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Abstract 13 

Regional ductile thrusting and syn-kinematic granitic magmatism within the Caledonides 14 

of northern Scotland occurred within a sinistrally-oblique convergent tectonic setting 15 

during the Silurian closure of the Iapetus Ocean. The highest thrust nappes are dominated 16 

by structures of probable Grampian (Ordovician) age, and Scandian (Silurian) deformation 17 

dominates the underlying thrust nappes. Deformation was overall foreland-propagating 18 

but the nappe stack was modified by out-of-sequence thrusting and probable 19 

synchronous development of thrusts at different structural levels. Localised dextrally-20 

transpressive deformation is related to an inferred lateral ramp located offshore. New U-21 

Pb (CA-IDTIMS) zircon ages from syn-tectonic granites indicate that the internal Naver 22 

Thrust was active between c. 432 Ma and c. 426 Ma. This is consistent with other data 23 

sets that indicate that contractional deformation and high-grade metamorphism, and by 24 

implication displacements in the Moine Thrust Zone, may have lasted until c. 420-415 Ma. 25 
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The synchroneity of thrusting and strike-slip movements along the Great Glen Fault 26 

implies that partitioning of transpressional strain occurred above a regional basal 27 

decollement. The short duration of the Scandian orogen in Scotland (c. 437-415 Ma?) is 28 

consistent with only moderate crustal thickening and a location on the periphery of the 29 

main Laurentia-Baltica collision further north.  30 

[End of abstract] 31 

The Caledonian-Appalachian orogen in the North Atlantic region resulted from the closure 32 

of the early Palaeozoic Iapetus Ocean and the Silurian collision of Laurentia, Baltica and 33 

peri-Gondwanan microcontinents including Ganderia and Avalonia (Fig. 1; Soper & 34 

Hutton 1984; Soper et al. 1992; van Staal et al. 1998). The style and intensity of Silurian 35 

tectono-magmatic activity varies along the length of the orogen. In the northern 36 

Appalachians, Gander-Laurentia collision resulted in the Salinic orogenic event that was 37 

characterised by major crustal thickening and kyanite grade metamorphism (e.g. Cawood 38 

et al, 1994). In contrast, the coeval but ‘soft’ collision across the Iapetus Suture in the 39 

British Caledonides was not associated with significant crustal thickening or 40 

metamorphism (Soper & Woodcock 1990). Further north, the Scandian collision of East 41 

Greenland and NW Scotland (Laurentia) with Norway (Baltica) resulted in substantial 42 

crustal thickening, eclogite-facies metamorphism and a complex history of syn-43 

convergent exhumation that lasted into the early Devonian (e.g. Andersen & Jamtveit 44 

1990; Andresen et al. 2007; Gilotti & McLelland 2007). The Northern Highland Terrane 45 

(NHT) of Scotland (Fig. 1) represents a fragment of the Laurentian retro-wedge of the 46 

orogen and the southernmost part of the Scandian collision zone. However, in contrast to 47 

the main Laurentia-Baltica collision zone to the north, the NHT appears to only record 48 

moderate crustal thickening that occurred over a relatively restricted period in the mid- 49 

to late Silurian (Kinny et al. 2003a; Johnson & Strachan, 2006; Goodenough et al. 2011).   50 

 The easterly-dipping Moine Thrust Zone forms the northwestern limit of the 51 

exposed Scandian orogen in Scotland (Fig. 2). To the west, the Hebridean Foreland 52 

comprises Archaean-Palaeoproterozoic basement of the Lewisian Gneiss Complex, 53 
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overlain unconformably by Meso- to Neoproterozoic Torridonian and Cambrian-54 

Ordovician sedimentary rocks (Park et al. 2002). To the east and structurally above the 55 

Moine Thrust, the NHT is dominated by the early Neoproterozoic Moine Supergroup 56 

which is disposed in a stack of east-dipping Scandian thrust nappes (Fig. 2; Holdsworth et 57 

al. 1994; Strachan et al. 2002, 2010). In north Sutherland these are, from structurally 58 

lowest to highest, the Moine, Naver, Swordly and Skinsdale thrust nappes (Fig. 2; Barr et 59 

al. 1986; Moorhouse & Moorhouse 1988; Strachan & Holdsworth 1988; Kocks et al. 2006). 60 

We note that Thigpen et al. (2013) and Ashley et al. (2015) recognise an additional Ben 61 

Hope nappe on the basis that the eponymous thrust (Fig. 2) appears to represent an 62 

important thermal break. However, because it does not define a significant lithological 63 

difference, we incorporate the rocks in its hangingwall within the Moine nappe as defined 64 

here. Further south in Ross-shire and Inverness-shire, the main structural break is the 65 

Sgurr Beag Thrust (Fig. 2 inset; Tanner et al. 1970; Rathbone & Harris 1979). Syn-thrusting 66 

metamorphic grade increases progressively eastwards and up-section from greenschist 67 

to amphibolite facies (Soper & Brown 1971; Johnson & Strachan 2006; Thigpen et al. 68 

2013; Ashley et al. 2015; Mazza et al. 2018; Mako et al. 2019). Syn- to late-tectonic granitic 69 

intrusions were emplaced during ductile thrusting and have yielded Silurian crystallisation 70 

ages (U-Pb zircon or monazite; Kinny et al. 2003a; Kocks et al. 2006, 2014; Alsop et al. 71 

2010; Holdsworth et al. 2015). However, the inconsistency of some of the employed 72 

radioisotopic techniques and insufficient age resolution means that the precise timing 73 

and duration of Scandian thrusting and associated Barrovian metamorphism in the NHT 74 

remains somewhat uncertain.  75 

 The structural evolution of the lower to middle levels of the Scandian nappe stack 76 

in Sutherland has been well documented (e.g. Holdsworth 1989; Strachan & Holdsworth 77 

1988; Alsop & Holdsworth 1993; Alsop et al. 1996; Holdsworth et al. 2001, 2006, 2007; 78 

Thigpen et al. 2010a & b, 2013). In this paper, we synthesise the detailed structure of the 79 

less well-known middle to upper structural levels to provide a complete section across 80 

this part of the NHT. We distinguish between Scandian and older structures and mineral 81 

assemblages, assess the kinematic significance of orogen-parallel lineations developed at 82 
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the highest structural levels, and investigate the emplacement history of associated felsic 83 

melts. We also present the results of new high-precision U-Pb zircon geochronology 84 

obtained from syn-kinematic granitic intrusions using the chemical abrasion isotope 85 

dilution thermal ionization mass spectrometry (CA-ID-TIMS) method.  This provides new 86 

constraints on the timing of thrusting in the central part of the nappe stack and enables 87 

us to draw conclusions concerning the kinematic significance of the regional variation in 88 

Scandian transport directions as well as the duration and wider tectonic context of 89 

Silurian orogenesis in the NHT.  90 

Geological framework and synthesis of the Scandian thrust nappes in Sutherland 91 

The Moine rocks of Sutherland comprise mainly psammites with subordinate pelites. 92 

Psammites within the Moine and Skinsdale nappes locally preserve sedimentary features 93 

such as cross-bedding, slump folds and gritty to conglomeratic layers (Holdsworth 1989; 94 

Holdsworth et al. 2001; Kocks et al. 2006; Alsop et al. 2010). In contrast, the intervening 95 

Naver and Swordly nappes are dominated by migmatitic gneisses where all sedimentary 96 

features have been obliterated by high strain and intense metamorphic recrystallisation 97 

(Moorhouse & Moorhouse 1988; Kinny et al. 1999). The lower Naver Nappe is largely 98 

psammitic, whereas the upper Swordly Nappe is dominated by pelitic lithologies. 99 

Concordant sheets and pods of garnet amphibolite up to 10 m thick are present in all 100 

nappes and are interpreted to be metamorphosed mafic intrusions which have 101 

undergone most of the tectonic history of their host rocks. The Moine rocks are 102 

additionally interfolded and inter-thrust with Archaean orthogneisses which represent 103 

their depositional basement marked by locally preserved unconformities (Fig. 2; Peach et 104 

al. 1907; Holdsworth 1989; Holdsworth et al. 2001; Friend et al. 2008).  105 

 The Moine rocks were affected by Neoproterozoic and Ordovician orogenic events 106 

prior to Scandian nappe stacking (e.g. Kinny et al. 1999; Friend et al. 2000; Cutts et al. 107 

2010; Cawood et al. 2015; Bird et al. 2013, 2018). Neoproterozoic tectonothermal activity 108 

is thought to be related to development of the accretionary Valhalla orogen when the 109 

Moine rocks were located on the margin of Laurentia and close to the edge of Rodinia 110 



 

5 

 

(Cawood et al. 2010). Late Neoproterozoic supercontinent breakup was followed by 111 

opening of the Iapetus Ocean during the Cambrian (Cocks & Torsvik 2002). Ocean closure 112 

then followed the development of intra-oceanic subduction zones and collision of island 113 

arcs with Laurentia. This resulted in ‘Grampian I’ orogenesis at c. 480-470 Ma and 114 

metamorphism and deformation of the Moine rocks and the younger Dalradian 115 

Supergroup of the Grampian Terrane located SE of the Great Glen Fault (Dewey & 116 

Shackleton 1984; Dewey & Ryan 1990). U-Pb zircon ages of c. 470-460 Ma date 117 

migmatisation within the Naver and Swordly nappes (Kinny et al. 1999). The magmatic 118 

arc that collided with Laurentia lies south of the Highland Boundary Fault (Fig. 1), although 119 

in Scotland is largely covered by Devonian-Carboniferous successions (Dewey & Ryan 120 

1990). A switch in subduction polarity to northwest-directed resulted in the development 121 

of the Southern Uplands accretionary prism between Caradoc times and the final closure 122 

of Iapetus (e.g. Leggett et al. 1979; Stone & Merriman 2004). A younger ‘Grampian II’ 123 

metamorphic event at c. 450-445 Ma resulted in substantial garnet growth (some syn-124 

tectonic) in the Moine Nappe, although the tectonic driver of this episode is uncertain 125 

(Bird et al. 2013).       126 

 A more complex Grampian tectonic model has been proposed recently by Dunk et 127 

al. (2019) arising from a new U-Pb zircon protolith age of c. 503 Ma determined for the 128 

calc-alkaline Strathy Complex in Sutherland (Fig. 2). Isotopic and geochemical evidence 129 

(Burns et al. 2004; Dunk et al. 2019) indicate that this developed as a juvenile magmatic 130 

arc in a distal setting from the Laurentian margin. The complex is interpreted as 131 

allochthonous and located along a buried suture that formed during the ‘Grampian I’ 132 

orogeny. Dunk et al. (2019) propose that a microcontinental ribbon was detached from 133 

Laurentia during Iapetan rifting; the intervening oceanic tract closed by subduction during 134 

the late Cambrian and formed a juvenile arc, the protolith of the Strathy Complex. The 135 

microcontinental ribbon was then re-attached to Laurentia during ‘Grampian I’ 136 

orogenesis which transported the Strathy Complex as an allochthonous slice within a 137 

nappe stack. In this model, at least the initiation of the Naver and Swordly thrusts (or their 138 

precursor structures) would be Ordovician (Grampian I) in age.  139 
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Structural domains and relative intensities of Scandian deformation 140 

The approach taken here in the analysis of the regional structure is to firstly summarise 141 

those structural features that are well constrained as having formed during the Scandian 142 

orogeny, and then to trace these eastwards into the structurally higher levels which are 143 

less well understood. The metasedimentary rocks of the Moine and Naver nappes record 144 

a similar Scandian deformational history involving two sets of overprinting and broadly 145 

foreland-propagating structures (described in detail below). These structures have also 146 

been traced structurally downwards into the belt of foreland-derived mylonites that 147 

forms the uppermost part of the Moine Thrust Zone (Holdsworth et al. 2006, 2007). 148 

Although they are referred to locally as ‘D2’, and ‘D3’, they developed diachronously and 149 

so D3 at a high level in the thrust stack might be temporally equivalent to D2 at a lower 150 

structural level (see also Butler 2010; Leslie et al. 2010). In addition, D2 and D3 in a single 151 

thrust sheet may have formed during a single progressive ductile thrusting episode (e.g. 152 

Alsop & Holdsworth 1993).  Prior to ductile thrusting, the Moine rocks contained older 153 

composite structures and fabrics of probable Neoproterozoic and Ordovician age (Kinny 154 

et al. 1999; Bird et al. 2013, 2018). These are grouped as ‘D1’ with an ‘M’, ‘N’ or ‘S’ suffix 155 

depending on their location in the Moine, Naver or Swordly nappes to emphasise the 156 

potential lack of correlation.   157 

Scandian structures and deformation sequences in low to middle parts of the nappe stack 158 

Structures that are widely described as ‘D2’ and ‘D3’ have been well documented from the 159 

Moine Nappe and the upper part of the Moine Thrust Zone (Fig. 2; Strachan & Holdsworth 160 

1988; Holdsworth 1989, 1990; Holdsworth & Grant 1990; Alsop & Holdsworth 1993, 1999, 161 

2002, 2004; Alsop et al. 1996, 2010; Holdsworth et al. 2001, 2006, 2007, 2015). Reclined, 162 

tight to isoclinal D2 folds with southeasterly-dipping axial planes are ubiquitous between 163 

the Moine and Naver thrusts and developed on all scales. The largest basement inliers 164 

occupy the cores of west-vergent D2 folds commonly modified by ductile thrusting. 165 

Regional D2 ductile thrusting and folding resulted in development of an east- to southeast-166 

dipping S0-S1M/N-S2 (=Sn) foliation which intensifies into mylonitic rocks associated with 167 
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the D2 Moine, Ben Hope and Naver ductile thrusts. S2 carries a mineral extension and 168 

rodding lineation (L2) which is sub-parallel to the axes of local F2 folds. L2 gradually 169 

changes in orientation from a SSE azimuth (~170°) in the vicinity of the Naver Thrust to 170 

an ENE trend (~110°) close to, and within, the Moine Thrust Zone (Fig. 3; Phillips 1937; 171 

Kinny et al. 2003a; Law & Johnson 2010). Sections viewed normal to S2 and parallel to L2 172 

contain minor structures (e.g. rotated porphyroclasts, S-C fabrics) that demonstrate a top-173 

to-the-NNW to W sense of shear (Holdsworth & Grant 1990; Holdsworth et al. 2001). 174 

Sheath-fold geometries are locally common on all scales. Within the Moine Nappe, the 175 

widespread parallelism of hornblende with L2 in mafic rocks implies that D2 was 176 

accompanied by at least low amphibolite facies metamorphism, consistent with local 177 

occurrences of syn- to post-D2 staurolite, kyanite and sillimanite (Burns 1994; Holdsworth 178 

et al. 2001; Ashley et al. 2015). D1M structures are restricted to a strong S1M foliation which 179 

is only confidently recognised where it is folded by F2 folds, and a narrow belt of north-180 

south trending L1M lineations developed either side of the Kyle of Tongue (Fig. 2). No 181 

convincing examples of F1M folds have been identified and facing analyses of D2 structures 182 

in the Moine rocks within the Moine Nappe show that they were right way-up after D1M 183 

(Holdsworth 1988, 1989). 184 

The D2 structures described above are deformed by local F3 buckle folds developed 185 

on all scales (Alsop & Holdsworth 1993, 2007; Alsop et al. 1996; Holdsworth et al. 2006, 186 

2007). F3 fold axes and associated axial surfaces are variably oriented with respect to L2 187 

and have been related to the development of flow perturbations during differential 188 

displacements along underlying D2 ductile thrusts (Holdsworth 1990; Alsop & Holdsworth 189 

1993; Alsop et al. 1996). F3 folds typically crenulate S2 and fold L2 and are not associated 190 

with a new elongation lineation. 191 

Structural evidence indicates that deformation was broadly foreland-propagating. 192 

This is shown by the way in which major F2 folds and D2 ductile thrusts (Naver, Ben Hope, 193 

Achininver and Moine) are folded by underlying F3 structures, which root downwards into 194 

D2 ductile thrusts at lower structural levels. (Holdsworth et al. 2001, 2006, 2007; Alsop & 195 

Holdsworth 2007; Alsop et al. 2010; Leslie et al. 2010).  However, out-of-sequence 196 
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deformation can be demonstrated at two structural levels. Firstly, within the central 197 

Moine Nappe, the Ben Blandy Shear Zone (Fig. 2) comprises a belt of platy blastomylonites 198 

(Holdsworth et al. 2001). These are similar to those developed along ductile thrusts 199 

elsewhere, but: a) it does not follow thrust ‘rules’ as it juxtaposes younger Moine rocks 200 

over older basement; b) it coincides with a sharp 10-15° switch in L2 direction; c) a major 201 

F3 fold pair roots downwards into the shear zone (Alsop et al. 1996). These are all features 202 

consistent with out-of-sequence thrusting. Secondly, within the Moine Thrust Zone, the 203 

base of the mylonite belt is defined by the out-of-sequence Lochan Rhiabach Thrust (Fig. 204 

2) which truncates Scandian structures in its footwall (Holdsworth et al., 2006) and is 205 

associated with a metamorphic break (Thigpen et al. 2010a, 2013).  206 

Evidence for a Scandian age for the Swordly Thrust 207 

Detailed mapping in central Sutherland has shown that F2 and F3 folds and associated 208 

structures dominate the lower parts of the Naver Nappe and extend east of the hitherto 209 

poorly-documented Swordly Thrust (Fig. 4).  The Swordly Thrust is a sharp contact within 210 

a c. 50m thick high-strain zone, separating interbanded psammitic and semi-pelitic gneiss 211 

in the footwall from semi-pelitic gneiss in the hanging-wall (Fig. 4). In contrast to the 212 

Naver Thrust, there is little to distinguish the Moine rocks either side of the structure as 213 

all lithologies are migmatitic. The case that this contact represents a significant tectonic 214 

break rests on the presence of two thin sheets of strongly reworked Archaean basement 215 

(Fig. 4). The lithological asymmetry either side of these inliers requires that a tectonic 216 

break must lie along either their upper or lower boundaries. In central Sutherland, we 217 

interpret the lower boundary as a tectonic break (the Swordly Thrust) and the upper 218 

contact as a tectonically modified unconformity. In contrast, the Farr basement inlier on 219 

the north coast section (Fig. 5) lies well below the Swordly Thrust within uniform 220 

sequences of psammitic gneisses and most likely occupies the core of a large-scale 221 

isoclinal fold of uncertain structural age.   222 

 The orientations of Sn and L2 are essentially the same on both sides of the Swordly 223 

Thrust (Fig. 4). Sn dips moderately to the southeast and L2 plunges to the south-southeast 224 
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(Fig. 4; stereonets from sub-areas 1 and 2). F2 fold hinges are rare, but where present, 225 

plunge parallel to L2. Importantly, L2 can be traced continuously from the dated 226 

Strathnaver Granite (U-Pb zircon, 429 ± 11 Ma; Kinny et al. 2003a) structurally upwards 227 

across the Swordly Thrust and into its hanging-wall (Fig. 4). D2 structures are deformed by 228 

tight to open F3 folds which are broadly co-planar and co-linear with the D2 folds. The F3 229 

folds are developed on all scales, forming a large-scale, composite reclined SSW-vergent 230 

structure that folds the Swordly Thrust (Fig. 4). Adjacent to the Swordly Thrust, F3 folds 231 

plunge gently towards the southeast and display moderately-dipping east to southeast-232 

dipping axial surfaces (Fig. 4, stereonets from sub-areas 1 and 2). Associated minor 233 

structures include a tight crenulation of S2 and an L3 intersection lineation that plunges 234 

sub-parallel to L2. The manner in which F3 folds deform the Swordly Thrust replicates the 235 

structural pattern observed at lower levels within the nappe pile, whereby F3 folds also 236 

deform the Naver, Ben Hope, Achininver and Moine thrusts (Fig. 2; Alsop & Holdsworth, 237 

1993; Alsop et al. 1996; Holdsworth et al. 2006, 2007). The structural framework 238 

established previously for the Moine Nappe can therefore now be extended to 239 

structurally higher levels within the Naver Nappe, and the Swordly Thrust is interpreted 240 

as a D2 structure.  241 

Age and nature of orogen-parallel lineations above the Swordly Thrust  242 

Regionally, the dominant mineral and stretching lineation within the NHT rotates 243 

anticlockwise down-structural section from north-south in the Swordly and Sgurr Beag 244 

nappes to east-southeast near the Moine Thrust (Fig. 3; Phillips 1937; Kinny et al. 2003a; 245 

Law & Johnson 2010). Whether this regional variation results from one or more orogenic 246 

events has not been clear. In east Sutherland, the north-south trending lineation and 247 

associated folds are best developed in the Moine rocks above the Swordly Thrust and in 248 

the Strathy Complex (Figs. 4 & 5). The Moine rocks here were migmatised during the 249 

Grampian I orogenic event (Kinny et al. 1999; Bird et al. 2013). The gneissic foliation is 250 

designated S1S, although older (Neoproterozoic?) structures and mineral assemblages 251 

may be present. 252 
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The S1S fabric and its associated structures are best preserved above the Swordly 253 

Thrust between Loch Strathy and Loch Crocach (Fig. 4, stereonet for sub-area 3). In this 254 

area, the regional foliation dips gently to the east-southeast and is associated with tight 255 

to isoclinal, commonly intrafolial, F1S minor folds which have an axial-planar mica fabric. 256 

These folds commonly deform the migmatitic layering, but are themselves cut on all 257 

scales by gently discordant metre-decametre scale sheets of weakly-foliated leucogranite 258 

which are inferred to represent large accumulations of late-tectonic partial melt (Fig. 4). 259 

The folds are therefore viewed as having formed synchronous with regional 260 

migmatization. Associated with the foliation is a north-south-trending mineral extension 261 

and rodding lineation (L1S) (Fig. 4, stereonet from sub-area 3). The lineation is defined by 262 

aligned amphiboles in mafic lithologies and by elongate quartz-feldspar aggregates in 263 

siliceous rocks. The lineation is also well developed within the grey gneisses of the Strathy 264 

Complex (Fig. 5, stereonet k). The lineation is commonly parallel with the axes of the F1S 265 

folds which may display ‘eye structures’ indicative of sheath fold geometries when viewed 266 

on surfaces perpendicular to L1S [e.g. NC 7503 6534]. Although the lineation is inferred to 267 

lie parallel to the direction of tectonic transport during regional deformation, there are 268 

no consistently developed kinematic indicators present that might establish the sense of 269 

shear.  270 

Three lines of evidence are consistent with a Grampian (Ordovician) age for L1S 271 

and associated F1S folds. Firstly, the observation (above) that L1S is cut by sheets of 272 

leucogranite that do not carry the lineation. Secondly, L1S is most strongly developed in 273 

mafic and siliceous lithologies. These are typically less migmatised than pelitic lithologies 274 

within which L1S is often absent. It is suggested that L1S was largely obliterated in pelitic 275 

rocks as a result of grain-size coarsening associated with the migmatisation and which 276 

outlasted deformation. Thirdly, Lu-Hf dating of garnets within an amphibolite in the 277 

Strathy Complex yielded an age of 447 ± 15 Ma (Bird et al. 2013). Although the error is 278 

large, a late Ordovician age seems most likely. Importantly, the garnets (locally up to 7-8 279 

cm size) appear to have statically overgrown an older S1S gneissic fabric (Fig. 6a). In 280 

summary, field and isotopic evidence suggests that the dominant structures and 281 
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metamorphic assemblages within the Swordly Nappe formed during Grampian I 282 

orogenesis. The regional lineation pattern within Sutherland is therefore likely to be a 283 

composite of Grampian and Scandian orogenic events.    284 

The Skinsdale Thrust – an out-of-sequence Scandian thrust? 285 

The Skinsdale Thrust (Fig. 2) corresponds to a 300 m thick, southeast-dipping high-strain 286 

zone that forms a sharp eastern limit to the migmatitic rocks of the Swordly Nappe (Kocks 287 

et al. 2006). The overlying Moine rocks of the Skinsdale Nappe are generally 288 

unmigmatised psammitic and quartzitic lithologies that locally preserve sedimentary 289 

structures (Strachan 1988). Blastomylonites associated with the thrust carry a SE-plunging 290 

L2 mineral and stretching lineation and asymmetric feldspar porphyroclasts indicate a top-291 

to-the-NW sense of shear parallel to the lineation (Kocks et al. 2006). At structurally 292 

higher levels further east, the dominant L1 lineation trends approximately north-south 293 

where unaffected by later cross-folds, but kinematic indicators are rare and do not 294 

provide a consistent sense of tectonic transport (Strachan 1988; Kocks et al. 2006). L1 here 295 

must have formed during the Caledonian orogeny because it deforms c. 590 Ma augen 296 

granites (Kinny et al. 2003b).  The Naver and Swordly nappes appear to be progressively 297 

excised towards the south and are presumed to be cut out completely underneath 298 

Devonian cover by the Skinsdale Thrust (Fig. 2) which would therefore be an out-of-299 

sequence structure. Whether or not the Skinsdale Thrust correlates with the Sgurr Beag 300 

Thrust south of the Dornoch Firth (Fig 2) as proposed by Kocks et al. (2006) remains to be 301 

demonstrated.   302 

Transpressional reworking of Scandian thrusts within the Torrisdale Steep Belt 303 

Along the north coast of Sutherland, all ductile structures in the Moine and Naver nappes 304 

are reworked in a large zone of transpressional deformation, the Torrisdale Steep Belt 305 

(TSB, Fig. 5; Holdsworth et al. 2001).  The TSB has a broadly triangular map pattern and 306 

increases in width northwards to c. 9 km (Fig. 5). West and south of the TSB, in both Moine 307 

and Naver nappes, Sn and L2 have broadly the same orientation as in central Sutherland 308 
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(Fig. 5, stereonets a & d). F2 and F3 folds are relatively common within the Moine nappe, 309 

axial surfaces and axes are coplanar and colinear with, respectively, Sn and L2 (Fig. 5, 310 

stereonets b & c). A northeastward traverse into the TSB reveals that the north-south-311 

trending composite regional foliation, the Naver and Swordly thrusts, and F2 and F3 fold 312 

axial planes all steepen and become rotated anticlockwise into a NNW-trend (Fig. 5, 313 

stereonets e & f). L2 is progressively overprinted by a strong mineral and rodding lineation 314 

(local L4) which plunges gently to the south-southeast, colinear with F2 and F3 fold axes 315 

(Fig. 5, stereonets e & f). A steep foliation is generally pervasive, although local zones of 316 

low strain preserve relic F2-F3 folds and lineations. Metamorphic temperatures during 317 

development of L4 were at least c. 500°C because it is defined by aligned hornblende and 318 

recrystallized aggregates of garnet (Burns 1994; Holdsworth et al. 2001). It therefore 319 

seems unlikely that there was any significant temporal break between the development 320 

of the TSB and the main phase of regional ductile thrusting. Ubiquitous shear band and S-321 

C fabrics within the Moine and basement rocks consistently indicate a dextral sense of 322 

shear parallel to L4 (Figs. 6b and 6c).  323 

Traversing eastwards and out of the TSB, the steep orientation of Sn is preserved, 324 

due to the tight, upright Kirtomy synform, but the characteristic L4 is only rarely present 325 

(Fig. 5, stereonet g). The dominant folds within the Moine rocks on both limbs of the 326 

synform are tight-to-isoclinal D1S structures, with steep to sub-vertical, NW-trending axial 327 

surfaces and steeply-plunging axes (Fig. 5, stereonet h). In contrast, further east within 328 

the Strathy Complex, poles to the Sn foliation define a broad east-west girdle (Fig. 5, 329 

stereonet i). The dominant lineation on Sn surfaces is assigned to L1S and plunges gently 330 

to the south. D1S axial surfaces and axes are, respectively, coplanar and colinear with Sn 331 

and L1S (Fig. 5, stereonet j). Large-scale open-to-close folds have broadly upright axial 332 

surfaces and gently NNW-plunging axes (Fig. 5, stereonet k). Within the context of north 333 

Sutherland, the spatial coincidence of the TSB with the upright folds that are prominent 334 

east of Kirtomy Point, but die out a few kilometres to the south, suggests that these 335 

structures are probably of similar (D4) age.  336 
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The overall kinematic significance of the TSB and associated late folds to the east 337 

is uncertain because the northern limit of this deformation zone lies offshore. However, 338 

it is suggested here that it resulted from the development to the north of an east-west 339 

trending lateral ramp or transfer zone within the Caledonian nappes (Fig. 7). Two other 340 

lines of evidence also point to the presence of offshore structures trending at a high angle 341 

to regional strike. Firstly, the prominent aeromagnetic anomaly coincident with the 342 

Strathy Complex terminates against an east-west trending lineament assumed to be a 343 

normal fault (Moorhouse & Moorhouse, 1983), Secondly, the analysis of on- and offshore 344 

structures is consistent with later development of a large-scale transfer zone (North Coast 345 

Transfer Zone) that was active during post-Caledonian basin formation in the Devonian 346 

and Permian (Wilson et al. 2010).  It is suggested here that these brittle faults were 347 

localised along, and reactivated, an older ductile lateral ramp or transfer zone. Within the 348 

Torrisdale Steep Belt, the large-scale anticlockwise rotation and steepening of the 349 

regional foliation and pre-existing structures is consistent with a sinistral sense of shear 350 

across such a structure, although the former may have been partly inherited from earlier 351 

large-scale bending of S2 around the northern termination of the major basement infold 352 

(Borgie inlier) lying immediately to the west of the TSB (Fig. 7). Distributed ‘domino-style’ 353 

foliation-parallel displacements within that zone of rotation can account for the dextral 354 

sense of shear shown by kinematic indicators. The focusing of the TSB within the Nappe 355 

may reflect the strong planar anisotropy of its constituent lithologies (mainly banded 356 

psammitic gneisses) in contrast to the more homogeneous migmatites of the Swordly 357 

Nappe and grey gneisses and amphibolites of the Strathy Complex.   358 

Magma emplacement during Scandian thrusting and deformation in the Torrisdale 359 

Steep Belt 360 

In central and southeast Sutherland, the Naver Nappe and structurally high levels of the 361 

Moine Nappe contain numerous concordant igneous intrusions (Read 1931; Brown 1967, 362 

1971; Holdsworth & Strachan 1988; Holdsworth et al. 2001; Kinny et al. 2003a; Kocks et 363 

al. 2014). These are mostly felsic, including leucogranites, granites s.s. and granodiorites, 364 
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but are locally dioritic. The leucogranites are likely crustally-derived (Brown 1967), 365 

whereas some of the more mafic bodies are comparable in their chemistry to the end-366 

Caledonian Northern Highland high Ba-Sr granitoids which were in part mantle-derived 367 

(Fowler et al. 2008). They generally range from c. 10 cm to c. 30 m in thickness, although 368 

the Strathnaver Granite and Creag Mhor Quartz Monzodiorite (Fig. 2) are much larger. 369 

Some intrusions contain xenoliths and contacts with host rocks are invariably sharp, so it 370 

is clear that the sheets have migrated and have been emplaced into their present 371 

locations and were not generated in situ. Many intrusions cut D2 folds but carry the S2 372 

schistosity and the L2 linear fabric and show evidence for high-temperature (>450-500°C) 373 

solid-state recrystallisation (Holdsworth & Strachan 1988; Kinny et al. 2003a; Kocks et al. 374 

2014). These observations are consistent with emplacement during D2, broadly 375 

synchronously with displacements along the Naver Thrust. U-Pb zircon geochronology by 376 

secondary ion mass spectrometry (SIMS) performed on four syn-D2 intrusions (Creag nan 377 

Suibheag, Strathnaver and Vagastie granites and the Klibreck Sill; Fig. 2)  produced ages 378 

of c. 429-415 Ma, which form the basis for assigning D2 (and younger) structures to the 379 

Scandian event (Kinny et al. 2003a; Alsop et al. 2010).  380 

 The proportion of intrusions increases towards the north coast section where the 381 

Naver Nappe and uppermost c. 200 m of the Moine Nappe contain voluminous amounts 382 

of variably deformed granite and felsic pegmatite (Burns 1994; Holdsworth et al. 2001). 383 

The foliated Clerkhill Intrusion (Fig. 5) is more variable, comprising diorite and 384 

granodiorite augen-gneisses with subordinate appinitic amphibolites. [e.g. NC 7145 6365] 385 

(Burns 1994). Around Torrisdale Bay and on Neave Island (Figs. 5 and 6d), granite and 386 

pegmatite intrusions locally form up to 50% of the outcrop, varying from veins a few cm 387 

thick to large sheet-like, anastomosing bodies up to 100 m thick and traceable laterally 388 

for up to 600 m [e.g. NC 694 608]. Most have broadly concordant, sharp contacts with 389 

host Moine/basement lithologies. There is a complete spectrum from relatively rare pre- 390 

to syn-D2 intrusions that are foliated and carry L2, to more common, generally unfoliated, 391 

sheets that cross-cut F3 folds and L4 (Holdsworth et al. 2001). Within the Torrisdale Steep 392 

Belt, various intrusions are tightly to isoclinally folded but show little evidence for internal 393 
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deformation, which implies that they had not fully crystallised at the time of deformation, 394 

and so were injected syn-tectonically (see also Butler & Torvela 2018).  395 

 The proportion of granitoid sheets reduces structurally upwards within the 396 

regional nappe pile and the Swordly Thrust is not associated with any spatial density or 397 

focusing of these intrusions. This suggests that it was not as significant as the Naver Thrust 398 

in providing an ascent pathway for melts during Scandian thrusting. In contrast, at higher 399 

structural levels, the Strath Halladale Granite cuts discordantly at a low angle across the 400 

Skinsdale Thrust (Fig. 2). The pluton is an east-dipping sheeted complex dominated by 401 

granite and granodiorite with minor diorite and ultramafic components and associated 402 

with the Reay Diorite to the north (Fig. 2; Read 1931; McCourt 1980). Various lines of 403 

evidence support a late-D2 structural age for intrusion, specifically: a) a magmatic foliation 404 

was reworked by solid-state deformation at high to moderate temperatures, b) shear 405 

zones within the pluton display top-to-the-NW sense of shear similar to that deduced for 406 

the Skinsdale Thrust, and c) granite sheets were deformed by curvilinear D3 folds (Kocks 407 

et al. 2006). The U-Pb monazite age of 426 ± 2 Ma obtained from the pluton thus 408 

approximately dates late-D2 in this eastern part of the Scandian nappe stack (Kocks et al. 409 

2006).  410 

 In summary, the structural and field evidence indicates that the central Sutherland 411 

and Strath Halladale granites were emplaced during D2. The parallelism of the intrusions 412 

to the regional easterly-dipping foliation suggests that they were emplaced as sills. The 413 

spatial coincidence of the intrusions with the Naver and Skinsdale thrusts further suggests 414 

that these thrusts acted as gently-inclined channel ways that focused the migration of the 415 

melts (Holdsworth & Strachan 1988; Kocks et al. 2006). In contrast, the syn- to post-D4 416 

age of granite and pegmatite intrusions within the steeply-inclined TSB suggests that 417 

these were instead channelled upwards as dykes within the developing transpressional 418 

shear zone. The increase in density of these pegmatites towards the north coast section 419 

further suggests that the proposed lateral ramp that controlled the development of the 420 

TSB was also acting as a focus for melt transport.   421 

Precise U-Pb zircon dating of syn- to late-tectonic granitic intrusions 422 
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We conducted high-precision U-Pb geochronology by the CA-ID-TIMS method on zircons 423 

separated from three syn-D2 intrusions that had previously been dated by  the U-Pb SIMS 424 

technique (Vagastie Bridge Granite, the Klibreck Sill, the Creag nan Suibheag Granite) and 425 

one previously undated late-D2 intrusion (Creag Mhor Quartz Monzodiorite)  (Fig. 2).  426 

Details of analytical procedures, complete U-Pb isotopic data and methods of U-Pb age 427 

calculation and error reporting are given in the Supplementary Materials. Figure 8 428 

summarizes the geochronological results. 429 

Sample descriptions 430 

 431 

A sample of the syn-D2 Vagastie Bridge Granite (RS-14-19) was collected at [NC 5350 432 

2825]. It occurs as a series of anastomosing concordant sheets, up to 500 m long and 50 433 

m thick, that intrude Moine Nappe psammites (Holdsworth & Strachan 1988; Kinny et al. 434 

2003a). The intrusion cuts F2 folds but carries the S2 foliation and L2 lineation; the latter 435 

plunges on a bearing of 140° (Kinny et al. 2003a). It is a coarse-grained, pink gneissic 436 

granite with abundant augen (up to 1.25 cm size) of perthitic orthoclase. The augen are 437 

wrapped by fine- to medium-grained matrix of dynamically recrystallised plagioclase, K-438 

feldspar, quartz, hornblende, biotite, with secondary chlorite and accessory titanite, 439 

zircon and magnetite. 440 

A sample of the syn-D2 Klibreck Sill (RS-14-18) was collected from [NC 5815 3110] 441 

where it intrudes psammitic gneisses of the Naver Nappe (Fig 2; Kinny et al. 2003a). It is 442 

traceable for c. 2 km as a concordant sheet no more than c. 30 m thick. The intrusion cuts 443 

F2 folds but carries the S2 foliation and L2 lineation; the latter plunges on a bearing of 170° 444 

(Kinny et al. 2003a). It is a pink, equigranular, medium-grained meta-granite, comprised 445 

of plagioclase, K-feldspar, quartz and biotite, with accessory titanite, magnetite and 446 

zircon.  447 

The syn-D2 Creag nan Suibheag Granite (RS-14-20) was collected at [NC 3881 2926] 448 

where it intrudes psammites of the Moine Nappe (Fig 2; Alsop et al. 2010). It is c. 4 m 449 

thick and can be traced laterally for c. 25 m. The intrusion is concordant and carries the 450 

S2 foliation and L2 lineation; the latter plunges on a bearing of 125°. It is a fine- to medium-451 
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grained, pink, equigranular meta-granite comprised of quartz, plagioclase (albitic), K-452 

feldpsar, muscovite and biotite, with accessory titanite, zircon and magnetite.   453 

The late-D2 Creag Mhor Quartz Monzodiorite (RS-14-26) was collected at [NC 7315 454 

0869]. The intrusion occurs as a concordant sheet, c. 6 km long and up to c. 150 m thick, 455 

emplaced into Moine Nappe psammites and leucogranites in the immediate footwall of 456 

the Naver Thrust (Fig. 2; Kocks et al. 2014). It comprises a medium- to coarse-grained 457 

assemblage of plagioclase, quartz, biotite and hornblende, with minor K-feldspar and 458 

accessory titanite, magnetite and zircon. Aligned euhedral plagioclase and hornblende 459 

define a magmatic fabric, the planar component of which is parallel to S2 in the country 460 

rocks, and the linear component to L2. Tiling of hornblende grains shows that magmatic 461 

flow was directed towards the west (Kocks et al. 2014).     462 

 463 

Age results and interpretations 464 

 465 

Vagastie Bridge Granite (sample RS-14-19) Four analysed zircons from this sample form a 466 

statistically coherent cluster without any outliers and produce a weighed mean 206Pb/238U 467 

date of 432.35 ± 0.10/0.21/0.51 Ma and a mean square weighted deviation (MSWD) of 468 

2.0 (Fig. 8). The latter best represents the emplacement age of the intrusion coeval with 469 

D2 deformation within the Moine Nappe. 470 

Klibreck Sill (sample RS-14-18) Analysed zircons from this sample yielded a range of 471 

Silurian 206Pb/238U dates from ~437 Ma to 426.18 ± 0.26 Ma. The presence of a discordant 472 

Precambrian analysis (z4) suggests that some of the observed age scatter in this sample 473 

might be due to xenocrystic zircon cores. However, the bulk of Scandian age analyses are 474 

concordant (Fig. 8) and are best interpreted as protracted zircon crystallization (c. 430-475 

426 Ma) during D2 deformation.  476 

Creag nan Suibheag Granite (sample RS-14-20) Analysed zircons from this sample range 477 

in their 206Pb/238U dates from 432.93 ± 0.75 Ma to 428.34 ± 0.29 Ma. The older analyses 478 

(z5 and z6) are relatively imprecise (low U and radiogenic Pb) and discordant and may 479 

reflect an inherited component, whereas the younger two (z2 and z3) are concordant, but 480 
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do not overlap with uncertainty (Fig. 8). These suggest a protracted, syn-D2, zircon 481 

crystallization history for the intrusion. 482 

Creag Mhor Quartz Monzodiorite (sample RS-14-26) Similar to that in the Klibreck Sill 483 

sample, the zircon analyses here produced a range of 206Pb/238U dates that, with the 484 

exception of one distinctly older analysis (z6), cannot be explained by zircon inheritance 485 

(Fig. 8). The 426.76 ± 0.25 Ma to 425.72 ± 0.21 Ma range of dates from this sample 486 

represent protracted zircon crystallization during late stages of D2 deformation. 487 

 488 

Discussion 489 

New U-Pb geochronology 490 

Previously published radioisotopic geochronology from the northern Scottish 491 

Caledonides includes age data of different vintages, produced by a variety of techniques 492 

and calculated using different chronometers, which often makes age comparisons 493 

problematic. Much of the existing U-Pb ID-TIMS geochronology from the region was 494 

based on analyses of multi-grain (µg size) aliquots of zircon, with or without any pre-495 

treatment (e.g., van Breemen et al. 1979; Halliday et al. 1987; Strachan & Evans 2008; 496 

Kocks et al. 2014). These age data are in general of questionable accuracy by modern 497 

standards due to the possibility of open system behaviour (inheritance and/or Pb loss) in 498 

zircon and the manners in which the dates were calculated (e.g., mean 207Pb/206Pb or 499 

concordia intercept dates). Caution should therefore be exercised in constructing 500 

geologic histories based on compilations of inherently incompatible age results. Only U-501 

Pb ages derived from 206Pb/238U dates of chemically abraded, single-zircon analyses (e.g., 502 

Goodenough et al. 2011) and especially those produced using the EARTHTIME tracers and 503 

analytical protocols have the precision and reproducibility to be directly compared to the 504 

U-Pb results of this study. 505 

The enhanced precision of modern U-Pb analyses by the CA-ID-TIMS method helps 506 

unravel the complexities of zircon age populations in magmatic rocks that often go 507 
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undetected by the lower precision in-situ dating techniques. The set of 206Pb/238U dates 508 

presented here have analytical uncertainties as low as ± 0.20 m.y. (0.09%), which can 509 

easily resolve the observed age scatters of 1 m.y. (RS14-26) to 4.6 m.y. (RS14-20) of this 510 

study. In comparison, even the most precise zircon SIMS analyses from the area have had 511 

2σ analytical uncertainties of at least ± 10 m.y. (Alsop et al. 2010). 512 

A limitation of the in-situ U-Pb dating techniques in terms of accuracy is their 513 

inability to perform chemical abrasion on zircon and thus mitigate the effects of Pb loss 514 

(e.g. Wu et al., 2016), especially when analysing zircon rims. Both the Vagastie Bridge 515 

Granite and Klibreck Sill have produced CA-ID-TIMS weighted mean dates that overlap 516 

only with the upper margin of their respective published SIMS dates (424 ± 8 Ma and 420 517 

± 6 Ma, respectively; Kinny et al. 2003a). None of our CA-ID-TIMS analyses from the Creag 518 

nan Suibheag Granite are as young as the reported U-Pb SIMS date of this intrusion. This 519 

suggests that the distinctly younger published age of the Creag nan Suibheag granite (415 520 

± 6 Ma: Alsop et al. 2010) should be viewed with caution.  521 

Our new geochronology indicates a minimum c. 6 myr period of syn-tectonic 522 

zircon crystallization between c. 432 Ma (Vagastie Bridge Granite) and c. 426 Ma (Klibreck 523 

Sill and Creag Mhor Quartz Monzodiorite) associated with peak- to late-D2 deformation 524 

along the Naver Thrust. This period should be regarded as a minimum, as additional data 525 

from these and other intrusions may expand the age spectrum of zircons and thus the 526 

duration of deformation. Taken at face value, the data suggest that the deformation was 527 

older in the footwall of the Naver Thrust (Vagastie Bridge Granite), whereas it continued 528 

for another c. 6 myr above the thrust (Klibreck Sill). At present, our results do not seem 529 

to support a simple model of foreland-propagating, westerly younging, Scandian 530 

deformation. Additional high-precision geochronology, particularly from the western 531 

Sutherland, is necessary to resolve the timing of Scandian ductile deformation across this 532 

sector of the orogen. 533 

Ductile thrust evolution of the Scandian thrust nappes  534 
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The Scandian nappe stack in northern Scotland developed from the ductile reworking of 535 

Moine rocks and their associated basement that had already been deformed and 536 

metamorphosed during the Neoproterozoic and the Ordovician. A critical question relates 537 

to the extent to which the major ductile thrusts and folds are composite structures that 538 

were initially formed during pre-Scandian orogenic events. Bird et al. (2013) noted  curved 539 

(i.e. syn-tectonic) inclusion trails within 450-445 Ma (= Grampian II) garnets and 540 

suggested that some of the major folds within the Moine Nappe  may have been initiated 541 

at this time, but only attained their present highly curvilinear sheath-fold geometry as a 542 

result of Scandian reworking. Dunk et al. (2019) invoked a Grampian I age for the Port 543 

Mor Thrust (Fig. 4) and ‘proto’ Naver and Swordly thrusts. However, the systematic 544 

eastward increase in deformational temperatures that is apparent from integrated 545 

microstructural and geothermometry studies related to proven Silurian fabrics (the L2 546 

lineation) demonstrates the reality of a Scandian orogenic wedge that resulted from 547 

crustal-scale ductile thrusting (Thigpen et al. 2013; Ashley et al. 2015; Mazza et al. 2018; 548 

Mako et al. 2019).   549 

Curvilinear regional lineation trends of the type preserved in northern Scotland 550 

(Fig. 3) could result from one or more of three possible scenarios: 1) different generations 551 

of lineations associated with separate deformation events, 2) heterogeneity in the 552 

magnitude and direction of shear combined with strain partitioning during regional 553 

transpression, and 3) reorientation of a linear fabric due to a later deformation event. The 554 

findings reported here indicate that the first two of these are most relevant. On the 555 

regional scale the lineation pattern is probably a composite of Grampian and Scandian 556 

orogenic events. Scandian reworking was pervasive in the Naver and Moine nappes and 557 

associated with broadly northwest-directed transport. In contrast, Grampian structures 558 

may predominate in the structurally higher Swordly and Skinsdale nappes, characterised 559 

by north-south trending lineations, although the tectonic transport direction is unknown. 560 

The dominance of potentially older structures in the highest nappes in northern Scotland 561 

compares with the peri-Laurentian-derived thrust sheets of western Norway. These 562 

acquired their main deformational and metamorphic characteristics during the 563 
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Ordovician to early Silurian and were then emplaced southeastwards onto the Baltica 564 

margin as composite entities during the Scandian orogeny (Andersen & Andresen 1994; 565 

Corfu et al. 2014).   566 

Within this regional framework, there is, however, still a considerable variation in 567 

the azimuth of the Scandian L2 lineation that requires explanation (Fig. 3). This has been 568 

interpreted previously in different ways: either a gradual rotation in the strain field due 569 

to changes in the direction of plate convergence (e.g. Soper et al. 1992) or a progressive 570 

change in kinematic partitioning of deformation into coeval thrusting and strike-slip 571 

across the Scottish Caledonides (e.g. Dewey & Strachan 2003). Additional insights are 572 

provided by the isotopic dating of syenite intrusions thought to have been emplaced 573 

during thrusting within the Assynt culmination of the Moine Thrust Zone (Fig. 2; 574 

Goodenough et al. 2011).  U-Pb CA-ID-TIMS zircon ages bracket their emplacement 575 

between 430.7 ± 0.5 Ma and 429.2 ± 0.5 Ma (Fig. 9; Goodenough et al. 2011) and are 576 

readily comparable with data in the present paper as they were obtained using essentially 577 

the same analytical procedures. The two data sets taken together therefore indicate that 578 

NW- to NNW-directed ductile thrusting along the Naver Thrust in the central part of the 579 

nappe stack overlapped WNW-directed thrusting within the Moine Thrust Zone. The 580 

regional lineation swing defined by L2 therefore appears to reflect essentially 581 

contemporaneous deformation at different crustal levels, and is consistent with sinistrally 582 

oblique convergence.   583 

Early interpretations of structural sequences in the external thrust belts of 584 

orogens suggested that thrusts tended to develop in a foreland-propagating manner (e.g. 585 

Bally 1966; Elliott & Johnson 1980) and this model was applied to the ductile thrust sheets 586 

of northern Scotland (Barr et al. 1986). While this model may well still apply in many cases, 587 

a more nuanced approach may be necessary to understand examples where thrusts 588 

appear to have moved simultaneously (e.g. Butler 2004) as well as out-of-sequence (e.g. 589 

Morley 1988). In northern Scotland, we envisage that the early widely-distributed shear 590 

at mid- to upper crustal levels indicated by the geochronological data was followed by the 591 

localisation of strain along discrete thrusts that broadly propagated towards the foreland. 592 
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This is consistent with folding of the Naver and Ben Hope thrusts by F3 folds that 593 

developed in their footwalls (Holdsworth 1989; Alsop et al. 1996), and the passive folding 594 

of both thrusts above the Assynt culmination in the Moine Thrust Zone (Fig. 2). However, 595 

recognition that the Skinsdale Thrust is probably out-of-sequence (this study) as well as 596 

the Ben Blandy Shear Zone (Alsop et al. 1996) and the Lochan Rhiabach Thrust and its 597 

likely continuation in Assynt (Holdsworth et al. 2006; Thigpen et al. 2010a) suggests more 598 

widespread modification of the nappe stack by such structures than understood 599 

previously.  600 

Magma emplacement during Scandian deformation 601 

The focusing of intrusions that are partly mantle-derived along the Naver and Skinsdale 602 

thrusts demonstrates the crustal scale of these structures. In contrast, there is a marked 603 

lack of thrust-related Caledonian intrusions further south, in Ross-shire and Inverness-604 

shire along the trace of the Sgurr Beag Thrust. One reason for this might be that 605 

Sutherland represents a deeper crustal level, which is consistent with the considerably 606 

greater amount of Archaean basement exposed within the Moine Nappe (Fig. 2). The 607 

association of the ‘early’ Moine Thrust north of central Assynt with a belt of greenschist-608 

facies mylonites in its footwall and hangingwall (Thigpen et al. 2010a & b; 2013) might 609 

also be indicative of deformation at a deeper crustal level than further south where the 610 

Moine Thrust is a ‘late’ brittle structure (Law & Johnson 2010 and references therein).   611 

Given apparently continuous subduction of Iapetan oceanic lithosphere beneath 612 

the Laurentian margin from c. 455 Ma to c. 420 Ma, it would be reasonable to invoke 613 

melting of mantle wedge sources during subduction to produce these magmas, as well as 614 

the c. 430 Ma syenite plutons of the Assynt Culmination in the Moine Thrust Zone and 615 

the Loch Loyal Syenite Complex (Fig. 2; Goodenough et al. 2011). Various arguments have 616 

been employed to explain the general lack of magmatism within the Northern Highland 617 

and Grampian terranes between 455 Ma and 430 Ma. This might be due either to low-618 

angle subduction or erosional removal of a volcanic arc (Oliver et al. 2008; Miles et al. 619 

2016). Alternatively, subduction at a high-angle to a continental margin could also 620 
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suppress magma emplacement if active deformation was not producing the crustal-scale 621 

channel ways necessary to facilitate melt transport (Glazner 1991). The onset of 622 

magmatism at c. 430 Ma could therefore be directly linked to the Scandian collision and 623 

generation of the crustal-scale thrusts that are best developed in Sutherland. Caledonian 624 

plutons dated at between c. 465 Ma and c. 438 Ma have been recently recognised along-625 

strike in the Shetland Islands c. 200 km north-northeast of mainland Scotland, perhaps 626 

suggesting an intervening change in subduction angle and/or distance between the 627 

subduction zone and the Laurentian margin (Lancaster et al. 2017).  628 

Timing and duration of the Scandian event in northern Scotland 629 

The results of the present study indicate that the Naver Thrust was active (at amphibolite-630 

facies) between c. 432 Ma and c. 426 Ma (Fig. 9) and have implications for regional 631 

tectonic models. This is because it has generally been believed that the Scandian event in 632 

northern Scotland was terminated by c. 430 Ma given that: a) ductile thrusts within the 633 

hinterland are folded passively above culminations within the underlying, and therefore 634 

younger, thin-skinned Moine Thrust Zone, and b) dated syenite intrusions in the Assynt 635 

area (see above) apparently truncate thrusts in the central part of the Moine Thrust Zone 636 

(Woolley 1970; Goodenough et al. 2011; but see Searle et al. 2010). However, no field 637 

relationships preclude the continuation of thrusting post-430 Ma along the Sole Thrust 638 

and associated structures, and the Moine Thrust clearly truncates the 430.6 ± 0.3 Ma Loch 639 

Ailsh syenite (Fig 2; Goodenough et al. 2011).  640 

A c. 430 Ma termination to the orogeny is difficult to reconcile with the results of 641 

other isotopic studies which also suggest a more protracted evolution. These include: a) 642 

Rb-Sr white mica  ages (closure T = ~550°C) from Moine Thrust Zone mylonites which 643 

indicate that although the main cessation of deformation occurred at c. 430 Ma, there 644 

was evidence for strain localisation until c. 410 Ma (Freeman et al. 1998); b) Rb-Sr 645 

muscovite ages  of c. 428, 423 and 421 Ma from the lower Moine Nappe (Dallmeyer et al. 646 

2001); c) U-Pb titanite ID-TIMS ages (closure T = ~550-600°C) of 413 ± 3 Ma and 416 ± 3 647 

Ma obtained from the Vagastie Bridge and Kilbreck Sill respectively (Fig. 9; Kinny et al. 648 
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2003a), d) monazite-xenotime thermometry and U-Pb geochronology that demonstrate 649 

that the Naver Nappe experienced peak temperatures of 700°C at c. 425 Ma (Mako et al. 650 

2019), e) a U-Pb monazite age of 426 ± 2 Ma for the late-D2 emplacement of the Strath 651 

Halladale Granite (see above) (Kocks et al. 2006), and f) a U-Pb concordia age of 426 ± 3 652 

Ma obtained from multi-grain fractions of air-abraded zircon from the Glen Scaddle 653 

metagabbro in Inverness-shire to the south (Fig. 2), which predated regional scale upright 654 

folding at amphibolite-facies grade (Strachan & Evans 2008). In summary, isotopic studies 655 

suggest that high-grade metamorphism and contractional deformation within the 656 

Scandian nappes persisted until c. 420-415 Ma which necessarily implies a more 657 

protracted evolution of the Moine Thrust Zone than considered previously. The Moine 658 

Thrust is conventionally assumed to predate the Ross of Mull Granite, (Fig. 2; 418 ± 5 Ma, 659 

U-Pb SIMS zircon age, Oliver et al. 2008) which on its eastern boundary intrudes Moine 660 

rocks, and on its western boundary thermally metamorphoses rocks on Iona that are 661 

assigned to the Caledonian foreland (Potts et al. 1995). However, a para-autochthonous 662 

setting for Iona within the Moine Thrust Zone cannot be excluded, and hence the duration 663 

of upper crustal thrusting along the margin of the orogen is poorly constrained.    664 

A previous estimate for the duration of the Scandian event in northern Scotland 665 

suggested that it occurred between 443 Ma and 425 Ma, and lasted <18 myr (Johnson & 666 

Strachan 2006). Conservatively, this can be amended to between 437 Ma, the oldest of 667 

the white mica 40Ar/39Ar ages recorded from Moine Thrust Zone mylonites (Freeman et 668 

al. 1998), and a lower limit possibly as young as 415 Ma (see also Mako et al. 2019), 669 

suggesting a duration of potentially up to 22 myr.  670 

Partitioned thrusting and strike-slip displacements within the Scandian orogenic wedge  671 

The late Silurian to mid-Devonian interval in the Caledonides has been interpreted in 672 

terms of a transition from sinistral transpression to strike-slip and then transtension, 673 

reflecting relative plate motions between Laurentia and Baltica-Avalonia (Dewey & 674 

Strachan 2003). If the Moine Thrust Zone was active until c. 420-415 Ma (see above), then 675 

brittle, upper crustal thrusting along the margin of the orogen must have overlapped early 676 
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strike-slip displacements along the Great Glen Fault and related structures. The timing of 677 

the latter has been constrained to c. 430-420 Ma by the isotopic dating of syn-kinematic 678 

plutons emplaced along major faults (Rogers & Dunning 1991; Stewart et al. 2001; 679 

Kirkland et al. 2008; Kocks et al. 2014; Holdsworth et al. 2015). Many of these plutons 680 

have a mantle-derived component to the melts, indicating that the strike-slip faults along 681 

which they were emplaced must have been crustal-scale structures (Hutton & Reavy 682 

1992; Reavy & Jacques 1994).  683 

Synchronous movement of the Moine Thrust Zone and the Great Glen and related 684 

faults implies a large-scale partitioning of transpressional strain above a basal 685 

decollement (Stewart et al. 1999). Similar partitioned structural regimes have been 686 

demonstrated from other orogenic tracts such as the Qilan Shan (northeast Tibet Plateau) 687 

(Allen et al. 2017), the Canadian Cordilleras (Oldow et al. 1990), and the Caledonides of 688 

NE Greenland (Holdsworth & Strachan 1991; Smith et al. 2007). In Scotland, the overall 689 

tectonic regime was likely dominated by strike-slip displacements from 420-415 Ma 690 

onwards because the Great Glen Fault appears to truncate mantle reflectors that have 691 

been interpreted as Caledonian thrusts (Snyder & Flack 1990). Dating of syn-kinematic 692 

granites within the exhumed high-grade core of the Great Glen Fault demonstrated that 693 

sinistral movements continued until at least 399 Ma (Mendum & Noble 2010).       694 

Regional Appalachian-Caledonian linkages 695 

Silurian deformation and metamorphism along the Appalachian-Caledonian orogen 696 

between Newfoundland and northern Greenland and Norway resulted from the 697 

sinistrally-oblique collision of Laurentia, Baltica and peri-Gondwanan terranes (e.g. 698 

Avalonia and Ganderia) and consequent closure of the Iapetus Ocean (Fig. 1; Soper et al. 699 

1992; Dewey & Strachan 2003). However, there are considerable differences in the 700 

intensities of this event (Fig. 10). In Newfoundland, ‘Salinic’ (c. 435-420 Ma) crustal 701 

thickening and metamorphism up to kyanite grade resulted from the collision of peri-702 

Laurentian and peri-Gondwanan arcs across the Red Indian Line (Fig. 10; Cawood et al. 703 

1994). Along strike in western Ireland, the slightly younger ‘Erian’ event (c. 424-416 Ma) 704 
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was associated with sinistrally transpressive cleavage development and folding of the 705 

South Mayo Trough sedimentary succession at sub-greenschist facies (Fig. 10; Dewey et 706 

al. 2015). The easterly-younging and diachronous nature of the Silurian collision across 707 

the Solway Line between western Ireland and south Scotland has been well-documented 708 

(Soper & Woodcock 1990). Sinistrally-oblique collision at c. 420 Ma in south Scotland was 709 

not associated with significant crustal thickening or metamorphism. The main structures 710 

are low-grade NW-directed thrusts, possibly developed as the Southern Uplands 711 

accretionary prism was thrust onto the southern margin of the Midland Valley (Bluck 712 

2002). There is no evidence of Silurian deformation in the Midland Valley itself where 713 

there is continuity of sedimentation across the Silurian-Devonian boundary (Phillips et al. 714 

2004), nor within the Grampian Terrane to the north of the Highland Boundary Fault. The 715 

differences in the intensity and timing of Silurian orogenic events between Newfoundland 716 

and south Scotland can be attributed partly to irregularities in the shapes of colliding 717 

continental margins, and also to a gradual slowing of Avalonia-Laurentia convergence 718 

rates following initial ‘Salinic’ collision in Newfoundland (Soper & Woodcock 1990).          719 

The relatively short-lived nature of the Silurian events in Newfoundland, Ireland 720 

and south Scotland contrasts with a much longer duration in East Greenland (Laurentia) 721 

and Norway (Baltica). Continental collision here was underway by c. 435 Ma, which 722 

corresponds in East Greenland to the oldest S-type granites (Kalsbeek et al. 2001), and in 723 

Norway to the oldest mineral ages that relate to development of a regional-scale 724 

extrusion wedge (Grimmer et al. 2015). Crustal thickening culminated in Devonian 725 

ultrahigh-pressure metamorphism at c. 415-390 Ma in East Greenland (e.g. McClelland & 726 

Gilotti 2003; Gilotti et al. 2004; Corfu & Hartz 2011) and c. 405-400 Ma in Norway 727 

(Carswell et al. 2003; Tucker et al. 2004). Unroofing of the Greenland-Norway orogenic 728 

wedge was at least in part achieved by sinistrally-oblique transtensional displacements 729 

along low-angle shear zones through the early to middle Devonian (Osmundsen & 730 

Andersen 2001; Osmundsen et al. 2003). The long history of convergence and ‘hard’ 731 

collision through the Silurian and the early Devonian contrasts markedly with the ‘soft’ 732 

Avalonia-Laurentia collision in south Scotland, and this was presumably accommodated 733 
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by decoupling of Avalonia and Baltica along the Tornquist Line (Fig. 10; Dewey & Strachan, 734 

2003).  735 

The much shorter duration of the Scandian event in northern Scotland (<22 myr) 736 

relative to East Greenland and Norway (c. 45 myr) is consistent with a likely location on 737 

the periphery of the Laurentia-Baltica collision. This is thought to have been followed by 738 

sinistral strike-slip displacement of c. 500-700 km along the Great Glen Fault that 739 

juxtaposed the northern Scotland crustal fragment against the Grampian Terrane to the 740 

southeast which shows no record of Silurian ductile deformation and metamorphism (Fig. 741 

10; Coward 1990; Dallmeyer et al. 2001; Dewey & Strachan 2003; Kinny et al. 2003a). It is 742 

envisaged that during the initial phase of collision at c. 435 Ma, northern Scotland was 743 

located opposite the southernmost part of the Baltica plate and that this drove regional 744 

ductile thrusting and development of the Moine Thrust Zone (Dewey & Strachan 2003). 745 

Continued sinistrally-oblique movement of Baltica relative to Laurentia moved the main 746 

locus of plate collision away from Scotland further north to East Greenland. The 747 

Caledonian thrust front in East Greenland is Devonian (c. 400-390 Ma; Dallmeyer et al. 748 

1994) in contrast to the end Silurian age of the Moine Thrust Zone, which may account 749 

for the bend necessary to link the two structures (Fig. 10).  750 

The lateral continuations of the Moine Thrust and the Great Glen Fault to the 751 

southwest and into Newfoundland are uncertain and it may be that there are no direct 752 

linkages. Given the magnitude of the sinistral displacement that has been proposed for 753 

the Great Glen Fault, it would be surprising if a correlative structure were not present in 754 

Newfoundland, even if its magnitude had diminished along strike. The steep Baie Verte 755 

Line-Cabot Fault (Fig. 10) is a potential candidate which has a long-lived and complex 756 

history and along which significant orogen-parallel displacements may have occurred (Lin 757 

et al. 2013). However, the main documented ductile displacements are dextral (Brem et 758 

al. 2007). The Appalachian Deformation Front (Fig. 10) is often shown as being continuous 759 

with the Moine Thrust on reconstructions but this is unlikely given the different tectonic 760 

drivers. In northern Newfoundland, White & Waldron (2019) have demonstrated that the 761 

frontal Appalachian thrusts formed during the mid-Devonian Acadian Orogeny. Although 762 
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displacements are modest (<10 km), these or equivalent structures offshore may truncate 763 

or rework the lateral continuations of the Moine Thrust and the Great Glen Fault 764 

somewhere on the intervening continental shelves, adding to the difficulties in 765 

correlation.  766 

Conclusions 767 

1) The regional lineation pattern in the Caledonian thrust nappes of northern Scotland 768 

(Laurentia) is likely to be a composite of Grampian and Scandian orogenic events. The 769 

highest structural levels (eastern Swordly and Skinsdale nappes) are dominated by 770 

orogen-parallel lineations. Field and isotopic evidence suggests that these formed 771 

during the Grampian (Ordovician, c. 470-460 Ma) orogeny, but further geochronology 772 

is required to test this hypothesis. Pervasive ductile deformation during the Scandian 773 

(Silurian, c. 435-425 Ma) orogeny is characteristic of the underlying thrust nappes 774 

(Moine, Naver and western Swordly), associated with NNW- to WNW-directed 775 

thrusting. Localised dextrally-transpressive deformation within the Naver and Swordly 776 

nappes (the Torrisdale Steep Belt) is interpreted as the ductile expression of a lateral 777 

ramp structure located offshore. 778 

2) Ductile thrusts at all structural levels are mostly deformed by folds developed in their 779 

footwalls and which root downwards into structurally lower ductile thrusts, suggesting 780 

an overall foreland-propagating sequence of deformation. However, evidence for out-781 

of-sequence thrusting at three different structural levels suggests a more complex 782 

sequence of thrust stacking than previously supposed and that thrusts may have 783 

developed synchronously at different levels within the nappe stack.  784 

3) Two of the structurally higher thrusts (Naver and Skinsdale) as well as the dextral 785 

transpression zone associated with the inferred lateral ramp acted as conduits for syn-786 

tectonic granitic intrusions that have a mantle-derived component. Given the paucity 787 

of magmatism prior to 430 Ma in this part of Scotland, its onset at that time could 788 

therefore be directly linked to the Scandian collision and development of crustal-scale 789 

thrusts synchronously with slab-break-off. 790 
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4) New high-precision U-Pb zircon ages from syn-tectonic granitic intrusions indicate that 791 

the NNW- to NW-directed Naver Thrust was active (at amphibolite facies grade) 792 

between c. 432 Ma and c. 426 Ma. This overlaps the emplacement of previously dated 793 

syn- to late-tectonic syenite plutons within the WNW-directed Moine Thrust Zone.  The 794 

regional arcuate anticlockwise swing in the L2 lineation therefore appears to reflect 795 

contemporaneous deformation at different crustal levels and is consistent with 796 

sinistrally oblique convergence. We envisage that early distributed shear was followed 797 

by localisation of strain along discrete foreland-directed thrusts.  798 

5) The results of the present and previous isotopic studies suggest that high-grade 799 

metamorphism and contractional deformation within the Scandian nappes persisted 800 

until possibly c. 420-415 Ma which implies a more protracted evolution of the Moine 801 

Thrust Zone than previously considered.  802 

6) If the Moine Thrust Zone was active until the latest Silurian to earliest Devonian, brittle, 803 

thrusting at relatively shallow crustal levels along the margin of the orogen overlapped 804 

sinistral strike-slip displacements along the Great Glen Fault and related structures 805 

which are known to have been initiated at c. 425 Ma. The synchroneity of thrusting 806 

and strike-slip movements implies a large-scale partitioning of transpressional strain 807 

above a regional-scale basal decollement. 808 

7) The relatively short duration of the Scandian orogen in Scotland (c. 437-415 Ma?) is 809 

consistent with the only moderate amount of crustal thickening recorded and a 810 

location on the periphery of the main Laurentia-Baltica collision further north which 811 

continued until c. 390 Ma. During initial collision, Scotland was located opposite the 812 

southernmost part of the Baltica plate. The loci of crustal thickening then moved 813 

progressively along strike to the north during the sinistrally-oblique convergence of 814 

Baltica and Laurentia, partly accommodated by sinistral shear along the Tornquist Line.  815 
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Figure 1. Map of the Caledonide-Appalachian orogen in the North Atlantic region prior to 827 

Mesozoic rifting (modified from Waldron et al. 2014). NHT, Northern Highland Terrane; 828 

GGF, Great Glen Fault; HBF, Highland Boundary Fault. 829 

Figure 2. Regional geology of north Sutherland (modified from British Geological Survey 830 

1997, 2002, 2003, 2004a & b). Inset map shows location in northern Scotland. 831 

Abbreviations of structures: AT, Achininver Thrust; ACT, Achness Thrust; BBSZ, Ben Blandy 832 

Shear Zone; BHT, Ben Hope Thrust; LRT, Lochan Riabach Thrust; MT, Moine Thrust; NT, 833 

Naver Thrust; PMT, Port Mor Thrust; ST, Swordly Thrust; SKT, Skinsdale Thrust; SoT, Sole 834 

Thrust; TT, Torrisdale Thrust. Abbreviations of intrusions: CM, Creag Mhor Quartz 835 

Monzodiorite; CSG, Creag Suilbheag Granite; G, Grudie Granite; GSM, Glen Scaddle 836 

Metagabbro; HG, Helmsdale Granite; KG, Klibreck Granite; LA, Loch Ailsh Syenite; LB, Loch 837 

Borrolan Syenite; LL, Loch Loyal Syenite Complex; LS, Loch Shin Granite; RIC, Rogart 838 

Igneous Complex; ROM, Ross of Mull Granite; SHG, Strath Halladale Granite; SNG, 839 

Strathnaver Granite; VBG, Vagastie Bridge Granite. 840 

Figure 3. Regional trends of the dominant mineral and extension lineations within the 841 

Caledonian thrust sheets of northern Scotland (modified from Law & Johnson 2010). 842 

Figure 4. Detailed geological map of the Swordly Thrust in central Sutherland (see Fig 2 843 

for location) together with structural data presented as lower hemisphere, equal area 844 

stereographic projections (see text for discussion). Data for sub-areas 1 and 2 taken from 845 

above and below the Swordly Thrust. AB, Archaean basement. 846 
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Figure 5. Map, cross section and structural data from North Sutherland (see Fig. 2 for 847 

location) together with structural data presented as lower hemisphere, equal area 848 

stereographic projections (see text for discussion). Abbreviations: FBI, Farr basement 849 

inlier; NT, Naver Thrust; PMT, Port Mor Thrust; ST, Swordly Thrust; TT Torrisdale Thrust; 850 

TSB, Torrisdale Steep Belt. Subsurface structure from British Geological Survey (1997) 851 

(western section) and Dunk et al. (2019) (eastern section). 852 

Figure 6. a) post-D1 garnets within the Strathy Complex (Lu-Hf age is 447 ± 15 Ma) are 853 

statically overgrowing an S1S fabric that is folded (NC 7982 6590); remaining images are 854 

all from the Torrisdale Steep Belt: b) view of a horizontal surface showing L2 folded around 855 

an F3 hinge, and D4 dextral shear bands at Swordly Bay (NC 7354 6355); c) view of a 856 

horizontal surface at Swordly Bay showing dextrally-sheared lozenges of granitic gneiss 857 

(NC 7354 6355); d) view northwestwards to Aird Torrisdale from NC 6885 6285, showing 858 

steeply-dipping and foliation-parallel granite and pegmatite sheets. 859 

Figure 7. Simplified map showing the location and main components of the D4 Torrisdale 860 

Steep Belt and the inferred lateral ramp/transfer zone located offshore. The inset shows 861 

how foliation-parallel displacements within a zone of overall sinistral transpression would 862 

result in the widespread dextral shear sense indicators observed at outcrop. 863 

Abbreviations are as in Fig 5 with addition of: BI, Borgie inlier; SC, Strathy Complex. 864 

Figure 8. Conventional concordia plots of the analysed zircons. Error ellipses are plotted 865 

at 2 sigma. Dashed lines represent uncertainties in U decay constants displayed as the 866 

concordia error envelope. 867 

Figure 9. Summary of U-Pb (CA-IDTIMS) zircon ages (dark arrows; Goodenough et al. 2011 868 

and this study) and U-Pb (TIMS) titanite ages (grey arrows; Kinny et al. 2003a).  CNSG, 869 

Creag nan Suibheag Granite; CMQM, Creag Mor Quartz Monzodiorite; KS, Klibreck Sill; 870 

MT, Moine Thrust; NT, Naver Thrust; ST, Swordly Thrust; VBG, Vagastie Bridge Granite. 871 

See Fig. 2 for locations. 872 
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Figure 10. Summary map showing the distribution, timing and varying intensities of 873 

Silurian (Scandian) deformation and metamorphism (stippled areas) in the North Atlantic 874 

Caledonides and northern Appalachians (see text for discussion) 875 
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