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Abstract: Dilated cardiomyopathy (DCM) is one of the most common causes of heart failure. Several
studies have used RNA-sequencing (RNA-seq) to profile differentially expressed genes (DEGs)
associated with DCM. In this study, we aimed to profile gene expression signatures and identify
novel genes associated with DCM through a quantitative meta-analysis of three publicly available
RNA-seq studies using human left ventricle tissues from 41 DCM cases and 21 control samples.
Our meta-analysis identified 789 DEGs including 581 downregulated and 208 upregulated genes.
Several DCM-related genes previously reported, including MYH6, CKM, NKX2–5 and ATP2A2, were
among the top 50 DEGs. Our meta-analysis also identified 39 new DEGs that were not detected
using those individual RNA-seq datasets. Some of those genes, including PTH1R, ADAM15 and
S100A4, confirmed previous reports of associations with cardiovascular functions. Using DEGs
from this meta-analysis, the Ingenuity Pathway Analysis (IPA) identified five activated toxicity
pathways, including failure of heart as the most significant pathway. Among the upstream regulators,
SMARCA4 was downregulated and prioritized by IPA as the top affected upstream regulator for
several DCM-related genes. To our knowledge, this study is the first to perform a transcriptomic
meta-analysis for clinical DCM using RNA-seq datasets. Overall, our meta-analysis successfully
identified a core set of genes associated with DCM.
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1. Introduction

Cardiovascular diseases are the leading cause of death in the United States and accounted for
840,000 deaths in 2016 [1]. Heart failure is among the cardiovascular diseases with not only a high risk
of death but also with other adverse symptoms along with poor quality of life. It limits daily physical
and social activities and leads to various physical and emotional distress [2]. Dilated cardiomyopathy
(DCM) is one of the most common causes of heart failure, with an estimated prevalence of 1 in
2500 individuals [3]. DCM is an irreversible form of heart muscle disease and is characterized as left
ventricle enlargement and systolic dysfunction. Decline in left ventricle contractile function can cause
inefficient blood pumping and heart weakness, eventually leading to sudden or heart failure-related
death [3].

Genetic mutations in cytoskeletal/sarcolemmal, nuclear envelope, sarcomere and transcriptional
coactivator genes can cause DCM [3]. More than 20 genomic loci and genes were reported to contribute
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to familial DCM accounting for 20% to 35% of DCM cases [3]. Therefore, the identification of genes
and their genetic variants for DCM is important and urgently needed. Advances in next-generation
sequencing have led to easier and faster discovery of biomarkers for DCM. Several genes responsible
for DCM, including MYH7, TNNT2, LMNA, DES, TTN, PLN, ACTC1, SCN5A, NKX2-5 and TBX5,
have been identified for clinical diagnosis and evaluation of genetic susceptibility [4–6]. RNA-seq,
as a revolutionary tool in transcriptomics, enables biomarker identification by profiling differentially
expressed genes (DEGs) associated with a specific disease. However, different RNA-seq studies of
the same disease show inconsistent gene expression patterns and discordant results due to different
sample collection and sequencing protocols and inconsistent data analysis strategies [7]. Systematic
and quantitative combined analysis of multiple RNA-seq studies using a meta-analysis approach could
largely eliminate the inconsistency in individual studies by increasing the sample size and statistical
power for enlisting more robust disease-associated genes [8].

In this study, we performed a quantitative meta-analysis of three independent RNA-seq studies
using human left ventricle tissues to identify robust candidate biomarkers for DCM. A total number of
41 DCM and 21 non-failing (NF) samples were analyzed. To our knowledge, this study is the first to
perform an RNA-seq meta-analysis in the field of clinical DCM.

2. Materials and Methods

NCBI GEO [9] database (https://www.ncbi.nlm.nih.gov/geo/) was queried for RNA-seq studies of
dilated cardiomyopathy as summarized in Table 1. The clinical information of DCM patients and their
controls has been reported in Study_1 [10], Study_2 [11] and Study_3 [12]. Only studies using tissue
samples obtained from human left ventricle were included in our meta-analysis.

Table 1. Summary of GEO datasets for the meta-analysis.

Study Dataset Platform Sample Size Tissue

Study_1 GSE116250 [13] Illumina HiSeq 2500 37 DCM
14 NF left ventricle

Study_2 GSE57344 [14] Illumina HiSeq 2000 2 DCM
3 NF left ventricle

Study_3 GSE71613 [15] Illumina HiSeq 2000 2 DCM
4 NF left ventricle

The workflow of our current study is shown in Figure 1. Raw data (FASTQ files) were downloaded
from European Nucleotide Archive website (https://www.ebi.ac.uk/ena). Quality control (QC) for raw
reads was performed using FastQC [16]. Adaptors and low-quality bases (Phred quality score < 10)
were filtered by Cutadapt [17]. Trimmed reads were aligned to human reference genome (GRCh38)
using HISAT2 software [18]. Samtools was used to sort the sequences and convert the SAM file to BAM
file [19]. Only uniquely mapped reads were used for expression quantification with HTSeq-count [20].
Differential expression analysis for individual studies was performed using DESeq2 package [21].
Genes with low read counts were filtered out based on the mean of normalized counts as the filter
statistic using independent filtering function in DESeq2 with default parameters. MetaRNASeq [7]
package was used to perform Fisher’s combined probability test for meta-analysis. In this method,
p-values for each gene from individual studies are combined through the following formula [7,22].

Fg = −2
s∑

s=1

In(Pgs)

When p-values are independent, Fg has a Chi-squared distribution with 2S degrees of freedom.
Smaller p-values result in larger Fg and null hypothesis rejection. Where Pgs is the raw p-value obtained
for gene g in a differential analysis for study S. p-values were adjusted for Benjamini–Hochberg false
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discovery rate (FDR). Adjusted p-value smaller than 0.05 was considered as statistically significant.
Genes with inconsistent expression directions (upregulated or downregulated) among individual
studies were removed from the DEGs list.

Using DEGs from meta-analysis, the Ingenuity Pathway Analysis (IPA, Qiagen, Redwood City,
California, USA) was performed to investigate enriched canonical pathways, toxicity functions
(IPA-Tox) and upstream regulators [23]. IPA-Tox uses the current knowledge to link DEGs to clinical
pathological endpoints. IPA upstream regulator tool also uses current knowledge to identify the
upstream transcriptional regulators which explain the observed gene expression changes in a dataset.
A Venn diagram of the number of DEGs from individual studies and the meta-analysis was generated
using the VennDiagram package [24] in R. The Ohio Supercomputer Center (OSC) was used to perform
the compute-intensive tasks [25].Genes 2020, 11, x FOR PEER REVIEW 3 of 14 
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3. Results

3.1. Datasets Analyzed in This Study

Based on our search criteria (RNA-seq, heart failure, dilated cardiomyopathy and human), three
RNA-seq datasets (GEO accession numbers GSE116250, GSE57344, and GSE71613) were included in
our study. Total numbers of DCM and NF samples were 41 and 21, respectively. The summary of the
datasets is shown in Table 1.
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3.2. Differentially Expressed Genes

The human gene set, Homo_sapiens.GRCh38.96.gtf, including a total of 58,884 coding and
non-coding genes, was used for expression quantification. Our meta-analysis identified 789 DEGs
including 581 downregulated and 208 upregulated genes at a false discovery rate (FDR) < 0.05
(Supplementary Table S1). The top 50 DEGs sorted by p-value are shown in Table 2.

Table 2. Top 50 differential expressed genes identified in meta-analysis of DCM vs. NF.

Ensembl_ID Gene_Symbol Adj_P 1 Average_Log2FCm 2 Effectm 3

ENSG00000076351 SLC46A1 0.00E + 00 0.37 Up
ENSG00000113389 NPR3 0.00E + 00 2.14 Up
ENSG00000126106 TMEM53 0.00E + 00 −0.60 Down
ENSG00000176293 ZNF135 0.00E + 00 0.37 Up
ENSG00000177575 CD163 0.00E + 00 −1.57 Down
ENSG00000189060 H1F0 0.00E + 00 −1.01 Down
ENSG00000227495 AC004771.1 0.00E + 00 −0.40 Down
ENSG00000263986 AC087393.2 0.00E + 00 0.49 Up
ENSG00000179526 SHARPIN 1.68E−13 −0.54 Down
ENSG00000197616 MYH6 1.68E−13 −1.85 Down
ENSG00000157388 CACNA1D 3.03E−13 −1.10 Down
ENSG00000229867 STEAP3-AS1 5.87E−13 −0.71 Down
ENSG00000167646 DNAAF3 1.28E−12 1.30 Up
ENSG00000170448 NFXL1 7.58E−12 −2.33 Down
ENSG00000186187 ZNRF1 2.44E−11 −0.56 Down
ENSG00000259661 AC068831.4 2.57E−11 −0.59 Down
ENSG00000142156 COL6A1 3.39E−11 −0.78 Down
ENSG00000235910 APOA1-AS 4.28E−11 0.90 Up
ENSG00000109099 PMP22 4.81E−11 −0.86 Down
ENSG00000163220 S100A9 6.09E−11 −2.13 Down
ENSG00000174437 ATP2A2 8.49E−11 −0.83 Down
ENSG00000175221 MED16 1.06E−10 −0.83 Down
ENSG00000198624 CCDC69 1.60E−10 −1.04 Down
ENSG00000133800 LYVE1 1.72E−10 −2.06 Down
ENSG00000267092 AC027307.1 1.85E−10 0.63 Up
ENSG00000129250 KIF1C 2.27E−10 −0.61 Down
ENSG00000256469 AP002383.2 2.84E−10 0.82 Up
ENSG00000233098 CCDC144NL-AS1 3.19E−10 0.37 Up
ENSG00000105679 GAPDHS 3.53E−10 0.65 Up
ENSG00000156463 SH3RF2 3.66E−10 −1.05 Down
ENSG00000210127 MT-TA 3.66E−10 −1.00 Down
ENSG00000183072 NKX2-5 9.88E−10 −0.96 Down
ENSG00000125733 TRIP10 1.08E−09 −0.88 Down
ENSG00000141905 NFIC 1.11E−09 −0.61 Down
ENSG00000135447 PPP1R1A 1.14E−09 −1.00 Down
ENSG00000107796 ACTA2 1.35E−09 −1.38 Down
ENSG00000140675 SLC5A2 1.75E−09 0.41 Up
ENSG00000101187 SLCO4A1 2.57E−09 −1.91 Down
ENSG00000103710 RASL12 3.61E−09 −1.34 Down
ENSG00000155659 VSIG4 3.85E−09 −2.04 Down
ENSG00000253549 CA3-AS1 4.04E−09 2.41 Up
ENSG00000105698 USF2 5.02E−09 −0.50 Down
ENSG00000196642 RABL6 5.44E−09 −0.52 Down
ENSG00000122034 GTF3A 8.93E−09 −0.62 Down
ENSG00000235790 AC114488.2 9.04E−09 0.83 Up
ENSG00000104879 CKM 1.05E−08 −0.95 Down
ENSG00000114867 EIF4G1 1.21E−08 −0.80 Down
ENSG00000260469 INSYN1-AS1 1.33E−08 −0.96 Down
ENSG00000260755 AC010542.2 1.49E−08 0.38 Up
ENSG00000257453 AC011611.3 1.60E−08 1.39 Up

1: FDR-adjusted p-value, “E” represents “times ten raised to the power of”; 2: Average of log2FC from individual
studies; 3: ‘Up’ or ‘Down’ indicates whether the gene was upregulated or downregulated.

The counts of the common genes shared among individual studies (results from our analyses) and
meta-analysis are shown in a Venn diagram (Figure 2). There are 39 DEGs that were only identified
through the meta-analysis but not in individual analyses (Table 3). Interestingly, a significant number
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of DEGs from each individual study did not appear in other studies or meta-analysis. For example,
2900 genes out of total 3626 DEGs in Study_1 were not identified to be differentially expressed in
other studies or in our meta-analysis (Figure 2). Only three genes, TUBA3D, LCN10, and NPR3, were
common among all three individual analyses and the meta-analysis (Figure 2).
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Table 3. Differential expressed genes newly identified in the meta-analysis of DCM vs. NF.

Ensembl_ID Gene_Symbol Adj_p 1 Average_Log2FC 2 Effect 3

ENSG00000158859 ADAMTS4 1.44E−03 −1.15 Down
ENSG00000185201 IFITM2 6.57E−03 −1.03 Down
ENSG00000162551 ALPL 8.13E−03 −1.28 Down
ENSG00000151365 THRSP 8.81E−03 1.71 Up
ENSG00000142733 MAP3K6 8.95E−03 −0.91 Down
ENSG00000158246 TENT5B 1.03E−02 −1.35 Down
ENSG00000087495 PHACTR3 1.38E−02 −1.57 Down
ENSG00000132205 EMILIN2 1.53E−02 −0.95 Down
ENSG00000103316 CRYM 1.65E−02 0.88 Up
ENSG00000224934 AL391684.1 1.65E−02 0.73 Up
ENSG00000198542 ITGBL1 1.68E−02 1.02 Up
ENSG00000174429 ABRA 1.72E−02 −1.02 Down
ENSG00000172935 MRGPRF 1.76E−02 −0.98 Down
ENSG00000196154 S100A4 2.03E−02 −1.09 Down
ENSG00000131386 GALNT15 2.08E−02 −1.16 Down
ENSG00000255750 AC022509.1 2.12E−02 1.14 Up
ENSG00000198517 MAFK 2.48E−02 0.68 Up
ENSG00000143537 ADAM15 2.51E−02 −0.77 Down
ENSG00000134470 IL15RA 2.52E−02 −0.92 Down
ENSG00000170458 CD14 2.75E−02 −0.88 Down
ENSG00000242396 AC096536.2 3.26E−02 −1.14 Down
ENSG00000203883 SOX18 3.39E−02 −0.74 Down
ENSG00000132481 AC087289.1 3.44E−02 −0.74 Down
ENSG00000162458 FBLIM1 3.54E−02 −0.78 Down
ENSG00000106809 OGN 3.61E−02 1.18 Up
ENSG00000196923 PDLIM7 3.76E−02 −0.98 Down
ENSG00000167797 CDK2AP2 3.94E−02 −0.81 Down
ENSG00000160801 PTH1R 4.02E−02 −0.87 Down
ENSG00000147155 EBP 4.05E−02 −1.18 Down
ENSG00000177679 SRRM3 4.18E−02 −1.07 Down
ENSG00000106823 ECM2 4.22E−02 1.00 Up
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Table 3. Cont.

Ensembl_ID Gene_Symbol Adj_p 1 Average_Log2FC 2 Effect 3

ENSG00000173272 MZT2A 4.33E−02 −0.66 Down
ENSG00000106819 ASPN 4.40E−02 1.27 Up
ENSG00000180999 C1orf105 4.76E−02 −1.41 Down
ENSG00000175287 PHYHD1 4.85E−02 −0.87 Down
ENSG00000279296 PRAL 4.88E−02 0.50 Up
ENSG00000187955 COL14A1 4.90E-02 0.93 Up
ENSG00000134684 YARS 4.91E-02 -0.68 Down
ENSG00000228804 AC072022.1 4.96E-02 -0.71 Down

1: FDR-adjusted p-value, “E” represents “times ten raised to the power of”; 2: Average of log2FC from individual
studies; 3: ‘Up’ or ‘Down’ indicates whether the gene was upregulated or downregulated.

3.3. Toxicity Pathway Analysis

The IPA-Tox tool was used to identify enriched toxicity pathways. Out of 184 significant toxicity
pathways (p < 0.05), only five pathways were identified as activated (z-score > 2.0). These were failure
of heart, congestive heart failure, dilation of left ventricle, dilation of heart chamber and congenital
heart disease. Responsible DEGs for each toxicity pathway and their direction of change are shown
in the Figure 3A–E. Failure of heart and congestive heart failure had the highest activation z-score
(3.06 and 2.96, respectively). The five pathways and their corresponding DEGs were further integrated
(Figure 3F). Among the 39 DEGs from the integrated network (Figure 3F), 8 DEGs were shared in three
or more pathways. Interestingly, these eight DEGs were all downregulated in the DCM group (Table 4).
ATP2A2, MYH6, and NKX2-5 were among the top 50 DEGs (Table 2).Genes 2020, 11, x FOR PEER REVIEW 7 of 14 
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Figure 3. Toxicity pathways significantly activated in DCM through IPA-Tox: (A) failure of heart;
(B) congestive heart failure; (C) dilation of left ventricle; (D) dilation of heart chamber; (E) congestive
heart disease; (F) integrated toxicity pathways. As an example, in Figure 3A, the DES gene was
downregulated as indicated by the green color and the downregulation of DES further promoted
(indicated by the orange dash line) the activation of failure of heart, as indicated by the orange color.
Other indicators are explained in the Prediction Legend section.
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Table 4. DEGs common among three or more toxicity pathways through IPA-Tox analysis.

DEG Log2FC 1 Tox Pathway

ADRB1 −0.90
Failure of heart

Congenital heart disease
Congestive heart failure

ATP2A2 −0.83
Failure of heart

Congenital heart disease
Congestive heart failure

BMP1 −1.04
Failure of heart

Congenital heart disease
Congestive heart failure

CAV1 −0.72

Failure of heart
Congestive heart failure

Dilation of heart chamber
Dilation of left ventricle

MYH6 −1.85
Congenital heart disease
Dilation of heart chamber
Dilation of left ventricle

NKX2-5 −0.96
Failure of heart

Congenital heart disease
Congestive heart failure

RXRA −0.68
Failure of heart

Congenital heart disease
Congestive heart failure

TNNT2 −0.62
Failure of heart

Congenital heart disease
Congestive heart failure

1: Average of log2FC from individual studies.

3.4. Upstream Regulator Analysis

Upstream regulator analysis was performed through IPA. Differential expression data
from the meta-analysis were used for constructing upstream regulator-targeted genes networks.
These regulators could be transcription factors, non-coding RNA, enzymes or other molecules. A total
of 876 potential upstream regulators were identified as significant (p-value of overlap < 0.05). Further, 38
of those regulators were differentially expressed in our dataset (29: downregulated; nine: upregulated
in DCM) (Supplementary Table S2).

Among the 38 regulators, SMARCA4 (also known as Brg1) had the highest absolute prediction
score (z-score = −3.00) and it was downregulated in the DCM group (Supplementary Table S2).
Figure 4 summarized SMARCA4-regulated genes. Interestingly, the downregulation of SMARCA4
resulted in DES and TNNT2 downregulation (Figure 4), which could further promote failure of
heat, congestive heart failure and congestive heart disease based on the IPA-Tox analysis (Figure 3).
Therefore, SMARCA4 is a promising upstream regulator candidate regulating multiple downstream
genes contributing to heart failure-related phenotypes.
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Figure 4. Network of the upstream regulator SMARCA4 and its targeted genes. The network was
constructed using the differentially expressed genes identified in our meta-analysis. For example,
the downregulation of SMARCA4 led to the inhibition (indicated by the blue arrow line) of the DES
expression and the downregulation of DES is indicated by the green color. Other indicators are
explained in the Prediction Legend section.

3.5. Canonical Pathway Analysis

Canonical pathway analysis through IPA identified 96 significant pathways (p-value < 0.05).
Considering z-score with more than 2.0 for significant activation or less than −2.0 for significant
inhibition status in the pathway analysis, only 11 of the total 96 pathways had absolute z-score
more than 2.0 with 10 pathways as significantly inhibited and one pathway as significantly activated
(Figure 5). DEGs involved in each pathway are summarized in Supplementary Table S3. NKX2-5,
CAV1 and ATP2A2 in the integrin signaling and cardiac hypertrophy signaling (enhanced) pathways
(Supplementary Table S3) were also involved in the toxicity pathways such as failure of heart, congenital
heart disease, congestive heart failure, dilation of heart chamber and dilation of left ventricle (Figure 3,
Table 4). IL15RA, MAP3K6 and CD14 were among the genes which were identified only in our
meta-analysis, but not in the individual studies (Table 3).



Genes 2020, 11, 60 9 of 13

Genes 2020, 11, x FOR PEER REVIEW 9 of 14 

 

than 2.0 with 10 pathways as significantly inhibited and one pathway as significantly activated 
(Figure 5). DEGs involved in each pathway are summarized in Supplementary Table S3. NKX2-5, 
CAV1 and ATP2A2 in the integrin signaling and cardiac hypertrophy signaling (enhanced) pathways 
(Supplementary Table S3) were also involved in the toxicity pathways such as failure of heart, 
congenital heart disease, congestive heart failure, dilation of heart chamber and dilation of left 
ventricle (Figure 3, Table 4). IL15RA, MAP3K6 and CD14 were among the genes which were identified 
only in our meta-analysis, but not in the individual studies (Table 3). 

 
Figure 5. Significant canonical pathways with absolute z-score > 2.0. The z-score represents the 
activation or inhibition state of a canonical pathway. A z-score greater than 2.0 was considered as 
significantly activated. A z-score smaller than −2.0 was considered as significantly inhibited. 

4. Discussion 

In this study, we performed a quantitative meta-analysis of three independent RNA-seq studies 
using human left ventricle tissues to profile gene expression signatures and identify novel genes 
associated with DCM. To better integrate the RNA-seq results from different studies, we applied a 
consistent bioinformatics pipeline (Figure 1) to analyze the raw RNA-seq data (FASTQ files) from the 
three independent studies in which three different pipelines were used [10–12]. Among a total of 
58,884 genes used for expression quantification, 789 genes were identified as differentially expressed 
in meta-analysis including 581 downregulated and 208 upregulated genes (Supplementary Table S1). 
Only three genes, LCN10, TUBA3D and NPR3, were common between all three individual analyses 
and the meta-analysis (Figure 2). Interestingly, these three genes were among the genes with the high 
fold change in our analysis (log2FC = −2.64, −1.75 and 2.14, respectively) (Supplementary Table S1). 
LCN10 is a member of the lipocalin family that generally binds to small hydrophobic ligands and 
transport them to specific cells [26]. LCN10 has been shown to be significantly downregulated in 
patients with right ventricular heart failure [27]. TUBA3D, also known as TUBA2, encodes a member 
of the α tubulin family which is a major component of microtubules. TUBA3D along with other genes 
encoding microtubule subunits has been reported previously to be downregulated in DCM patients 
[28]. NPR3 (also known as NPR-C) encodes one of three receptors of natriuretic peptide which are 
small peptides responsible for regulating blood volume and pressure [29]. Several variations of NPR3 
have been previously shown to be related to essential hypertension and coronary artery disease 
[30,31]. Follow-up functional studies are needed to investigate the mechanisms by which these genes 
contribute to the development of cardiomyopathy.  

Figure 5. Significant canonical pathways with absolute z-score > 2.0. The z-score represents the
activation or inhibition state of a canonical pathway. A z-score greater than 2.0 was considered as
significantly activated. A z-score smaller than −2.0 was considered as significantly inhibited.

4. Discussion

In this study, we performed a quantitative meta-analysis of three independent RNA-seq studies
using human left ventricle tissues to profile gene expression signatures and identify novel genes
associated with DCM. To better integrate the RNA-seq results from different studies, we applied a
consistent bioinformatics pipeline (Figure 1) to analyze the raw RNA-seq data (FASTQ files) from
the three independent studies in which three different pipelines were used [10–12]. Among a total of
58,884 genes used for expression quantification, 789 genes were identified as differentially expressed
in meta-analysis including 581 downregulated and 208 upregulated genes (Supplementary Table S1).
Only three genes, LCN10, TUBA3D and NPR3, were common between all three individual analyses and
the meta-analysis (Figure 2). Interestingly, these three genes were among the genes with the high fold
change in our analysis (log2FC = −2.64, −1.75 and 2.14, respectively) (Supplementary Table S1). LCN10
is a member of the lipocalin family that generally binds to small hydrophobic ligands and transport
them to specific cells [26]. LCN10 has been shown to be significantly downregulated in patients with
right ventricular heart failure [27]. TUBA3D, also known as TUBA2, encodes a member of the α

tubulin family which is a major component of microtubules. TUBA3D along with other genes encoding
microtubule subunits has been reported previously to be downregulated in DCM patients [28]. NPR3
(also known as NPR-C) encodes one of three receptors of natriuretic peptide which are small peptides
responsible for regulating blood volume and pressure [29]. Several variations of NPR3 have been
previously shown to be related to essential hypertension and coronary artery disease [30,31]. Follow-up
functional studies are needed to investigate the mechanisms by which these genes contribute to the
development of cardiomyopathy.

Specific alleles or change in expression levels of several genes from the top 50 DEG list (Table 2)
such as MYH6 [32], CKM [33], NKX2-5 [34,35], and ATP2A2 [36] have been previously reported to be
associated with DCM. MYH6 encoding α heavy chain subunit of cardiac myosin was downregulated
in the DCM group in our dataset. Mutations in MYH6 have been reported in patients with both dilated
and hypertrophic phenotypes of cardiomyopathy [32]. Inhibition of CKM, a cytoplasmic enzyme,
which is a serum marker for myocardial infarction and contributes to energy homeostasis, has been



Genes 2020, 11, 60 10 of 13

also reported to inhibit cardiac contractility and contractility of muscle [29,33]. NKX2-5, which encodes
a homeobox-containing transcription factor, was downregulated in our dataset [29]. Mutation in this
gene could affect heart formation and development and has been reported in DCM [34,35]. ATP2A2,
an ATPase enzyme that regulates the level of calcium ions inside the cells, is found in the sarcoplasmic
reticulum involved in muscle contraction and relaxation by releasing and storing calcium ions [29].
Downregulation of ATP2A2 has been reported during human end-stage heart failure and has been
suggested to be responsible for change in Ca2+ movements and myocardial relaxation [36].

Our meta-analysis identified 39 unique DEGs that were not identified as DEGs in individual
analyses (Table 3), indicating that our meta-analysis further increased the statistical power for
identifying new disease-associated genes, which has been reported as an advantage of the meta-analysis
approach [7,8]. Some of these genes, including PTH1R, S100A4 and ADAM15, have been reported
to be differentially expressed in DCM or other types of cardiomyopathies. PTH1R encodes a protein
from G-protein coupled receptor family 2, which is a receptor for parathyroid hormone (PTH) and
for parathyroid hormone-like hormone (PTHLH) [29]. This gene was downregulated in our study.
Although no report was found for direct association between PTH1R and DCM, PTH has direct effects
on heart and calcium homeostasis, which could impact cardiovascular system [37]. Other studies
have also observed the downregulation of S100A4 and upregulation of ADAM15 in failing heart
in human [38,39]. However, ADAM15 was downregulated in our study, suggesting a complicated
pathophysiological role of ADAM15 in heart failure.

For further understanding physiological processes involved in DCM, we performed Ingenuity
Pathway Analysis (IPA, Qiagen). Five toxicity pathways, including failure of heart (with the highest
activation z-score), were identified as significantly activated in the DCM group. Interestingly, all these
activated toxicity pathways were related to heart failure and cardiac dilation, demonstrating that the
identified DEGs in our meta-analysis are significant to capture the progression of heart failure.

Among the upstream regulators, SMARCA4 with the highest absolute prediction score (z-score
= −3.00) was downregulated in the DCM group and was predicted to target 42 genes (Figure 4).
SMARCA4, also known as BRG1, is a member of the SWI/SNF family of proteins with helicase and
ATPase activities and is known for regulating the transcription of several genes by altering the
chromatin structure [29]. Among the genes involved in progression of toxicity pathways (Figure 3),
DES and TNNT2 are targeted by SMARCA4 (Figure 4) and the downregulation of SMARCA4 resulted
in the downregulation of DES and TNNT2. The evidence shows that chromatin remodeling is required
for DES expression [40] and inhibition or lack of DES could lead to idiopathic DCM [41]. Inhibition of
TNNT2 was also previously reported to lead to left ventricular dilation and impaired contractility [42].

Canonical pathway analysis showed that 11 pathways were affected with ten significantly
inhibited and one significantly activated (Figure 5). Actin cytoskeleton signaling, Ras homolog family
member A (RhoA) signaling, integrin signaling, cardiac hypertrophy signaling (enhanced) and vascular
endothelial growth factor (VEGF) signaling pathways have been previously reported to be related
to cardiac functions [43–47]. Change in actin cytoskeleton has been considered for the regulation of
cardiomyocyte [43]. RhoA in cardiomyocytes can have both detrimental and beneficial effects on the
heart as it has been reported to prevent progression of dilation and heart failure, but also promote
the cardiac fibrosis [44]. Uncontrolled integrin activation could also result in contractile dysfunction
and arrhythmias [45]. Downregulation of VEGF has been observed in dilated cardiomyopathy and
heart failure [46]. Interestingly, several genes including NKX2-5, ATP2A2 and CAV1 involved in these
pathways were also found in toxicity pathways such as failure of heart, congenital heart disease,
congestive heart failure, dilation of heart chamber and dilation of left ventricle. Roles of NKX2-5
and ATP2A2 in developing cardiac diseases were discussed above. Loss of CAV-1 gene expression in
mice has been also reported to cause the progression of hypertrophic cardiomyopathy and sudden
cardiac death syndrome [48]. Overall, our meta-analysis successfully identified a core set of genes
associated with DCM including well-known cardiomyopathy biomarkers as well as newly identified
genes. This set of genes from our meta-analysis will be provided as more robust candidates for DCM
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compared to the genes profiled from individual studies. Our meta-analysis further provided the
DCM-associated genes as potential diagnostic biomarkers and therapeutic targets for future clinical
application. For most of the new DEGs identified in our study, there is no report of a direct relationship
with DCM. Thus, future research on these new DEGs is needed to validate their physiological roles
in DCM and further understand their molecular mechanisms in cardiovascular pathophysiology,
especially cardiomyopathies.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4425/11/1/60/s1.
Table S1: A complete list of differential expressed genes identified in meta-analysis of DCM vs NF. Table S2:
Differentially expressed upstream regulators and their target genes. Table S3: Significant canonical pathways with
absolute z-score > 2.0 and the involved genes.
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