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Abstract. Cardiac MR image segmentation is essential for the morpho-
logical and functional analysis of the heart. Inspired by how experienced
clinicians assess the cardiac morphology and function across multiple
standard views (i.e. long- and short-axis views), we propose a novel ap-
proach which learns anatomical shape priors across different 2D standard
views and leverages these priors to segment the left ventricular (LV) my-
ocardium from short-axis MR image stacks. The proposed segmentation
method has the advantage of being a 2D network but at the same time
incorporates spatial context from multiple, complementary views that
span a 3D space. Our method achieves accurate and robust segmenta-
tion of the myocardium across different short-axis slices (from apex to
base), outperforming baseline models (e.g. 2D U-Net, 3D U-Net) while
achieving higher data efficiency. Compared to the 2D U-Net, the pro-
posed method reduces the mean Hausdorff distance (mm) from 3.24 to
2.49 on the apical slices, from 2.34 to 2.09 on the middle slices and from
3.62 to 2.76 on the basal slices on the test set, when only 10% of the
training data was used.

1 Introduction

Accurate segmentation of cardiac magnetic resonance (CMR) images is funda-
mental for assessing cardiac morphology and diagnosing heart conditions [1].
Manual segmentation of the anatomical structures is tedious, time-consuming
and prone to subjective errors, which is not suitable for large-scale studies such
as UK Biobank5 [2]. Therefore, it is essential to develop automated, fast and
accurate CMR segmentation techniques.

Recently, convolutional neural network (CNN) based methods have achieved
very good performance for cardiac image segmentation in terms of both speed
and accuracy [2,3,4]. However, they may still produce sub-optimal segmentation
results in some circumstances. For example, in the Automatic Cardiac Diagnosis

5 https://imaging.ukbiobank.ac.uk/
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Challenge (ACDC) [3], the top segmentation methods (all CNN-based) achieve
high overall segmentation scores for mid-ventricular short-axis slices. However,
they sometimes produce poor results or even fail to locate the myocardium in
basal slices (due to its more complex shape) and apical slices (due to its small
size). This problem is not uncommon and has been reported in the related liter-
ature [5,3,6]. Methods based on 2D networks, trained in a slice-by-slice fashion,
are particularly affected by this problem since they do not incorporate spatial
context from neighboring SA images or long-axis (LA) views. On the other hand,
3D networks are capable of incorporating 3D spatial information to perform the
segmentation task. Yet the 3D spatial context can be affected by potential inter-
slice motion artefacts [7] and the low through-plane spatial resolution in cardiac
SA stacks, thus limiting their segmentation performance. Compared to 2D ones,
3D networks usually contain more parameter and are prone to over-fitting espe-
cially when the training set is limited in size since they use 3D volumes rather
than 2D slices as input, significantly reducing the number of training samples.

Experienced clinicians are able to assess the cardiac morphology and function
from multiple standard views, using both SA and LA images to form an under-
standing of the cardiac anatomy. Inspired by this, we propose a method which
learns the anatomical prior knowledge across four standard views and leverages
this to perform segmentation on 2D SA images. The intuition behind our work
is that the representation learnt from multiple standard views is beneficial for
the segmentation task on the SA slices as different views should share the same
representation of the 3D anatomy if they are from the same subject.

The main contributions of this paper are the following: a) we developed a
novel autoencoder architecture (Shape MAE) which learns latent representation
of cardiac shapes from multiple standard views; b) we developed a segmentation
network (multi-view U-Net, adapted from [8]), which is capable of incorporat-
ing the anatomical shape priors learned from multi-view images to guide the
segmentation on SA images; c) we assessed the segmentation accuracy and the
data efficiency of the proposed segmentation method against common 2D and
3D segmentation baselines by limiting the number of training images, demon-
strating that the proposed method is more robust, and less dependent on the
size of training data.

Related literature. A large number of methods have been developed to im-
prove the robustness of the cardiac segmentation. One approach is to learn an
ensemble model where the predictions of a 2D and a 3D network are combined [9].
This method is capable of producing accurate results, but has a relatively high
computational cost and requires an extra post-processing step to merge the
predictions from the two networks. Another approach is to incorporate car-
diac anatomical prior knowledge into segmentation networks [10,11]. In [10], the
learned representation of the 3D cardiac shape is employed to constrain the seg-
mentation model to predict anatomically plausible shapes. The main bottleneck
of this method is the requirement of fully annotated 3D high-resolution CMR im-
ages which are free from inter-slice motion artefacts and have high through-plane
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spatial resolution. However, compared to the standard 2D imaging protocol, the
3D one requires the subjects to hold their breath for a relatively long time and
therefore is often not feasible for patients with cardiovascular diseases. Instead
of using 3D images, we exploit routinely acquired 2D standard views to learn
the shape representation of the cardiac structures. The learned representation
is then injected into a segmentation network to improve its performance on SA
CMR images. Of note, the approach in [12] also injects shape priors produced
from an autoencoder into a segmentation network. However, the aim of that ap-
proach is to generate multiple segmentation hypotheses for ambiguous images,
and cannot be readily employed to learn shape priors from different views to
enhance cardiac segmentation.

2 Methods

The proposed method consists of two novel architectures: 1) A shape-aware
multi-view autoencoder (Shape MAE) which aims at learning anatomical
shape priors from standard cardiac acquisition planes incl. short-axis and long-
axis views and 2) a multi-view U-Net which performs cardiac short-axis image
segmentation by incorporating anatomical priors learned by Shape MAE into a
modified U-Net architecture.
Shape MAE: Shape-aware multi-view autoencoder. As illustrated in
Fig. 1, we first present a novel architecture named shape-aware multi-view au-
toencoder (Shape MAE) which learns anatomical shape priors from standard
cardiac views through multi-task learning. Given a source view Xi, the net-
work learns the low-dimensional representation zi of Xi that best reconstructs
all the j target views segmentations Yj . In this work, we employ four source
views Xi (i = 1, . . . , 4) which are three LA images - the two-chamber view
(LA1), three-chamber view (LA2), the four-chamber view (LA3) - and one mid-
ventricular slice (Mid-V) from the SA view. The target segmentations views Yj
(j = 1, . . . , 6) correspond to the four previous views plus two SA slices: the
apical one and the basal one. All encoders Ei : zi = Ei(Xi) and all decoders
Dj : Yj = Dj(zi) in the Shape MAE share the same architecture (see Fig. 1 b).

The loss function LShape MAE for the whole network is defined as follows:

LShape MAE = Lintra + αLinter + βLreg (1)

The first two terms of Eq. 1 are defined as the cross entropy loss F between
the predicted myocardium segmentation Ŷi→j = Dj(Ei(Xi)) for the target view
j given a source image Xi of the same subject and its ground truth segmentation
Yj . Lintra denotes the segmentation loss when the source view Xi and the target

view Yj correspond to the same view: Lintra =
∑4

i=1,i=j F(Yj , Ŷi→j), whereas
the second term Linter denotes the loss when two views are different: Linter =∑4

i=1

∑6
j=1,i6=j F(Yj , Ŷi→j). The third term is a regularisation term on the latent

representations zi, zi ∈ Z: Lreg = 1
|Z|

∑4
i=1 ||zi − z̄||

2
, which penalises the L2

distance between zi and z̄, with z̄ = 1
|Z|

∑4
i=1 zi being the average z for a subject.
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Fig. 1: (a) Overview of Shape MAE. (b) Detailed architectures of each
encoder and each decoder. Each rectangle represents one or a series of convo-
lutional (Conv) or transposed convolutional (Deconv) layers where the number
in the square box represents the number of filters for each layer. A ‘Res block’
(pink rectangles) consists of two convolutional layers (3 × 3) with a residual
connection which adds its input to the features from the second layer. Instance
normalisation and leaky ReLU activation are applied throughout the network.
A sigmoid function is applied to the latent code z to bound its range.

Although the latent shape codes from different views of the same subject are not
directly shared, this regularisation term forces them to be close to each other.
We use coefficients α and β to control the relative importance of Linter and Lreg.

The principle behind the proposed network is that different views require
independent functions to map them to the latent space that describes global
shape characteristics; whereas translating this latent space to another view or
plane also requires a specific projection function. Predicting the shape of the
myocardium based on the six target views instead of a single view encourages
the network to learn and exploit correlations between different views, resulting
in a global, view-invariant shape representation rather than a local representa-
tion for a particular view. All the encoders and the decoders in this framework
are trained jointly in a multi-task learning fashion, with the benefit of avoiding
over-fitting and encouraging model generalisation [13].

MV U-Net: Multi-view U-Net. As shown in Fig. 2, we propose a segmenta-
tion network called multi-view U-Net (MV U-Net) based on the original U-Net [8]
for cardiac SA image segmentation. The proposed network is capable of incorpo-
rating the anatomical shape priors learned by Shape MAE. Similar to the original
architecture, the proposed architecture comprises 4 down-sampling blocks and
4 up-sampling blocks to learn multi-scale features. Differently from the original
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Fig. 2: (a) Overview of the proposed MV U-Net. (b) Architecture of
the ‘Fuse Block’. The number of shown feature map blocks of the U-Net is
reduced for clarity of presentation. Batch normalisation and ReLU activations
are applied throughout the network. For each subject, the shape code of each
view is reshaped to 1 × 8 × 8 × 8 and then concatenated with the other three
along the second axis to form an input of 1× 32× 8× 8 to the Fuse Block.

U-Net, we reduced the number of filters at each level by four times to account for
the fact that cardiac segmentation is simpler than the lesion segmentation (with
multiple candidates) which was the task that the original U-Net was applied to.
In addition, a module called ‘Fuse Block’ is introduced in the bottleneck of the
network (see Fig. 2 b) to inject the latent codes into the segmentation network.
This fusing approach is different from that in [12] where the latent codes are sim-
ply concatenated with U-Net activations. The proposed module consists of two
convolutional (Conv) kernels (3 × 3) and a residual connection to combine the
shape representations from different views through learnable weights. Thanks to
this module, given an arbitrary short-axis image slice Ip from a subject p and its
correspondent shape representations zp1 , z

p
2 , z

p
3 , z

p
4 obtained by Shape MAE (one

for each of the four standard views), the network can predict a segmentation
Sp = fMVU-Net(I

p, zp1 , z
p
2 , z

p
3 , z

p
4 ; θ) by distilling the prior knowledge to the high-

level features of the network, allowing it to efficiently refine the segmentations
through multi-view information. The network is trained using standard training
procedure with a cross entropy loss to optimise the parameters θ of the MV
U-Net.

3 Experiments and Results

Cardiac multi-view image dataset. Experiments were performed on a dataset
acquired from 734 subjects. For each subject, a stack of 2D SA slices and three
orthogonal 2D LA images are available. All the LV myocardium were annotated
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on the SA images as well as the LA images at the end-diastolic (ED) frame
using an automated method followed by manual quality control. All the im-
ages were acquired using one scanner. The spatial resolution of the images is
1.8× 1.8× 10 mm.

In our experiments, the dataset was randomly split into two subsets: a train-
ing set (570 cases), a test set (164 cases). All LA images were registered to a
template subject using rigid transformation with MIRTK toolkit6. All 2D SA
slices have been cropped to the size of 128×128 pixels where the left ventricle is
roughly in the center of every image. Benefiting from the view planning (which
is a standard step during the cardiac image acquisition), we simply use the inter-
section point of the three orthogonal LA images on every SA slice to determine
its center of the interest region. All the networks were trained for 200 epochs on
an NVIDIA® GeForce® 2080 Ti, using an Adam optimizer with a batch size
of 10. The learning rate for Shape MAE was set to 0.0001 whereas the learning
rate for the segmentation network was set to 0.001. In our experiments, α was
empirically set to 0.5 and β to 0.001 in the LShape MAE. The proposed algorithm
was implemented in Pytorch.

Segmentation results. To evaluate the segmentation accuracy, we use two
measurements: the Dice score and the Hausdorff distance (HD). The proposed
method is compared against: a 2D U-Net [8], a state-of-the-art 2D FCN for
cardiac MR image segmentation [2], and a 3D U-Net [14]. For fairness and ease
of comparison, all models were set with the same number of filters at each
level (starting with 16 filters in the first layer) and trained with the same pre-
processing and training schedule. For the 3D network, we resampled SA images
to a voxel size of 1.8×1.8×1.8 mm and cropped each to a size of 128×128×64
during pre-processing. We trained MV U-Net and the baseline networks with
two settings: in one case we used 10% of the training set, while in the other one
we used 100%. Of note, in each setting, we first trained a Shape MAE and then
trained a MV U-Net where shape priors of four standard views were obtained
using corresponding encoders in the Shape MAE.

Results on the test set are shown in Table 1. From the table, it can be
observed that the proposed method outperforms the baseline models in both
the low-data setting and the high-data setting, with improved Dice scores at the
apex, middle, and base of the left ventricular myocardium. In particular, when
only 10% data was used, the proposed method reduces the mean HD from 3.24 to
2.49 mm on the apical slices, from 2.34 to 2.09 on the middle slices and from 3.62
to 2.76 on the basal slices, compared to the 2D U-Net. Fig. 3 shows examples of
the segmentation results from all the networks where the proposed method not
only produces more robust segmentation across slices compared to the results
from the 2D networks, but also achieves more anatomically plausible results in
comparison to the 3D one (see the red arrows in this figure). Visualization results
of the segmentation networks trained in the high-data setting and Shape MAE
are provided in the supplementary material.

6 https://mirtk.github.io/

https://mirtk.github.io/
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Table 1: Comparison of the myocardium segmentation accuracy of the baseline
models and the proposed method in terms of the mean and the standard de-
viation of Dice score and HD distance (mm) obtained on the test set (n=164).
The comparison has been carried out separately for apical, mid-ventricular, and
basal slices.

Method # Training subjects
Dice HD

Apex Middle Base Apex Middle Base

2D U-Net 57 (10%) 0.898 (0.090) 0.932 (0.035) 0.923 (0.077) 3.239 (6.918) 2.337 (2.913) 3.617 (9.058)
2D FCN 57 (10%) 0.873 (0.113) 0.926 (0.041) 0.919 (0.069) 3.088 (3.882) 2.317 (1.440) 2.948 (2.691)
3D U-Net 57 (10%) 0.890 (0.083) 0.923 (0.043) 0.923 (0.043) 2.839 (3.980) 3.573 (9.05) 4.469 (10.02)
MV U-Net 57 (10%) 0.905 (0.076) 0.932 (0.025) 0.926 (0.088) 2.487 (3.022) 2.093 (0.577) 2.758 (3.697)

2D U-Net 570 (100%) 0.937 (0.029) 0.955 (0.016) 0.948 (0.071) 1.917 (0.294) 1.888 (0.178) 2.327 (2.566)
2D FCN 570 (100%) 0.934 (0.032) 0.958 (0.015) 0.949 (0.078) 1.913 (0.297) 1.890 (0.347) 2.161 (1.068)
3D U-Net 570 (100%) 0.913 (0.112) 0.945 (0.078) 0.933 (0.093) 2.104 (1.24) 1.957 (0.68) 2.722 (3.57)
MV U-Net 570 (100%) 0.938 (0.027) 0.958 (0.013) 0.952 (0.079) 1.903 (0.345) 1.874 (0.142) 2.146 (1.004)

Approx. # of conv weights (million) 2D U-Net: 0.8 2D FCN: 1.0 3D U-Net: 2.5 MV U-Net: 1.2

Fig. 3: Visualisation of the predicted segmentations and correspondent ground
truth (GT) from the baseline models and MV U-Net (all trained with 10%
training subjects) on an apical, a mid-ventricular and a basal slice from one
patient. Compared to the baseline models, MV U-Net produces more accurate
segmentation with stronger spatial coherence.

4 Discussion and Conclusion

In this work, we presented a shape-aware multi-view autoencoder, a neural net-
work capable of learning anatomical shape priors from multiple standard views,
as well as a multi-view U-Net, a modification of the original U-Net architec-
ture that incorporates the learned shape priors to improve the robustness of
cardiac segmentation. In contrast to existing works which treat long-axis CMR
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segmentation and short-axis CMR segmentation as two separate tasks [2,15],
our approach, to the best of our knowledge, is the first that exploits the spatial
context from the long-axis images to guide the segmentation on the short-axis
images. The reported experimental results show that the proposed segmentation
method not only demonstrates superior segmentation accuracy over state-of-
the-art 2D baseline methods [2,8], but also outperforms a 3D U-Net [14]. This
improvement is particularly evident on the basal and apical slices in the low-data
setting, as expected. When training data is limited, segmenting these challenging
slices particularly benefits from the additional anatomical information extracted
from the LA views and injected into the segmentation network. Of note, our
approach does not require a dedicated acquisition protocol, since LA images
are routinely acquired in most CMR imaging schemes. Moreover, the proposed
MV U-Net maintains the computational advantage of a 2D network, using fewer
parameters (∼ 1.2 million weights) than the 3D U-Net (∼ 2.5 million weights)
during training. This advantage also contributes to the data efficiency of our
method, achieving high segmentation performance with limited training data.
Importantly, our method could be extended in the future to multi-structure car-
diac segmentation. The proposed approach could also be potentially adopted to
other medical image segmentation tasks.
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14. Özgün Çiçek, Ahmed Abdulkadir, Lienkamp, et al. 3D U-net: Learning dense

volumetric segmentation from sparse annotation. In Lecture Notes in Computer
Science, volume 9901 LNCS, pages 424–432, 2016.

15. Davis M. Vigneault et al. Omega-Net: Fully automatic, multi-view cardiac MR
detection, orientation, and segmentation with deep neural networks. MedIA, 48:95
– 106, 2018.



10 Chen. et al.

Supplementary Materials

(a) Trained with 10% data (b) Trained with 10% data

(c) Trained with 100% data (d) Trained with 100% data

Fig. 4: Exemplar results of the proposed shape-aware multi-view autoencoder
(Shape MAE) trained with 10% and 100% training data, respectively. Given
only one source view (the first column) as input, the proposed Shape MAE
is able to predict the myocardium shapes on the six target views (column 2
to column 7). This indicates that the proposed approach has the potential to
encode the global shape characteristics of the myocardium in the latent space
instead of a local embedding for a particular view of a subject.
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Fig. 5: Example results of the proposed segmentation method (MV U-Net) and
the baseline models (all trained with 100% training data) together with the
ground truth (GT) on a stack of short-axis slices. Representative improve-
ments for cardiac image segmentation can be observed when using the proposed
method. For example, in contrast to the baseline models which produce poor
results when there are unexpected artefacts on the image (see the region inside
the cyan ellipse), the proposed method is able to properly identify the correct
contours.
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