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ABSTRACT 

Growth and differentiation factor 5 (GDF5) is a key risk locus for osteoarthritis (OA). However, little 

is known regarding regulation of Gdf5 expression following joint tissue damage. Here, we employed 

Gdf5-LacZ reporter mouse lines to assess the spatiotemporal activity of Gdf5 regulatory sequences in 

experimental OA following destabilisation of the medial meniscus (DMM) and after acute cartilage 

injury and repair. Gdf5 expression was upregulated in articular cartilage post-DMM, and was 

increased in human OA cartilage as determined by immunohistochemistry and microarray analysis. 

Gdf5 expression was also upregulated during cartilage repair in mice and was switched on in injured 

synovium in prospective areas of cartilage formation, where it inversely correlated with expression 

of the transcriptional co-factor Yes-associated protein (Yap). Indeed, overexpression of Yap 

suppressed Gdf5 expression in chondroprogenitors in vitro. Gdf5 expression in both mouse injury 

models required regulatory sequence downstream of Gdf5 coding exons. Our findings suggest that 

Gdf5 upregulation in articular cartilage and synovium is a generic response to knee injury that is 

dependent on downstream regulatory sequence and in progenitors is associated with chondrogenic 

specification. We propose a role for Gdf5 in tissue remodelling and repair after injury, which may 

partly underpin its association with OA risk. 
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INTRODUCTION 

Growth and Differentiation Factor 5 (GDF5) is a major risk locus for osteoarthritis (OA), the most 

common joint disease characterised by progressive loss of articular cartilage, remodelling of 

subchondral bone, chondro-osteophyte formation and synovitis. Common variants spanning a large 

130 kb interval confer risk of hip and knee OA [1–3]. A well-studied SNP is located in the 5’ UTR of 

the GDF5 gene (rs143383), with the OA susceptibility allele resulting in decreased GDF5 expression 

[4–7]. 

Gdf5 plays important roles during joint formation. It is one of the earliest genes expressed in the 

embryonic joint interzone [8–11], fated to give rise to joint tissues including articular cartilage, 

synovium, menisci, and ligaments [12,13]. Gdf5-expressing progenitors are continuously recruited 

into joint interzones throughout development [14] and their progeny retain skeletal joint 

stem/progenitor activity in adulthood [15]. Following injury to the joint surface, Gdf5-lineage 

mesenchymal stromal/stem cells (MSCs) proliferate to underpin synovial hyperplasia and migrate to 

the site of injury, through the activity of the transcriptional co-factor Yes-associated protein (Yap), 

where they repair cartilage [15]. 

Loss-of-function mutations in GDF5 have been linked to congenital disorders including Hunter-

Thompson syndrome [16], brachydactyly type C [17], and DuPan syndrome [18]. These syndromes 

are partly phenocopied in brachypodism (bp) mice, which harbour Gdf5 coding mutations [8]. 

Homozygous bp mice have dysmorphic knees lacking cruciate ligaments [19,20]. Heterozygous bp 

mice, which model human GDF5 variants that cause decreased GDF5 expression, display no overt 

phenotype [20–22] but show increased susceptibility to OA under experimental challenges [22]. 

Recent studies using mice harbouring BAC transgenes have revealed a conserved cis-regulatory 

architecture for GDF5 between humans and mice [20,23–25]. Regulatory sequences that control 

Gdf5 expression in developing and adult joints are distributed over a hundred kilobases, including 

regions both upstream and downstream of its coding exons [23]. While Gdf5 expression in the 

developing knee is driven by both upstream and downstream regulatory sequences, in adulthood 

downstream regulatory regions are uniquely used [20,23], suggesting that the genomic sequences 

regulating continued expression of Gdf5/GDF5 in the adult knee during homeostasis may be distinct. 

Of note, these downstream regions harbour a number of genetic risk variants for knee OA [3]. 

In this study, we used BAC Gdf5-LacZ reporter mice [20,23] to map Gdf5 expression during adult 

knee joint tissue remodelling associated with OA development or acute cartilage injury and repair, 



4 
 

and to determine whether a differential regulation of Gdf5 expression is associated with such 

events. 
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METHODS 

 

Mice 

All methods were carried out in accordance with relevant guidelines and regulations. All animal 

experimental protocols were approved by the UK Home Office and the Animal Welfare and Ethical 

Review Committee of the University of Aberdeen. Two Gdf5 BAC transgenic mouse lines were used 

[20,23,24]. They both harbour a BAC transgene containing mouse Gdf5 with an IRES-LacZ cassette in 

the 3’UTR. Gdf5UP-LacZ mice contain a modified BAC extending 110 kb upstream to 30 kb 

downstream of Gdf5 coding exons, which includes a conserved regulatory region adjacent to the 

promoter upstream of the Gdf5 coding exons. Gdf5DOWN-LacZ mice contain a modified BAC 

extending a further 109 kb downstream, which includes additional regulatory regions downstream 

of the Gdf5 coding exons. Both lines were maintained as heterozygotes on an FVB background. Gdf5-

CreER mice [14] were provided by Dr Elazar Zelzer (Weizmann Institute of Science, Israel) and 

crossed with Cre-inducible tdTomato (tdTom) reporter mice (Jackson Laboratory; B6.Cg-

Gt(ROSA)26Sortm14(CAG-tdTomato)Hze/J) [26]. Mice were group-housed in conventional cages on a 12:12 

light-dark cycle, in a temperature-controlled room with water and food ad libitum and 

environmental enrichment provided. Tamoxifen (Sigma) dissolved in corn oil was administered by 

gavage at 6 weeks of age (180 mg/kg daily for 5 days), or to the pregnant dam at E11.5 (120 mg/kg), 

E13.5 (160 mg/ml) and E15.5 (160 mg/ml), and embryos were collected following euthanasia of the 

pregnant dam at E19.0.  

 

Surgical procedures 

Male mice, 11-12 weeks old, underwent surgical unilateral destabilisation of the medial meniscus 

(DMM) on the left knee [27] while the right knee served as internal control, and mice were 

euthanised 2 or 8 weeks later. Female mice, 9-11 weeks old, underwent surgery to induce unilateral 

joint surface injury by medial parapatellar arthrotomy as previously described [15], and were 

euthanised 6-7 days or 4 weeks later. For all surgeries, isoflurane inhalation anaesthesia was used, 

and mice received a subcutaneous injection of 0.1 mg/kg Vetergesic (containing 0.3 mg/ml 

Buprenorphine) on the day of surgery and the following day. Mice were kept group-housed.  

 

X-gal staining 
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Whole-mount staining with X-gal to detect β-galactosidase (β-gal) activity was performed as 

described [28], with modifications. Limbs were fixed in 4% PFA for 2h at 4℃, washed 3x in wash 

buffer (0.1 M phosphate buffer supplemented with 2 mM MgCl2, 0.01% sodium deoxycholate and 

0.02% Igepal), stained with 0.75 mg/ml X-gal in staining solution (wash buffer supplemented with 4 

mM potassium ferrocyanide, 4 mM potassium ferricyanide and 20 mM Tris buffer (pH 7.4) for 6 days 

at room temperature, then washed 3x in PBS. Limbs from wild-type mice were stained as controls.  

 

Human tissue collection 

All human cartilage samples were obtained after informed consent and in accordance with the 

relevant guidelines and regulations, with approval from the NHS Grampian Biorepository Tissue Bank 

Committee. OA samples were obtained from five patients (47 to 79 years old, all female) undergoing 

knee arthroplasty. Normal samples were obtained from five joints (two knee joints, 1st metatarsal 

phalangeal joint, ankle joint, talo-calcaneal joint) donated by three patients (40 to 59 years old, two 

males, one female) undergoing excision or amputation surgery for tumours unrelated to the joint 

sampled.  

 

Histology and immunohistochemistry 

Samples were fixed in 4% PFA at 4°C and decalcified in 10% EDTA in PBS. Samples were embedded 

and sectioned as described [15]. Sections were stained with Nuclear Fast Red (Vector Laboratories, 

UK) to stain nuclei, or with safranin-O (Sigma) to stain glycosaminoglycans in the cartilage matrix 

red, with fast green (Sigma) counterstain, following standard protocols. TRAP staining to detect 

osteoclasts was carried out using a TRAP staining kit (Sigma). Immunohistochemistry was performed 

as described [29,30] using antibodies listed in Supplementary Table 1. Collagen type II was detected 

following enzyme-based antigen retrieval with 1.5 mg/ml porcine pepsin (Sigma) for 45 min at 37℃. 

Yap and GDF5 were detected following antigen retrieval for 4 hours at 80℃  in antigen unmasking 

citrate buffer solution (pH 6, Vector Laboratories, UK). Stained sections were imaged using Zeiss 

Axioscan Z1 slide scanner (Carl Zeiss Ltd, UK), Zeiss Axioskop 40 (Zeiss) with Progress XT Core 5 

colour digital camera and ProgRes CapturePro 2.9.0.1 software (JenOptik, Germany), or 710 META 

Laser-Scanning Confocal Microscope with ZEN software (Zeiss) and analysed using ZEN2 (blue 

edition, Carl Zeiss Ltd). Cartilage damage of the tibial plateau was assessed using the Osteoarthritis 

Research Society International (OARSI) scoring system [33]. 
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Quantification of X-gal staining 

Colour deconvolution was applied to images of X-gal-stained sections to remove the Nuclear Fast 

Red counterstaining using ImageJ with Fiji package and Colour Deconvolution Plugin (Dr Gabriel 

Landini, University of Birmingham, UK) based on published methods [32]. All images were acquired 

with the same magnification, resolution and light settings. The number, size and staining intensity of 

X-gal-stained chondrocytes in the tibial cartilage was then determined by creating a binary image 

using thresholding and watershedding, and analysing particles by redirecting measurements to 

matching greyscale images. Four sections per sample were analysed. Total X-gal staining was 

calculated by multiplying the number and staining intensity of X-gal-stained chondrocytes. 

 

Primary cell isolation and in vitro chondrogenesis 

Cells were isolated from Gdf5 BAC mouse knees as described [15]. Chondrogenesis was induced in 

high-cell density pellet culture (2.5-3x105 cells) with 10 ng/ml TGFβ1 (Gibco) or 300 ng/ml BMP-2 

(Prospec) for 21 days, as described [15]. Pellets were fixed in 4% PFA for 15 min, X-gal-stained for 4h 

and post-fixed for 15 min, cryoprocessed, sectioned and stained with Toluidine Blue or Nuclear Fast 

Red.  

 

Overexpression and knockdown experiments  

C3H10T1/2 cells (American Type Culture Collection, USA) were retrovirally transduced to express 

wildtype or constitutively active YAP1, as described [31]. Cells were seeded in monolayer 

(15,000/cm2), transduced the next day, and RNA extracted 2 days later. Alternatively, transduced 

cells were seeded in high-cell density micromass culture (4×105 cells) in chemically-defined serum-

free medium (high-glucose DMEM with glutamine, supplemented with 50 μg/ml ascorbic acid, 1 

mg/ml recombinant human insulin, 0.55 mg/ml transferrin, 0.5 ug/ml sodium selenite, 50 mg/ml 

BSA and 470 µg/ml linoleic acid) [31], and the next day RNA was extracted. For knockdown 

experiments, cells were seeded at 42,000/cm2 and transfected the next day with DsiRNA 

(Supplementary Table 2) (Integrated DNA Technologies, USA) using Mirus TransIT-X2 reagent (Mirus 

Bio LLC, USA). The following day, cells were seeded in micromass culture (2.5-3x105 cells) and 

cultured under chondrogenic conditions by treatment with 300 ng/ml BMP-2, as described [31]. 

After 4 days, RNA was extracted for analysis of gene expression. 
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Gene expression analysis 

Total RNA was extracted using TRIzol reagent (Invitrogen, Paisley, UK) according to standard 

protocols, and RNA was quantified using a NanoDrop ND-1000 spectrophotometer (Labtech, 

Uckfield, UK). cDNA was synthesised using random hexamer primers and SuperScript Reverse 

Transcriptase (Invitrogen), according to manufacturer’s instructions. Quantitative PCR (qPCR) was 

performed with a Roche LightCycler 480 using SYBR Green Master (Roche), according to standard 

protocols. Expression of genes of interest was normalised to expression of Hprt1. Primer sequences 

are listed in Supplementary Table 3. 

 

Statistical analysis 

Microarray data were analysed using Bioconductor (Affy package for pre-processing and 

normalization and Limma for statistical comparison of expression levels using a false-discovery-rate 

of 5%). Principal component analysis was performed using the prcomp package in R. All other data 

was analysed using GraphPad Prism v5 and SigmaPlot v13. A p-value ≤0.05 was considered 

statistically significant. For comparison of two groups, two-tailed t-test was used. For comparison of 

≥ 3 groups, one-way or two-way ANOVA with Holm-Sidak post-test was used. Data following a 

lognormal distribution were log-transformed for statistical testing. N-numbers and data points on 

graphs represent individual mice, patients, or in vitro experiments, with horizontal lines indicating 

mean. 
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RESULTS 

Gdf5 expression in OA 

To investigate Gdf5 expression in experimentally induced OA, we used two Gdf5-LacZ reporter 

mouse lines [23]. Gdf5UP-LacZ mice contain a BAC extending 110 kb upstream to 30 kb downstream 

of Gdf5 coding exons, which includes a conserved regulatory region adjacent to the promoter 

upstream of the Gdf5 coding exons. Gdf5DOWN-LacZ mice contain a BAC extending a further 109 kb 

downstream, which includes additional regulatory regions downstream of the Gdf5 coding exons 

that are not present in the Gdf5UP-LacZ BAC. Both BACs were modified to contain an IRES-LacZ 

cassette in the 3’UTR of the Gdf5 gene, thus LacZ expression is indicative of the activity of the Gdf5 

regulatory regions contained within the BAC [23]. While both mouse lines express LacZ in the knee 

during development [20,23], only Gdf5DOWN-LacZ mice express LacZ in the knee in adulthood ([20]; 

Supplementary Fig. 1). The Gdf5DOWN-LacZ BAC is also able to rescue the knee phenotype in bp 

mice, indicating it contains the regulatory regions necessary for adequate expression in the knee 

[20]. Here, we found that the LacZ expression pattern in Gdf5DOWN-LacZ adult knees resembled the 

tdTom labelling pattern in knees from adult mice with a knock-in of CreER at the endogenous Gdf5 

locus [14] crossed with Cre-inducible tdTom reporter mice [26] shortly after tamoxifen induction 

(Supplementary Fig. 2A,B). TdTom labelling was sparse, likely due to inefficient Cre-recombination as 

observed in embryos (Supplementary Fig. 2C-E) [14]. These data support LacZ expression in knees 

from adult Gdf5DOWN-LacZ mice as reflecting transcriptional activity of endogenous Gdf5. 

We analysed LacZ expression in the knees of Gdf5-LacZ mice after DMM (Fig. 1A,B). In Gdf5DOWN-

LacZ mice, increased LacZ expression was observed in medial compartment articular cartilage at 2 

weeks, particularly in areas with early signs of damage, as shown by Safranin O staining which stains 

proteoglycans in the cartilage extracellular matrix (Fig. 1A). Quantification showed an increase in 

both the number of LacZ-expressing chondrocytes and average X-gal staining intensity per 

chondrocyte (Fig. 1C), resulting in a significantly higher overall LacZ-expression in the medial tibial 

plateau cartilage in DMM knees. At 8 weeks after DMM, LacZ expression persisted in articular 

cartilage of Gdf5DOWN-LacZ mice but was less pronounced and undetectable in areas of severe 

damage (Fig. 1A). In Gdf5UP-LacZ mice, no LacZ expression was detectable in the cartilage at either 

time-point (Fig. 1A). These data indicate that Gdf5 downstream regulatory elements are activated in 

articular chondrocytes in the early phase of OA. 

LacZ expression was also detected in the medial synovium of Gdf5DOWN-LacZ mice at 2 weeks post-

DMM (Fig. 2A) and remained detectable at 8 weeks, specifically in ectopic chondrocytes and 

surrounding fibroblast-like cells (Fig. 2A). In addition, LacZ was expressed in chondrophytes at 2 
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weeks post-DMM but was no longer detectable in mature osteophytes at 8 weeks (Fig. 2B). LacZ 

expression was not detected in knees from Gdf5UP-LacZ mice at either time-point (Fig. 2B). We infer 

that Gdf5 is expressed in areas of forming ectopic cartilage during OA. 

For clinical relevance, we analysed data from published microarrays of human cartilage from knees 

of normal donors and OA patients [34]. GDF5 expression was upregulated in the cartilage of OA 

patients (Fig. 3A), alongside increased expression of cartilage degrading proteins known to be 

upregulated in OA (MMP13, ADAMTS5) (Fig. 3B). GDF5 expression correlated with expression of 

SOX11 and WNT9A (Fig. 3B,C), known upstream regulators of Gdf5 expression during development 

[35–37], indicating these factors may also modulate GDF5 expression in human articular cartilage 

during OA. Immunohistochemistry for GDF5 on articular cartilage samples from a distinct cohort of 

OA patients and controls confirmed GDF5 was upregulated in OA cartilage (Fig. 3D and 

Supplementary Fig. 3). 

 

Gdf5 expression following joint surface injury 

To investigate Gdf5 expression during cartilage repair, we analysed LacZ expression in the Gdf5-LacZ 

transgenic mice 4 weeks after joint surface injury. In Gdf5DOWN-LacZ mice, chondrocytes in the 

repair tissue strongly expressed LacZ. We also detected prominent LacZ expression in chondrocytes 

in the native cartilage immediately adjacent to the repair tissue (Fig. 4A). In contrast, no staining was 

observed in repaired cartilage in Gdf5UP-LacZ mice (Fig. 4A). In support of these findings, while 

undetectable in monolayer culture, LacZ expression was detected in MSCs isolated from the knees of 

Gdf5DOWN-LacZ mice following chondrogenic differentiation in pellet culture, but not in 

chondrogenic pellets of Gdf5UP-LacZ MSCs (Fig. 4B). These data indicate upregulation of Gdf5 

expression, mediated by downstream regulatory regions, during articular cartilage repair. 

Since LacZ was switched on in Gdf5DOWN-LacZ MSCs during chondrogenesis, we next analysed the 

synovium, which contains stem/progenitor cells that can undergo chondrogenic differentiation 

following injury and are postulated to repair injured cartilage [15,29,38]. LacZ was not detectable in 

synovium during homeostasis in either model (Supplementary Fig. 1). One week after joint surface 

injury, the synovium was hyperplastic, as expected [29,39]. In the synovium on the lateral side of the 

knee, not incised during surgery, LacZ remained undetectable in both mouse lines at both time-

points (Fig. 5A and not shown), indicating that Gdf5 expression is not switched on in synovium in 

response to cartilage injury. However, in synovium on the medial side, which was incised during 

surgery, small clusters of LacZ-expressing cells with a fibroblast-like morphology were detected in 
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Gdf5DOWN-LacZ mice (Fig. 5B), and such cells persisted at 4 weeks after injury (Fig. 5C). They were 

predominantly localized near surgical sutures, where fibroblast-like cells that stained strongly for β-

gal were observed around small clusters of LacZ-expressing chondrocytes embedded in a matrix 

containing collagen type II (Fig. 5D). Thus, as in DMM mice, Gdf5 expression is upregulated in 

synovium in areas of prospective cartilage formation, suggesting a role for Gdf5 in chondrogenic 

specification and differentiation. 

 

Yap suppresses Gdf5 expression in chondroprogenitors 

We previously reported that Yap is upregulated in synovium after joint surface injury and is required 

for the local expansion of Gdf5-lineage MSCs and their recruitment to the cartilage defect [15], 

whereas Yap prevents chondrogenic differentiation [31]. Here, we compared expression of LacZ and 

Yap in Gdf5DOWN-LacZ mouse knees after joint surface injury and observed areas in synovium 

where Yap and LacZ showed an inverse expression pattern, with cells that expressed LacZ showing 

diminished Yap compared to surrounding cells (Fig. 5E). We hypothesized that high Yap activity 

during cell proliferation inhibits chondrogenic differentiation, as reported [31], by actively 

suppressing chondrogenic factors including Gdf5. Hence, we determined the effect of 

overexpression of Yap on Gdf5 expression in high-cell-density cultures using murine C3H10T1/2 

MSCs. After one day of high-cell-density micromass culture, Gdf5 expression was upregulated 

approximately 20-fold when compared to cells in monolayer (Fig. 6A), as previously reported with 

human synovial MSCs [40]. Strikingly, overexpression of YAP1 prevented the upregulation of Gdf5 in 

micromass (Fig. 6A). In contrast, YAP1 overexpression failed to prevent the upregulation of Wnt9a, 

known to be upstream of Gdf5 [36], even when cells were transduced to express constitutively 

active YAP1S127A (Fig. 6B). Conversely, knockdown of Yap in C3H10T1/2 MSCs in micromass increased 

Gdf5 expression, an effect that was synergistically enhanced with concomitant knockdown of the 

paralog of Yap, Transcriptional Co-Activator with PDZ binding motif (Taz) (Fig. 6C-E). Wnt9a 

expression was not similarly modulated by Yap and Taz knockdown (Fig. 6F). Altogether, these data 

identify Yap as a negative regulator of Gdf5 expression in chondrogenic MSCs, and indicate that Yap 

acts downstream of Wnt9a, possibly by directly modulating the activity of one or more transcription 

factors acting on Gdf5 cis-regulatory elements. 
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DISCUSSION 

Allelic variants at the GDF5 locus have been linked to OA risk, suggesting GDF5 plays important roles 

in joint maintenance throughout life. Expression of Gdf5 in adult articular cartilage has been 

reported in mice [41] and humans [5,42], with upregulation in OA [42]. Little was known regarding 

Gdf5 expression in response to acute joint surface defects, which can progress to OA in the absence 

of repair [43], or during the different stages of OA. Here, we show Gdf5 expression in remodelling 

joint tissues, using two BAC LacZ reporter mouse strains harbouring distinct yet partially overlapping 

regions of the Gdf5 locus [20,23]. After joint surface injury, Gdf5 was highly expressed in 

chondrocytes both inside the newly formed cartilage repair tissue and in the adjacent stressed 

cartilage. Similarly, Gdf5 was upregulated in cartilage during early-stage OA, particularly in areas of 

initial damage, and was detected in forming chondrophytes. Given the known chondrogenic activity 

of Gdf5 [13,44] our findings implicate a role for Gdf5 in new cartilage formation following injurious 

events in adulthood, possibly representing an attempt to repair joint damage. During late-stage OA, 

areas of advanced cartilage damage displayed markedly reduced LacZ staining, in line with previous 

studies reporting decreased Gdf5 expression in extensively damaged cartilage in mice with 

inflammatory or degenerative arthritis [35,41]. These data support a role for Gdf5 in the 

maintenance and repair of articular cartilage in adult life, and provide a rationale for the 

administration of exogenous Gdf5 to aid cartilage repair in OA treatment [45]. 

We show that Gdf5 expression after injury and during OA is dependent on DNA sequence more than 

30 kb downstream from the Gdf5 coding region. This downstream sequence contains joint-specific 

regulatory elements [23], and is both capable of, and necessary for rescuing the bp knee phenotype 

in mice [20,23–25]. Importantly, it harbours many common risk variants for OA, of which several 

reside in known enhancers. Our findings indicate that such downstream variants may confer OA risk 

partly through modulating Gdf5 expression in the adult knee in response to injurious events, thereby 

impacting on joint maintenance and reparative processes. They further indicate that the effect of a 

human variant such as the rs143383 SNP in the 5’UTR [4–7] is likely to be dependent on cis-acting 

variants present in downstream cis-regulatory elements that are critical to drive adequate 

expression of Gdf5. Whether downstream regulatory elements involved in repair are different from 

those involved in OA development remains to be determined. 

The identification of molecules that regulate Gdf5 expression will provide critical insights into joint 

formation, maintenance and disease. We have unveiled a regulatory mechanism, to our knowledge 

hitherto unreported, that links Yap activity to Gdf5 expression. Undetectable in quiescent synovium, 

Gdf5 was switched on in activated chondroprogenitors in synovium following injury, concomitant 

with Yap downregulation. In chondrogenic MSCs, Yap suppressed expression of Gdf5 but not Wnt9a, 
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known to induce Gdf5 expression [36,37]. Our data indicate that Yap negatively regulates Gdf5 

expression downstream of Wnt9a and we propose that Yap needs to be down-regulated to enable 

Gdf5 expression to prime progenitors towards chondrogenesis. Indeed, Yap prevents MSC 

chondrogenic differentiation in vitro [31]. Candidate transcription factors that could partner with 

Yap to regulate Gdf5 include Sox11, reported to directly regulate Gdf5 expression [35] and found 

here to correlate with GDF5 expression in human OA cartilage, and ZEB1, since ZEB1 binding sites 

are present in the enhancer upstream of the Gdf5 promoter region [23] and a direct interaction 

between ZEB1 and Yap has been reported [46]. 

In conclusion, Gdf5 is upregulated in stressed cartilage, switched on in chondroprogenitors and 

expressed in newly forming cartilage during tissue remodelling following knee injury. This is 

dependent on activity of downstream regulatory sequence and occurs irrespective of whether the 

injury is acute or the result of chronic joint instability, indicating that Gdf5 modulation is not linked 

to a specific injurious event. An understanding of the regulation of Gdf5 in the context of 

remodelling, repair and OA pathogenesis will have important implications for joint surface 

regenerative therapies and OA treatment. 
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FIGURE LEGENDS 

 

Figure 1. Gdf5 expression in articular cartilage following DMM. (A) LacZ expression (blue X-gal 

staining) in the articular cartilage of the medial femoral condyle (top) and tibial plateau (bottom) at 2 

and 8 weeks after DMM, or in contralateral control knee, in Gdf5DOWN-LacZ and Gdf5UP-LacZ mice 

(n=3 for both strains and both timepoints). At 2 weeks, cartilage shows focal loss of proteoglycan 

staining (red Safranin O staining) and minor fibrillations at the surface, while at 8 weeks it is severely 

damaged. LacZ, whole-mount X-gal staining to detect LacZ expression; SafO & FG, Safranin O and 

Fast Green counterstaining; Fast Red, Nuclear Fast Red counterstaining. Scale bars, 200 μm. (B) 

OARSI histopathological scores of cartilage damage of the medial tibial plateau at 2 weeks (2w, n=3) 

or 8 weeks (8w, n=3) after DMM surgery, or no surgery (Ctl, n=5). *p < 0.05; **p<0.01; ***p < 0.001, 

two-way ANOVA with Holm-Sidak post-test for comparisons against control. There were no 

significant differences between the two mouse lines. (C) Number of counted X-gal-stained 

chondrocytes, average X-gal staining intensity per chondrocyte, and X-gal staining in cartilage 

calculated by multiplying number and staining intensity of X-gal-stained chondrocytes, in tibial 

articular cartilage of Gdf5DOWN-LacZ mice at 2 weeks after DMM. Data are expressed relative to the 

internal contralateral control knees (Ctl). *p < 0.05, two-tailed Student’s t-test. 

 

Figure 2. Gdf5 expression during ectopic cartilage formation in vivo. (A) LacZ expression in 

fibroblast-like cells (blue, arrowheads) in medial synovium at 2 and 8 weeks post-DMM in 

Gdf5DOWN-LacZ mice (n=3). At 8 weeks post-DMM, ectopic cartilage in synovium was observed 

with LacZ-expressing chondrocytes (blue, arrows) and surrounding LacZ-expressing fibroblast-like 

cells (blue, arrowheads). (B) Chondrophytes at 2 weeks post-DMM and mature osteophytes at 8 

weeks post-DMM (indicated by dashed lines) showing LacZ-expressing chondrocytes (blue) in the 

chondrophytes in Gdf5DOWN-LacZ mice, but not Gdf5UP-LacZ mice, at 2 weeks post-DMM (n=3 for 

both strains and both time points). LacZ, whole-mount X-gal staining to detect LacZ expression; SafO 

& FG, Safranin O and Fast Green counterstaining; Fast Red, Nuclear Fast Red counterstaining. Scale 

bars, (A) 100 μm, (B) 200 μm. 

 

Figure 3. Expression of GDF5 and upstream regulators in human OA cartilage. Gene expression data 

were obtained by mining a previously published microarray comparing normal versus OA human 

knee cartilage [34]. (A) Gdf5 expression was higher in OA cartilage compared to normal cartilage. 
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Linear modelling (limma) with Benjamini-Hochberg correction for multiple comparisons. 

****p<0.0001. (B) Principal component analysis including the genes indicated showed complete 

separation of the normal samples from the OA samples. PCA was performed with the prcomp 

function in R. (C) Linear regression modelling showed GDF5 expression to strongly correlate with the 

expression of SOX11 (left) and WNT9a (right). (D) IHC staining for GDF5 in articular cartilage samples 

from patients with OA (n=5 donors) in comparison to normal cartilage (n=3 donors; 5 joints). Scale 

bars, 100 μm. See also Supplementary Figure 3. 

 

Figure 4. LacZ expression is upregulated during cartilage repair and in vitro chondrogenesis. (A) 

Areas of healed cartilage (dashed line) in the patellar groove of the femur of Gdf5DOWN-LacZ (n = 

4/10) and Gdf5UP-LacZ (n = 3/10) mice, with LacZ-expressing chondrocytes (blue, arrows) detected 

in Gdf5DOWN-LacZ mice 4 weeks post-injury. LacZ, whole-mount X-gal staining to detect LacZ 

expression; SafO & FG, Safranin O and Fast Green counterstaining; Fast Red, Nuclear Fast Red 

counterstaining. Scale bars, 100 μm. (B) Histological sections of chondrogenic cell pellets. Synovial 

cells were isolated from Gdf5DOWN-LacZ and Gdf5UP-LacZ mice and treated in vitro for 21 days with 

TGFβ (10 ng/ml) or BMP-2 (300 ng/ml) to induce chondrogenesis, followed by X-gal staining to 

detect LacZ expression. Tol blue, Toluidine blue metachromatic staining indicates deposition of 

cartilage proteoglycans; Fast Red, Nuclear Fast Red counterstaining. LacZ-expressing chondrocytes 

(blue, arrows) were observed in Gdf5DOWN-LacZ cell pellets, but not Gdf5UP-LacZ pellets, under 

both culture conditions. Scale bars, 100 μm. 

 

Figure 5. Gdf5 is switched on in areas undergoing ectopic cartilage formation in synovium. LacZ 

expression in lateral (A) and medial synovium (B-E) from Gdf5DOWN-LacZ mice 1 week (A,B) or 4 

weeks (C-E) after joint surface injury (n = 4 for both timepoints). (A) LacZ expression was not 

detected in synovium (S) on the lateral side. (B) Clusters of LacZ-expressing fibroblast-like cells (blue, 

arrows) were found in the medial synovium, near the site of surgical incision. (C) LacZ expression in 

medial synovium persisted at 4 weeks after injury, particularly near surgical sutures (asterisk). 

Dotted line indicates area shown in (D) in a consecutive section. (D) IHC staining for Collagen type II 

(Col2; light brown) revealing LacZ-expressing chondrocytes (blue, arrowheads) embedded in a 

cartilage matrix surrounded by LacZ-expressing fibroblast-like cells (blue, arrows). (E) IHC staining for 

Yap showing LacZ-expressing cells (blue) with little or no Yap interspersed between Yap-expressing 

cells (light brown) that did not detectably express LacZ. LacZ, whole-mount X-gal staining to detect 

LacZ expression; Fast Red, Nuclear Fast Red counterstaining. Scale bars, 100 μm. 
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Figure 6. Yap supresses Gdf5 expression. (A,B) C3H10T1/2 cells were transduced with retrovirus 

encoding YAP1 or constitutively active YAP1S127A, or with empty vector (Control), and cultured in 

standard monolayer (n = 5 experiments), or in high-density micromass for 1 day (n = 4 experiments; 

data from separate experiments). (C-F) C3H10T1/2 cells were transfected with DsiRNA to knockdown 

Yap, or Yap and Taz, or with mismatch DsiRNA (Control), and cultured for 4 days in chondrogenic 

micromass culture. Gdf5 (A,E), Wnt9A (B,F), Yap (C) and Taz (D) expression were determined by 

quantitative RT-PCR. All data were normalised to expression of Hprt1, and are shown relative to 

expression of the gene of interest in non-transduced cells in monolayer (A,B), or in micromass (C-F). 

*p < 0.05; **p < 0.01; ***p < 0.001, based on two-way ANOVA with Holm-Sidak post-test for 

pairwise comparisons (A,B) or one-way ANOVA with Holm-Sidak post-test for comparisons against 

control (C-E).  



Figure 1

Ctl 2w 8w Ctl 2w 8w
0

1

2

3

4

5

O
A

R
S

I 
sc

o
re

Ctl DMM
0

1

2

3

X
-g

al
 s

ta
in

in
g

 in
 c

ar
til

ag
e

A Gdf5DOWN-LacZ Gdf5UP-LacZ
2 weeks 2 weeksControl 8 weeks 8 weeks

*

Ctl DMM
0

50

100

150

200

X
-g

al
-s

ta
in

e
d

 c
ho

nd
ro

cy
te

s

Ctl DMM
0.0

0.5

1.0

1.5

2.0

X
-g

al
 s

ta
in

in
g

 p
e

r 
ch

o
nd

ro
cy

te

P=0.054*CB

Gdf5DOWN-LacZ Gdf5UP-LacZ

**
***

*
***

La
cZ

 /
 S

af
O

 &
 

FG
La

cZ
 /

 F
as

t 
Re

d



Figure 2

A

Gdf5DOWN-LacZ Gdf5UP-LacZ
2 weeks 2 weeks8 weeks 8 weeks

Gdf5DOWN-LacZ
2 weeks 8 weeks

B

La
cZ

 / 
Sa

fO
 &

 F
G

La
cZ

 /
 F

as
t R

ed

LacZ / SafO & FG LacZ / Fast Red LacZ / SafO & FG LacZ / Fast Red



Figure 3

A

D

B

C

Normal OA

GDF5GDF5



Figure 4

A Gdf5UP-LacZGdf5DOWN-LacZ

B

BM
P-

2
TG

Fβ

Gdf5DOWN-LacZ Gdf5UP-LacZ

LacZ / Tol blue LacZ / Fast RedLacZ / Tol blueLacZ / Fast Red

La
cZ

 /
 S

af
O

 &
 F

G
La

cZ
 /

 F
as

t R
ed



Figure 5

C D

A B

E

P

*

S

LacZ / Fast Red LacZ / Fast Red

LacZ / Fast Red

LacZ / Col2

LacZ / Yap



Figure 6

C
on

tr
ol

Y
a

p 
K

D

Y
a

p
/T

az
 K

D

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Y
ap

 e
xp

re
ss

io
n

P=0.057

C
on

tr
o

l

Y
A

P
1

S
1

27
A

Y
A

P
1 C
on

tr
o

l

Y
A

P
1

S
1

27
A

Y
A

P
1

0.1

1

10

100

W
nt

9a
 e

xp
re

ss
io

n

C
on

tr
o

l

Y
A

P
1

S
1

27
A

Y
A

P
1 C
on

tr
o

l

Y
A

P
1

S
1

27
A

Y
A

P
1

0.1

1

10

100

G
df

5 
ex

pr
es

si
o

n

A

C

B
***

monolayer micromass

F

monolayer micromass

D E
*

* ** ***

***
***

***
***

***

C
on

tr
ol

Y
a

p 
K

D

Y
a

p
/T

az
 K

D

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

T
az

 e
xp

re
ss

io
n

C
on

tr
o

l

Y
a

p 
K

D

Y
a

p/
T

az
 K

D

0.1

1

10

100

G
d

f5
 e

xp
re

ss
io

n

C
on

tr
o

l

Y
a

p 
K

D

Y
a

p/
T

az
 K

D

0.1

1

10

W
n

t9
a 

e
xp

re
ss

io
n



1 
 

Regulation of Gdf5 expression in joint remodelling, repair and osteoarthritis 

 

Karolina Kania1, Fabio Colella1, Anna H.K. Riemen1, Hui Wang1, Kenneth A. Howard2, Thomas Aigner3, 

Francesco Dell’Accio4, Terence D. Capellini5,6, Anke J. Roelofs1*, Cosimo De Bari1* 

 
1 Arthritis and Regenerative Medicine Laboratory, Aberdeen Centre for Arthritis and Musculoskeletal 

Health, University of Aberdeen, Aberdeen, UK 
2 Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, 

Aarhus University, Aarhus, Denmark 
3 Department of Pathology and Molecular Pathology, Medical Center Coburg, Coburg, Germany 
4 Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and 

the London School of Medicine and Dentistry, Queen Mary University of London, London, UK 
5 Department of Human Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA 
6 Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA 

 

*Equal author contribution. 

 

Correspondence: Cosimo De Bari, MD PhD FRCP, Institute of Medical Sciences, University of 

Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK. Tel: +44-1224-437477, E-mail: 

c.debari@abdn.ac.uk. 

 



2 
 

 

 
 
Supplementary Figure 1. Gdf5 expression in adult knee joint. (A, B) Representative sections from 
whole-mount LacZ stained knee joints, counterstained with Nuclear Fast Red, of (A) Gdf5DOWN-LacZ 
(n = 10) and (B) Gdf5UP-LacZ mice (n = 8). Note absence of staining in synovial (S) tissue (Ai, Bi), and 
LacZ-expressing chondrocytes in articular cartilage in Gdf5DOWN-LacZ (Aii) but not Gdf5UP-LacZ 
mice (Bii). (C) Staining underneath the growth plate in both transgenic strains as well as wild-type 
(WT) mice (n = 5), likely reflecting staining of osteoclasts due to high endogenous beta-galactosidase 
activity, as previously reported [1]. (D) TRAP staining of osteoclasts (purple stain) showed co-
localisation with blue X-gal staining (arrows) in a WT mouse knee just below the growth plate. Scale 
bars: 500 μm (A, B); 50 μm (Ai, Aii, Bi, Bii, C, D). 
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Supplementary Figure 2. LacZ expression pattern in Gdf5DOWN-LacZ mice reflects activity of the 
endogenous Gdf5 promoter. (A-D) Activity of the endogenous Gdf5 promoter detected in knees of 
adult Gdf5-CreER;tdTom mice. (A) Experimental design. (B) Tom expression by cells in the articular 
cartilage of the tibial plateau detected 2 days after tamoxifen (TAM) administration (180 mg/kg for 5 
days) to Gdf5-CreER;tdTom mice (n = 2). Scale bars, 50 μm. (C,D) LacZ expression pattern in knees 
from Gdf5DOWN-LacZ mice resembles tdTom expression pattern in Gdf5-CreER;tdTom mice, 
showing expression in (C) the cruciate ligament and (D) lateral collateral ligament. Scale bars, 100 
μm. (E,F) Activity of the endogenous Gdf5 promoter detected in Gdf5-CreER;tdTom embryos. (E) 
Experimental design. (F) TdTom+ cells in forming articular cartilage, synovium and meniscus of the 
developing knee at E19.0 (n = 2), after three doses of tamoxifen administration (120 mg/kg at E11.5 
and 160 mg/ml at E13.5 and E15.5) to pregnant dam. Scale bars, 50 μm. 
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Supplementary Figure 3. GDF5 expression in human articular cartilage. Extended data for Figure 
3D. IHC staining for GDF5 in articular cartilage samples from patients with OA (n=5 donors) in 
comparison to normal cartilage (n=3 donors; 5 joints). Scale bars, 100 μm. 
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Supplementary Table 1. Antibodies for immunohistochemistry. 

Antibody Clone Manufacturer Cat. No. Conjugation 
Col2 polyclonal Abcam  ab21291 unconjugated 
Yap monoclonal Cell Signalling Technology 14074 unconjugated 
Gdf5 polyclonal Abcam ab93855 unconjugated 
Goat anti-rabbit IgG polyclonal Vector Labs BA-1000 biotinylated 

 

 

Supplementary Table 2. DsiRNA sequences for gene knockdown. 

Gene Primer Sequence (5’ to 3’) 
Yap Sense rArUrCrUrUrCrUrGrGrUrCrArArArGrArUrArCrUrUrCrUTA 

Antisense rUrArArGrArArGrUrArUrCrUrUrUrGrArCrCrArGrArArGrArUrGrU 
Taz Sense rGrArUrArCrUrUrCrCrUrUrArArUrCrArCrArUrArGrArGAA 

Antisense rUrUrCrUrCrUrArUrGrUrGrArUrUrArArGrGrArArGrUrArUrCrUrC 
Mismatch Sense rCrArUrArUrUrGrCrGrCrGrUrArUrArGrUrCrGrCrGrUrUAG 

Antisense rCrUrArArCrGrCrGrArCrUrArUrArCrGrCrGrCrArArUrArUrGrGrU 
 

 

Supplementary Table 3. Primers for qRT-PCR. 

Gene Primer Sequence (5’ to 3’) 
Gdf5 Forward GCTTTATTGACAAAGGGCAAGA 

Reverse GGCACTGATGTCAAACACGTA 
Yap Forward GCCCGACTCCTTCTTCAAG 

Reverse GAGTGAGCTCGAACATGCT 
Taz Forward AGCTCAGATCCTTTCCTCAATG 

Reverse ACCTGTATCCATCTCGTCCAT 
Wnt9A Forward CAACCTCGTGGGTGTGAAG 

Reverse CCTCGTGGAAGGGTGCTA 
Hprt1 Forward CAAACTTTGCTTTCCCTGGT 

Reverse CAACAAAGTCTGGCCTGTATC 
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