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Abstract 

In order to maintain functional robustness and species integrity, organisms must ensure high 

fidelity of the genome duplication process. This is particularly true during early development, 

where cell division is often occurring both rapidly and coherently. By studying the extreme 

limits of suppressing DNA replication failure due to double fork stall errors, we uncover a 

fundamental constant that describes a trade-off between genome size and architectural 

complexity of the developing organism. This constant has the approximate value 𝑁𝑈 ≈

3 × 1012 basepairs, and depends only on two highly conserved molecular properties of DNA 

biology. We show that our theory is successful in interpreting a diverse range of data across 

the Eukaryota. 
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Introduction 

 

Organisms are made from cells, and their functional and morphological integrity relies upon 

the integrity of cellular processes, particularly cell division. In turn, this relies upon the 

integrity of the molecular process of DNA replication [1]. Thus, there is a direct link across 

multiple biological scales, connecting organismal robustness to genomic fidelity. Indeed, it is 

vital for developmental and other growth processes in organisms that the DNA in each new 

cell is as faithful as possible to the original zygotic genome. Errors in DNA replication will 

inevitably occur and cells have sophisticated means to identify and repair such errors. 

However, repairing DNA errors, particularly gross ones, is time-consuming, and such a 

bottleneck in a given cell could interfere badly with higher-level coordinated cell division 

processes. This is particularly relevant in embryo development, which for many organisms is 

highly streamlined, with ‘stripped-down’ cell division cycles (e.g. cleavage divisions) 

operating across the embryo in synchrony [2]. The coherent generation of significant numbers 

of correctly differentiated cells enables the formation of complex architectures that constitute 

the emerging morphology of the organism. For many organisms development must be rapid 

to allow the nascent life form to function as an autonomous agent, able to compete for 

resources and evade predation in a hostile environment. 

 

Thus, a tension exists between the robustness and the rapidity of development; between the 

requirements of integrity of DNA replication during cell division and of the speedy 

emergence of autonomously functional biological form. This can be restated more concisely 

as a tension between information fidelity and organismal functionality. We investigate this by 

considering an important example of DNA replication error for which repair is possible but 

costly in time, namely, double fork stalls (DFS) [3,4]. We shall be able to quantify in a 

surprisingly simple way the tension described above, which, in a developmental context, 

takes the form of a trade-off between genome size (information complexity) and embryonic 

cell number (architectural complexity). This trade-off is expressed in terms of a single 

constant which we denote by 𝑁𝑈, and which has dimensions of DNA length. We believe 𝑁𝑈 

to be highly conserved across the eukaryotes. It has the approximate value 3 Tbp, i.e. 𝑁𝑈 ≈

3 × 1012 bp. 

 

The outline of this paper is as follows. We provide a short overview of the biology of DFS 

and summarise a recent theory that has successfully captured much of the experimental data 

for DFS in both yeast cells and human cell lines. We use one element of this theory to derive 

the main result of this paper, and then proceed to test this against data from a diverse range of 

biological examples drawn from the Eukaryota, including eutely, syncytial development and 

polyploidy. We end with a summary of our results and a discussion of extensions of our 

theory. A guide to notation and further calculational details are provided in the Appendix. 

 

 

Background to DFS and a recent quantitative theory 
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 3 

Replication of DNA is initiated at multiple sites, called replication origins (ROs), situated 

along the DNA chain. In order to prevent any RO from firing twice in the same cell cycle 

(which would cause sections of DNA to be replicated twice in the same cell cycle), eukaryotic 

cells divide the process of replication into two non-overlapping phases [5]. From late mitosis 

until the end of G1, before DNA synthesis begins, cells ‘license’ ROs for use by loading them 

with double hexamers of the MCM2-7 (minichromosome maintenance) proteins. Once cells 

enter S phase, when RO firing can occur, no further ROs can be licensed. When a RO is 

activated (‘fires’) during S phase of the cell cycle, two replication forks proceed with 

replication in opposite directions along the DNA, each driven by one of the two MCM2-7 

hexamers loaded onto the origin. Note that only a subset of licensed ROs fire during any 

particular S phase, with the remaining ‘dormant’ origins remaining as potential backups for 

use if problems occur to the active replication forks [3,4]. If a replication fork encounters a 

dormant (‘unfired’) RO, replication continues past the dormant origin and the MCM2-7 

loaded onto it is removed (the dormant origin becomes ‘unlicensed’). This prevents re-

replication of already replicated DNA [5]. The complex of proteins at a given replication fork 

is called a ‘replisome’ and consists of an assembly of molecular machines working in a 

coordinated fashion to replicate the DNA rapidly (ca 50 bp s–1 in eukaryotes) and accurately 

(ca single nucleotide error rate of 10–9) [1]. Despite this sophistication, replication forks can 

fail through rare irreversible stalling. This is typically not problematic, as the unreplicated 

DNA lying ahead of the stalled fork will eventually be replicated by another fork moving in 

the opposite direction having been initiated by a RO upstream of the stalling event. Very 

rarely though a severe error can occur, called a double fork stall (DFS). In this situation, two 

converging replication forks irreversibly and independently stall with no dormant RO 

available in the stretch of unreplicated DNA lying between them. A more detailed description 

of DFS with schematic illustrations can be found in [3].  

 

A simple theory of DFS statistics has recently been developed and is successful in predicting 

error rates and RO distributions for genomes spanning Mbp (e.g. yeast) to Gbp (e.g. human) 

[6,7]. The theory has a single a priori unknown parameter 𝑞 , the genome-wide average 

probability of a single fork stall per nucleotide replication. Fits of the theory to various 

experimental data have consistently indicated the approximate value 𝑞 ≈ 5.8 × 10−8 bp−1. 

This parameter can be recast as the length of DNA replicated before a 50% chance of a single 

fork stall, which we denote by 𝑁𝑠 , and which has the approximate value 𝑁𝑠 = ln 2 𝑞⁄ ≈

12 Mbp . Henceforth we shall exclusively use the symbol 𝑁 , with one of a number of 

subscripts, to denote various length scales of DNA that arise in the theory. A complete list of 

the symbols used is given in the Appendix to aid the reader. 

 

In previous applications of the theory, to yeast cells [6] and human cell lines [7,8], a key 

experimental input was the set of inter-RO separations, which has a mean value typically of 

order 10 kbp in these examples. The theory was able to explain how this scale of RO 

separation leads to small tolerable DFS error rates in single cell divisions. The theory was 

also able to show that the observed RO distributions are optimized to constrain the number of 

DFS errors in a single cell division for the very different genome sizes under consideration.  

 

Here, we consider a different situation; that of extreme elimination of DFS errors. We have 

foremost in our minds the case of rapid coordinated cell divisions, for instance in early 

embryo development, but our theory has wider applicability than this. Note, we are not 
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concerned with the ‘timing question’ of ensuring complete DNA replication within a single 

cell in a preset time period, which has had considerable previous study using other theoretical 

approaches [9–11]. 

 

 

Derivation of the central result 

 

This work was spurred by the experimental finding of very high levels of RO licensing 

proteins in the cells of the developing Xenopus embryo [12–15]. These studies suggest that 

the total amount of MCM2-7 in  the Xenopus egg is sufficient to provide a double hexamer at 

least every 400 bp throughout the first 12 embryonic cell cycles until zygotic transcription 

starts (at the mid-blastula transition). Although the spacing between fired origins has been 

measured to be ~10 kb [12], the density of dormant origins is at least ten times higher than 

this [16,17]. One can postulate that for an embryonic cell to absolutely minimise its chance of 

a DFS error, it would, prior to S phase, saturate its DNA with ROs. The finest scale at which 

this is possible is the ‘quantum’ of eukaryotic DNA organisation, i.e. the nucleosome (and 

accompanying inter-nucleosome regions of DNA) [1]. The length of nucleosome linkers 

across eukaryotes ranges between ca 20 – 90 bp, and the footprint of licensing molecules is ca 

60 bp [18–21]. Therefore an average inter-nucleosome distance of ~60 bp allows for an 

essentially whole-genome saturation with ROs. For the purposes of our theory, we therefore 

consider the DNA as quantised on the periodic scale of nucleosomes and their accompanying 

inter-nucleosome regions, which we denote by 𝑁𝑛,  and which has a value of ca 200 bp [1]. 

We define the parameter 𝜌 to be the probability that a given inter-nucleosome region is 

occupied by a RO. In the limit of 𝜌 → 1 the DNA is saturated with ROs, the number of which 

across a genome of size 𝑁𝑔 is in this case given by 𝑁𝑔 𝑁𝑛⁄ . 

 

In Section B of the Appendix we present the theory for the general case of 0 < 𝜌 ≤ 1. For the 

main results of this paper we are interested in the extreme case of 𝜌 → 1, for which a short 

and straightforward derivation of the theory is possible, as we now describe. 

 

A basic ingredient of the recent theory of DFS error rates is the probability of a DFS event in 

a region of DNA of size 𝑁. For 1 ≪ 𝑁 ≪ 𝑁𝑠   this has the form (cf Eqs (A8) and (A16) in [6]): 

 

𝑃DFS(𝑁) =
1

2
 𝑞2𝑁2 =

(ln 2)2

2
(

𝑁

𝑁𝑠
)

2

.                 (1) 

 

Thus, if we assume that every inter-nucleosome region is occupied by a RO, the probability 

of a DFS event within a 200 bp nucleosomal region 𝑁𝑛 is  

 

𝑃DFS(𝑁𝑛) =
(ln 2)2

2
(

𝑁𝑛

𝑁𝑠
)

2

≈ 6.6 × 10−11 ,           (2)  
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 5 

 

which is exceedingly small, as expected. 

 

We now consider a total amount of DNA of length 𝑁𝑡  to be replicated, all of which is 

saturated with ROs as described above. This total amount of DNA may reside inside a single 

cell or may be distributed amongst more than one cell, depending upon the application of 

interest. Given that potential DFS errors within each nucleosomal stretch of DNA are 

independent events, the probability of no DFS errors occurring within the entire replication 

process is given by (1 − 𝑃DFS(𝑁𝑛)) raised to the power of 𝑁𝑡 𝑁𝑛⁄ . Thus, the probability of 

one or more DFS errors occurring is 

 

𝑃error(𝑁𝑡) = 1 − (1 − 𝑃DFS(𝑁𝑛))
𝑁𝑡 𝑁𝑛⁄

 .            (3) 

 

Given the extremely small value of 𝑃DFS(𝑁𝑛) this expression may be rewritten as 

 

𝑃error(𝑁𝑡) = 1 − exp (−
𝑁𝑡

𝑁𝑛
𝑃𝐷𝐹𝑆(𝑁𝑛)) .           (4)  

 

Now, focussing on the argument of the exponential, we have from Eq. (1): 

 

𝑁𝑡

𝑁𝑛
𝑃𝐷𝐹𝑆(𝑁𝑛) =  

𝑁𝑡

𝑁𝑛
×

1

2
 𝑞2𝑁𝑛

2 = 𝑈𝑁𝑡  ,                  (5) 

 

where we have introduced the fundamental constant 

 

𝑈 =
1

2
 𝑞2𝑁𝑛 ≈ 3.3 × 10−13 bp−1 .                         (6) 

 

We describe 𝑈 as ‘fundamental’ as it comprises two molecular constants which are strongly 

conserved across eukaryotic life: i) the per nucleotide spontaneous stalling probability of the 

DNA replication machinery and ii) the average periodicity of nucleosomes.  

 

It is more convenient for our purposes to define the inverse of 𝑈, which has dimensions of 

DNA length. We define 

 

𝑁𝑈 =  1 𝑈⁄ ≈ 3.0 × 1012 bp .                                   (7) 

 

Given that 𝑁𝑈 is simply the inverse of 𝑈, the adjective ‘fundamental’ applies equally well to 
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 6 

it, and thus we posit that the value of three tera-basepairs (i.e. 3 Tbp) is a fundamental scale in 

rapid, large-scale DNA replication and the biology that depends upon it. Our results, 

presented shortly, appear to support this view.  

 

Returning to our expression for 𝑃error(𝑁𝑡) in Eq. (4), and using Eqs. (5)–(7), we have our 

central result: 

 

𝑃error(𝑁𝑡) = 1 − exp (−
𝑁𝑡

𝑁𝑈
) .                               (8) 

 

If the total amount of DNA under consideration has length much less than 𝑁𝑈, i.e. much less 

than 3 Tbp, then the expression can be simplified to 

 

𝑃error(𝑁𝑡) =
𝑁𝑡

𝑁𝑈
≪ 1 .                                               (9) 

In anticipation of the biological examples to follow, we can consider two general cases.  

 

Case I: this occurs when the total amount of DNA to be replicated is distributed amongst 

more than one cell (each of which we assume to have the same genomic content). We define 

the genome size 𝑁𝑔  of each cell to be the number of basepairs in a haploid set of 

chromosomes. If we assume these cells to be diploid, and for there to be a final count of 𝑀𝑐 

cells (starting from a single cell after 𝑀𝑐 − 1 cell divisions), then the total amount of DNA to 

be replicated is 𝑁𝑡 = 2(𝑀𝑐 − 1)𝑁𝑔 . If the cells saturate their DNA with ROs in order to 

ensure the smallest chance of DFS errors, then assuming that 𝑃error(𝑁𝑡) is small (and taking 

for simplicity 𝑀𝑐 ≫ 1) we have from our theory above 

 

𝑃error(𝑁𝑡) =
2𝑀𝑐𝑁𝑔

𝑁𝑈
≪ 1 ,                                      (10) 

 

 and consequently the inequality:  

 

𝑀𝑐𝑁𝑔 ≪ 𝑁𝑈 ,                                                               (11) 

 

This expression encapsulates the trade-off between genome size and the number of cells 

involved in the coordinated cell division process. The product of the ‘architectural 

complexity’ (𝑀𝑐) and the ‘informational complexity’ (𝑁𝑔) are bounded by 𝑁𝑈; they cannot 

be simultaneously increased such that their product exceeds 𝑁𝑈 without introducing costly 

forms of DNA error repair. Typically, we would imagine such a process occurring during 
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 7 

embryonic development, though examples involving rapid, coordinated cell divisions in adult 

organisms could also be relevant.  

 

Case II: this occurs when the entirety of the DNA to be replicated is within one cell. Defining 

𝑀𝑝 as the degree of polyploidy, we have 𝑁𝑡 = 𝑀𝑝𝑁𝑔. If the cell saturates its DNA with ROs 

in order to minimise the chance of DFS errors, then following the same line of argument as 

above we have the inequality: 

 

𝑀𝑝𝑁𝑔 ≪ 𝑁𝑈 ,                                                         (12) 

 

which encapsulates a trade-off between genome size and degree of polyploidy for such cells. 

 

Before turning to some biological examples, we briefly discuss the more general case of 𝜌 <

1. As mentioned above, Section B in the Appendix provides a derivation of the central result 

(the analogue of Eq. (8)) for arbitrary values of 𝜌. This general result is analysed in Section C 

of the Appendix resulting in two useful observations. Firstly, Eq. (Aix) shows that as 𝜌 

decreases from unity, the DFS error rate increases dramatically as 2/𝜌. This will provide 

strong pressure to keep the RO density close to saturation (𝜌 = 1) when replication of DNA 

content close to 3 Tbp is required. Second, Eq. (Axi) provides a lower bound on 𝜌 which can 

be calculated using knowledge only of the theoretical error rate at saturation (i.e. inserting 𝑁𝑡 

into Eq. (8)) and the experimentally observed failure rate of the biological process under 

consideration. This bound will prove useful when more detailed data becomes available of 

RO distributions during early embryonic processes. We will give an example of the use of 

this bound below, when discussing eutelic organisms. 

 

 

Testing the central result using specific biological examples 

 

In this section, we test our central results against experimental data. Relating to case I, we 

look at two examples: i) eutelic organisms from across the Eukaryota, and ii) the syncytial 

phase of Drosophila development. We then turn briefly to case II, using examples of high 

degree polyploidy from Drosophila, mouse and human cell types. 

 

Eutely 

We start by considering what is perhaps the most highly coordinated mode of development, in 

which the form of the organism emerges from a completely prescribed set of cell divisions, 

such that the number of cells and their individual differentiated states are precisely defined at 

each stage of development. This process is called eutely and has been adopted across diverse 

branches of the eukaryotes [22]. The eutelic organism has a predictable number of cells and 

after cell division ceases it grows larger through each cell increasing in size. In terms of our 

theory, we would expect the inequality in Eq. (11), namely 𝑀𝑐𝑁𝑔 ≪ 𝑁𝑈, to place a profound 
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 8 

constraint, simultaneously, on the genome size and cell number of eutelic organisms. This is 

under the assumption, of course, that the cell divisions during development are highly 

coordinated and rapid such that significant time spent repairing gross errors from DFS is not 

possible. 

 

To test this idea, we examine eutelic organisms for which cell number and genome size are 

known and then compare their product to the fundamental constant 𝑁𝑈. A more precise test is 

also possible, since use of Eq. (8) with the ratio of 2𝑀𝑐𝑁𝑔 to 𝑁𝑈 substituted in the argument 

of the exponential gives the probability of one or more DFS errors. If such errors are 

essentially lethal for eutelic embryos, then this ratio provides an estimate (more precisely, a 

lower bound) for the failure rate of development of such embryos.  

 

Table 1 provides data for three species of eutelic organisms which sit within three distinct 

branches of the eukaryotes: the nematode C. elegans [1,23], the tardigrade H. dujardini 

[24,25] and the rotifer B. calyciflorus [26,27]. We note a remarkable similarity of the cell 

number counts and genomic complexity of the organisms despite their very distinct 

taxonomies, morphologies and environments. The data is in good accord with the predictions 

of our theory. Our estimates of DFS errors, assuming saturation of the DNA with ROs, are 

also consistent in being slightly smaller than the observed developmental failure rates of the 

organisms (denoted by 𝑃obs ). This does not constitute conclusive proof that DFS errors 

ultimately limit the complexity of eutelic organisms. Experiments are required to demonstrate 

this; for instance, to show that the DNA of cells in eutelic development are saturated with 

ROs, or to show that those embryos that fail contain cells that are unable to complete timely 

divisions due to the occurrence of one or more DFS errors. We can also use Eq. (Axi) to 

estimate lower bounds of 𝜌 (denoted by 𝜌min) using the error rates in columns 5 and 6 (mean 

value) of the table. These bounds are provided in column 7, and range from 0.67 to 0.89 

indicating that all organisms are utilising near saturation in order to control DFS errors. In the 

pre-gastrula C. elegans embryo, the number of identified ROs is ~15,000 (although noting 

that large parts of the genome in the microarray-based study were missed due to the technical 

limitations in accessing highly repetitive sequences) [28]. If the abundance of dormant origins 

in this organism is as high as in Xenopus (ten times that of active ROs), then our calculated 

𝜌min of 0.67 suggests around 30,000 active ROs genomewide. This rough estimate is twice 

that observed in the microarray experiment possibly suggesting that half the origins licensed 

are in highly repetitive regions of the genome.  

 

Species 
𝑁𝑔 

(Mbp) 

𝑀𝑐 

 

𝑀𝑐𝑁𝑔 

(Gbp) 

𝑃error 

 

𝑃obs 

 

𝜌min 

C. elegans ≈100  ≈1000 ≈100  ≈6% 11-12% 0.67 

H. dujardini ≈100  ≈1000 ≈100  ≈6% 7-9% 0.86 

B. calyciflorus ≈  65  ≈1000 ≈  65  ≈4% <5% 0.89 

Table 1: data and theory predictions for three eutelic organisms.  

Note, 𝑃error is calculated from Eq. (8) and 𝜌min from Eq. (Axi). 

Page 8 of 22AUTHOR SUBMITTED MANUSCRIPT - PB-101157.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



 9 

 

Syncytial development 

Our analysis indicates that it is not possible for an organism with a relatively large genome 

(>100 Mbp) to grow rapidly beyond a few thousand cells in a purely eutelic manner. To grow 

beyond thousands of cells, development must slow considerably to allow for identification 

and subsequent repair or destruction of those cells which will inevitably arise with DFS 

errors. In order to test our theory for larger organisms it is necessary to focus on early stages 

of development in which rapid coherent DNA replication occurs. The syncytial phase of 

insects is an important example [2]. Such is the rapidity of replication in this phase, cell 

division is itself forsaken, with, instead, repeated rounds of nuclear division within the single 

large cell of the syncytium. Our theory would predict that the number of nuclear divisions is 

limited according to Eq. (11).  

 

We test this using data from the most intensively studied insect, the fruitfly Drosophila 

melanogaster [29]. This organism has a haploid genome size of approximately 175 Mbp. In 

its syncytial phase, it undergoes 13 synchronised rounds of nuclear division, the number of 

nuclei increasing by a factor of 2 in each round, thus creating approximately 8192 nuclei. 

Nuclear division then ceases, the nuclei are transported to the syncytial membrane and 

cellularisation occurs to create the embryonic epiblast. The amount of DNA replicated during 

the syncytial phase is approximately 8192 × 2 × 175 Mbp = 2.9 Tbp, which, remarkably, is 

just below the limit imposed by the universal constant 𝑁𝑈. Interestingly, the haploid mutant 

(with half as much DNA per nucleus) goes through 14 rounds of nuclear division, resulting in 

the same amount of DNA being replicated in the syncytium [30]. This could, for example, be 

explained by the existence of a critical concentration of a key molecule (utilised during 

replication, and thus being depleted with each round of replication) ensuring that nuclear 

division in the syncytium does not overstep the 𝑁𝑈 bound.  

 

Given that 2.9 Tbp is so close to 𝑁𝑈 , a small number of errors will occur with a non-

negligible frequency. From Eq. (8) we see that the probability of having no DFS errors is 

approximately 38%. A straightforward analysis using Poisson statistics indicates that the 

probabilities of one and two DFS errors are 37% and 18% respectively. Thus, fewer than 1 in 

10 embryos would have 3 or more DFS events. The errors can occur in any of the doubling 

cycles, though will be exponentially more likely to occur in the last few cycles. Presumably, 

such errors, topologically linking two daughter nuclei, would be left uncorrected with those 

nuclei excluded from the cellularisation process. One can extend the analysis to catalogue the 

frequencies with which errors occur in earlier or later cycles, and to then predict the variation 

in nuclei numbers after 13 cycles, but this lies beyond the scope of the current paper.  

 

One can speculate on the implications of the (diploid) embryo having a hypothetical 14th 

cycle, thus creating 16384 nuclei. In this case the amount of DNA to be replicated is almost 

twice 𝑁𝑈, and fewer than 1 in 6 embryos (15%) would successfully complete the syncytial 

phase free of DFS errors. Poisson statistics indicate that approximately 1 in 3 embryos (30%) 

would have 3 or more errors, and more than 1 in 7 embryos (13%) would accumulate four or 

more errors. These significantly higher frequencies of error may simply be too costly for 

robust subsequent development, hence the limitation to 13 cycles of division. 
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Highly polyploid cells  

 

We now turn briefly to case II – the significant replication demands in a single cell in which 

there is a high degree of polyploidy. There are many examples of this phenomenon in the 

Eukaryota [31], and we examine here three important organismal examples, Drosophila, 

mouse and human, for which high quality data is available. 

 

Many of the cell types in Drosophila are polyploid, some highly so [32]. Detailed data are 

available for three different cell types: fat body cells, midgut cells, and salivary gland cells, 

and are summarised below in Table 2. We note that the product of genome size and ploidy 

level approaches but does not exceed 𝑁𝑈, indicating that these cells are capable of robust and 

rapid DNA replication so long as near-saturation of DNA with ROs is utilised. It is striking 

that mature polyploid cells in Drosophila have DNA content limited to a similar degree to the 

final syncytial phase of the Drosophila embryo (both observations consistent with, and 

possibly linked by, the theory proposed here). A number of studies have reported that the 

degree of polyploidy is not necessarily constant across the entire genome, with higher rates of 

ploidy for gene rich regions [33,34]. As the value of 𝑁𝑡  approaches 𝑁𝑈  in terminally 

differentiated endoreplicating cells, one possibility is to tolerate the inevitable DFS errors by 

allowing deleterious events in regions of the genome which are no longer functionally 

important. Indeed, under-replicated genomic regions in Drosophila polyploid cells suffer 

from a significant paucity of licensed origins in comparison to those regions rich in active 

genes [29,33].  

 

Turning now to mammals, two examples of cell types with very high degrees of polyploidy 

are trophoblast giant cells (TGCs) (mainly studied in rodents and analogous to 

cytotrophoblast cells in humans) and megakaryocytes. TGCs are primary cells in placental 

development [35], whilst megakaryocytes are the last stage of the differentiation process to 

produce platelets in the blood [36]. A single megakaryocyte is able to produce several 

thousand platelets. Both these cell types are large (up to 100 microns in diameter) and use 

endoreplication to increase their ploidy within a single cell entity. We provide data in Table 2, 

and again we see that these cells have total DNA content that approaches but does not exceed 

𝑁𝑈. 

 

Cell type 𝑁𝑔 𝑀𝑝  𝑀𝑝𝑁𝑔 (Tbp) 

Drosophila 

fat body 

   175 Mbp 

225 0.039 

midgut 171 0.030 

salivary gland 1669 0.29 

Rodent TGC 2.7 Gbp 500 1.35 

Human megakaryocyte 3.0 Gbp 128 0.38 
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Table 2: data for various cells with high degrees of polyploidy 

 

Discussion 

 

In this paper we have considered extreme safeguards against double fork stall (DFS) errors, 

through a mechanism in which cells saturate their DNA with replication origins (RO) on a 

scale of the average nucleosome separation. Using results from our recent theory of DFS 

statistics we have derived a formula for the probability of DFS error in this case, and find it to 

be expressed in terms of a fundamental constant 𝑁𝑈 ≈ 3 × 1012 base-pairs, which essentially 

defines the upper limit of DNA that can be rapidly replicated with minimal chance of DFS 

error. The constant is fundamental as it arises from a product of two highly conserved 

biomolecular parameters, cf Eqs. (6) and (7), and is thus expected to be applicable to 

organisms spanning the Eukaryota.  

 

Our result is particularly relevant to cell division processes which are required to be efficient 

in time, i.e. in which there is not the leisure of time for costly post-replication repair of DFS 

errors [8,37–40]. As such, we have tested our theory against data from developmental 

processes which require efficient coordinated cell division processes. Our theory suggests 

there is a hard trade-off between informational complexity (i.e. size of the genome) and 

architectural complexity (i.e. the number of developmental cell divisions), and that the 

product of these two be much smaller than 𝑁𝑈. Data from both eutelic organisms and from 

the Drosophila syncytium are in excellent accord with this prediction.  

 

Our theory is also relevant to single cells which have massive DNA content due to high levels 

of polyploidy. For such cells which are required to replicate their DNA efficiently in time we 

again expect a trade-off between genome size and degree of polyploidy. Data from three 

different highly polyploid cell types in Drosophila, trophoblast giant cells in mice, and 

megakaryocytes in humans are all in accord with the predictions from our theory. 

 

Naturally, none of this constitutes proof that DFS avoidance is the underpinning biological 

factor in all of these cases. However, the excellent agreement between a diverse range of 

biological data and our theoretical prediction of the central importance of 𝑁𝑈 ≈ 3 Tbp does 

strongly suggest the fundamental role of this constant in shaping biological processes in 

development and polyploidy. Our theory can be tested experimentally by examining cases of 

developmental failure (or anomalies in polyploid cells) and ascertaining whether these arise 

from DFS errors.  

 

The hard limit on rapid DNA replication set by 𝑁𝑈 suggests, as described by Eq. (11), that 

strategies for development must undergo a sharp transition when the product of the number of 

embryonic cells, 𝑀𝑐  and the size of the genome, 𝑁𝑔 approaches this value. If the product 

𝑀𝑐𝑁𝑔 is well below 𝑁𝑈 then the DFS error rate is negligible and there will be no significant 

bottlenecks to rapid cell division. However, when the product is similar to or greater than 𝑁𝑈, 
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DFS errors are inevitable and the costly repairs thereby required will greatly slow down the 

developmental process.  

 

One strategy to cope with this limit is simply not to exceed it, and to make every cell and cell 

division count, i.e. to have a finely choreographed developmental process in which each cell 

division is pre-programmed. This is eutely, and indeed we find that eutelic organisms across 

the Eukaryota have very similar genome sizes and cell number counts, respecting the upper 

bound set by 𝑁𝑈 , despite the diverse natural histories and morphologies of the organisms 

concerned. 

 

The alternative strategy is to divide development into a rapid phase (during which there is a 

negligible chance of DFS errors) followed, once the product 𝑀𝑐𝑁𝑔 exceeds 𝑁𝑈, by a slower 

phase (allowing time for DFS repairs [8,37–40]). The example of syncytial development in 

insects appears to be an excellent example: extremely rapid and synchronised nuclear 

divisions in the syncytium, then slowing to a cellularisation process and subsequent tissue-

based gastrulation process. It is remarkable that the Drosophila data show that this transition 

occurs precisely when the 𝑁𝑈 limit is reached. The existence of small numbers of polar bodies 

after syncytial development [41] might indeed correspond to the small number of failed 

nuclear divisions due to DFS, and Poisson statistics can be employed in conjunction with our 

theory to provide predictions on the number of polar bodies expected to arise.  

 

Higher organisms have a whole series of developmental transitions related to morphological 

requirements, e.g. gastrulation, neurulation, limb development [2]. The very first transition 

from a cluster of cells (i.e. the blastula) to a more structured morphology might be expected to 

be tuned to 𝑁𝑈, and preliminary data analysis in mammals confirms this. Indeed, Eq. (8) of 

our theory provides an estimate of the probability of DFS occurring. If DFS occur during 

early embryogenesis, and constitute a fatal error, then this estimate provides a lower bound on 

embryo failure, and work in progress shows these predictions are consistent with data from 

zebrafish, chicken, and a range of mammalian species [42]. A counterexample is found in the 

amphibian model Xenopus, which undergoes rapid cell division until a cell mass of several 

thousand cells is formed [2]. As DFS errors will inevitably arise in this case, we postulate that 

large numbers of cells in the early embryo with DFS errors could be discarded without 

disruption of future development. This is akin to an r-strategy in ecology [43], namely, large 

numbers of progeny with little parental care and hence high failure rate. In this sense, the 

choreography of cell division and differentiation in eutelic development is akin to the K-

strategy, namely, small numbers of progeny with significant parental care to maximise 

survival.  

 

Returning briefly to the subject of polyploidy, there are extreme cases which break the bound 

set by 𝑁𝑈 . For example, the giant neuronal cells of the sea hare Aplysia california have 

genome size ~930 Mbp [44] and ploidy of 600,000 [45] giving a total DNA content of over 

500 Tbp. Our theory is moot in such a case, beyond the obvious conclusion that DNA 

replication in the creation of such cells will be choked with DFS errors requiring repair; other 

mechanisms beyond replication such as cell fusion may contribute to such enormous ploidy 

levels. High DFS rates in this case are presumably tolerable for the organism as these cells do 

not have a role in the earlier developmental processes, and they are not involved in processes 
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which require rapid cell division, unlike the examples we studied earlier, such as 

trophoblastic giant cells (driving placental development) and megakaryocytes (driving 

platelet production).  

 

Our theory also places a strict bound on the largest possible genome of an organism, 

assuming that cell replication must occur with reasonable efficiency at some stages of the 

organism’s life cycle. Assuming a diploid organism, we would predict that one half of 𝑁𝑈, 

namely 1.5 Tbp, is an upper limit on haploid (or half the value of total) genomic content. This 

compares favourably with very large genome sizes known in single-celled eukaryotes and 

plants. Specifically, the estimated genome lengths, found in Amoeba dubia and Amoeba 

proteus, are ~0.67 and ~0.29 Tbp respectively [46]. Relatedly, the 2C value for the largest 

known plant genome, in octaploid Paris japonica, corresponds to a genomic content of 

~0.298 Tbp and another very close candidate is the fern Tmesipteris obliqua (~0.294 Tbp) 

[47]. 

 

The question of whether an organism could sustain a 3Tbp DNA load in each cell is brought 

into sharp focus by the question: how much volume is required to store the protein complexes 

needed to saturate such a large genome? Back of the envelope calculations yield some 

interesting answers. The MCM2-7 double hexamer complex has a volume of approximately 

3000 cubic nanometers [48]. To saturate 3 Tbp of DNA (i.e. at the level of one complex per 

200 bp repeat of the nucleosome) requires 1.5 × 1010 complexes whose collective volume is 

therefore approximately 50,000 cubic microns. Interestingly, this is about the size of a large 

eukaryotic cell (a cell of diameter ~ 40 microns). So, it is physically impossible for an 

organism to achieve saturation of such a large genome without utilising very large cells 

(particularly in the embryonic stage where errors are presumably less tolerated). It is natural 

to then ask whether such severe physical constraints are present for the two applications we 

studied where saturation was assumed, namely eutelic organisms and the Drosophila 

syncytium. The answer is no. The volume of MCM complexes required to saturate the modest 

100 Mbp genome of C. elegans requires only 0.1% the volume of a typical eukaryotic cell. 

And the approximately cylindrical Drosophila syncytium has length 0.5 mm and diameter 

0.15 mm, yielding a volume of ~107 cubic microns. This is ~200 times larger than the 50,000 

cubic microns required to store the MCM complexes necessary to saturate 3 Tbp of DNA.  

 

It may also be interesting to study very large genomes in the Archaea. Here, a modified 

constant 𝑁𝑈 would be required as the details of the molecular machinery for DNA replication 

and packaging will differ from the Eukaryota. For example, the inter-nucleosome periodicity 

is ~140 bp rather than ~200 bp as in the eukaryotes [49].  

 

We end with a brief comment on the role of fundamental constants in science. The current 

theoretical framework of physical phenomena involves a small number of fundamental 

constants. These constants arise from general principles, and are highly valued as conceptual 

touchstones of physics [50]. Examples are the speed of light in vacuum, c, and Planck’s 

constant, h, which arise, respectively, from relativistic invariance and limits of measurement 

precision due to quantum uncertainty. From the point of view of biological physics it is 

tantalising to think that correspondingly general principles exist in living systems, 
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manifesting themselves through fundamental constants. Whether 𝑁𝑈 ≈ 3 Tbp plays such a 

role, in constraining and guiding developmental strategies of organisms, remains to be seen.  
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Appendix 

  

A: Notation used (bp = ‘basepair’, and bp−1 = ‘per basepair’) 

 

𝑁𝑈 fundamental constant (≈ 3 Tbp) 

𝑈 inverse of 𝑁𝑈 (≈ 3.3 × 10−13 bp−1) 

 

𝑁𝑡 total length of DNA to be replicated in a given biological process 

𝑁𝑔 length of DNA in the haploid genome of a given organism 

𝑁𝑛 length of DNA in one period of the nucleosome repeat (≈ 200 bp) 

𝑁𝑙 average separation between ROs 

𝑁𝑠 median stalling distance of the replication machinery (≈ 12 Mbp) 

 

𝑞 per nucleotide probability of fork stall (= ln(2) 𝑁𝑠⁄ ≈ 5.8 × 10−8 bp−1 )  

𝜌 probability of a given inter-nucleosome region being occupied by a RO 

𝑅 coefficient of variation of RO positions 

𝛼 the numerical constant (ln 2)2 /2 ≈ 0.240 

 

 

𝑀𝑝 degree of polyploidy (equal to unity for haploid cells) 

𝑀𝑐 number of cells after a given sequence of coordinated cell divisions 

 

 

B: Derivation of the central result for arbitrary values of 𝜌 

 

In the recent theory of DFS [6], an expression was derived for the probability of one or more 

DFS during the replication of a genome. The expression is valid for an arbitrary distribution 

of ROs so long as all inter-RO distances are much smaller than the median stalling distance, 

𝑁𝑠. Translating that result into the notation used in this paper, we have:  

 

𝑃error(𝑁𝑡) = 1 − exp (−𝛼
𝑁𝑙𝑁𝑡

𝑁𝑠
2

(1 + 𝑅2)) .             (𝐴𝑖) 
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The task is to implement this formula for the quantised situation in which there is a density 𝜌 

of ROs occupying inter-nucleosome regions of periodicity 𝑁𝑛. This requires us to calculate 

the mean spacing of ROs, 𝑁𝑙, and the coefficient of variation 𝑅.  

 

Both of these can be obtained in a straightforward manner as follows. Subsequent calculations 

use the nucleosome periodicity 𝑁𝑛 as a unit of DNA length. The probability of a gap of 𝑘 

units is 𝜌(1 − 𝜌)𝑘−1. Thus, the mean RO separation is 𝑁𝑛 multiplied by the first moment of 

this distribution: 

 

𝑁𝑙 = 𝑁𝑛〈𝑘〉 = 𝑁𝑛 ∑ 𝑘

∞

𝑘=1

𝜌(1 − 𝜌)𝑘−1 =
𝑁𝑛

𝜌⁄   .            (𝐴𝑖𝑖) 

 

 The second moment of the distribution is given by  

 

〈𝑘2〉 = ∑ 𝑘2

∞

𝑘=1

𝜌(1 − 𝜌)𝑘−1 =
(2 − 𝜌)

𝜌2⁄   .                 (𝐴𝑖𝑖𝑖) 

 

Thus, the square of the coefficient of variation is given by 

 

𝑅2 =
〈𝑘2〉 − 〈𝑘〉2

〈𝑘〉2
= 1 − 𝜌 .                                              (𝐴𝑖𝑣) 

 

Substituting these expressions into (Ai), we have 

 

𝑃error(𝑁𝑡) = 1 − exp (−𝛼
𝑁𝑛𝑁𝑡

𝑁𝑠
2

(2 − 𝜌)

𝜌
)  .               (𝐴𝑣) 

 

In terms of the fundamental constant, the central result for arbitrary 𝜌 is: 

 

𝑃error(𝑁𝑡) = 1 − exp (−
𝑁𝑡

𝑁𝑈

(2 − 𝜌)

𝜌
)  ,                            (𝐴𝑣𝑖)      

 

which is given in the main text as Eq. (10) and which reduces to Eq. (8) for the case 𝜌 → 1. 
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C: Further analysis of the central result for 𝜌 < 1 and the derivation of a bound on 𝜌 

 

Denoting the 𝜌 = 1 (saturated) form of Eq. (Avi) by 𝑃error
sat  we have 

 

𝑃error
sat = 1 − exp (−

𝑁𝑡

𝑁𝑈
)  ,                                                     (𝐴𝑣𝑖𝑖)      

 

and then Eqs. (Avi) and (Avii) can be combined to give the relationship 

 

𝑃error(𝑁𝑡) = 1 − (1 − 𝑃error
sat )

(2−𝜌)
𝜌   .                                       (𝐴𝑣𝑖𝑖𝑖)      

 

This useful relationship allows a direct calculation of the probability of DFS errors with non-

saturated coverage of ROs (i.e. 𝜌 < 1) from the probability of DFS errors with saturated 

coverage. For  𝑃error
sat ≪ 1 the relationship simplifies dramatically to 

 

𝑃error(𝑁𝑡) ≈
(2 − 𝜌)

𝜌
𝑃error

sat  .                                                  (𝐴𝑖𝑥) 

 

This shows a rapid increase in the DFS error rate as coverage reduces from 𝜌 = 1. For 

example, the increase in error rate is threefold when 𝜌 = 1/2 and roughly 20-fold when 𝜌 =

1/10.  

 

A lower bound on 𝜌  can be derived from Eq. (Aviii) which might prove useful when 

comparing our theory with more detailed experimental data. The failure rate of  

embryogenesis will be due to a range of factors, including, we argue severe DNA replication 

errors such as DFS. Thus, if we denote by 𝑃obs the experimentally observed embryo failure 

rate, we have 𝑃obs ≥ 𝑃error . Combining this inequality with Eq. (Aviii) and taking logarithms 

to isolate 𝜌 gives, after some manipulation, the inequality: 

 

𝜌 ≥
log((1 − 𝑃error

sat )2)

log((1 − 𝑃error
sat )(1 − 𝑃obs))

   .                                             (𝐴𝑥)   

 

If all the error rates are much smaller than unity this expression simplifies greatly to 
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𝜌 ≥
2𝑃error

sat

(𝑃error
sat + 𝑃obs)

 .                                                                   (𝐴𝑥𝑖) 

 

These expressions are discussed further in the main text following Eq. (12). 
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