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Abstract

Several studies show that animal needs are often ex-
pressed through their faces. Though remarkable progress
has been made towards the automatic understanding of hu-
man faces, this has not been the case with animal faces.
There exists significant room for algorithmic advances that
could realize automatic systems for interpreting animal
faces. Besides scientific value, resulting technology will fos-
ter better and cheaper animal care.

We believe the underlying research progress is mainly
obstructed by the lack of an adequately annotated dataset of
animal faces, covering a wide spectrum of animal species.
To this end, we introduce a large-scale, hierarchical an-
notated dataset of animal faces, featuring 22.4K faces
from 350 diverse species and 21 animal orders across bi-
ological taxonomy. These faces are captured ‘in-the-wild’
conditions and are consistently annotated with 9 land-
marks on key facial features. The dataset is structured and
scalable by design; its development underwent four sys-
tematic stages involving rigorous, overall effort of over
6K man-hours. We benchmark it for face alignment us-
ing the existing art under two new problem settings. Re-
sults showcase its challenging nature, unique attributes and
present definite prospects for novel, adaptive, and gener-
alized face-oriented CV algorithms. Further benchmarking
the dataset across face detection and fine-grained recogni-
tion tasks demonstrates its multi-task applications and room
for improvement. The dataset is available at: https:
//fdmaproject.wordpress.com/.

1. Introduction

Animals are a fundamental part of our world. Their needs
are often expressed through faces which, if understood
properly, can help us improve the well-being of animals in
labs, farms and homes. Behavioural and neurophysiologi-
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Figure 1: AnimalWeb: We introduce a large-scale, hierarchical
dataset of annotated animal faces featuring diverse species while
covering a broader spectrum of animal biological taxonomy. It
exhibits unique challenges e.g., large biodiversity in species, high
variations in pose, scale, appearance, and backgrounds. Further, it
offers unique attributes like class imbalance (CI), multi-task appli-
cations (MTA), and zero-shot face alignment (ZFA). Facial land-
marks shown in blue and the images belong to classes with identi-
cal color in the hierarchy.

cal studies have shown that mammalian brains can interpret
social signals on fellow animal’s faces and have developed
specialized skills to process facial features. Therefore, the
study of animal faces is of prime importance.

Facial landmarks can help us better understand animals
and foster their well-being via deciphering their facial ex-
pressions. Facial expressions reflect the internal emotions
and psychological state of an animal being. As an exam-
ple, animals with different anatomical structure (such as
mice, horses, rabbits and sheep), show a similar grimace
expression when in pain i.e., tighten eyes and mouth, flat-
ten cheeks and unusual ear postures. Understanding abnor-
mal animal expressions and behaviours with visual imagery
is a much cheaper and quicker alternative to clinical ex-
aminations and vital signs monitoring. Encouraging indi-
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cators show that such powerful technologies could indeed
be possible, e.g., fearful cows widen their eyes and flatten
their ears [19], horses close eyes in depression [10], sheep
positions its ears backward when facing unpleasant situa-
tions [2], and rats ear change colors and shape when in joy
[9]. Furthermore, large-scale annotated datasets of animal
faces can help advance the animal psychology understand-
ing. For example, for non-primate animals, the scientific
understanding of animal expressions is generally limited to
the development of only pain coding systems [13]. How-
ever, other expressions could be equally important to un-
derstand e.g., sadness, boredom, hunger, anger and fear.

We believe the research progress towards automatic un-
derstanding of animal facial behaviour is largely hindered
by the lack of sufficiently annotated animal faces (Tab. 1),
covering a wide spectrum of animal species. In com-
parison, significant progress has been made towards au-
tomatic understanding and interpretation of human faces
[40, 5, 35, 34, 3, 21, 38], while animal face analysis is
largely unexplored in vision community [41, 25]. There is
a plenty of room for new algorithms and a pressing need to
develop computational tools capable of understanding ani-
mal facial behavior. To this end, we introduce a large-scale,
hierarchical dataset of annotated animal faces, termed Ani-
malWeb, featuring diverse species while covering a broader
spectrum of animal biological taxonomy. Every image has
been labelled with the genus-species terminology. Fig. 1
provides a holistic overview of the dataset key features.
Contributions: To our knowledge, we build and annotate
the largest animal faces dataset captured under altogether
in-the-wild conditions. It encompasses 21 different orders
and within order explores various families and genuses.
This diverse coverage results in 350 different animal species
and a total count of 22.4K animal faces. Each face is con-
sistently annotated with 9 fiducial landmarks on key facial
components (e.g., eyes and mouth). Finally, the dataset de-
sign and development followed four systematic stages in-
volving an overall, rigorous effort of over 6K man-hours by
experts and trained volunteers.

We benchmark AnimalWeb for face alignment with the
state-of-the-art (SOTA) human face alignment algorithms
[3, 39]. Results show that it is challenging for them partic-
ularly due to biodiversity, species imbalance, and adverse
in-the-wild conditions (e.g., extreme poses). We further val-
idate this by reporting results from various analysis, includ-
ing pose-wise and face sizes. We show the capability of our
dataset for testing under two novel problem settings: few-
shot and zero-shot face alignment. Further, we demonstrate
related applications possible with this dataset: animal face
detection and fine-grained species recognition. Our results
show that it 1) is a strong experimental base for algorithmic
advances, and 2) will facilitate the development of novel,
adaptive, and generalized face-oriented algorithms.

2. Related Datasets
This section briefly overviews existing human and ani-

mal face alignment benchmarks.
Human Face Alignment. Since the seminal work of Ac-
tive Appearance Models (AAMs) [6], various 2D datasets
featuring human face landmark annotations have been pro-
posed. Among these, the prominent ones are XM2VTS
[22], BioID [16], FRGC [23], and Multi-PIE [12]. These
datasets were collected under constrained environments
with limited expression, frontal pose, and normal lighting
variations. Following them, few datasets were proposed
with faces showing occlusions and other variations such as
COFW [4, 11] and AFW [44].

300W [29] is a popular dataset amongst several others in
human face alignment, and has been widely adopted both
by scientific community and industry [34, 40, 26, 43]. It
was developed for the 300W competition held in conjunc-
tion with ICCV 2013. 300W benchmark originated from
LFPW [1], AFW [44], IBUG [29], and 300W private [28]
datasets. In total, it provides 4,350 images with faces anno-
tated using the 68 landmark frontal face markup scheme. To
promote face tracking research, 300VW [30] is introduced
featuring 114 videos. Such datasets paced research progress
towards human face alignment in challenging conditions.

Recently, efforts are directed to manifest greater range
of variations. For instance, Annotated Facial Landmarks in
the wild (AFLW) [18] proposed a collection of 25K anno-
tated human faces with up to 21 landmarks. It, however,
excluded locations of invisible landmarks. Zhu et al. [43]
provided manual annotations for invisible landmarks, but
there are no landmark annotations along the face contour.
Along similar lines, Zhu et al. [44] developed a large scale
training dataset by synthesizing profile views from 300W
dataset using a 3D Morphable Model (3DMM). Though it
could serve as a large training set, the synthesized profile
faces have artifacts that can hurt fitting accuracy. Jeni et
al. [15] introduced a dataset in an ECCV 2016 competition,
comprising photographed images in controlled conditions
or synthetically produced images.

Lately, Menpo benchmark [8] was released in competi-
tions held along ICCV 2017. It contains 2D and 3D land-
marks annotations and exhibits large variations in pose, ex-
pression, illumination and occlusions. Faces are also classi-
fied into semi-frontal and profile based on their orientation
and annotated accordingly. Menpo-2D contains 7,576 and
7,281 annotated training and testing images, respectively.
Animal Face Alignment. Despite scientific value, press-
ing need and direct impact on animal healthcare, only little
attention has been paid in developing an annotated dataset
of animal faces [41, 25]. Although datasets such as Im-
ageNet [8] and iNaturalist [36] offer reasonable species
variety, they are targeted at image-level classification and
region-level detection tasks. The two animal face alignment



Figure 2: Some representative examples from randomly chosen species in AnimalWeb. Animal faces tend to exhibit large variations in
pose, scale, appearance and expressions.

Dataset Target Face Faces Points
Multi-PIE [12] (semi-frontal) Human 6665 68
Multi-PIE [12] (profile) Human 1400 39
AFLW [18] Human 25,993 21
COFW [4] Human 1007 29
COFW [11] Human 507 68
300 W[29, 28] Human 3837 68
Menpo 2D [8] (semi-frontal) Human 10,993 68
Menpo 2D [8] (profile) Human 3852 39
AFLW2000-3D [44] Human 2000 68
300W-LP [44](synthetic) Human 61,225 68
Sheep faces [41] Animal 600 8
Horse faces [25] Animal 3717 8
AnimalWeb (Ours) Animal 22,451 9

Table 1: Comparison between AnimalWeb and various popular
face alignment datasets. AnimalWeb is bigger (in terms of faces
offered) than 80% of the datasets targeted at human face align-
ment. Further, the existing efforts on animal face datasets are lim-
ited to only single species. This work targets a big gap in this area
by building a large-scale annotated animal faces dataset.

datasets were reported in [41] and [25]. Yang et al. [41] col-
lected 600 sheep faces and annotated them with 8 fiducial
landmarks. Similarly, Rashid et al. [25] reported a collec-
tion of 3717 horse faces with points marked around 8 facial
features. These datasets are severely limited in terms of bio-
diversity, size, and range of possible real-world conditions.
To our knowledge, the proposed dataset is a first large-
scale, hierarchical collection of annotated animal faces with
9 landmarks, possessing real-world properties (e.g., large
poses) and unique attributes e.g., species imbalance, multi-
task applications, and zero-shot face alignment.

3. AnimalWeb Properties

In this section, we highlight some of the unique aspects
of the newly introduced dataset (Fig. 2).

Figure 3: Distribution of
faces per species in An-
imalWeb. We see that
29% of the total species
contain 65% of the to-
tal faces. The dataset
shows the natural occur-
rence patterns of different
species.

Scale. The proposed dataset is offering a large-scale and di-
verse coverage of annotated animal faces. It contains 22.4K
annotated faces, offering 350 different animal species with
variable number of animal faces in each species. Fig. 3
shows the distribution of faces per species. We see that 29%
of the total species contain 65% of the total faces. Also, the
maximum and minimum number of faces per species are
239 and 1, respectively. Both these statistics highlight the
large imbalance between species and high variability in the
instance count for different species. This marks the con-
formity with the real-world where different species are ob-
served with varying frequencies.

Tab. 1 compares AnimalWeb and various popular
datasets for face alignment. AnimalWeb is bigger (in face
count) compared to 80% of datasets targeted at human face
alignment. Importantly, very little or rather no attention
is subjected towards constructing annotated animal faces
dataset mimicking real-world properties, and the existing
ones are limited to only single species.
Diversity. Robust computational tools aimed at detect-
ing/tracking animal facial behaviour in open environments
are difficult to realize without observations that can exhibit
real-world scenarios as much as possible. We therefore aim
at ensuring diversity along two important dimensions, (1)



imaging variations in scale, pose, expression, and occlu-
sion, (2) species coverage in the animal biological taxon-
omy. Fig. 2 shows some example variations captured in the
dataset. We observe that animal faces exhibit great pose
variations and their faces are captured from very different
angles (e.g., top view) that are quite unlikely for human
faces. In addition, animal faces can show great range of
pose and scale variations.

Fig. 4 (top row) reveals that faces in AnimalWeb exhibits
much greater range of shape deformations. Each image is
obtained by warping all possible ground truth shapes to a
reference shape, thereby removing similarity transforma-
tions. Fig. 4 (bottom row) attempts to demonstrate image
diversification in AnimalWeb and other datasets. We ob-
serve that it comprises more diversified images than other
commonly available human face alignment datasets. To
gauge scale diversity, we plot the distribution of normal-
ized face sizes for AnimalWeb in Fig. 5 and popular hu-
man face alignment datasets. AnimalWeb offers 32% more
range of small face sizes (< 0.2) in comparison to compet-
ing datasets for human face alignment.

300W_full 300W_private AFLW2000 Menpo2D AnimalWeb

3.3Kb 5.5Kb 3.5Kb 3.0Kb 2.4Kb

AnimalWebMenpo2DCOFW300W_private300W_full

COFW

4.2Kb

Figure 4: Top: AnimalWeb covers significantly larger deforma-
tions. Bottom: It offers more diversity - large variability in ap-
pearances, viewpoints, poses, clutter and occlusions resulting in
the blurriest mean image with the smallest lossless JPG file size.

Figure 5: Face sizes dis-
tribution in AnimalWeb
and popular human face
alignment datasets. Ani-
malWeb offers 32% more
range of small face sizes
(< 0.2) in comparison to
competing datasets.

Fig. 6 provides a miniature view of the hierarchical na-
ture, illustrating diversity in AnimalWeb. Primates and Car-
nivora orders have been shown with randomly chosen 8 and
5 families alongside a few genuses. We observe that it ex-
hibits hierarchical structure with variable number of chil-
dren nodes for each parent node. We refer to Tab. 2 for the
count of families, genuses, species, and faces in top 5 orders
(ranked by face count).

Figure 6:
A miniature
glimpse of the
hierarchical
nature of
AnimalWeb.
Primates and
Carnivora
orders have
been shown
with a few
families and
respective
genuses.

4. Constructing AnimalWeb

This section details four key steps followed towards the
construction of AnimalWeb (see Fig. 7). They include im-
age collection, workflow development, facial point annota-
tion, and annotation refinement.

4.1. Image Collection

We first developed a taxonomic framework to realise a
structured, scalable dataset design followed by a detailed
collection protocol to ensure real-world conditions before
starting image collection process.
Taxonomic Framework Development. A simple, hierar-
chical tree-like data structure is designed following the well
established biological animal classification. The prime mo-
tivation is to carry out image collection - the next step - in
a structured and principled way. Further, this methodology
enables recording various statistics e.g., image count at dif-
ferent nodes of the tree.
Data Collection Protocol. Starting from animal kingdom
we restricted ourselves to vertebrates group (phylum), and
further within vertebrates to Mammalia class. We wanted
those animals whose faces exhibit roughly regular and iden-
tifiable face structure. Some excluded animal examples
are insects and worms that possibly violate this condition.
Given these restrictions, 21 orders were shortlisted for col-
lection task. Scientific names of top 5 orders in terms of
face count are reported in Tab. 2.

Order Families Genuses Species Faces
Carnivora 11 57 144 8281
Artiodactyla 7 42 55 4546
Primates 12 30 59 3468
Rodentia 11 19 19 1521
Sphenisciformes 1 5 10 1516

Table 2: Top 5 orders in terms of face count covered in Animal-
Web. For each order we show the number of families, genuses,
species, and faces. There are a total of 21 orders and each order
explores on average 3 families, 8 genuses, and 1024 faces.
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hours]
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crowdsourcing took 80 man-hours of 
experts’ time.

An overall manual labelling effort of 6,833 man-hours by experts and trained volunteers 

A. Image collection B. Workflow Development C. Facial point annotation D. Refining annotations

Figure 7: Four systematic stages in AnimalWeb development with details and man-hours involved. Zoom-in for details.

Finally, we set the bound for number of images to be
collected per genus-species between 200-250. This would
increase the chances of valuable collection effort to be spent
in exploring the different possible species - improving bio-
diversity - rather than heavily populating a few (commonly
seen). With this constraint, we ended up with an average of
65 animal faces per species.
Image Source. The Internet is the only source used for col-
lecting images for this dataset. Other large-scale computer
vision datasets such as ImageNet [7] and MS COCO [20]
have also relied on this source to achieve the same. Specif-
ically, we choose Flickr1, which is a large image hosting
website, to search first, then select, and finally download
relevant animal faces.
Collection. We use both common and scientific names of
animal species from the taxonomic framework (described
earlier) to query images. Selection is primarily based on
capturing various in-the-wild conditions e.g. various face
poses. A team of 3 trained volunteers completed the im-
age collection process under the supervision of an expert.
For each worker, it took an average of 100 images per hour
amounting to a total of ∼250 man-hours. After download,
we collected around 25K candidate images. Finally, a visual
filtering step helped removing potential duplicates across
species in 43.8 man-hours.

4.2. Workflow Development

Annotating faces can unarguably be the most important,
labour-intensive and thus a difficult step towards this dataset
construction. To actualize this, we leveraged the great vol-
unteers resource from a large citizen science web portal,
called Zooniverse 2. It is home to many successful citizen
science projects. We underwent the following stages to ac-
complish successful project launch through this portal.
Project Review. This is the first stage and it involves
project design and review. The project is only launched

1https://www.flickr.com/
2https://www.zooniverse.org/

once it gets reviewed by Zooniverse experts panel whom
main selection criterion revolves around gauging the impact
of a research project.
Workflow design and development. Upon clearing review
process, in the second phase, the relevant image metadata
is uploaded to the server and an annotator interface (a.k.a
workflow) is developed. The workflow is first designed for
annotating points and is then thoroughly verified. Two ma-
jor quality checks are 1) its ease of use for a large volunteer
group, bearing different domain expertise, and 2) its fitness
towards the key project deliverables. In our case, the work-
flow defines ’order’ and ’name’ for each facial point. Fur-
ther, it also comprises a clear action-plan in case of ambigu-
ities (e.g., invisible landmarks) by linking a professionally
developed help page. It shows instructions and illustrations
to annotate points across all possible species across diverse
poses. Lastly, our workflow is thoroughly tested by a 5-
member team of experts and it took 20 man-hours of effort.
9 pts. markup scheme. The annotator interface in our case
required annotators to adhere to the 9 landmarks markup
scheme as shown in Fig. 8. We believe that 9 landmarks
provide good trade-off between annotation effort and facial
features coverage.

4.3. Facial Point Annotation

After workflow development, the project is exposed to
a big pool of Zooniverse volunteers for annotating facial
landmarks. These volunteers have a prior experience of an-
notating many different successful citizen science projects
related to animals. Every face is annotated by at least 5 dif-
ferent volunteers and this equals a labour-intensive effort of
∼5408 man-hours in total. Multiple annotations of a single
face improves the likelihood of recovering annotated points
closer to the actual location of facial landmarks, provided
more than half of these multiple annotations qualify this as-
sumption. To this end, we choose to take median value of
multiple annotations of a single face.

The annotation portal allows annotators to raise a query



Figure 8: Nine landmarks
markup scheme used for an-
notation of faces in Animal-
Web. The markup scheme
covers major facial features
around key face components
(eyes, nose, and lips) while
keeping the total landmark
count low.

with the experts throughout the annotation life cycle. This
also helps in removing many different annotation ambi-
guities for other volunteers as well who might experience
the same later in time. The whole exercise of Zooniverse
crowdsourcing took 80 man-hours of experts’ time.

4.4. Refining Annotations

Annotations performed by zooniverse volunteers can be
inaccurate and missing for some facial points. Further they
could be inconsistent, and unordered. Unordered point
annotations result if, for instance, left eye landmark is
swapped with right eye. Above mentioned errors are in
some sense justifiable since point annotations on animal
faces, captured in real-world settings, is a complicated task.

We hired a small team of 4 trained volunteers for refine-
ment. It had to perform manual corrections and was also
supervised by an expert. The refinement completed in two
passes listed below.
Refinement Passes. In the first pass, major errors were rec-
tified e.g., correcting points ordering. This refinement pro-
ceeded species-wise to enforce consistency in annotations
across every possible species in the dataset. A total of 548
man-hours were spent in the first pass. In the second pass,
pixel perfect annotations were ensured by cross-annotator
review in 438 man-hours of effort. For instance, the refine-
ments on the portion of the dataset done by some member in
the first pass is now reviewed and refined by another mem-
ber of the team.

5. Benchmarking AnimalWeb
We extensively benchmark AnimalWeb for face align-

ment task. In addition, we demonstrate multi-task applica-
tions by demonstrating experimental results for face detec-
tion and fine-grained image recognition.

5.1. Animal Facial Point Localization

We select the state-of-the-art (SOTA) method in 2D hu-
man face alignment for evaluating AnimalWeb. Specifi-
cally, we take Hourglass (HG) deep learning based architec-
ture; it has shown excellent results on a range of challenging
2D face alignment datasets [3, 32] and competitions [39].
Datasets and Evaluation Protocols. We use 300W-public,
300W-private, AFLW2000-3D, and COFW for comparison

as they are the most challenging ones and are publicly avail-
able. 300W-public contains 3148 training images and 689
testing images. 300W-private comprises 600 images for
testing only. We only use COFW for testing purposes; its
testing set contains 507 images. Similarly, AFLW2000-3D
is used for testing only after training on 300WLP dataset.

We use Normalized Mean Error (NME) as the face align-
ment evaluation metric,

NME =
1

N

N∑
i=1

L∑
l=1

(
‖ xi′(l)− xig(l) ‖

di
).

It calculates the Euclidean distance between the predicted
and the ground truth point locations and normalizes by di.
We choose ground truth face bounding box size as di, as
other measures such as Interocular distance could be bi-
ased for profile faces [24]. In addition to NME, we report
results using Cumulative Error Distribution (CED) curves,
Area Under Curve (AUC) @0.08 (NME) error, and Failure
Rate (FR) @0.08 (NME) error.
Training Details. For all our experiments, we use the set-
tings described below to train HG networks both for human
datasets and AnimalWeb. Note, these are similar settings as
described in [32, 39] to obtain top performances on 2D face
alignment datasets. We set the initial learning rate to 10−4

and used a mini-batch of 10. During the process, we divide
the learning rate by 5, 2, and 2 at 30, 60, and 90 epochs,
respectively, for training a total of 110 epochs. We also
applied random augmentation: rotation (from -30o to 30o),
color jittering, scale noise (from 0.75 to 1.25). All networks
were trained using RMSprop [33].
Evaluation Settings. AnimalWeb is assessed under two
different settings. The first randomly takes 80% images for
training and the rest 20% for testing purposes from each
species 3. We call it ‘Known species evaluation’ or so-
called ‘few-shot face alignment’ since during training the
network sees examples from every species expected upon
testing phase. The second setting randomly divides all
species into 80% for training and 20% for testing. We term
it as ‘Unknown species evaluation’ or so-called ‘zero-shot
face Alignment’ (ZFA) as the species encountered in testing
phase are not available during training. Unknown species
evaluation is, perhaps, more akin to real-world settings than
its counterpart. It is likely for a deployed facial behaviour
monitoring system to experience some species that were un-
available at training. It is also more challenging than first as
facial appearance of species during testing can be quite dif-
ferent to the ones available at training time.
Known Species Evaluation. Tab. 3 reveals comparison
between AnimalWeb and various human face alignment
benchmarks, when stacking 2 and 3 modules of HG net-
work. Human face alignment results are shown both in

3For validation, we recommend using 10% data from the training set.



Datasets 9 pts. 68 pts.
HG-2 HG-3 HG-2 HG-3

300W(common) 1.21/84.8/0.18 1.19/85.0/0.00 1.26/84.1/0.00 1.25/84.2/0.00
300W(full) 1.42/82.1/0.14 1.40/82.4/0.00 1.41/82.2/0.00 1.40/82.3/0.00
300W(challenging) 2.28/71.4/0.00 2.25/71.7/0.00 2.03/74.5/0.00 2.01/74.8/0.00
300W(private) 2.26/72.2/0.66 2.31/72.4/1.16 1.82/77.5/0.50 1.77/77.8/0.16
AFLW2000-3D 3.27/60.8/3.27 3.23/61.3/2.75 2.73/66.5/0.50 2.71/66.9/0.55
COFW 3.43/60.0/3.74 3.26/61.3/3.55 2.66/67.2/1.97 2.60/68.2/1.57
AnimalWeb (Known) 5.22/46.8/16.4 5.12/47.4/16.3 - -
AnimalWeb (Unknown) 6.14/41.5/22.0 5.96/42.9/20.7 - -

Table 3: Accuracy comparison between the An-
imalWeb and 6 different human face alignment
benchmarks when stacking 2 and 3 modules of HG
network. We show human face alignment results
both in terms of 68 pts. and 9 pts. Format for each
table entry is: NME error/AUC@0.08 (NME) er-
ror/FailureRate@0.08 (NME) error. All results are
in %.

terms of 68 pts. and 9 pts. For fair comparison, the 9 pts.
chosen on human faces are the same as for animal faces.
Further, 9 pts. results correspond to the model trained with
9 pts. on human faces. We see a considerable gap (NME
difference) between all the results for human face alignment
datasets and AnimalWeb. For instance, the NME difference
between COFW tested using HG-2 network is∼ 1 unit with
AnimalWeb under the known species evaluation protocol.
We observe a similar trend in the CED curves displayed in
Fig. 9. Performance of COFW dataset, the most challeng-
ing among human faces, is 15% higher across the whole
spectrum of pt-pt-error. Finally, we display some example
fittings under known species evaluation settings in the first
row of Fig. 10. We see that the existing art struggles under
adverse in-the-wild situations exhibited in AnimalWeb.

Figure 9: Comparison between AnimalWeb and popular face
alignment datasets using HG-2&3 networks.

Figure 12: Specie-wise results for AnimalWeb under Known
Species settings. Zoom-in for details.

Fig. 12 depicts species-wise testing results for Animal-
Web. For each species, we average results along the number
of instances present in it. We observe poorer performance
for some species compared to others. This is possibly due
to large intra-species variations coupled with the scarcity of
enough training instances relative to others. For instance,
hogdeer species has only 20 training samples compared to
amurleopard species populated with 91 training examples.
Next, we report pose-wise results based on yaw angle in

Tab. 4. We can observe that AnimalWeb is challenging for
large poses. The performance drops as we move towards the
either end of (shown) yaw angle spectrum from [−45o, 45o]
range. Further, Tab. 5 shows results under different face
sizes. We observe room for improvement across a wide
range of face sizes.
Unknown Species Evaluation. Here, we report results un-
der unknown species settings. Note, we randomly choose
80% of the species for training and the rest 20% for test-
ing. Tab. 3 draws comparison between unknown species
settings and its counterpart. As expected, accuracy is lower
for unknown case versus the known case. For example,
HG-2 displays ∼ 1 unit poor performance under unknown
case in comparison to known. Animal faces display much
larger inter-species variations between some species. For
example, adeliepenguins and giantpandas whom face ap-
pearances are radically different (Fig. 10). Bottom row of
Fig. 10 displays example fittings under this setting. We see
that the fitting quality is low for frontal poses; the face ap-
pearance of species seen during training could be very dif-
ferent to ones testing species.

Low accuracy of existing methods under unknown
species present opportunities for the development of ’zero-
shot face alignment algorithms’ that are robust to unseen
facial appearance patterns. For instance, new methods that
can better leverage similarities across seen species to per-
form satisfactorily under unknown species.

5.2. Animal Face Detection

We evaluate the performance of animal face detection
using a Faster R-CNN [27] baseline. Our ground-truth is
a tightly enclosed face bounding box for each animal face,
that is obtained by fitting the annotated facial landmarks.
We first evaluate our performance on the face localization
task. We compare our dataset with one of the most chal-
lenging human face detection dataset WIDER Face [42] in
terms of Precision-Recall curve (Fig. 11). Note that WIDER
Face is a large-scale dataset with 393, 703 face instances
in 32K images and introduces three protocols for evalua-
tion namely ‘easy’, ‘medium’ and ‘hard’ with the increasing
level of difficulty. The performance on our dataset lies close
to that of medium curve of WIDER Face, which shows that
there exists a reasonable margin of improvement for animal
face detection. We also compute overall class-wise detec-



Figure 10: Example landmark fittings from AnimalWeb. Top row: fittings under known
species evaluation. Bottom row: fittings under unknown species evaluation. Red points
denote fittings results of HG-3 and blue points are the ground truths.

Figure 11: Precision-recall curve for Animal-
Web settings and WIDER Face datasets.

Figure 13: Example face detections from AnimalWeb. Green/red boxes denote true/missed detections from Faster-RCNN [27] baseline.

Yaw -90o [-90o,-45o] [-45o,45o] [45o,90o] 90o

Faces 584 993 1092 991 689
NME 6.75 5.02 3.31 4.99 6.94

Table 4: Pose-wise NME(%) based on yaw-angles with HG-3
under Known species settings of AnimalWeb.

Face size [0,0.16] [0.16,0.32] [0.32,0.48]
Faces 3388 817 129
NME 5.29 4.41 4.73

Table 5: NME(%) w.r.t face size distribution with HG-3 under
Known species settings of AnimalWeb. Face sizes are normalized
by the corresponding image sizes.

tion scores where the Faster R-CNN model achieves a mAP
of 0.727. Some qualitative examples of our animal face de-
tector are shown in Fig. 13.

5.3. Fine-grained species recognition

Since our dataset is labeled with fine-grained species,
one supplementary task of interest is the fine-grained clas-
sification. We evaluate the recognition performance on our
dataset by applying Residual Networks [14] with varying
depths (18, 34, 50 and 101). Results are reported in Tab. 6.
We can observe a gradual boost in top-1 accuracy as the
network capacity is increased. Our dataset shows a similar
difficulty level in comparison to other fine-grained datasets
of comparable scale, e.g., CUB-200-2011 [37] and Stan-
ford Dogs [17] with 200 and 120 classes, respectively. A
ResNet50 baseline on CUB-200 and Stanford Dogs achieve

Network ResNet18 ResNet34 ResNet50 ResNet101
Accuracy 78.46 81.51 83.09 84.23

Table 6: Fine-grained recognition accuracy on AnimalWeb. Top-
1 accuracies (in %) are reported using four ResNet variants [14].

an accuracy of 81.7% and 81.1% [31], while the same net-
work achieves an accuracy of 83.09% on AnimalWeb.

6. Conclusion
We introduce a large-scale, hierarchical dataset, named

AnimalWeb, of annotated animal faces. It features 22.4K
faces from 350 diverse animal species while exploring 21
different orders. Each face is consistently annotated with 9
landmarks around key facial features. Benchmarking An-
imalWeb under two novel settings for face alignment, em-
ploying current SOTA method, reveals its challenging na-
ture. We observe that SOTA methods for human face align-
ment relatively underperform for animal faces. This high-
lights the need for specialized and robust algorithms to an-
alyze animal faces. We also show the applications of the
dataset for face detection and fine-grained recognition. Our
results show that it is a promising experimental base for al-
gorithmic advances.
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