
Disambiguation of features for improving target
class detection from social media text

1st Fatima Chiroma
School of Computing

University of Portsmouth
Portsmouth, UK

fatima.chiroma@port.ac.uk

2nd Ella Haig
School of Computing

University of Portsmouth
Portsmouth, UK

ella.haig@port.ac.uk

Abstract—The rise of social media has led to an abundance of
textual data, as well as the rise of unhealthy behaviours targeted
at others (e.g. bullying, hate speech) or at oneself (e.g. suicide). In
recent years, machine learning approaches have been employed to
detect such behaviours, which tend to constitute a small portion
of the social media content and need to be distinguished from
other discourse on social media that may discuss such behaviours
without displaying that behaviour, e.g. social media posts about
helping people who may be at risk of suicide, thus, making
this a very challenging task. In the context of machine learning,
such behaviours are referred to as target classes, i.e. the main
behaviours to be detected. In this paper we proposed an approach
for disambiguation of features in relation to their membership to
the target class vs. non-target class(es). We validate our approach
with a case study on suicide detection and our results show that
the proposed disambiguation approach leads to a better detection
rate of suicide.

Index Terms—Term disambiguation, Text classification,
Suicide-related communications, Social media text

I. INTRODUCTION

The rise of social media has led to many opportunities,
such as positive campaigning for charities [5], clean-up after
riots [29] and mobilisation in response to natural disasters [27].
Along these positives, however, there are concerns about
undesirable behaviours as well, such as cyberbullying [35],
hate speech [19] and suicide ideation [7], [8], [22], [32], [33].

While these undesirable behaviours may be in minority (i.e.
they are a small percentage from all social media posts), they
have a disproportionately negative effect on the people targeted
by such behaviours (e.g. [11], [33]. Some of these behaviours,
such as hate speech, are considered crimes in some parts of the
world, e.g. UK and parts of the EU, and major social media
networks (e.g. Facebook, Twitter and YouTube) have internal
regulatory policies in relation to hate speech [3].

Given the nature of social media, with continuous vast
numbers of new posts, there is a need for automatic detection
of such undesirable behaviours, for reasons ranging from
conformity to regulations (e.g. remove posts with threatening
and abusive content) to providing help and support (e.g. for
victims of cyberbullying or persons at risk of suicide). In
recent years, there has been an increase in research in this
area, with various approaches to automatically detect such
behaviours (e.g. [7], [19], [20], [32], [40]). In this paper,
we focus on machine learning classification approaches where

models are built based on labelled social media data. When
building such models, researchers are typically focused on
maximising the detection of the behaviour/class of interest;
this is referred to as a target class, to distinguish it from other
machine learning problems that require models to perform well
across two or more classes (e.g. topic classification) [9].

A key factor in text classification is the extraction and
selection of features [12], given the fuzzy nature of text, with
the same word having different meanings in different con-
texts [15]. Consequently, research on detection of undesirable
behaviours on social media also has looked into this aspect
by experimenting with different sets of features (e.g. [7], [8]),
employing feature selection methods (e.g. [32]) or developing
methods for dealing with ambiguous situations (e.g. [20]).

In this paper, we propose a method for the disambiguation
of features from social media text with the aim to improve the
detection of target classes. Our method identifies terms that
appear in textual instances of the target class, the other class
or both1. The aim of our method is to minimise the number of
terms that are common to both the target class and the other
class; this aim is achieved by using the probability of a term
appearing in text labelled with the target class vs. text labelled
with the other class. Once the number of common terms is
minimised, the textual instances are modified by eliminating
terms that occur predominantly in the opposite class, i.e. terms
that appear in text labelled with the other class are removed
from textual instances labelled with the target class and vice-
versa.

We validate our approach on the problem of suicide detec-
tion using several machine learning algorithms, i.e. Decision
Tree (DT), k-nearest neighbour (kNN), Naı̈ve Bayes (NB),
Random Forest (RF) and Support Vector Machine (SVM).
Moreover, we use our approach in conjunction with other
approaches, including using two forms of text representation
(bag-of-words and word embedding), four methods of fea-
ture selection (chi-square, entropy, low variance and firefly
algorithm) and two methods of feature extraction (Latent
Dirichlet Allocation and Principle Components Analysis). The
experimental results show that when our method is used, the

1we focus on binary classification with one target class and one ‘other’
class; if there are several other classes these are merged into one generic
‘other’ class

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Portsmouth University Research Portal (Pure)

https://core.ac.uk/display/322475972?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

classification performance improves for the target class, as
well as overall.

The rest of the paper is structured as in the following.
Section II covers related work for the detection of unwanted
behaviours from social media text, with a focus on feature
disambiguation, including feature extraction and selection ap-
proaches. The proposed approach is presented in Section III
and its validation on suicide detection in Section IV. The
results are discussed in Section V, while Section VI concludes
the paper and outlines directions for future work.

II. RELATED WORK

Several studies investigated the detection of cyberbully-
ing (e.g. [21], [40]), hate speech (e.g. [20], [36]) and sui-
cide (e.g. [7], [8], [22], [32], [33]) from social media. In the
following paragraphs, we review previous work in relation to
feature extraction and selection approaches.

Two broad approaches have been used to represent text
in a structured format, i.e. bag-of-words/bag-of-n-grams and
word embedding. Word embedding representations are ob-
tained by training deep neural networks and they have the
main advantage of reduced dimensionality [17], [25]. These
representations are relatively recent in comparison to bag-
of-words/bag-of-n-grams representations and have been less
explored in the area of unwanted behaviour detection from
social media. Examples of studies using word embedding as
representation are the detection of cyberbullying (e.g. [1], [4]),
hate speech [28], [41] and suicide ideation [10], [30].

The bag-of-words/bag-of-n-grams representations have been
extensively used in this area, either on their own (e.g. [8], [16],
[36], [37], [40]) or in combination with other features such as
lexicon features (e.g. [13], [14], [38]), topic features extracted
through approaches such as Latent Dirichlet Allocation (LDA)
(e.g. [14], [38]), part-of-speech tags (e.g. [14], [37]), or various
combinations of these features (e.g. [7], [14], [31], [34], [37],
[38]).

A feature selection approach has been proposed for suicide
detection using the firefly algorithm (an evolutionary com-
putation algorithm based on the behaviour of fireflies) and
some improvement has been shown in comparison with other
machine learning approaches without the use of the feature
selection [32].

Other feature selection methods used for text classification
of unwanted behaviour are filter-based methods [12] using chi-
square and entropy-based metrics (e.g. [2], [26]).

For text classification in general and classification of un-
wanted behaviours, feature extraction methods such as Latent
Dirichlet Allocation (LDA) and Principle Components Anal-
ysis (PCA) have been widely used (e.g. [6], [7], [14], [38]).

A fuzzy approach to text classification for hate speech
has been used with two training stages, with the second
stage dealing with ambiguous instances [20]. Experiments
were conducted with both bag-of-words and word embedding
representations and the results showed that the fuzzy approach
outperformed well-known classifiers such as Decision Tree,
Naı̈ve Bayes and SVM, as well as deep neural networks [20].

Conceptually, the closest work to the proposed approach is
the second stage of the fuzzy approach proposed by [20], as
in both the aim is to reduce ambiguity; while [20] works at
instance level, our approach is at terms level.

On the other hand, our approach is also similar to feature
selection methods, as it involves selecting the features and
attributing them to particular sets, based on which the textual
instances are transformed (i.e. terms are removed form these
instances). The difference between our proposed method and
previous work is mainly in the fact that we modify the
textual instances prior to their transformation in a structured
format in preparation for machine learning. To the best of our
knowledge, none of the previous methods looked at modifying
textual instances for the purpose of feature disambiguation.

III. TERM DISAMBIGUATION

The aim of the proposed method for disambiguation is
illustrated in Fig. 1. We are presenting the proposed method
for a binary classification problem, where we denote the two
classes as the target class and the other class.

Fig. 1. Disambiguation of terms; I is the set of textual instances; T is the
set of terms that occur only in the target class text; O is the set of terms
that occur only in the non-target class text (designated as other); B(T,O)
represents the set of terms that occurs in both the target class and the other
class text. The aim of our proposed method is to increase the size of the T
and O sets and minimise the size of the B(T,O) set.

When the same words or terms appear in instances labelled
with the target class, as well as instances with the other
class, the performance of machine learning algorithms tends
to decrease due to the ambiguity of these terms and their
unclear relation to the target and other classes. To solve this
ambiguity problem we aim to understand which terms are
predominantly associated with one of the two classes and to
minimise the number of terms that are common to the two
classes, as illustrated in Fig. 1.

Algorithm 1 documents the steps performed for achieving
the disambiguation aim. We start with the full set of textual
instances, i.e. I , which is preprocessed by converting to
lowercase and removing punctuation, numbers, URLs and non-
ASCII characters. As the validation of the proposed method
is done on Twitter data, we also excluded the usernames,
symbol and “rt” terms, which some users place at the
beginning of a tweet to show that it is a retweet. After
preprocessing, the text is tokenised into unigrams, bigrams
and trigrams (see lines 1-8 in Algorithm 1).

The next steps are to identify the unigram terms that appear
in instances with the target class label (stored in set T) (lines
9 to 11 in Algorithm 1) and the ones that appear in instances

Algorithm 1: Feature attribution to the T , O and
B(T,O) sets

input : Set I of all textual instances; set IT of target class
instances; set IO of other class instances

output: The sets of terms T , O and B(T,O)

1: T = ∅
2: O = ∅
3: B(T,O) = ∅
4: for each instance of text in set I do
5: convert to lowercase
6: remove punctuation, numbers, URLs, non-ASCII

characters, usernames, #, ‘rt’
7: tokenise text into unigrams, bigrams and trigrams
8: end for
9: for each instance of text in set IT do

10: append each unigram term ti to set T
11: end for
12: n = |T |
13: for each instance of text in set IO do
14: append each unigram term ti to set O
15: end for
16: m = |O|
17: for i = 1 to n do
18: for j = 1 to m do
19: if ti = tj then
20: T = T − {ti}
21: O = O − {ti}
22: B(T,O) = B(T,O) ∪ {ti}
23: end if
24: end for
25: end for
26: for each term ti in B(T,O) do
27: calculate term frequency in I: tf(ti, I)
28: calculate term frequency in IT : tf(ti, IT)
29: calculate term frequency in IO: tf(ti, IO)

30: P (ti, T) =
tf(ti, IT)

tf(ti, I)

31: P (ti, O) =
tf(ti, IO)

tf(ti, I)

32: PD(ti) = |P (ti, T)− P (ti, O)|

33: if PD(ti) >= 0.5 then

34: if P (ti, T) > P (ti, O) then
35: T = T ∪ {ti}
36: B(T,O) = B(T,O)− {ti}
37: else
38: O = O ∪ {ti}
39: B(T,O) = B(T,O)− {ti}
40: end if
41: else
42: repeat steps 6-34 using bigram terms
43: end if
44: if B(T,O) 6= ∅ then
45: repeat steps 6-34 using trigram terms
46: end if
47: end for
48: Return T , O, B(T,O)

Algorithm 2: Terms removal from textual instances
input : Set IT of target class instances; set IO of other

class instances; the sets of terms T and O
output: Set J of textual instances after term removal

1: J = ∅
2: for each instance Ii of text in set IT do
3: for each term tj in the instance do
4: if tj ∈ O then
5: Ii = Ii − {tj}
6: end if
7: J = J ∪ {Ii}
8: end for
9: end for

10: for each instance Ii of text in set IO do
11: for each term tj in the instance do
12: if tj ∈ T then
13: Ii = Ii − {tj}
14: end if
15: J = J ∪ {Ii}
16: end for
17: end for
18: Return J

with the other class label (stored in set O) (lines 13 to 15 in
Algorithm 1).

In lines 17 to 25, the overlapping terms between the two
sets, i.e. T and O, are identified and stored in the set B(T,O)
(B stands for both).

The following steps aim to reduce the size of the B(T,O)
set by looking at the probabilities of the terms appearing in
sets T and O. The probabilities are calculated based on term
frequency; for example, the probability of term ti appearing
in set T , i.e. P (ti, T), is the frequency of term ti in IT (i.e.
how many times the term appears in instances labelled with
the target class) divided by the frequency of term ti in the
whole set of instances I (line 30).

If the probability difference PD(ti) is equal to or higher
than 0.5 (i.e. one of the sets has more than the appearances of
the other set plus 50%, meaning that the term appears at least
3 times more in one set than the other) (line 33), the term is
assigned to the set with the higher probability and removed
from the B(T,O) set (lines 34-39).

If the probability difference PD(ti) is less than 0.5, mean-
ing that the term does not appear predominantly in one of
the sets, the process is repeated by looking at terms from
bigrams (line 42). If after this process, there are still terms
in the B(T,O) set, the process is repeated again with terms
from trigrams (lines 44-46). The algorithm ends by returning
the T , O and B(T,O) sets.

The next step is the removal of terms from textual instances
according to the term membership given by Algorithm 1. This
process is displayed in Algorithm 2.

If a term from the O set appears in an instance labelled
with the target class, the term is removed from the instance
(lines 2-9 in Algorithm 2). The same process is applied for

terms of set T appearing in instances labelled with the other
class (lines 10-17). The algorithm returns set J of instances
with removed terms.

The next section describes how the proposed approach
has been applied for the problem of suicide detection. For
the validation of the proposed approach, comparison with
several feature extraction/selection methods, as well as two
text representations are used.

IV. SUICIDE DETECTION USING THE PROPOSED APPROACH

In this section we describe the use of the proposed approach
on the problem of suicide detection and evaluate it against
several other approaches. Fig. 2 illustrates the difference in
the process when using our approach vs. typical approaches. In
typical approaches, the data is preprocessed and transformed in
preparation for classification and evaluation. For our approach,
the process flow is illustrated using the dashed line, indicating
that the data (i.e. the textual instances) are modified prior to
transformation, after which the typical approach is followed.

Fig. 2. Experimental Approach

A. Data

The data used in these experiments are short informal texts
from Twitter containing topics about suicide that may or may
not imply suicidal intent. The data was originally collected and
labelled by [6]. They developed a lexicon of terms using posts
from Web forums, bogs and microblogs discussing suicidal
themes for support and prevention. Each post was annotated
to indicate if the author of the post was suicidal or not. The
suicidal posts were analysed to identify keywords and phrases
suggesting possible suicide intent; 62 such terms were iden-
tified which were used to collect data from Twitter using the
Twitter Streaming Application Programming Interface (API).
Twitter data was also collected using the names of reported
suicide cases in England. A sample of around 2000 tweets was
extracted and annotated using the CrowdFlower crowdsourcing
service2. The annotators were asked to assign one of seven

2http://www.crowdflower.com; CrowdFlower was rebranded in 2018 as
Figure Eight

TABLE I
7-CLASS DATASET (ADAPTED FROM [6])

No Class Name Description Instances
1 Suicide Possible suicidal intent 159
2 Flippant Un-serious reference to suicide 133
3 Campaign Suicide petitions 158
4 Support support or information 178
5 Memorial Condolences or memorial 142
6 Reports Suicide reports excluding bombing 165
7 Other None of the above 129

Total 1064

TABLE II
BINARY DATASET

No Class Name Instances
1 Suicide 159
2 - 7 Other 905

Total 1064

categories to each tweet; the seven categories were identified
by experts in suicide studies to capture people’s general
representation when communicating on suicide topics [6].
Only the data with at least 75% annotator agreement were
retained. The data distribution is displayed in Table I.

To apply the term disambiguation described in Section III,
we transformed the data into a binary-class distribution as
illustrated in Table II.

Algorithm 1 described in Section III was applied on the
binary dataset – Table III illustrates the original size of the
T , O and B(T,O) sets and their size after the application of
Algorithm 1.

TABLE III
TERM COUNT

Original After proposed method
Sets T B(T,O) O T B(T,O) O

Set size 92 250 2326 120 74 2474
I 2638 2638

To evaluate the proposed approach, we employ two text rep-
resentations (bag-of-words and word embedding), four feature
selection methods (chi-square, entropy, low variance and fire-
fly algorithm) and two feature extraction methods (LDA and
PCA). For each of these, we compare the baseline, i.e. apply-
ing these methods on the original dataset, with the application
of these methods on the dataset resulting from the proposed
approach.

The data preprocessing that is described in the following
subsection was applied to the data prior to the application of
the text representation, feature selection and feature extraction
methods mentioned above. The subsequent subsection de-
scribes the transformation of the data for each of the methods.

B. Preprocessing

The preprocessing included the removal of URLs, non-
ASCII characters, punctuation, numbers, usernames, ‘rt’ and #,
as well as case conversion, stemming (to reduce redundancy)
and POS (Part of Speech) tagging (using the Penn Treebank
tag set [24]). However, standard stopwords were not removed
as negation words such as in ”not killing” might be useful in
distinguishing between the target and the other class.

http://www.crowdflower.com

After preprocessing, the original dataset contained 1063
instances, with 159 for the target class and 904 for the
other class. The dataset resulting from the proposed method
contained 1062 instances, with 158 instances for the target
class and 904 for the other class. The reduction of one instance
in the other class for both datasets is due to preprocessing; this
instance contained only a url, which was removed as part of
the preprocessing. The reduction by one instance of the target
class for the dataset resulting from the proposed method was
due to the application of the method; this instance contain only
one term, which was from the set of terms of the other class
and consequently was removed when applying the method.

C. Transformation
Two types of term representations were used, i.e. bag-

of-words and word embedding. The employed bag-of-words
representation used unigrams and the Inverse Document Fre-
quency (IDF) as the term frequency metric displayed in
Equation 1.

IDF (ti) = log
1 + n

1 +DF (ti)
+ 1 (1)

where ti represents a term (unigram), n is the total number of
instances in the dataset and DF (ti) is the number of instances
that contain the ti term3.

The bag-of-words representation led to 2638 features for
both the original dataset and the dataset resulting from the
proposed method, as both datasets have the same terms (but
different IDF values for those terms).

To obtain the word embedding representation, doc2vec [17]
was used. For training the doc2vec model, the following
parameters were used: a context window size of 5, minimum
word frequency of 2, sampling rate of 0.001, learning rate
of 0.025, minimum learning rate of 1.0E-4, 200 layers, batch
size of 10000 and 40 epochs; Distributed Memory (DM) is
used as the sequence learning algorithm, with a 5.0 negative
sampling rate. The number of features for both the original
dataset and the dataset resulting from the proposed method
was 200 (corresponding to the number of layers parameter).

Three established feature selection methods were used with
the bag-of-words representation: chi-square, entropy and low
variance; details about these methods can be found in [18].
We also applied the firefly algorithm [39] based on the
implementation by [23].

For chi-square, a threshold of 0.01 for the chi-square value
was used, resulting in 1959 features for the original dataset.
After applying the proposed method and the chi-square feature
selection, there were 1982 features – the proposed method was
applied first, resulting in different textual instances being used
(i.e. the output of Algorithm 2 rather than the original dataset);
consequently, when chi-square is applied after the proposed
method, it results in a different number of features.

When using entropy, a threshold of 0.3 for the entropy value
was employed, which led to 2634 features for both the original
dataset and the dataset resulting from the proposed method.

3textual instances are typically referred to as documents and the dataset of
all textual instances is typically referred to as the corpus

TABLE IV
FEATURE COUNT

Method Baseline Features Proposed Method Features
Bag-of-words 2638 2638
Doc2Vec 200 200
Chi-square 1959 1982
Entropy 2634 2634
Low Variance 1059 1042
Firefly 2500 2500
LDA 1500 1500
PCA 914 910

A threshold of 0.01 for variance was used for the low
variance method, leading to 1059 features for the original
dataset and 1042 features when the proposed method and low
variance were applied.

For the firefly algorithm, the fitness function used is mean
(µ) with light absorbance γ of 1, step size α of 0.5, maximum
iteration of 10 with 2638 fireflies. We experimented with
different numbers of features; here we are reporting the best
performance, which was obtained when using 2500 features.

Two feature extraction methods were also employed: Latent
Dirichlet Allocation (LDA) and Principal Component Analysis
(PCA). LDA is typically used for topic modelling, but has
also been used to extract features for text classification as
mentioned in Section II. Similar to the feature selection
methods, they were applied to the preprocessed original dataset
and the preprocessed output of Algorithm 2.

For LDA, 10 topics and 150 terms per topic were used,
resulting in 1500 features for both the original dataset and the
dataset stemming from the proposed approach, as the same
parameters (i.e. number of topics and number of terms per
topic) were used.

For PCA, a threshold of 99% information preservation was
used on both datasets, leading to 914 features for the original
dataset and 910 for the output of Algorithm 2.

The number of features for each of the above methods when
using the original dataset and the dataset resulting from the
proposed approach are summarised in Table IV.

D. Classification and evaluation

For classification, five classifiers that have been shown to
work well on textual data have been used: Decision Tree
(DT), k-nearest neighbour (kNN), Naı̈ve Bayes (NB), Random
Forest (RF) and Support Vector Machine (SVM).

For all experiments, 10-fold cross-validation is employed
and the Precision (P), Recall (R) and F-measure (F) are
reported4. The results are presented and discussed in the
following section.

V. RESULTS AND DISCUSSION

Table V shows the results for the original dataset, while
Table VI displays the results for the dataset stemming from
the proposed method.

4Accuracy is not reported, as it tends to be misleading when there is a
class-imbalance in the distribution of instances

TABLE V
BASELINE RESULTS

DT KNN NB RF SVM
P R F P R F P R F P R F P R F

Bag-of-words
Target 0.662 0.642 0.652 0.173 0.767 0.283 0.464 0.855 0.602 0.745 0.660 0.700 0.661 0.774 0.713
Other 0.937 0.942 0.940 0.897 0.356 0.510 0.970 0.826 0.892 0.941 0.960 0.951 0.959 0.930 0.944
F-Measure 0.796 0.396 0.747 0.825 0.829

Doc2Vec
Target 0.525 0.522 0.524 0.536 0.698 0.607 0.735 0.157 0.259 0.768 0.396 0.523 0.000 0.000 0.000
Other 0.916 0.917 0.917 0.944 0.894 0.918 0.870 0.990 0.926 0.902 0.979 0.939 0.851 1.000 0.919
F-Measure 0.720 0.762 0.593 0.731 0.460

Chi-square
Target 0.511 0.329 0.400 0.282 0.629 0.389 0.226 0.757 0.348 0.909 0.143 0.247 0.667 0.057 0.105
Other 0.945 0.973 0.959 0.965 0.864 0.912 0.974 0.779 0.866 0.932 0.999 0.964 0.926 0.998 0.960
F-Measure 0.679 0.651 0.607 0.606 0.533

Entropy
Target 0.648 0.677 0.663 0.144 0.772 0.243 0.330 0.930 0.488 0.711 0.576 0.636 0.641 0.778 0.703
Other 0.943 0.936 0.939 0.833 0.199 0.322 0.982 0.670 0.797 0.928 0.959 0.943 0.960 0.924 0.941
F-Measure 0.801 0.282 0.642 0.790 0.822

Low Variance
Target 0.608 0.654 0.630 0.325 0.623 0.427 0.523 0.843 0.646 0.750 0.660 0.702 0.614 0.730 0.667
Other 0.938 0.926 0.932 0.921 0.772 0.840 0.969 0.865 0.914 0.941 0.961 0.951 0.951 0.919 0.935
F-Measure 0.781 0.633 0.780 0.827 0.801

Firefly
Target 0.626 0.704 0.663 0.174 0.730 0.281 0.405 0.874 0.554 0.720 0.535 0.614 0.609 0.755 0.674
Other 0.947 0.926 0.936 0.891 0.389 0.542 0.972 0.774 0.862 0.922 0.963 0.942 0.955 0.915 0.934
F-Measure 0.799 0.411 0.708 0.778 0.804

LDA
Target 0.623 0.604 0.613 0.538 0.358 0.430 0.533 0.818 0.645 0.764 0.528 0.625 0.675 0.497 0.572
Other 0.931 0.936 0.933 0.893 0.946 0.919 0.965 0.874 0.917 0.921 0.971 0.946 0.915 0.958 0.936
F-Measure 0.773 0.675 0.781 0.785 0.754

PCA
Target 0.546 0.560 0.553 0.169 0.748 0.276 0.736 0.560 0.636 0.890 0.459 0.606 0.626 0.767 0.689
Other 0.922 0.918 0.920 0.889 0.353 0.505 0.926 0.965 0.945 0.912 0.990 0.950 0.957 0.919 0.938
F-Measure 0.736 0.390 0.790 0.778 0.814

TABLE VI
PROPOSED METHOD RESULTS

DT KNN NB RF SVM
P R F P R F P R F P R F P R F

Bag-of-words
Target 0.876 0.981 0.925 0.891 0.880 0.885 0.810 1.000 0.895 0.959 0.899 0.928 0.890 0.873 0.882
Other 0.997 0.976 0.986 0.979 0.981 0.980 1.000 0.959 0.979 0.982 0.993 0.988 0.978 0.981 0.980
F-Measure 0.956 0.933 0.937 0.958 0.931

Doc2Vec
Target 0.727 0.786 0.755 0.673 0.881 0.763 0.917 0.138 0.240 0.902 0.755 0.822 0.000 0.000 0.000
Other 0.962 0.948 0.955 0.978 0.925 0.951 0.868 0.998 0.929 0.958 0.986 0.972 0.851 1.000 0.919
F-Measure 0.855 0.857 0.584 0.897 0.460

Chi-square
Target 1.000 0.893 0.943 1.000 0.679 0.809 0.675 0.964 0.794 1.000 0.821 0.902 1.000 0.893 0.943
Other 0.996 1.000 0.998 0.989 1.000 0.994 0.999 0.984 0.991 0.994 1.000 0.997 0.996 1.000 0.998
F-Measure 0.971 0.901 0.893 0.949 0.971

Entropy
Target 0.958 0.867 0.910 0.810 0.892 0.849 0.451 0.994 0.621 0.959 0.892 0.925 0.979 0.867 0.919
Other 0.977 0.993 0.985 0.981 0.963 0.972 0.999 0.788 0.881 0.981 0.993 0.987 0.977 0.997 0.987
F-Measure 0.948 0.911 0.751 0.956 0.953

Low Variance
Target 0.876 0.987 0.929 0.641 0.994 0.779 0.802 1.000 0.890 0.942 0.918 0.929 0.881 0.886 0.883
Other 0.998 0.976 0.987 0.999 0.903 0.948 1.000 0.957 0.978 0.986 0.990 0.988 0.980 0.979 0.980
F-Measure 0.958 0.864 0.934 0.959 0.931

Firefly
Target 0.839 0.854 0.846 0.644 0.734 0.686 0.587 1.000 0.740 0.900 0.854 0.877 0.862 0.867 0.864
Other 0.974 0.971 0.973 0.952 0.929 0.941 1.000 0.877 0.935 0.975 0.983 0.979 0.977 0.976 0.976
F-Measure 0.910 0.814 0.837 0.928 0.920

LDA
Target 0.938 0.949 0.943 0.897 0.658 0.759 0.949 0.949 0.949 0.943 0.949 0.946 0.944 0.956 0.950
Other 0.991 0.989 0.990 0.943 0.987 0.964 0.991 0.991 0.991 0.991 0.990 0.991 0.992 0.990 0.991
F-Measure 0.967 0.862 0.970 0.968 0.970

PCA
Target 0.900 0.911 0.906 0.890 0.867 0.878 0.840 0.399 0.541 0.982 0.703 0.819 0.885 0.873 0.879
Other 0.984 0.982 0.983 0.977 0.981 0.979 0.904 0.987 0.943 0.950 0.998 0.974 0.978 0.980 0.979
F-Measure 0.945 0.929 0.742 0.896 0.929

Figs 3 and 4 summarise the difference between the baseline
results and the proposed method results in terms of the F-
measure. Fig. 3 shows the difference in F-measure for both
classes (i.e. the overall F-measure), while Fig. 4 shows the
difference in F-measure for the target class.

Fig. 3. Impact of proposed method on both classes (F-measure)

Fig. 4. Impact of proposed method on the target class (F-measure)

For both the target class and the overall F-measure, the
performance has improved in 37 of 40 cases. The three cases
where the performance did not improve are: (a) the SVM
classifier when using the doc2vec representation; with and
without our method the results are the same; (b) the Naı̈ve
Bayes classifier when using the doc2vec feature representation,
where there is a decrease of less than 1% in the overall F-
measure and a decrease of less than 2% for the target class
F-measure; (c) Naı̈ve Bayes classifier when using PCA for
feature extraction, where for both the overall F-measure and
the target class F-measure, the decrease is less than 10%.

From the 37 cases where there is an improvement with the
proposed method, the overall F-measure is improved by up to
10% for one case, between 10% and 20% in 24 cases, between
20% and 30% in 6 cases and by more than 30% in 6 cases.
For the target class, there is an improvement between 10%
and 20% in 7 cases, between 20% and 30% in 14 cases, and
over 30% in 16 cases.

The best average improvement in performance across all
classifiers is obtained when using the chi-square feature
selection for both the overall F-measure (with an average
improvement of 32%) and the target class F-measure (with
an average improvement of 58%). The next best average
improvement is obtained with the bag-of-words representation
for the overall F-measure (average improvement of 22%) and
with the LDA feature extraction for the target class F-measure
(average improvement of 33%).

Although improvements can be observed across all five clas-
sifiers, some of these led to larger improvements, especially
for the target class. KNN has the larger improvement in 5 out

of 8 cases5, followed by SVM with the largest improvement
in 2 cases.

In terms of the best combinations of classifiers and feature
representation/feature selection/feature extraction methods, for
the overall F-measure, the largest improvement is obtained
when using KNN with entropy (63%), KNN with PCA (54%)
and KNN with bag-of-words (54%). For the target class F-
measure, the largest improvement is obtained when using
SVM with chi-square (84%), followed by the same three
combinations as for the overall F-measure (with 61%, 60%
and 60% improvement, respectively).

In summary, the results show that the proposed method leads
to an increase in performance overall and, in particular, for the
target class. This increase occurs with and without the use of
feature selection or feature extraction methods, although in
particular cases (e.g. chi-square and LDA), these boost the
performance significantly for the target class.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a method for the disambiguation
of features, with the aim to improve the classification perfor-
mance for target classes from social media text.

The method was presented for a binary class problem and
involved the allocation of terms to the target and other class,
followed by the removal of these terms from instances of the
opposite class (i.e. terms from the target class are removed
from instances of the other class).

The method was validated using a dataset for suicide
detection, employing five classifiers, two methods for feature
representation, four feature selection methods and two feature
extraction methods. The results showed an improvement in 37
of 40 cases, and an improvement of more than 20% in the F-
measure of the target class for 75% of the cases (i.e. 30 of 40).

Although the method was presented for a binary classifica-
tion problem, it can be adjusted for a multi-class classification
problem with multiple target and other classes. This is part
of our future work, as well as investigating the use of the
proposed method in combination with methods for address-
ing class imbalance, given that often target classes are also
minority classes.

ACKNOWLEDGMENT

This research was supported by the Petroleum Development
Technology Fund (PTDF) and the Department of Health
Policy Research Programme (Understanding the Role of Social
Media in the Aftermath of Youth Suicides, Project Number
023/0165). The views expressed in this publication are those
of the authors and not necessarily those of PTDF or the
Department of Health.

REFERENCES

[1] S. Agrawal and A. Awekar, “Deep learning for detecting cyberbullying
across multiple social media platforms,” in European Conference on
Information Retrieval. Springer, 2018, pp. 141–153.

5the 8 cases are the 2 feature representations, the 4 feature selection and
the 2 feature extraction methods

[2] M. A. Al-garadi, K. D. Varathan, and S. D. Ravana, “Cybercrime
detection in online communications: The experimental case of cyberbul-
lying detection in the Twitter network,” Computers in Human Behavior,
vol. 63, pp. 433–443, 2016.

[3] N. Alkiviadou, “Hate speech on social media networks: towards a
regulatory framework?” Information & Communications Technology
Law, vol. 28, no. 1, pp. 19–35, 2019.

[4] V. Banerjee, J. Telavane, P. Gaikwad, and P. Vartak, “Detection of cy-
berbullying using deep neural network,” in 2019 5th International Con-
ference on Advanced Computing & Communication Systems (ICACCS).
IEEE, 2019, pp. 604–607.

[5] A. Bhati and D. McDonnell, “Success in an online giving day: The
role of social media in fundraising,” Nonprofit and Voluntary Sector
Quarterly, vol. 49, no. 1, pp. 74–92, 2020.

[6] P. Burnap, G. Colombo, R. Amery, A. Hodorog, and J. Scourfield,
“Multi-class machine classification of suicide-related communication on
twitter,” Online social networks and media, vol. 2, pp. 32–44, 2017.

[7] P. Burnap, W. Colombo, and J. Scourfield, “Machine classification and
analysis of suicide-related communication on Twitter,” in Proceedings
of the 26th ACM conference on hypertext & social media. ACM, 2015,
pp. 75–84.

[8] F. Chiroma, M. Cocea, and H. Liu, “Detection of suicidal Twitter posts,”
in UK Workshop on Computational Intelligence. Springer, 2019, pp.
307–318.

[9] ——, “Evaluation of rule-based learning and feature selection ap-
proaches for classification,” in 2018 Imperial College Computing Student
Workshop (ICCSW 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik, 2019.

[10] G. Coppersmith, R. Leary, P. Crutchley, and A. Fine, “Natural language
processing of social media as screening for suicide risk,” Biomedical
informatics insights, vol. 10, pp. 1–F11, 2018.

[11] R. Delgado, A. K. Wing, and J. Stefancic, “Words that wound: A tort
action for racial insults, epithets, and name-calling,” in Law Unbound!
Routledge, 2015, pp. 223–228.

[12] X. Deng, Y. Li, J. Weng, and J. Zhang, “Feature selection for text
classification: A review,” Multimedia Tools and Applications, vol. 78,
no. 3, pp. 3797–3816, 2019.

[13] X. Huang, L. Zhang, D. Chiu, T. Liu, X. Li, and T. Zhu, “Detecting
suicidal ideation in Chinese microblogs with psychological lexicons,”
in 2014 IEEE 11th Intl Conf on Ubiquitous Intelligence and Computing
and 2014 IEEE 11th Intl Conf on Autonomic and Trusted Computing and
2014 IEEE 14th Intl Conf on Scalable Computing and Communications
and Its Associated Workshops. IEEE, 2014, pp. 844–849.

[14] S. Ji, C. P. Yu, S.-f. Fung, S. Pan, and G. Long, “Supervised
learning for suicidal ideation detection in online user content,”
Complexity, vol. 2018, 2018, article ID 6157249. [Online]. Available:
https://doi.org/10.1155/2018/6157249

[15] C. Kennedy, “Ambiguity and vagueness: An overview,” in Semantics-
Lexical Structures and Adjectives. Walter de Gruyter GmbH & Co
KG, 2019, pp. 236–271.

[16] I. Kwok and Y. Wang, “Locate the hate: Detecting tweets against blacks,”
in Proceedings of the twenty-seventh AAAI conference on Artificial
Intelligence, 2013, pp. 1621–1622.

[17] Q. Le and T. Mikolov, “Distributed representations of sentences and
documents,” in Proceedings of the 31st International conference on
machine learning, 2014, pp. 1188–1196.

[18] J. Li, K. Cheng, S. Wang, F. Morstatter, R. P. Trevino, J. Tang, and
H. Liu, “Feature selection: A data perspective,” ACM Computing Surveys
(CSUR), vol. 50, no. 6, pp. 1–45, 2017.

[19] V. Lingiardi, N. Carone, G. Semeraro, C. Musto, M. D’Amico, and
S. Brena, “Mapping Twitter hate speech towards social and sexual
minorities: a lexicon-based approach to semantic content analysis,”
Behaviour & Information Technology, pp. 1–11, 2019.

[20] H. Liu, P. Burnap, W. Alorainy, and M. L. Williams, “A fuzzy approach
to text classification with two-stage training for ambiguous instances,”
IEEE Transactions on Computational Social Systems, vol. 6, no. 2, pp.
227–240, 2019.

[21] Y. Liu, P. Zavarsky, and Y. Malik, “Non-linguistic features for cyberbul-
lying detection on a social media platform using machine learning,” in
International Symposium on Cyberspace Safety and Security. Springer,
2019, pp. 391–406.

[22] J. Lopez-Castroman, B. Moulahi, J. Azé, S. Bringay, J. Deninotti,
S. Guillaume, and E. Baca-Garcia, “Mining social networks to improve

suicide prevention: A scoping review,” Journal of neuroscience research,
pp. 1–10, 2019. [Online]. Available: https://doi.org/10.1002/jnr.24404

[23] A. Manthiri S, “Firefly feature selection and optimization,”
2017. [Online]. Available: https://www.mathworks.com/matlabcentral/
fileexchange/62235-firefly-feature-selection-and-optimization

[24] M. Marcus, G. Kim, M. A. Marcinkiewicz, R. MacIntyre, A. Bies,
M. Ferguson, K. Katz, and B. Schasberger, “The Penn Treebank: an-
notating predicate argument structure,” in Proceedings of the workshop
on Human Language Technology. Association for Computational
Linguistics, 1994, pp. 114–119.

[25] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” arXiv preprint arXiv:1301.3781,
2013.

[26] S. A. Özel, E. Saraç, S. Akdemir, and H. Aksu, “Detection of cyber-
bullying on social media messages in Turkish,” in 2017 International
Conference on Computer Science and Engineering (UBMK). IEEE,
2017, pp. 366–370.

[27] L. Palen and A. L. Hughes, “Social media in disaster communication,”
in Handbook of disaster research. Springer, 2018, pp. 497–518.

[28] G. K. Pitsilis, H. Ramampiaro, and H. Langseth, “Effective hate-speech
detection in Twitter data using recurrent neural networks,” Applied
Intelligence, vol. 48, no. 12, pp. 4730–4742, 2018.

[29] P. Pond and J. Lewis, “Riots and Twitter: Connective politics, social
media and framing discourses in the digital public sphere,” Information,
Communication & Society, vol. 22, no. 2, pp. 213–231, 2019.

[30] R. Sawhney, P. Manchanda, P. Mathur, R. Shah, and R. Singh, “Explor-
ing and learning suicidal ideation connotations on social media with
deep learning,” in Proceedings of the 9th Workshop on Computational
Approaches to Subjectivity, Sentiment and Social Media Analysis, 2018,
pp. 167–175.

[31] R. Sawhney, P. Manchanda, R. Singh, and S. Aggarwal, “A computa-
tional approach to feature extraction for identification of suicidal ideation
in tweets,” in Proceedings of ACL 2018, Student Research Workshop,
2018, pp. 91–98.

[32] R. Sawhney, R. R. Shah, V. Bhatia, C.-T. Lin, S. Aggarwal, and
M. Prasad, “Exploring the impact of evolutionary computing based fea-
ture selection in suicidal ideation detection,” in 2019 IEEE International
Conference on Fuzzy Systems (FUZZ-IEEE). IEEE, 2019, pp. 1–6.

[33] R. Sedgwick, S. Epstein, R. Dutta, and D. Ougrin, “Social media,
internet use and suicide attempts in adolescents,” Current opinion in
psychiatry, vol. 32, no. 6, p. 534, 2019.

[34] H.-C. Shing, S. Nair, A. Zirikly, M. Friedenberg, H. Daumé III, and
P. Resnik, “Expert, crowdsourced, and machine assessment of suicide
risk via online postings,” in Proceedings of the Fifth Workshop on
Computational Linguistics and Clinical Psychology: From Keyboard to
Clinic, 2018, pp. 25–36.

[35] D. Uludasdemir and S. Kucuk, “Cyber bullying experiences of adoles-
cents and parental awareness: Turkish example,” Journal of pediatric
nursing, vol. 44, pp. e84–e90, 2019.

[36] Z. Waseem and D. Hovy, “Hateful symbols or hateful people? Predictive
features for hate speech detection on Twitter,” in Proceedings of the
NAACL student research workshop, 2016, pp. 88–93.

[37] H. Watanabe, M. Bouazizi, and T. Ohtsuki, “Hate speech on Twitter:
A pragmatic approach to collect hateful and offensive expressions and
perform hate speech detection,” IEEE Access, vol. 6, pp. 13 825–13 835,
2018.

[38] G. Xiang, B. Fan, L. Wang, J. Hong, and C. Rose, “Detecting offensive
tweets via topical feature discovery over a large scale Twitter corpus,”
in Proceedings of the 21st ACM international conference on Information
and knowledge management. ACM, 2012, pp. 1980–1984.

[39] X.-S. Yang and X. He, “Firefly algorithm: recent advances and appli-
cations,” International Journal of Swarm Intelligence, vol. 1, no. 1, pp.
36–50, 2013.

[40] M. Yao, C. Chelmis, D. Zois et al., “Cyberbullying ends here: Towards
robust detection of cyberbullying in social media,” in The World Wide
Web Conference. ACM, 2019, pp. 3427–3433.

[41] Z. Zhang, D. Robinson, and J. Tepper, “Detecting hate speech on Twitter
using a convolution-GRU based deep neural network,” in European
Semantic Web Conference. Springer, 2018, pp. 745–760.

https://doi.org/10.1155/2018/6157249
https://doi.org/10.1002/jnr.24404
https://www.mathworks.com/matlabcentral/fileexchange/62235-firefly-feature-selection-and-optimization
https://www.mathworks.com/matlabcentral/fileexchange/62235-firefly-feature-selection-and-optimization

	Introduction
	Related Work
	Term disambiguation
	Suicide detection using the proposed approach
	Data
	Preprocessing
	Transformation
	Classification and evaluation

	Results and Discussion
	Conclusions and future work
	References

