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21 Abstract

22 Parasites are arguably among the strongest drivers of natural selection, constraining hosts to evolve 

23 resistance and tolerance mechanisms. Although, the genetic basis of adaptation to parasite 

24 infection has been widely studied, little is known about how epigenetic changes contribute to 

25 parasite resistance and eventually, adaptation. Here, we investigated the role of host DNA 

26 methylation modifications to respond to parasite infections. In a controlled infection experiment, 

27 we used the three-spined stickleback fish, a model species for host-parasite studies, and their 

28 nematode parasite Camallanus lacustris. We showed that the levels of DNA methylation are 

29 higher in infected fish. Results furthermore suggest correlations between DNA methylation and 

30 shifts in key fitness and immune traits between infected and control fish, including respiratory 

31 burst and functional trans-generational traits such as the concentration of motile sperm. We 

32 revealed that genes associated with metabolic, developmental and regulatory processes (cell death 

33 and apoptosis) were differentially methylated between infected and control fish. Interestingly, 

34 genes such as the neuropeptide FF receptor 2 and the integrin alpha 1 as well as molecular 

35 pathways including the Th1 and Th2 cell differentiation were hypermethylated in infected fish, 

36 suggesting parasite-mediated repression mechanisms of immune responses. Altogether, we 

37 demonstrate that parasite infection contributes to genome-wide DNA methylation modifications. 

38 Our study brings novel insights into the evolution of vertebrate immunity and suggests that 

39 epigenetic mechanisms are complementary to genetic responses against parasite-mediated 

40 selection.

41

42 Keywords: DNA methylation, epigenetics, host-parasite interactions, reduced representation 

43 bisulfite sequencing, three-spined stickleback

44
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45 Introduction

46 Evolutionary theory predicts that the adaptive potential of a population primarily relies on its 

47 genomic variation (Frankham et al. 2002). In the case of rapid environmental changes, individuals 

48 are unlikely to be pre-adapted to survive under the new conditions and, as such, phenotypic 

49 plasticity may play a central role in population rescue (Merilä and Hendry 2014). Phenotypic 

50 plasticity refers to the capacity of a genotype to produce different phenotypes under different 

51 environmental conditions and is mostly modulated by the regulation of gene expression (West-

52 Eberhard 2003). Resolving the molecular basis of phenotypic plasticity could hence be the missing 

53 piece of the puzzle for a better understanding of the adaptive potential of populations or species 

54 (Eizaguirre and Baltazar-Soares 2014; Rey et al. 2019). 

55 Epigenetic mechanisms are important environment-modulated mechanisms possibly 

56 accelerating adaptive responses to selection (Gugger et al. 2016; Artemov et al. 2017; Metzger and 

57 Schulte 2017). Although several epigenetic pathways can facilitate phenotypic plasticity (e.g., 

58 histone modifications, chromatin remodeling, small interfering RNAs), the addition of a methyl 

59 group to cytosine nucleotides is probably the best characterized to date (Skvortsova et al. 2018). 

60 While there exists DNA methylation resetting mechanisms in the early embryo (Potok et al. 2013; 

61 Seisenberger et al. 2013), recent evidence suggests that reprogramming may be incomplete and 

62 acquired DNA methylation states may be transmitted from parents to offspring (Metzger and 

63 Schulte 2017). This offers an alternative mode of inheritance, which could influence evolutionary 

64 trajectories of populations (Smith et al. 2016; Kronholm et al. 2017; Rey et al. 2019). 

65 Multiple studies on natural populations have found links between variation in DNA 

66 methylation and ambient abiotic factors such as temperature (Gugger et al. 2016), salinity 

67 (Artemov et al. 2017) and even oil spill pollution (Robertson et al. 2017). In nature, inter-species 

68 interactions also affect populations’ evolution. Among these interactions, parasites are one of the 

69 most potent selective pressures affecting the genetic diversity of host populations (Bérénos et al. 

70 2011; Eizaguirre et al. 2012), modifying species composition (Altizer et al. 2003), altering gene 

71 expression of their host (Lenz et al. 2013) and even changing the selection environment of 

72 subsequent host generations (Brunner et al. 2017). Parasites, however, constantly evolve and their 

73 communities change within and between seasons. Therefore, in order tο counter parasite-induced 

74 fitness costs, hosts responses must include plastic and effective components (Brunner and 

75 Eizaguirre 2016). 
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76 Even though genetic components are important for a rapid inter-generational response to 

77 parasite selection (Eizaguirre et al. 2012), previous reports have shown that responses might also 

78 be independent of the host’s genetic background, suggesting alternative non-genetic mechanisms 

79 facilitating host-parasite interactions (Kaufmann et al. 2014; Beemelmanns and Roth 2017). While 

80 much of the epigenetic makeup, including DNA methylation, is determined during cellular 

81 differentiation and development, parasites may induce changes in the DNA methylation profile of 

82 mature immune cells that can alter the accessibility of transcription factors to genes (Morandini et 

83 al. 2016). In this way, DNA methylation can immediately influence hosts’ resistance and tolerance 

84 to parasites, with likely consequences for the evolution of host-parasite interactions. Ultimately, 

85 inheritance of DNA methylation modifications induced by parasite infection may provide 

86 resistance to the next host generation. This is particularly evolutionary relevant since offspring are 

87 likely to experience a similar pathogenic selective environment as their parents. 

88 Although, interesting insights regarding the effects of DNA methylation to plasticity and 

89 adaptation come from exploring natural populations (Liu et al. 2015; Smith et al. 2015; Gugger et 

90 al. 2016; Thorson et al. 2017), there has so far been limited effort on vertebrates to combine 

91 ecological experimental approaches with DNA methylation (Artemov et al. 2017; Metzger and 

92 Schulte 2017; Heckwolf et al. 2019). DNA methylation is associated with the nucleotide sequence 

93 itself (Dubin et al. 2015), influenced by the environmental heterogeneity (Sheldon et al. 2018) and 

94 is altered by methyltransferase errors that generate spontaneous stochastic DNA methylation 

95 modifications (Riggs et al. 2007). Therefore, controlled experiments are required to establish the 

96 functional link between DNA methylation changes and their physiological consequences (e.g., 

97 Heckwolf et al. 2019). To investigate how parasites change the DNA methylation profile of their 

98 hosts and whether these modifications are associated with parasite resistance and tolerance, we 

99 conducted a controlled laboratory split-clutch infection experiment using the three-spined 

100 stickleback (Gasterosteus aculeatus) model system. This fish is an ideal vertebrate organism for 

101 studying responses to parasite infection, since it exhibits a well-documented parasite fauna 

102 (Eizaguirre et al. 2012; Kaufmann et al. 2014). In a recent split-clutch design experiment, 

103 Kaufmann and colleagues (2014) demonstrated transgenerational effects of parasite resistance to 

104 the nematode Camallanus lacustris, a common parasite, with clear fitness benefits for the 

105 offspring, but the underlying mechanisms awaited investigation. Based on this previous study, 

106 using Reduced Representation Bisulfite Sequencing (RRBS) (Meissner et al. 2005), we focused 
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107 on the methylation of cytosine-phosphate-guanine dinucleotides (CpG sites), the most common 

108 methylation motif in vertebrates. We investigated whether parasite infection alters genome-wide 

109 patterns of DNA methylation and numbers of methylated sites. We also tested if fitness traits 

110 correlate with changes in DNA methylation and if parasite-induced DNA methylation 

111 modifications are associated with specific gene functions. 

112

113 Results

114 Effect of parasite infection on fish phenotypes

115 We performed a split-clutch design. After laboratory breeding of wild-caught fish, we randomly 

116 assigned parasite-free juvenile brothers of five fish families (N ≥ 10 per family; supplementary 

117 table S1, Supporting Information Appendix I) to one of two treatment groups: no parasite exposure 

118 (i.e., control) or exposed with C. lacustris, in order to control for the family genetic background, 

119 and tested the effects of parasite infection on fish fitness. We measured fitness traits (e.g., the 

120 weight of liver, head kidney and testis, motile sperm concertation) for a total of 52 males (i.e., 25 

121 infected and 27 uninfected fish). To control for dosage-effect, we exposed each fish twice to 

122 exactly six larvae of C. lacustris. All experimental procedures of controlled fish infection via 

123 ingestion of infected copepods are described in Eizaguirre et al. (2012) and Kaufmann et al. (2014). 

124 We verified that all exposed fish were infected by the parasites by dissecting them (Kaufmann et 

125 al. 2014). Parasite infection had significant impact on fish condition-dependent traits, with infected 

126 fish having smaller head kidney (F1,42 = 9.11, P = 0.004) and liver (F1,42 = 5.06, P = 0.029), after 

127 correcting for body size, compared to control fish. Furthermore, we found that infected fish were 

128 less heavy than uninfected ones (767.29 ± 294.62 mg vs 848.11 ± 228.43 mg; F1,44 = 5.41, P = 

129 0.024), although the mean fish length showed no significant differences (40.25 ± 4.47 mm vs 41.15 

130 ± 3.58 mm; F1,44 = 2.52, P = 0.119). Consequently, the body condition of infected fish was lower 

131 than that of control fish (–0.03 ± 0.1 vs 0.03 ± 0.09 respectively; F1,46 = 4.42, P = 0.041). The 

132 comparison of the weight of testes (corrected for fish length, F1,41 = 0.05, P = 0.831) and motile 

133 sperm concentration (F1,12 = 1.74, P = 0.211) showed no differences between infected and control 

134 fish. Overall, these results show significant costs of parasite infection in stickleback fish and 

135 characterize the need for hosts to evolve plastic responses (for more details about costs of 

136 parasitism in this experiment, see Kaufmann et al. (2014)). 

137

Page 5 of 33

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901  Support: (434) 964-4100

Molecular Biology and Evolution

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



PDF Proof: M
ol. Biol. Evol.

138 Parasite infection induces changes in numbers of DNA methylated sites

139 Liver tissues were isolated immediately upon fish dissections, preserved in RNAlater at -20°C and 

140 DNA methylation was screened using RRBS (Meissner et al. 2005; Heckwolf et al. 2019) for 52 

141 fish (25 infected vs 27 uninfected males). For each fish, a single-end library of 100 bp with an 

142 average size of 11.5 million reads was produced. Library preparation was carried out at the Institute 

143 for Clinical Molecular Biology (IKMB; Germany) and sequencing was conducted on an Illumina 

144 HiSeq 2500 platform. To control for sequence bias due to the positive correlation between the 

145 number of CpG sites and the number of reads sequenced (t = 10.01, df = 48, P < 0.001), we 

146 estimated the ratio of methylated sites (RMS) and the ratio of methylated regions (RMR; defined 

147 as genomic regions and identified as a sliding window size of 100 bases and step size of 100 bases), 

148 dividing the number of methylated CpG sites/regions by the number of reads. Fish exposed to C. 

149 lacustris had higher ratio of DNA methylated sites (RMS: 0.063 ± 0.006 vs 0.059 ± 0.006; t = 

150 2.13, df = 47.16, P = 0.038) than control fish. Because of genetic effects linked to family 

151 background, we repeated the former analysis using family as random effect. Likewise, linear 

152 mixed effect models (LMM) showed that RMS were different between groups, with infected fish 

153 having substantially more CpG methylated sites than their uninfected counterparts (F1,44 = 4.97, P 

154 = 0.031), though no differences were observed in the overall fractional methylation (fig. 1 and 

155 supplementary table S2, SI Appendix I). The increase in methylated CpGs was proportionally 

156 random across the different genomic features, i.e. promoters, exons, introns and intergenic regions 

157 (chi-square test; χ2 = 0.023, P = 0.999; SI Appendix I Figure S1). In contrast, RMR showed no 

158 difference between treatments (RMR: F1,44 = 1.48, P = 0.230, supplementary table S2, 

159 Supplementary Appendix I). 

160 We converted the methylation frequency into a diploid genotype (hereafter, Single 

161 Methylation Polymorphism; SMPs) to estimate the Wright’s fixation index (FST and FIS; we will 

162 refer to the DNA methylation FST as epi-FST, and epi-FIS respectively) between infected and 

163 control fish. To do so, non-methylated sites (methylation frequency; MFr < 30%) were annotated 

164 as 0/0, heterozygote methylated sites (30% < MFr <70%) were converted into 0/1, whereas 

165 homozygote methylated sites (MFr > 70%) annotated as 1/1. We found that infected fish displayed 

166 lower epi-FST (epi-FST test: F1,560 = 20.24, P < 0.001) and higher epi-FIS values (-0.28 vs. -0.32). 

167 Together, the lower differentiation in methylation pattern of infected fish compared to their 
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168 conspecific control, suggests homogenization of the methylome upon infection, independently of 

169 the family background similar to what happens for gene expression (Lenz et al. 2013). 

170

171 DNA methylation profile across individuals

172 In order to better characterize changes on the methylome in response to parasite infection, we 

173 investigated the distribution of methylated CpG sites/regions across individual fish. From the CpG 

174 sites/regions sequenced, we retained those that were observed in at least two individual fish and 

175 had a coverage higher than 10X. We found that methylated CpGs were similarly distributed across 

176 genomic features between control (promoter: 18.61%; exon: 14.44%; intron: 23.71%; intergenic: 

177 43.24%) and infected (promoter: 19.09%; exon: 15.03%; intron: 23.22; intergenic: 42.66%) fish 

178 (χ2 = 0.06, P = 0.996; SI Appendix I Figure S1). Using the fractional methylation data, calculated 

179 as the number of methylated cytosines over the number of cytosines per site, we performed cluster 

180 analyses considering all methylated CpGs. Our findings showed that fish group following their 

181 family genetic background (Fig. 2). In particular, goodness of fit for non-metric dimensional 

182 scaling (NMDS) plot suggested the presence of five dimensions with a stress value lower than 0.1 

183 that also fits the number of fish families sequenced. Similarly, k-mean and hierarchical clustering 

184 suggested the presence of three major clusters and a family- rather than treatment- specific 

185 clustering (fig. 2C and SI Appendix I Figure S2). When differentially methylated regions were 

186 used (SI Appendix II), similar results were observed, with families being well distinguished from 

187 one another (SI Appendix II Figure S1). 

188 Pairwise genetic FST values were lower within (in all cases lower than 0.001) than between 

189 (ranged from 0.099 to 0.199) families (supplementary table S3, SI Appendix I). Conversely, 

190 principal component analysis (PCA) showed a less structured clustering of families, with the first 

191 two principal components explaining jointly 11.8% of the methylome variation (fig. 2B). Overall, 

192 our result show that fish methylomes cluster by family background. Such a result is to be expected 

193 since the probability of CpG sites to be methylated depends on the underlying genetic code which 

194 varies among families. 

195

196 Differential methylation between treatments

197 We then focused on those specific CpG sites and regions which were differentially methylated 

198 between treatment groups. We found a total of 1,973 CpG sites out of 1,172,887 CpGs (0.17%) 
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199 across the genome that showed at least 15% differential fractional methylation (DMS; q < 0.01) 

200 between infected and uninfected fish (fig. 3). Those positions were located in 314 differentially 

201 methylated regions (DMR). Infected fish had more hypermethylated sites (1164 vs 810; Fisher 

202 test; χ2 = 6.48, P = 0.016) and regions (194 vs 120; Fisher test; χ2 = 11.52, P = 0.001) than 

203 uninfected fish (fig. 3 and supplementary table S2, SI Appendix I). The differentially methylated 

204 sites and regions were predominately found in intergenic regions (47.74% and 48.94%, 

205 respectively), with introns (26.19% and 23.09), exons (15.07% and 13.98%) and promoters (11% 

206 and 13.98%) showing lower proportions (see also SI Appendix I Figure S1 and SI Appendix II for 

207 more details). 

208 Cluster analyses for the fractional methylation data such as k-mean statistics and goodness 

209 of fit for differentially methylated sites (DMSs; fig. 4) and regions (DMRs; SI Appendix II Figure 

210 S2) indicated the presence of two groups that match the infection treatments (infected or control; 

211 Shimodaira-Hasegawa test between the observed clustering and a treatment specific clustering for 

212 DMSs: P = 0.501 and for DMRs: P = 0.487). A PCA showed that the first two principal 

213 components explained 38.4% of the variation in differentially methylated sites, and the two 

214 treatments were separated along PC2 (15.5% of the variance, fig. 4A). PC1 indicated genetic 

215 background and to a lesser extent treatment as a predictor, where families with lower pairwise FST 

216 values (supplementary table S3, SI Appendix I) grouped together. Our results hence show that 

217 differential methylation of specific CpG positions is linked both to infection as well as the 

218 underlying available genetic background for methylation. 

219

220 Functional annotation and pathways analysis between treatments

221 Using the available reference genome, functional enrichment and pathway analyses were carried 

222 out to identify functional associations among genes that were differentially methylated upon 

223 parasite challenge. Differentially methylated sites were associated with 132 unique genes (80 

224 genes were hypermethylated for infected fish and 52 for uninfected fish; supplementary table S4, 

225 SI Appendix I). At a false discovery rate threshold of 0.05, gene category enrichment analysis 

226 revealed that infected and uninfected fish had significant differences in 34 biological process (BP), 

227 9 cellular component (CC) and 23 molecular function (MF) GO terms. Significant BP, CC and MF 

228 GO terms included several biosynthetic and metabolic processes, signaling pathways and 

229 regulation of cell migration (fig. 5 and supplementary table S5, SI Appendix I). A number of genes 
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230 with differential methylation signal (thereafter referred to as differentially methylated genes) are 

231 involved in the regulation of transcription and transfer of methyl-groups (e.g., sp5l, elmsan1b, 

232 polr3b, mepce), in the regulation of immune response and inflammation activity (e.g., colec12, 

233 fbxo41, march7, itga1 and npffr2b), and in the regulation of cell cycle and apoptosis (e.g., blcap, 

234 stambpb and rgcc). Interestingly, several genes that are directly or indirectly associated with the 

235 regulation of immune response (e.g. prg4, fbxo41, colec12 and march7) and transcription (e.g. 

236 polr3b, mepce, sp5l and elmsan1b) were significantly hypomethylated in infected fish compared 

237 to control. A complete report of every sequence including full gene ontology terms is presented in 

238 supplementary table S4 (SI Appendix I).

239 Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis identified a 

240 number of molecular pathways associated with hypermethylated genes after C. lacustris infection. 

241 The top pathways were purine metabolism and the biosynthesis of antibiotics that are both 

242 associated with immune responses (e.g., Seegmiller et al. 1977; Li and Gatlin 2006). Furthermore, 

243 we detected a number of other metabolic or immune pathways such as the Th1 and Th2 cell 

244 differentiation and the T‐cell receptor signaling pathway (supplementary table S6, SI Appendix I). 

245 Analogous to DMS, DMR revealed a similar pattern and a number of identical genes and 

246 pathways associated to immune responses (e.g. npffr2b, the purine metabolism pathway), 

247 metabolism (e.g. prss1, tdh) and development (e.g. pde1a, cryba2b) separated treatment groups. 

248 The detailed findings from DMR analyses that support the results of DMS are provided in 

249 Supplementary Information Appendix II.

250 To test whether the differences detected between treatment groups are real and robust and to 

251 evaluate parasite-induced DNA methylation modifications and their association with genes 

252 involved in immunity regulation, we performed a randomization test. Specifically, treatment 

253 assignment (exposed versus not-exposed) was randomized 100 times and the output was compared 

254 to the original data. Τo produce genetically balanced random permutations similar to the original 

255 dataset, treatment assignment was randomized within families. Differential methylation and 

256 functional annotation analyses in the randomized sets revealed several DMS and associated 

257 transcripts, respectively. However, their numbers were on average two times lower than the 

258 original dataset (fig. 3C). Importantly, in all independent runs, several transcripts were consistently 

259 identified, and the vast majority of transcripts were linked to developmental processes, 

260 biosynthesis or other cellular processes and no or few correlated with immunity and importantly 
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261 did not capture genes found in the original dataset (prg4 and itga1) (see also SI Appendix I Figure 

262 S3). This suggests a base line structure due to differential treatments. Overall, these findings 

263 reinforce the view that the differences detected and the links to parasite resistance and immunity 

264 in the original dataset are biologically relevant and not the results of unnoticed experimental 

265 artifact. 

266

267 DNA methylation modifications and fish fitness

268 To clarify whether modifications in DNA methylation are part of an adaptive response to parasite 

269 infection, we correlated the ratio of methylated sites with fitness traits. RMSs were selected 

270 because they represent a good index of the overall hyper- or hypo- methylation of the DNA. Our 

271 findings showed significant interactions between treatment and i) respiratory burst activity 

272 (measure of innate immune response; F2,39 = 4.57, P = 0.039), ii) liver weight (F2,40 = 5.26, P = 

273 0.009), iii) head kidney weight (F2,40 = 4.29, P = 0.021) and iv) motile sperm concentration (F1,10 

274 = 10.50, P = 0.009) on RMS. However, body condition (F2,40 = 2.09, P = 0.137) or testes weight 

275 (F2,39 = 0.74, P = 0.485) showed no significant association with RMS (SI Appendix I Figure S4). 

276 Furthermore, for each infected fish we estimated the deviation of its DNA methylation pattern 

277 from the control group as the mean Euclidean distance of the given fish from control fish and 

278 correlated it to its mean difference in body condition compared to the control group. The 

279 comparison showed a negative correlation between mean epi-FST and body condition shifts (t = -

280 2.175, df = 20, r = -0.44, P = 0.042), whereby infected fish that modified their methylomes more 

281 extensively showed a level of body condition closer to that of control fish. 

282 In addition, in the exposed group, correlation tests were carried out for significantly 

283 hypomethylated genes related to parasite resistance to examine whether their levels of 

284 hypomethylation are associated with increased fitness. To do so, we summarized fitness-related 

285 traits into single fitness index obtained from a PCA. PC scores were then correlated to these genes’ 

286 methylation levels. PCA showed that PC1 and PC2 explained jointly 60.6% of fitness variation 

287 (35.4% and 25.2%, respectively), with liver weight and respiratory burst activity contributing 

288 68.6% of the variance in PC1, while gonads and head kidney weight explained 86.3% of PC2. 

289 Correlation tests between PC1 or PC2 and fractional methylation in genes revealed that genes 

290 involved in the regulation of immune response, including fbxo41 (r = -0.35, P = 0.033), march7 (r 

291 = -0.64, P < 0.001) and tpbgb (r = -0.44, P = 0.008), as well as DNA transcription (dnaja3b: r = -
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292 0.62, P < 0.001) were negatively correlated, suggesting that lower methylation were associated 

293 with higher fitness related traits. Overall, these results bring evidence for a potential link between 

294 changes in fish physiology due to parasite infection and DNA methylation modifications. 

295

296 Discussion

297 Although evidence points towards epigenetic mechanisms contributing to phenotypic plasticity to 

298 respond to abiotic environmental changes (Kawakatsu et al. 2016; Artemov et al. 2017), we still 

299 know surprisingly little about the epigenetic mechanisms involved in species-species interactions. 

300 Our experimental study shows that stickleback fish exposed and infected with one of their common 

301 nematode parasites, C. lacustris, had significantly more methylated sites than their non-infected 

302 counterparts. This did not translate however into differences in overall fractional methylation. We 

303 also show that DNA methylation modifications correlate with immune-related traits such as the 

304 respiratory burst as well as with the concentration of motile sperm – an important trans-

305 generational fitness-related trait. Interestingly, we detected a pattern of differential methylation 

306 that reflects treatment-specific selection. These differences translated into functional enrichments 

307 with both over- and under-representation of GO terms involved in immune and metabolic 

308 processes, two physiological processes associated with parasite resistance and tolerance. 

309 Hosts suffer a double cost of infection because parasites use them as sources of nutrients but 

310 also force them to induce an immune response resulting in overall fitness costs (Bize et al. 2010). 

311 Our study confirms such costs, as infected fish showed lower body condition and relative organ 

312 weights, all markers of health status and fitness (Kurtz et al. 2006; Eizaguirre et al. 2009), 

313 compared to uninfected fish. Controlling for genetic effects with a split clutch design, we show 

314 that infected fish had an overall increased ratio and hence number of CpG methylation sites as well 

315 as 62% more hypermethylated genomic regions than their non-infected brothers. This increase in 

316 mean genome-wide methylation level was negatively associated with the interaction of treatment 

317 and fitness related traits, including the respiratory burst activity- a known cell-mediated response 

318 of the innate immune pathway (SI Appendix I Figure S4). Remarkably, fish that modified their 

319 methylomes more extensively coped better with infection and maintain a body condition closer to 

320 uninfected fish. This, together with the negative correlation between the fractional methylation of 

321 hypomethylated genes among infected fish and their overall fitness, provides first evidence that 

322 methylome modifications is a part of the response to parasite infection. Methylation of specific 
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323 genes has also been shown to lead sticklebacks closer to control phenotypes upon salinity 

324 challenges (Heckwolf et al. 2019) Finally, DNA methylation modifications correlated with the 

325 interaction of treatment and motile sperm concentration, a fertility trait related to offspring body 

326 condition (Kekäläinen et al. 2015; Alavioon et al. 2017). Using sperm competition trials Kaufman 

327 et al (2014) showed that such sperm deficiencies in infected sticklebacks compared to their 

328 uninfected brothers functionally translated into reduced reproductive success and reduced hatching 

329 success and survival. Taken together, our results are consistent with previous studies (Dowen et 

330 al. 2012; Marr et al. 2014; Hu et al. 2018) suggesting that parasite infection requires hosts to 

331 reshape their methylation profile with consequences on fitness-related traits and reproductive 

332 success. Yet, considering the complexity of physiological processes, further studies will need to 

333 exactly on the adaptive value and inheritance of DNA methylation on parasite resistance. Noting, 

334 that the presence of DMS detected and the general enrichment (yet significantly smaller than the 

335 original dataset) in the randomized runs is likely associated with the fact that i) fish were laboratory 

336 bred and maintained under standardized conditions, ii) we focused on exposed vs unexposed fish 

337 which results in variation in actual infection and therefore also homogenizes the groups. This is 

338 however the most ecologically relevant comparisons since in nature it is impossible to know 

339 whether an uninfected fish has been exposed to parasites or not. Furthermore, our findings suggest 

340 that fish are capable of adjusting their phenotypes and physiology to laboratory conditions. 

341 In this study, we show that infected fish displayed less differentiation in methylation pattern 

342 than control fish. Similarly to genome-wide transcription patterns (Lenz et al. 2013), we show that 

343 upon infection, methylomes of infected fish converge towards a similar response, indicating the 

344 activation of similar host responses. This suggests that parasite pressure is strong enough to trigger 

345 a response that requires co-opting of gene networks. Moreover, we found 1,973 differentially 

346 methylated CpG across 314 genomic regions. About 80% of these sites and regions of infected 

347 fish were located in intragenic and intergenic CpGs while the remaining 20% were linked to 

348 promoters. Although, the correlation between promoter methylation and gene expression has long 

349 been recognized (Bird 1984), recent findings suggests that gene body methylation can regulate 

350 genome-wide splicing patterns (Lev Maor et al. 2015), alter chromatin structure (Lorincz et al. 

351 2004), regulate alternative promoters (Maunakea et al. 2010) and be linked with the activation of 

352 transposable elements (Lorincz et al. 2004), together facilitating systemic responses to parasite 

353 infection (Wenzel and Piertney 2014). 
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354 Changes in DNA methylation were related to processes involved in responses to infection. 

355 The first aspect of physiology that hosts have to shift during parasite infection is the immune 

356 response. KEGG analysis for DMSs and DMRs (see SI Appendix II) identified modifications of 

357 the Th1 and Th2 cell differentiation, the T cell receptor signaling pathways and the metabolic 

358 pathways of purine and pyrimidine involved in cell proliferation (Li et al. 2011). All contribute to 

359 the maintenance of immune functions and enhance disease tolerance and resistance in fish 

360 (Seegmiller et al. 1977; Li and Gatlin 2006). Furthermore, we found a number of differentially 

361 methylated genes that regulate immunity such as the catenin delta 1 gene (sp5l) that is an important 

362 component of the innate immune system involved in the signaling of macrophages (Yang et al. 

363 2014). Similarly, we found differential methylation for i) the integrin alpha 1 (itga1), part of the 

364 inflammation response (Valdebenito et al. 2018) and the recruitment of leukocytes into damaged 

365 tissues (Becker et al. 2013), ii) the f-box protein 41 (fbxo41) involved in the regulation of innate 

366 immunity and MHC recognition (Correa et al. 2013) as well as iii) the neuropeptide FF receptor 

367 2 (npffr2b) that is part of the regulation of mitogen-activated protein kinases (MAPKs). Some of 

368 those genes were hypermethylated upon infection (e.g. itga1, npffr2b; supplementary table S4, SI 

369 Appendix I). Since hypermethylation is commonly associated with gene repression (Artemov et 

370 al. 2017), we likely captured elements of parasite manipulation that evolved to repress cell fate in 

371 order to prevent cell turn over and the production of novel immune cells (Gómez-Díaz et al. 2012).

372 While MAPKs modulate cell responses, proliferation and apoptosis against pathogens 

373 (Arthur and Ley 2013), recent studies in mice reported that MAPKs cascades such as ERK1-2 and 

374 p38 play also a pivotal role in spermatogenesis, testis development and sperm motility (Almog and 

375 Naor 2010). In our experiment, this could explain the differences in motile sperm concentration 

376 observed (Kaufmann et al. 2014) between infected and uninfected sticklebacks. It is also known 

377 that immune mechanisms, such as reactive oxygen species formation, alter sperm function further 

378 linking infection to sperm traits (Guthrie and Welch 2012). Responding to parasite infection 

379 necessitates the host to adjust metabolite production to support immune responses (Bize et al. 

380 2010). These changes can either involve the elevation of the metabolism or the reallocation of 

381 nutrients to fuel the costly defense mechanism (Bize et al. 2010; Rauw 2012). As such, differences 

382 in the methylation status of genes involved in  fatty acid binding or protein citrate lyase are likely 

383 indirect effects of parasite exposure altering fish development and growth (Karasov and Martinez 

384 Del Rio 2007). Noteworthy, a number of genes mediating methylation and transcription were 
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385 annotated, including mepce that is involved in RNA methylation and methyltransferase activity, 

386 or elmsan1b that is related to chromatin binding (supplementary table S4, SI Appendix I). Overall, 

387 these regulatory changes show that a natural parasite load in fish significantly impacts DNA 

388 methylation cellular process mediating plastic response to cope with infection. 

389 Contrary to differentially methylated sites and regions, individual genome-wide methylation 

390 pattern showed fish family as the primary determinant of the distribution of DNA methylation. 

391 This shows that the potential of genome-wide DNA methylation patterns is inheritable as it is not 

392 independent of the nucleotide sequence (Dubin et al. 2015; Metzger and Schulte 2017; Rey et al. 

393 2019). By extension, it implies that the adaptive potential of populations that includes DNA-

394 methylation is linked to the genetic diversity present in that population (Rey et al. 2019). Therefore, 

395 it is likely that reduced genetic diversity within a population is also accompanied by reduced 

396 methylation variation, and weaker responses to infection. 

397 Overall, our study extends beyond the descriptive analyses of DNA methylation 

398 modifications and gene ontology (Gugger et al. 2016; Artemov et al. 2017; Hu et al. 2018). By 

399 controlling parasite load and fish genetic background, we gained new insights into the extent to 

400 which parasite infection alters host’s methylomes and suggests an important role of DNA 

401 methylation in host-parasite interactions. We report the potential of methylation modifications, 

402 which may serve as indicators of phenotypic shifts associated with parasite-mediated selection. 

403 Future research should now focus on the role of DNA methylation in adaptive plasticity and its 

404 relation to genetic diversity. 

405

406 Materials and Methods

407 Sampling and infection experiments

408 Three-spined sticklebacks (Gasterosteus aculeatus) were caught from a natural population in 

409 Northern Germany (Grosser Plöner See, 54°9΄21.16″ N, 10°25΄50.14″ E). By randomly pairing 

410 males and females, we obtained the first experimental parasite-free full-sib families (G1 

411 generation). Male juveniles of each G1 fish family were randomly assigned to one of two treatment 

412 groups: no parasite exposure (i.e., control) or exposed with Camallanus lacustris; a trophically 

413 transmitted nematode that infects the gut of sticklebacks and occurs naturally in the host population 

414 (Kalbe et al. 2009). The experiment was repeated twice independently in two consecutive years (N 

415 = 28 and N = 24). Using brother fish, we minimized the effects of genetic variation on DNA 
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416 methylation patterns, and hence any variation in DNA methylation changes across individuals can 

417 be linked to treatment and family background. Including multiple families on the other hand allows 

418 us to quantify the effects of the genetic background. In addition, to control for dosage effect and 

419 eventually methylation levels, the number of larvae inside the intermediate host (a copepod) was 

420 counted and each host was exposed twice to exactly six larvae of C. lacustris. For details on the 

421 experimental design see Kaufmann et al. (2014). While the whole experiment consisted of ten 

422 families, here we sequenced 52 males (25 infected and 27 uninfected fish brothers) belonging to 

423 five families (supplementary table S1, SI Appendix I). For each fish, we counted the number of 

424 parasites and measured (mean ± std) a number of condition dependent traits such as organ weight 

425 (liver, head-kidney and testes weight) and fish size. We also estimated the body condition as a 

426 proxy fitness, using the residuals of the linear regression of log10-transformed weight against 

427 log10-transformed body length. To obtain some estimates of the immune activation of the fish, we 

428 measured the respiratory burst activity. Lastly, because the link between male treatment and the 

429 next generation is shown in the sperm, we also measured elements of sperm motility and 

430 concentration (Kaufmann et al. 2014) in some randomly assigned fish (N = 20). Fitness traits of 

431 samples have been analysed in Kaufmann et al. (2014). 

432

433 DNA extraction and Reduced-Representation Bisulfite Sequencing library preparation 

434 We used liver tissue to screen the DNA methylations of sticklebacks as a major metabolic regulator 

435 and a lymphoid organ (Tarasenko and McGuire 2017). DNA extraction was performed with the 

436 Qiagen DNeasy Blood and Tissue Kit (Qiagen, Hilden, Germany), according to the manufacturer’s 

437 protocol. Qubit™ fluorometric assay was used to assess the quality and quantity of DNA. DNA 

438 methylated sites were identified by RRBS (Meissner et al. 2005) as done in Heckwolf and Meyer 

439 et al. (unpublished data). For each fish, we constructed a single-end library of 100 bp that resulted 

440 in an average of 11.5 million reads. Library preparation was carried out at the Institute for Clinical 

441 Molecular Biology (IKMB; Germany) and sequencing took place on an Illumina HiSeq 2500 

442 platform, with 18 individuals pooled per lane. 

443

444 Data processing and methylation calling

445 Raw sequence reads from the bisulfite-treated samples were analyzed with FASTQC v0.11.5 

446 (Andrews 2010), processed and filtered to remove adaptor sequences and low-quality (i.e., q lower 
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447 than 20) reads with Cutadapt v1.13 (Martin 2011) using three adapter sequences 

448 (NNAGATCGGAAGAGCACAC, AGATCGGAAGAGCACAC, ATCGGAAGAGCACAC). 

449 We used Bismark v0.19.0 (Krueger and Andrews 2011) with the Bowtie2 v.2.3.2 aligner to align 

450 reads to the three-spined stickleback reference genome (gasAcu1, Broad Institute) and to extract 

451 methylated CpGs. Average mapping efficiency was 67.3 ± 3.0 % (for summary of RRBS 

452 sequencing see supplementary table S7, SI Appendix I). Output files from Bismark were further 

453 processed in R version 3.4.1 (R Development Core Team 2015). 

454 To analyze differential methylation, we used MethylKit R package v.1.5.0 (Akalin et al. 

455 2012). Prior to DNA methylation analysis, we filtered CpG sites to process only those with 

456 sufficient coverage (≥10X). Sites that were in the 99.9th percentile of coverage were removed to 

457 account for potential PCR bias. We kept only those methylated CpG sites observed in at least two 

458 individual fish. To test for differentially methylated sites and differentially methylated regions 

459 between treatments, we looked for sites that showed at least 15% differential fractional 

460 methylation between infected and control fish and q-values lower than 0.01, using the SLIM 

461 method. We then kept only those sites that were present in at least 50% of the fish within the 

462 different treatment groups (infected and uninfected-control). To identify DMRs, we used the 

463 tileMethylCounts() function in MethylKit v.1.5.0 with a sliding window size of 100 bases and step 

464 size of 100 bases. 

465

466 Identification of single nucleotide polymorphisms

467 We used BISulfite-seq CUI Toolkit v0.2.2 (BISCUIT; https://github.com/zwdzwd/biscuit) to 

468 identify single nucleotide polymorphisms across samples. Aligned RRBS reads were filtered 

469 considering the following parameters: biallelic, minimum and maximum read coverage between 

470 5× and 100×, minimum base quality of 20. We kept only those single nucleotide polymorphic sites 

471 (SNPs) that were sequenced in all individuals. Variants were called and indels were filtered using 

472 VCFtools v.0.1.5 (Danecek et al. 2011) with default settings. We then estimated the genetic 

473 differentiation between and within families, using Wright’s fixation index (FST) as implemented 

474 in VCFtools v.0.1.5 (Danecek et al. 2011).

475

476 Statistical analyses
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477 All analyses were carried out in R version 3.4.1 (R Development Core Team 2015). Normality and 

478 homoscedasticity of the data were investigated and whenever log(x+1) transformation did not 

479 match parametric assumptions, non-parametric tests were performed. First, we tested the effects 

480 of parasite infection on fish fitness. We used LMM with family as a random effect and compared 

481 the size of head kidney, liver, testes, body condition and motile sperm concentration between 

482 infected and control fish, correcting for fish size when necessary.

483 For methylation analyses, we controlled for depth bias in DNA sequencing, using the ratio 

484 of the number of methylated sites to the number of reads for all subsequent statistical analyses. 

485 Number of methylated sites/regions were estimated by converting the methylation frequency into 

486 ordinal data: sites/regions with little or no methylation (MFr < 30%) were annotated as 0 and 

487 treated as no methylated sites/regions, sites/regions with intermediate methylation levels (30% < 

488 MFr < 70%) were considered as heterozygote sites/regions and converted into 1, whereas 

489 sites/regions with high or fixed methylation (MFr > 70%) were treated as homozygous at this 

490 site/regions and were annotated as 2. We used t-test for unequal variances to assess the difference 

491 in RMS between infected and control fish. To account for genetic background, we also compared 

492 RMS using LMM across treatments using family as a random effect. Similar tests were also 

493 performed for RMR. As a next step, a series of LMM were performed fitting the interaction of 

494 seven phenotypic traits (liver, head kidney and testes weights as well as body condition, respiratory 

495 burst activity and motile sperm concentration) with treatment as fixed effects and methylation ratio 

496 as dependent variable. To ensure that overall fish size was not a confounding factor, all measures 

497 were corrected for fish length, while testes size was included as a covariate of motile sperm 

498 concentration. Further details on LMM are available in SI Appendix SI Methods, Section SI.1. 

499 To test for the consistency of DNA methylation modifications across individuals within a 

500 treatment, we followed two approaches. We first conducted cluster analyses using the fractional 

501 methylation data: i) PCA using the standard prcomp() function, ii) NMDS with Bray-Curtis 

502 distance as well as iii) hierarchical clustering with 1000 bootstraps using Euclidean distance 

503 method, with the vegan R package (Oksanen et al. 2013). We used the methylated CpG sites and 

504 regions of each fish and explored how similar is the methylation pattern across individuals despite 

505 different family backgrounds. Methylated sites and regions with low variation and a standard 

506 deviation below 0.3, i.e. non-informative sites across individuals, were excluded from the cluster 

507 analyses. To classify the number the specimens into clusters, we used the average silhouette 
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508 method with 100 bootstraps and set up the maximum number of k-means at 5 (equals the number 

509 of families), using the factoextra R package (Kassambara 2017). Alternatively, goodness of fit of 

510 NMDS and stress values were used to identify the best dimension for projection of NMDS based 

511 on Clarke (1993) guidelines using the goeveg R package (Goral and Schellenberg 2017). Second, 

512 we treated methylated sites as distinct separate loci and we estimated the pairwise FST and FIS 

513 values (i.e., epi-FST and epi-FIS, respectively) between individuals using the genepop R package 

514 (Rousset 2008). To do so, the methylation frequency of each CpG site was binary-encoded with 

515 the presence/absence of a methylation coded for as 1⁄0 as for AFLP datasets and converted to a 

516 diploid phase (SMP). Hence, non-methylated sites (MFr < 30%) were annotated as 0/0, 

517 heterozygote methylated sites (30% < MFr <70%) were converted into 0/1, whereas homozygote 

518 methylated sites (MFr > 70%) annotated as 1/1. We used linear mixed effect models, with family 

519 as a random effect to compare pairwise FST between exposed and control fish. 

520 For the DMS and DMR datasets we repeated the aforementioned cluster analyses. 

521 Additionally, we performed Maximum Parsimony phylogenetic analysis and constructed the 

522 relationships between individuals’ methylation profiles. To do so, we treated the methylation ratio 

523 of each site as a multistate ordered character, ranged from 0 (no methylation) to 10 (methylated 

524 site). We then conducted the Shimodaira-Hasegawa test (Shimodaira and Hasegawa 1999) with 

525 RELL bootstrap with 1000 replicates in PAUP v.4.0b10 (Swofford 2002). We constructed two 

526 trees: one matching the different families and another one matching perfectly the two treatment 

527 groups and tested the hypothesis that DMS and DMR patterns are more closely related to treatment 

528 specific than to family specific clustering. Our findings for DMRs is given in Supporting 

529 Information (SI) Appendix II.

530

531 Functional annotation and pathways analyses

532 For the functional annotation, we used the ENSEMBL stickleback database (release 90) and the 

533 genomation R package v.1.1.0 (Akalin et al. 2015). We identified the genomic feature (i.e., exon, 

534 intron, promoter and intergenic region) of each methylated CpG, DMSs and DMRs, giving 

535 precedence to the following order promoters, exons, introns and intergenic regions when features 

536 overlapped (Akalin et al. 2015). We define promoter region as 1500 bp upstream and 500 bp 

537 downstream from the transcription starting site (TSS). Chi-square test was used to examine 

538 whether DMSs or DMRs were randomly distributed or not within the different genomic features. 
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539 Furthermore, we run chi-square test to evaluate how methylated CpGs are distributed in infected 

540 compared to control fish. To consider a gene to be differentially methylated, methylated CpGs, 

541 DMSs and DMRs had to be located no further than 1.5 kilobase upstream and 500 bases 

542 downstream of it. To find the nearest TSS to a differentially methylated site or region, we used the 

543 GenomicRanges R package v.1.30.0 (Lawrence et al. 2013). 

544 Differentially methylated genes were further used for GO enrichment analysis. Significant 

545 over- or under-representation of GO terms was obtained using the GOstats R package v.2.44.0 

546 (Falcon and Gentleman 2007). Gene functions were categorized based on biological process, 

547 molecular function and cellular component. P-values were corrected for multiple testing using a 

548 false discovery rate. In addition, we conducted a pathway analysis, using the KEGG enrichment 

549 analysis implemented in BLAST2GO version 4.1 (Conesa et al. 2005) to identify functional 

550 associations among differentially methylated genes. Functional enrichment analyses for DMRs are 

551 given in SI Appendix II. Finally, to ensure the adaptive value of differential methylation we tested 

552 whether lower methylated genes among parasite treated samples predict greater fitness running 

553 correlation tests. 
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777 Figure Legends

778 Fig. 1. Parasite infection induces changes in DNA methylation levels. We represent the ratio of 

779 methylated sites (RMS). The overall fractional methylation is also given for each treatment group. 

780 Error bars represent ± 1 SD.

781 Fig. 2. Cluster analyses of individual fish methylomes. A) Non-metric dimensional scaling 

782 (NMDS) and B) Principal component analysis (PCA). Goodness of fit for NMDS suggested the 

783 presence of five dimensions with a stress value lower than 0.1. Families are distinguished by 

784 different colors. Squares indicate control fish and crosses indicate parasite exposed and infected 

785 fish. Ellipses in PCA graph denote the 95% confidence intervals. C) Hierarchical clustering. K-

786 mean indicated the presence of three major clades. Within each clade families are separated from 

787 one another. Light grey refers to control and dark grey to infected.

788 Fig. 3. Differentially methylated sites. A) Manhattan plot of the differentially methylated CpG 

789 sites (DMS) across chromosomes between infected and uninfected fish. The y axis represents the 

790 methylation percentage of the difference for a position. Only DMS higher than 15% change in 

791 methylation are presented. B) Barplot of the number of hypermethylated sites per chromosome 

792 between infected and control fish. C) Number of DMS and their associated genes of the 

793 randomized sets. Black vertical line indicates the average number of DMS and genes of the 

794 randomized sets, while the grey line refers to the number of DMS and genes of the original dataset.

795 Fig. 4. Cluster analyses for differentially methylated sites between treatments. A) PCA for the 

796 differentially methylated sited between infected and control fish brothers. Principal component 2 

797 axis (15.5%) separates fish based on their treatment. Squares denote fish exposed to parasites and 

798 crosses denote the control ones. Families are highlighted with different colors. Ellipses represent 

799 the 95% confident intervals. B) k-mean statistics for differentially methylated sites suggested the 

800 presence of two groups that match the infection treatments (Shimodaira-Hasegawa test). C) 

801 Hierarchical clustering. K-mean indicated the presence of two major clades that fit better with 

802 treatment specific rather than family. Treatment bar: open grey refers to control and dark grey to 

803 infected.

804 Fig. 5. Gene ontology terms. Biological processes and molecular functions that are 

805 hypermethylated in control and infected fish, as well as GO terms for differentially methylated 

806 sites between the two groups. The size of the circle refers to the number of genes observed in the 
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807 group that are associated with this term, and the shading of the circle to the P-value (darker circles 

808 refer to a lower P-value). DM refers to differentially methylated genes.
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Fig. 1. Parasite infection induces changes in DNA methylation levels. We represent the ratio of methylated 
sites (RMS). Furthermore, the overall fractional methylation is given for each treatment group. Error bars 

represent ± 1 SD. 
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Fig. 2. Cluster analyses of individual fish methylomes. A) Non-metric dimensional scaling (NMDS) and B) 
Principal component analysis (PCA). Goodness of fit for NMDS suggested the presence of five dimensions 
with a stress value lower than 0.1. Families are distinguished by different colors. Squares indicate control 

fish and crosses indicate parasite exposed and infected fish. Ellipses in PCA graph denote the 95% 
confidence intervals. C) Hierarchical clustering. K-mean indicated the presence of three major clades. Within 
each clade the families are well distinguished from one another. Treatment bar: light grey refers to control 

and dark grey to infected. 
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Fig. 3. Differentially methylated sites. A) Manhattan plot of the differentially methylated CpG sites (DMS) 
across chromosomes between infected and uninfected fish. The y axis represents the methylation 

percentage of the difference for a position. Only DMS higher than 15% change in methylation are presented. 
B) Barplot of the number of hypermethylated sites per chromosome between infected and control fish. C) 

Number of DMS and their associated genes of the randomized sets. Black vertical line indicates the average 
number of DMS and genes of the randomized sets, while the grey line refers to the number of DMS and 

genes of the original dataset. 
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Fig. 4. Cluster analyses for differentially methylated sites between treatments. A) PCA for the differentially 
methylated sited between infected and control fish brothers. Principal component 2 axis (15.5%) separates 
fish based on their treatment. Square denote exposed to parasite fish and cross denote the control ones. 
Families are highlighted with different colors. Ellipses represent the 95% confident intervals. B) k-mean 

statistics for differentially methylated sites suggested the presence of two groups that match the infection 
treatments (Shimodaira-Hasegawa test). C) Hierarchical clustering. K-mean indicated the presence of two 
major clades that fit better with treatment specific rather than family. Treatment bar: open grey refers to 

control and dark grey to infected. 
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Fig. 5. Gene ontology terms. Biological processes and molecular functions that are hypermethylated in 
control and infected fish, as well as GO terms for differentially methylated sites between the two groups. 

The size of the circle refers to the number of genes observed in the group that are associated with this term, 
and the shading of the circle to the P-value (darker circles refer to a lower P-value). DM refers to 

differentially methylated genes. 
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