
Page 1 of 36 

 

 

Trends and Spatial Patterns of 20th century Temperature, Rainfall and PET in the semi-

arid Logone River Basin, Sub-Saharan Africa  

Asmita Murumkar1*, Michael Durand1,2, Alfonso Fernández3, Mark Moritz4, Bryan Mark1,5,  

Sui Chian Phang6, Sarah Laborde4, Paul Scholte7, Apoorva Shastry1,2, Ian Hamilton6,8 

1. Byrd Polar and Climate Research Center, The Ohio State University, Columbus Ohio 

2. School of Earth Sciences, The Ohio State University, Columbus Ohio 

3. Department of Geography, Universidad de Concepcion, Chile  

4. Department of Anthropology, The Ohio State University, Columbus Ohio 

5. Department of Geography, The Ohio State University, Columbus Ohio 

6. Department of Mathematics, The Ohio State University, Columbus Ohio 

7. German Society for International Cooperation, Yaounde, Cameroon  

8. Department of Evolution, Ecology and Organismal Biology, The Ohio State University, 

Columbus Ohio 

*Corresponding email: murumkar.1@osu.edu 

Abstract 

Sub-Saharan floodplains are sensitive to climatic changes in their upstream drainage basin, a 

major concern is given the dependency of millions of people for their daily subsistence. 

Understanding hydroclimatic trends and variability is critical for developing integrated 

coupled human and natural system models to evaluate future scenarios of vulnerability. Here 

we describe the historical climatic changes in the Logone River basin using grid-based 

climatic data during a time of concomitant human hydrological modification of the 

floodplain. Temporal trends were analysed by comparing two periods i.e. 1901/1921-1961 

(pre-1960) and 1961-2013 (post-1960). Trends were analysed spatially based on the basin’s 

two Köppen climatic zones: savanna (Aw) covering the southern upstream areas and semi-

arid hot (BSh) covering the northern downstream areas. The results show significant 

increasing trends in maximum and minimum temperatures and potential evapotranspiration 

(PET), and non-significant decreasing trends in annual rainfall and number of rainy days, 

across the study area. These climatic changes on temporal and spatial scales play an 

important role for the coupled natural and human systems in the Logone floodplain.  

Highlights 

 Spatio-temporal climatic variations play an important role in flooding pattern  

 Maximum/minimum temperatures of the Aw and BSh zones showed increasing trends  

 Decreasing rainfall and increasing PET trends observed in the watershed  
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 Logone basin is getting warmer, impacting flooding pattern of the semi-arid region  

 Hence, socioeconomic consequences increasingly impacted in the downstream of the 

basin  

Keywords: hydro-climatic changes; climatic zones, Logone Floodplain, trends 

1. Introduction 

The global average combined land and ocean surface temperature data show a warming of 

0.85°C (0.65 to 1.06°C), over the period of 1880–2012 as calculated by a linear trend 

(Hartman et al. 2013). The change in temperature and rainfall have significant impact upon 

hydrological parameters, viz. runoff, evapotranspiration, soil moisture and groundwater 

(Goyal 2004). Nevertheless, it is not obvious how these temperature-sensitive hydroclimatic 

factors interact to impact net fluxes of regional water cycles (Milly et al. 2005), especially as 

temperature and rainfall are expected to show considerable spatial variability. For example, 

changes in evapotranspiration (ET) exhibit tremendous spatial variation (Abtew et al. 2011; 

Shadmani et al. 2012; Spinoni et al. 2017). The changes in hydrological parameters can have 

profound disruptive effects on water availability, floods, agricultural productivity and 

ecosystem at local and regional levels; analysis of hydroclimate data is thus imperative to 

understanding the pervasiveness of climate change (Savo et al. 2016).  

 The extensive floodplains in sub-Saharan Africa support human populations of 

millions. These floodplains become inundated when there is overbank flow from the river, a 

process that is well synchronized with the onset of the rainy season and recurs annually 

(Fernández et al. 2016). In many areas, traditional knowledge of the timing and spatial extent 

of this annual flooding season enables a relatively organized web of co-existing economic 

and social activities such as agriculture, fishing, and pastoralism (Acreman and Hollis 1996; 

Thompson and Polet 2000; Westra and De Wulf 2009). As these livelihoods are intimately 

dependent upon flooding, the potential impacts of climate change on the seasonality and 

extent of floods are a major concern across African floodplains (Mitchell 2013). Annual 

flooding is sensitive to spatial and temporal changes in rainfall and temperature, which drive 

processes like evapotranspiration and affect flood characteristics including timing, extent, and 

duration. Since the 1960s, temperatures in Africa have increased but with substantial regional 

variability in the magnitude of warming and rainfall (Boko 2007; Malhi and Wright 2004; 

Nicholson et al. 2000). Over southern and western Africa, there has been an increase in the 

number of warm spells (New et al. 2006). In the tropical rain-forest zone, declines in mean 
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annual rainfall of around 4% in West Africa, 3% in North Congo and 2% in South Congo for 

the period 1960 to 1998 were noted (Malhi and Wright 2004) along with a 10% increase in 

annual rainfall along the Guinean coast (Nicholson et al. 2000). Decreasing rainfall is linked 

to decreasing agricultural production and reduced natural vegetation and threatens livelihoods 

dependent on them (Assan et al. 2009).  

 The Logone River floodplain in the Far North Region of Cameroon covers 

approximately 7,800 km2 and provides vital socio-economic and environmental resources, 

supporting thousands of fishers, farmers and herders as well as globally important wildlife 

(Loth 2004; Scholte 2005). The socio-economy within the floodplain include pastoralism, 

agriculture, and fishing, and are influenced by seasonal flooding dynamics. For example, 

while full pastoralism season extends during the dry months over the inundated area, fishers 

have their peak season (bigger fishes) during the flooding season within the same sector 

(Loth et al. 2004). Since the 1960s, there has been an exponential growth of fishing canals 

and this reflects the increasing dependency on the floodplain by fishers (Laborde et al. 2016). 

Climatic changes along with hydrological structures and management have led to reductions 

in flooding over the past four decades and this has negatively impacted the inhabitants 

dependent on the flooding (Loth 2004; Scholte 2005). Floodplain fish production is driven by 

flooding patterns with a positive relationship between production and flood magnitude 

(Welcomme and Hagborg 1977), and changes in river hydrology threat freshwater fishing 

globally (Vörösmarty et al. 2010). Thus, the sustained wellbeing of the regional population 

presents a need to understand the impact of climate on flood patterns such as magnitude, 

timing and duration.  

The 2007 Intergovernmental Panel on Climate Change (IPCC) described accelerated 

warming of the African continent since the 1960s (Boko et al. 2007). The low-latitude region 

(25ºN-25ºS) in which the Logone river basin falls has responded faster than other areas to 

global change (Mahlstein et al. 2011). Further, over the last half-century, there have been 

well-documented drought across the Sahel (1968-1997) and southern Africa with partial 

recovery in the early 21st century (Nicholson 2001; Christensen et al. 2007). Rainfall in the 

Logone basin and the West African monsoon are linked to the Congo River basin and the 

Walker circulation (Cook and Vizy 2015). These studies highlight the complex relationship 

between different climatic processes and floodplain dynamics. Indeed, addressing this 

complexity is a first step in understanding the regional sensitivity of flooding dependent 

livelihoods to the threat posed by climate change. 
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The Chari/Logone river system contributes approximately 90% of Lake Chad’s water 

(Bastola and Francois 2012) which is a source to more than 30 million people (Leblanc et al. 

2007). The Lake chad is very sensitive to rainfall and flow changes. Therefore, this study 

assesses the long-term climatic variation in the Logone River basin to better understand the 

effect of regional climate changes superimposed upon local disruptions to surface hydrologic 

processes important for floodplain livelihoods. An increase in anthropogenic  activities,  i.e. 

emission of greenhouse gases was observed globally during 1960-1990  (Kittel et al. 1995; 

Hulme et al. 1999). Most of the global climate models (GCMs) consider 1960-1990 as the 

baseline period for the projection of future climate scenarios due to availability of 

observational data and coverage during this period compared to earlier periods. Here we 

examine rainfall, number of rainy days to characterize the hydro-climatic variation over 113 

years, whereas maximum-minimum temperature and potential evapotranspiration (PET) over 

93 years from available gridded datasets, while accounting for the impact of increased 

anthropogenic activity starting in approximately 1960s. Evaluation of these variables can help 

unravel the effect of global climate changes coupled with local disruptions on regional 

surface hydrology. For example, small changes in the Logone watershed rainfall has 

historically produced large variations in the streamflow and annual flooding on the Logone 

floodplain (McDonald 1993). The floodplain has socio-ecological importance as explained 

earlier. The analysis of the climatic variability within these climatic zones will provide a 

more efficient manner for assessing the climatic-ecological changes in the basin. Therefore, 

we perform separate analyses for different climatic zones within the basin, different time 

periods (before and after 1960) and for the dry and rainy season, separately. The main 

objective of the study is to analyze the long-term climatic change in the Logone-Lake Chad 

basin to better understand the influence of the climatic variations in the hydrology of the 

basin. It will provide a baseline of hydroclimatic indicators of the current state of the Logone 

floodplain.  

2. Study Area  

The Logone River is a major tributary of the Chari River located in the Western Central 

African Republic, Northern Cameroon and Southern Chad (Fig. 1). The Pendé River (Eastern 

Logone) in the Central African Republic and the Mbéré River (Western Logone) at the East 

of Cameroon are the two major tributaries of the Logone. The total length of the Logone 

River is about 1000 km with a catchment area of 90,830 km2.  
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Fig. 1. Drainage and elevation map of the Logone river basin with nested grids of 0.5° x 

0.5° resolution  

 The Logone watershed falls into two Köppen–Geiger climatic zones (Köppen 1900; 

Geiger 1954; Kottek et al. 2006): “Tropical wet and dry or Savannah climate” (Aw: upstream 

basin) and “Steppe climate (Semi-arid: downstream floodplain): Hot Steppe (BSh)”. The Aw 

climate is characterized by pronounced dry seasons, with the driest month having rainfall less 

than 60 mm and less than 1/25 of the total annual rainfall. The steppe climates (BSk and BSh) 

are intermediates between the desert and humid climates in ecological characteristics and 

agricultural potential. The upper (southern) basin is classified as Aw and the lower basin as 

BSh. The hydrological connectivity to Aw is crucial to the ecological vitality of the 

floodplain of the basin. The southern basin has a greater topographic variation (elevation 

range 2926 m to 330 m). The northern basin is relatively flat topography (elevation ranges 

from 330 m to 285 m) especially in the floodplain area in the far north. The Aw and BSh 

zones cover approximately 75,130 km2 and 15,700 km2 area of the basin, respectively.    

           The floodplain (located in grids 51 and 52, in Fig. 1) falls within the BSh climatic 

zone. According to available hydroclimatic records, the dry season extends from November 

to April, with more than 80% of year rainfall falling between July and September, average 
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evaporation in excess of 200 mm/month, while temperatures remain above 22°C year-round 

(Fernández et al. 2016). When flooded as a result of seasonal flows of rainfall originating 

from the Aw zone, it serves as habitat for fishes to reproduce and grow as well as fertile land 

for growing rice. Following flood recession, the floodplain supports the growth of other crops 

and its vegetation serves as pastures for cattle and other livestock. The floodplain is 

populated by about 200,000 people on the Cameroonian side (Delclaux et al. 2010). There is 

a clear dependency on flooding to support the livelihoods of floodplain inhabitants. 

The annual flooding of the floodplain is driven by patterns of local rainfall, runoff, 

and overbank flow from the Logone River (Delclaux et al. 2010). The floodplain experiences 

large evapotranspiration fluxes from the surface of open water and emergent vegetation. 

Potential evaporation in this region recorded as about 3m/year (Delclaux et al. 2010). The 

flooding is also driven by hydrology modifying engineering projects. These include the 

construction of Maga dam for rice production (Fig. 1), the use of flood defence embankments 

along the banks of the Logone River and construction of anthropogenic fish canals (Loth 

2004; Scholte 2005; Laborde et al. 2016; Moritz et al. 2016). Overbank flow by the Logone 

River is the primary source for floodplain inundation (Delclaux et al. 2010). MacDonald 

(1993) investigated the relationship between rainfall and runoff of the upper Chari-Logone 

catchment area, i.e. the Aw zone, in Fig. 1. They concluded that (i) small changes in rainfall 

produced large variations in surface runoff, and (ii) two, or even only one year of above or 

below average rainfall resulted in multiple years with above or below average river flows. 

This shows how a short-term or small magnitude of climatic forcing may affect the long-term 

hydrologic behavior of the basin.    

3. Data and Methods 

We used the gridded dataset for analysis because of the low density and discontinuous 

instrumental records, the best option to better provide a baseline for studies on future 

hydroclimate in the region are gridded products. Among those, gridded products based on 

interpolation (such as Climate Research Unit) seems to be better qualified to represent the 

climatology of the region, given that reanalysis data is usually too short (e.g. ERA and 

MERRA), too coarse (e.g. NCAR NCEP). Fifty-four 0.5° x 0.5° resolution grid cells of the 

CRU dataset cover the entire Logone basin (Fig. 1). Fifteen of these grid cells fall in the BSh 

(northern downstream) zone, while 39 fall in the Aw (southern upstream) zone based on the 

long-term averages. The CRU TS 3.22 dataset is based upon more than 4000 weather stations 

globally. The monthly data set (0.5°x0.5°) includes the following climatic variables: mean, 
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maximum and minimum temperatures; rainfall, number of rainy days, vapour pressure, 

potential evapotranspiration (PET) and cloud cover. The data were downloaded from Centre 

of Environmental Data Archival (http://badc.nerc.ac.uk). A detailed description of the 

datasets is given by Harris et al. (2014). Most data are available for the duration of 1901-

2013. Using CRU fields implies certain smoothing of the climatology of the study area, but 

given this is a data-sparse region, few instrumental records are available to study long-term 

behavior and they are often discontinuous. This problem has led previous studies to use 

available gridded datasets, especially CRU (Mahmood et al. 2019). Mahmood and Jia (2018) 

suggested that the CRU data can be used with high confidence. We likewise attempted to 

compile all available records to perform validation of the CRU data, finding 6 stations that 

registered temperatures during the analysed period and 10 for rainfall, in both cases with 

discontinuous coverage (given in supporing documents; Table S1). Maroua station presented 

a continuous record during the whole studied period, but only for rainfall. All other records 

presented shorter records, with an average length of 40 years. However, this nominal length 

includes years with incomplete monthly coverage. Annual averages for temperatures and total 

sums for rainfall from instrumental observations were only calculated for years where all 

months had records, reducing the effective sample for comparison, especially for 

temperatures. Correlations between these observations and the corresponding CRU grid box 

are generally statistically significant at alpha=0.1, except for two temperature records, while 

the temperature bias mostly negative and small (within a degree); the highest bias is about 

+10% for rainfall considering that the annual rainfall of the grid is ~1000 mm (Fernández et 

al. 2016) (Table S1: refer calculated mean bias for rainfall and Fig. 2: grid-wise annual 

rainfall over the basin). We determined that some of the pre-1960 data appeared to contain 

artifacts, and therefore pre-1960 trend analyses were conducted using slightly different 

durations for each hydro-climatic parameter. We compare streamflow data at the Bongor 

station (1954-1995) to basin rainfall. The streamflow data are described in detail by 

Fernandez et al. (2016). 

We analyzed temporal variation of climatic parameters (rainfall, number of rainy 

days, maximum and minimum temperatures, and potential evapotranspiration) of each grid in 

the basin using Mann Kendall (MK) test for non-auto-correlated and Modified Mann Kendall 

(MMK) test for auto-correlated series for trend detection (Anderson 1942; Mann 1945; 

Kendall 1955; Yue et al. 2002; Basistha et al. 2009), and Theil and Sen’s slope estimator test 

(Theil 1950; Sen 1968) for estimation of the magnitude of trend slope. The significance of 

http://badc.nerc.ac.uk/
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auto-correlation up to the lag-3 was found by Students’s t-test (Cunderlik and Burn, 2004). 

The percent change over the mean was calculated using Theil and Sen’s slope estimator. The 

significance of simple linear regression of annual climatic parameters of the climatic zones of 

the basin was analyzed using a t-test (Haan 1995). Trend analysis of streamflow at Bongor 

could not be performed due to lack of continuous data over a given time period.   

 Statistical significance of each trend was tested at the 10% significance level. Trend 

analysis of climatic data was performed for three durations: for the entire duration 

(1901/1921-2013), and for two partial durations: 1901/1921-1960 (pre-1960) and 1961-2013 

(post-1960), which are intended to represent before and after accelerated anthropogenic 

activities, respectively. We also compute separate trends for different climatic zones within 

the basin, and for  dry and rainy seasons. Note that for temperatures and PET, trends were 

computed beginning in 1921 due to data quality and availability issues.  

4. Results  

The spatial distribution of the climatic parameters across the basin is shown in Fig. 2. The 

rainfall and number of rainy days decreases from the upstream (south, Aw) to downstream 

(north, BSh) of the basin. Rainfall to the far south reaches 1550 mm/year, whereas in the 

north it reaches a minimum of 500 mm/year, over a factor of three less than in the 

headwaters. Temperature and PET increase from upstream to downstream of the basin, and 

also show large spatial variations of 6°C and 900 mm/year, respectively.  
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Fig. 2. Spatial distribution of annual climatic parameters over the Logone basin, 

including (a) Rainfall, (b) Number of Rainy Days, (c) Maximum Temperature, (d) 

Minimum Temperature and (e) PET   

4.1 Changes in Annual Climatic Parameters 

4.1.1 Temporal Variability Summarized by Climate Zones 

The linear trend line equations and t-statistics for annual rainfall of both climatic zones for 

the entire duration are given in Fig. 3a. Annual rainfall decreased in both climatic zones over 

the entire duration (Fig. 3a). The regression equations for number of rainy days are y = -

0.0195x + 96.697 (t=-1.427) and y = -0.0135x + 48.169 (t=-1.241) for Aw and BSh climatic 

zones, respectively. A non-significant decreasing trend was observed in annual rainfall and 

number of rainy days of both climatic zones of the basin from 1901-2013 (Fig. 3a &Table 

S2).  
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Fig. 3. Annual time series with a linear regression trend line (a) Rainfall, (b) Maximum 

and (c) Minimum Temperatures (Note: Solid, dotted and dashed lines represent linear trend lines 

during the entire, pre-1960 and post-1960 durations,respectively. Blue and black colour lines indicate the trend 

lines for Aw and BSh zones, respectively.) 
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The time-series of average annual maximum and minimum temperatures in the two 

climatic zones are shown in Fig. 3b and 3c with linear regression trend lines. Positive slopes 

of trend lines for the entire duration (1921-2013) indicate warming in both zones. 

Furthermore, negative slopes of linear regression trend lines during pre-1960 for maximum 

and minimum temperatures in the BSh zone suggest cooling (Table S2), contrasting with 

trends in Aw during this period (Table S2). The steeper, positive slopes for all the 

temperature series during post-1960 in both zones suggest an accelerated warming effect. The 

regression equation and trend line significance are given in Fig. 3b and 3c. Significant 

increasing trends were observed in maximum and minimum temperatures of the both climatic 

zones of the basin, except for the maximum temperature of the Aw zone during pre-1960. For 

BSh, maximum temperature increases faster than minimum temperature whereas minimum 

temperature increases faster than the maximum temperature for Aw zone (Figure 3b and 3c). 

The regression equation of climatic parameters for Aw and BSh zones for all duration is 

given in supporting material (Table S2).  

4.1.2 Spatio-temporal Variability Summarized Grid by Grid   

The trend analyses for rainfall, temperatures (maximum and minimum) and PET for all three 

durations and two climatic zones are shown in Fig. 4. The Z-statistics values of MK/MMK 

test are given in the supporting material for entire duration (Table S3).  
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Fig. 4. Z-statistics of annual climatic parameters for Aw and BSh climatic zones of the basin for three durations. (Note: Positive and negative 

Z-statistic values indicate increasing and decreasing trends, respectively. Z-statistic values outside the range of ±1.645 i.e. dashed lines represent significant trends. Red and 

black color boxes used for Aw and BSh zones, respectively.) 
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 Annual rainfall and the number of rainy days showed an overall decreasing trend over 

the entire duration of 1901-2013 but these trends were not statistically significant. 

Conversely, annual rainfall and rainy days significantly increased during pre-1960 and there 

was a non-significant decreasing trend for post-1960. The trends for annual rainfall and 

number of rainy days did not differ across the Aw and BSh spatial zones.  

The annual maximum and minimum temperatures from 1921-2013 show increasing 

trends in most of the grids of each climatic zone. In general, trends in the BSh zone are more 

clustered relative to those of the Aw zone (Fig. 4) The maximum temperatures in some Aw 

grid cells and for some BSh grid cells have decreasing trends during pre-1960. However, 

during post-1960, all grid cells of both climatic zones show significant increasing trends for 

maximum temperatures. Minimum temperatures showed similar tendencies during the two 

partial durations, with decreasing trends in pre-1960 and significant increasing trends in the 

post-1960 period. The trend reversal of temperatures is more prominent in the BSh zone than 

in Aw. The annual PET increased over the basin from 1921-2013 (Fig. 4). During pre-1960 

period, most of the grid cells had non-significant increasing trends of PET in the Aw climatic 

zone, but significant decreasing trends of PET in the BSh zones. However, significant 

increasing trends have been observed in PET of both climatic zones during post-1960. 

The spatial pattern of trends in annual climatic parameters of both climatic zones of 

the basin is shown in Fig. 5. When considering the entire duration (1901-2013), most grids in 

both climatic zones showed negative changes ranging from -0.1 to -12.4% for annual rainfall 

(Fig. 5-i a,). From pre-1960, all grids in the basin showed positive changes in annual rainfall 

with magnitudes ranging from 2.2 to 28.2% (Fig. 5-ii b). The largest relative changes (>20%) 

occurred in the far north; this represents a major change in direct rainfall on the floodplain. 

Conversely, during post-1960, nearly all grid cells showed a reduction in annual rainfall, with 

magnitudes as low as -14.3% (equivalent to 122.7 mm). The largest relative changes were 

again in the north, and mostly positive, in part because of the lower annual average base 

rainfall there. The most extreme drought conditions occurred during 1968-1997 with some 

recovery in the early 21st century on the floodplain (BSh zone rainfall). The spatial variability 

of the average number of rainy days over the basin (given in supporting material; Figure S1-i 

(a-c)) resembles that for the average annual rainfall. In watershed, on average the rainfall 

intensity got increased across the grids in post-1960 as compared to pre-1960 (See in 

supporting material; Figure S2). However, the rainfall intensity got decreased across the grids 

in the BSh zone in recent duration (See in supporting material; Figure S3). 
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Fig. 5. Variability in annual (i) Rainfall (first row), (ii) Maximum Temperature (second 

row) and (iii) PET (third row) over the basin during (a) 1901/1921-2013, (b) pre-1960 

and (c) post-1960. Shaded grids indicate significant change 

(a) (b) 

(i) 

(c) 
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The spatial pattern of trends in annual maximum temperature is shown in Fig. 5-ii (a-

c). For 1921-2013, the largest trends are observed in the BSh zone, while lesser warming 

and/or cooling occurred throughout the Aw zone. The BSh zone exhibited large temperature 

changes: from pre-1960 there was a -0.1 to -0.7°C change in maximum temperature, and 

during post-1960 there was +1 to +1.8°C change in maximum temperature (Table 1).  

Significant spatial variability in temperature exists in the Aw zone. In northern grid 

cells in the Aw zone, from pre-1960, there were -0.2 to +0.6°C changes in maximum 

temperatures, and +0.5 to +1.3°C changes in maximum temperature post-1960 (Table 1). 

Changes are generally smaller and less likely to be significant in the Logone headwaters, to 

the south. A similar spatial pattern was observed in annual minimum temperature (not shown, 

provided as supporting material; Figure S1-ii).  

The greatest change (+3 to +4%) in PET is observed in grids of BSh zone during post-

1960 (Fig. 5-iii c). The percent of change of annual PET has increased from upstream (Aw) 

to downstream (BSh) of the basin.  

4.1.3 Change Magnitudes of Annual Climatic Parameters by Climatic zones 

Table 1 summarizes the magnitudes of changes in climatic parameters across the two climatic 

zones for the entire and two partial durations. The magnitudes are summarized in terms of 

spatial average based on all grid cells within each climatic zone, the significance of the mean 

change, and the range (minimum and maximum evaluated across grid cells). 

Table 1: Magnitude of climatic parameter change. Values of the spatial minimum, 

maximum, and mean (in parentheses) are shown, and * indicates a significant change 

(in either direction) based on MK/MMK test at alpha = 0.1. 

Zone 
Parameter/ 

Duration 

Rainfall 

(mm) 

Rainy 

Days 

(Days) 

Max Temp 

(°C) 

Min Temp 

(°C) 

PET  

(mm) 

Aw 

1901/1921-

2013 

-112 to +21 

(-33) 

-5 to -1 

(-2) 

0.0 to +0.5 

(+0.2) 

+0.2 to +0.6 

(+0.3)* 

-16 to +15 

(+2) 

Pre-1960 
+32 to +246 

(+138)* 

+3 to +9 

(+5)* 

-0.2 to +0.6 

(+0.3)* 

-0.3 to +0.6 

(+0.2)* 

-9 to +8  

(+1) 

Post-1960 
-164 to +41 

(-64) 

-6 to +1 

(-2) 

+0.5 to +1.3 

(+0.8)* 

+0.8 to +1.3 

(+1.0) 

0 to +50 

(+24)* 

BSh 

1901/1921-

2013 

-103 to +10 

(-32) 

-2 to 0 

(-2) 

+0.3 to +0.8 

(+0.5)* 

+0.3 to +0.7 

(+0.5)* 

-19 to +29 

(+10) 

Pre-1960 
+27 to +162 

(+126)* 

+2 to +5 

(+3)* 

-0.7 to -0.1 

(-0.4)* 

-0.8 to -0.3 

(-0.5)* 

-10 to +15 

(+5) 

Post-1960 
-64 to +111 

(+0.4) 

-2 to +2 

(0) 

+1.0 to +1.8 

(+1.4)* 

+1.1 to +1.3 

(+1.2)* 

+26 to +72 

 (+53)* 
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 The estimated change magnitudes suggest a reduction of annual rainfall by about 33 

mm across both climatic zones over the entire duration (1901-2013). Although the average 

magnitude of reduction is statistically non-significant (t-value=-1.444), the rainfall changes at 

individual grid cells range from -112 to +21 mm across the Aw zone. Analysis based on the 

initial period (1901-1960), suggests a significant (t-value=2.541) increase in rainfall with 

average change of about +138 mm, and a range of +32 to +246 mm across Aw. These trends 

seem to have reversed in the Aw zone during 1961-2013 with an average change of about -64 

mm and a range of -164 to -41 mm. Similarly, rainfall increased in the BSh zone in the earlier 

period by an average of 126 mm; this change is statistically significant, and relatively large 

(nearly 20%) compared to average annual rainfall of 740 mm, in this zone.  

The annual maximum and minimum temperatures showed increasing trends during 

both the durations with an increase of about 0.8°C and 1.0°C during 1961-2013 compared to 

0.3°C and 0.2°C during 1901-61 in Aw climatic zone. The annual maximum and minimum 

temperature showed decreasing trend (-0.4°C and -0.5°C) during 1921-1960, which gets 

reversed as increasing trend (1.4°C and 1.2°C) during 1961-2013 in BSh climatic zone. 

4.2 Changes in Seasonal Climatic Parameters 

4.2.1 Rainy Season  

Trend analyses for all climatic parameters evaluated for the rainy season are shown in Table 

2, where the number of grid cells showing increasing or decreasing trend is presented, broken 

out by statistical significance. Changes in rainy season rainfall across grid cells over three 

periods showed mixed levels of significant change. Over the entire period, for the Aw zone, 

16 out of  39  grid cells show an increase in rainfall, but a decrease in rainy days, although 

none of these changes are statistically significant. However, such changes are suggestive that 

rainfall intensity may be increasing on average, leading to more rainfall in fewer events. 

Approximately 58% of the grid cells located in the Aw zone showed decreasing rainy season 

rainfall with  significant decrease in 3 grid cells. Rainfall during rainy season increased in 

only 2 out of 15 grids cells in the BSh zone with remaining most of the cells showing the 

non-significant decreasing change over the entire period.   
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Table 2: Number of grids showing increasing and decreasing trends in the climatic 

parameters for Aw and BSh climatic zones of the basin during the rainy season  

 

Climatic 

Parameters 

Zones Aw BSh 

Trend 

1
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1
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6
0
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9
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1
9

0
1

/2
1

-2
0
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1
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6
0
 

P
o

st
-

1
9

6
0
 

Rainfall 
Increasing 0|16 31|39 0|4 0|2 12|15 1|6 

Decreasing 3|23 0|0 3|35 1|13 0|0 0|9 

#Rainy days 
Increasing 0|0 33|39 0|3 0|0 8|15 0|4 

Decreasing 1|39 0|0 2|36 0|15 0|0 0|11 

Maximum 

temperature 

Increasing 28|38 14|26 39|39 15|15 0|0 15|15 

Decreasing 0|1 7|13 0|0 0|0 15|15 0|0 

Minimum 

temperature 

Increasing 39|39 15|27 39|0 15|0 0|0 15|15 

Decreasing 0|0 2|12 0|0 0|0 14|15 0|0 

PET 
Increasing 11|27 13|27 26|36 7|12 0|0 14|15 

Decreasing 6|12 6|12 0|3 1|3 15|15 0|0 
Note: The denominator represents the total number of grids with increasing/decreasing trends and the 

numerator represent the number of grids showing statistically significant trends at 10% significance level 

(MK/MMK test). 

A significant increasing trend was observed in both maximum and minimum 

temperatures for most of the grid cells during the entire period, as well as for the data since 

1960, for both the climatic zones. Most of the grid cells in Aw and BSh climatic zones 

showed increasing maximum and minimum temperatures for the entire period except, 1 grid 

cell showed non-significnt decreasing trends during the rainy season. The maximum and 

minimum rainy season’s temperatures for both climatic zones behave differently during the 

pre-1960. The significant increasing maximum temperature trends were observed for most of 

the grids of the Aw 14 zone and whereas significant decreasing trends were observed for all 

15 grid cells for BSh climatic zones during pre-1960. Increasing trends were observed in 

seasonal PET for both climatic zones during all durations, except for the BSh zone from pre-

1960.  

The magnitude of changes in climatic parameters across the two climatic zones for the 

entire and two partial durations for rainy season are given in Table S4 and Figure S4. It 

indicates that on average the rainfall is decreased by -4.7% in Aw zone whereas increased by 

1.4% in BSh zones during the recent years. Both maximum and minimum temperatures are 

increased by 0.8°C in Aw zone. Also, the temperatures of the BSh zone are increased by 

1.4°C during the recent years. It indicates that the basin is getting warmer and facing the 

water scarcity problems in recent years.  
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4.2.2 Dry Season 

Results from the trend analyses for all climatic parameters evaluated for the dry season are 

shown in Table 3. A significant decreasing trend was observed in dry season rainfall over the 

entire study period for both the climatic zones. A non-significant decreasing trend was 

observed in dry season rainfall for the Aw climatic zone during both partial series. Significant 

decreasing and increasing trends were observed in rainfall of dry season during the pre-1960 

and post-1960 for the BSh climatic zone, respectively.   

The number of rainy days during the dry season significantly decreased over the 

period from 1901-2013. Non-significant and significant decreasing trends were observed in 

the number of rainy days of dry season during the pre-1960 for Aw and BSh climatic zones 

respectively. In contrast, the non-significant increasing trends were observed in the number of 

dry season rainy days for the BSh zone during the recent duration.  

Table 3: Number of grids showing increasing/ decreasing trends in the climatic 

parameters for Aw and BSh climatic zones of the basin during the dry season  

Climatic 

Parameter 

Zones Aw BSh 

Trend 
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Rainfall 
Increasing 0/0 0/7 1/19 0/0 0/0 8/14 

Decreasing 36/39 5/32 1/20 

12/1

5 9/15 0/1 

# Rainy Days 
Increasing 0/3 3/14 0/12 0/1 2/3 1/15 

Decreasing 33/36 4/25 0/27 9/14 9/12 0/0 

Maximum 

Temperature 

Increasing 1/15 27/39 39/39 0/13 3/9 15/15 

Decreasing 0/24 0/0 0/0 0/2 0/6 0/0 

Minimum 

Temperature 

Increasing 1/39 13/31 39/0 1/15 0/0 15/15 

Decreasing 0/0 0/8 0/0 0/0 5/15 0/0 

PET 
Increasing 0/20 16/34 16/39 0/9 0/0 15/15 

Decreasing 1/19 0/5 0/0 2/6 5/15 0/0 
Note: Value in denominator represents the total number of grids with increasing/decreasing trends. Value in 

numerator represents the number of grids showing statistically significant trends at 10% significance level 

(MK/MMK test). 

A non-significant decreasing trend was observed for dry season maximum 

temperature over the entire duration. However, a significant increasing trend was observed 

during recent years. A non-significant decreasing trend was observed in maximum dry season 

temperature during pre-1960 for the BSh zone. A non-significant increasing trend was 

observed in minimum temperature of dry season for both the climatic zones during the entire 
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duration, whereas both climatic zones show a significant increasing trend in minimum 

temperature of the dry season during the recent duration. Increasing trends were observed in 

seasonal PET for the grid cells of both climatic zones during all durations, except for the BSh 

zone from pre-1960. The magnitude of changes in climatic parameters across the two climatic 

zones for the entire and two partial durations during rainy season are given in Table S4. It 

indicates that on average dry season maximum and minimum temperatures are increased by 

0.8°C and 1.3°C for Aw climatic zone whereas by 1.3°C for BSh zones, indicating the basin 

is getting more dry/hot during the dry season during the recent years.  

5. Discussion 

Impacts of climatic changes on floodplain hydrologic processes 

In the Logone floodplain and other African floodplains, seasonal flooding is important as a 

source of life, supporting agriculture, fishery and pastoralism (Loth 2004). Too much or 

inadequate flooding negatively impact the lives and livelihoods of populations in floodplains. 

Changes in the BSh zone rainfall and PET directly impact the water balance of the floodplain, 

with both terms playing a major role in driving floodplain mass balance (Delclaux et al. 2010; 

Fernandez et al. 2016). In contrast, climatic variations in the Aw zone rainfall and PET are 

expected to change the flows and flow patterns of the Logone River, driving variations in 

overbank flooding, which is the primary control on floodplain inundation. This will lead to 

changes in the inundation extent of the floodplains that would eventually affect fish 

migration, geomorphology, as well as the vegetation distribution. 

Our results highlight the importance of rainfall temporal variability on the floodplain. 

Detected changes in rainfall during the study period may determine fluctuations in the 

flooding patters. Although rainy season rainfall does not show a significant change, the 

increase in the number of rainy days, the rainfall decrease in the dry season together with less 

rainy days, suggest a more concentrated period of rain, perhaps changing flooding seasonality 

and intensity. This may be leading to more uncertainty in the timing of activities of 

pastoralism and fishing or introduce additional pressures to operating socio-ecological 

feedbacks. For example, Laborde et al. (2016) report an increasing trend in fishing canals, 

built to maximize capture and profit, and demonstrate that they impact the local hydrology. 

These fishing canals are most utilized during the flooding recession; more concentrated 

rainfall may make more difficult this activity as the flooding recession may become less 

predictable.   
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Analysing more specifically each climatic zone,  the floodplain which falls in the BSh 

zone, the long-term (pre-1960) increase in rainfall of approximately 20% would be expected 

to lead to changes in floodplain inundation, and floodplain industries. This impact of rainfall 

variations on livelihoods is in agreement with other semi-arid regions (The World Bank 

2009). Understanding the historical variations of rainfall in the BSh zone over the floodplain 

is important in the design of experiments for exploring the role of future climate variations on 

floodplain inundation.  

The impact of rainfall variations on overbank flow can be assessed by relating rainfall 

in the Aw zone to streamflow at the Bongor gauging station (see Fig. 1). Rainfall and 

streamflow from 1954-1995 are plotted in Fig. 6. There is a strong correlation between the 

two quantities, with R2=0.64. This time period was limited by the availability of runoff data. 

The trend line between rainfall and runoff has a slope of approximately 0.4 (Fig. 6b); it also 

reinforces the finding of MacDonald (1993) that small changes in rainfall lead to large 

changes in streamflow. For example, a decrease in rainfall from 1200 to 1000 mm/year is a 

change of just 17% in terms of rainfall, but leads to a change from 262 to 177 mm/year of 

streamflow, a change of 32% in terms of streamflow. Given that our analysis indicates that 

multi-decadal changes of over 100 mm/year have occurred for pre-1960, these dynamics are 

of utmost importance in understanding possible future changes in floodplain inundation. Note 

that there is a significant decreasing trend in both rainfall and runoff from 1954-1995. 

Comparison with Fig. 5 (i-c) indicates that rainfall increased again from 1995-2013. 

 

Fig. 6. (a) Annual Rainfall of contributing grids in Aw zone and annual streamflow 

trend line and (b) Relationship between rainfall of Aw zone and streamflow at Bongor 

 Evapotranspiration plays a major role in the floodplain water balance in the BSh zone 

(Delclaux et al. 2010), as well as driving the runoff processes controlling Logone streamflow 
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in the Aw zone. Indeed, with annual rainfall and PET of approximately 1200 and 1600 

mm/year, respectively, runoff in the Logone watershed is slightly water limited; changes in 

PET would be expected to impact streamflow. The 53 mm PET increase in the BSh zone 

doubles that observed in the Aw zone. Given that actual ET fluxes from the floodplain itself 

can be greater than two meters based on pan evaporation measurements (Delclaux et al. 

2010), past changes will not likely impact the overall water balance of the floodplain directly. 

Similarly, the 24 mm increase in PET in the Aw zone will not likely impact the Logone 

streamflow enough to cause significant changes in inundation. As a measure of 

evapotranspiration independent of surface conditions, PET will differ from actual ET 

(Shelton, 2009), but increased PET demands and lack of soil moisture during critical growth 

stages of crops may have considerable impacts on productivity in the region. The relationship 

between PET and actual ET also depends on crop type, and antecedent soil moisture 

conditions (Allen et al. 1998). Furthermore, increased PET demands and lack of soil moisture 

during critical growth stages of crops may have considerable impacts on crop productivity in 

the region.  

The observed temperature changes will not directly impact inundation processes, but 

may disturb fishery operation, agriculture, and other social and ecological systems on the 

floodplain due to its relationship with atmosphere moisture capacity and hence rainfall 

intensity (Westra et al. 2014). Prior studies indicate a warming trend over the African 

continent since the 1960s, but these changes are not always uniform spatially (Boko et al. 

2007; Rubel and Kottek 2010; Nash et al. 2016). McSweeney et al. (2010) reported that the 

number of very hot days per year doubled since the 1960s in West Africa. Our analysis shows 

significant increases in annual maximum and minimum temperatures with an increase of 

about 0.8°C and 1.0°C during post-1960 compared to 0.3°C and 0.2°C during pre-1960 in 

Aw climatic zone respectively. The annual maximum and minimum temperatures showed 

decreasing trend (maximum = -0.4°C and minimum = -0.5°C) during pre-1960 with an 

increasing trend (maximum = 1.4°C and minimum = 1.2°C) during post-1960 in the BSh 

climatic zone. The rate of increased minimum temperature is higher than the maximum 

temperature in both climatic zones. A perceived change in temperatures and rainfall patterns 

causes reduction in crop production or causes a change in soil moisture conditions 

(Sonneveld et al. 2011). We found significant spatial and temporal variation in climatic 

parameters across the Logone River basin associated with flooding on the downstream 

Logone floodplain. The changes in rainfall and PET will impact the spatial patterns of water 
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availability, which will influence the social-ecological systems in the Logone Floodplain. 

Changes in rainfall may affect the streamflow of the river and its flooding patterns, which 

shape the vegetation and fish populations in the floodplain, which directly affect the 

livelihoods of herders and fishers respectively. 

6. Conclusions  

The impact of long-term climatic variations were examined using the CRU dataset in this 

study considering its possible impacts on flooding. This dataset is the best available database 

because it is a trade-off between long-term continuity and spatial resolution, which makes it a 

better choice relative to in-situ observations and reanalyses. Specifically, rainfall across the 

Aw (upstream south, mainly in the watershed region) region is a key driver of flooding. 

Rainfall significantly increased in the pre-1960 period, but decreased post-1960, compared to 

the long-term basin average. Temperatures and PET increased over the entire 1901/1921-

2013 period, with the largest increase post-1960. However, the magnitude of PET changes 

over this period are not enough to significantly impact either the hydrologic balance on the 

floodplain or downstream Logone discharge.  

The increasing trends in minimum, as well as maximum temperatures suggest a shift 

in magnitude as well as the spatial extent of the temperature regimes, causing a northward 

shift in the boundaries of the climatic zones. This shift in temperature regimes may have 

serious implications for agriculture by reducing rainfed practices in the basin. Moreover, the 

hydroclimatic trends over the floodplain itself (i.e. over the BSh zone) are distinct from those 

over the large Logone River watershed (the Aw zone). Thus, projections of climate change 

impacts on future flooding in the floodplain need to consider the cumulative influence of 

these two climatically different regions. Further studies can be done using different datasets 

such as Coordinated Regional Climate Downscaling Experiment (CORDEX) which have a 

finer temporal resolution than CRU. Also, this dataset offers both historical and projected 

climate. It is important to quantify the impact of future climatic changes on the hydrological 

process and floodplain dynamics of the region using Global Climate Models and hydrological 

modeling. Therefore, it is useful to analyse the spatio-temporal changes of future climate of 

the Logone basin which is helpful in the planning of adaptation and mitigation policies to 

cope with anticipated consequences of future climate variability on flooding pattern.  
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Supporting Material 

Table S1: Comparison between instrumental observations and the value of the 

corresponding CRU grid. GHCN corresponds to Global Historical Climatology 

Network (https://www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-

datasets/global-historical-climatology-network-ghcn).  

Name and Location Grids Length of record Variable Source Years 

compared 

Correlation  

(p-value) 

Mean bias 

MOUNDOU 

8.62ºN, 16.07ºE 

29 38 (1951-1996) Temperature 

 

GHCN 18 0.1 -0.08ºC 

MAROUA-SALAK 

10.45ºN, 14.25ºE 

38 46 (1954-2000) 

113 (1901-2013) 

Temperature 

Rainfall 

GHCN 

in-situ 

25 

113 

0.42* 

0.97* 

-0.57ºC 

49.5 mm 

NGAOUNDERE 

7.35ºN, 13.57ºE 

7 49 (1951-2004) 

40 (1951-1990) 

Temperature 

Rainfall 

GHCN 

Asmita 

27 

40 

0.13 

0.71* 

1.31ºC 

-36.2 mm 

BOUSSO 

10.48ºN, 16.72ºE 

42 24 (1955-1978) Temperature GHCN 18 0.66* -0.7ºC 

MEIGANGA 

6.53ºN, 14.37ºE 

1 21(1951-1981) Temperature GHCN 16 0.49* 0.2ºC 

NDJAMENA  

12.13ºN, 15.03ºE 

54 60 (1949-2013) Temperature GHCN 23 0.77* -0.27ºC 

BAINAMAR 

8.7ºN, 15.4ºE 

27 41 (1951-1991) Rainfall GHCN 35 0.99* -69.1 mm 

KAIROUAL 

9.5ºN, 15.2ºE 

34 29 (1955-1992) Rainfall GHCN 23 0.53* 48.4 mm 

GOUNOU-GAYA 

9.6ºN, 15.5ºE 

35 40 (1951-1993) Rainfall GHCN 35 0.95* -108 mm 

TIKEM 

9.8ºN, 15ºE 

34 36 (1955-1992) Rainfall GHCN 28 0.58* 9.2 mm 

KELO 

9.4ºN, 15.8ºE 

31 43 (1946-1993) Rainfall GHCN 40 0.96* 4.7 mm 

FIANG CFPA 

9.9ºN, 15.2ºE 

34 41 (1951-1992) Rainfall GHCN 33 0.95* 75.8 mm 

TAUBORO 

7.77ºN, 15.12ºE 

18 48 (1955-2000) Rainfall in-situ 48 0.45* -2.6 mm 

Note: Asterisks (*) indicates correlation statistically significant at alpha = 0.1. The source of in-situ data is collected from 

administrative divison of Logone-Chari divison (received from our Cameroon colloborators). 
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Table S2: Regression equation of climatic parameters for Aw and BSh zones 

Zones 
Climatic 

Parameters 
Entire Duration  Pre-1960 Post-1960 

Aw 

Rainfall 
y=-0.2723x+1221.7  

(R2=0.01) (t=-0.798) 

y = 2.2995x - 3216.2 

(R2=0.10) 

y = -1.3856x + 3940.3 

(R2=0.04) 

Rainy Days 
y = -0.0195x + 96.697 

(R2=0.02) 

y = 0.0947x + 93.715 

(R2=0.13) 

y = -0.0481x + 95.73 

(R2=0.03) 

Maximum 

Temperature 

y=0.0022x+32.049  

(R2=0.03) (t=1.549) 

y = 0.0059x + 20.665 

(R2=0.06) 

y = 0.0148x + 2.7541 

(R2=0.28) 

Minimum 

Temperature 

y = 0.0034x + 18.814  

(R2=0.07) (t=2.489*) 

y = 0.0045x + 10.337 

(R2=0.04) 

y = 0.0181x - 16.981 

(R2=0.40) 

PET 
y = 0.0209x + 1471.5  

(R2=0.00) 

y = 0.1702x + 1471.8 

(R2=0.04) 

 y = 0.4507x + 1458.3 

(R2=0.11) 

BSh 

Rainfall 
y=-0.3217x+1355.3  

(R2=0.01) (t=1.022) 

y = 1.9747x - 3064.5 

(R2=0.09) 

y = 0.0076x + 685.82 

(R2=0.00) 

Rainy Days 
y = -0.0135x + 48.169 

(R2=0.04) 

y = 0.0496x + 46.62 

(R2=0.06) 

y = -0.0022x + 46.628 

(R2=0.00) 

Maximum 

Temperature 

y = 0.006x + 34.75  

(R2=0.11) (t=3.369*) 

y = -0.0109x + 56.123 

(R2=0.11) 

y = 0.0262x - 16.94 

(R2=0.50) 

Minimum 

Temperature 

y = 0.0054x + 20.373 

 (R2=0.10) (t=3.19*) 

y = -0.0119x + 43.644 

(R2=0.13) 

y = 0.0234x - 25.743 

(R2=0.52) 

PET 
y = 0.13x + 1873.2  

(R2=0.02) 

y = -0.6429x + 1892.6 

(R2=0.25) 

y = 0.9921x + 1852.5 

(R2=0.30) 

Note: Significance of trend line is indictaed by *. 
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Table S3: Annual MK/MMK –Z-statistics values for all parameters for the entire 

duration 

Zones Grids Rainfall 
Rainy 

Days 

Minimum 

Temperature 

Maximum 

Temperature 
PET 

Aw 

1 -0.923 -0.635 3.667 2.182 -0.156 

2 -0.566 -0.625 3.708 2.281 1.001 

3 -0.184 -0.749 3.805 2.882 0.475 

4 0.124 -1.303 3.954 3.048 3.369 

5 0.318 -2.099 4.145 3.492 3.43 

6 -1.856 -1.055 3.419 2.081 -0.482 

7 -1.777 -1.241 3.651 2.284 -1.02 

8 -1.308 -0.995 3.8 2.358 -0.367 

9 -0.849 -0.93 3.582 2.54 0.278 

10 -0.514 -0.71 3.833 2.944 1.307 

11 -0.102 -1.38 4.049 3.163 1.716 

12 0.402 -1.873 4.292 3.552 3.49 

13 0.313 -2.253 4.216 3.715 3.796 

14 -1.868 -1.181 3.575 2.192 0.052 

15 -1.437 -1.102 3.686 2.112 0.941 

16 -1.191 -0.958 3.723 2.197 -0.027 

17 -0.779 -0.759 3.798 2.798 1.047 

18 -0.457 -0.603 4.382 3.426 3.495 

19 -0.094 -0.859 4.402 3.607 3.364 

20 0.288 -1.191 4.337 3.645 3.478 

21 -0.633 -1.618 4.353 3.819 4.649 

22 -0.844 -0.754 3.88 2.746 2.269 

23 -0.362 -0.752 3.945 3.123 1.331 

24 0.333 -0.94 4.285 3.702 2.688 

25 -0.186 -1.246 4.41 3.928 3.058 

26 -0.692 -1.648 4.7 4.345 4.458 

27 -0.223 -0.834 3.866 3.058 2.84 

28 -0.087 -1.127 4.372 3.987 2.485 

29 -0.184 -1.275 4.428 3.281 3.459 

30 -0.074 -1.556 4.529 3.994 3.822 

31 -0.203 -1.181 4.155 3.613 1.845 

32 -0.533 -1.213 4.576 4.118 2.863 

33 -0.444 -1.342 4.763 4.025 3.044 

34 -0.489 -1.112 3.485 3.251 1.706 

35 -1.796 -1.273 4.349 4.13 2.615 

36 -1.439 -1.323 4.18 4.09 1.956 

37 -1.151 -1.253 4.222 3.97 2.063 
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38 -1.792 -1.399 4.457 4.058 3.654 

39 -2.144 -1.278 4.82 4.241 3.353 

BSh 

40 -0.417 -0.677 3.065 3.079 -0.129 

41 -0.439 -1.027 3.407 3.197 1.01 

42 -0.337 -1.06 3.669 3.607 1.832 

43 -1.221 -0.288 3.028 2.898 0.516 

44 -0.801 -0.496 3.348 2.986 0.668 

45 -1.067 -0.486 3.59 2.933 1.655 

46 -1.712 -1.519 4.247 3.876 2.425 

47 -1.608 -1.643 4.237 3.731 3.105 

48 -2.223 -1.402 4.756 4.227 3.867 

49 -0.357 -0.829 4.152 3.444 2.565 

50 -0.643 -1.598 4.344 3.599 3.139 

51 -0.429 -1.069 4.229 3.499 3.538 

52 0.082 -1.496 4.616 3.447 2.185 

53 0.298 -0.983 4.496 3.888 2.739 

54 -0.025 -1.385 4.813 3.818 2.661 

Note: Negative and positive values indicate the decreasing and increasing trends, 

respectively. Bold values indicate the significant trends in the annual series for 

entire duration 
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Table S4: Magnitude of climatic parameter change during rainy and dry seasons. 

Values of the spatial minimum, maximum, and mean (in parentheses) are shown 

 Parameter Rainfall  
#Rainy 

Days 
Max Temp Min Temp PET 

Zones Duration mm days ºC ºC mm 

Rainy Season 

Aw 

1901-2013 -98 to 39 (-14) -3 to 0 (-1) 0.1 to 0.7 (0.4) 0.2 to 0.7 (0.4) -10 to 10 (2) 

1901-1960 43 to 245 (142) 2 to 9 (5) -0.5 to 0.6 (0.1) -0.3 to 0.6 (0.2) -5 to 5 (1) 

1961-2013 
-129 to 51 (-

53) 
-5 to 0 (-2) 0.4 to 1.4 (0.8) 0.5 to 1.2 (0.8) -1 to 28 (13) 

BSh 

1901-2013 
-102 to 10 (-

31) 
-2 to 0 (-1) 0.4 to 1.1 (0.8) 0.5 to 0.9 (0.7) -11 to 23 (9) 

1901-1960 29 to 160 (126) 2 to 5 (3) 
-1.1 to -0.6 (-

0.8) 

-0.8 to -0.3 (-

0.5) 
-6 to 12 (5) 

1961-2013 -70 to 111 (3) -2 to 2 (0) 0.9 to 1.9 (1.4) 0.9 to 1.3 (1.1) 11 to 45 (30) 

Dry Season 

Aw 

1901-2013 -34 to 0 (-12) -1 to 0 (-1) -0.2 to 0.3  (0.0) 0.1 to 0.3 (0.2) -7 to 7 (0) 

1901-1960 -20 to 8 (-5) -1 to 1 (0) 0.1 to 0.8 (0.5) -0.2 to 0.7 (0.2) -4 to 4 (0) 

1961-2013 -23 to 8 (-3) 0 to 1 (0) 0.6 to 1.1 (0.8) 1.2 to 1.6 (1.3) 2 to 19 (10) 

BSh 

1901-2013 -3 to 0 (-1) 0 to 0 (0) -0.1 to 0.3 (0.1) 0.1 to 0.4 (0.2) -13 to 7 (-1) 

1901-1960 -5 to 0 (-1) 0 to 1 (0) -0.2 to 0.5 (0.1) 
-0.6 to -0.1 (-

0.4) 
-7 to 4 (0) 

1961-2013 0 to 2 (1) 0 to 1 (0) 0.9 to 1.7 (1.3) 1.2 to 1.5 (1.3) 15 to 26 (20) 
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Fig S1. Spatial variability in annual (i) Rainy Days (first row) and (ii) Minimum 

Temperature (second row) over the basin during (a) 1901/1921-2013, (b) pre-1960 and 

(c) post-1960. Shaded grids indicate significant change. Red and black polygons indicate 

Aw and BSh climatic zones, respectively.  

(ii

) 

(i
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Fig S2. Rainfall intensity during pre-1960 compared with post-1960 across grids in the 

Aw zone (in watershed) 

 

Fig S3. Rainfall intensity during pre-1960 compared with post-1960 across grids in the 

BSh zone (on floodplain)  
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Fig S4. Spatial variability of rainy season (i) Rainfall (first row), (ii) Rainy Days (second 

row), (iii) Maximum Temperature (third row), (iv) Minimum Temperature (fourth row) 

and (v) PET (fifth row) over the basin during (a) 1901/1921-2013, (b) pre-1960 and (c) 

post-1960. Shaded grids indicate significant change. Red and black polygons indicate 

Aw and BSh climatic zones, respectively.  

(iv
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