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Abstract: Component design of rubber-based anti-vibration devices remains a challenge, since
there is a lack of predictive models in the typical regimes encountered by anti-vibration devices
that are deformed to medium dynamic strains (0.5 to 3.5) at medium strain rates (0.5/s to 10/s).
An approach is proposed that demonstrates all non-linear viscoelastic effects such as hysteresis
and cyclic stress softening. As it is based on a free-energy, it is fast and easily implementable.
The fitting parameters behave meaningfully when changing the filler volume fraction. The model
was implemented for use in the commercial finite element software ABAQUS. Examples of how to fit
experimental data and simulations for a variety of carbon black filled natural rubber compounds
are presented.

Keywords: viscoelastic behaviour; modelling; elastomer; cyclic softening

1. Introduction

Suspension is one of the most important systems affecting a vehicle’s ride quality, and it is, therefore,
a key factor in determining a vehicle’s performance. The modelling of bushing force in the automotive
industry plays an important role in predicting the dynamic behaviour of the suspension system.
The viscous behaviour of elastomers makes the use of rubber components essential to reduce the level
of vibrations that are transmitted to the passengers in the vehicle. In particular, natural rubber
is the material of choice for these types of engineering applications. For automotive suspension
components, carbon black is also typically used as a filler to improve the rubber’s mechanical
properties such as the fatigue behaviour or the stiffness. For bushing applications, quasi-static
deformations up to large strains are of major interest. In these particular conditions, the rubber
exhibits non-linear viscoelastic behaviour such as the Mullins Effect, cyclic stress softening, hysteresis
and induced anisotropy [1–5]. This characteristic response is related to the molecular microstructure,
but it is not yet totally understood [6]. Furthermore, these effects are also present in unfilled
strain-crystallizing elastomers as natural rubber [7–10]. Modelling of filled rubber introduces difficulties
related to its nonlinear and incompressible behaviour. Many models try to capture this behavior from a range
of different perspectives. The multiscale nature of polymers is reflected by different computational methods
for specific length and time scales: quantum (∼10−10 m, ∼10−12 s), atomistic (∼10−9 m, ∼10−9–10−6 s),
mesoscopic (∼ 10−6 m, ∼10−6–10−3 s) or macroscopic scale (∼10−3 m, ∼1 s) [11–13]. At the top level,
phenomenological macroscopic models can roughly be classified into three categories [14] damage
models, rheological models with serial and parallel combination of elastic and viscous elements
and the constitutive equations based on a rubber elasticity model. Damage models [15–17] are unable
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to differentiate between an unloading and a subsequent reloading with one consequence being that
they cannot predict the cyclic stress softening phenomenon. Essentially, there is a limitation in
fitting the experimental behaviour as a limitation of the background theory. Rheological Framework
models are models with elastic and viscous components. The Parallel Rheological Framework ([18,19])
is capable of reproducing the full range of nonlinear viscoelastic effects that are under examination,
but it requires a large number of parameters that are very sensitive to the input test data. The dynamic
flocculation model (DFM) assumes the breakdown and reformation of filler aggregates as the main
mechanism [20]. Other physically-based works focus on the binding or sliding of polymer chains on
the fillers surface [21]. Recent Molecular Dynamics (MD) simulations indicate that both phenomena
may play a role [22,23].

Most of these models include softening effects using non-time dependent mathematics,
e.g., by softening the material based on maximum strain or stress measures. In contrast, experiments
clearly show that softening proceeds by repeatedly stretching the material to a predefined load
(cyclic stress softening) or by holding it at constant stretch (stress relaxation) [24]. More specifically,
stress decreases logarithmically [25–27]. In a recent review article [14] it was found that no predictive
model was able to fully reproduce cyclic stress softening to a satisfying quality. In the next sections
a new approach based on a recently proposed model [28] is presented. It is able to account for non-linear
elasticity and strain history effects.

2. Theory

2.1. Free Energy Density

The underlying free energy density is derived on the basis of the extended non-affine tube
model of rubber elasticity [29,30] which was shown to be the best compromise between fitting quality
and number of parameters [31]. In a simplified form it reads

W( Ĩ1, Ĩ∗) =
Gc

2
Ĩ1

1− 1
n Ĩ1

+ 2Ge Ĩ∗ (1)

with

Ĩ1 = I1 − 3 = λ2
1 + λ2

2 + λ2
3 − 3 (2)

Ĩ∗ = I∗ − 3 = λ−1
1 + λ−1

2 + λ−1
3 − 3 (3)

being modified invariants of the left Cauchy Green tensor, expressed by the principal stretches λi.
The straightforward simplifications done to arrive at Equation (1) are outlined in [32]. The parameter
Gc is called crosslink modulus and scales the contribution of crosslinks to the mechanical response.
Accordingly, Ge scales proportionally to the number of trapped entanglements of the polymer [33].
The third parameter n measures the number of statistical segments between network nodes,
which is a measure of elastically effective chain length. For example, natural rubber has a segment
length of about 0.934 nm [34], corresponding to roughly two isoprene units. Fillers are introduced
by assuming that they amplify strain heterogeneously within the matrix by local amplification factors
X [28]. To avoid problems arising from frame references the amplification factors directly act on
the invariants. In the case of Ĩ1 this is reasonable, as it represents the norm of a hypothetical length
within the material. The amplified energy density is then calculated as a superposition of differently
amplified domains

WX( Ĩ1, Xmax, Xmin) =

Xmax∫
Xmin

dX P(X)W(XĨ1, XĨ∗) (4)
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where the distribution of amplification factors is given by

P(X) = (X + C)−χ · χ− 1
(Xmin + C)1−χ − (Xmax + C)1−χ

(5)

The parameter χ gives the width of the distribution and C defines a plateau value around
X = 1. For C = 0 Equation (5) is equivalent to its equivalent in [28]. It is normalized to the interval
[Xmin,Xmax], which is motivated from conservation of the number of rubber-filler structures.
Carrying out the integral given by Equation (4) generates hypergeometrical functions. Additive splitting
of the integrand, as is explained in [32], gives a good approximation containing only elementary functions:

WX(Xmax, Xmin) ≈ 1
2

1
(Xmin+C)1−χ−(Xmax+C)1−χ ·[

Gc Ĩ1+4 Ge Ĩ∗
χ−2

(
(C + Xmin)

1−χ(C + (χ− 1) Xmin)− (C + Xmax)1−χ(C + (χ− 1) Xmax)
)

+Gc n2(χ− 1) Ĩ χ−1
1

(
C Ĩ1 + n

)−χ log
(

Ĩ1 Xmin−n
Ĩ1 Xmax−n

)] (6)

From Equation (6) the hyperelastic stresses can be derived, if Xmin and Xmax are known.
The minimum amplification factor is set to Xmin = 1, which corresponds to the assumption that
there are non-amplified domains (e.g., without filler) within the material.

2.2. Stress Softening

In [28] the maximum amplification factor is defined to be a monotonically decreasing function
of the all-time maximum of the modified first invariant Ĩ1. This naturally introduces immediate stress
softening if the material surpasses the previous maximum strain. As described in the introduction
stress softening is not immediate, but proceeds logarithmically or according to a slow powerlaw.
Generally, logarithmic relaxation in stress f∼− log t can be generated by differential equations
of the form d f /dt∼− exp | f |. From a physical point of view this can be understood in terms
of force-induced hopping over a potential barrier, as formulated by Kramers [35]. It is reasonable
to assume that softening is predominantly happening in the most stretched domains. A crude
approximation of the stress-scaling in this regime gives

f ∼ 1
〈λ〉W(XĨ1, XĨ∗) ≈ 1√

Ĩ1

Ĩ1 Xmax

1− 1
n Ĩ1 Xmax

(7)

where the entanglement part of Equation (1) was neglected, because its influence is small at high strains.
The prefactor 〈λ〉 =

√
Ĩ1 is a frame independent measure of the systems stretch. Heuristically, stress

is also directly scaled by the amplification factor, such that d f /dt∼ dXmax/dt. Using again
the logarithm-generating differential equation d f /dt∼− exp | f | and introducing scaling constants c1

and c2 this gives
dXmax

dt
= − exp

(
−c2 +

1
c1

√
Ĩ1 Xmax

1− 1
n Ĩ1 Xmax

)
· 1

s
(8)

The timescale of zero-load softening given as τsoft = exp(c2) s was put in the exponential
for numerical reasons. In practice, it should be sufficiently long that no significant softening happens
on the timescale of the simulation, if no load is imposed. This means that for Ĩ1 → 0 the result
of Equation (8) is usually small and the maximum amplification factor Xmax stays almost constant.
When the model approaches divergence at Ĩ1 Xmax/n→ 1 the second summand inside the exponential
increases and induces a decrease of Xmax. It shall be noted that a more careful derivation was carried
out in [32] which relates c1 and c2 to temperature and allows the modeling of Mullins effect recovery [6]
at elevated temperatures.
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2.3. Viscoelasticity

Hysteresis is modeled by a single Maxwell element. The problem treated in this work requires
only a narrow range of strain rates such that this procedure is justified. Viscoelastic stress is evolved
according to the differential equation

dσσσvis

dt
= − 1

τc
σσσvis +

dσσσel
dt

(9)

where σσσvis is the viscoelastic stress contribution, τc is the relaxation time scale, and σσσel is the elastic
Cauchy stress derived from the free energy density given by Equation (6).

2.4. Implementation

The model was implemented in Matlab for the hypothetical condition of fully incompressible
material, considering one material point loaded cyclically in the uniaxial direction and in a compressible
full three dimensional form for the finite element analysis. For incompressible materials J = I3 = 1
and the Cauchy stress is related to the free energy density:

σσσel = −pI + 2
(

∂WX
∂I1

+
∂WX
∂I∗

)
B (10)

The scalar p is the hydrostatic pressure (an indeterminate Lagrange multiplier) that can
be determined only from the boundary conditions. B is the left Cauchy-Green deformation tensor.
For compressible materials it is useful to split the deformation into distortional and volumetric
(dilational) parts via a multiplicative decomposition.

F = J1/3F̄ (11)

B = J2/3B̄ (12)

I1 = J2/3 Ī1 (13)

The J1/3 and J2/3 terms are related to the volume changes, while the •̄ terms are a modified
gradient and strain related to the distortional deformations. These decompositions express the stored
energy as W( Ī1(I1, J), Ī∗(I∗, J), J), that can be decomposed into volumetric and isochoric (distortional)
responses (Equation (14)) and give the Cauchy stress [36] as in Equation (15)

W(B) = Wvol(J) + Wiso(B̄). (14)

σσσel( Ī1, Ī∗, J) =
2
J

[
∂WX

∂ Ī1
+

∂WX

∂ Ī∗

]
B̄ + k(J − 1). (15)

The single Prony series element was integrated explicitly and the total stress is defined as:

σσσtot = (1− φ)σσσel + φ σσσvis. (16)

where φ is a fitting constant which is assumed to increase with filler volume fraction. Figure 1 shows
the algorithm developed to implement the model as a user-defined material subroutine (VUMAT)
coded in Fortran for Abaqus/Explicit.

The model requires 10 parameters, plus the bulk modulus in case of compressible material.
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Figure 1. VUMAT Algorithm.

3. Materials and Experiments

Seven compounds supplied by TARRC (Tun Abdul Razak Research Centre, Brickendonbury,
Hertford, UK), were examined. Each compound contained a different volume fraction of carbon black
(FEF N550) that had been mixed into natural rubber (NR, SMR CV60). The compound formulations in
phr (part per hundred of rubber by mass) are given in Table 1.

Table 1. Compound formulation; phr (part per hundred of rubber by mass).

- NR2 NR10 NR20 NR30 NR40 NR50 NR60

Natural Rubber, SMR CV60 100 100 100 100 100 100 100
Carbon Black, FEF N550 2 10 20 30 40 50 60

Process oil, 410 - 1 2 3 4 5 6
Zinc oxide 5 5 5 5 5 5 5
Stearic acid 2 2 2 2 2 2 2

Antioxidant/antiozonant, HPPD 3 3 3 3 3 3 3
Antiozonant wax 2 2 2 2 2 2 2

Sulfur 1.5 1.5 1.5 1.5 1.5 1.5 1.5
Accelerator, CBS 1.5 1.5 1.5 1.5 1.5 1.5 1.5

t90 (min) 15:16 13:50 11:50 10:30 10:00 9:04 7:10

Characterisation of all this materials under cyclic tensile tests is available in [14] and it is briefly
recalled in this section for the sake of completeness. Uniaxial tension tests were conducted using an
Electropulse Instron Test Machine. Cyclic loading, unloading and reloading tests were performed
using four different strain rates of 0.5/s, 1.5/s, 3/s and 6/s. All the specimens had a gauge length
of 12 mm and a cross section of 2 mm × 0.5 mm. The nominal strain, εNOM, was determined as
the ratio of the axial displacement to the original length of a specimen (12 mm). This test was difficult
to conduct because the large strain amplitude and rate approached the limit of the test machine.
To reach the desired strain rates, the specimens had to be short. In addition, the strain rate was too fast
to be reliably measured using the optical strain measuring device. The tensile force was measured
using a 1 kN load cell.

A subset of the results are shown in Figures 2 and 3 for two of the materials. The results display
strong nonlinearity, large hysteresis, complex Mullins behaviour (Figures 2 and 3b), cyclic stress
relaxation (Figure 3a) and permanent set. Full detail of all the experimental results can be found in [14].

In the range of interest the strain rate effect is not a dominant feature, so in the following analysis
it was ignored.
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Figure 2. Stress–strain response of natural rubber filled with 20 phr of carbon black (NR20) when
subjected to cyclic uniaxial tension. Different behaviour of the material after a different pre-strain
is evident.

(a) (b)

Figure 3. Stress–strain response of natural rubber filled with 30 phr of carbon black (NR30) submitted
to cyclic uniaxial tension at 1.5/s. The solid curves are the trends for the first cycle at a given amplitude.
The dotted curves are the trends after the initial cycle at given amplitude. (a) 5 cycles at the same
amplitude, (b) 5 cycles at 4 different strain amplitude.

4. Results

4.1. Sensitivity Analysis

This section shows how each parameter effects the output stress. The initial parameters shown in
Table 2 are used, it is an arbitrary set. The parameter Xmax,0 = Xmax(t = 0) is the boundary condition
of the differential Equation (8).

Table 2. Material parameters used in the sensitivity analysis and in the VUMAT.

Gc Ge φ Xmax,0 χ n c1 c2 C τc k

0.557 0.26 0.33 11.27 2.29 21.56 11.20 2.17 −0.78 0.399 100
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Figure 4 shows the effect of three of those parameters Gc, Ge, Xmax,0 on the predicted outputs.
Figure 5 shows the effect of parameters χ, C and c1. Figure 6 shows the effect of the parameters
c2, n and τc. Figure 7 shows the effect of the parameter φ. Gc and Ge, which respectively represent
the crosslink modulus and entanglement modulus in the extended tube model, influence the stiffness
of the material. The parameter Xmax,0 determines the value of Xmax before any deformation in
the system, and it influences cyclic stress relaxation phenomena. The parameters χ and C characterise
the power law distribution of the amplification factor. They influence the response of the material
in the loading paths, modifying the the level of stress and the dissipated energy and defining
the level of continuum damage due to cyclic stress softening. n, c1,and c2 define the relaxation
of the maximum amplitude factor to predict the continuum damage, so they operate on the response
of the material at a strain higher than 1 and envelop the cyclic stress relaxation process. The constant
c2 scales the zero-load relaxation of the material (which is usually very small), and thus determines,
together with c1 the stress threshold to overcome before softening starts. The parameter φ balances
elastic stresses (including softening) and viscous effects. The timescale τc defines the amount
of dissipated energy.

(a) (b)

(c) (d)

Figure 4. Cont.
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(e) (f)

Figure 4. Influence of parameters. (a,b) show the effect of the parameter Gc; (c,d) show the effect
of the parameter Ge; (e,f) show the effect of the parameter Xmax,0.

(a) (b)

(c) (d)

Figure 5. Cont.
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(e) (f)

Figure 5. Influence of parameters. (a,b) show the effect of the parameter χ; (c,d) show the effect
of the parameter C; and, (e,f) show the effect of the parameter c1.

(a) (b)

(c) (d)

Figure 6. Cont.
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(e) (f)

Figure 6. Influence of parameters. (a,b) show the effect of the parameter c2; (c,d) show the effect
of the parameter n; and, (e,f) show the effect of the parameter τc.

(a) (b)

Figure 7. Influence of parameters. (a,b) show the effect of the parameter φ.

4.2. Model Fit to Experimental Data

Model parameters were determined by minimising the mean square error between the model
predictions and experimental data. Figures 8a–c show comparisons of model predictions for a selection
of materials and loading configurations. For compounds with different amounts of carbon black,
the model accurately reproduces the initial loading curve, relaxation cycles, the Mullins effect
and the pre-strain effect.

(a) (b)

Figure 8. Cont.
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(c)

Figure 8. Comparison of the new model with experimental data loaded with cyclic uniaxial test with
uniform maximum strain amplitude [14]. Subfigures (a–c) show respectively the behaviour for NR2,
NR40 and NR60.

4.3. Effect of Carbon Black Content on the Parameters Used in the New Model

The uniaxial tests, where the compound were stretched cyclically with the step up of maximum
strain amplitude reached, represent a perfect test to highlight all the non linear viscoelastic behaviour
under examination (Mullins effect, cyclic stress softening and permanent set) (Figure 9). The seven
compounds were fitted starting from the material with the smaller amount of filler and using the new
set of parameters as the guess set for the following compound. The best-fit parameters for different
compounds loaded with this strain history show a robust trend with the true carbon black filler volume.

(a) (b)

Figure 9. Comparison of the new model with experimental data for NR30 loaded with cyclic uniaxial
stress with different maximum strain amplitude in step up. Subfigure (a) shows the Nominal Stress
versus time. Subfigure (b) shows the Nominal Stress versus Nominal Strain.

The trend of the parameters with the true Carbon Black (CB) filler volume is presented in Figure 10.

• Gc is the modulus resulting from network crosslink and it is relatively constant with the CB
volume fraction. It is found to be in a typical range for Natural Rubber vulcanizates. There is
a drop in crosslink density at the highest filler loading, whose origin is not clear and may be due
to experimental uncertainties and/or parameter correlations.

• Ge, the modulus resulting from network entanglement, is monotonically increasing with the CB
concentration. This is surprising and lacks a clear explanation up to now. Probably this parameter
somehow captures the increasing low-strain stiffness (Payne effect), even though it was not
designed to fulfil this purpose.

• φ, represents the scaling of the elastic and inelastic part, is proportional to the true filler volume fraction.
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• n, the distance between the network nodes is in a typical range, too. It is constant for the samples
containing less than 30 vol. % of carbon black and then slightly decreases, roughly in accordance with
the small drop in crosslink modulus at these filler concentrations.

• χ, the exponent of the amplification factor distribution, is approximately constant.
• τc, is decreasing with filler volume fraction.
• Xmax,0 is approximately constant with filler volume fraction.
• C is increasing. The parameter was introduced primarily to modify the shape of the virgin loading curve.

A value k > 0 generates a rather linear curve, as is observed for many highly filled compounds.
• c2 decreases with volume fraction and appears to asymptotic. From Equation (8) it can be seen

that exp c2 defines the timescale on which Xmax,0 relaxes without load. The value obtained from
fitting here create an optimal model for the timescale of the fit, but it may fail for longer simulation
times. An optimal determination of c2 and c1 requires a stress relaxation characterisation in
the fitting data.

• c1 increases modestly with volume fraction, probably representing that the rubber-filler structures
to be broken down during softening become more rigid at higher filler loadings.

Moreover, it can be seen that the parameters Ge, C, c1 , φ and τc show some kind of discontinuity
in the range of 9–13 vol. % carbon black loading. This roughly corresponds to the percolation threshold
of the filler network inside the polymer matrix [37].

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 10. Cont.
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(i)

(j)

Figure 10. Trend of he parameters with the true carbon black filler volume Vf . Subfigures (a–j) show
respectively the trend of Gc, Ge, Xmax,0, χ, C, c1, c2, φ, τc and n.

4.4. Finite Element Analysis

Benchmark Tests

This section shows the benchmark tests on a single element model with a simple prescribed
traction loading. The model is a cube of size 0.5 mm and is meshed with 1 linear brick element
with reduced integration (C3D8R). A velocity of 1 mm/s is applied in direction 1 (along the x-axis).
The element was loaded for 5 cycles at constant max strain amplitude using 10 steps. The velocity was
positive (v = 1 mm/s) in the odd steps to stretch the element and negative (v = −1 mm/s) in the even
steps to unload the element. The job was run using double precision. Material parameters are shown
in Table 2. Figures 11 and 12 show the typical output for two different cyclic loading path.

(a) (b)

Figure 11. Test 1: VUMAT output: (a) shows the nominal stress versus time; (b) shows the nominal
strain–stress path with the set of parameters in Table 2.
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(a) (b)

Figure 12. Test 2: VUMAT output: (a) shows the nominal stress; (b) shows the nominal strain–stress
path with the set of parameters in Table 2.

5. Discussion and Conclusions

The new model is based on physical rubber elasticity considerations. The total stress is the weighted
sum of two contributions: an amplified, simplified extended tube model, and a hysteretic part.
The hysteretic part was implemented using a single Maxwell/Prony element. For compounds with
different CB volume fraction the model reproduces the non-linear behaviour under examination: Mullins
effect, cyclic stress relaxation, permanent set, and hysteresis. The model requires 10 material parameters.
The best-fit sets of parameters show a linear or a polynomial trend with the CB volume fraction.
The sensitivity study shows the effect of altering each of the parameters. The FE implementation
of the new model reproduces the expected behaviour. Finite Element Analysis was conducted on
single-element models and on a realistic component. This preliminary investigation demonstrates that
this model is stable when incorporated into a finite element model. The VUMAT works properly with
different structures, and it is able to predict the desired non–linear viscoelastic behaviour. The new
model was already implemented in the Jaguar Land Rover (JLR) suspension tool. The first job carried
out a single cycle at 20 kN on a suspension loaded radially. Preliminary results are reported in Figure 13.
Further studies could focus on the modeling of a broader range of deformation rates potentially
requiring the use of more Prony elements. Moreover, the idea of a static hysteresis, as implemented
using an intrinsic time in [28], deserves further investigation.

Figure 13. JLR toolbox: preliminary results.
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FEF Fast Extruding Furnace
PHR Part per Hundred Rubber
CB Carbon Black
JLR Jaguar Land Rover
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