T, ω) defined in Section 1.6. We then show in
Proposition 2.1 that it is a multitype Galton–Watson tree.

Proof of Proposition 1.5. To invoke the Kolmogorov extension theorem [15, Theorem 6.16],
we must construct a sequence of random variables (Tn, ωn) such that Tn is the truncation to
level n of a GW(χ)-distributed tree, the distribution of (ωn(v))v∈Ln(Tn) conditional on Tn

is i.i.d.-~ν, the values of ωn(v) for v in levels 0, . . . , n− 1 are as given by the automaton, and
the truncation of (Tn+1, ωn+1) to n levels is distributed as (Tn, ωn). (Formally speaking, to
apply the Kolmogorov extension theorem, we view labeled trees as a sequence of their finite
truncations, but we will ignore these details.)

To construct (Tn, ωn), we simply define Tn as the truncation of a Galton–Watson tree,
then colour the level n vertices i.i.d.-~ν, and then colour levels 0, . . . , n−1 of the tree according
to the automaton. The crux of the proof is showing that the truncation of (Tn+1, ωn+1) to
level n is distributed as (Tn, ωn). Clearly, Tn+1|n is distributed as Tn, and the colouring
given by ωn+1 on levels 0, . . . , n − 1 of Tn+1|n is as induced by the automaton. We need
only show that conditional on Tn+1|n, the labeling ωn+1 assigns i.i.d. ~ν colours to the level n
vertices.

To see this, recall how we define Ψ(~x): We let a node have children according to distri-
bution χ. Each of these children is assigned, mutually independently, a state according to
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distribution ~x. The induced random state of the parent node, obtained via the rules of A,
has distribution Ψ(~x). Meanwhile, each v ∈ Ln(Tn+1) has children according to χ, these
children receive i.i.d.-~ν labels from ωn+1, and ωn+1(v) is given by applying the automaton
to these labels. Hence, the distribution of ωn+1(v) conditional on Tn+1|n is Ψ(~ν). As ~ν is
assumed to be a fixed point, this equals ~ν. The values of ωn+1(v) are independent for the
different level n vertices v conditional on Tn+1|v, showing that ωn+1 assigns i.i.d. ~ν colours
to the level n vertices. �

Now that we have shown the existence of the random state tree, we prove that it is
Galton–Watson with types given by ω.

Proposition 2.1. The random state tree (T, ω) is a multitype Galton–Watson tree.

Proof. For σ1, . . . , σk ∈ Σ, let

χcol(σ1, . . . , σk) = χ(k)~ν(σ1) · · · ~ν(σk),

the probability that RT has exactly k children and that their types in order are σ1, . . . , σk.
Let χσ

col(σ1, . . . , σk) denote the conditional probability that RT has exactly k children and
that their types in order are σ1, . . . , σk, given that ω(RT ) = σ. Thus, if σ is the type
according to A for a vertex with children of types σ1, . . . , σk, then

χcol(σ1, . . . , σk) = ~ν(σ)χσ
col(σ1, . . . , σk). (5)

Our goal is to prove that conditional on the first n levels of (T, ω), each vertex v at level n

independently gives birth according to the distribution given by χ
ω(v)
col . Fix any (t, τ) ∈ Tcol.

By definition of ω,

P
[

(T, ω) ∈ [t, τ ]n+1

]

= P
[

T ∈ [t]n+1

]

∏

u∈Ln+1(t)

~ν
(

τ(u)
)

,

recalling the notation [t]n and [t, τ ]n defined in Section 1.2. For a vertex v ∈ V (t), let C(v)
denote its children in t. Since T is Galton–Watson with child distribution χ,

P
[

(T, ω) ∈ [t, τ ]n+1

]

=

(

P
[

T ∈ [t]n

]

∏

v∈Ln(t)

χ
(

|C(v)|
)

)

∏

u∈Ln+1(t)

~ν
(

τ(u)
)

= P
[

T ∈ [t]n

]

∏

v∈Ln(t)

(

χ
(

|C(v)|
)

∏

u∈C(v)

~ν
(

τ(u)
)

)

= P
[

T ∈ [t]n

]

∏

v∈Ln(t)

χcol

(

τ(u)u∈C(v)

)

.

By (5), this becomes

P
[

(T, ω) ∈ [t, τ ]n+1

]

= P
[

T ∈ [t]n

]

∏

v∈Ln(t)

~ν(τ(v))χ
τ(v)
col

(

τ(u)u∈C(v)

)

= P
[

(T, ω) ∈ [t, τ ]n

]

∏

v∈Ln(t)

χ
τ(v)
col

(

τ(u)u∈C(v)

)

,

which is exactly what we set out to prove. �
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2.2. Equivalent conditions for interpretability of fixed points. We start with a defi-
nition that will come up again elsewhere in the paper. Given a rooted tree t and a colouring
of its level n vertices, we can repeatedly apply the automaton A to determine the state of
the root. We define An

t : Σ
ℓn(t) → Σ to be the result of doing so, considering it as a map

from the colours at level n to a colour at the root.
Now, we show that a given fixed point can have at most one interpretation:

Proof of Proposition 1.6. Viewing the statement of the proposition probabilistically, our
goal is to show that ι(T ) = ι′(T ) a.s. Fix some σ ∈ Σ. We first show that for any n,

P
[

ι(T ) = σ
∣

∣ T |n
]

= P
[

ι′(T ) = σ
∣

∣ T |n
]

a.s. (6)

To prove this, we start by observing that ι(T ) is determined by
(

ι(T (v))
)

v∈Ln
. Indeed, since

ι is an interpretation of A and thus respects the automaton,

ι(T ) = An
T

(

(

ι(T (v))
)

v∈Ln

)

.

Conditional on T |n, each tree T (v) for v ∈ Ln is independent and distributed identically to
T . Let ~ν be the fixed point corresponding to ι and ι′. Since the distribution of ι(T ) is ~ν,
the distribution of (ι(T (v)))v∈Ln

conditional on T |n is i.i.d. ~ν. Therefore,

P
[

ι(T ) = σ
∣

∣ T |n
]

= P
[

An
T

(

(

ω(v)
)

v∈Ln

)

= σ
∣

∣

∣
T |n
]

a.s., (7)

recalling that by its definition, the colouring ω of the random state tree (T, ω) also assigns
colours to the level n vertices by sampling independently from ~ν, conditional on T |n. The
exact same reasoning shows that

P
[

ι′(T ) = σ
∣

∣ T |n
]

= P
[

An
T

(

(

ω(v)
)

v∈Ln

)

= σ
∣

∣

∣
T |n
]

a.s.,

which proves (6).
Now, we take limits as n → ∞ to complete the proof. The σ-fields generated by T |n form

a filtration that converges to the σ-field generated by T . Hence, by Lévy’s upward theorem,

P
[

ι(T ) = σ
∣

∣ T |n
]

→ P
[

ι(T ) = σ
∣

∣ T
]

= 1{ι(T ) = σ} a.s. (8)

and

P
[

ι′(T ) = σ
∣

∣ T |n
]

→ P
[

ι′(T ) = σ
∣

∣ T
]

= 1{ι′(T ) = σ} a.s. (9)

By (6), these two limits are identical. We conclude that 1{ι(T ) = σ} = 1{ι′(T ) = σ} a.s.
for all σ ∈ Σ. �

The expression An
T

(

(ω(v))v∈Ln

)

in (7) is equal to ω(RT ), since the colouring ω is com-
patible with A. Thus (7) can be written as

P
[

ι(T ) = σ
∣

∣ T |n
]

= P
[

ω(RT ) = σ
∣

∣

∣
T |n
]

a.s., (10)

which will come up again in the next proposition. Before we state it, we mention a standard
characterization of measurability [15, Lemma 1.13]: Let X and Y be random variables
taking values in measurable spaces X and Y, respectively, with X assumed to be a Polish
space endowed with its Borel σ-algebra. Then the measurability of X with respect to Y is
equivalent to existence of a measurable map f : Y → X such that X = f(Y ) a.s.

Proposition 2.2. The following statements are equivalent:

(i) ~ν is interpretable;
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(ii) for each σ ∈ Σ,

lim
n→∞

P
[

ω(RT ) = σ
∣

∣ T |n
]

∈ {0, 1} a.s.;

(iii) ω(RT ) is measurable with respect to T ;
(iv) ω is measurable with respect to T .

Proof that (i) =⇒ (ii). Let ι be the interpretation of automaton A corresponding to ~ν (it
is unique up to GW(χ)-negligible sets by Proposition 1.6). By (10),

lim
n→∞

P
[

ω(RT ) = σ
∣

∣ T |n
]

= lim
n→∞

P
[

ι(T ) = σ
∣

∣ T |n
]

= 1{ι(T ) = σ} ∈ {0, 1} a.s.,

applying Lévy’s upward theorem as in (8). �

Proof that (ii) =⇒ (iii). Invoking Lévy’s upward theorem and then (ii),

P
[

ω(RT ) = σ
∣

∣ T
]

= lim
n→∞

P
[

ω(RT ) = σ
∣

∣ T |n
]

∈ {0, 1} a.s. (11)

Thus, given the entire tree T , we can almost surely determine whether ω(RT ) equals σ or not.
Since this is true for every σ ∈ Σ, the state ω(RT ) is almost surely equal to a deterministic
function of T , showing that ω(RT ) is measurable with respect to T . �

Proof that (iii) =⇒ (iv). Fix any v ∈ Ln. Let ω|T (v) denote the restriction of ω on the

subtree T (v). The conditional distribution of the coloured tree
(

T (v), ω|T (v)

)

given T |n
is the same as the unconditional distribution of (T, ω). By (iii), we know that ω(v) is
measurable with respect to T (v) and is hence an almost sure function of T (v). As T has
countably many vertices, we can write ω as an almost sure function of T . �

Proof that (iv) =⇒ (i). Since ω is measurable with respect to T , so is ω(RT ). Therefore
there exists a measurable map ι : T → Σ such that ι(T ) = ω(RT ) a.s. We claim that this
will serve as the desired interpretation: Since ω is almost surely compatible with A, the
assignment v 7→ ι(T (v)) is also almost surely compatible with A and is hence an interpreta-
tion. Furthermore, from the construction of ω, we know that ω(RT ) will be distributed as
~ν, and hence so is ι(T ). �

We mentioned at the end of Section 1.6 that the colouring of T given by ω and the colour-
ing given by an interpretation via (4) are in general different. However, it is a consequence of
Proposition 2.2 that when an interpretation exists for a given fixed point, the two colourings
are the same:

Corollary 2.3. The fixed point ~ν is interpretable if and only if ω is measurable with respect
to T . If this occurs, then ω(Rt) is determined by t for GW(χ)-a.e. t ∈ T , and the resulting
map T → Σ given by t 7→ ω(Rt) is the the unique interpretation corresponding to the fixed
point, up to a.e.-GW(χ) equivalence.

Proof. The equivalence of interpretability and measurability of ω with respect to T is one
part of Proposition 2.2. In the proof that (iv) implies (i), it is shown that t 7→ ω(Rt) yields an
interpretation corresponding to the given fixed point. The uniqueness of this interpretation
is given by Proposition 1.6. �

The equivalences proven in this section reduce the question of whether a fixed point of
Ψ is rogue or interpretable to whether the colouring ω in the random state tree (T, ω) is
random or deterministic given T . This question is on its face no easier than the original one.
To answer it, the key will be the pivot tree, a random subtree of (T, ω) that we discuss now.



RANDOM TREE RECURSIONS 13

2.3. The pivot tree. We start with some notation. Suppose we are given a coloured tree
(t, τ) with τ compatible with A. Suppose v ∈ Ln(t). Now, imagine that we change the
colour of v to some γ ∈ Σ \ {τ(v)}, and then recolour the vertices at levels 0, . . . , n − 1
based on this. We say that we have switched the colour at v to γ, and we denote the new
colouring by τv→γ . Note that τv→γ is only defined on t|n, and that it is consistent with the
automaton at levels 0, . . . , n− 1.

Now, we give the full definition of the pivot tree. When |Σ| = 2, this definition is simple:
the pivot tree of (t, τ) consists of the subgraph induced by all vertices v such that switching
τ at v changes the value of the root. We denote the pivot tree of (T, ω) by Tpiv, which we
will prove shortly is indeed a tree. See Figure 2 for an example.

When |Σ| ≥ 3, we sometimes demand that the colour of the root change to one of a
specific set of colours, known as the target set, complicating the definition. Given (t, τ) with
τ compatible with A, let A ⊆ Σ \ {τ(Rt)} represent this target set. Given t, τ , and A, for
any v ∈ V (t) we define

Bv =
{

γ ∈ Σ: τv→γ(Rt) ∈ A
}

.

In other words, Bv is the set of colours such that switching v to an element of Bv changes
the colour of the root to an element of A. For any v ∈ V (t), we say that v is pivotal for
(t, τ) with target set A if Bv 6= ∅.

To define the pivot tree of (T, ω), we must specify a target set for each possible state of
the root. For each σ ∈ Σ, let ∅ 6= Aσ ⊆ Σ \ {σ} be a given (deterministic) set that we
call the target set of the root at state σ. The most basic example is to set Aσ = Σ \ {σ}
for all σ, which corresponds to requiring the colour of the root to change without caring
what it changes to. Let A = (Aσ)σ∈Σ. We define the pivot tree, Tpiv = Tpiv(A), as the
subgraph of T induced by all vertices pivotal for (T, ω) with target set Aω(RT ). The pivot
tree is measurable with respect to (T, ω); that is, Tpiv is a measurable function of (T, ω).
Also, observe that this definition works in the |Σ| = 2 case as well. Here, there is only one
possible choice of Aσ, and either Bv = ∅ or Bv is a singleton set made up of the opposite
colour as ω(v).

Proposition 2.4. For given target sets (Aσ)σ∈Σ, assign the type (ω(v);Bv) to each vertex
v ∈ V (T ). With these types, both T and Tpiv are multitype Galton–Watson trees.

Proof. We start with proof for T . Let Fn denote the σ-algebra generated by T |n and by
the types (ω(v);Bv) for vertices v up to level n. We will refer to these as augmented types,
in contrast with the unaugmented types given by ω alone.

We must show that conditional on Fn, the vertices at level n independently give birth
according to their augmented types. First, we observe that the values of Bv for v in T |n
are determined by the first n levels of (T, ω). Hence, conditioning on Fn is the same as
conditioning on the first n levels of (T, ω). Thus, by Proposition 2.1, conditional on Fn, each
vertex v at level n independently gives birth to children whose number and unaugmented
type are determined by the unaugmented type of v.

Now, we just need to extend this statement to the augmented types. The key fact is the
following: Let u1, . . . , uk be the children of some node v. Then for each i = 1, . . . , k, the
set Bui

is determined by ω(u1), . . . , ω(uk) and Bv. Indeed, from ω(u1), . . . , ω(uk), we can
determine the effect on the colour of v of changing ui to have any given colour. From Bv, we
know whether the change will alter the colour of the root to have a value in Aω(RT ). Thus
we can determine Bui

.
Let C(v) denote the children of a vertex v, as in Proposition 2.1. From the fact above,

conditional on Fn, the distribution of
(

Bu : u ∈ C(v)
)

for any v ∈ Ln is determined by
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2 {0, 1}

0 ∅ 1 {0} 1 {0}

1 {0} 0 ∅ 1 {0}

Figure 3. The automaton in this example is on {0, 1, 2}. The state of a
parent is given by the sum of its children’s states, capped at 2. Bold vertices
are pivotal with target set {0, 1}. Written to the right of each vertex v is
the set Bv, indicating which states v can be switched to with the effect of
changing the state of the root to a value in the target set.

(ω(v);Bv). This completes the proof that T is multitype Galton–Watson with the augmented
types.

To prove the statement for Tpiv, we first observe that Tpiv is indeed a tree, since if a
vertex u has Bu 6= ∅, then its parent v evidently satisfies Bv 6= ∅. Thus, Tpiv is the tree
formed by ignoring vertices of certain types in the Galton–Watson tree T , which always
creates another Galton–Watson tree. �

See Figure 3 for an example of a pivot tree when |Σ| ≥ 3. In general, when we refer to
Tpiv as a Galton–Watson tree from now on, we mean with types given as in Proposition 2.4.
When |Σ| = 2, since either Bv = ∅ or Bv is a singleton set for each v, we can think of
the type (ω(v);Bv) as simply ω(v) along with an indicator on v being pivotal. Thus Tpiv

in this case is Galton–Watson with the types given by ω alone. Naively, one might think
that (Tpiv, ω) would be Galton–Watson even when |Σ| ≥ 3. We can see the problem with
this in Figure 3. Let u be the 0-labeled vertex on the bottom level of the tree, and let v be
its parent. Vertex u is not pivotal for the given target set of the root (or indeed, for any
possible target set). However, for the subtree rooted at v, vertex u is pivotal for the target
set {0, 2}. Thus, if we do not include the sets Bv in the information given by the types, the
law of the progeny of a vertex would depend not just on the type of the vertex but on its
ancestors.

2.4. Regularity properties of the pivot tree. For a given multitype Galton–Watson
tree, define a matrix by setting Mij to the expected number of offspring of type j for a
parent of type i. We classify the process as subcritical, critical, or supercritical depending
on whether the spectral radius of M is smaller than, equal to, or greater than 1. If Mn

has strictly positive entries for some choice of n, then the Galton–Watson process is called
positive regular. This says that it is possible for any type to have a descendant of any other
type, and that no periodic behaviour occurs. The process is called singular if each type gives
birth to exactly one child with probability one. Multitype Galton–Watson trees are nearly
always considered under the assumption that they are positive regular and nonsingular.
Under this assumption, the process dies out with probability one in the subcritical and
critical cases, and it survives with positive probability in the supercritical case. Regardless
of the starting type, the expected size of the nth generation vanishes exponentially in the
subcritical case; remains of constant order in the critical case; and grows exponentially in
the supercritical case.
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For a Galton–Watson tree without these assumptions, the situation is messier. To illus-
trate, consider a process with two types A and B and matrix of means M =

[

1 a
0 1

]

for a > 0.
The expected number of vertices of each type at level n starting with a vertex of type A is
given by the first row of Mn, which is (1, an). Thus, even though this process is critical,
the expected size of the nth generation grows to infinity, though only at a polynomial rate.
On the other hand, this tree still dies out with probability one, as we can see by viewing
it as a backbone of a critical single-type Galton–Watson tree of vertices of type A, each of
which gives birth to critical single-type trees of vertices of type B, all of which die out with
probability one.

In general, without the assumption of positive regularity and nonsingularity, it is still
correct that a subcritical tree has exponentially vanishing expected nth generation and
hence dies out almost surely. By [26] (see [12, Theorem 10.1]), so long as there does not
exist a collection of types C such that the children of a vertex of type in C include exactly
one of the types in C with probability one, a critical tree dies out almost surely; and a
supercritical tree survives with positive probability from some starting state.

The Galton–Watson tree Tpiv need not be positive regular. Nonetheless, when |Σ| = 2,
many features of positive regularity still hold. We give a lemma that we will use to prove
this.

Lemma 2.5. Suppose that Σ = {0, 1}. Let Z0 and Z1 be the number of children of RT

pivotal for (T, ω) of types 0 and 1, respectively. Then

E[Z0 | ω(RT ) = 0] = E[Z1 | ω(RT ) = 1],

and

E[Z0 | ω(RT ) = 1] =
~ν(0)2

~ν(1)2
E[Z1 | ω(RT ) = 0].

Hence, if M is the matrix of means of Tpiv, given by M = (mij)i,j∈{0,1} where mij = E[Zj |
ω(RT ) = i], then

M =

(

m00 m01
~ν(0)2

~ν(1)2m01 m00

)

. (12)

Proof. Given a list σ = (σ1, . . . , σk) ∈ {0, 1}k representing the states of an ordered set of
children, we abuse notation slightly and write A(σ) to mean the value that the automaton
assigns to the parent given these children. For example, if σ = (0, 0, 1, 0, 1), then we write
A(σ) to denote A(3, 2), the type of the parent when there are three children of type 0 and
two of type 1. We say that coordinate σi is pivotal if switching its value changes A(σ). For
example, if A is the at-least-two automaton of Example 1.3 and σ is as above, then σ3 and
σ5 are pivotal.

For a, b ∈ {0, 1}, let

Sk(a, b) =
{

(σ, i) : σ ∈ {0, 1}k, i ∈ {1, . . . , k}, A(σ) = a,

σi = b, and σi is pivotal
}

,

representing a configuration of k children making the parent have type a and a choice of a
pivotal child of type b. There is a natural bijection between Sk(a, b) and Sk(1 − a, 1 − b).
The map is given by sending (σ, i) ∈ Sk(a, b) to (σ′, i) ∈ Sk(1 − a, 1− b), where σ′ is equal
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to σ except at coordinate i. Applying this bijection, keeping in mind that the states of the
level 1 vertices of (T, ω) conditional on T |1 are i.i.d. ~ν,

E
[

Z01{ω(RT ) = a} | RT has k children
]

=
∑

(σ,i)∈Sk(a,0)

~ν⊗n(σ)

=
∑

(σ,i)∈Sk(1−a,1)

~ν(0)

~ν(1)
~ν⊗n(σ)

=
~ν(0)

~ν(1)
E
[

Z11{ω(RT ) = 1− a} | RT has k children
]

.

Here we use the notation ~ν⊗n to denote the n-fold product measure of ~ν with itself. Taking
expectations, in the a = 0 case this yields

E
[

Z01{ω(RT ) = 0}
]

~ν(0)
=

E
[

Z11{ω(RT ) = 1}
]

~ν(1)
,

while in the a = 1 case it yields

E
[

Z01{ω(RT ) = 1}
]

~ν(1)
=

(

~ν(0)2

~ν(1)2

)

E
[

Z11{ω(RT ) = 0}
]

~ν(0)
. �

This lets us prove that when |Σ| = 2, the pivot tree behaves nicely. In particular, at
criticality Tpiv dies out and has expected size one at every generation.

Proposition 2.6. Suppose that Σ = {0, 1} and that both entries of ~ν are positive. Let
M = (mij)i,j∈{0,1} be the matrix of means of Tpiv.

(a) The largest eigenvalue of M in absolute value is equal to E[ℓ1(Tpiv)].
(b) For all n, it holds that E[ℓn(Tpiv)] = E[ℓ1(Tpiv)]

n.
(c) If Tpiv is supercritical, then it is infinite with positive probability conditional on both

ω(RT ) = 0 and on ω(RT ) = 1.
(d) If Tpiv is critical, then it is finite with probability one.

Proof of (a). By (12) from Lemma 2.5, the characteristic polynomial of M is

(x −m00)
2 − ~ν(0)2

~ν(1)2
m2

01,

which has roots m00 ± ~ν(0)
~ν(1)m01. The larger of these is m00 +

~ν(0)
~ν(1)m01. We then compute

E[ℓ1(Tpiv)] = E[Z0 + Z1] = ~ν(0)(m00 +m01) + ~ν(1)(m10 +m11)

= ~ν(0)(m00 +m01) + ~ν(1)
(

~ν(0)2

~ν(1)2m01 +m00

)

=
(

~ν(0) + ~ν(1)
)

m00 +
~ν(0)
(

~ν(1)+~ν(0)
)

~ν(1) m01

= m00 +
~ν(0)
~ν(1)m01. �

Proof of (b). The value of E[ℓn(Tpiv)] is the sum of entries of the vector ~νMn. We can
confirm by hand that ~ν is a left eigenvector ofM corresponding to the eigenvalue E[ℓ1(Tpiv)],
from which the statement follows.

There is a more conceptual explanation for this, which we briefly sketch. Let v be a
vertex at level n of T , and consider the following question: conditional on T |n and on v
being pivotal, what is the distribution of ω(v)? The answer is ~ν, just as if we had not
conditioned on v being pivotal. This is because switching the colour of v yields a bijection
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between colourings in which v is pivotal with colour 0 and pivotal with colour 1, with a
ratio ~ν(0)/~ν(1) of probabilities of each corresponding state under the product measure ~ν⊗ℓn .
Thus, pivotal vertices are coloured by ~ν, and so the expected number of pivotal children of
a pivotal vertex is E[ℓ1(Tpiv)]. Iterating this and applying linearity of expectation yields
E[ℓn(Tpiv)] = E[ℓ1(Tpiv)]

n. �

Proof of (c). We consider two cases. First, suppose that m01 = m10 = 0. By Lemma 2.5,
the matrix M has the form

[

m00 0
0 m00

]

, and by our supercriticality assumption m00 ≥ 1.
Hence, Tpiv conditional on either ω(RT ) = 0 or ω(RT ) = 1 is a supercritical single-type
Galton–Watson tree, and it survives in both cases with positive probability.

Now, suppose it is not true that m01 = m10 = 0. Since the multitype Galton–Watson tree
(Tpiv, ω) is supercritical, it survives with positive probability from some starting state. Hence
at least one of the two probabilitiesP

[

Tpiv survives
∣

∣ ω(RT ) = 0
]

andP
[

Tpiv survives
∣

∣ ω(RT ) =

1
]

must be positive. By Lemma 2.5, both m01 and m10 are positive. Thus, the root
of Tpiv conditioned to be type 0 has positive probability of giving birth to a pivotal ver-
tex of type 1, and vice versa. Therefore if either of P

[

Tpiv survives
∣

∣ ω(RT ) = 0
]

or

P
[

Tpiv survives
∣

∣ ω(RT ) = 1
]

is positive, then both of them are. �

Proof of (d). As in the previous proof, we break the proof into two cases depending on
whether m01 = m10 = 0. If so, then Tpiv conditional on either ω(RT ) = 0 or ω(RT ) = 1
is a critical single-type Galton–Watson tree, which dies out with probability one unless it
is singular. To rule this out suppose that a vertex of type 0 gives birth to a single pivotal
vertex of type 0 with probability one. Then in particular, a vertex of type 0 always gives
birth to exactly one child of type 0, since all children of a given type have the same pivotal
status. Now, we claim that a vertex of type 0 cannot give birth to any vertices of type 1.
Indeed, they would be nonpivotal, and hence switching one of them would yield another
configuration with multiple children of type 0 but still with a type 0 root. (Note that we
have assumed that ~ν puts positive probability on both types, meaning that the configuration
after the switching still has positive probability of occurring.) Hence, a vertex of type 0
gives birth almost surely to exactly one child, which has type 0. Thus, we have deduced
the automaton: it assigns a parent type 0 if and only if there is exactly one child, which
has type 0. Since ~ν is a fixed point, it satisfies ~ν(0) = χ(1)~ν(0). But then ~ν(0) ∈ {0, 1},
contradicting our assumption that ~ν places positive probability on both types. The same
argument also shows that a vertex of type 1 does not give birth to exactly one child of type 1
in the m01 = m10 = 0 case.

Now, consider the case that m01 and m10 are nonzero. According to [12, Theorem 10.1],
we must show that for the pivot tree, there does not exist a collection of states C such
that the children of a vertex of type in C almost surely include exactly one with type in C.
Suppose there exists such a set C. If C = {0}, then m00 = 1. But as the highest eigenvalue

of M is m00 +
~ν(0)
~ν(1)m01 and m01 is assumed to be nonzero, Tpiv is not critical. The same

argument rules out C = {1}. If C = {0, 1}, then every vertex (of whatever type) gives birth
to exactly one pivotal vertex almost surely. Since all children of the same type have the same
pivotality status, this implies that every vertex must give birth almost surely to a unique
child (i.e., one whose type is the opposite of all of its siblings). But this can happen only if χ
is supported on {0, 1}, since otherwise choosing the number of children according to χ and
then colouring them i.i.d. ~ν, there is positive probability that they all are coloured the same.
But this is a contradiction, since χ is assumed to assign positive weight to {2, 3, . . .}. �
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3. Subcritical pivot trees

As in Section 2, throughout this section we fix a child distribution χ, an automaton A on
a finite set of states Σ, and a fixed point ~ν of the automaton distributional map Ψ: D → D
corresponding to A and χ. We let (T, ω) be the random state tree for ~ν. As usual, we
let Tpiv denote the pivot tree for (T, ω), but in this section we fix the maximal target set
Aσ = Σ \ {σ} for σ ∈ Σ. Throughout this section, when we refer to a vertex as pivotal
for (T, ω), we mean that it is pivotal with this target set (see Section 2.3). Recall from
Proposition 2.4 that Tpiv is a Galton–Watson tree with the types defined there. Our goal
in this section is to prove the following:

Proposition 3.1. Suppose that Tpiv is almost surely finite and that Eℓn(Tpiv) ≤ 1 for all
sufficiently large n. Then ~ν is interpretable.

This condition on Tpiv holds when it is subcritical, and when |Σ| = 2 it also holds when
Tpiv is critical, as discussed in Section 2.4.

Our proof will use the theory of Boolean functions and influences (see [11] and [21]).
We first introduce some ideas and results from this theory, starting with pivotality in the
context of Boolean functions. For a function g : Σm → {0, 1}, we say that the ith coordinate
is pivotal for g at (s1, . . . , sm) if the map

s 7→ g(s1, . . . , si−1, s, si+1, . . . , sm)

is nonconstant. To relate this to our earlier definition of a pivotal vertex in Section 2.3,
recall the map An

t : Σ
ℓn(t) → Σ defined in Section 2.2, which gives the colour at the root of t

according to the automaton A as a function of the colours at level n. For some fixed σ ∈ Σ,
define gt,n : Σ

ℓn(t) → {0, 1} by

(σ1, . . . , σℓn(t)) 7→ 1
{

An
t (σ1, . . . , σℓn(t)) = σ

}

. (13)

Then every pivotal coordinate for gT,n at (ω(v))v∈Ln(T ) is a pivotal vertex for (T, ω). We
mention that the converse is false: not every pivotal vertex for ω is a pivotal coordinate,
because changing the label of the vertex might change the label of the root from one element
of Σ \ {σ} to another, leaving gT,n the same either way.

The influence of the ith coordinate of a map g : Σm → {0, 1}, denoted by Ii(g), is
the probability that the ith coordinate is pivotal for (S1, . . . , Sm), where S1, . . . , Sm are
independent and identically distributed as ~ν. The total influence, I(g), is the sum of the
influences of all the coordinates, or equivalently the expected number of pivotal coordinates
for g at (S1, . . . , Sm).

The following is a variant of the BKKKL inequality [5, Theorem 1], which is itself a
variant of the KKL inequality [14].

Proposition 3.2 (Theorem 3.4 from [10]). There exists a universal constant c > 0 such that
the following holds. Let g : Σn → {0, 1} be an arbitrary map, and let p = P[g(S1, . . . , Sn) =
1], where S1, . . . , Sn are independent and distributed as ~ν. Then

I(g) ≥ cmin(p, 1− p) log

(

1

maxi Ii(g)

)

.

Thus, if the total and maximum influences are small, then min(p, 1−p) is small, meaning
thta that g is nearly constant. Our idea is to apply this to the map gT,n introduced in
(13), which will then show that criterion (ii) of Proposition 2.2 is satisfied and hence ~ν is
interpretable.
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For the rest of this section, we fix an arbitrary state σ ∈ Σ and consider gt,n as defined
in (13). Define

In(t) = E
[

ℓn(Tpiv)
∣

∣ T |n = t|n
]

.

When we consider the random state tree (T, ω) up to level n, there are two sources of
randomness: the tree itself, which is Galton–Watson, and the colours, which are determined
by colouring the level n vertices i.i.d. ~ν. We obtain In(t) by taking an expectation only over
this second source of randomness, with the structure of the tree fixed. In other words, if the
level n vertices of the deterministic tree t are coloured i.i.d. ~ν, then In(t) is the expected
number of these vertices that are pivotal. Thus, In(T ) is the expected number of pivotal
vertices for (T, ω) conditional on T |n. Since a level n vertex of T is pivotal for ω if the
corresponding coordinate of gT,n is pivotal at (ω(v))v∈Ln(T ), we have I(gT,n) ≤ In(T ).

For a given tree t, let

Imax
n (t) = max

v∈Ln(t)
P
[

v ∈ Tpiv

∣

∣ T |n = t|n
]

.

Observe that In(t) has the same definition except that a sum replaces the maximum. Just
as I(gT,n) ≤ In(T ), we have maxi Ii(gT,n) ≤ Imax

n (T ).

Lemma 3.3. If Tpiv is almost surely finite, then Imax
n (T ) → 0 a.s. as n → ∞.

Proof. We will show this by proving that

Imax
n (T ) ≤ P

[

Tpiv survives to height n
∣

∣ T |n
]

a.s. (14)

and

P
[

Tpiv survives to height n
∣

∣ T |n
]

→ 0 a.s. (15)

as n → ∞.
For the first claim, we start with the observation that for any v ∈ Ln(T ),

P
[

v ∈ Tpiv

∣

∣ T |n
]

≤ P
[

Tpiv survives to height n
∣

∣ T |n
]

a.s.,

since v ∈ Tpiv implies that Tpiv survives to height n. Since

Imax
n (T ) = max

v∈Ln(T )
P
[

v ∈ Tpiv

∣

∣ T |n
]

,

this proves (14).
Now we turn to (15). As n → ∞,

P[Tpiv survives to height n] → 0,

since Tpiv is almost surely finite. Hence the convergence in (15) holds in L1. To get the
almost sure convergence, we show that

P
[

Tpiv survives to height n
∣

∣ T |n
]

(16)

is a supermartingale, which is more trivial than it looks at first glance. If Tpiv survives to
height n+ 1, then it survives to height n. Hence,

P
[

Tpiv survives to height n+ 1
∣

∣ T |n, ω|T |n

]

≤ P
[

Tpiv survives to height n
∣

∣ T |n, ω|T |n

]

= 1{Tpiv survives to height n}.
Taking conditional expectations,

P
[

Tpiv survives to height n+ 1
∣

∣ T |n
]

≤ P
[

Tpiv survives to height n
∣

∣ T |n
]

.
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Finally,

E
[

P
[

Tpiv survives to height n+ 1
∣

∣ T |n+1

]

∣

∣

∣
T |n
]

= P
[

Tpiv survives to height n+ 1
∣

∣ T |n
]

.

Altogether, this shows that

E
[

P
[

Tpiv survives to height n+ 1
∣

∣ T |n+1

]

∣

∣

∣
T |n
]

≤ P
[

Tpiv survives to height n
∣

∣ T |n
]

,

proving that (16) is a supermartingale. Thus it has an almost sure limit, which must coincide
with the L1 limit. This proves (15), which completes the proof. �

Next, we give two easy technical lemmas to be used in the proof of Proposition 3.1.

Lemma 3.4. Let Xn and Yn be nonnegative random variables, and suppose that EXn ≤ 1
for all n and Yn → ∞ a.s. Let Zn = min(Xn/Yn, 1). Then EZn → 0.

Proof. Fix some large N . We then compute

EZn = E
[

Zn1{Yn ≥ N}
]

+E
[

Zn1{Yn < N}
]

≤ E
[

Xn/N
]

+P
[

Yn < N
]

≤ 1/N +P
[

Yn < N
]

.

Since P[Yn < N ] → 0 as n → ∞, we have lim supn→∞ EZn ≤ 1/N . This holds for arbitrarily
large values of N , confirming that EZn → 0. �

Lemma 3.5. Suppose that (Xn)n≥0 takes values in [0, 1] and is a martingale under some
filtration (Fn)n≥0. Then

(

min(Xn, 1−Xn)
)

n≥0
is a supermartingale under the same filtra-

tion.

Proof. Let Yn = min(Xn, 1−Xn). Since Yn+1 ≤ Xn+1 and Yn+1 ≤ 1 −Xn+1, we can take
expectations to get

E[Yn+1 | Fn] ≤ E[Xn+1 | Fn] = Xn, (17)

and

E[Yn+1 | Fn] ≤ [1−EXn+1 | Fn] = 1−Xn. (18)

On the eventXn ≤ 1/2, which is measurable with respect to Fn, equation (17) givesE[Yn+1 |
Fn] ≤ Yn, since Yn = Xn. On the complement of this event, (18) gives E[Yn+1 | Fn] ≤ Yn,
since Xn = 1 − Yn. Hence E[Yn+1 | Fn] ≤ Yn holds in both cases, proving that (Yn) is a
supermartingale. �

Proof of Proposition 3.1. We will check that criterion (ii) of Proposition 2.2 holds. Fix a
colour σ in Σ. Let

p(T |n) = P
[

ω(RT ) = σ
∣

∣ T |n
]

.

Our goal is to show that p(T |n) converges almost surely to 0 or 1. We can assume that σ
is in the support of ~ν, since otherwise p(T |n) = 0 a.s. for all n. Consider gT,n as defined in
(13). Observe that

1{ω(RT ) = σ} = gT,n

(

(ω(v))v∈Ln(T )

)

,
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and that the conditional distribution of (ω(v))v∈Ln(T ) given T |n is i.i.d. ~ν. We thus apply
Proposition 3.2 conditionally on T |n to obtain

I(gT,n) ≥ cmin
(

p(T |n), 1− p(T |n)
)

log

(

1

maxi Ii(gT,n)

)

.

Rearranging this, we obtain

min
(

p(T |n), 1− p(T |n)
)

≤ I(gT,n)

c log 1
maxi Ii(gT,n)

≤ In(T )

c log 1
Imax
n (T )

. (19)

Now, we show that min
(

p(T |n), 1 − p(T |n)
)

converges to 0 in L1 as n → ∞. Let Xn =

In(T ) and Yn = c log 1
Imax
n (T ) . Then EXn is the expected number of pivotal vertices for (T, ω)

at level n, which by assumption is bounded by 1. Since Tpiv is assumed to be almost surely
finite, Lemma 3.3 shows Yn → ∞ a.s. By Lemma 3.4, it holds that Emin(Xn/Yn, 1) → 0.
Since min

(

p(T |n), 1 − p(T |n)
)

≤ min(Xn/Yn, 1), this proves that min
(

p(T |n), 1 − p(T |n)
)

converges to 0 in L1.
Since p(T |n) is a martingale, Lemma 3.5 shows that min

(

p(T |n), 1 − p(T |n)
)

is a super-

martingale. Hence it has an almost sure limit, which must match its L1 limit of 0. This
proves that lim p(T |n) ∈ {0, 1} a.s. By Proposition 2.2, the fixed point ~ν is intepretable. �

Proof of Theorem 1.7 (⇐=). Subcritical Galton–Watson trees have exponentially vanishing
expected nth generation size and are almost surely finite (see Section 2.4). Hence the
conditions of Proposition 3.1 hold in the subcritical case. In the critical case, Eℓn(Tpiv) = 1
and Tpiv is almost surely finite by parts (b) and (d) of Proposition 2.6. �

Proof of Theorem 1.8. If Tpiv is subcritical, then the conditions of Proposition 3.1 hold. �

Remark 3.6. While we have stated Theorem 1.8 for subcritical pivot trees only, Proposi-
tion 3.1 in fact applies to critical pivot trees, so long as Eℓn(Tpiv) ≤ 1 (any constant bound
would also work). As discussed in Section 2.4, Galton–Watson trees that are not positive
regular can have their expected nth generation size grow to infinity even in the critical case.
However, even though pivot trees are not necessarily positive regular, we are not sure if it
is possible for Eℓn(Tpiv) to grow to infinity when Tpiv is critical.

4. Supercritical pivot trees

As usual, throughout this section we fix a child distribution χ, an automaton A on a set of
states Σ, and a fixed point ~ν of the automaton distributional map Ψ: D → D corresponding
to A and χ, and we let (T, ω) be the random state tree for ~ν.

Our goal is to prove that if the pivot tree is supercritical, then ~ν is rogue in the |Σ| = 2
case. According to Proposition 2.2, rogueness of ~ν is equivalent to nonmeasurability of ω
with respect to T . Thus, we will try to show that for T in some class of trees of positive
weight under the GW(χ) measure, the colouring ω is nondeterministic. The idea of the
proof is that Tpiv is supercritical, it occurs with positive probability that ω(RT ) = 0 and
Tpiv survives. On this event, we randomly choose an infinite path starting from the root
of Tpiv and switch all the colours along it. This gives us a new coloured tree with the
same underlying tree but a different colour at the root. Since the new colouring of the tree
only differs at one vertex per level, it seems intuitive that it occurs with similar likelihood
as the original one, meaning that ω takes different values for the same tree with positive
probability.
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The difficulty lies in making rigorous the idea that the switched colouring has similar
probability as the original one. To do so, we use spine decompositions as developed by
Lyons, Pemantle, and Peres [18], an elegant probabilistic method for proving two branching
processes absolutely continuous or mutually singular to each other. The two processes we
consider are (T, ω), conditioned on survival of the pivot tree, and the switched version of
this process described above. We prove the switched version is absolutely continuous with
respect to the original. Under the assumption that ~ν is interpretable, it is a probability one
event that the colour ω(RT ) is given as a deterministic function of T . By absolute continuity,
the colour of the root in the switched process is equal to the same function of the tree. But
this is a contradiction, as we know that these colours differ while the trees are the same.

Let our set of colours be Σ = {0, 1}. Recall from the discussion after Proposition 2.4
that the definition of the pivot tree is simpler in the two-colour case. A vertex is pivotal
for (T, ω) if swapping its colour results in the root swapping colours, and the pivot tree
Tpiv can be defined as the subtree of T consisting of all pivotal vertices. The pivot tree
is Galton–Watson with types given by ω, with no need for the sets A and Bv used in the
definitions when there are three or more colours.

We now formalize this and add an extra bit of information to the types, extending ω to
a map ω∗ : V (T ) → {0d, 0s, 1d, 1s} as follows. For a vertex v, the 0 or 1 in ω∗(v) is given
by ω(v). To decide on d or s, consider (T (v), ω|T (v)), the restriction of the random state
tree to v and its descendants. If this tree has an infinite pivot tree, then ω∗(v) assigns type
s, for survives. If this tree has a finite pivot tree, then ω∗(v) assigns type d, for dies. For
v ∈ Tpiv, this is equivalent to assigning either s or d depending on whether Tpiv restricted to
v and its descendants is infinite or finite. We will refer to vertices as s-labeled or d-labeled
according to the value assigned to them by ω∗. Define ~ν∗ as the distribution of ω∗(RT ),
a probability measure on {0d, 0s, 1d, 1s}. Let Tcol∗ denote the space of trees with vertices
labeled {0d, 0s, 1d, 1s}. For (t, τ∗) ∈ Tcol∗, let [t, τ∗]n denote the subset of Tcol∗ made up of
trees agreeing with (t, τ∗) up to the nth generation.

Proposition 4.1.

(a) Conditional on T |n, the distribution of (ω∗(v))v∈Ln(T ) is i.i.d. ~ν∗.
(b) For i ∈ {0, 1}, let ρ(i) be the probability that Tpiv survives conditional on ω(RT ) = i.

Then conditional on T |n and on ωT |n, the s- and d-labels given to each vertex v ∈ Ln

by ω∗ are independent, with v receiving an s-label with probability ρ(ω(v)).
(c) The labeled tree (T, ω∗) is multitype Galton–Watson.

Proof. Given T |n, the distribution of (ω(v))v∈Ln(T ) is i.i.d. ~ν, by definition of (T, ω). Hence,
conditional on T |n, the trees (T (v), ω|T (v)) for v ∈ Ln(T ) are independent and distributed
as the (unconditional) distribution of (T, ω). Since ~ν∗ is the distribution of ω∗(RT ), it is
thus the conditional distribution given T |n of each of the independent ω∗(v) for v ∈ Ln(T ),
proving (a). For (b), once we have conditioned on T |n and on ω|T |n , for each v ∈ Ln(T ),
the tree (T (v), ω|T (v)) is distributed as (T, ω) conditional on having state ω(v) at the root.
Thus the pivot tree of (T (v), ω|T (v)) survives with probability ρ(ω(v)). The s- or d-label for
v depends only on (T (v), ω|T (v)) and hence are given independently.

The proof of (c) is nearly the same as the proof of Proposition 2.1, though we will give
it now in detail. For σ1, . . . σk ∈ {0d, 0s, 1d, 1s}, let

χcol∗(σ1, . . . , σk) = χ(k)~ν∗(σ1) · · · ~ν∗(σk).

By the first claim, this is the probability that RT has exactly k children whose types ac-
cording to ω∗ are σ1, . . . , σk, in order. For any type σ ∈ {0d, 0s, 1d, 1s} with ~ν∗(σ) > 0,
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let χσ
col∗(σ1, . . . , σk) denote the conditional probability that RT gives birth to k children of

types σ1, . . . , σk according to ω∗ given that ω∗(RT ) = σ. Observe that the value of ω∗ at
the root of a tree can be determined from the value of ω∗ at its children: the 0 or 1 can be
determined according to the automaton, and the s- or d-type can be determined according
to whether there is a pivotal child of the root of s-type. Hence, if σ is the type at the root
corresponding to children of types σ1, . . . , σk, then

χcol∗(σ1, . . . , σk) = ~ν∗(σ)χ
σ
col∗(σ1, . . . , σk). (20)

Now, we seek to prove that given the first n levels of (T, ω∗), each vertex v at level n

independently gives birth according to χ
ω∗(v)
col∗ . Fix (t, τ∗) ∈ Tcol∗. By the first claim of this

proposition,

P
[

(T, ω∗) ∈ [t, τ∗]n+1

]

= P
[

T ∈ [t]n+1

]

∏

u∈Ln+1(t)

~ν∗
(

τ∗(u)
)

.

With C(v) denoting the set of a children of a vertex v,

P
[

(T, ω) ∈ [t, τ∗]n+1

]

=

(

P
[

T ∈ [t]n

]

∏

v∈Ln(t)

χ
(

|C(v)|
)

)

∏

u∈Ln+1(t)

~ν∗
(

τ∗(u)
)

= P
[

T ∈ [t]n

]

∏

v∈Ln(t)

χcol∗

(

τ∗(u)u∈C(v)

)

.

Continuing to follow the proof of Proposition 2.1, by (20),

P
[

(T, ω) ∈ [t, τ∗]n+1

]

= P
[

T ∈ [t]n

]

∏

v∈Ln(t)

~ν∗(τ∗(v))χ
τ∗(v)
col∗

(

τ∗(u)u∈C(v)

)

= P
[

(T, ω) ∈ [t, τ∗]n

]

∏

v∈Ln(t)

χ
τ∗(v)
col∗

(

τ∗(u)u∈C(v)

)

. �

We will assume throughout the section that Tpiv is supercritical. This implies that either
P[ω∗(RT ) = 0s] > 0 or P[ω∗(RT ) = 1s] > 0, but in fact both are true by Proposition 2.6(c).
Thus, it makes sense to consider the distribution of (T, ω∗) conditional on ω∗(RT ) = 0s or
ω∗(RT ) = 1s. With this in mind, we make a number of definitions. Most important among
them are the probability measures RST0s, RST1s, RST0s→1s, and RST1s→0s on the space
Tcol∗, with RST standing for random state tree. The measures RST0s and RST1s are the
distributions of (T, ω∗) conditioned on ω∗(RT ) = 0s and ω∗(RT ) = 1s, respectively. The
measure RST0s→1s is the distribution of a labeled tree obtained by sampling from RST0s,
choosing an infinite path of pivotal vertices, and swapping every label in the path. The
measure RST1s→0s is obtained in the same way, starting with RST1s instead of RST0s.
Thus, RST1s and RST0s→1s are both distributions on labeled trees with 1s at the root. Our
goal, as we sketched before and will explain in more detail shortly, is to prove that RST0s→1s

is absolutely continuous with respect to RST1s.

Definitions 4.2 (Definitions of RSTℓ, (T ℓ, ωℓ
∗), Ts∗, W(t, τ∗), Wn(t, τ∗), PW(t,τ∗), PWn(t,τ∗),

τ~v∗ , τ
x
∗ , RST

0s→1s, RST1s→0s, (T 0s, ω0s→1s
∗ ), and (T 1s, ω1s→0s

∗ )).

For ℓ ∈ {0d, 1d, 0s, 1s}, let RSTℓ be the law of (T, ω∗) conditioned on ω(RT ) = ℓ. Let

(T ℓ, ωℓ
∗) be a random variable distributed as RSTℓ. Let Ts∗ ⊆ Tcol∗ be the set of all trees

(t, τ∗) labeled by {0d, 1d, 0s, 1s} that are compatible with the automaton, have their d and
s labels consistent with the tree and other labels, and have 0s or 1s at the root. This space
is the union of the supports of RST0s and RST1s. It could also be defined as the set of all
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trees (t, τ∗) ∈ Tcol∗ such that [t, τ∗]n has positive probability under RST0s or RST1s for all
n.

Given a deterministic tree (t, τ∗) ∈ Ts∗, let W(t, τ∗) be the set of infinite paths in (t, τ∗)
that start at Rt and contain only pivotal s-labeled vertices. Let Wn(t, τ∗) be the set of paths
from Rt of length n with the same property. Note that these sets are nonempty for any
(t, τ∗) ∈ Ts∗, since any pivotal s-labeled vertex must have a pivotal s-labeled child.

We define PW(t,τ∗) and PWn(t,τ∗) to be distributions on W(t, τ∗) and Wn(t, τ∗), respec-
tively, given as follows. Let V0 = Rt. Choose V1 uniformly from the pivotal s-labeled
children of V0 (as we said, there must be at least one). Then choose V2 uniformly from the
pivotal s-labeled children of V1, and so on. Let PW(t,τ∗) be the distribution of (V0, V1, . . .),
and let PWn(t,τ∗) be the distribution of (V0, . . . , Vn).

For an assignment τ : R(t) → Σ and a vertex v ∈ Ln(t), we defined τv→γ as the colouring
of t|n given by switching the colour of v to γ and updating the colours at levels 0, . . . , n− 1
according to the automaton. We now extend this definition to allow switching when the
colours include s- and d-labels and to allow switching an infinite path. Suppose that (t, τ∗) ∈
Tcol∗. Given a path ~u = (u0, u1, . . .) ∈ W(t, τ∗), let τ~u∗ denote τ∗ with labels 0s and 1s
swapped along the path. It is easy to check that this new labeling is also compatible with
the automaton A, and that its s and d markings follow the same rules as before. For
~u ∈ Wn(t, τ∗), we define τ~u∗ in the same way, except that τ~u∗ is only a labeling of t|n. For a
vertex x ∈ R(t), we use τx∗ as a shorthand for τ~u∗ , where ~u is the path from Rt to x.

Finally, we define ω0s→1s
∗ as the switched labeling (ω0s

∗ )
~V , where ~V is sampled from

PW(T 0s,ω0s
∗
). To summarize, (T 0s, ω0s→1s

∗ ) is formed by the following procedure: First condi-

tion (T, ω∗) on ω∗ = 0s to obtain (T 0s, ω0s
∗ ). Then, choose an infinite s-labeled path of pivotal

vertices in (T 0s, ω0s
∗ ) by starting at the root and successively choosing a pivotal s-labeled

child at random. Finally, swap all 0s and 1s labels along this path to obtain (T 0s, ω0s→1s
∗ ).

We define ω1s→0s
∗ analogously, and we define RST0s→1s and RST1s→0s as the distributions

of (T 0s, ω0s→1s
∗ ) and (T 1s, ω1s→0s

∗ ), respectively.

We now lay out our plan for the section. Our goal is to prove that RST0s→1s ≪ RST1s.
It follows quickly from this that ~ν is rogue by an argument we sketch now. Supposing that
~ν is interpretable, we can express ω(RT ) as ι(T ) for a deterministic function ι : T → Σ, by
Proposition 2.2. By definition of RST0s and RST1s, we have ι(T 0s) = 0 a.s. and ι(T 1s) = 1
a.s. Recalling that (T 0s, ω0s→1s

∗ ) ∼ RST0s→1s, absolute continuity lets us conclude from
ι(T 1s) = 1 a.s. that ι(T 0s) = 1 a.s., a contradiction.

To prove the absolute continuity of RST0s→1s with respect to RST1s, we use a technique
of restricting these measures to successively larger σ-algebras and computing the Radon-
Nikodym derivatives of the restricted measures. The result we use is well known:

Lemma 4.3 ([19, Lemma 12.2]). Let µ and ν be probability measures on a σ-algebra F .
Suppose that F1 ⊆ F2 ⊆ · · · ⊆ F , and that ∪nFn generates F . Also suppose that µ|Fn

is absolutely continuous with respect to ν|Fn
with Radon-Nikodym derivative Xn. Define

X = lim supn→∞ Xn. Then

µ ≪ ν ⇐⇒ X < ∞ µ-a.e. ⇐⇒
∫

X dν = 1,

and

µ ⊥ ν ⇐⇒ X = ∞ µ-a.e. ⇐⇒
∫

X dν = 0.
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In our case, we will restrict RST0s→1s and RST1s to the σ-algebra Fn generated by the
first n levels of the labeled tree. That is, we define Fn as the σ-algebra on Ts∗ generated by
the sets of the form [t, τ∗]n.

To investigate these Radon–Nikodym derivatives, we start by giving representations of
RST0s→1s and RST1s→0s in terms of RST0s and RST1s:

Lemma 4.4. For any (t, τ∗) ∈ Ts∗,

RST0s→1s[t, τ∗]n =
∑

~u∈Wn(t,τ∗)

RST0s[t, τ~u∗ ]nPWn(t,τ~u
∗
)(~u), (21)

and

RST1s→0s[t, τ∗]n =
∑

~u∈Wn(t,τ∗)

RST1s[t, τ~u∗ ]nPWn(t,τ~u
∗
)(~u). (22)

Proof. These statements follow very directly from the definitions. Recall that (T 0s, ω0s→1s
∗ )

differs from (T 0s, ω0s
∗ ) along a random path (Vi)i≥0 sampled from PW(T 0s,ω0s

∗
), in which all

0s and 1s labels have been swapped. Hence,

(T 0s, ω0s→1s
∗ ) ∈ [t, τ∗]n

holds if and only if

(T 0s, ω0s
∗ ) ∈ [t, τ~u∗ ] for some ~u ∈ Wn(t, τ

~u
∗ ), and (V0, . . . , Vn) = ~u. (23)

Since ~u ∈ Wn(t, τ
~u
∗ ) if and only if ~u ∈ Wn(t, τ∗), we can refine (23) to

(T 0s, ω0s
∗ ) ∈ [t, τ~u∗ ] for some ~u ∈ Wn(t, τ∗), and (V0, . . . , Vn) = ~u. (24)

As the events in (24) are disjoint for different choices of ~u,

P
[

(T 0s,ω0s→1s
∗ ) ∈ [t, τ∗]n

]

=
∑

~u∈Wn(t,τ∗)

P
[

(T 0s, ω0s
∗ ) ∈ [t, τ~u∗ ]n and (V0, . . . , Vn) = ~u

]

=
∑

~u∈Wn(t,τ∗)

P
[

(T 0s, ω0s
∗ ) ∈ [t, τ~u∗ ]n

]

PWn(t,τ~u
∗
)(~u),

which is a restatement of (21). The proof of (22) is identical. �

Define a map rn on Ts∗ as follows. For (t, τ∗) ∈ Ts∗ with 0s at the root, let

rn(t, τ∗) =
RST1s→0s[t, τ∗]n

RST0s[t, τ∗]n
, (25)

and for (t, τ∗) ∈ Ts∗ with 1s at the root, let

rn(t, τ∗) =
RST0s→1s[t, τ∗]n

RST1s[t, τ∗]n
. (26)

Thus, rn(t, τ∗) matches the Radon–Nikodym derivative either of RST1s→0s|Fn
with respect

to RST0s|Fn
or of RST0s→1s|Fn

with respect to RST1s|Fn
, depending on τ∗(Rt). To prove

that RST0s→1s ≪ RST1s, it therefore suffices by Lemma 4.3 to show that

lim sup
n→∞

rn(T
0s, ω0s→1s

∗ ) < ∞ a.s. (27)
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We define

fn(t, τ∗) =
∑

~u∈Wn(t,τ∗)

PWn(t,τ~u
∗
)(~u),

with f0(t, τ∗) taken to be 1. According to the next lemma, we can use this simpler function
fn as a stand-in for rn.

Lemma 4.5. For some constant 1 ≤ C < ∞ depending on ~ν∗, it holds for all n ≥ 0 and
all (t, τ∗) ∈ Ts∗ that

1

C
fn(t, τ∗) ≤ rn(t, τ∗) ≤ Cfn(t, τ∗).

Proof. We aim to show that for some 1 ≤ C < ∞, it holds for all n ≥ 0, ~u ∈ Wn(t, τ∗), and
(t, τ∗) ∈ Ts∗ with τ∗(Rt) = 1s that

1

C
RST1s[t, τ∗]n ≤ RST0s[t, τ~u∗ ]n ≤ C RST1s[t, τ∗]n,

and it holds for all n ≥ 0, ~u ∈ Wn(t, τ∗), and (t, τ∗) ∈ Ts∗ with τ∗(Rt) = 0s that

1

C
RST0s[t, τ∗]n ≤ RST1s[t, τ~u∗ ]n ≤ C RST0s[t, τ∗]n.

Once we prove this, the result follows immediately from Lemma 4.4 and the definition of
rn.

To prove these statements, we go back to the unconditioned tree (T, ω∗). Let

C1 =
maxσ∈{0s,1s} ~ν∗(σ)

minσ∈{0s,1s} ~ν∗(σ)
.

By Proposition 4.1(a),

P
[

(T, ω∗) ∈ [t, τ~u∗ ]n

]

= P[T |n = t|n]
∏

x∈Ln(t)

~ν∗(τ
~u
∗ (x))

≤ C1P[T |n = t|n]
∏

x∈Ln(t)

~ν∗(τ∗(x)) = C1P
[

(T, ω∗) ∈ [t, τ∗]n

]

since τ~u∗ and τ∗ match each other on Ln(t) except at a single vertex, where one assigns 0s
and the other assigns 1s.

Suppose that τ∗(Rt) = 1s. Then

RST0s[t, τ~u∗ ]n =
P
[

(T, ω∗) ∈ [t, τ~u∗ ]n
]

~ν∗(0s)

≤
C1P

[

(T, ω∗) ∈ [t, τ∗]n

]

~ν∗(0s)

≤
C2

1P
[

(T, ω∗) ∈ [t, τ∗]n

]

~ν∗(1s)
= C2

1 RST
1s[t, τ∗]n.

The lower bound on RST0s[t, τ~u∗ ]n and the bounds on RST1s[t, τ~u∗ ]n follow by nearly identical
proofs. �

Next, we recast fn(t, τ∗) as a weighted sum over paths.
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Definitions 4.6 (N(x, t, τ∗) and wt,τ∗(x, y)). For a vertex x ∈ V (t), let N(x, t, τ∗) be the
number of pivotal s-labeled children of x in (t, τ∗). Suppose that x and y are respectively a
vertex and its child in some path in W(t, τ∗). Define

wt,τ∗(x, y) = N(x, t, τy∗ )
−1,

which we will view as a weight on the edge from x to y. We will shorten this to w(x, y)
when the tree (t, τ∗) is clear from context.

In words, w(x, y) is the reciprocal of the number of pivotal s-labeled children of x after
swapping all labels on the path from the root to x to y. Note that this count of pivotal
s-labeled children is never zero for such an x and y, since y is always s-labeled and pivotal
for (t, τy∗ ) as a consequence of belonging to a path in W(t, τ∗).

Lemma 4.7. For any (t, τ∗) ∈ Ts∗,

fn(t, τ∗) =
∑

~u∈Wn(t,τ∗)

n−1
∏

i=0

w(ui, ui+1), (28)

which we can express recursively as

fn(t, τ∗) =
∑

x

w(Rt, x)fn−1(t(x), τ∗|t(x)), (29)

where x ranges over the pivotal s-labeled children of Rt.

Proof. To prove (28), we need to show that for any ~u = (u0, . . . , un) ∈ Wn(t, τ∗),

PWn(t,τ~u
∗
)(~u) =

n−1
∏

i=0

N
(

ui, t, τ
ui+1
∗

)−1
.

This is evident, as PWn(t,τ~u
∗
)(~u) is the probability that ~u is selected by the procedure of

starting at the root in (t, τ~u∗ ) and uniformly picking a pivotal s-labeled child, then another
pivotal s-labeled child, and so on. Equation (29) follows from (28) by partitioning Wn(t, τ∗)
into paths going through each of the s-labeled children of the root. �

Recall that ω0s→1s
∗ is formed by swapping labels in ω0s

∗ along a random path ~V = (Vi)i≥0,
where V0 = RT 0s . Call this path the spine of (T 0s, ω0s→1s). We now give some terminology
for describing the weights (in the sense of Definitions 4.6) of edges along and hanging off
the spine.

Definitions 4.8 (Definitions of Vi,j , Wi, Wi,j , T
spine, T spine

n , G , and Gn). Let Vi,1, . . . , Vi,ki

be the pivotal s-labeled children of Vi in (T 0s, ω0s→1s
∗ ) other than Vi+1. LetWi = wT 0s,ω0s→1s

∗

(Vi, Vi+1),
and let Wi,j = wT 0s,ω0s→1s

∗

(Vi, Vi,j).

Let T spine ⊆ T 0s be the subtree consisting of ~V and all vertices Vi,j . Let T spine
n be

the restriction of T spine to height n. Let G be the σ-algebra generated by ~V , T spine and
ω0s→1s
∗ |T spine . Let Gn be the σ-algebra generated by (V0, . . . , Vn), T

spine
n and by ω0s→1s|T spine

n
.

See Figure 4 for a depiction of the information captured by these σ-algebras.

The key idea in analyzing fn(T
0s, ω0s→1s

∗ ) is that while (T 0s, ω0s→1s
∗ ) behaves unusually

along the spine, starting from any vertex Vi,j it is a multitype Galton–Watson tree with
the same child distributions as (T, ω∗). This is formally expressed in Proposition 4.9. Thus,
understanding the weights along the spine of (T 0s, ω0s→1s

∗ ) as well as the weights on (T, ω∗)
is enough to understand the weights on all of (T 0s, ω0s→1s

∗ ). This is the same idea used by
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1s
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Figure 4. A subset of (T 0s, ω0s→1s). The tree automaton in this example
assigns 1 to a vertex if and only if it has exactly one 1-labeled child. The
spine, (Vi)i≥0, is on the left side, and vertices Vi,1, . . . , Vi,ki

hang off each Vi.
Pivotal vertices and the edges between them are in bold. Alongside each
edge is its weight. For example, the weight from V0 to V1 is 1

3 , because if V0

and V1 have their labels swapped from 1s to 0s, then V0 has three pivotal
s-labeled children.

Pemantle, Peres, and Lyons to prove the Kesten–Stigum theorem (see [18, Section 3] or [19,
Chapter 12]).

Proposition 4.9.

(a) The random variables
{

Wi,Wi,j

}

i<n, 1≤j≤ki
are measurable with respect to Gn.

(b) Conditional on G , the subtrees
{

(

T 0s(x), ω0s→1s
∗ |T 0s(x)

)

: x = Vi,j for some i ≥ 0, 0 ≤ j ≤ ki

}

are independent.
(c) For any x = Vi,j , the subtree (T 0s(x), ω0s→1s

∗ |T 0s(x)) is distributed conditional on G

as RST0s if ω0s→1s
∗ (x) = 0s and as RST1s if ω0s→1s

∗ (x) = 1s.
(d) The subtree

(

T 0s(Vn), ω
0s→1s
∗ |T (Vn)

)

is distributed conditional on Gn as RST0s→1s if

ω0s→1s
∗ (Vn) = 1s and as RST1s→0s if ω0s→1s

∗ (Vn) = 0s.

Proof. Part (a) follows directly from the definition. For parts (b) and (c), note that for any
x = Vi,j , the subtree (T 0s(x), ω0s→1s

∗ |T 0s(x)) is identical to (T 0s(x), ω0s
∗ |T 0s(x)). We can also

recharacterize G as the σ-algebra generated by ~V , T spine, and ω0s
∗ |T spine . Conditioning on

G is then just revealing part of (T 0s, ω0s
∗ ), which is Galton–Watson by Proposition 4.1(c).

Under this conditioning, the subtrees
{(

T 0s(x), ω0s
∗ |T 0s(x)

)

: x = Vi,j for some i ≥ 0, 0 ≤ j ≤ ki
}

are unrevealed except for the labels of their roots, and hence they evolve independently
according to RST0s or RST1s.

To prove part (d), we observe that conditioning on Gn reveals (V0, . . . , Vn), and it reveals
a portion of (T 0s, ω0s

∗ ) with Vn as a leaf. Thus (T 0s(Vn), ω
0s
∗ |T 0s(Vn)) evolves either as RST

0s

or as RST1s conditional on Gn, depending on ω0s
∗ (Vn). Also, by its definition, (Vi)i≥n

conditional on Gn is distributed as PW(T 0s(Vn),ω0s|T0s(Vn))
. Thus, (T 0s(Vn), ω

0s→1s
∗ |T 0s(Vn)) is

distributed conditionally on Gn as stated. �
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Now, we can start evaluating lim supn fn(T
0s, ω0s→1s

∗ ). First, we expand fn(T
0s, ω0s→1s

∗ )
in terms of the weights along and off the spine.

Lemma 4.10. We can express fn(T
0s, ω0s→1s

∗ ) as

fn(T
0s, ω0s→1s

∗ ) =

n−1
∑

i=0

(W0 · · ·Wi−1)

ki
∑

j=1

Wi,jfn−i−1

(

T 0s(Vi,j), ω
0s→1s
∗ |T 0s(Vi,j)

)

+W0 · · ·Wn−1

≤
n−1
∑

i=0

(W0 · · ·Wi−1)

ki
∑

j=1

Wi,jCrn−i−1

(

T 0s(Vi,j), ω
0s→1s
∗ |T 0s(Vi,j)

)

+W0 · · ·Wn−1,

(30)

where C is the constant from Lemma 4.5.

Proof. The equality holds by successively applying (29) from Lemma 4.7, and the inequality
is an application of Lemma 4.5. �

It is odd that we have bounded fn by rn when fn is a simpler quantity that we typically
prefer to work with. But in the proof of Lemma 4.15, it will be easier to work with the
Radon–Nikodym derivative itself rather than an approximation.

Now, in Lemmas 4.11–4.14, we prove some technical facts that help us bound (30).

Lemma 4.11. For any i and 1 ≤ j ≤ ki, the process
(

rn−i−1

(

T 0s(Vi,j), ω
0s→1s
∗ |T 0s(Vi,j)

)

)

n≥i+1

conditional on G is a nonnegative martingale in n with mean one.

Proof. By definition of rn, given in (25)–(26), the process is nonnegative. By Proposi-
tion 4.9(c), the conditional distribution of

(

T 0s(Vi,j), ω
0s→1s
∗ |T 0s(Vi,j)

)

given G is either RST0s or RST1s, depending on the value of ω0s→1s
∗ (Vi,j). For the sake of

concreteness, suppose that ω0s→1s
∗ (Vi,j) = 0s so that its conditional distribution is RST0s.

Then rn−i−1

(

T 0s(Vi,j), ω
0s→1s
∗ |T 0s(Vi,j)

)

conditional on G is the Radon-Nikodym derivative

of RST1s→0s|Gn
with respect to RST0s|Gn

, applied to an RST0s-distributed random variable.
Hence, conditional on G , it is a martingale in n [9, Lemma 5.3.4]. The same logic shows that
rn−i−1

(

T 0s(Vi,j), ω
0s→1s
∗ |T 0s(Vi,j)

)

is a martingale conditional on G when ω0s→1s
∗ (Vi,j) = 1s.

The initial value of either martingale, when n = i+ 1, is 1. �

Lemma 4.12. For some c < 1, it holds for all n ≥ 0 that

E[WnWn+1 | Gn] ≤ c a.s.

Proof. First, we claim that Wn is the reciprocal of the number of pivotal s-labeled children
of Vn in the original unswitched tree (T 0s, ω0s

∗ ); that is,

Wn = N(Vn, T
0s, ω0s

∗ )−1. (31)

Indeed, by the definition of Wn in Definitions 4.8 and then the definition of wt,τ∗(x, y) in
Definitions 4.6,

Wn = wT 0s,ω0s→1s
∗

(Vi, Vi+1) = N
(

Vn, T
0s, (ω0s→1s

∗ )Vn+1
)−1

.
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The labels (ω0s→1s
∗ )Vn+1 consist of the original labels ω0s

∗ switched along the spine and then
switched back again, yielding (31).

We now seek to analyze this expression conditional on Gn. By Proposition 4.9(d), the
distribution of

(

T 0s(Vn), ω
0s→1s
∗ |T (Vn)

)

conditional on Gn is either RST1s→0s or RST0s→1s, de-

pending on ω0s
∗ (Vn). Equivalently, the distribution of

(

T 0s(Vn), ω
0s
∗ |T (Vn)

)

conditional on Gn

is RSTℓ where ℓ = ω0s
∗ (Vn), which is measurable with respect to Gn. Hence, N(Vn, T

0s, ω0s
∗ )

conditional on Gn is distributed as N(RT ℓ , T ℓ, ωℓ
∗), where ℓ = ω0s

∗ (Vn).
Let cℓ = EN(RT ℓ , T ℓ, ωℓ

∗)
−1 for ℓ = 0s, 1s. Recall that N(RT ℓ , T ℓ, ωℓ

∗) ≥ 1, since a pivotal
s-labeled vertex must give birth to another pivotal s-labeled vertex. Hence, we have cℓ = 1
if and only if N(RT ℓ , T ℓ, ωℓ

∗) = 1 a.s. If c0s < 1 and c1s < 1, then set c = max(c0s, c1s) and
use the easy bound Wn+1 ≤ 1 to get

E[WnWn+1 | Gn] ≤ c a.s.

The troublesome case is when c0s = 1 or c1s = 1. Suppose c0s = 1. If c1s = 1, the proof
is identical with the roles of 0s and 1s switched. The argument has two steps:

(a) c1s < 1;
(b) a vertex of type 0s gives birth to a pivotal 1s-labeled vertex with positive probability.

Suppose that (a) is false. Then c0s = c1s = 1, and consequently no vertex type in (T, ω∗)
ever gives birth to more than one s-labeled pivotal child. This implies that no vertex gives
birth to more than one pivotal child. Indeed, according to Proposition 4.1(b), given the
colours of the children of a vertex, their s- and d-labels are assigned independently. Thus, if
a vertex of colour 0 or 1 had positive probability of having multiple pivotal children, it would
also have positive probability of having multiple s-labeled pivotal children. Since vertices
of either colour give birth to at most one pivotal child, the highest eigenvalue of the matrix
of means of (Tpiv, ω) is at most one. But this contradicts our assumption throughout this
section that the pivot tree is supercritical, establishing (a).

For (b), from c0s = 1 we know that a vertex of type 0s always gives birth to exactly
one pivotal s-labeled child. As above, this implies that it always gives birth to exactly one
pivotal child. In fact, a vertex of type 0 must always give birth to zero or one pivotal
children, since if it had positive probability of giving birth to two or more, then it would
have positive probability of giving birth to two or more pivotal s-labeled vertices, and so
a vertex of type 0s would have positive probability of giving birth to two or more pivotal
children. Hence m00 +m01 ≤ 1, in the language of Lemma 2.5.

Suppose that (b) is false and a vertex of type 0s never gives birth to a pivotal 1s-labeled
vertex. Then, a vertex of type 0 never gives birth to a pivotal vertex of type 1 (if it had
positive probability of doing so, then a vertex of type 0s would have positive probability
of giving birth to a pivotal vertex of type 1s). Hence, m01 = 0. By Lemma 2.5, the
matrix of means for Tpiv has the form

[

m00 0
0 m00

]

where m00 ≤ 1. But this contradicts the
supercriticality of Tpiv, proving (b).

Now, we are ready to evaluate E[WnWn+1 | Gn] when c0s = 1. Let p be the probability
that a vertex of type 0s has a pivotal child of type 1s, which we know to be positive by (b).
If ω0s

∗ (Vn) = 0s, then

E[WnWn+1 | Gn] = 1− p+ pc1s < 1.

If ω0s
∗ (Vn) = 1s, then using the bound Wn+1 ≤ 1, we have

E[WnWn+1 | Gn] ≤ c1s < 1.
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We then take c as the maximum of these two values to complete the proof. �

We mention that the difficult case in this proof, where one of c0s and c1s is zero, can
truly occur. For example, let A be the two-state automaton assigning colour 1 to a parent
if and only if the parent has at least three children, all of which have the same colour. If
a vertex has colour 0, then it has a pivotal child only when it has three or more children
and all but one of them are the same colour, in which case it has exactly one pivotal child
(the odd-coloured one). Thus, conditional on being type 0s, a vertex has exactly one pivotal
s-labeled child, which makes c0s = 1.

The following lemma is well known, though it is most commonly stated with its converse
under the additional assumption that X1, X2, . . . are independent (see [19, Exercise 12.2]).
We sketch the proof here.

Lemma 4.13. Let X1, X2, . . . be nonnegative random variables with a common distribution.
If this distribution has finite log-moment, then

∞
∑

n=1

cnXn < ∞ a.s.

for all c ∈ (0, 1).

Proof. Apply the Borel–Cantelli lemma to show that lim supn→∞
1
n logXn = 0 a.s. Then it

follows for some finite random N that Xn ≤ (2c)−n for n ≥ N . �

Lemma 4.14. If the child distribution χ has finite log-moment, then
∞
∑

i=0

W0 · · ·Wi−1N
(

Vi, T
0s, ω0s→1s

∗

)

< ∞ a.s.

Proof. First, we claim that

E[W0 · · ·Wi−1] ≤ c⌊i/2⌋

for some c < 1. This is proven by applying Lemma 4.12 to take conditional expectations
given Gi−2, then given Gi−4, and so on. Choosing any b ∈ (

√
c, 1) and applying Markov’s

inequality,
∞
∑

i=1

P[W0 · · ·Wi−1 > bi] ≤
∞
∑

i=1

c⌊i/2⌋

bi
< ∞.

By the Borel–Cantelli lemma, it holds almost surely that W0 · · ·Wi−1 ≤ bi for all but finitely
many values of i. Hence, it suffices to show that

∞
∑

i=0

biN(Vi, T
0s, ω0s→1s

∗ ) < ∞ a.s. (32)

Now, it remains to apply Lemma 4.13. Since N(Vi, T
0s, ω0s→1s

∗ ) is the number of s-
pivotal offspring of Vi in (T 0s, ω0s→1s

∗ ), it is bounded by the total number of offspring of
Vi in T 0s. By Proposition 4.9(c), the distribution of

(

T (Vi), ω
0s→1s
∗ |T (Vi)

)

conditional on G

is either RST0s or RST1s. Thus, conditional on G , the random variable N(Vi, T
0s, ω0s→1s

∗ )
is stochastically dominated by the number of vertices at level 1 of either T 0s or T 1s. Let
A0s and A1s be random variables with these distributions, respectively. Since χ is assumed
to have finite log-moment, both A0s and A1s have finite log-moment as well. Now, let Xi

have any distribution that stochastically dominates A0s and A1s and has finite log-moment.
For example, one could take Xi = A0s + A1s where A0s and A1s are independent. Thus,
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N(Vi, T
0s, ω0s→1s

∗ ) conditional on G is stochastically dominated by Xi, and so there exists
a coupling in which N(Vi, T

0s, ω0s→1s
∗ ) ≤ Xi for all i. (Note that we do not care about the

joint distribution of X1, X2, . . ..) Under this coupling,

∞
∑

i=0

biN(Vi, T
0s, ω0s→1s

∗ ) ≤
∞
∑

i=0

biXi,

which is almost surely finite by Lemma 4.13. This proves (32), from which the lemma
follows. �

Finally, we are ready to achieve what we have been building towards by bounding the
right-hand side of (30).

Lemma 4.15. Assume that the child distribution χ has finite log-moment. Then

lim sup
n→∞

fn(T
0s, ω0s→1s

∗ ) < ∞ a.s.

Proof. Let

Yn =

n−1
∑

i=0

(W0 · · ·Wi−1)

ki
∑

j=1

Wi,jCrn−i−1

(

T 0s(Vi,j), ω
0s→1s
∗ |T 0s(Vi,j)

)

,

one of the terms on the right-hand side of (30). We will show that Yn converges almost
surely to a finite value. The idea is to use Lemmas 4.11 and 4.14 to show that the conditional
distribution of (Yn)n≥0 given G is that of a submartingale bounded in L1.

First, consider Yn conditionally on G . By Proposition 4.9(a), the random variables
W0,W1, . . . are constants. By Proposition 4.9(c), the processes

(

rn−i−1

(

T 0s(Vi,j), ω
0s→1s
∗ |T 0s(Vi,j)

)

)

n≥i+1

are independent for different values of i. By Lemma 4.11, these processes are martingales.
Hence, Yn conditional on G is a sum of independent martingales with an additional martin-
gale added at each step, which makes it a submartingale conditional on G .

To prove that supn E[Yn | G ] < ∞ a.s., by Lemma 4.11,

E
[

rn−i−1

(

T 0s(Vi,j), ω
0s→1s
∗ |T 0s(Vi,j)

)

∣

∣

∣
G

]

= 1 a.s.

Hence,

sup
n

E[Yn | G ] = sup
n

n−1
∑

i=0

(W0 · · ·Wi−1)

ki
∑

j=1

Wi,j

≤ sup
n

n−1
∑

i=0

W0 · · ·Wi−1N
(

Vi, T
0s, ω0s→1s

∗

)

≤
∞
∑

i=0

W0 · · ·Wi−1N
(

Vi, T
0s, ω0s→1s

∗

)

< ∞ a.s. (33)

The first inequality uses the boundWi,j ≤ 1 along with the fact that ki = N
(

Vi, T
0s, ω0s→1s

∗

)

−
1. The last inequality is the statement of Lemma 4.14.

We have now shown that (Yn)n≥0 conditional on G is a submartingale bounded in
L1. It hence converges almost surely to a finite limit. Since W0 · · ·Wn−1 is a decreas-
ing positive sequence in n, it also converges as n → ∞. By Lemma 4.10, we have shown
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that fn(T
0s, ω0s→1s

∗ ) is bounded by a process converging almost surely to a finite limit as
n → ∞. �

Proof of Theorem 1.7 (=⇒). Suppose that Tpiv is supercritical. By Lemmas 4.5 and 4.15,

lim sup
n→∞

rn(T
0s, ω0s→1s

∗ ) < ∞ a.s.

By Lemma 4.3, we have RST0s→1s ≪ RST1s. Therefore any almost sure event under RST1s

is almost sure under RST0s→1s as well.
Suppose that ~ν is interpretable. By Proposition 2.2, the random variable ω(RT ) is mea-

surable with respect to T . Hence there exists a measurable map ϕ : T → {0, 1} such that
ω(RT ) = ϕ(T ) a.s. Since T 0s and T 1s are distributed as T conditioned on subevents of
ω(RT ) = 0 and ω(RT ) = 1, respectively, we have ϕ(T 0s) = 0 a.s. and ϕ(T 1s) = 1 a.s. Stat-
ing the second of these facts in terms of measure theory, the event {(t, τ∗) ∈ Ts∗ : ϕ(t) = 1}
has probability one under RST1s. Hence it has probability one under RST0s→1s as well.
Since (T 0s, ω0s→1s

∗ ) ∼ RST0s→1s, this shows that ϕ(T 0s) = 1 a.s., a contradiction. �

Remark 4.16. The main difficulty in extending this proof to the case |Σ| ≥ 3 is that the
regularity properties proven in Section 2.4 for |Σ| = 2 do not necessarily hold when |Σ| = 3.
For example, when |Σ| = 2, if the pivot tree is supercritical, then it survives with positive
probability conditional on either ω(RT ) = 0 or ω(RT ) = 1 by Proposition 2.6(c), which let
us define measures RST0s and RST1s. When |Σ| ≥ 3, if the pivot tree is supercritical, it
must survive with positive probability from some starting state, but it is not obvious that
it must do so from multiple starting states. Nonetheless, we expect that it can be done and
plan to address it in future work.

5. Applications of the main results

5.1. Monotone tree automata. We introduce here a special class of tree automata, which
we term monotone tree automata. This class encompasses tree automata that arise out of
many naturally occurring EMSO properties of rooted trees.

Consider an automaton A with set of colours Σ. Suppose that Σ has a total ordering on
it, so that without loss of generality, we set Σ = {0, . . . s}. Let ~n = (ni : 0 ≤ i ≤ s) and
~m = (mi : 0 ≤ i ≤ s), where ni and mi represent counts of children of type i. If

∑s
i=0 ni =

∑s
i=0 mi, then we write ~n � ~m if one can modify the configuration of children from ~n to

become ~m by only increasing the colours of children. (For example, (1, 2, 1) � (1, 1, 2), since
one moves from children 0, 1, 1, 2 to 0, 1, 2, 2 by increasing the colour of a child from 1 to 2.)
The automaton A is called monotone if ~n � ~m implies that A(~n) ≤ A(~m).

In the following lemma we state a notable characteristic of the pivot tree when we consider
a monotone tree automaton A on two states.

Lemma 5.1. Consider a tree automaton A on two colours. Then A is monotone if and
only if pivotal children always have the same colour as their parents.

Proof. Let Σ = {0, 1}. Assume pivotal children always have the same state as their parents,
and consider two configurations of children ~n � ~m. Suppose that A(~n) = 1. We can move
from ~n to ~m only by changing vertices from state 0 to 1. These vertices are never pivotal,
so A(~m) = 1. Since A(~n) = 1 implies A(~m) = 1, the automaton A is monotone.

Conversely, suppose that a node can have a pivotal child of the opposite state of itself.
Then swapping this child’s state changes the parent’s state in the opposite direction, showing
that A is not monotone. �
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Lemma 5.2. Let A be a monotone tree automaton with Σ = {0, 1}, and let Tpiv be the pivot
tree associated with some fixed point. Then

E[ℓ1(Tpiv) | ω(RT ) = 0] = E[ℓ1(Tpiv) | ω(RT ) = 1].

That is, the expected number of pivotal children that a vertex has is the same regardless of
whether the vertex is labeled 0 or 1.

Proof. By Lemma 5.1,

E[ℓ1(Tpiv) | ω(RT ) = 0] = E[Z0 | ω(RT ) = 0],

and

E[ℓ1(Tpiv) | ω(RT ) = 1] = E[Z1 | ω(RT ) = 1],

using the notation of Lemma 2.5. By this lemma, these quantities are equal. �

When |Σ| = 2, the automaton distribution map Ψ maps a distribution Bernoulli(x) to
Bernoulli(y). We thus abuse notation and treat Ψ as a map from [0, 1] to itself, writing
Ψ(x) = y instead of Ψ(Bernoulli(x)) = Bernoulli(y). We also say that p ∈ [0, 1] is a fixed
point of Ψ rather than saying that Bernoulli(p) is.

In the next lemma, we give a convenient way of determining whether a fixed point corre-
sponding to a given monotone automaton with two colours is rogue or not.

Lemma 5.3. Suppose A is a monotone automaton with set of colours Σ = {0, 1}. For a
fixed point ~ν = Bernoulli(p) with 0 < p < 1, the growth rate of the pivot tree is equal to
Ψ′(p).

Proof. In Lemma 2.6, we show that if M is the matrix of means for Tpiv, then the spectral
radius is equal to the expected number of pivotal children of the root, which is the growth
rate of Tpiv. Thus all we have to establish is that Ψ′(p) is equal to the spectral radius of M .

The value of Ψ(x) is given by the following procedure: Sample a number of children
from χ and assign them i.i.d. Bernoulli(x) states. Then, apply the automaton to determine
the state of the parent. Then Ψ(x) is the expected value of the parent. Abusing notation
slightly by letting A act on a sequence of states as we did in the proof of Lemma 2.5, we
have

Ψ(x) = Ex[A(X1, . . . , XK)],

where K ∼ χ and (Xi)i≥1 are i.i.d. Bernoulli(x) under Ex. Let P denote the number of
coordinates of (X1, . . . , Xk) that are pivotal for A at (X1, . . . , Xk). By the Margulis–Russo
formula [11, Theorem 3.2],

d

dx
Ex[A(X1, . . . , Xk) | K] = Ex[P | K].

Taking expectations,

Ψ′(x) = Ex[P ].

Under Ep, the random variable P has the distribution of the number of pivotal children of
the root of (T, ω). Hence,

Ψ′(p) = E[ℓ1(Tpiv)]. �
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Remark 5.4. Since a fixed point p of Ψ is attractive if |Ψ′(p)| < 1, this lemma together with
Theorem 1.7 shows that for a monotone two-state automaton, an attractive fixed point is
always interpretable. We mention that this is not true for nonmonotone automata. For
example, the fixed point in Example 5.8 can be computed to be rogue for λ = 4 despite
being attractive.

We are finally ready to answer Question 1.1. Recall that the at-least-two automaton
assigns the parent state 1 if and only if at least two children have state 1. We mentioned in
the introduction that with Poisson child distribution, this automaton has either one, two,
or three fixed points depending on λ. We will prove this in detail now, and we will classify
the fixed points as rogue or interpretable.

Example 5.5. Let A be the at-least-two automaton, and let χ ∼ Poi(λ). As we saw in (2),
the automaton distribution map is

Ψ(x) = 1− e−λx(1 + λx).

Define

λcrit = min
x>0

x

1− e−x(1 + x)
≈ 3.35.

The function x/
(

1−e−x(1+x)
)

is convex on (0,∞) and hence has a unique minimizer, which
we denote by x∗. Now, substituting λx for x in the function to be minimized, consider the
inequality

λx

Ψ(x)
≤ λ (34)

on (0,∞). If λ < λcrit, it has no solutions, since λx/Ψ(x) ≥ λcrit. Hence Ψ(x) < x for
x > 0, demonstrating that Ψ has no fixed points other than the trivial x = 0. If λ = λcrit,
then (34) has exactly one solution. The solution is x = x∗/λcrit, and equality occurs in (34),
making it a fixed point of Ψ. Since x∗ < λcrit, the solution lies in (0, 1). Hence Ψ has one
nontrivial fixed point in this case. If λ > λcrit, then (34) has an interval of solutions [a, b],
which contains x∗/λ ∈ (0, 1). It is easy to check that a > 0 and b < 1. Thus Ψ(x) lies below
the line y = x on (0, a), then sits above it on (a, b), and then lies below it on (b, 1], giving
Ψ fixed points a, b in addition to 0.

Now, assume that λ > λcrit, so that Ψ has fixed points 0, a, and b. Question 1.1 asks
whether there exists a classification of trees into states {0, 1} such that a tree has state 1
if and only if it has at least two children of state 1, and a Galton–Watson tree with Poi(λ)
child distribution has state 1 with probability a. In other words, the question is whether
a is rogue or interpretable. By Lemma 5.3, we can answer this question by finding Ψ′(a).
Since Ψ(x) lies under the curve y = x up until x = a and then rises above it, its derivative
at x = a exceeds 1. Therefore a is a rogue solution by Lemma 5.3 and Theorem 1.7.

The following result uses a similar approach:

Proposition 5.6. The highest and lowest fixed points of a monotone two-state automaton
are always interpretable.

Proof. If Ψ(1) = 1, then the highest fixed point is 1, which has the trivial interpretation
t 7→ 1. Otherwise Ψ(1) < 1, and at the highest fixed point the graph of Ψ is either
crossing from above the line y = x to below, or it has y = x as a tangent line (note that
Ψ is continuously differentiable). In either case Ψ′(x) ≤ 1 at the fixed point, making it
interpretable by Lemma 5.3 and Theorem 1.7. The same argument shows that the smallest
fixed point is also interpretable. �
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Figure 5. Plot for Example 5.7, showing the fixed point for the automaton
assigning the parent state ‘1’ if and only if there are zero ‘1’ children with
a Poi(λ) child distribution.

5.2. More examples of two-state automata. We give some examples of tree automata
for which a fixed point undergoes a phase transition from interpretable to rogue as a pa-
rameter of the child distribution is varied. We also give a numerical example to show that
a two-state automaton can have many fixed points. As in the previous section, we write
Ψ(x) = y rather than Ψ(Bernoulli(x)) = Bernoulli(y) for two-state automata.

Example 5.7. Consider the automaton where a node is in state 1 if and only if it has zero
children in state 1, given formally by the map (n0, n1) 7→ 1{n1 = 0}. The distributional
map corresponding to this automaton with Poi(λ) offspring distribution is

Ψ(x) = e−λx.

Notice that if we consider the function fλ(x) = e−λx−x, then f ′′
λ (x) = λ2e−λx > 0, showing

that it is a convex function. Moreover, fλ(0) = 1 and fλ(1) = e−λ − 1 < 0 for all λ > 0.
Hence fλ has a unique root in (0, 1), which tells us that there is a unique fixed point x(λ)
of Ψ.

For this automaton, a node in state 0 has pivotal children if and only if it has exactly
one child in state 1 (whatever the number of 0-state children may be), and this child will
be pivotal. A node in state 1 has pivotal children if and only if it has at least one child, in
which case every child will be pivotal. If X0 denotes the total number of 0-state children
and X1 the total number of 1-state children of the root, then

E[ℓ1(Tpiv)] = E
[

1{X1 = 1}+X01{X1 = 0}
]

= λxe−λx +E[X0]P[X1 = 0]

= λxe−λx + λ(1 − x)e−λx = λe−λx.

Thus, to determine if the fixed point is rogue or interpretable with Theorem 1.7, we have
to determine if λe−λx(λ) ≤ 1.

Rewriting the equation x(λ) = e−λx(λ), we find that

log x(λ) = −λx(λ) ⇐⇒ y(λ) log y(λ) = λ, (35)

where y(λ) = (x(λ))
−1

. Noting that the function u log u is strictly increasing over all u > 1
(which is the range we care about), we conclude that λ > e if and only if y(λ) > e. In that
case, from the first equation of (35), we have

λe−λx(λ) = λx(λ) = log y(λ) > 1.
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Figure 6. Plot for Example 5.8, showing the fixed point for the automaton
assigning the parent state ‘1’ if and only if it has at least one ‘0’ child and
at least one ‘1’ child with a Poi(λ) child distribution.

This shows that E [ℓ1(Tpiv)] > 1 for λ > e, and E [ℓ1(Tpiv)] ≤ 1 for λ ≤ e. By Theorem 1.7
and Proposition 2.6(a), the fixed point is interpretable for λ ≤ e and rogue for λ > e. This
is illustrated in Figure 5.

Example 5.8. Consider the automaton A on colour set Σ = {0, 1}, where a node is in state
1 if and only if it has at least one child in state 0 and at least one child in state 1. That is,
the automaton is the map (n0, n1) 7→ 1{(n0 ≥ 1) ∧ (n1 ≥ 1)}. The distributional map for
this automaton with child distribution Poi(λ) is given by

Ψ(x) = 1− e−λ(1−x) − e−λx + e−λ. (36)

Note that

Ψ′(x) = −λe−λ(1−x) + λe−λx, (37)

and

Ψ′′(x) = −λ2e−λ(1−x) − λ2e−λx < 0, (38)

showing that Ψ is strictly concave. We observe that Ψ(0) = 0 and Ψ′(0) = λ(1 − e−λ). Let
λ0 ≈ 1.35 be the unique solution to λ(1 − e−λ) = 1. If λ ≤ λ0, we have Ψ′(0) ≤ 1, and the
graph of Ψ(x) stays below the line y = x for all x > 0. Thus 0 is the only fixed point of
Ψ(x) in this case. If λ > λ0, then Ψ′(0) > 1. Since Ψ(1) = 0, this implies that the graph of
Ψ(x) rises above the line y = x and then dips back below it, giving rise to a nontrivial fixed
point we denote by x(λ).

Let Xi be the number of children of the root in state i. We summarize all configurations
in which any of these children are pivotal:

Root in state 0:

• X0 ≥ 2, X1 = 0: X0 pivotal children
• X0 = 0, X1 ≥ 2: X1 pivotal children

Root in state 1:

• X0 = X1 = 1: two pivotal children
• X0 ≥ 2, X1 = 1: one pivotal child
• X0 = 0, X1 ≥ 2: one pivotal child
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Figure 7. A plot of the fixed points for the automaton in Example 5.9
with Poi(λ) child distribution.

Thus,

E[ℓ1(Tpiv)] = E
[

X01{X0 ≥ 2, X1 = 0}+X11{X0 = 1, X1 ≥ 2}

+ 1{X0 = X1 = 1}+ 1{X0 ≥ 2, X1 = 1}+ 1{X0 = 1, X1 ≥ 2}
]

= e−λxλ(1 − x)
(

1− e−λ(1−x)
)

+ e−λ(1−x)λx
(

1− e−λx
)

+P[X0 ≥ 1, X1 = 1] +P[X0 = 1, X1 ≥ 1]

= λ
(

e−λx + e−λ(1−x) − 2e−λ
)

Substituting from (36), we get

E[ℓ1(Tpiv)] = λ
(

1− x(λ) − e−λ
)

.

For λ = λc, we have x(λ) = 0 and E[ℓ1(Tpiv)] = λ0(1 − e−λ0) = 1. With some laborious
calculus, one can establish that as λ increases, the quantity E[ℓ1(Tpiv)] decreases and then
increases, reaching 1 at λ1 ≈ 2.30. Thus, by Theorem 1.7 and Proposition 2.6(a), this
fixed point x(λ) is interpretable for λ ∈ [λ0, λ1] and rogue for λ > λ1. A plot showing the
behaviour of the fixed points is given in Figure 6.

Example 5.9. Finally we present an example to demonstrate that the automaton may have
many fixed points. Consider the automaton A on colour set Σ = {0, 1}, where a node is in
state 1 unless it has x children in state 1 for x ∈ {1, 2, 3, 4, 5} ∪ {8, 9, 10, 11} in which case
it is state 0. That is, the automaton is the map (n0, n1) 7→ 1{(n1 ∈ {0, 6, 7}) ∨ (n1 ≥ 12)}.
The plot of the fixed points for this automaton with child distribution Poi(λ) is shown in
Figure 7.

5.3. First-order interpretations. As we mentioned in the introduction, the papers [24,
25] investigated tree automata and fixed points corresponding to statements of first-order
logic. The goal of [25] is to study the probability that T ∼ GW(Poi(λ)) satisfies some
given first-order sentence of quantifier depth k. Recall from Section 1.9 that there is an
automaton on the set of rank k types and an interpretation given by sending a tree to its
type. Assuming that the child distribution is Poi(λ), the automaton distribution map for
the tree automaton is then shown to be a contraction [25, Theorem 3.2], which implies that
it has a unique fixed point. This fixed point is also shown to be a smooth function of λ
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[25, Theorem 2.4]. Finally, this is applied to the original problem: since the set of trees
satisfying a given first-order sentence ϕ of quantifier depth k is the union of a collection of
rank k types, the probability that T satisfies ϕ is also a smooth function of λ.

All of this work was done with no explicit mention of the concept of interpretations. Our
goal here is to put it more comfortably into this paper’s framework. We call ι : T → Σ a
first-order interpretation if each set of trees {t ∈ T : ι(t) = σ} for σ ∈ Σ can be defined in
the first-order language described in Section 1.9.

To avoid reproving results in [24, 25], we continue to assume that χ ∼ Poi(λ), but we
expect that the results should hold for general child distributions. As usual, the assumption
that a fixed point has no zero entries causes no loss of generality, since the set Σ can be
shrunk and the automaton considered as one on a smaller set of states.

Theorem 5.10. Assume that χ ∼ Poi(λ), and let Σ be any finite set of states. Let ι : T → Σ
be an interpretation of an automaton A corresponding to a fixed point ~ν, which we assume
has strictly positive entries. If ι is a first-order interpretation, then ~ν is the only fixed point
of the automaton distribution map.

Proof. Let T taut
n ⊆ T consist of all trees t on which ι(t) is tautologically determined by t|n.

That is, T taut
n consists of all trees t such that ι(t) = ι(t′) for all t′ ∈ [t]n. It follows from [25,

Lemma 5.6] that

lim
n→∞

P[T ∈ T taut
n ] = 1. (39)

Let (t, τ) be an arbitrary tree whose colouring is compatible with the automaton A. We
claim that if t ∈ T taut

n , then τ(Rt) = ι(t). Indeed, condition on T ∈ [t]n. Under this
conditioning, the vector

(

ι(T (v))
)

v∈Ln(t)
is i.i.d. ~ν. Since ~ν has strictly positive entries, this

vector takes on each value in Σℓn(t) with positive probability. Since t ∈ T taut
n , we have

ι(T ) = ι(t) a.s. But ι(T ) is given by iteratively applying the automaton to
(

ι(T (v))
)

v∈Ln(t)
,

from which we can conclude that applying the automaton in this way to any vector in Σℓn(t)

yields ι(t). Thus, since τ(Rt) is given by applying the automaton to
(

ι(t(v))
)

v∈Ln(t)
, it too

is equal to ι(t).
Now, suppose that ~ν′ is another fixed point of the automaton map, and let (T, ω) be

the random state tree associated with ~ν′. If T ∈ T taut
n for any n, then ω(RT ) = ι(T ) by

the claim we have just proved. By (39), it holds with probability one that T ∈ T taut
n for

some value of n (observe that T ∈ T taut
n forms an increasing sequence of events). Hence

ω(RT ) = ι(T ) a.s. Thus ω(RT ) ∼ ~ν, since ι(T ) ∼ ~ν. But by the definition of the random
state tree, ω(RT ) ∼ ~ν′, demonstrating that ~ν = ~ν′. �

6. Further questions

The most straightforward open problem is to extend Theorem 1.7 to 3 ≤ |Σ| < ∞. Theo-
rem 1.8 already provides one direction of the theorem, leaving the critical and supercritical
cases. As we discussed in Remarks 3.6 and 4.16, it might be possible to adapt the two-state
proofs. In both cases, the difficulty is that the pivot tree need not be positive regular. In
fact, it seems to us that when the pivot tree is positive regular, all proofs go through as is,
and Theorem 1.7 holds in general for |Σ| < ∞ (though we have not checked every detail).

Beyond this, two generalizations interest us. First, extending the results to infinite state
spaces would allow the theory to address situations like those considered in [20]. Second,
one could consider randomized automata: give each vertex v an independent source of
randomness Xv and then allow the automaton to determine the state of a vertex from the
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states of its children together with Xv. This situation often arises in practice and is the
model considered in [1]. Extending the theory to this case might yield answers to questions
about endogeny, as discussed in Section 1.9.

In a different direction, we wonder what configurations of fixed points are possible. For
example, when 3 ≤ |Σ| < ∞, can an automaton have infinitely many fixed points? (This can
be ruled out when |Σ| = 2 by arguing that the automaton distributional map is analytic.)
In the case |Σ| = 2, for any specified finite set of rogue and interpretable fixed points, is
there an automaton and a child distribution to match them? Even restricting ourselves to
two-state monotone automata, it is not clear which sets of rogue and interpretable fixed
points can occur.

Section 5.3 also raises some questions. For example, Theorem 5.10 provides a condition
on an interpretation that makes the corresponding tree automaton have a unique fixed point.
This suggests the problem of giving conditions on the tree automaton itself that force its
automaton distribution map to have a unique fixed point.
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