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Executive Summary 

Pollution from abandoned non-coal (i.e. metal) mines is a serious impediment to rivers 
meeting the water quality targets set out in River Basin Management Plans. Recent work 
has identified the mines most likely to be causing a significant environmental impact and 
hence where efforts to prevent pollution need to be focussed. Yet, it is not clear to what 
extent rivers, and the animal and plant life they support, are impacted by the legacy of past 
pollution still bound up in river sediments. Work will be undertaken to reduce toxic metals in 
mine waters before they enter the river. However, if riverbed sediments are already 
contaminated and affecting life in rivers, the planned clean-up of mine water sources may 
not result in recovery of ecological condition.  

A controlled laboratory experiment was undertaken where river invertebrates (mayfly larvae) 
from an uncontaminated site were incubated with contaminated riverbed sediment collected 
downstream of an abandoned metal mine. Concentrations of metals in the tissues of the 
mayflies increased over the duration of the incubation, particularly those metals that were in 
high concentrations in the sediment, i.e. cadmium, copper and zinc. As the sediment was the 
only substantial source of metals in the experiment, it is apparent that the contaminated 
riverbed sediment was acting as a source of bioavailable metals. It is likely that 
contaminated sediments, including riverbed sediment, will act as a source of bioavailable 
metals, at least to benthic organisms, even where mine drainage water is treated to reduce 
metal concentrations. 

Metal toxicity occurs when the rate of metal uptake into an organism exceeds the combined 
rates of excretion and physiological detoxification. Current tests of metal toxicity on biota 
typically do not match in scale (temporal, spatial and taxonomic range) with assessments of 
ecological quality undertaken for management, which raises questions regarding the 
adequacy of environmental limits based on laboratory testing. 

Existing data were compiled describing geochemistry of riverbed sediment and the Biological 
Quality Elements invertebrates, diatoms, macrophytes and fish, collected by the regulatory 
authorities to assess the condition of rivers. As toxic effects of trace metals were not 
expected at low concentrations, the biological response to sediment metal concentration was 
determined using a threshold model. Thresholds were found for biotic metrics based on 
species richness, but other metrics (diatom EQR, macrophyte EQR and invertebrate ASPT) 
displayed implausible positive relationships with sediment metal concentrations and should 
not be relied upon for classification of ecological status in waterbodies affected by mining. 

New data were collected from 20 spatially-independent river catchments in areas affected by 
metal mine facilities, including samples of the macroinvertebrate community, bioavailability 
of metals (assessed as metal concentrations in the body tissue of tolerant taxa), and 
sediment metal concentrations. There were strong correlations between sediment metal 
concentrations and measured bioavailability, particularly for copper and lead. Measurements 
of bioavailable metals were related to changes in taxon richness in the invertebrate samples. 
The data were used to develop a new biotic index (MetTol), which can be used to assess the 
extent of ecological damage from metal contamination using standard invertebrate 
monitoring data, and to construct dose response curves based on species sensitivities.  

A number of approaches were used to establish tolerable limits for sediment metal 
concentrations based on ecological data, and the results compared with existing Canadian 
sediment quality guidelines. The limits for copper derived from ecological data were most 
consistent with existing sediment guidelines. The limits for other metals (silver, arsenic, 
cadmium, nickel, lead and zinc) derived from ecological data were up to an order of 
magnitude above the Canadian interim sediment quality guidelines. These existing 
guidelines, based on toxicological data, may be too precautionary, and we suggest that 
guideline sediment concentrations based on ecological data may provide a more appropriate 
level of protection for the environment.  
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Non-technical Summary of Key Findings 

Pollution from abandoned non-coal (i.e. metal) mines is a serious impediment to rivers in 

England and Wales meeting the water quality targets set out in River Basin Management 

Plans.  Recent work has identified the mines that are most likely to be causing a significant 

environmental impact and hence where efforts to prevent pollution needs to be focussed. 

However, it is not clear to what extent rivers, and the animal and plant life they support are 

impacted by the legacy of past pollution still bound up in river sediments and to what extent 

the problem is linked to metal-contaminated material currently entering rivers from mines 

and mine waste heaps. River basin managers will focus on the most damaging sites to clean 

up mine water (removing or reducing toxic metals) before it enters the river but, if the 

sediment in the river bed is already contaminated and affecting life in rivers, the planned 

clean-up of mine water sources may not result in the expected recovery of ecological 

condition. The aim of this project is to improve our knowledge of the impact of metal-rich 

sediments upon river life and to investigate whether these sediments will inhibit ecological 

recovery following remediation of mine water discharges.  

Metals from mining sources are delivered to rivers in various forms (dissolved and 

particulate) via a variety of routes. Not all the metal present will be in a form that is 

biologically available (bioavailable) to cause toxicity, and the conditions at the river site 

strongly influence the proportion that is. A review of existing evidence regarding the 

bioavailability of metals indicated that current understanding and models are based solely on 

uptake of dissolved metals from the water. Evidence exists for alternative routes of uptake 

from the sediment, via particulate material taken up in the diet of benthic organisms. 

Assumptions of uptake via direct contact between benthic organisms and sediment pore 

water do not reflect biological processes.  

Schematic diagram of how metals derived from mine workings and the catchment 

impact the invertebrate community 

 

Metals 
delivered from 

upstream 
sources.... 

D
is

so
lv

ed
 in

 s
tr

ea
m

 w
at

er
 

A
b

so
rb

ed
 t

o
 p

ar
ti

cu
la

te
 o

rg
an

ic
 m

at
te

r 
A

b
so

rb
ed

 t
o

 p
ar

ti
cu

la
te

 in
o

rg
an

ic
 m

at
te

r 

Tailings, etc. 

Mine water 

Reworked bank 

Catchment 

Reworked bed 

Local site 
conditions 

affect metal 
bioavailability 

P
re

ci
p

it
at

io
n

, A
d

so
rp

ti
o

n
 &

 D
is

so
lu

ti
o

n
 

Direct metals 
uptake by 

invertebrate fauna 

Indirect metals 
effects on 

invertebrate fauna 

Ingestion 

Absorption 

Adsorption 

Precipitation on 
tegument/gills 

Altering: 
Food availability 

Habitat availability 

Competition 

Predation 

...in 
three 
forms 

Return of metals to 
environment 

Excretion 

Egestion 

Ecdysis 

Bioaccumulation 

Detoxification 
Metabolically 

available 

Invertebrate fauna 
community change 

Elimination/reduction in 
relative abundance of 

sensitive groups 

Increase in relative 
abundance of tolerant 

groups 



iii 
 

Given the lack of appropriate models of bioavailability of metals from sediment, a simpler 

approach may be to use body concentrations of metals in tolerant taxa that accumulate trace 

metals in their tissues as a direct measure of the bioavailable fraction. 

Trace metals are toxic as a result of their chemical properties, especially their affinity for the 

elements sulphur and nitrogen, which are present in the make-up of many biological 

macromolecules vital to the metabolism of plants and animals, especially in proteins, e.g. 

enzymes. Organisms have evolved physiological mechanisms to prevent a build-up of all 

potentially toxic metals in a form that could cause toxcity. Toxicity occurs when the total rate 

of metal uptake into an organism exceeds the rate at which the metal is excreted or 

physiological detoxified.  

Establishing safe environmental limits that are relevant to field conditions presents a 

challenge. This is because the data used to set the limits relies on single species toxicity 

testing in the laboratory, which can be very different to the spatial scale encountered in the 

field, the range of species exposed and the length of time that animals are exposed. This 

matters because current water management legislation focuses on community-level 

biological impacts at the waterbody scale. Therefore, there is a discrepancy between the 

way we derive acceptable limits for metals and the way we assess ecological quality. Tools 

are needed that allow us to assess community level damage from metals in order to predict 

the consequences and cost-effectiveness of water body management measures. A weight of 

evidence approach to the ecotoxicological assessment of mining-affected stream sediments 

is recommended.  

Existing data describing geochemistry of riverbed sediment were compiled from British 

Geological Survey’s Geochemical Baselines Survey of the Environment (G-BASE) project, 

and the Biological Quality Elements (BQE) invertebrates, diatoms, macrophytes and fish, 

collected using the field sampling methods used by the regulatory authorities to assess the 

biological condition of rivers. Biological data were matched spatially to data describing 

sediment chemistry in ArcMap 10.2 using the river network. Biology and chemistry sites 

were matched if they were both on the same section of river channel, without any inflows 

between them. Once sites had been matched spatially, the BQE sampling year that 

represented the best temporal match with the chemical sampling occasion was chosen. A 

total of 2,833 sites were identified with matching sediment chemistry and biology. 

It is likely that metals occur together, making it difficult to ascribe impacts to a particular 

metal. To overcome this, initial analysis of the G-BASE data involved a pairwise comparison 

of the metals silver, cadmium, chromium, copper, nickel, mercury, lead, tin and zinc, and the 

metalloids arsenic and antimony, to establish when these occur together and, hence, identify 

any potential confounding effects that should be considered when interpreting relationships 

between chemistry and biology. Arsenic, cadmium, copper, nickel, lead and zinc tended to 

co-occur, but there was sufficient variation to enable the influence of each element to be 

assessed independently.  

To understand better the range and distribution of concentrations of metals and metalloids in 

stream sediments, a frequency distribution of measured metal concentrations was 

constructed from the G-BASE data for each element. The frequency distribution of sites 

were compared with the Canadian interim sediment quality guidelines (Canadian Council of 

Ministers of the Environment, 1999) and the Australian and New Zealand Low Trigger Value 
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(ANZECC and ARMCANZ, 2000) where available. In this way, the proportion of UK sites 

exceeding these sediment quality guidelines could be estimated.  

The toxic effects of trace metals are not expected to occur until the uptake rate has 

exceeded the combined rates of efflux and detoxification. Hence, we would expect a 

threshold biological response to sediment metal concentration, below which there was no 

influence of sediment metal content. We used a technique called quantile regression to fit a 

threshold response to plots of measured biology and chemistry. Matched datasets 

describing the response of invertebrates, macrophytes, diatoms and fish to sediment 

chemistry were analysed for the elements antimony, arsenic, cadmium, chromium, copper, 

iron, lead, nickel, silver, tin and zinc. For both invertebrates and diatoms the number of taxa 

provided a better response to sediment metal concentrations than did the other classification 

metrics tested, such as diatom EQR, macrophyte EQR and invertebrate ASPT. 

The modelled thresholds estimated in this study were compared with the Canadian interim 

sediment quality guidelines (Canadian Council of Ministers of the Environment, 1999) and 

the Australian and New Zealand Low Trigger Value (ANZECC and ARMCANZ, 2000) which 

are both largely based on data from laboratory trials. Threshold concentrations varied over 

the different BQEs. For copper the existing environmental standards were comparable to the 

findings here, with threshold responses at relatively consistent concentrations across 

invertebrates (NTAXA, EQR NTAXA), diatoms (No. Taxa, TDI) and macrophytes (No. 

Aquatic Taxa). For invertebrates (NTAXA) the threshold concentrations for lead, arsenic and 

zinc were close to the Australian and New Zealand Low Trigger Value. For other elements, 

the modelled thresholds were typically an order of magnitude greater than existing sediment 

quality guidelines.  

Despite the uncertainty involved in the data matching exercise used to produce the 

datasets, these findings based on existing field data suggest that several of the 

existing sediment quality guidelines may be too precautionary, at least for fish and 

invertebrates.  

 

 

The next step was to relate the response of the benthic macroinvertebrate community to the 

bioavailability of metals at sites where the sediment has been contaminated by mining. This 

was done by collecting new chemical and biological data from 20 separate river catchments 

in areas affected by non-coal mine facilities. Within each catchment, five sites were visited 

comprising an upstream control site, a site immediately downstream of the metal mine 
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facility, a site on the impacted stream further downstream in an erosional reach, and a site 

further downstream on the impacted stream in a reach where sediment tends to be 

deposited (but staying upstream of major urban areas), and an additional control site on a 

unimpacted watercourse nearby.  

At each site, four different types of data were collected: 

i) the macroinvertebrate community, 

ii) biomonitor taxa: body concentrations of metals in these tolerant taxa were used as a 

direct measure of bioavailability, 

iii) the metal content of the fine sediment in the stream bed, and  

iv) the amount of fine sediment in the stream bed. 

At the most downstream site a larger sample of the well-mixed fraction (< 63 µm) of fine-

grained sediment was also collected to determine the relative contributions of catchment 

sources, including mine waste, to the riverbed sediment. 

There were clear regional differences in the metal content of river sediments, with higher 

copper and tin concentrations in the southwest, and higher cadmium, lead and zinc 

concentrations in Wales and the north of England. These differences reflect regional 

differences in geology. Sites were sampled where sediment concentrations of copper, 

chromium, lead, nickel and zinc ranged either side of existing sediment quality guidelines, 

indicating that, as expected, the sediment at the targeted mine-impacted sites was likely to 

be causing ecological effects.  However, the sediment concentrations of cadmium were in 

excess of existing sediment quality guidelines at the majority of sites sampled. This suggests 

either that cadmium is a widespread issue within these mine-impacted sites or that the 

sediment quality guidelines for cadmium may be overly precautionary. 

Within the organisms used to determine bioavailable concentrations (‘biomonitor’ species: 

metal-tolerant species such as Baetis, Gammarus, Leuctra and Rhyacophila) there were 

strong correlations between the body concentrations of various metals, reflecting 

a) the co-occurrence of certain metals due to geology,  

b) variation in bioavailability due to local conditions, affecting all metals present at a site,  

c) behaviour of metals, particularly with regards physiology (e.g. cadmium can act as a 

surrogate for zinc).  

Strong correlations were generally apparent between the body concentrations of metals in 

Baetis (the most frequently encountered species) and the other species collected as 

biomonitors (with the exception of Gammarus).  

Whilst local conditions may influence the bioavailability of metals, the body concentrations of 

metals in the biomonitor species were expected to be correlated with the metal 

concentrations in the sediment. The extent to which the body and sediment concentrations 

are correlated will depend on the bioavailability of the metal, and the physiology of the 

organism. Copper and lead showed the strongest relationships between body and sediment 

concentrations, significant for all four species tested Baetis, Hydropsyche, Leuctra and 

Rhyacophila. Significant relationships were also found for nickel and zinc, although not for all 

biomonitor taxa. The residuals of the relationships between sediment and body 

concentrations of copper and lead were significantly negatively correlated with the pH 

measured at the time of sampling, indicating an influence of pH (or a correlated variable) on 

bioavailability. Higher pH was associated with reduced bioavailability. 
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Further significant (p ≤ 0.05) or close to significant (p ≤ 0.1) relationships were found 

between the concentrations of lead, copper and arsenic in the fine fraction of sediment (< 63 

μm) and corresponding tissue concentrations in Baetis, Hydropsyche and Rhyacophila 

(Figure 4.6). There was also a significant relationship between cadmium concentration in the 

fine fraction of sediment and in the tissues of Hydropsyche, and a close to significant 

relationship for zinc concentrations in Hydropsyche.  

The relationships between sediment metal concentrations and corresponding tissue 

concentrations support the use of biomonitor taxa to assess bioavailability and 

indicate that riverbed sediments may be a substantial source of bioavailable metals. 

Mean dissolved concentrations of copper, lead, zinc and cadmium in river water were 

correlated with corresponding concentrations in the fine sediment. These results suggest 

that: 

a) the abandoned metal mines targeted in this project were releasing both particulate and 

dissolved metals into the environment, with the extent of release of both forms 

dependent on the extent of contamination at each site, and/or  

b) metals in river water and sediment are not independent. Rather, metals can move 

between these two compartments. 

We investigated the relationship between invertebrate diversity and bioavailability of metals, 

as measured using the body concentrations in biomonitor taxa. Baetis provided significant 

relationships between body concentrations and invertebrate diversity for arsenic, cadmium, 

copper and zinc, and a close to significant relationship for lead. However, the threshold for 

the model with zinc was near to the upper limit of the range of body burden measured and 

may have been trivial (i.e. highly influenced by the few points above the threshold). 

Hydropsyche provided significant relationships for copper and nickel, and a close to 

significant relationship for lead. Leuctra provided significant relationships for arsenic, 

cadmium, copper, nickel and zinc. Rhyacophila only provided a close to significant 

relationship for lead. These results confirm that the biomonitor approach can be used to 

assess the bioavailability of metals from sediment at ecologically significant concentrations. 

Threshold concentrations in the bodies of the biomonitor species were converted into 

sediment metal concentrations using the relationships between metals in sediments and 

biomonitor tissues. This leads to sediment thresholds that could provide safe limits, although 

the two-step process increases uncertainty in the derived values.  

Ordination techniques were used to determine the influence of the metal stress gradient on 

macroinvertebrate community composition, whilst accounting for natural background 

variation among stream types. Using this approach, the relative sensitivity to metals stress of 

a range of macroinvertebrates was quantified and used as the empirical basis for a new 

species-level Metal Tolerance (MetTol) biotic index.  

The MetTol index can be applied to standard invertebrate monitoring data to assess 

the extent of ecological damage due to metal contamination at test sites. In this way 

the importance of metal contamination as a cause of ecological degradation at a site 

can be assessed. The average index value across all scoring taxa provides an 

assessment of damage at a site. 
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The MetTol biotic index was tested both using the calibration dataset and with independent 

data (using the data of Bass et al. 2008). MetTol was significantly correlated with metal 

stress, and particularly maximum standardised metal concentration. We also related other 

routinely used biotic indices (WHPT-ASPT, WHPT-NTAXA and AWICsp) to the two 

measures of metal stress and to MetTol to assess whether it offered additional explanatory 

power over the status quo, and found that MetTol was consistently better related to metal 

stress than the other indices.   

To give some insight into the relative importance of water and sediment as sources of 

bioavailable metals, we compared the relationship between concentrations of metals in the 

tissues of the biomonitor taxa used here (our data) and Leuctra (existing data), and the 

corresponding metal concentrations in the sediment and stream water.  

Pronounced relationships between body metal concentrations and sediment metal 

concentrations were found, suggesting that the sediment is an important source of 

bioavailable metals. However, metals in river water and sediment are not independent, 

and both compartments may act as a source of bioavailable metals. 

Although sediments appear to be an important source of bioavailable metals, we were 

unable to fully partition the relative importance of water and sediment using these field data: 

further experimental work will be required to determine the relative importance of water and 

sediment.  

Overall, the independent testing confirmed that the new MetTol index is sensitive to 

bioavailable metal contamination, whether it is determined from analysis of tissue 

concentrations in selected biomonitor taxa, predicted from stream water chemistry or 

inferred from metal concentrations in the bed sediment.   

Based on the field data describing the response of species to bed sediment metal 

concentrations, wwe sought to identify threshold concentrations beyond which river 

macroinvertebrate communities are likely to be harmed by a given metal. Twenty-four taxa 

were selected to represent the full range of responses to each of cadmium, copper, nickel, 

lead and zinc, from the most sensitive taxon to the most tolerant taxon. Dose-response 

curves were derived based on these data. Thresholds were determined in two ways. First, 

we used the approach to deriving ecological effect concentrations described by de Deckere 

et al. (2011) to calculate the Lowest Effect Level (LEL) and the Severe Effect Level (SEL). 

Second, we used species sensitivity distributions (SSD) to identify the Hazardous 

Concentration that would affect 5%, 10% and 20% of taxa (HC5, HC10, HC20). 

A number of approaches have been used in this report to establish safe limits for sediment 

metal concentrations based on ecological data. Broadly, the approaches fall into three 

classes, a) approaches based on species sensitivities established through ordination of 

newly collected field data, b) a threshold derived from species richness and measured 

bioavailability (as body burden), in turn translated into a sediment concentration, and c) 

thresholds based on relationships between G-BASE sediment metal concentrations and 

EA/NRW biological monitoring data. The values derived using these various approaches, 

and existing sediment quality guidelines (SQG), were compared. The safe limits derived 

from ecological data most consistent with existing sediment guidelines were for copper. The 

safe limits for other metals (cadmium, nickel, lead, and zinc) derived from ecological data 
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were approximately two to four times the ANZECC and ARMCANZ low trigger value, and up 

to an order of magnitude above the Canadian interim sediment quality guidelines.  

The existing guidelines, based on toxicological data, may be too precautionary, and 

we suggest that guideline sediment concentrations based on the species sensitivities 

derived from ecological data may provide a more appropriate level of protection for 

the environment. 

Summary of thresholds for sediment metal concentrations (mg kg-1) based on 

ecological data.  

 Existing Safe Limits Based on Ecological Data 

Suggested 
Threshold 

 
Canada° 

Australia 
and NZ* 

SEC† SSD 
Biomonitor 

body 
burden 

Quantile regression 
G-BASE data 

 
Interim 
SQG 

Low 
Trigger 
Value 

LEL HC10 
Mean 

threshold 

Geometric 
mean of No 

Taxa 

Lowest 
of 

No taxa 

Ag  1    7.9 7.9 7.9 

As 5.9 20   384 59.6 27 27 

Cd 0.6 1.5 4.7 4.9  6.8 4 4.7 

Cu 35.7 65 37.9 34.3 75 86.2 32.6 34.3 

Ni  21 39.8 39.8  109 41.4 39.8 

Pb 35 50 133 220 54 295 49.6 133 

Sn      17.4 9 9 

Sb  2    5 1.8 1.8 

Zn 123 200 447 498 1,561 849 286 447 

° Canadian Council of Ministers of the Environment (1999)  
* Australian and New Zealand Environment and Conservation Council, Agriculture and Resource 
Management Council of Australia and New Zealand (2000)  
† 

Sediment Effect Concentration 

In order to gain an insight into the sources of metals arriving at the point of impact, a process 

called sediment source apportionment was undertaken. For each of the 20 catchments, 

potential fine-grained sediment source types were identified and sampled, which included 

agricultural (grass and arable) topsoils, damaged road verges, channel banks/subsurface 

sources, urban street dust and the abandoned metal mines. Mine waste samples were 

primarily collected from slag heaps, spoils heaps and tailings as appropriate, depending on 

the structure of the mine site and ease of accessibility. A combination of statistical 

discrimination techniques and mass balance numerical modelling was used to derive 

estimates of relative contributions to the fine-grained riverbed sediment. Robust estimates 

were derived for all catchments except one, Rea Brook, Shropshire.  

Mine waste contributed between 3% (River Greta) and 26% ( Red Tarn Beck) of the fine-

grained riverbed sediment. Within this overall range, high relative contributions were also 

predicted for the River East Allen (19%), Hayle (18%), Egglestone Beck (16%) and Bolingey 

Stream (16%). Fine-grained sediment inputs from the abandoned mine workings at the 

remaining sites were lower, reflecting a combination of the coarse grain-size of the mine 

workings/waste, the development of protective vegetation cover and the introduction of 
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pollution mitigation measures including settling ponds. Despite mine waste comprising a 

relatively small proportion of riverbed sediment, ecological impacts were observed at many 

sites.  

Large quantities of contaminated mine sediment do not have to enter the river system 

to cause adverse effect on the local ecology. 

A laboratory experiment was undertaken in replicated aquaria (mesocosms) where a chosen 

biomonitor species (Baetis spp) and overlying water were collected from an unimpacted 

source (Dean Burn) and incubated with contaminated riverbed sediment (River Mardle) 

under controlled conditions. The aim was to establish the influence of the gradients of 

environmental conditions on the bioavailability of metals. The only source of any metals 

accumulated by the Baetis was the sediment, either directly or indirectly. 

The body burden of all metals in Baetis increased over the duration of the incubation, 

compared with the starting condition, particularly those metals that were in notably high 

concentrations in the sediment and Baetis collected from the River Mardle during the field 

survey (i.e. arsenic, cadmium, copper and zinc). At the end of the experiment the body 

burdens of cadmium, copper and zinc were in excess of, or close to concentrations 

considered high for Baetis. The body burdens of cadmium, copper and zinc were 

significantly (MANOVA p = 0.0018) higher in Baetis from those treatments that had larger 

amounts of organic matter added to the sediment.  

It was clear that the experimental treatments influenced the partitioning of metals in the 

sediment, particularly resuspension. However, in contrast with the effects on bioavailability, 

organic matter had little influence.  

This disparity between the influence of the experimental treatments on bioavailability 

and on the behaviour of metals in the sediment suggests that the uptake of metals by 

biota is influenced by some factor other than the chemical behaviour of the metals. 

We suggest that this is most likely to be biological, i.e. the consumption of metals 

through the diet.  

As both the water and Baetis used in the experiment were from an uncontaminated site, the 

Dean Burn, the sediment was the only substantial source of metals. It is apparent that the 

contaminated sediment from the River Mardle was acting as a source of bioavailable metals 

in this experiment.  

From this we can conclude that it is likely, even where mine drainage water is treated 

to reduce metal concentrations, contaminated sediments, including river bed 

sediment, will act as a source of bioavailable metals. 

Simple rules to identify where contaminated sediments pose the greatest risk are outlined 
based on, 

a) the concentration of contaminants in the source material, 

b) the delivery of contaminated sediment to the site, 

c) the retention of contaminated sediment at the site, 
d) the influence of environmental conditions at the site on bioavailability of metals from 

contaminated sediment.  
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These rules were summarised in a checklist of yes/no criteria to identify the risk that 

sediment from abandoned metal mines presents to the ecology at a river site. 

The project produced the following tools: 

 Sediment quality threshold concentrations based on ecological data. 

 An assessment of the utility of current biological indices for detecting metal stress. 

 A biotic index, MetTol, to be used with routine invertebrate monitoring data to assess 

the extent of ecological damage due to metal contamination.  

 A checklist for identifying river sites where the risk of sediment from abandoned 

metal mines to the ecology is enhanced.  

 Guidance on future research needs. 
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1 How do Metal-rich Sediments Derived from Mining Impact 

Freshwater Ecology? 

Objective 1a 

Review the existing published and grey literature to provide a fully informed platform 

from which the project can proceed.  The review would have a particular focus on 

collating evidence of biological impacts linked to trace metal contamination of 

sediment and will update previous reviews, capturing recent developments in the 

field. 

 

1.1 Introduction 

Metal-rich sediments have the potential to impact upon life in freshwater streams and rivers, 
and, thereby, to inhibit recovery of ecological condition after any remediation of mine water 
discharges. The extent to which such metal-rich sediments are causing impacts is as yet 
unknown. Metal-rich sediments by definition consist of sediments with high loadings of trace 
metals, all of which are toxic to biota above a threshold level. In mining impacted rivers, 
metals tend to be very strongly associated with sediment and these high affinities mean that 
these metal-rich sediments do not give up their associated metals very easily, even when 
relatively metal-free water is flowing over them, for example after remediation. Thus, the 
sediments remain metal-rich over long time periods and have long-term potential 
ecotoxicological interactions with local biota, unless the sediments themselves are physically 
removed downstream by strong water flow to be replaced by new less metal-rich sediment. 
 
The composition of river bed sediments will influence biota even in the absence of metal 
contamination (Kemp et al. 2011; Jones et al. 2012a, b, 2014), and it is necessary in any 
investigation of the effect of metal-rich sediments on biota to tease out the separate effects 
of any modification of bed sediments per se from the effects of any sediment-associated 
metals. Furthermore, it necessary to separate the effects of any sediment-associated metals 
from any other effects associated with mining activities (low pH water, channel modification, 
industrial pollutants) and the development of mining communities (organic pollution). 
 
This review aims to provide an informed platform on the assessment of how metal-rich 
sediments impact on freshwater stream life, incorporating recent developments in the field, 
focusing on biological impacts linked to trace metal contamination of sediment. Laboratory-
derived environmental quality standards are difficult to apply to the field situation as many 
complicating factors exist in the real world, such as physiological acclimation, water 
chemistry, metal interaction effects, and particularly the ingestion of sediment by deposit-
feeding biota which are at particular ecotoxicological risk in the presence of metal-rich 
sediments (Environment Agency, 2009). Thus, as alternatives to laboratory-derived 
standards, there is a strong case to consider other field-relevant measures of toxic effects in 
freshwater streams, and to seek better biological tools to detect, diagnose and ideally predict 
community level ecotoxicological impairment. Ecological principles need to be integrated into 
ecotoxicological research if there is to be a full understanding of the effects of contaminants 
in real environmental situations (Clements and Rohr, 2009). Luoma and Rainbow (2008, 
2010), recognising these challenges, advocated the use of risk assessment approaches with 
a stronger integration of field observations into decision making processes. Such a ‘lateral 
risk’ assessment and risk management process, encompassing hitherto separate 
approaches and using several lines of evidence, recognises the strong potential contribution 
of observational data from nature in such a decision making process (Luoma and Rainbow, 
2008).  
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In the light of this context, this review concentrates on field measures of toxic effects of trace 
metal-rich sediment in freshwater streams, with less emphasis on laboratory-based toxicity 
testing approaches.    
 
 

 

Figure 1.1 Effects of increasing availability of (a) essential and (b) non-essential trace 
metals on the performance (e.g. growth, production, fecundity, survival, etc.) of an 
organism (from Luoma and Rainbow, 2008). 

  



3 
 

1.1.1 General concepts of metal ecotoxicology 

Trace metals - those that are typically present in organisms in trace amounts (typically, but 
not always, less than 0.01% by dry weight in an organism) are most commonly the focus of 
mining activity. However, definitions of ‘trace metals’ and other terms e.g. ‘heavy metals’ 
(see Luoma and Rainbow, 2008) are inconsistent. For the purposes of this review, we 
exclude major metals such as sodium, magnesium, potassium and calcium, and also the 
rare earth elements (lanthanides and actinides). Ores of the latter are mined but are of no 
relevance in the United Kingdom. Thus the metals of concern potentially include cadmium 
(Cd), cobalt (Co), copper (Cu), iron (Fe), lead (Pb), manganese (Mn), mercury (Hg), 
molybdenum (Mo), nickel (Ni), selenium (Se), silver (Ag), tin (Sn), vanadium (V) and zinc 
(Zn), and the metalloids arsenic (As) and antimony (Sb). These metals may be either the 
focus of mining activity or present in gangue material and for convenience are all referred to 
here as trace metals (Luoma and Rainbow, 2008). 
 
An obvious major driver of the detrimental effects of metal-rich sediments derived from 
mining on the biota of local freshwater streams is the toxicity of the metals themselves. All 
trace metals, whether essential or non-essential, are toxic to life above a threshold 
bioavailability (Figure 1.1). This threshold bioavailability may be extremely low or even 
absent in the case of non-essential metals (Figure 1.2), but it is likely that environmentally 
low bioavailabilities of a non-essential metal are tolerable without significant sub-lethal 
physiological cost to an organism (Figure 1.1). In the case of essential trace metals, a very 
low metal bioavailability will cause negative performance effects as a result of deficiency 
whilst toxic effects will occur at bioavailabilities above the toxic threshold (Figures 1.1, 1.2). 
Once toxic effects are apparent (initially sub-lethal and ultimately lethal), these effects will 
increase in a dose related manner for both essential and non-essential metals (Figure 1.2). It 
does not follow that non-essential metals are generally more toxic than essential metals, 
copper being both essential in small doses and yet one of the most toxic metals at higher 
doses. Nevertheless, it is true that the non-essential metals mercury and silver do top most 
relative toxicity tables of trace metals (Luoma and Rainbow, 2008).   
 

 

Figure 1.2 Biological response of an organism to increasing dose or availability of an 
essential or non-essential trace metal (from Luoma and Rainbow, 2008). 
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Figure 1.3 A schematic representation of the body metal content of an aquatic 
invertebrate such as a decapod crustacean. When metal first enters the body, it will 
initially be metabolically available, before potentially being stored in detoxified form, 
probably elsewhere in the body after internal transport via body fluids. Detoxified 
storage may be permanent or temporary. Trace metals taken up into the body may or 
may not be excreted, either from the metabolically available component or from the 
detoxified store (from Luoma and Rainbow, 2008).  

Trace metals are toxic as a result of their chemical properties, especially their affinity for 
(preference for binding to) the elements sulphur (S) and nitrogen (N). Sulphur and nitrogen 
are present in the make-up of many biological macromolecules, especially in proteins, vital 
to metabolism not least in their guise as enzymes. This affinity for sulphur and nitrogen 
actually underlies many of the essential roles of trace metals in metabolism, their controlled 
presence in a protein structure enabling them to act as a catalytic centre in an enzyme or to 
bind oxygen, as in the respiratory proteins haemoglobin (Fe) and haemocyanin (Cu). The 
down side of the affinity of trace metals for S and N is that trace metals present in excess, 
unless prevented from doing so, will inevitably to bind to S- and N-containing groups in 
biological molecules in the wrong place at the wrong time. They might replace another trace 
metal playing a key essential role in a protein, thereby inhibiting the catalytic activity of an 
enzyme, or they might bind elsewhere on the protein, distorting its structure and preventing 
its biochemical function. Either way a toxic effect has been caused. 
 
Life has evolved in the presence of trace metals and, as indicated above, many of these 
metals have become incorporated into biochemistry as essential metals playing key 
metabolic roles. Correspondingly organisms have evolved physiological mechanisms to 
prevent a build-up of all potentially toxic metals in cells in a metabolically available form that 
gives them uncontrolled access to bind to the wrong molecule. In practice, trace metals, 
essential and non-essential, are typically bound in cells to selected molecules that hold them 
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out of harm’s way – either irreversibly or perhaps reversibly in the case of essential metals 
needed later to fulfil an essential role. These metals have been detoxified by binding to 
sacrificial sites with a high affinity for that metal, perhaps a special protein (e.g. 
metallothionein) or to an inorganic granule such as an insoluble metal pyrophosphate. 
Metals newly entering an organism, for example an aquatic invertebrate, via permeable 
external surfaces or within the gut are initially in metabolically available form with the 
potential to bind anywhere. They are usually excreted quickly or detoxified to be removed 
from harm’s way (Figure 1.3).     
 
Toxicity occurs when the total rate of metal uptake combined across all metal uptake routes 
into an organism exceeds the combined rates of excretion and physiological detoxification 
(Luoma and Rainbow, 2008). Uptake rates are typically not under the control of the organism 
and increase passively with the local bioavailabilities of the metals in the local environment. 
Under most circumstances the combined rate of metal uptake across all metal sources is 
easily matched by the rate of excretion of the metal, the rate of metal detoxification or by a 
combination of the two. Under extremely high local metal bioavailabilities toxicity ensues. At 
and above the toxic threshold (Figures 1.1 & 1.2), the rate of metal uptake is now greater 
than the combined rates of excretion and detoxification (Croteau and Luoma, 2008, 2009; 
Casado-Martinez et al., 2010a). Under these circumstances accumulated metals build up 
intracellularly in a metabolically available form and these metals bind where they are not 
wanted, with toxic effects (Figure 1.4). Since the rate of uptake of metal increases with 
increased local metal bioavailability, and since, above the toxic threshold, toxicity is related 
to uptake rate, it follows that within the toxic range of exposures, toxicity increases with 
metal bioavailability (Figure 1.4).   
 

 

Figure 1.4. Schematic representation of how the uptake rate (combined across all 
routes of uptake) of a trace metal and hence (after a threshold) the manifestation of 
toxic effects will increase with the availability of the trace metal to an aquatic 
organism. Toxic effects occur when the uptake rate exceeds the combined rates of 
efflux and detoxification (from Luoma and Rainbow, 2008). 
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1.1.2 Uptake and accumulation of metals in organisms 

While the different possible routes of entry of metals across a cell membrane into a cell and, 
therefore, into an organism are not of specific relevance here (but see Luoma and Rainbow, 
2008), it is relevant to consider the different sources of metals available to organisms 
inhabiting mine-affected fresh water systems. Any organism bathed in water will take up 
trace metals from solution across the external membrane of cells in contact with the medium. 
In the case of multicellular animals, a typical route is via the surfaces of respiratory organs, 
which are particularly permeable, but uptake through other exposed soft tissues does occur. 
Furthermore, animals will take up metals in the alimentary tract, from ingested material (with 
availability potentially enhanced after digestion) and water (Croisetière, Hare and Tessier, 
2006): the gut wall is specifically adapted for the uptake of materials, making this route 
especially vulnerable. In the case of sediment dwelling animals, potential routes of metal 
uptake are direct from solution (typically the water column even if transported into burrows 
by irrigation currents and, to a lesser or negligible extent, from pore water in the sediment), 
and from the diet, especially from ingested sediment in the case of deposit feeders. In 
addition to uptake from solution, sediment-associated herbivores will take up dietary metals 
from primary producers such as benthic diatoms, macrophytic algae, and/or moss or higher 
plants associated with sediment. Predators accumulate metals from prey (Croisetière et al., 
2006), whether herbivores, deposit feeders or animals at other trophic positions in the food 
web. 
 
Once metals have been taken up by organisms they may be excreted but are more typically 
accumulated, a process that necessarily involves the storage of metals in detoxified form 
(Figure 1.3). If excretion balances uptake, organisms are said to regulate the body 
concentration of the metal. Regulation of body metal levels is typically restricted to essential 
trace metals, and is a feature of vertebrates and a few invertebrates, such as decapod 
crustaceans (Luoma and Rainbow, 2008). Net accumulation patterns vary from weak to 
strong accumulation, according to the relative rates of metal uptake and excretion, the 
difference necessarily being made up for by the rate of detoxification. Any accumulator 
detoxifies the extra metal. If this is stored permanently, then body metal content increases 
continuously. In some cases, animals can excrete metal in detoxified form, for example as 
metal-rich granules from the gut or Malpighian tubules. In this case accumulated 
concentrations may reach steady state levels that vary with local metal uptake rates, and 
thus local conditions. 
 
Except for those few examples carrying out regulation and therefore for most trace metals in 
most invertebrates, aquatic invertebrates will have accumulated metal concentrations that 
vary with local metal bioavailabilities. Toxicity will occur once local bioavailability rises above 
the toxic threshold. The concentration of metabolically available metal rises before the extra 
incoming metal can be excreted or detoxified, and this metabolically available fraction can 
then cause sub-lethal and ultimately lethal toxic effects. The total accumulated metal 
concentration, however, will depend on the previous history of metal exposure of the 
invertebrate, and death can occur at any total accumulated metal concentration, depending 
only on the potentially toxic, much smaller metabolically available concentration. Thus, in 
contrast with the case of organic contaminants, in any organism that uses detoxification 
there is no Critical Body Concentration of an accumulated metal at which death occurs – in 
practice this is true of nearly all invertebrates (Luoma and Rainbow, 2008; Adams et al., 
2010).   
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1.2 Sources, behaviour and consequences of sediment-

associated metals in mine-impacted streams 

1.2.1 Sources of metals in mine-impacted streams 

Metals are produced both in dissolved and particulate form by mineral extraction and a 
range of ore-processing activities, including smelting, calcination and milling (Mighanetara et 
al. 2009; Environment Agency 2012a). When metal-bearing sulphide minerals, e.g. pyrite 
(FeS), galena (PbS) and sphalerite (ZnS), are exposed they are oxidized in the presence of 
oxygen and water both abiotically and biotically (promoted by Fe-oxidizing Thiobacillus 
bacteria ) to release SO4

2-, associated metal cations and colloidal Fe (Singh et al. 1999; 
Younger et al. 2002; Maia et al. 2012). This often results in a discharge of water which 
typically has a low pH (pH 2-4), a high ionic strength and a high dissolved metal load, termed 
‘acid mine drainage’ AMD (Butler et al. 2009; Jones et al. 2013), although circum-neutral 
discharge can also be produced where pH is buffered by the dissolution of carbonate-rich 
bedrock (e.g. Hiller et al. 2012; Jones et al. 2013). As AMD enters the oxic upland stream 
environment typical of mining regions, a number of processes occur including a decrease in 
stream pH, precipitation of Fe oxyhydroxides and the co-precipitation and/or adsorption of 
dissolved metals to those oxyhydroxides. These precipitates settle out onto the streambed, 
coat other mineral and sand grains, or can be carried considerable distances downstream in 
suspension (Hudson-Edwards et al. 1999; Butler et al. 2009; Palumbo-Roe et al. 2012). In 
addition to these fine-grained, ochreous sediments, mining waste including slag and cinder 
heaps, tailings ponds, gangue and over-burden can also provide a source of both fine- and 
coarse-grained metal-rich sediments to the aquatic environment (Macklin et al. 2006; 
Villarroel et al. 2006; Mighanetara et al. 2009). Consequently, there are numerous point and 
diffuse sources of metals to the catchment and fluxes of dissolved and particulate metals are 
highly variable. Seasonal increases in precipitation and groundwater flow and extreme 
storm/flood events increase the re-suspension of precipitates and the erosion of mining 
waste materials, as well as the potential collapse of mines and failure of tailings dams 
(Hudson-Edwards et al. 2003; Mighanetara et al. 2009) releasing large quantities of metal-
rich sediment to the catchment. Furthermore, increased flows can result in the remobilization 
of previously deposited metal rich particulates from the river bed and flood plain. 
 
The geochemistry and physical composition of mine-impacted fluvial sediments can be 
highly heterogeneous, both spatially and temporally. Streambed sediments comprise detrital 
mineral grains eroded from mine-waste, e.g. cerussite (PbCO3) and arsenopyrite (FeAsS) 
(Palumbo-Roe and Colman 2010; Rieuwerts et al. 2014), and Fe-rich sediments precipitated 
from AMD which, although often described simply as Fe-hydroxides or ferrihydrite, include a 
wide range of Fe oxyhydroxide, carbonate and hydroxysulphate minerals, including 
schwertmannite, goethite, jarosite, lepidocrocite and feroxyhite (Singh et al. 1999). In 
addition, sediments may include efflorescent Fe sulphate precipitates and secondary 
minerals formed from the oxidation and dissolution/precipitation of detrital mineral grains and 
Fe-oxyhydroxides, e.g. scorodite (FeAsO4.2H2O: Hudson-Edwards et al. 1999). 
Consequently metals can be partitioned to all sediment fractions including carbonates, 
Fe/Mn oxyhydroxides, sulphides and the residual sediment fractions (e.g. Bird et al. 2003; 
Byrne et al. 2010; Maia et al. 2012; Wang et al. 2012) with implications for the mobility and 
bioavailability of metals.  
 
However, the association of metals with the sediment is highly dynamic and is influenced by 
over-lying water chemistry, hydrological conditions and under-lying geology. For example, 
changes in stream pH, ionic strength and dissolved organic carbon content can all result in 
release of metals to the over-lying water column (Butler et al. 2009; Byrne et al. 2010; 
Palumbo-Roe et al. 2010; Palumbo-Roe and Klinck 2007). Changes in hydrological 
conditions, for example seasonally, or during storm/flood events, can disturb settled 
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sediment, changing redox conditions and resulting in the oxidative release of metals 
(Ranville et al. 2004; Gozzard et al. 2011) and dissolution of efflorescent salts (Mighanetara 
et al. 2009), as well as the migration of metals to less strongly bound mineral phases. Low 
flow conditions have also been shown to increase the attenuation of metals, as the over-
lying waters can become super-saturated resulting in the precipitation of Fe oxyhydroxides 
and co-precipitation/adsorption of other metals; conversely, high flow conditions can result in 
metal release (Byrne et al. 2013a). As a result, metal-rich sediments stored in the catchment 
in streambed deposits, floodplains and over-bank deposits can present a long-term (100s to 
1000s of years) diffuse source of metal contamination to the catchment (Bird et al. 2010; 
Lecce et al. 2014). These sediment stores can be eroded, transported, dispersed and re-
deposited throughout the catchment. Their deposition is highly variable, dependent upon 
fluvial processes, resulting in ‘hotspots’ of contamination (Macklin et al. 2006; Dennis et al. 
2009). Hence, representative field sampling can be challenging. 
 
1.2.2 Bioavailability of toxic metals in mining affected streams 

The word ‘bioavailability’ has been used in the section above. But what exactly is metal 
bioavailability? Bioavailability describes a relative measure of that fraction of the total 
ambient metal that an organism actually takes up when encountering or processing 
environmental media, summated across all possible sources of metal, including water and 
food as appropriate (Luoma and Rainbow, 2008). Metals taken up by organisms are handled 
by the physiological processes of the body, typically to be accumulated by most aquatic 
invertebrates. Although metals from different routes of uptake in aquatic invertebrates (from 
solution via permeable external surfaces or from the diet via the alimentary tract) may or 
may not share the exact same physiological routes in the body leading to excretion or 
detoxified accumulation, the accumulated concentrations are additive, irrespective of the 
route into the body. 
 
Metals associated with metal-rich sediments can be bioavailable to the local biota in a 
variety of ways. Classically, it has been considered that metals in solution offer the most 
significant source of metals to aquatic invertebrates, including those living in or on 
sediments. Thus, the pore water of sediments has been highlighted (not least by 
environmental regulators) as a very important source of metals to infaunal animals.  
The basic assumption has been that the total concentration of metal in sediment does not 
matter. It was assumed that the variable driving toxicity was the distribution of metal between 
sediment particles and water, and exposure was limited to pore waters: this is termed the 
equilibrium partitioning theory of bioavailability (e.g. Di Toro et al., 1991). In practice, the last 
decade has brought about a paradigm change in our understanding of the significance of the 
diet in providing an ecotoxicologically significant (often the major) source of metal to aquatic 
invertebrates (Wang, 2002; Luoma and Rainbow, 2008). Thus, it has been shown that diet is 
by far the most important exposure route for cadmium and copper uptake in 5 species of 
grazing mayfly larvae (Cain et al., 2011). For the predatory alderfly Sialis velata, food (prey) 
is the almost exclusive source of arsenic, cadmium, cobalt, copper, and zinc and the source 
of 94% of its lead (Croisetière et al., 2006). 
 
Furthermore, it has become increasingly appreciated (Luoma and Rainbow, 2008) that 
burrowing aquatic invertebrates (including soft bodied worms with potentially permeable 
body walls) are not actually in contact with undisturbed pore water containing dissolved 
metal in equilibrium with adjacent metal-rich particles. Burrowing animals live in burrows 
which are irrigated by a flow of oxygenated water from the overlying water column, so that 
they can breathe. The contribution of pore water to such bathing water in the burrow is 
usually negligible, and pore water can, in essence, be considered insignificant as a source of 
metals to the burrowing animals. Thus, even burrowers are only exposed to dissolved metals 
from the water column lying above the sediment. 
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Calculations of how much metal is released from sediment particles into the pore water, and 
the effects of changes in redox conditions in the pore water, or the sediment content of 
chemical species such as acid volatile sulphides (AVS) that might bind these metals, are to 
all extents and purposes irrelevant when considering sources of metals to burrowing 
invertebrates (Luoma and Rainbow, 2008). It is true that in anoxic sediments one of the most 
important factors controlling the transfer of metals from sediment to pore water is the 
presence of acid volatile sulphides (AVS) in the sediment, operationally defined as the 
amount of sulphides volatilized by the addition of 1N HCl and mainly consisting of iron, 
manganese and aluminium sulphides (Di Toro et al., 1992). Sulphides bind strongly with 
metals and inhibit metal exchange from sediment to the pore water, resulting in greatly 
reduced metal concentrations in the pore water in the zone of anoxia. When such sediments 
are homogenized and used in toxicity tests, the reduced pore water concentrations 
correspond to declines in toxicity (Ankley et al., 1996). In 10 day whole sediment toxicity 
tests, acute toxicity is typically not observed when the molar concentration of AVS is greater 
than the molar concentration of the simultaneously extracted metals (SEM) released from a 
sediment sample during AVS extraction (Di Toro et al., 1991). The body of literature relating 
sediment toxicity to SEM-AVS in whole sediment bioassays is large, but the conceptual 
basis of the SEM-AVS approach is flawed because burrowing animals live in oxidised 
subsections (burrows) of otherwise anoxic sediments and are not bathed in anoxic pore 
water. Toxicity tests with homogenised sediments break down this substructure and have no 
relevance to field conditions. Despite these constraints, the whole sediment bioassay 
paradigm has been repeatedly used (Ankley et al., 1996), and equilibrium partitioning was 
assumed to be the basis of the toxicity of sediment-associated metals to burrowing animals 
(Di Toro et al., 1992).  
 
De Jonge et al. (2009) evaluated the influence of AVS on accumulation of sediment-bound 
metals in sediment burrowing invertebrates (midge larvae Chironomus gr. thummi and 
oligochaete worms Tubifex tubifex) under field conditions (17 historically polluted Flemish 
rivers). They showed that AVS was not a significant variable in describing variation in metal 
accumulation, and clearly demonstrated that burrowing invertebrates can accumulate metals 
from field sediments even when there is an excess of AVS present in the sediments. 
Supporting evidence comes from much related literature (Hare et al., 1994; Ingersoll et al., 
1994; Lee et al., 2000a, b; Yoo et al., 2004). Similarly, De Jonge et al. (2010) evaluated the 
relationship between AVS and metal accumulation in the two above species and a further 
four freshwater species; they concluded that when uptake through food becomes the 
dominant metal exposure route, metal accumulation in an organism is not controlled by AVS 
concentrations in the sediment.   
 
The diet is a, if not the, major source of trace metals to aquatic invertebrates (Wang, 2002; 
Luoma and Rainbow, 2008; De Forest and Meyer, 2015). Supporting evidence is provided 
from the results of a modelling technique that is relatively new – biodynamic or biokinetic 
modelling (Wang et al., 1996; Luoma and Rainbow, 2005). This predominance of diet as a 
metal source is even more exaggerated for deposit feeders which ingest large amounts of 
fine-grained sediment with a high surface area to volume ratio and typically high organic 
content, both attributes promoting the adsorption of high concentrations of trace metals. 
Biodynamic modelling takes into account such high ingestion rates as well as the 
assimilation efficiency of the ingesting animal, together with the high metal concentrations in 
sediments, to show that the sediment ingestion route often provides in excess of 90% of total 
metal uptake in aquatic deposit feeders (Casado-Martinez et al., 2009, 2010b; Rainbow et 
al., 2009). 
 
Nevertheless, we still suffer from the hangover of acute dissolved toxicity tests in setting 
Environmental Quality Standards, on the long-held assumption that dissolved metal 
represents the most significant source of metals to aquatic invertebrates. Whilst this is true in 
the artificial experimental set-up used for acute laboratory toxicity testing, it is a false 
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premise when attempting to predict the onset of toxicity in field situations. The paradigm 
needs to continue to change as more ecology is introduced into ecotoxicology (Clements 
and Rohr, 2009; Luoma and Rainbow, 2010).  
 
1.2.3 Biomonitors  

Most aquatic invertebrates are accumulators of trace metals, storing most of the metal taken 
up in detoxified form (Luoma and Rainbow, 2008; Rainbow and Luoma, 2011a). Strong 
accumulators may excrete very little of the metal accumulated, whereas weaker 
accumulators may lose some metal from the body, perhaps still in detoxified form (Figure 
1.5: Luoma and Rainbow, 2008). In the latter case there will be a turnover of metal but the 
body concentration will still reflect local bioavailabilities, the standing stock of metal in the 
body during turnover being higher when bioavailability is high, as depicted in Figure 1.6 
(Luoma and Rainbow, 2008). It is possible to estimate the rate of turnover of the 
accumulated metal in the body using biodynamic modelling, and thus, estimate the period of 
exposure reflected in that accumulated body metal content. This may be of the order of 
days, weeks, months or years depending upon the metal and the invertebrate species 
concerned. Any organism that is a metal accumulator has the potential to act as a 
biomonitor.  
 
A biomonitor is defined here as an organism which accumulates trace metals in its tissues, 
the accumulated metal concentration of which provides a relative measure of the total 
amount of metal taken up by all routes by that organism, integrated over a preceding time 
period (Luoma and Rainbow, 2008). Thus, the bioaccumulated concentrations are integrated 
measures of the uptake and accumulation of metals from all sources to that organism. The 
use of biomonitors can, therefore, identify areas of high or low metal bioavailability to that 
chosen biomonitor, and to identify changes of metal bioavailability in space and/or time. 
Such information is prerequisite to an efficient subsequent search for (sub-lethal) 
ecotoxicological effects.  
 
This use of the term biomonitoring is more restricted here than might be the case for some 
authors. For example, Clements and Newman (2002) use the term biomonitoring 
synonymously with biological monitoring (or bioassessment) to mean the use of biological 
systems to assess the structural and functional integrity of aquatic and terrestrial 
ecosystems.  We use the term biological monitoring, but not the term biomonitoring, to cover 
the wider context of the use of any biological system in ecosystem assessment. While we do 
consider biomonitoring as defined here to be a subdivision of biological monitoring, we do 
not go as far as Roux et al. (1993) who used biomonitoring in the same wider context of 
Clements and Newman (2002), but subdivided it as follows: Bioassessments are based on 
ecological surveys of the functional and/or structural aspects of biological communities. 
Toxicity bioassays are a laboratory-based methodology for investigating and predicting the 
effect of compounds on test organisms. Behavioural bioassays explore sub-lethal effects of 
species when exposed to contaminated water; usually as on-site, early warning systems. 
Bioaccumulation studies monitor the uptake and retention of chemicals in the body of an 
organism and the consequent effects higher up the food chain. There is little value in 
pursuing the terminology argument here, but it is necessary for us to be clear as to how we 
are using the term biomonitoring, which will appear often in this review. 
 
Strong accumulators typically show a wider range of accumulated concentrations than weak 
accumulators over a bioavailability range, and hence offer greater discriminatory ability 
between sites or between sampling occasions at the same site. Nevertheless, weak 
accumulators can still be used as biomonitors, often introducing the advantage of reflecting a 
shorter recent period of metal exposure. While conclusions on local metal bioavailabilities 
are often drawn from data for single biomonitors, strictly those results only apply to the 
integrated metal sources available to that biomonitor, and a biomonitoring programme 
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should typically employ a suite of biomonitors to cover a wider range of potential metal 
sources in a habitat. If a suite of biomonitors is used, comprising a selected group of 
biomonitors that take up and accumulate metals from a variety of sources (e.g. solution, 
seston, deposited sediment, prey, etc.), comparative information on the relative importance 
of different bioavailable sources of metals in a specific habitat can be provided (Luoma and 
Rainbow, 2008). 

 
  

Figure 1.5. Trace metal accumulation 
patterns of aquatic invertebrates. 

(A). The trace metal accumulation 
pattern of an aquatic invertebrate which 
regulates the total body metal 
concentration of an essential metal by 
balancing uptake [U] with excretion [E]. 
All metal is accumulated in the 
metabolically available component [A], 
itself subdivided into the essential metal 
required for metabolic purposes [AR], 
and excess metal [AE] over and above 
this metabolic requirement. There is a 
threshold concentration [AT] of 
metabolically available metal, above 
which the accumulated metal is toxic.  

(B). The trace metal accumulation 
pattern of an aquatic invertebrate that is 
a net accumulator of an essential metal 
without significant excretion of metal 
taken up. Metabolically available metal in 
excess of requirements is detoxified [D] 
to be stored [S] as the detoxified 
component of accumulated metal with 
no upper concentration limit.  

(C). The trace metal accumulation 
pattern of an aquatic invertebrate that 
shows net accumulation of an essential 
metal in detoxified form, but excretes 
some of that accumulated metal in the 
detoxified component. Examples of this 
accumulation pattern are those of 
copper and zinc accumulated from the 
diet by amphipod crustaceans (see 
Figure 1.6). 

(D). The trace metal accumulation 
pattern of an aquatic invertebrate that 
shows net accumulation of a non-
essential metal in detoxified form with 
no significant excretion. (After Luoma 
and Rainbow, 2008) 
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Figure 1.6. The accumulation of detoxified 
metal (e.g. zinc or copper) in the ventral 
caecal cells of an amphipod crustacean 
exposed to a trace metal in the diet, and the 
corresponding changes in total body metal 
concentration [C] over time. D. The effect of 
increased dietary exposure to the metal. 
(After Luoma and Rainbow, 2008) 

 
 
 
 
 
 
 
 
 
 
 
 
 

1.2.4 Ecotoxicological effects – Biomarkers 

While biomonitors as defined above will provide information on when, where and how much 
of a metal in bioavailable form(s) is present in a habitat, biomonitoring does not directly 
address the question ‘So what?’ Biomonitoring does have the great preliminary advantage of 
informing us where and when to look for likely ecotoxicological effects of the metals under 
consideration. To answer the ‘So what?’ question is to ask whether an observed high 
bioavailability of a metal is actually having an ecotoxicological effect on a member of the 
local biota, and to question the severity (ecotoxicological significance) of that effect. For the 
answers to such questions we turn to biomarkers.   
 
A biomarker is a biological response (e.g. a biochemical, cellular, physiological or 
behavioural variation) that can be measured at the lower levels of biological organization, in 
tissue or body fluids or at the level of the whole organism. In short a biomarker is a 
measurable biological response to the local presence of a bioavailable quantity of a 
contaminant (a toxic metal in this context).     
 
Ecotoxicological effects occur at different levels of biological organisation – through the 
molecular, biochemical, cellular, physiological, individual organism, population, and 
community levels (Figure 1.7). Any biological response will be first elicited at the lowest level 
of biological organisation. Thus, a single metal ion taken up may bind to a single protein 
molecule. A singular event like this has no toxic significance, but with increased metal 
uptake, more and more metal will bind to intracellular molecules with potential toxic effects. 
The molecular response is the most sensitive, followed in turn by effects progressing up the 
hierarchy of biological organisation. While biomarkers at the lowest levels of biological 
organisation are the most sensitive (Figure 1.8), it is the toxicological effects reflected by 
biomarkers at the highest level (the community) that are most ecotoxicologically significant. If 
metal pollution (high metal bioavailability) is producing ecotoxicological effects observable at 
the community level, then biota are being greatly affected. The task facing environmental  
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Figure 1.7. Biomarkers: latency between exposure of fish to pollutants and the 
occurrence of biological effects at different levels of biological organisation (from 
Amiard-Triquet and Amiard (2013a) after Adams et al., 1989). 

 

Figure 1.8. Biomarkers: progression of the dose-effect relationship from low to higher 
levels of biological organisation (from Amiard-Triquet and Amiard, 2013a).  
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regulators is to detect where the ecotoxicological effects of metal contamination are causing 
profound damage to biota.  
 
A key objective in recent years has been to detect biomarkers at lower levels of biological 
organisation that can be shown to correlate with potential effects at higher levels of 
organisation. Much progress has been made recently. Moore and colleagues (e.g. Moore et 
al., 2013) have correlated an easily measurable lower level cellular biomarker, lysosomal 
stability (for details see below) in mussels to higher order physiological measures of Total 
Oxyradical Scavenging Capacity (a biomarker of antioxidant defence activity), and to scope  
for growth (the energy available to an organism for growth and reproduction after the 
physiological cost of resisting the ecotoxicity of a contaminant: Figure 1.9). Thus, we can 
now measure a lower level biomarker with more confidence that the measurement has 
ecotoxicological relevance. We suggest that a toolkit of biomarkers at various level of 
organisation should be used to detect whether a contaminant is really having a significant 
ecotoxicological effect in a metal-contaminated habitat (Amiard-Triquet, 2015). 
 

 

 
Figure 1.9. Significant correlations of biomarkers from low to higher levels of 
biological organisation. A. Between scope for growth and lysosomal stability in the 
mussel Mytilus edulis (Allen and Moore, 2004).  B. Between lysosomal stability and 
Total Oxyradical Scavenging Capacity (TOSC) in mussels (after Regoli, 2000; Moore et 
al., 2006). (From Luoma and Rainbow, 2008) 

A 

B 
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1.2.5 Current water management legislation 

The European Union has harmonized the management of water quality across member 
nations through the application of the Water Framework Directive (WFD) which was passed 
in 2000 (European Parliament, 2000). The WFD commits member states to achieving good 
qualitative and quantitative status of all water bodies, including rivers, lakes, estuaries, 
coastal waters and groundwater. Both ecological status and chemical status need to be at 
least good to achieve this Good Water Status. The WFD uses ambient environmental 
standards to classify water bodies on the basis of chemical contamination, and these 
standards are set to prevent ecological damage from contaminants like trace metals. A 
particular focus is given to establishing maximum acceptable concentrations of ‘priority 
hazardous substances’ which present a particularly strong environmental risk (European 
Parliament and European Council, 2001, 2006); the measurement of these substances in 
surface waters constitutes a major tool for regulatory agencies in their efforts to achieve the 
requirements of the WFD. The environmental standards, however, are only one of several 
benchmarks. Success is judged by the achievement of ecological goals, rather than by 
meeting purely chemical standards. Thus, the WFD places a legal obligation on EU nations 
to use biota to assess the ecological quality of a water body (Jones et al.; 2010). The 
ecological objectives are designed to protect and, where necessary, restore the structure 
and function of aquatic ecosystems, and thereby safeguard the sustainable use of water 
resources. 
 
The Water Framework Directive requires that the current status of water bodies must be 
determined using a formal classification scheme that characterizes the ecological status of 
each water body based on biological quality elements, and the hydromorphological, 
chemical and physico-chemical elements that support the biological elements. The Directive 
identifies a list of priority hazardous substances, which includes many metals, which should 
be managed to achieve concentrations in the environment near background values. Where 
sites are failing to achieve good or better ecological status, measures must also be identified 
that will achieve and maintain the objective of good status. The WFD requires on-going 
monitoring to assure achievement of these objectives. Here, the ecological status is 
compared with a reference condition, where reference condition represents the condition of 
a water body considered to be in a relatively un-impacted state. Such a reference condition 
provides a calibration point against which the quality of other water bodies can be assessed.  
 
One aspect of the WFD approach is delivered by REACH (Registration, Evaluation and 
Authorization of Chemicals), a June 2007 regulation (European Parliament and European 
Council 2007, and updated thereafter) which aims to improve the protection of human and 
environmental health through better and earlier identification of the toxic properties of 
chemicals produced by industry. REACH puts responsibility on industry to manage risks 
from chemicals emitted and to provide safety information on the potential hazard or toxicity 
of the chemical concerned, and information on amounts emitted. REACH has particular 
relevance for industrial concerns currently emitting potential hazardous effluent into water 
bodies, but has limited relevance when considering metal-rich sediments deposited into 
streams in previous eras of industrial mining activity.  
 
While the recognition by the WFD of the need for the assessment of ecological status of a 
water body is to be welcomed, Environmental Quality Standards (EQS) are still very 
significant in assessing the water quality status of a water body in the terms laid down by the 
WFD. For reasons explained above, not least the significant role of the diet in addition to 
dissolved metal in providing ecotoxicologically significant doses of toxic metal to local stream 
biota, it is not easy to translate the toxicity performance of a defined dissolved metal 
concentration from toxicological action in the laboratory to ecotoxicological action in the field. 
Nevertheless, Environmental Quality Standards for trace metals in the aquatic environment 
have been defined for the UK and other member states (Environment Agency, 2008a: Table 
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1.1), and the dissolved metal QS proposed under the WFD are similar to the metal 
concentrations in rivers associated with unimpaired benthic invertebrate assemblages in 
England and Wales (Crane et al., 2007). Similar environmental standards have been 
published for North America and Australia (Table 1.1): yet such standards are rarely defined 
for the metal content of sediments. Streams with metal-rich sediments derived from mining, 
but deposited long ago, may have water low in dissolved metal flowing over these 
sediments; it may be the case then that dissolved metal EQS alone may have little 
ecotoxicological relevance. 
 
As the WFD requires member states to achieve ‘Good’ ecological status, biological 
techniques are now urgently required that can predict the consequences and cost-
effectiveness of water body management measures (Jones et al., 2010). Thus we need 
more biological monitoring tools to predict and support the return of ‘Good’ ecological status 
to contaminated water bodies. Currently, in requiring biota to be used to assess the 
ecological quality of a water body, the WFD focuses on community-level biological impacts 
on the biological quality elements (comprising macroinvertebrates, phytobenthos (aquatic 
plants and benthic algae), phytoplankton and fish depending on the water body type), 
although a water body will still fail to be classified as ‘Good’ if the average concentration of 
any metal listed as a priority substance exceeds the relevant environmental quality standard 
for that specific metal. This review will consider community level biological methods to 
assess the ecological status of streams with metal-rich sediments, but it will also make use 
of the established correlations between biomarkers at low and high levels of biological 
organisation (Amiard-Triquet et al., 2013b) to assess the predictive applicability of new 
biological tools.  
 

1.3 Environmental assessment of mining-affected streams 

1.3.1 Mining-affected river systems – a UK perspective 

The Environment Agency has funded previous projects of relevance to this review, such as 
Science Project SC030136 on Abandoned Mines and the Water Environment (Environment 
Agency, 2008b), including an Assessment of Metal Mining-Contaminated River Sediments in 
England and Wales (SC030136/SR4: Environment Agency, 2008c), and the Nature of Waste 
Associated with Closed Mines in England and Wales (Palumbo-Roe and Colman 2010). Of 
particular specific relevance is Report SC030136/R49 (Environment Agency, 2009), a review 
of the literature on Ecological Indicators for Abandoned Mines. These reports offer a starting 
point for this review. This review will explore new ground on more recent developments on 
field measures assessing the toxic effects of metal-rich sediments in streams. 
 
A further Environment Agency Science Report SC030136/R2 (Environment Agency, 2012) 
addresses the Prioritisation of Abandoned Non-Coal Mine Impacts on the Environment and 
provides additional data on discharges from mine sites. 
 
Metal ores have been mined in Britain for more than 4,000 years with nearly 5,000 mine 
sites identified (Environment Agency, 2008b, c, 2012), although currently very few metal 
mines are still in use. A new tungsten and tin mine opened at Hemerdon, Devon, in 2015: 
there are also moves to reopen the South Crofty tin mine in Cornwall, which closed in 1998, 
and zinc exploration work being undertaken in the North Pennine field around Nenthead and 
Allenheads. Historically, hundreds of thousands of tonnes of lead, zinc and copper ore have 
been extracted from major mining regions such as the Northern Pennines and Yorkshire 
Dales, North and Central Wales, the Isle of Man, Derbyshire, and Cornwall and Devon, while 
many other trace metals including iron, tin, arsenic and silver have also been mined 
(Environment Agency, 2008c). Past mining methods involved the use of water and 
significant quantities of metal-rich, fine-grained sediments were transferred into local river 
systems.  
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Figure 1.10. Principal metalliferous ore fields. 1. West Scotland. 2. Southern Uplands. 
3. Lake District. 4. Northern Pennines. 5. Yorkshire Dales. 6. Peak District/Derbyshire. 
7. North Wales – Halkyn Minera. 8. Snowdonia - Llanrwst Harlech, Parys Mountain. 9. 
Central Wales. 10. West Shropshire. 11. Devon-Cornwall. (from Downing et al. 1998) 

 
Dissolved metals are typically derived from the oxidation of metal sulphides like galena 
(PbS), sphalerite (ZnS) and greenockite (CdS), leading to raised dissolved metal 
concentrations downstream of mining sites (Environment Agency, 2009). Pyrite (iron 
sulphide) may (but not always) be present in association with such other metal sulphides, 
leading to raised dissolved iron concentrations and the visible deposition of iron 
(oxy)hydroxides (ochre) further downstream (Environment Agency, 2009). The precipitation 
of ochre blanketing the stream bed is a particular feature of the iron-rich discharges from 
abandoned coal mines. 
  
While currently very few mines are actively worked in Britain, some abandoned metal mines 
do still contribute significantly to the trace metal pollution entering British rivers (Environment 
Agency, 2008b: Figure 1.11). The Parys Mountain copper mine on Anglesey discharges 24 
tonnes of zinc and 10 tonnes of copper every year into the Irish Sea via the Afon Goch and 
its estuary Dulas Bay; Restronguet Creek in Cornwall, fed by the River Carnon, discharges 
52 tonnes of zinc, 12 tonnes of copper and 62 kg of cadmium annually; the combined effect 
of 50 abandoned metal mines in Wales is an annual discharge of 200 tonnes of zinc, 32 
tonnes of copper, 15 tonnes of lead and 600 kg of cadmium (Environment Agency, 2008b). 
Although cadmium is not specifically sought by the relevant mines, its presence in mined 
ores does represent an ecotoxicological threat downstream, particularly since cadmium is a 
priority hazardous substance and more than 70% of failures to achieve its freshwater quality 
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standard are in mining areas (Environment Agency, 2008b). The English and Welsh river 
catchments at risk or probably at risk of mining-related metal contamination are illustrated in 
Figure 1.11 and listed in Table 1.2 (from Environment Agency, 2008c), the major metals of 
concern being lead, zinc, copper and cadmium.  
 

 
Figure 1.11. Water bodies at risk (red) or probably at risk (orange) of impacts from 
metal mining.  
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Table 1.1a. Freshwater Environmental Standards for Metals and Metalloids (in µg l-1) 

  UK EQS
1,2,3

 

Australia 
& NZ 
95% 

trigger
4
 

USA
5
 Canada

6
 

 
Hardness 

(mg CaCO3 l
-1

) 
Long‐term  

(Mean) 

Short‐ 
term (95 

%ile) 

Annual 
Average 

Chronic 
CCC 

Acute 
CMC 

Long-
term 

Short-
term 

Aluminium    55*   5*  

Arsenic 
 

50 
  

150 340 5  

Arsenic III    24     

Arsenic V    13     

Boron    370   29,000 1,500 

Cadmium < 40 ≤ 0.08 ≤ 0.45 0.2     

 
40–50 0.08 0.45 

 
  0.09 1 

 
50–100 0.09 0.6 

 
    

 
100–200 0.15 0.9 

 
0.25 2   

 
>200 0.25 1.5 

 
    

Chromium III  4.7 32  74 570 1.0  

Chromium IV 
 

3.4 
 

1 11 16 8.9  

Cobalt 
 

3
†
 100

†
 

 
    

Copper 0–50 1 bioavailable 
 

1.4   2  

     
  2-4°  

     
  2-4°  

     
  4  

Iron 
 

1000 
  

1000  300  

Lead 
 

7.2 
 

3.4 2.5 65 1°  

Manganese 
 

123 
bioavailable  

1900     

Mercury 
 

0.05 0.07 0.6 0.77 1.4 0.026  

Molybdenum        73 

Nickel 
 

20 
 

11 52 470 25°  

Selenium    11   1  

Silver 
 

0.05
†
 0.1

†
 0.05  3.2 0.1  

Tin 
 

25
†
 

  
    

Vanadium 0-200 20
‡
 

  
    

 
>200 60

‡
 

  
    

Zinc 
 

10.9 
bioavailable + 

Ambient 
Background 

Concentration  

  
    

 
0–50 

  
8   30  

 
100–250 

   
120 120   
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Table 1.1b. Saltwater Environmental Standards for Metals and Metalloids (in µg l-1) 

 UK EQS 
1,2,3

 
Australia & NZ 
95% trigger

4
 

USA
5
 Canada

6
 

 
Long‐term  

(Mean) 
Short‐ term 

(95 percentile) 
Annual 

Average 
Chronic 

CCC 
Acute 
CMC 

Long-term 

Arsenic 25 
  

36 69 12.5 

Cadmium 0.2 
 

5.5 8.8 40 0.12 

Chromium III   27.4   1.5 

Chromium IV 0.6 32 4.4 50 1100 56 

Cobalt 3
†
 100

†
 1    

Copper 

3.76 where 
DOC ≤1mg/l; 
3.76 + (2.677 
x ((DOC/2) – 
0.5)), where 
DOC >1mg/l 

 
1.3 3.1 4.8  

Iron 1000 
  

   

Lead 7.2 
 

4.4 8.1 210  

Mercury 0.05 0.07 0.4 0.94 1.8 0.016 

Nickel 20 
 

70 8.2 74  

Silver 0.5 1 1.4  1.9  

Tin 10
†
 

  
   

Vanadium 100
‡
 

 
100    

Zinc 

6.8 dissolved 
+ Ambient 

Background 
Concentration  

 
15 81 90  

 

* pH<6.5 Australia & New Zealand, pH <5 Canada (100 µg l
-1

 for pH >5) 
†
Non-statutory. Dangerous Substances Directive (76/464/EEC)  

‡
Statutory.

 
Dangerous Substances Directive (76/464/EEC : European Council 1976) 

http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:31976L0464  
° variable dependent on measured hardness. 
1
 WFD-UKTAG (2008a) Proposals for Environmental Quality Standards for Annex VIII Substances 

Final (Revised) 
2
 DEFRA and Welsh Government (2014) Water Framework Directive implementation in England and 

Wales: new and updated standards to protect the water environment. 
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/307788/river-basin-
planning-standards.pdf 
3
 European Commission (2012) Directive of the European Parliament and of the Council amending 

Directives 2000/60/EC and 2008/105/EC as regards priority substances in the field of water policy. 
COM (2011) 876 final 
4 
ANZECC and ARMCANZ [Australian and New Zealand Environment and Conservation Council, 

Agriculture and Resource Management Council of Australia and New Zealand] (2000) Australian and 
New Zealand guidelines for fresh and marine water quality. Volume 1, The guidelines. National water 
quality management strategy; no.4  
5
 US EPA National Recommended Water Quality Criteria - Aquatic Life Criteria Table 

http://water.epa.gov/scitech/swguidance/standards/criteria/current/index.cfm 
6
 Canadian Council of Ministers of the Environment. 1999. Canadian water quality guidelines for the 

protection of aquatic life. Canadian Council of Ministers of the Environment, Winnipeg. http://ceqg-
rcqe.ccme.ca/ 

  

http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:31976L0464
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/307788/river-basin-planning-standards.pdf
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/307788/river-basin-planning-standards.pdf
http://water.epa.gov/scitech/swguidance/standards/criteria/current/index.cfm
http://ceqg-rcqe.ccme.ca/
http://ceqg-rcqe.ccme.ca/
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Table 1.1c. Freshwater Sediment Quality Guidelines (in mg/kg dry wt.) 

 Australia and New 
Zealand* 

Belgium 
(Flanders)† 

Canada° 

 Low 
Trigger 
Value 
(10% 

probability 
of effect) 

High 
Trigger 
Value 
(50% 

probability 
of effect) 

SQG 

Interim 
sediment 

quality 
guidelines 

probable 
effect 
level 

Cadmium 1.5 10 1 0.6 3.5 

Chromium 80 370 62 37.3 90 

Copper 65 270 20 35.7 197 

Lead 50 220 40 35 91.3 

Mercury 0.15 1 0.55 0.17 0.486 

Nickel 21 52 16   

Silver 1 3.7    

Zinc 200 410 147 123 315 

Antimony 2 25    

Arsenic 20 70 19 5.9 17 
 
* ANZECC and ARMCANZ [Australian and New Zealand Environment and Conservation Council, 
Agriculture and Resource Management Council of Australia and New Zealand] (2000) Australian and 
New Zealand guidelines for fresh and marine water quality. Volume 1, The guidelines. National water 
quality management strategy; no.4  
† Flemish sediment quality guidelines as published on July 9th 2010 (de Deckere et al., 2011). 
° Canadian Council of Ministers of the Environment. 1999. Canadian sediment quality guidelines for 
the protection of aquatic life: Winnipeg 
 
 

Table 1.2. River basins most affected by metal mining in England and Wales. (From 
Environment Agency, 2008b). 

Water Framework Directive 
River Basin District 

Catchment Mining Region Ore Field 

   
Dee Clywedog Halkyn-Minera 
   
Humber Swale, Wharfe, Nidd, Ure Yorkshire Dales 
 Ecclesbourne, Hamps, 

Manifold, Derwent  
Southern Pennines 
(Derbyshire) 

   
Northumbria South Tyne, Wear, Tees Northern Pennines 
   
North West  Newland’s Beck, Coledale 

Beck 
Lake District 

   
Severn Rea Beck West Shropshire 
 Upper Severn Central Wales 
 Yeo, Axe Mendip 
   
Solway Tweed Glenridding Beck Lake District 
   
South West Camel, Erme, Fal, Fowey, 

Gannel, Tamar 
Devon-Cornwall 

   
Western Wales Afon Goch 

Twymyn, Rheidol, Ystwyth 
Parys Mountain 
Central Wales 
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1.3.2 Sediment quality 

The presence of fine-grained (> 63 m) sediments and sediment-associated metals in 
streams and floodplains has the strong potential to cause a significant long-term 
ecotoxicological impact (Environment Agency, 2008b). In England and Wales the prime 
metals of concern are copper, lead, zinc and cadmium, with arsenic also being significant in 
Cornwall and Devon (Environment Agency, 2008b). Table 1.3 provides selected data on 
sediment metal concentrations in river systems in England and Wales affected by historical 
mining; these concentrations may exceed geochemical background concentrations and 
proposed Environment Agency guidelines by several orders of magnitude (Environment 
Agency, 2008b). The worst affected rivers in terms of sediment metal concentrations are the 
South Tyne and its tributaries, the Nent, Allen, upper Derwent, the upper Tees, upper Swale 
and the Ystwyth (Environment Agency, 2008b). 
  
 
Table 1.3. Selected metal concentrations (µg g-1) in river and overbank sediments 
affected by metal mines and proposed Environment Agency sediment quality 
guidelines. (From Environment Agency, 2008b). 
 

River System Sediment As Cd Cu Pb Zn 

Swale fine 
channel 

 0–30  22–20,310 26–12,203 

Tamar channel 4–11,000 0.25-22.1 11–8,000 13-450 48–1,901 
West Allen (Tyne) overbank  5-33 22-40 98–3,166 74–1,131 
Nent (Tyne) overbank    224–15,800 4,360–

38,000 
Tyne & South Tyne overbank  2.3-117 8-384 410–9,798 590–16,520 
Hudeshope Beck overbank  <0.05-17 0.5-388 63– 26,800 190 – 5,180 
Axe overbank   3 - 27 226 – 

25,124 
89 - 660 

Ystwyth overbank    73 – 4,646 123 – 1,543 
       
Guidelines - 
sediments 

      

Threshold Effect 
Level (TEL) 

 5.9 0.596 36.7 35 123 

Predicted Effect 
Level (PEL) 

 17 3.53 197 91.3 315 

  
 
1.3.3 Ecosystem responses to metal exposure in streams 

Mining contamination of streams and rivers produces ecological damage (Environment 
Agency, 2008b, 2009; Luoma and Rainbow, 2008). While individual case studies may not 
include all ecological symptoms and the relationship between the onset of negative 
ecological effects and metal concentrations in water or sediment (the dose response) will 
vary from site to site, a combination of several signs is diagnostic of the ecotoxicological 
effects of mining on streams and rivers (Luoma and Rainbow, 2008). These effects include 
reduced numbers and diversity of aquatic flora and invertebrates (Say and Whitton, 1981a, 
b; Jarvis and Younger, 2000; Clements, 2004; Environment Agency, 2008b, 2009; Batty et 
al., 2010), especially reduced species richness and abundance of mayfly larvae (order 
Ephemoptera), associated with decline in numbers or often complete absence of specific 
sensitive species like ephemerellid and heptageniid mayflies (Clements, 1991, 2000; Gower 
et al., 1994; Cain et al., 2004; Luoma and Rainbow, 2008). Fish are typically of low 
abundance with fish mortalities, particularly of more sensitive salmonid species (e.g. rainbow 
trout Oncorhynchus mykiss in the Clark Fork River, US: Marr et al., 1995), reducing the 
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number of fish species, and clogging by metal-rich sediment may cause loss of spawning 
gravels and nursery streams for fish reproduction (Malouf, 1974; Environment Agency, 
2008b; Luoma and Rainbow, 2008). 
 
Historically, amongst the earliest observations of the ecotoxicological effects of mining 
activities on British water catchments was the work of Carpenter in the 1920s in the then 
active mining regions of West Wales (Carpenter, 1924; Kelly, 1988; Environment Agency, 
2009). Carpenter (1924) thus noted that the flora in lead and zinc contaminated streams 
immediately downstream of mines was very reduced, the flora being typically restricted to 
growths of species of the red algal genera Batrochospermum and Lemanea, together with 
some mosses and liverworts (Kelly, 1988). Floral species number increased downstream 
and over time in the upper reaches after closure of the mines (Kelly, 1988). 
 
In the late 1970s and 1980s, Whitton, Say and co-workers researched the ecotoxicological 
effects of mining contamination in streams and rivers of the Northern Pennine area where 
zinc, cadmium and lead are the major contaminants; this area is underlain by Carboniferous 
limestone with high buffering capacity counteracting confounding ecotoxicological effects of 
low pH in the local streams (Say and Whitton, 1981a, b; Environment Agency, 2009). Say 
and Whitton (1981a) found only 25 photosynthetic species in a heavily zinc-contaminated 
stream while a nearby uncontaminated stream housed 61 species. It is the loss of species 
(for example Cladophora species – Whitton, 1970) in these examples that then allows mass 
growths of more metal-resistant species to flourish in the absence of competition 
(Environment Agency, 2009). Armitage (1979) found reduced numbers of taxa and 
individuals in the benthic fauna of sites with very high water zinc levels (>2mg l-1) in the River 
Nent system in the Northern Pennine orefield, but faunal abundance and diversity were also 
lower at points with relatively low dissolved zinc concentrations indicating that other factors 
may influence the fauna. Low benthic fauna numbers were associated with a massive 
growth of the alga Stigeoclonium tenue, a species resistant to both high zinc availabilities 
(Harding and Whitton, 1976) and organic pollution, and it was difficult to separate the effects 
of high zinc on benthic faunal abundance from those resulting from algal growth and the 
physical characteristics of the substratum (Armitage, 1979).      
 
In the 1990s Gower and co-workers investigated in detail the effect of metal contamination 
derived from mining on insect assemblages in the many metal-rich streams of Devon and 
Cornwall in SW England (Gower and Darlington, 1990; Gower et al., 1994). Other case 
study examples will be given below in descriptions of the different monitoring techniques 
used in the environmental impact assessment of metals derived from mining on the 
communities of affected streams. 
 
1.3.4 Principles of community ecotoxicology 

More than 25 years ago, John Cairns Jr. highlighted the lack of the integration of ecological 
theory to provide a sound ecological basis in the emerging field of ecotoxicology (Cairns, 
1986; Clements and Rohr, 2009). The situation is better today, though still not yet ideal 
(Newman and Clements, 2008; Schmitt-Jansen et al., 2008; Luoma and Rainbow, 2010; 
Newman, 2010). Of particular relevance here, has been the emergence of a new discipline, 
that of community ecotoxicology defined as the study of the effects of contaminants on 
patterns of species abundance, diversity, community composition and species interactions 
(Clements and Newman, 2002; Clements and Rohr, 2009). Because communities lie 
between populations and ecosystems in the hierarchy of levels of biological organization, 
they offer important insights into the mechanisms of contaminant action at lower levels while 
being closely connected to relevant endpoints, such as the provision of ecosystem services, 
at higher levels. Furthermore, species diversity is positively associated with ecosystem 
stability and recovery, and thus a community-level perspective on ecotoxicology is more 
important than ever (Clements and Rohr, 2009). Community ecotoxicology will have come of 
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age when it shifts from a purely descriptive to a predictive science (Clements and Rohr, 
2009). 
 
a. Community level biological monitoring 
 
In their book Community Ecotoxicology, Clements and Newman (2002) present an excellent 
introduction to different methods of assessing biological changes at community level, such 
as those caused by the ecotoxicological action of mine-derived metals in stream habitats. 
Community-level biological monitoring is based on the assumption that the composition and 
organization of communities reflect local environmental conditions and respond to any 
significant anthropogenic alterations to these conditions (Clements and Newman, 2002). A 
second assumption is that species differ in their sensitivity to anthropogenic stressors which 
thereby cause structural changes in community composition (Clements and Newman, 2002). 
 
Given the assumption that species differ in their sensitivity to the presence of toxic metals at 
raised bioavailabilities, then an ecotoxicologically significant dose of a metal in a habitat will 
change the numbers of species present and the abundances of those remaining. Measures 
of the numbers of species present and their abundance have typically been the first steps in 
any quantitative analysis of the community structure of, for example, benthic invertebrates in 
streams (e.g. Malmqvist and Hoffsten, 1999). Species richness is defined as the number of 
species present in a prescribed sampling unit (Clements and Newman, 2002). Although an 
apparently simple measure, species richness is highly dependent on sampling effort (for 
example the area sampled) and increases asymptotically with sample size and number of 
individuals collected, eventually levelling off as we approach the point when all species have 
been recorded. Hence, a standardized sampling protocol (e.g. RIVPACS 3-minute kick 
sample) is necessary when comparing across sites. 
 
A particular problem, however, of measures of species richness is that they do not take into 
account differences in abundance among the species present. Two compared habitats may 
have the same number of species but differ greatly in the abundances of the species 
present. Even in the absence of anthropogenic contamination, species differ in their 
abundance in habitats. Some species are rare while others are very abundant, and species 
abundance models have been developed to quantify species abundance distributions. Such 
species abundance models are useful to summarise data from community surveys. Models 
are fitted to observed species abundance data and parameters of the model have value as 
summary statistics for the data set, incorporating both species number and abundance data. 
In practice four abundance models are commonly used – logarithmic series, geometric 
series, discrete lognormal and broken stick (Clements and Newman, 2002) – and the model 
that fits the observed data best is chosen to be used in further analysis. The discrete 
lognormal model fits most communities and is often advocated as a universally acceptable 
species abundance model (May, 1976; Clements and Newman, 2002).    
 
Measures of species diversity have been developed to provide a single value that 
incorporates information on both species richness (the number of species) and species 
abundances. Species diversity indices are often used in biological monitoring studies to 
compare communities in different locations (e.g. Amisah and Cowx, 2000; Hirst, Jütner and 
Ormerod 2002; Gray and Delaney, 2008), although they have been criticised on theoretical, 
statistical and conceptual arguments (Clements and Newman, 2002). Simpson’s Index, in 
original or modified form, is based on dominance, being very sensitive to dominant species 
and relatively insensitive to rare species. Clements and Newman (2002) propose that two 
other diversity indices based on information theory, the Shannon-Wiener and Brillouin 
Indices, which are more sensitive to rare species, are more relevant to ecotoxicology. The 
Shannon-Wiener Index is in effect a measure of the uncertainty of predicting the species of a 
randomly chosen individual from the community. The Shannon-Wiener Index estimates 
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diversity for the community from which the sample was taken, whereas the Brillouin Index 
estimates diversity for the sample itself (Clements and Newman, 2002).  
 
Another measure of community structure is species evenness, a measure of how equally the 
individuals in a community are distributed among the species present. For example Pielou’s 
evenness index is based on a comparison between the measured value of the Shannon-
Wiener Index and its estimated maximum value. It is constrained to a value between 0 and 
1, where 1 represents maximum evenness. 
 
Single number indices are described as univariate, and although simple, they do have the 
serious deficiency of loss of information that inevitably occurs when details of community 
composition are reduced to a single number. While classic measures of benthic invertebrate 
community structure in freshwater habitats involved univariate indices, multivariate statistical 
techniques are used more frequently today (Sparks, 2000; Henderson and Seaby, 2008). 
Many multivariate techniques aim to replace the original large set of variables by a much 
smaller set of derived variables (often referred to as axes) which still retain most of the 
relevant information – a process termed ordination (Scott and Clarke, 2000). Ordination tries 
to present results by plotting graphs of the new variables against each other, allowing us to 
visualise relationships between sites, samples, species, variables, etc. Principal 
Components Analysis (PCA) was the first ordination technique to be developed and is still 
commonly used (e.g. Beltman et al., 1999). PCA chooses variables (principal components) 
that embody as much as possible of the variance in the data, calculating components in 
sequence until all of the original variance is accounted for. PCA was developed to analyse 
continuous quantitative data, but Correspondence Analysis (CA) can be used with non-
continuous (categorical) data where the numbers 1, 2, 3 etc. are assigned to categorical 
data, for example shapes or colours. CA can in fact be used for any dataset (Scott and 
Clarke, 2000) since continuous variables can be assigned to categories, as for example in 
defining bioaccumulated metal concentrations as high, medium or low with defined cut-off 
points. Variants of CA include Canonical Correspondence Analysis (CCA) (e.g. Gower at al., 
1994) and De-trended Correspondence Analysis (DCA) (e.g. Gower et al., 1994; Hirst et al., 
2002). Multidimensional Scaling (MDS) is another ordination technique, becoming 
increasingly popular in aquatic ecological studies (Clarke and Ainsworth, 1993). MDS 
produces a graphical representation of the similarity between samples in a small number of 
dimensions, this similarity being measured, for example, in terms of species abundance or 
presence/absence data (Henderson and Seaby, 2008). The choice of similarity measure 
varies, and it is common to use both similarity measures requiring presence/absence data 
such as the Sorensen and Jaccard Similarity Indices and measures using quantitative data 
such as Bray-Curtis (Henderson and Seaby, 2008). MDS analyses the matrix of pair-wise 
similarities between all the samples in the data set, achieving the typical aim of a biological 
monitoring survey in distinguishing between sites or sampling occasions. There are two 
forms of MDS, metric and non-metric, the latter being particularly popular for it can be used 
with non-parametric data such as ranks (Scott and Clarke, 2000).    
 
b Relationships between variables 
 
Moving beyond comparisons of communities, it is often an aim to relate species 
compositions to environmental variables, for example water or sediment metal 
concentrations. Ordination techniques are available in which the axes are constrained to 
represent the relationships between two sets of variables (typically community composition 
and environmental variables), sometimes referred to as direct gradient analysis (Scott and 
Clarke, 2000). The two sets of variables are represented on the same ordination diagram 
and assessment of relationships is made directly from this. Gower et al. (1994) used CCA to 
show that variation in macroinvertebrate communities in metal-contaminated streams in 
south-west England was best explained by four stream chemistry variables (Cu, Al, 
alkalinity, pH). ; Byrne et al. (2013b) used the same approach to detect metal effects in 
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Wales. Another way of examining relationships between response and explanatory variables 
is multivariate multiple regression, not a form of ordination. In this case several response 
variables are involved and the result of the analysis is a set of regression equations, one for 
each response variable, but taking into account interrelationships between the response 
variables as well as their relationship to the explanatory variables (Scott and Clarke, 2000). 
Redundancy Analysis (RDA) falls between ordination techniques and multivariate multiple 
regression, and can be used to determine the relative importance of anthropogenic factors 
like metals and other environmental factors in explaining the variability in community 
composition data, for example macroinvertebrate and diatom community compositions in a 
study of metal pollution in a lowland river in Flanders (De Jonge et al., 2008).  
 
Linear regression models are often not appropriate for linking environmental variables with 
changes in communities. Theoretical and empirical studies do indicate that some 
communities show abrupt, non-linear changes in structure or function in response to 
perturbations (May, 1977; Clements and Rohr, 2009; Luoma et al., 2010; Rainbow et al., 
2012; Schmidt et al., 2013). These ecological discontinuities or thresholds are defined as 
significant changes in an ecological state variable as a result of a continuous change in an 
independent environmental variable (Clements and Rohr, 2009).The threshold is the point at 
which any rapid change initially occurs. Typically, in any ecological study assessing the 
effects of contaminant stressors on resident communities, not all the factors that might affect 
the communities are measured, and statistical distributions of ecological data have unequal 
variation as a result of complex interactions between these factors (Cade and Noon, 2003; 
Schmidt et al., 2012). Such unequal variation can be examined by quantile regression 
analysis which estimates multiple rates of change (slopes) from the minimum to maximum 
response, and provides a more complete picture of the relationships between variables 
missed by other regression methods (Cade and Noon, 2003). Schmidt et al. (2012) used 
quantile regression to measure risks to aquatic life exposed to metals in a study of the 
population densities of two mayflies and a caddisfly, metals and other environmental 
variables in 125 streams in Colorado, USA. In accordance with the concept of ecological 
thresholds, the most obvious effects on mayfly populations were at upper quantiles and not 
mean density (Schmidt et al., 2012).         
 
1.3.5 Biotic indices  

a Macroinvertebrate biotic indices 

Another approach taken to overcome the deficiencies of univariate measures of community 
diversity has been the development of biotic indices (Metcalfe, 1989; Clements and 
Newman, 2002). The community based indices above give all species equal weight 
irrespective of their sensitivity to anthropogenic contamination, and may not show up 
responses if, for example, sensitive species are simply replaced by contaminant-insensitive 
species. Different biotic indices have therefore been developed to assess the state of the 
community based on the relative abundance of sensitive and resistant species, particularly in 
the case of benthic macroinvertebrates in streams and rivers. It follows that different species 
show different relative sensitivities according to the contaminant concerned, and so it should 
not be surprising if a biotic index relevant to the assessment of organic pollution is not 
applicable to an assessment of toxic metal pollution, and vice versa. Nevertheless, 
relationships between the extent of metal pollution and indices related to organic pollution 
(Gehardt et al., 2004; De Jong et al., 2008, 2013; Blanco and Bécares, 2010), and measures 
of invertebrate diversity and richness (Hirst et al., 2002, De Jong et al., 2008, 2013; Blanco 
and Bécares, 2010) have been recorded.  
 
[Many descriptions of the development and use of biotic indices use the terms contaminant 
or pollution-tolerant when referring to the attributes of particular taxa at whatever taxonomic 
level, typically family, genus or species. In this review, the term contaminant-insensitive is 
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preferred when referring to the particular characteristics of a taxon irrespective of particular 
local habitat, and contaminant-tolerant is used (see later) to refer to the characteristics of a 
particular exposed population, whether or not that tolerance is inheritable after selection over 
several generations or has been derived by physiological acclimation and is restricted to the 
one exposed generation (Amiard-Triquet et al., 2011).]    
 
The simplest expression of such an approach lies in the concept of indicator species. An 
indicator species is a species the presence or absence of which is indicative of a particular 
habitat, community or set of environmental conditions. In an ideal world there would exist a 
species whose presence or high abundance would indicate a high local bioavailability of 
toxic metal(s) in a particular habitat, in our case a freshwater stream. Indeed the indicator 
species concept was popular with freshwater ecologists who recognised the large number of 
pollution-insensitive chironomid larvae (midges – Diptera, Chironomidae) and oligochaete 
worms such as tubificids replacing more sensitive mayflies (Ephemeroptera) and stoneflies 
Plecoptera) at sites with high organic enrichment (Clements and Newman, 2002). There are, 
however, severe limitations with the indicator species approach. Firstly there is the inherent 
tautology of defining a pollution-sensitive species as a species absent from polluted habitats. 
Secondly there is the greater problem of the need to distinguish the relative significance of 
an anthropogenic stressor from the effects of the many other biotic and abiotic factors that 
influence the presence or absence of a species (Clements and Newman, 2002): the alga 
Stigeoclonium tenue present at high abundance in the zinc-rich streams of the River Nent 
system is relatively insensitive to other forms of pollution as well as high zinc levels 
(Armitage, 1979). In freshwater systems, so-called pollution-sensitive species are also 
sensitive to other disturbances, natural or anthropogenic, and the absence of such a species 
provides only weak support for the hypothesis that its absence is a result of the local 
presence of a particular toxic contaminant (Clements and Newman, 2002). 
 
The biotic indices relevant to the analysis of the community structure of benthic freshwater 
flora and faunas are often based on the relative abundance of species decreed by expert 
opinion to be sensitive or to a specific type of pollutant or not, but make use of much 
contributing data on the relative abundances of these species. It must be remembered, 
however, that relative sensitivities of species do depend on the contaminants of concern and 
many of the biotic indices developed for use in freshwater systems are particularly 
appropriate for the assessment of the comparative effects of organic enrichment. It is well 
known that mayflies (Ephemoptera), stoneflies (Plecoptera) and caddisflies (Trichoptera) are 
relatively sensitive to organic enrichment, while chironomids (Diptera) are generally resistant 
to organic pollution. The EPT score (Lenat, 1988) makes direct use of these relative 
sensitivities to create a biotic index (e.g. Malmqvist and Hoffsten, 1999; Gray and Delaney, 
2008). 
 
In the UK in the 1960s the then Trent River Authority developed the Trent Biotic Index (TBI) 
to assess (organic) pollution in freshwaters (Metcalfe, 1989), based again on the 
presence/absence of mayflies, stoneflies and caddisflies, but also of amphipod and isopod 
crustaceans, tubificid oligochaetes and chironomid larvae red with haemoglobin (Woodiwiss, 
1964). The total number of groups present is cross-referenced against a hierarchy of 
indicator taxa from sensitive to increasingly resistant until not even oligochaetes or 
chironomids are present. The index is simple but no account is taken of abundances and a 
single specimen of a sensitive species drifted down from a less organically rich region 
upstream will bias the calculation of the index at a downstream site (Jeffries and Mills, 1990). 
The TBI paved the way for a number of indices across the world adapted to the local fauna 
(Metcalfe, 1989), such as the Indice Biotique and later the Indice Biologique de Qualité 
Génerale (IBG) in France (Tuffery and Verneaux, 1968; Verneaux et al., 1982), the Belgian 
Biotic Index (BBI) (De Pauw and Vanhooren, 1983), and Hilsenhoff’s Biotic Index in the USA 
(Hilsenhoff, 1987). Hilsenhoff’s Biotic Index also takes advantage of differences in relative 
sensitivities of taxa to come up with a value based on the relative abundance of sensitive 



28 
 

and tolerant species, originally using data from more than 2000 macroinvertebrate samples 
from organically polluted and unpolluted Wisconsin streams.  In the UK, in a development 
from the TBI, the Chandler score (Chandler, 1970) incorporates abundance data (Metcalfe, 
1989), as used by Armitage (1979). Taxa are again ranked in a hierarchy from sensitive to 
resistant, and scores are given for presence but varied across five abundance categories to 
produce a total score. Superseding the Chandler score and still widely used in the UK today 
is the Biological Monitoring Working Party (BMWP) score (Biological Monitoring Working 
Party, 1978), produced by a working party convened in 1976 by the UK Department of the 
Environment (Metcalfe, 1989; Jones et al., 2010). Operation of the BMWP score is simpler 
than that of the Chandler score for it does not try to include abundance data. Taxa are still 
ranked according to their sensitivity to organic pollution with corresponding scores from 10 
(sensitive) to 1 (resistant) which are summated to give the total score. A positive point of the 
BMWP score is the improved precision of taxon resistance and the taxonomic level to which 
identification is taken (Jeffries and Mills, 1990). Rather than using the BMWP score for a 
sample, the Average Score Per Taxon (ASPT) is used, derived by dividing the BMWP score 
by the number of taxa used in its generation: ASPT is less sensitive to variation in sampling 
effort than is BMWP, and therefore provides a more consistent measure of the level of 
pollution at a site. A high ASPT reflects the presence of many sensitive species (Jeffries and 
Mills, 1990). In addition the number of scoring families (NTAXA) in calculating the BMWP 
score may also be quoted (Jones et al., 2010). Recently the BMWP scoring system has 
been revised, and a system to incorporate abundance weighted scores developed, with the 
scores based on regression analysis relating the occurrence of taxa to estimates of pollution: 
the new scoring system named WHPT after its originators, Walley, Hawkes, Paisley and 
Trigg (Paisley, Trigg and Walley, 2014).  
 
The BMWP score was developed as an index to assess the ecological effects of organic 
pollution (Jones et al., 2010), and it cannot therefore be expected from first principles to be 
suitable as a biotic index for mining effluent pollution. Nevertheless, the use of BMWP has 
been evaluated in this context, specifically with respect to coal mine water discharges 
(Davies et al., 1997; Jarvis and Younger, 1997, 2000; Environment Agency, 2009) and acid 
mine drainage (Gray and Delaney, 2008). The ecological impact of coal mine water 
discharges was assessed by measuring decreases in BMWP score downstream compared 
with upstream of a coal mine discharge, the extent of any ecological impact being assessed 
by identifying the downstream point at which the BMWP score returned to its upstream value 
(Environment Agency, 2009). In fact the BMWP score worked well for coal mine water 
discharges for which the deposition of iron oxides/hydroxides is the major cause of depletion 
of fauna (Environment Agency, 2009), and Jarvis and Younger (1997) had already shown a 
strong statistical inverse correlation between BMWP score and iron concentration in affected 
streams. It may be the physical blanketing by the ochre and associated reduced light 
penetration that are the main causes of decreases in faunal abundance and diversity 
(Environment Agency, 2009), as opposed to any toxic metal effect that might be more typical 
of mining-affected streams with metal-rich sediments. In the case of discharges from metal 
mines, any relationships between dissolved concentrations of metals such as zinc, lead and 
cadmium, and BMWP scores were far more ambiguous than for coal mine drainage, with no 
clear strong inverse relationships present (Environment Agency, 2009; Jarvis and Younger, 
2000). A specific study of streams in the mining-affected regions of Gwynedd and 
Ceredigion in Wales drew similar conclusions; there was a correlation between BMWP score 
(but not ASPT) and total zinc concentration, albeit with considerable scatter in the data, but 
no clear relationship between any other trace metal (arsenic, cadmium, copper, iron, 
manganese, nickel, lead, as total or dissolved fraction) and BMWP score, ASPT or number 
of taxa present (Environment Agency, 2009). Furthermore in this study there was a 
potentially strong confounding effect present, in the form of a strong inverse relationship 
between pH and BMWP score. The Environment Agency report (Environment Agency, 2009) 
therefore questions the appropriateness of Environmental Quality Standards (EQS) for 
streams that have long been impacted by metal mine discharges. Furthermore, the potential 
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inappropriateness of the BMWP score for use as a biotic index in mining-affected streams is 
probably also a factor producing the reported lack of relationships investigated.  
Gray and Delaney (2008) did find the BMWP to be an excellent index of AMD in the River 
Avoca in Ireland draining a region of abandoned copper sulphide mines, showing significant 
reduction in both abundance and taxon richness of benthic macroinvertebrates in response 
to AMD. The effects of AMD are, however, driven by a number of factors, particularly water 
acidity, in addition to salinization, metal toxicity and metal precipitation, confounding the 
direct ecotoxicological effects of metal-rich sediments. On the other hand the ASPT derived 
from the BMWP was not correlated with any measured parameter such as pH, sulphate, zinc 
or iron concentrations, nor, unlike the BMWP score, with any of the diversity indices 
measured (Gray and Delaney, 2008). Gray and Delaney (2008) concluded that specific biotic 
indices do need to be developed that measure the expected community structure of 
macrobenthic invertebrates arising from AMD impact more precisely than the existing 
metrics. 
 
The biotic indices discussed above are not particularly useful as stand-alone measures as 
there is natural variation in the occurrence of species and, hence, index scores vary naturally 
dependent upon the natural characteristics of the river being investigated. To assess the 
extent of pollution at a site, it is necessary to determine if the community structure of benthic 
macroinvertebrates (or other biota) deviates from the community that would be expected in 
the absence of pollution. The River InVertebrate Prediction and Classification System 
(RIVPACS) (Wright et al., 1984) represented a major step forward because it adopted a 
‘reference condition’ approach (Jones et al., 2010). The fauna at a site under investigation is 
compared with fauna at similar ‘reference sites’ that are not subject to any apparent 
environmental stress, site quality being measured as a ratio (the observed/expected score) 
where the expected score has been predicted by RIVPACS based on the fauna at similar 
sites with matching physical, chemical and geographical characteristics (Jones et al., 2010). 
Thus an extensive dataset was compiled of macroinvertebrate assemblages (identified to 
species level) from (initially) 268 representative sites across the UK not subject to pollution 
or other environmental stress. The 642 species or species groups in the reference dataset 
were used to divide the sites statistically into initially 16 end groups based on the similarity of 
their fauna. Multiple discriminant analysis was then used to identify the best set of physical, 
chemical and geographical predictor variables to separate these different biological end 
groups, eventually reducing the physico-chemical variables measured to 11 pollution-
insensitive predictor variables that are then used to match a test site to the most appropriate 
reference biological end group (Jones et al., 2010). RIVPACS became the main tool used by 
regulatory authorities in the UK for the biological monitoring of rivers. In practice, an 
expected score is derived for the average BMWP score per taxon (ASPT) and for the 
number of BMWP scoring families (NTAXA), and compared with the observed scores 
derived from a family level identification of samples from the test site (Jones et al., 2010). 
Although RIVPACS was developed for the assessment of organic pollution (based on 
BMWP, ASPT and NTAXA), and not specifically for the assessment of the ecotoxicological 
effects of trace metals derived from mining, the RIVPACS models produce predictions of the 
invertebrate community expected at a site in terms of the species present and their (log) 
abundance (Jones et al. 2010). Nevertheless, De Jonge et al. (2013) demonstrated a 
negative relationship between dissolved metal concentrations and the observed/expected of 
the indices NTAXA and BMWP, and invertebrate metal body burdens in rivers in northern 
England. 
 
In 2008, the Water Framework Directive United-Kingdom Advisory Group (WFD-UKTAG) 
published a method statement for monitoring, assessing and classifying the condition of 
benthic invertebrates in rivers in England, Northern Ireland, Scotland and Wales in 
accordance with the Water Framework Directive. This method is based on RIVPACS 
methodology housed in a software tool known as the River Invertebrate Classification Tool 
(RICT) (WFD-UKTAG, 2008b). At that time RICT outputs focussed on the impact of organic 
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enrichment on the condition of the WFD quality element ‘benthic invertebrates’ (as listed in 
Table 1.2.1 of Annex V to the Water Framework Directive), using the indices Number of 
Taxa (NTAXA) and Average Score per Taxon (ASPT), and provided a list of benthic 
invertebrate taxa to be recorded (WFD-UKTAG, 2008b). These measured indices were 
compared against reference values for each index derived for reference sites (identified by 
Environmental Variables) producing an Ecological Equality Ratio (EQR) for each of the two 
indices (WFD-UKTAG, 2008b). More recently, the Walley Hawkes Paisley Trigg Method 
(WHPT) for assessing river invertebrate communities represents a technical development of 
BMWP, incorporating a revision of the taxonomy of the scoring taxa, inclusion of more 
families, and the addition of an abundance weighting scheme (Walley and Hawkes, 1996, 
1997; SNIFFER, 2011a). WHPT again addresses the impact of organic enrichment on the 
composition of the benthic macroinvertebrate communities of affected rivers. Nevertheless, 
in its current form RICT is set up to calculate a variety of indices assessing a range of 
stressors (Davy-Bowker et al., 2008; Clarke et al., 2011), with the reference dataset 
screened to ensure that the sites were not suffering from stress at the time of sampling 
(Davy-Bowker et al., 2007) and, therefore, serve as an adequate reference for novel 
stressors not yet included in the outputs.  
 
Another development, the WFD Acid Water Invertebrates Classification Tool (WFD-AWIC), 
addresses the effects of acidification on river benthic invertebrate communities, using a 
reduced list of taxa known to respond to acidification (Davy-Bowker et al., 2005; SNIFFER, 
2011a). Initially the tool used family level taxa (AWICfam), but subsequent developments of 
AWIC have used species level identifications (AWICsp) and abundance-weighted species 
data (WFD AWICsp) (SNIFFER, 2011a). Davy-Bowker et al. (2005) concluded that, at family 
level, benthic macroinvertebrate communities are not characterised by a specific obligate 
community inhabiting acid waters. Acid sites do support invertebrate families that are acid-
tolerant but these same families are also found in circum-neutral waters. AWICfam works by 
distinguishing sites on the absence of many acid-sensitive families, and the presence of any 
one family can shift the index considerably (SNIFFER, 2011a). Ormerod et al. (2006) 
investigated the performance of AWICfam in 132 Welsh and Scottish streams and the index 
values did correlate with expected physical variables including pH, with the potential, 
therefore, to replace frequent measurements of pH. Recommendations made by Ormerod et 
al. (2006) were applied in the subsequent AWICsp and WFD AWICsp indices (SNIFFER, 
2011a; Murphy et al. 2013). AWICsp outperforms AWICfam and is a powerful species-level 
index that effectively discriminates sites with low pH (SNIFFER, 2011a; Murphy et al. 2013) 
and has been used to great effect in determining the extent of recovery of acidified sites 
(Murphy et al. 2014). The incorporation of abundance weighting has made WFD AWICsp 
more compliant with the WFD requirement to assess the abundance of biological quality 
elements, and WFD AWICsp does offer a marginally improved performance over AWICsp 
(SNIFFER, 2011a; Murphy et al. 2013). 
 
In Australia a diagnostic index for acid mine drainage, SIGNAL-MET, was developed where 
taxa were scored using correlation with distance downstream of mine discharges 
(Chessman and McEvoy, 1998). This index (which is indicative of the various stressors 
associated with mining activity) has been tested using an Australian predictive model, 
AUSRIVAS, which is based on RIVPACS (Sloane and Norris, 2003). 70% of the variation in 
observed/expected was explained by variables associated with mine pollution (copper, 
cadmium, lead and zinc in the sediment, cadmium and zinc in the water, and pH). Sloane 
and Norris concluded that the predictive modelling (RIVPACS) approach is appropriate for 
assessing the degree of impairment from previous mining activity. 
 
Although previously only used to assess organic pollution, RIVPACS models can produce 
expected values for different biotic indices, enabling assessment of other stressors such as 
acidity (as addressed above by AWIC). LIFE (Lotic-invertebrate Index for Flow Evaluation), 
PSI (Proportion of Sediment sensitive Invertebrates), CoFSI (Combined Fine Sediment 
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Index) and SPEARpesticides (SPEcies At Risk of pesticides) are such indices, all being based 
on a classification of taxon sensitivity to determine the proportion of individuals in a sample 
that are sensitive to a particular stressor. LIFE seeks to link changes in river benthic 
invertebrate communities to prevailing flow regimes (Extence et al., 1999). Both family and 
species-level LIFE indices are abundance-weighted and their performances are impressive 
in relating various flow variables to changes in the indices in a range of different stream 
types and hydrologies (Monk et al., 2006; SNIFFER, 2011a). Family and species level PSI 
indices are designed to relate benthic macroinvertebrate community changes to fine 
sedimentation stress (Extence et al., 2013). Allocation of taxa to a Sediment Sensitivity 
Ranking (SSR) includes consideration of sediment-sensitive (negative) traits (e.g. blocking of 
collecting nets of hydropsychid caddisflies or loss of algae as a food resource to scrapers), 
as well as sediment-insensitive (positive) traits (e.g. provision of habitat for burrowing 
oligochaetes). A further fine sediment index (CoFSI) which returns an average score (akin to 
ASPT and less prone to sampling variation), was developed using objective statistical 
techniques where species were scored based on empirical analysis of their distributions in 
response to excess deposited fine sediment, and represents the combined response to 
organic and inorganic deposited fine sediment (Murphy et al. 2015). The family and species-
level SPEARpesticides indices are designed to reflect pesticide contamination in running waters, 
and have been applied in the field in Europe and the UK with success (Liess and Von der 
Ohe, 2005; Schäfer et al., 2007; Beketov et al., 2008, 2009; Liess et al., 2008a, b; SNIFFER, 
2011a).  
 
In spite of these developments of RICT, as concluded by SNIFFER (2011a), there still exists 
a need to develop a biotic index for metal pollution.  
 
b Sediment Quality Biotic Indices 
 
Whilst the Australian SIGNAL-MET index is associated with the various impacts of mining, 
not just metal-rich sediments, in both France and Belgium there have been initiatives to 
develop biotic indices of sediment quality in rivers, the Oligochaete Index of Sediment 
Bioindication (IOBS) in France (Rosso et al., 1994) and the Biotic Sediment Index (BSI) in 
Belgium (De Pauw and Heylen, 2001; De Pauw et al., 2002). 
 
In France, the IOBS aims to assess the general quality of stable sediments in watercourses, 
by calculating the percentage of species in the oligochaete worm family Tubificidae in the 
total number of oligochaete species found. The larger the percentage of tubificids, the lower 
is the index score - interpreted as poor quality sediment, particularly in terms of organic 
enrichment. The proportion of tubificids that have setae (hairs) is also assessed: the lack of 
setae is taken to be an indication of pollution of the sediments by toxic metals and organic 
contaminants (PCBs) (Rosso et al., 1994; Prygiel et al., 2000). Thus, Prygiel et al. (2000) 
used the IOBS to assess the ecotoxicological status of sediments of rivers and canals in the 
Artois-Picardie water basin. They concluded that there was an inverse relationship between 
the IOBS score and sediment trace metal concentrations, and a correlation between these 
concentrations and the percentage of tubificids without setae (Prygiel et al., 2000). The 
IOBS, thus shows promise as a biotic index of the ecotoxicological effects of metals in 
sediment, although this study (Prygiel et al., 2000) was confounded by the additional 
contamination of the sediments by polyaromatic hydrocarbons (PAH) and PCBs. 
Furthermore, it should be noted that this index requires a far higher degree of taxonomic 
resolution than is typically used in the UK, where Oligochaeta are rarely taken above Class. 
 
In Belgium, the BSI has been developed from the Belgian Biotic Index (BBI). The BSI is 
based on the taxonomic diversity of the benthic macroinvertebrate community in a given 
sediment sample and the presence or absence of indicator taxa reflecting different degrees 
of pollution tolerance (De Pauw and Heylen, 2001; De Pauw et al., 2002).  
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More recently Archaimbault et al. (2010) investigated the ecological quality of stream 
sediments from sites on 150 mountain streams in France again using benthic 
macroinvertebrate communities. Sites were pre-assigned to one of four toxic quality classes 
ranging from high to poor on the basis of concentrations of toxic substances (trace metals, 
PAH and PCB) in the sediment, following the French environmental water quality 
assessment system. A non-parametric multiple comparison statistical procedure was used to 
compare relative abundances of different biological traits of the macroinvertebrates (e.g. 
habitat preference, contaminant resistance, biogeographic distribution, etc.) between groups 
of sites assigned to the different four toxic quality classes above, in order to identify the 
combinations of traits that best separated sites between adjacent toxic quality classes. 
Archaimbault et al. (2010) were ultimately able to allocate sites to toxic quality classes from 
the biological attributes of their invertebrate communities with confidence, and their tool has 
considerable potential, after development, as an in situ functional tool of stream sediment 
contamination assessment at community level.         
 
c Other biological quality elements of the Water Framework Directive 

Benthic macroinvertebrates have been the target community in the biotic indices discussed 
above, but WFD legislation stipulates that several different biological quality elements need 
to be assessed in addition to invertebrates. Phytoplankton, phytobenthos (macrophytes and 
benthic algae) and fish are to be considered depending on the type of water body (European 
Parliament, 2000). New tools have been developed for UK rivers in response to these needs 
of the WFD (Environment Agency, 2009) – DARLEQ (Diatoms for Assessing River and Lake 
Ecological Quality) which uses diatoms as proxies for benthic algae (Kelly et al., 2008), 
LEAFPACS (WFD-UKTAG, 2009) which uses macrophytes, and FCS2 (Fisheries 
Classification Scheme 2; SNIFFER 2011b) for fish. The original DARLEQ is calibrated 
against a nutrient-organic gradient, as for so many macroinvertebrate biotic indices above, 
and so is not designed specifically to detect toxic effects (Environmental Agency, 2009). 
LEAFPACS is a multimetric tool designed to assess nutrient/organic and general 
degradation effects, again not for assessment of contaminant ecotoxicological effects 
(Environment Agency, 2009). FCS2 is a non-parametric (smooth) geostatistical model which 
compares the catch of the 23 most prevalent fish species to a predicted catch, but is not 
specific to any stressor (SNIFFER, 2011b). 
 
The Environment Agency Report on ecological indicators for abandoned mines 
(Environment Agency, 2009) considered whether DARLEQ or LEAFPACS could be 
developed for the assessment of sensitivity to metal effects. DARLEQ is being developed to 
produce an acidification metric (Diatom Acidification Metric DAM), and there is potential for 
metrics testing for reductions in diatom diversity observed at high metal concentrations to be 
added (Environment Agency, 2009). Hirst et al. (2002) investigated the responses of diatom 
communities to dissolved metal concentrations in Welsh and Cornish streams in metal-
mining areas, but showed that changes in pH and conductivity best explained variations in 
diatom assemblage compositions. Species diversity, species richness and evenness did not 
vary with metal concentrations (Hirst et al., 2002). On the other hand, the single strongest 
predictor of the structure of diatom assemblages was the Cumulative Criterion Unit (CCU) 
score, a measure of total stream metal concentration and toxicity (see later). Diatom species 
apparently tolerant of high metal concentrations included Psammothidium helveticum, 
Eunotia subarcuatoides, Pinnularia subcapitata and Sellaphora seminulum, with interspecific 
differences in the pH ranges in which they were abundant (Hirst et al., 2002). Sensitive 
species included Fragilaria capucina var. rumpens, Achnanthes oblongella and Tabellaria 
flocculosa (Hirst et al., 2002). De Jonge et al. (2008) included diatom communities in their 
biological assessment of a gradient of metal pollution in the River Dommel in Belgium. 
Significant variables explaining diatom community structure were conductivity (16.5%), 
chloride (11.4%), ammonium (10.6%) and zinc (5.9%), and the diatom community structure 
better reflected the metal gradient than the macroinvertebrate community structure (De 
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Jonge et al., 2008). Three different groups of diatoms could be separated in relation to metal 
concentrations: Tabellaria flocculosa and Flagellaria capucina var. rumpens were (again) 
associated with low metal concentrations, Gomphonema parvulum and Nitzschia palea with 
elevated metal concentrations, and Sellaphora seminulum (again) and Eolimna minima with 
high zinc concentrations (De Jonge et al., 2008). Blanco and Bécares (2010) found good 
correlations between existing diatom based indices (mostly developed for assessing nutrient 
pollution) and dissolved metal concentrations, but again little impact on diversity. It does 
therefore appear that a biotic index based on diatom community compositions may well be a 
valid assessment of the effects of high metal bioavailabilities in streams affected by mining, 
albeit that the evidence so far concerns dissolved metal concentrations.  
 
Although mosses and liverworts may be sensitive to metal pollution, LEAFPACS appears to 
show less potential than DARLEQ for development as a biotic index for metal pollution, not 
least because of the relative lack of macrophytes in upland streams typically affected by 
mining and the difficulty of accurate specific identification of filamentous green algae 
(Environment Agency, 2009). 
 
Fish are listed as a biological quality element of the Water Framework Directive. Predatory 
fish are typically of low abundance in mine-impacted streams and fish that are present are 
often small or have shortened life spans (Luoma and Rainbow, 2008).  
 
In the metal-contaminated Clark Fork River system and other mine-impacted North 
American streams, it is not unusual to find only the most metal-tolerant species of trout, the 
brown trout Salmo trutta, although the habitat might otherwise be expected to contain 
additionally rainbow trout Oncorhynchus mykiss, cutthroat trout Oncorhynchus clarki lewisi, 
bull trout Salvelinus confluentus, and brook trout Salvelinus fontinalis (Luoma and Rainbow, 
2008). Even brown trout are absent from extremely metal-contaminated streams. It appears 
that the ingestion of metal-contaminated prey is the significant source of stress to the fish, as 
exemplified by brown trout fed on metal-rich invertebrates from metal-contaminated regions 
of the Clark Fork River showing elevated biochemical dysfunctions, histological 
abnormalities, reduced growth and survival (Farag et al., 1994; Woodward et al., 1994, 
1995; Luoma and Rainbow, 2008).  
 
In the UK, a study of pollutants from the coal industry affecting a small river in the South 
Wales coalfield showed that introduced brown trout Salmo trutta occurred at very low 
densities downstream of acid and ferruginous drainage, in the latter case apparently as a 
result of impoverished food supply (Scullion and Edwards, 1980).  
 
Maitland (2004) produced a commissioned report for Scottish Natural Heritage on the 
ecological and conservation status of freshwater fish communities in the UK, exploring the 
potentially valuable interrelationships between SERCON (System for Evaluating Rivers for 
Conservation) and the Water Framework Directive. SERCON was designed to assess the 
naturalness of fish communities, being concerned with the intrusion of alien fish species into 
freshwater systems (e.g. Boon et al., 2002), and the experience of SERCON has the 
potential to be incorporated into an assessment of ecological status to meet WFD objectives 
(Maitland, 2004). Nevertheless no biotic index based on freshwater fish communities has yet 
to be developed that might be applicable for an ecological assessment of the 
ecotoxicological effect of metal-rich sediments in streams, not least as a result of the very 
simple nature of fish communities that might be expected to occur in appropriate reference 
sites.  
 
While meiofauna are not specifically identified as a biological quality element of the Water 
Framework Directive, Burton et al. (2001) did investigate the relationship between the 
composition of freshwater meiofaunal communities and trace metal contamination, again in 
the streams of Cornwall, using univariate and multivariate statistical techniques including 
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non-metric MDS. Dissolved copper concentration (singly or in combination with aluminium, 
zinc or dissolved organic carbon) was the most important correlate with meiofaunal 
community composition. Metal contamination did significantly alter the composition of the 
stream meiofaunal assemblages, with certain cyclopoid copepods abundant at high metal 
concentrations. The meiofauna at sites with high metal concentrations were not significantly 
less diverse than the meiofauna at sites with low metal concentrations (Burton et al., 2001), 
highlighting the value of multivariate statistical analysis over the use of univariate statistics. 
 
The development of molecular techniques to analyse the taxonomic composition of microbial 
communities (Liu et al., 2007; Nocker et al., 2007) has greatly opened up the potential to use 
differences in these communities that might occur in response to anthropogenic 
contamination. Thus Automated Ribosomal Intergenic Spacer Analysis (ARISA) (Fisher and 
Triplett, 1999) and Terminal Restriction Fragment Length Polymorphism (T-RFLP) were 
used to analyse the biofilm bacterial and ciliate protozoan communities at 23 urbanized 
stream sites in the Auckland region of New Zealand variously impacted by copper, lead and 
zinc (Ancion et al., 2013). Concentrations of the three metals in biofilms explained 7% of the 
variation in the bacterial biofilm communities, and 9% of that in ciliate protozoan 
communities (Ancion et al., 2013).  
 
1.3.6 Biomarkers 

The concept of biomarkers was introduced earlier in this review and biomarkers are 
increasingly being suggested for use in freshwater biological monitoring (Chaumot et al., 
2015; Christophe et al., 2015). Here we discuss biomarkers because of their potential use as 
evidence linking the effects of metal contamination to the community level impacts required 
by Water Framework Directive legislation.   
 
As defined earlier, a biomarker is a biological response (e.g. a biochemical, cellular, 
physiological or behavioural variation) that can be measured at the lower levels of biological 
organization, in tissue or body fluids or at the level of the whole organism (Figure 1.7). Thus 
a biomarker is a measurable biological response to a raised local bioavailability of a toxicant 
such as a trace metal, and can be used to assess the ecotoxicological significance of the 
toxic exposure (Luoma and Rainbow, 2008). Many biomarkers of toxic metal pollution in 
aquatic habitats have been proposed, assessed and are now being widely employed (Luoma 
and Rainbow, 2008; Amiard-Triquet et al., 2013). An ideal biomarker in ecotoxicology would 
be toxin-specific (e.g. d-amino levulinic acid dehydratase for lead exposure, Amiard and 
Amiard-Triquet, 2013) but most biomarkers lack specificity, being responsive to more than 
one stressor and indicative of the general health status of an organism. Nevertheless, these 
biomarkers are of considerable value as a measure of exposure in ecotoxicological 
assessment. A biomarker is of particular use if it is contaminant-sensitive (and therefore 
detectable at low levels of biological organization: Figure 1.8), and links (almost certainly 
correlational by necessity, e.g. Figure 1.9) can be established between its detection in 
exposed organisms in the field and consequent ecotoxicological effects at higher levels of 
biological organization, ultimately up to the population, community and eventually ecosystem 
(Luoma and Rainbow, 2008; Amiard-Triquet and Amiard, 2013a; Moore et al., 2013). 
 
The hierarchy of levels of biological organization defined for biomarkers might typically 
consist of molecular, biochemical, cellular, physiological, individual organism, population, 
and community levels, with inevitably some degree of overlap between these levels. 
 
At the molecular biology level toxins may bind to DNA and interrupt normal metabolic 
functioning, with the ultimate ecotoxicological effect being carcinogenesis (the development 
of tumours), heritable mutations and teratogenesis (the malformation of embryos), 
expressed at higher levels of organisation (Luoma and Rainbow, 2008). A first stage in the 
action of a genotoxin is the formation of an adduct, a covalent bond between toxicant and 
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DNA, and/or a highly reactive free radical may be generated. DNA strand breakages may be 
reparable to a point but ultimately damage to chromosomes and cell division can occur. The 
comet assay is a commonly used biomarker of the early stages of damage to DNA, for it 
uses electrophoresis to identify the presence of broken DNA fragments in individual cells of 
exposed organisms (Luoma and Rainbow, 2008; Vasseur et al., 2013). 
 
Biochemical level biomarkers first employed include the metal-binding protein 
metallothionein and general biochemical stress responses (Roméo and Giambérini, 2013), 
although, with modern molecular biological approaches, we are in the era of ‘omics’ – 
studies on the genome, the proteome, the transcriptome and the metabolome.  
 
Metallothioneins (MT) are non-enzymatic proteins that are induced by and bind to particular 
trace metals such as silver, cadmium, copper, mercury and zinc; they are of low molecular 
weight (12-15 kDa), have a high content of the sulphur-containing amino acid cysteine 
(providing binding sites for the trace metals), no aromatic amino acids and heat stability 
(Amiard et al., 2006; Luoma and Rainbow, 2008). MTs play a role in the homeostasis of 
essential metals like copper and zinc, and in the cellular detoxification of both essential and 
non-essential metals. The induction and metal-binding properties of metallothioneins, which 
are widespread in invertebrates and vertebrates, initially generated a great deal of 
excitement in their potential for use as specific biomarkers for toxic metal exposure in the 
field (Amiard et al., 2006). While there are field examples of the induction of MTs in 
organisms in contaminated field conditions, MT induction can be variable, for example with 
species, metal, exposure concentration and with the different MT isoforms (slightly different 
forms of the same protein resulting from co-occurring slightly different genes) that might be 
present (Amiard et al., 2006). Moreover, it is now appreciated that MTs can also be induced 
by other stress factors that are not related to metal physiology, such as anoxia, handling, 
starvation, freezing and the presence of antibiotics, herbicides or vitamins (Amiard et al., 
2006; Luoma and Rainbow, 2008). Furthermore, like other proteins, MTs are turned over in 
the cell (a process usually involving breakdown in lysosomes (autophagic vesicles in cells), 
and an increased rate of MT synthesis on metal exposure may be associated with an 
increased rate of MT turnover but not an increased concentration of MT which is the typical 
measure to be used as a biomarker (Amiard et al., 2006; Luoma and Rainbow, 2008). Thus 
metallothioneins are no longer considered to be the specific biomarkers of toxic metal 
exposure once hoped, but any observed induction of MTs in organisms at sites under 
investigation for metal ecotoxicology may contribute to an increasing package of relevant 
field observations to this end.  
 
More general biochemical stress responses that are used as biomarkers include stress 
proteins and biochemical defences against oxyradicals which can be generated by trace 
metal exposure as well as by other stressors particularly organic contaminants (Luoma and 
Rainbow, 2008). Stress proteins make up a set of protein families originally called heat 
shock proteins, but now known to be induced by exposure to many stressors including, for 
example, organic compounds, ultraviolet radiation, salinity change as well as toxic metals. 
Antioxidant defences against oxyradicals (which may for example damage DNA) include 
primary antioxidant enzymes like superoxide dismutase and catalase which have been 
measured as biomarkers for some time (Roméo et al., 2009). Other biomarkers include 
concentrations of malondialdehyde, a breakdown product of lipid peroxidation caused by 
oxyradicals, and glutathione, an oxyradical scavenger (Roméo et al., 2009). A widely used 
biomarker is Total Oxyradical Scavenging Capacity (TOSC), an integrated measure of 
antioxidant defence, to which toxic metal exposure will contribute (Regoli, 2000; Regoli et al., 
2011). Again these more general biochemical stress biomarkers may not be specific to toxic 
metal exposure but they can contribute to a general battery of biomarkers assessing the 
general health status of an organism being investigated for potential ecotoxicological stress.    
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Modern molecular biology addresses the whole genome and its expression, as opposed to 
specific genes and their associated proteins as analysed in the past.  In this age of ‘omics’, 
genomics is the study of the genome, the entirety of an organism’s hereditary information 
including both genes and non-coding regions; proteomics is the study of the full set of 
proteins (the proteome) encoded by the genome; transcriptomics is the study of the 
transcriptome, the set of all RNA molecules produced, reflecting the genes actively being 
expressed at a particular time and varying with environmental conditions, including exposure 
to raised trace metal bioavailability; metabolomics studies the metabolome, the complete set 
of small molecule metabolites found in a biological sample, which is again variable under 
different contaminant exposure conditions. Transcriptomic and metabolomic studies are 
typically still at the laboratory stage of investigation, as for example in the cases of rainbow 
trout gill cell culture studies of the expression of genes for MT, zinc transporters and 
glutathione-S-transferase (Walker et al., 2007, 2008). Nevertheless, transcriptomics and 
metabolomics do have particular potential for use in biomarker studies in the field, as we try 
to understand which genes are induced or show reduced transcription and which metabolites 
are present under conditions of raised trace metal exposure (Luoma and Rainbow, 2008, 
Gonzalez and Pierron, 2015).  
 
Biomarkers have also been developed at the cytological level. Genotoxic damage referred to 
above can lead to chromosomal changes visible in cells under the microscope. One 
common cytological manifestation of such damage is the presence of micronuclei, displaced 
from the main nucleus of the cell (Vasseur at al., 2013). Michailova et al. (2009) identified 
aberrations in the structure of salivary gland chromosomes of larvae of the chironomid 
Chironomus acidophilus in the Afon Goch, a small river draining the former copper mining 
area of Parys Mountain in Anglesey. The Afon Goch is subject to periodic acid run off and 
has high water concentrations of iron, manganese and zinc, as well as copper.   
 
Other widespread cytological biomarkers of toxic metal pollution in aquatic habitats centre on 
lysosomes. Lysosomes are membrane-delimited organelles in cells containing hydrolytic 
enzymes that break down structures or molecules that have originated within or outside the 
cell. Lysosomes occur in nearly all cells of eukaryotic organisms and they serve to break 
down for recycling redundant or damaged cell organelles and proteins (including MT: Moore 
et al., 2006, 2013). Increased functioning of the lysosomal system is a sign of general stress. 
Thus there are several identified responses of lysosomes to stress that have potential as 
biomarkers, including changes in lysosomal size and number in particular cells, production of 
lipofuscin and destabilisation of the lysosomal membrane (Moore et al., 2006, 2013). 
Lipofuscin is a pigment that is the end product of lipid peroxidation of cell components 
brought about by reactive oxygen species, and its increased production in lysosomes 
indicates increased lysosomal turnover activity, as might be caused by exposure to both 
toxic metals and organic contaminants (Figure 1.12). Lipofuscin granules may indeed 
contribute to the detoxification of excess cellular trace metals, for example as part of the 
turnover of MT. The functional stability of the lysosome membrane (and hence its 
permeability) changes with degree of exposure to contaminants including toxic metals, and 
the assessment of lysosomal stability based on the dye neutral red (Neutral Red Retention 
NNR) has become widely used in ecotoxicology because it is both simple and quantitative 
(Svendsen et al., 2004; Moore et al., 2006, 2013). In practice, blood cells from the animal of 
interest are applied to glass slides, treated with neutral red, and the time measured for the 
leakage of the dye from the lysosomes into the cytosol of the cell (Luoma and Rainbow, 
2008). Measurement of lysosomal stability is a sensitive, low organisational level biomarker 
and excitingly its quantification has been correlated with other biomarkers at other levels of 
biological organisation, including TOSC and Scope for Growth (Figure 1.9: Moore et al., 
2006, 2013).            
 
Biomarkers at the biological organisation level of the organism can be morphological or 
physiological. There are limited records of morphological abnormalities of organisms 
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resulting from field exposure to high availabilities of toxic metals, and these usually concern 
diatoms or chironomid midge larvae. Falasco et al. (2009) have produced a wide-ranging 
review of abnormally developed (teratological) forms of diatoms in the field, and exposure to 
toxic metals figures strongly as a cause of these morphological abnormalities. There is a 
significant correlation between valve size reduction and trace metal contamination, and 
abnormal development appears to be more common as valves decrease in size. Particular 
diatom species – e.g. Achnanthidium minutissimum, Fragilaria gracilis, F. rumpens, F. 
crotonensis and F. tenera – show enhanced abnormal morphologies (e.g. valve distortion 
and abnormal valve striation) in response to trace metal (cadmium, copper, mercury, zinc) 
bioavailabilities at metal-contaminated sites, for example in Lake Orta (Italy), the Riou Mort 
(France) and the Rocky Mountain River (Colorado, USA) (Falasco et al., 2009).       
 
In the case of chironomid larvae, deformities of the mouthparts have long been known to 
occur in midge larvae living in contaminated sediments (e.g. Di Veroli et al., 2014), and 
cause/effect relationships between the presence of such deformities and equivalent 
sediment concentrations of metals (particularly Cu) have been demonstrated in the 
laboratory (see Martinez et al., 2003). Mouthpart deformities of Chironomus tentans larvae 
include fused teeth, split teeth, missing teeth, extra teeth and abnormally shaped teeth on 
the mandible, with apparently different effects being associated with different metal 
exposures (Martinez et al., 2003). De Pauw and Heylen (2001) used a measure of 
Percentage Mentum Deformities (Warwick, 1988) in unspecified Chironomus larvae as a 
contributing index in a biological assessment of the environmental quality of freshwater 
sediments in Flanders. It appears that chironomid mouthpart deformities may offer relevant 
contributing evidence in any ecotoxicological study of metal-rich stream sediments.  
 
Physiological biomarkers include physiological condition indices (particularly for fish – 
Christophe et al., 2015), growth rates, feeding rates and a popular measure ‘Scope for 
Growth’ (SFG). The latter two at least, however, involve collection of animals for subsequent 
laboratory experimentation, reducing their ease of applicability in any field study. 
 
As regards growth rates, Faria et al. (2007, 2008) measured the growth rates in situ of 
Chironomus riparius larvae in mining-affected streams in Portugal, showing inhibition of 
growth rate (body length increase) in metal-contaminated streams. Incidentally, the results of 
Faria et al. (2007) confirmed that the midge larvae were more affected by metals entering 
the body through ingested sediment than by metals dissolved in the water column. Brown 
trout (Salmo trutta) in the metal-mining affected Clark Fork River in Montana, USA were 
smaller than fish of the same age in carefully chosen reference sites (Tohtz, 1992). 
 
Feeding rates feature strongly in the literature of the effects of trace metal contaminants in 
freshwater, for example in the case of freshwater gammarid crustaceans, whether standing 
alone (e.g. Taylor et al., 1993) or as part of the calculation of SFG (Maltby et al., 1990a, b, 
Chaumot et al., 2015). Maltby et al. (2002) found inhibition of the in situ feeding rates of 
Gammarus pulex downstream of point source effluent discharges in UK rivers, and 
Dedourge-Geffard et al. (2009) showed reduced feeding rate of Gammarus fossarum at 
metal-contaminated sites in the Amous River, France, receiving drainage from a former lead-
zinc mine.  
 
SFG integrates different physiological measures in a calculation of the energy balance of an 
organism (Luoma and Rainbow, 2008). SFG is an estimate of the surplus energy available to 
an animal for growth and reproduction, calculated from the difference between energy 
assimilated from food and the energy used in respiration. SFG is interpreted to decrease 
when energy is required to cope with the extra physiological cost of handling (detoxifying or 
excreting) high amounts of toxins taken up in contaminated environments. Thus Maltby et al. 
(1990a, b) showed that the freshwater amphipod Gammarus pulex had reduced SFG when 
exposed to 3 mg L-1 zinc. SFG is a very useful integrated measure of how well an animal is 
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coping with a high bioavailability of a contaminant such as a toxic metal, but it is not easy to 
measure, requiring rapid access to laboratory facilities to measure such physiological 
parameters as feeding rate, assimilation efficiency and respiration rate. Nevertheless a 
correlational link has been established between lysosomal stability and SFG (in this case in 
mussels Mytilus edulis in the marine environment (Figure 1.12: Moore et al., 2006, 2013), 
again linking biomarkers at different levels of biological organisation. 

 
Figure 1.12. The formation and accumulation of lipofuscin in lysosomes (after Moore 
et al., 2006; Luoma and Rainbow, 2008). 

Another integrative response at the organism level that can be used as a biomarker given 
appropriate observational facilities is the behaviour of an animal, at least those aspects of 
behaviour affected by toxic exposure (Amiard-Triquet, 2009; Amiard-Triquet and Amiard, 
2013b). Behavioural changes at an individual organism level also clearly have the potential 
to induce knock-on effects at population and community levels (Amiard-Triquet and Amiard, 
2013b), as in the case of a reduced swimming capacity of a fish to capture prey and avoid 
predators (Weis et al., 2001). Furthermore behavioural disturbances originate in biochemical 
and physiological impairments such as neurotoxicity disrupting the function of sensory 
systems and endocrine disruption, thereby linking responses at different levels of biological 
organisation (Amiard-Triquet and Amiard, 2013b). There have been many examples of 
dissolved trace metals upsetting fish behaviour, particularly in the laboratory, and at 
concentrations of the order of magnitude of those encountered at contaminated sites in the 
field (Hansen et al., 1998; Amiard-Triquet and Amiard, 2013b). High trace metal 
concentrations in sediments and diet can also affect the behaviour of invertebrates and 
vertebrates (Amiard-Triquet and Amiard, 2013b). Behaviour is an individual response that is 
clearly linked to biochemical and physiological responses that provide early warning 
biomarkers, and to population effects resulting from the like of reduced feeding success, 
reduced longevity and reduced reproductive success (more ecologically relevant 
biomarkers) (Amiard-Triquet and Amiard, 2013b). Observation of behavioural changes 
associated with exposure of animals to metal-rich sediments can therefore contribute 
valuable information to a portfolio of evidence on the ecotoxicological effects of such 
sediments, but again it would be necessary to use observational (laboratory) facilities after 
field collection of affected individuals. 
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Ecotoxicological effects observed at the population level have clear ecological significance 
for the biota in a contaminated habitat.  Such effects might be on the numbers of individuals 
present, population age structure, reproductive rates or recruitment rates. The selection of 
metal-tolerant strains is another population-level effect dealt with in more detail below. 
Laboratory-based studies have shown that metal exposure can affect population parameters 
such as rate of population increase (e.g. the freshwater amphipod Gammarus pulex, Maund 
et al., 1992) or life-table parameters like percentage hatch, juvenile survival, fecundity, time 
to maturity, etc., in the case of the freshwater gastropod mollusc Biomphalaria glabrata 
(Salice and Miller, 2003). Field-based evidence is less forthcoming. Nevertheless, Schmidt 
et al. (2013) provide evidence on the emergence of adult insects of many families from 
aquatic larvae along a gradient of metal contamination in streams in the Rocky Mountains in 
Colorado, including the Colorado Mineral Belt that has been mined for the past 150 years. 
Larval densities decreased in non-linear fashion with water metal concentrations with a 
precipitous fall above a threshold of combined modelled metal bioavailabilities. Adult 
emergence also showed a non-linear threshold response with a steeper decline below this 
same threshold and a more modest decline thereafter (Schmidt et al., 2013). Schmidt et al. 
(2013) concluded that adult emergence (a population level parameter) was a more sensitive 
indicator of the effect of low metal concentrations on aquatic insect communities compared 
with larval density, presumably because successful emergence is limited by a combination of 
larval survival and other factors. Thus, the ecotoxicological effects of metal exposure on the 
populations of the insect larvae were not all manifested until later in life, during 
metamorphosis and emergence.  
 
Ecotoxicological effects of exposure to contaminants that are apparent at the population 
level have obvious implications for local community structure, via such effects as loss of 
species and/or abundances of individuals of each species present. Any resulting changes to 
community structure are clearly acting at the highest level of biological organisation 
recognised in the hierarchy of biomarkers.  
 
The application of biomarkers in the ecotoxicological assessment of contaminants in 
freshwater lacks behind that in coastal environments, but there are specific projects in 
Europe actively pursuing this topic (Collier et al., 2013). For example, in France, INERIS 
(National Institute for Industrial Environment and Risks) has been developing biomarkers in 
several freshwater fish species to assess the effects of contaminants with the potential to be 
used in environmental regulation within the Water Framework Directive (Sanchez and 
Porcher, 2009). These biomarkers have included biomarkers of oxidative stress, 
neurotoxicity, and reproductive and immunological disruption. Allan et al. (2006) conclude 
that biomarkers have shown potential as sensitive methods for the detection of pollution and 
suggest that they could become important tools within the context of the WFD as part of the 
evidence linking pollutants to community level impacts.  
 
1.3.7 Tolerance as indicator of significant ecotoxicological selective pressure 

The presence of a metal-tolerant population of an organism in a particular habitat is 
evidence that local bioavailabilities of that toxic metal are of ecotoxicological significance, 
clearly to that species but potentially also to other members of the local biota (Luoma, 1977). 
Thus, the local raised metal bioavailability has acted as a selection pressure, selecting for 
biochemical and physiological traits that are the most metal-tolerant in the gene pool of a 
local population of organisms, leading then to the establishment of a local metal-tolerant 
population (Luoma, 1977; Klerks and Weis, 1987).    
It needs to be restated here that, in this review, the term metal-tolerant is used to refer to a 
particular metal-exposed population, whether or not that tolerance is inheritable after 
selection over several generations or has been derived by physiological acclimation and is 
restricted to the one exposed generation (Amiard-Triquet et al., 2011). The term metal-
resistant was used earlier to refer to species which survive relatively well generally in 
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conditions of metal contamination, without specific physiological acclimation or genetically 
based adaptation to the high metal bioavailability in a particular local habitat 
 
The presence of metal-tolerant populations has long been recorded from UK streams 
affected by mining activities (Kelly, 1988). Harding and Whitton (1976) showed that 
populations of the alga Stigeoclonium tenue abundant in zinc-contaminated streams in the 
Northern Pennines showed increased tolerance to exposure to dissolved zinc over 
populations in streams with lower zinc levels. Say et al. (1977) added the algae Hormidium 
rivulare and H. flaccidum to the list of species with zinc-tolerant populations in north-east 
England. Foster (1977) reported on a copper-tolerant population of another alga, the green 
alga Chlorella vulgaris, from the River Hayle draining disused copper mines in Cornwall, the 
relevant physiological mechanism of tolerance being copper exclusion. In a follow up study 
Foster (1982) identified 19 metal-tolerant strains of green algae (Chlorophyta) from the River 
Hayle and the nearby lead-rich River Gannel, with several of the copper-tolerant strains from 
the Hayle also showing a co-tolerance to lead. 
 
In a parallel study of the freshwater isopod crustacean Asellus meridianus in these rivers, 
Brown (1977) also demonstrated the presence of tolerance and co-tolerance (tolerance to 
more than one metal in the same population). The Hayle isopod population was tolerant to 
both copper and lead, although the River Hayle contains low lead and high copper 
concentrations; the Gannel population was tolerant only to lead, the lead-rich River Gannel 
lacking high copper concentrations (Brown 1977). Thus, it appears that the mechanism for 
copper tolerance in the River Hayle population has simultaneously achieved lead tolerance 
in the absence of raised lead bioavailability, but that the mechanism for lead tolerance in the 
River Gannel population is not associated with simultaneous copper tolerance in the 
absence of raised copper bioavailability. 
 
The argument that the evolution of metal-tolerance is a manifestation that local metal 
exposure is of ecotoxicological significance can be extended to the structure of the local 
biotic community. Blanck et al. (1988) proposed that the selection pressure associated with 
an ecotoxicologically significant toxicant bioavailability will lead to an increased average 
tolerance to that toxicant among all species within that local community. Such Pollution-
Induced Community Tolerance (PICT) is therefore a potential ecotoxicological tool to assess 
the effects of a toxicant on communities (Blanck and Wangberg, 1988; Blanck et al., 1988; 
Clements and Newman, 2002; Luoma and Rainbow, 2008; Schmitt-Jansen et al., 2008). 
 
PICT is tested by comparing communities collected from contaminated and reference sites 
to contaminant exposure under controlled conditions, and increased community tolerance 
that results from the elimination of more sensitive species is considered to be strong 
evidence that community restructuring has been caused by the contaminant (Clements and 
Newman, 2002; Clements and Rohr, 2009). The need to carry out experiments to measure 
the difference in tolerance between communities does constrain the application of PICT as 
an assessment tool, although PICT has been tested in several different communities beyond 
the marine periphyton community on which the PICT hypothesis was first developed (Blanck 
and Wangberg, 1988; Clements and Newman, 2002). Such communities include lentic 
periphyton, lentic phytoplankton, marine phytoplankton, lotic microalgae, estuarine 
nematodes, and freshwater and coastal macroinvertebrates, and the contaminants 
concerned include the trace metals arsenic, cadmium, copper and zinc (Clements and 
Newman, 2002; Luoma and Rainbow, 2008; Clements and Rohr, 2009). Among the 
assumptions behind PICT is that the communities most likely to be suitable for PICT 
assessment are those that show a large amount of variation in sensitivity among species 
(Clements and Newman, 2002), and PICT may prove particularly suitable for comparison of 
microbial populations collected from different field sites (Tlili and Montuelle, 2011; Virsek et 
al., 2013).  
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An alternative approach to testing PICT on individual community samples is to establish 
species sensitivities a priori, and use these to estimate the community level tolerance. This 
approach works best when field-based responses to the stressor are used to establish 
sensitivity, as this avoids the complications of extrapolating from the laboratory to the field.  
 
1.3.8 Metal ecotoxicology and ecosystem function 

This review has focussed on how a chemical stressor such as the trace metal contamination 
of sediments affects community structure in freshwater streams, highlighting the observed 
community shift from sensitive to resistant species as the former are lost. Another approach 
is to consider the ecotoxicological effects of stressors on ecosystem processes (Clements 
and Rohr, 2009). Not all species are equally important for the functioning of an ecosystem. 
Where functional redundancy occurs the loss of some species may not affect ecosystem 
processes (Reiss et al. 2009). A linear relationship between species richness and ecosystem 
function would occur where there is no functional redundancy and equal importance of all 
species present, whereas the opposite would result in an abrupt decrease in ecosystem 
function at a critical threshold of species loss (Clements and Rohr, 2009). These ‘linear’ and 
‘rivet’ models have different ecotoxicological implications. In the linear model, interspecific 
differences in contaminant sensitivity will have relatively little effect on ecosystem processes, 
while the rivet model predicts that the elimination of any species could result in the abrupt 
loss of ecosystem function (Clements and Rohr, 2009). 
 
Several studies have taken an ecosystem function approach when investigating the 
ecotoxicological effect of metal pollution in streams and rivers. For example, Schultheis et al. 
(1997) showed that copper pollution in East Prong Creek, Virginia, USA, derived from an 
abandoned pyrite mine, reduced taxonomic richness and abundance of benthic 
macroinvertebrates. Leaf decomposition rates were also decreased at the affected sites, 
apparently by the interruption by copper pollution of the action of shredders processing leaf 
material in the streams (Schultheis et al., 1997). Maltby et al. (2002) similarly reported that 
the decrease in rates of feeding (leaf shredding) by Gammarus pulex downstream of point 
source discharges in UK rivers was correlated with a decrease in local leaf decomposition 
rates. Furthermore, Carlisle and Clements (2005) showed that the secondary production of 
macroinvertebrate shredders was negatively correlated with dissolved zinc concentrations in 
Colorado streams affected by mining, with associated declines in leaf litter breakdown rates 
and microbial respiration. Carlisle and Clements (2005) concluded that some shredder 
species contribute disproportionately to leaf litter breakdown, and that the functionally 
dominant taxon (the stonefly Taenionema pallidum) was also the most sensitive to metal 
contamination. There was no functional redundancy in leaf litter breakdown in the study 
streams, and leaf litter breakdown was highly sensitive to metal contaminant-induced 
alterations in community structure (Carlisle and Clements, 2005). Carlisle and Clements 
(2005), therefore, argue for the necessity to measure ecosystem function as well as 
community structure in assessments of the ecotoxicological effects of anthropogenic 
contaminants in stressed ecosystems. Whilst conceptually appealing, the use of measures 
of ecosystem function to detect pollution problems is difficult, as attribution of an observed 
change to a specific cause is not straightforward; frequently there are multiple different 
potential mechanisms which could result in the same observed change. 
In a review of freshwater macroinvertebrate trait-based community descriptors, Menezes et 
al. (2010) highlighted that the ecosystem functional trait approach is one of the most 
promising tools emerging for the biological monitoring of freshwater ecosystems, but that 
further research is still required to develop a broad unified monitoring tool, not least for the 
detection of specific stressor impacts.   
As for community structure analysis, there is tremendous scope for the further expansion of 
genomic and metagenomic approaches to investigate the ecosystem functional processes at 
the microbial level, involving such indices as the Average Metabolism Response (AMR) and 
Community Metabolism Diversity (CMD). 
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1.3.9 Separating effects of metal-rich sediments from other effects of mining 

In the real world, any assessment of the ecotoxicological effects of mining-associated metal-
rich sediments in streams will be confounded by the presence of other stressors with 
potential detrimental effects on biotic communities. By definition one such stressor will be the 
very presence of the sediment itself.  
 
a Sediment 

The accumulation of excess fine sediment, even in the absence of any significant 
contaminant loading, will itself cause changes in the expected biotic communities of streams, 
not least in the case of benthic macroinvertebrates, be it by direct effects such as burial, 
clogging and associated oxygen availability or by indirect effects like effects on habitat or 
food availability (Jones et al., 2012b; Extence et al., 2013). Hence, the UK TAG has 
concluded that sedimentation has the potential to threaten such ecological status in riverine 
systems (Collins and Anthony, 2008; Collins et al., 2009). Extence et al. (2013) developed a 
new index, the Proportion of Sediment-sensitive Invertebrates (PSI), at family PSI (F) and 
species PSI (S) levels, to assess the quantity of inert fine sediment accumulation at a site 
through analysis of the macroinvertebrate community. Following the principles used to 
develop LIFE, expert opinion was used to assign species and families of British benthic 
macroinvertebrates to one of four Fine Sediment Sensitivity Ratings (FSSR) after a literature 
review and consideration of their biological traits (Extence et al., 2013). Taxa in each rating 
are scored according to their abundance, and the PSI calculated from a ratio of the 
summated scores of sediment-sensitive taxa to the summated scores of all taxa (Extence et 
al., 2013). A different approach, based on empirical field data rather than expert opinion, was 
used by Collins et al. in Defra project WQ0128 (Collins et al. 2012a) to determine the 
sensitivity of invertebrate species to fine sediment pressure. Here, partial ordination analysis 
was used to rank species against measured deposited fine sediment and, thus develop an 
macroinvertebrate index to detect fine sediment pressure, CoFSI (Combined Fine Sediment 
Index): a combined index had to be produced because it was found that invertebrate species 
responded independently to the organic and inorganic fractions of fine sediment (Murphy et 
al., 2014). The CoFSI index has been linked to land use models that predict the fine 
sediment pressure from agricultural activity, ASPIRE (Agricultural Sediment Pressure and 
Impact on River Ecology), for use in catchment management (Collins et al. 2013). Beyond 
the benthic macroinvertebrate community, fine sediment in rivers will also impact on fish 
(Kemp et al., 2011), macrophytes (Jones et al., 2012a) and diatoms (Jones et al., 2014).  
 
In a synthesis of the literature on the effects of sediment deposition on benthic 
macroinvertebrates and fish in rivers, Collins et al. (2011) briefly review the key factors 
controlling the impacts of sediment on freshwater biota, and in light of the needs of the WFD, 
review international approaches in setting sediment targets for rivers to protect or enhance 
their ecological status. A feature of existing international guidelines relating to critical 
sediment concentration thresholds is that they are founded on a direct (linear) relation 
between sediment concentration and ecological impact (Collins et al., 2011). As exemplified 
several times in this review, such a simple linear model is undoubtedly an oversimplification, 
and there is a pressing need for revised sediment targets in rivers to inform river catchment 
water policy with toolkits founded on the coupling of sediment pressures and biological 
response (Collins et al., 2011). 
 
b Other co-varying stressors 

There will be other co-varying stressors potentially present when carrying an 
ecotoxicological assessment of the effect of metal-rich sediments in streams affected by 
mining. These will need to be recognised and evaluated in any attempt to identify those 
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ecotoxicological effects specifically down to the presence of toxic-metal contaminated 
sediments. 
 
Such physical stressors will include the composition of the stream bed and the presence or 
absence of manmade channelization and consequent changes to flow regimes. Even these 
stressors will covary, as for example the composition of the stream bed and sediment 
loading. 
 
Chemical stressors will include levels of dissolved trace metals and their dissolved 
bioavailabilities, linked in turn to pH (as in AMD) which will have a direct effect on biota even 
in the absence of high metal bioavailabilities (Gerhardt, 1993; Davy-Bowker et al., 2005). 
The effects of increased acidity due to mine drainage may have as much impact on biota as 
the toxic effects of metals (Hogsden et al., 2013). Dissolved organic matter (DOM), perhaps 
derived from the sewage of mining communities, can affect biota directly as well as indirectly 
by chelating dissolved metals and reducing their dissolved bioavailabilities (Luoma and 
Rainbow, 2008). Levels of organic matter in the sediment will also affect the community 
structure of macroinvertebrates, as seen in the use of many of the biotic indices discussed 
above. Urban development around mines (to house workers) can lead to increased sewage 
inputs in the vicinity of the mine. Other anthropogenic contaminants like PAHs or 
organochlorine compounds are likely to be introduced into river systems on passage 
downstream, although arguably these might be at relatively low levels in upland streams 
draining orefields with abandoned mines.   
 

1.4 Explanation and prediction of metal ecotoxicological effects 

Under the Water Framework Directive (European Parliament, 2000), the UK is obliged to 
achieve Good water status (Good chemical status and Good ecological status) of water 
bodies, including mining-affected streams. Ambient environmental standards are used in the 
classification of water bodies on the basis of chemical contamination particularly of priority 
hazardous substances, and these standards (Environmental Quality Guidelines EQG for 
both water and sediments) are set to prevent damage from contaminants like trace metals. 
As for good ecological status, the WFD places a legal obligation on EU nations to use biota 
to assess the ecological quality of a water body, and this is typically achieved largely through 
community composition analysis. The WFD defines the biological quality elements to be 
assessed as benthic macroinvertebrates, phytoplankton, phytobenthos (macrophytes and 
benthic algae), and fish, depending on the type of water body. Phytoplankton are not 
relevant to rivers, but benthic macroinvertebrates, phytobenthos (including algae, 
bryophytes, angiosperms) and fish are worthy of attention in this context.  
 
To explain and predict how metal-rich sediments in mining-affected streams exert 
ecotoxicological effects on the local biota, there is a need to understand how metal 
toxicity/bioavailability causes effects at the community level. Thus we need to demonstrate 
what ecological effects are caused by metals, at what concentration and under what 
conditions – i.e. how much metal is a problem, with an evidence base behind the choice of 
measure. 
 
Can we use a relatively simple biological assay of local metal bioavailability to interpret 
analysis of community composition? Subsequently we can then address the question “Can 
we determine where (and how much) restoration effort is needed by understanding the link 
between bioavailability and community ecological effects?” 
 
In this section we introduce existing methods used to address these questions and attempt 
to draw summarised conclusions on a resource-efficient way forward. 
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1.4.1 Laboratory testing - Bioassays 

Historically environmental regulations have drawn on a database of laboratory-based acute 
toxicity testing using high dissolved concentrations of toxic metals. Such acute toxicity tests 
have served to rank metals in order of (dissolved) toxicity and to rank species in order of 
sensitivity to such dissolved toxic metals. Other fundamental findings from such toxicity 
testing are that metals are toxic at what appear to be low dissolved concentrations; the lethal 
concentrations are repeatable if determined under the same conditions but vary with test 
conditions; lethal concentrations vary both among metals and among species (Luoma and 
Rainbow, 2008).  
 
The classic toxicity test is the 96 hour acute (dissolved) toxicity test with death as the 
endpoint, aiming to provide an estimate of the concentration that will kill 50% of the 
population – the LC50, where LC refers to Lethal Concentration. If the endpoint is a sub-lethal 
effect, then the test will provide an EC50, EC signifying an Effect Concentration. Such testing 
will also provide information on the highest concentration to cause no toxic effect – the No 
Observed Effect Concentration (NOEC), and the lowest concentration to cause an effect –
the Lowest Observable Effect Concentration (LOEC).  
 
Traditional single species toxicity testing has been extended to cover more sensitive 
endpoints than lethality with longer duration tests at lower exposure concentrations to detect 
sub-lethal effects; a variety of life history stages was tested; test methods were extended to 
sediments; and multi-species testing was developed (Luoma and Rainbow, 2008). Such 
tests do have the advantage of providing to environmental regulators with single numbers to 
define toxicity, and it is typical to use chronic toxicity data to derive regulatory thresholds, 
rather than acute data.  
 
We now, however, appreciate the limitations in extrapolating the results of such toxicity 
testing to real field situations (Luoma and Rainbow, 2008). Toxicological responses derived 
under controlled laboratory conditions and continuous exposure, whilst defining absolute 
limits, are likely to be over-prescriptive for variable natural conditions, where spatial 
patchiness and behaviour of organisms can influence exposure. This disconnect between 
toxicity tests and field responses is not restricted to metals; similar difficulties in 
interpretation of toxicity tests have been noted for organic pollution (Jones et al., 2008). 
Furthermore, animals obtain a significant (often majority) source of metals from the diet, and 
it is no longer accepted that only metals taken up from solution are ecotoxicologically 
significant (Croisetière et al., 2006; Cain et al., 2011). This is particularly true at lower 
dissolved exposures in the field and in the case of sediment-ingesting deposit-feeding 
animals. Thus, a single dissolved metal concentration derived in the laboratory has little 
direct relevance to the field, particularly given the variation in physicochemical conditions 
among contaminated sites, which subsequently will influence the bioavailabilities of the 
dissolved metals (Luoma and Rainbow, 2008). Similar geochemical differences will occur 
between sediments tested in the laboratory and sediments in the field, affecting the local 
exchange of sediment-associated metals with pore water and the water column, and more 
importantly the trophic availability of metals to sediment-ingesting infauna like oligochaete 
worms. Biology intervenes also – different organisms in the field will show different relative 
importance of different metal uptake routes, causing interspecific differences in 
ecotoxicological responses to the suite of bioavailable metal sources active in the field. This 
feature is particularly important if inappropriate species have been used in the original 
laboratory toxicity testing, as in the (at one time common) exposure of a planktonic swimmer 
to a metal-rich sediment. Given the enormous diversity of responses to metal exposure 
among fauna and flora, it is not practical for all species to be tested. Time scales of 
laboratory and field exposures are inevitably different, with most toxicity tests using exposure 
times of less than the generation time of the test organism as is the case in nature. 
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These limitations are well recognised now for metals and other pollutants (e.g. Jones et al. 
2008), and systematic adjustments (application factors) are typically made to laboratory-
derived toxicity measures to take into account potential underestimations of toxicity, and 
chemical test conditions are set for worst possible cases (Cairns and Mount, 1990; Luoma et 
al., 2010).  
 
Decades of toxicity testing have allowed databases for many metals to grow and include 
many species. Species Sensitivity Distributions (SSD) can provide evidence on the dissolved 
metal concentration that would have no ecotoxicological effect (NOEC) on, for example, 95% 
of species, the percentage defined by the US Environmental Protection Agency EPA to be 
used in protecting aquatic communities (Luoma and Rainbow, 2008). SSD plot the NOEC of 
a metal for different species against the cumulative rank of the value among species (Figure 
1.13: Brix et al., 2001), and risk is estimated as the percentage of species expected to be 
affected at any dissolved concentration. The SSD method is the preferred approach to 
setting Environmental Quality Standards in Europe and the UK. 
 

 
 

 

Figure 1.13. Species 
Sensitivity Distributions 
(SSD) of:  

A. Concentrations of 
cadmium causing acute 
toxicity ranked for 
different genera of 
invertebrates, fish and 
amphibians. This SSD  
can be used to derive a 
freshwater final acute 
value for cadmium – the 
cadmium concentration 
at which toxicity was 
observed for the most 
sensitive 5% of taxa (4.17 
µg/L at 50 mg/L 
hardness).  

B. SSD based on chronic 
toxicity tests. Sensitivity 
at the 5th percentile 
occurs at 0.08 µg/L at 50 
mg/L hardness. (After US 
EPA, 2001; Luoma and 
Rainbow, 2008). 
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The SSD approach can be used in risk assessment through a Predicted Environmental No 
Effect Concentration (PNEC), which can be estimated by dividing the lowest value or a 
percentile (usually fifth percentile) by an arbitrary safety factor (usually between 1 and 100, 
Crane et al., 2007). A Predicted Environmental Concentration (PEC) in the habitat being 
assessed can be calculated, for example, from emission rates of the contaminant in an 
effluent and the diluting capacity of the receiving water body, and a risk quotient 
(PEC/PNEC) derived: a value well below 1 indicates a low risk, while a risk quotient of 1 or 
above indicates substantial risk. 
 
1.4.2 Extrapolation from laboratory to field 

The WFD uses ambient Environmental Quality Standards (EQS) to classify water bodies on 
the basis of chemical contamination, and these standards are set to prevent damage from 
contaminants like trace metals. In the UK EQS exist for concentrations in water (Water 
Quality Criteria WQC or Water Quality Guidelines WQG) but are currently lacking for 
sediment (Sediment Quality Criteria SQC or Sediment Quality Guidelines SQG). Where 
there are sufficient data, such criteria typically have their origins in SSD as described above 
(Schmitt-Jansen et al., 2008), otherwise a deterministic method is used. 
 
EU Water Quality Standards applicable to priority toxic metals have been established for UK 
freshwaters (Table 1.1a). Similar Water Quality Criteria/Guidelines are available for the USA, 
Canada (http://ceqg-rcqe.ccme.ca/), and Australia and New Zealand (Table 1.1a).  
 
Given that EQS for dissolved metals in freshwaters were based mainly on laboratory toxicity 
data with associated uncertainties as to their extrapolation to the field, Crane et al. (2007) 
analysed a dataset from England and Wales of dissolved metal (cadmium, chromium, 
copper, iron, nickel, lead and zinc) concentrations and associated benthic invertebrate 
community metrics. Crane et al. (2007) used piecewise (‘broken stick’) regression, quantile 
regression and available data on metal concentrations consistent with good quality status 
(WFD-UKTAG, 2008c), and showed that proposed dissolved metal EQS available were 
similar to dissolved metal concentrations in rivers with unimpaired benthic macroinvertebrate 
assemblages. Use of a combination of laboratory testing corroborated by field-scale data 
provides EQS with pragmatic value in real contaminated situations.  
 
a In situ and mesocosm toxicity tests 

Improvements on laboratory toxicity testing have been the development of in situ sediment 
testing, and the application of microcosms to better reflect field situations. 
 
In situ toxicity testing involves the exposure of test organisms within or on the sediments of 
the water body of interest, typically by caging organisms in direct contact with intact 
sediments, better simulating natural exposures (Luoma and Rainbow, 2008). In situ 
bioassays with fish have a long history, but methods for testing macroinvertebrates in 
sediments have been developed more recently (Burton et al., 2003). In situ protocols 
typically require survival of control organism for 10 to 28 day exposure periods, necessitating 
the use of test organisms that can survive handling stress and fluctuating field conditions. A 
challenge then is to distinguish between the effects of the metal contamination of the 
sediment and the effects of handling or responding to fluctuation in the habitat conditions.  
Stochastic variability can be more problematic than dynamically stable variability such as 
seasonal cycles. For example, Olsen et al. (2001) transplanted fourth instar Chironomus 
riparius larvae for 48 hours at 13 uncontaminated river sites across southeast England. 
Activities of two enzymatic biomarkers varied almost twofold across the sites, with 
statistically significant differences detectable between sites. Olsen et al. (2001) concluded 
that biomarker results must be treated with caution because natural variability in responses 
can occur even in the absence of toxicant exposure. 

http://ceqg-rcqe.ccme.ca/


47 
 

Mesocosms can be used to test ecotoxicological questions that single species bioassays 
cannot, such as, for example, secondary ecological effects on communities (Clements and 
Newman, 2002).  Although mesocosm studies can be costly, labour intensive, difficult to 
control and difficult to replicate, (and therefore rarely used in routine toxicity testing), 
mesocosms are well suited to testing process questions (Luoma and Rainbow, 2008). 
 
Clements et al. (1988), Kiffney and Clements (1994) and Clements (2004) used multispecies 
experimental mesocosms to investigate field toxicities of metals in Rocky Mountain streams 
in the USA. The multispecies assemblages to be tested in the mesocosms were typically 
collected by placing boxes of stones in uncontaminated streams for 40 days to allow 
colonisation by local fauna. The boxes were then transferred intact to the laboratory to be 
submerged in experimental mesocosm streams for 10 days (Luoma and Rainbow, 2008). 
Results from such experiments established a hierarchy of vulnerability to metal exposure 
among the local taxa inhabiting streams, in line with relative metal sensitivities discussed 
above. Thus mayflies and stoneflies showed reduced abundance and species richness at 
the lowest metal concentrations in the mesocosms, and heptageniid mayflies such as 
Epeorus longimanus were particularly sensitive to the metals, in line with field surveys of 
metal-contaminated streams (Clements, 2004). Numbers of overall taxa, numbers of mayfly 
taxa, and summed numbers of mayfly (Ephemeroptera), stonefly (Plecoptera) and caddisfly 
(Trichoptera) taxa (EPT) showed statistically significant metal concentration – response 
relationships. The mesocosm experiments could be used to generate EC10 values (Effect 
Concentrations affecting 10% of the population), which correspondingly showed higher 
values for combined taxa than for single sensitive species like E. logimanus (Clements, 
2004; Luoma and Rainbow, 2008). The functional endpoints invertebrate drift and 
community respiration (measured by change in dissolved oxygen) were generally more 
sensitive to metal exposure than structural measures of the invertebrate community 
(Clements, 2004).  
 
The mesocosms were also used to investigate the effects of mixtures of metals in 
comparison to those of single metal exposures, zinc, copper and cadmium in the 
experiments of Clements (2004). The Cumulative Criterion Unit (CCU) is the additive 
measure of toxicity used in such cases. The dissolved concentration of each metal is divided 
by the US EPA chronic criterion value for that metal derived from single species toxicity tests 
but adjusted for water hardness by formula, and the ratios for each metal are summated to 
give the CCU (US EPA, 1986; Clements, 2004; Luoma and Rainbow, 2008). 
Macroinvertebrate responses to a mixture of the three metals zinc, copper and cadmium 
were generally greater than responses to either zinc alone or to zinc and cadmium 
(Clements, 2004).  
 
The same mesocosm approach to investigate the effects of metal contamination in New 
Zealand streams (Hickey and Clements, 1998; Hickey and Golding, 2002) has led to similar 
conclusions, particularly that abundance and species richness of mayflies are sensitive 
measures of metal effects in streams. The wide generality of such conclusions offers 
confidence that biological responses to metal contamination in streams are predictable 
(Luoma and Rainbow, 2008). 
 
Recent community-level mesocosm experiments by Clements et al. (2013) in Colorado have 
shown that EC50 values, defined as the metal concentrations that reduced abundance of 
stream insects by 50%, were several orders of magnitude lower than values derived for 
single species from previous laboratory testing. Clements et al. (2013) hypothesise that the 
short duration of laboratory toxicity tests and the lack of evaluation of effects on early life 
history stages are the primary factors behind the production of unrealistically high LC50 
values in the literature. The mesocosm results of Clements et al. (2013) suggest that US 
water quality criteria for zinc would protect most aquatic species, but that copper was highly 
toxic to some species at concentrations near to the published copper water quality criteria.  
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Although the use of mesocosms as described here still involves only the dissolved 
concentrations of toxic metal as measures of contaminant input, mesocosms are more 
representative of field conditions, and the results from mesocosm experiments together with 
field data can provide more precise estimates of ‘safe’ metal concentrations than laboratory 
toxicity tests alone (Clements, 2004). Nevertheless, the extrapolation of the results of any 
laboratory controlled experiment with, for example, continuous exposure/concentration to the 
field, where concentrations, environmental conditions and behavioural responses are 
variable, is not straightforward. 
 
The same CCU approach can be extrapolated to dissolved concentrations of metals 
measured in the field. Thus Clements et al. (2000) expressed field concentrations of zinc, 
lead, manganese, iron, copper, cadmium and aluminium in CCU in  a study of benthic 
macroinvertebrate communities in meta-contaminated Colorado mountain streams, and Hirst 
et al. (2002) quantified variations in dissolved metal concentrations in terms of CCU scores 
in their study of streams in metal-mining areas of Wales and Cornwall.  
 
1.4.3 Modelling of dissolved bioavailability 

The incorporation of a formula to correct an Effects Concentration of a metal for water 
hardness was mentioned above in the calculation of a CCU. The underlying reason for such 
intervention is the need to get a better measure of dissolved bioavailable metal 
concentration than is offered by the total dissolved concentration alone. As defined in the 
introduction, bioavailability describes a relative measure of that fraction of the total ambient 
metal that an organism actually takes up when encountering or processing environmental 
media, summated across all possible sources of metal, including water and food as 
appropriate (Luoma and Rainbow, 2008). Specifically in the case of dissolved bioavailability, 
it is now generally recognised that only a fraction of the total dissolved metal is available for 
uptake across a cell membrane into an organism, i.e. is bioavailable. A good model for the 
dissolved bioavailable fraction of many trace metals is the free metal ion according to the 
Free Ion Activity Model FIAM (Campbell, 1995; Luoma and Rainbow, 2008). 
 
The release of the free metal ion in the various chemical equilibria affecting a dissolved 
metal is very dependent on the physicochemistry of the medium. Dissolved organic matter, 
especially humic acid HA, tends to complex metal ions, thereby reducing the percentage of 
free metal ion in the total dissolved metal concentration. Acid conditions often promote the 
availability of the free metal ion, and the presence of other dissolved metals may also affect 
the release of the free ion from different forms of organic and inorganic complexation. Thus 
the same total dissolved metal concentration may have very different contributing 
concentrations of free metal ions, according to local physicochemical variation. Two media of 
the same total metal concentration may offer very different dissolved metal bioavailabilities 
to organisms (Luoma and Rainbow, 2008). 
 
In the absence of analytical techniques to measure the concentrations of all the different 
forms (chemical species) of most metals dissolved in natural waters, speciation modelling 
has proved a very successful alternative. Thus the activities of the free metal ion and other 
chosen low molecular weight metal complexes can be calculated from first chemical 
principles, essentially by considering the total concentration of dissolved metal, the 
concentrations of potential ligands (ions or molecules that form a complex with a metal ion), 
and the stability constants defining the affinity of each ligand to the metal. One of the most 
successful and commonly used such metal speciation models in freshwaters is WHAM, the 
Windermere Humic Aqueous Model (Tipping, 1994; Tipping et al. 1998), including very 
thorough analyses of metal-organic (especially metal-HA) interactions and updated regularly 
(e.g. Stockdale et al., 2010; Tipping et al., 2011). A tenet of the WHAM model is that the 
dissolved metal cation binding sites of aquatic invertebrates can be modelled by the 



49 
 

functional groups of humic acid, and WHAM can model how much metal will bind to HA 
under different physicochemical circumstances.  The predictor ‘bioavailable’ dissolved metal 
concentrations calculated by WHAM in its different updated guises are usually better 
predictors of the toxicological effects of dissolved metals than are total dissolved metal 
concentrations. In Colorado, Iwasaki et al. (2013) found that predictor concentrations of zinc, 
cadmium and copper derived from the WHAM 7 model of Tipping et al. (2011) provided 
better estimates of metal effects observed in mesocosm experiments than three other 
measures – total metal concentrations, free metal ion concentrations and the CCU. 
Stockdale et al. (2010) developed WHAM into the WHAM-FTOX model to describe the 
bioavailability and toxicity of proton and metal mixtures to aquatic organisms, by 
incorporating a toxic potency coefficient for each metal. Stockdale et al. (2014), however, got 
variable levels of success in applying this model to sites in UK and Norwegian streams, and 
suggested that the presence of other non-chemical (unmodelled) factors was further 
repressing species richness at some sites. 
 
Biotic Ligand Models (BLMs) are a theoretical offshoot of the FIAM (Paquin et al., 2002), 
which predict dissolved metal toxicity on the basis of calculated (modelled) free metal ion 
activities as affected by the competitive effects of major ions and pH (critically important in 
freshwaters). BLMs were developed to explain how water chemistry affects the toxicity of 
dissolved metals, toxic exposure being expressed by the occupancy by the metal of a key 
(biotic) ligand. In the regulatory arena, BLMs can be used to incorporate site-specific 
physicochemical conditions, using geochemical modelling to calculate metal speciation 
(Luoma and Rainbow, 2008). An advantage of the BLM is that it shifts emphasis from the 
exposure solution to a postulated biological receptor. Although based on chronic exposures 
to dissolved metals, dietary metal uptake is typically not included and uptake properties have 
only been characterised for a few species (Luoma and Rainbow, 2008). Schmidt et al. 
(2010) developed a toxic unit model of additive trace metal toxicity (the Chronic Criterion 
Accumulation Ratio CCAR) derived from BLM outputs to estimate the toxicity of trace metal 
mixtures to benthic communities (e.g. Schmidt et al., 2012).  
 
There is no doubt that the predictor concentrations coming from dissolved metal speciation 
models such as WHAM, WHAM-FTOX and the BLM are superior estimators of dissolved 
metal bioavailabilities than total metal concentrations. However, it still needs to be 
remembered that such models concern dissolved metal concentrations and ignore the 
ecotoxicologically significant role of metal uptake from the diet in the real contaminated 
world. 
 
Not uncommon in the literature now are studies of dissolved metal bioavailabilities that use 
passive samplers employing the like of DGT (Diffusive Gradients in Thin Film) technology to 
model (not measure - in spite of claims otherwise) dissolved metal bioavailabilities. Such 
passive techniques make assumptions as to the chemical nature of dissolved species of 
metals that are bioavailable to (all?) organisms, to come up with a so-called measure of 
dissolved metal bioavailability. Nevertheless, it is a flawed argument to employ a chemical 
surrogate to model (usually ineffectively) what can be measured directly by the employment 
of a suitably chosen biomonitor. Yet again, this approach ignores any trophic availability of 
local metals to resident animals, in spite of the demonstrated ecotoxicological importance of 
this route of uptake.   
 
1.4.4 Bioaccumulation, biomonitors and identification of ecotoxicological effects 

Aquatic invertebrates take up trace metals in relation to the total metal bioavailabilities (e.g. 
dissolved and dietary) to which they are exposed. They are typically net accumulators of 
trace metals, the strength of the accumulation after uptake being controlled by the 
subsequent physiological balance between uptake rates, excretion rates and storage 
detoxification rates Luoma and Rainbow, 2008). The metal accumulation patterns of aquatic 
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invertebrates vary between metals and invertebrate species, and will lie on a gradient from 
weak to strong accumulation. Different invertebrate species have different rates of turnover 
of metals in the bodies and will achieve different accumulated body metal concentrations 
under the same metal exposure conditions (Luoma and Rainbow, 2008).   
 
These principles allow the use of aquatic invertebrates as biomonitors of trace metal 
bioavailabilities, a biomonitor being an organism which accumulates trace metals in its 
tissues, the accumulated metal concentration of which provides a relative measure of the 
total amount of metal taken up by all routes by that organism, integrated over a preceding 
time period (Luoma and Rainbow, 2008). Biomonitors are therefore of great utility in 
biological monitoring programmes, for their use can identify areas of high metal 
bioavailability (strictly to that chosen biomonitor, but interpreted more generally) and to 
identify changes in metal bioavailability over space and time (see Introduction). It must be 
remembered, however, that a high accumulated body concentration of a metal does not per 
se indicate that the invertebrate (or other organism such as a plant) is suffering an 
ecotoxicological effect. Such a demonstration requires the application of biomarkers from 
any level from the molecular to the community. 
 
It is not surprising that the changes in the summated bioaccumulated metal concentration of 
all invertebrate species in a community will not automatically be a good predictor of altered 
macroinvertebrate community structure (Beltman et al., 1999). The metal concentration of a 
pooled invertebrate sample will depend not only on local metal bioavailabilities, but on other 
factors such as the presence and relative contribution of the different invertebrate species 
present in the sample (with different associated metal accumulation patterns), life history 
stage, size, age , etc. (Hare, 1992; Beltman et al. 1999). The community composition will be 
changed on metal exposure in ways that will inevitably affect the total metal bioaccumulation 
ability of the community (Beltman et al., 1999). 
 
All is not lost, however. The key to the use of biomonitors and metal bioaccumulation in 
ecotoxicological studies is to interpret accumulated metal concentrations at the species 
level. Thus, it is well established that the use of individual species as biomonitors provides 
key information on differences in metal bioavailabilities over space and/or time (Luoma and 
Rainbow, 2008). Biomonitoring of a water system may make use of the in situ fauna, as in 
the case of copper in the caddisfly Plectrocnemia conspersa along a stream system in 
Cornwall (Gower and Darlington, 1990), or baetid mayflies and the amphipod Gammarus 
fossarum in metal-rich streams in Poland (Fiałkowski et al., 2003a, b). Alternatively, 
members of a control population of invertebrates may be deployed at different sites for a 
time period before analysis (e.g. the amphipod crustacean Hyalella azteca by Couillard et al. 
(2008) in mining-affected river systems in Quebec).    
 
As discussed earlier, it is not possible to correlate a specific total accumulated body 
concentration of an aquatic invertebrate in the field with the onset of toxic effects in that 
individual, there being no critical (lethal) total body concentration of a metal in an 
invertebrate using (temporary or permanent) storage detoxification (Luoma and Rainbow., 
2008; Casado-Martinez et al., 2010a; Adams et al., 2010; Rainbow and Luoma, 2011b). So 
there is no specific ecotoxicological information in a bioaccumulated metal concentration 
relevant to the biomonitor itself. Studies are now showing, however, that it is possible to 
calibrate accumulated metal concentrations in specific biomonitors against ecotoxicological 
changes occurring in the local biological community, typically the benthic macroinvertebrate 
community (Luoma et al., 2010; Rainbow et al., 2012). Luoma et al. (2010) proposed that 
there will be a correlation between the bioaccumulated metal concentrations in a relatively 
metal-hardy biomonitor and ecotoxicological changes affecting more metal-sensitive 
members of the local benthic macroinvertebrate community. Specifically Luoma et al. (2010) 
addressed this hypothesis in terms of the bioaccumulation of copper in larvae of species of 
the caddisfly Hydropsyche, and the presence and abundance of ephemerellid and 
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heptageniid mayflies at sites in the Clark Fork River system, Montana, USA. Luoma et al. 
(2010) indeed were able to show that the bioaccumulated copper concentrations in 
Hydropsyche could be calibrated against metal-specific ecotoxicological responses in the 
number of species and abundance of mayflies, particularly of ephemerellid and heptageniid 
mayflies. Rainbow et al. (2012) addressed the question whether the proposed hypothesis of 
Luoma et al. (2010) would hold in another mine-affected catchment system, in fact on 
another continent. Rainbow et al. (2012), therefore, specifically asked whether the 
bioaccumulated concentrations of toxic metals in the caddisfly Hydropsyche siltalai (as 
indicators of metal bioavailabilities) could be calibrated against ecotoxicological responses of 
mayfly larvae in metal contaminated streams of Cornwall. As in the Clark Fork system, 
Rainbow et al. (2012) were able to answer in the positive. Mayfly larvae were always sparse 
where metal bioavailabilities, hence bioaccumulated metal concentrations in the caddisflies, 
were high, and were abundant where metal bioavailabilities were low, a pattern particularly 
evident when the combined abundance of ephemerellid and heptageniid mayflies was the 
response variable (Rainbow et al., 2012). Furthermore Rainbow et al. (2012) were able to 
identify threshold bioaccumulated concentrations in H. siltalai (especially of Cu and As, the 
apparent major ecotoxicological metal drivers in many Cornish streams – see also Gower et 
al., 1994), corresponding to the elimination of mayflies of these two families through the 
ecotoxicological effects of the reflected high metal bioavailabilities (Figure 1.13). Rainbow et 
al. (2012) used these threshold bioaccumulated concentrations (170 µg Cu g-1, 85 µg As g-1, 
300 µg Zn g-1, 300 µg Pb g-1) to define toxic units (Adams and Rowland, 2003) for each 
metal by dividing the mean accumulated concentration in H. siltalai at each site by this 
threshold concentration for the relevant metal. The toxic units for different metals can be 
summed at each site to assess the additive ecotoxicological effects of the metals (Figure 
1.14). 
 
Schmidt et al. (2011) have addressed the same principle, and showed that whole body zinc 
concentrations in three aquatic insect taxa (heptageniid mayflies Rhithrogena spp., 
ephemerellid mayflies Drunella spp. and the caddisfly Arctopsyche grandis),  could be used 
to predict ecotoxicological effects on stream communities in the Rocky Mountains, USA. 
Schmidt et al. (2011) were also able to define threshold bioaccumulated concentrations 
(critical tissue residues) of zinc in the biomonitors that were associated with specific 
percentage declines in mayfly densities and taxonomic completeness (the ratio of expected 
and observed numbers of taxa). 
 
De Jonge et al. (2013) have extended the number of examples that show that the metal 
body burdens of specific biomonitors can be used to predict metal-induced effects on 
macroinvertebrate communities in upland streams in northwest England, using quantile 
regression analysis for comparison against community structure parameters including 
taxonomic completeness (RIVPACS) and BMWP scores. The study did not go to the 
preferred extent of identifying biomonitor species, but nevertheless showed that there were 
significant regressions between copper, zinc and lead body burdens in the stonefly Leuctra 
sp. (Zn, Pb), the heptageniid mayfly Rhithrogena sp. (Cu, Zn, Cu+Zn) and in mixed simuliid 
blackflies (Zn, Pb) and both taxonomic completeness and BMWP scores (De Jonge et al., 
2013).      
 
Using a similar approach, Bervoets et al. (2005) could relate parameters of fish community 
structure to summated toxic units of toxic metal accumulation in fish livers in metal 
contaminated river systems in Flanders, Belgium. This specific approach, however, does 
lack the benefit of obtaining a measure of high metal bioavailabilities in the absence of the 
species directly affected by those high bioavailabilities. 
 
It appears, therefore, that bioaccumulated concentrations of metals in metal-resistant 
biomonitors can be calibrated to diagnose ecotoxicological impacts on stream benthos from 
metal stressors. There is considerable potential for further extension of the number of 
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biomonitors to be calibrated against observed ecotoxicological responses of benthic 
macroinvertebrates. In addition to the species and genera mentioned above, potential 
biomonitors include the zebra mussel Dreissena polymorpha and species of chironomid 
midge larvae (De Jonge et al., 2012), larvae of the caddisfly Plectrocnemia conspersa 
(Rainbow et al., 2012), mayfly larvae of the genus Baetis, as well as gammarid amphipods 
like Gammarus pulex in the UK and G. fossarum more widely in continental Europe. 
 

 

 

 

Figure 1.14. Plots of mean accumulated Cu and As concentrations, and combined 
mean accumulated metal concentrations expressed as toxic units, in larvae of the 
caddisfly Hydropsyche siltalai from sites in metal-contaminated Cornish rivers 
against combined abundance of heptageniid and ephemerellid mayfly larvae (mean 
number of mayfly larvae in 1 minute kick sample). (From Rainbow et al., 2012).  

1.4.5 Weight of evidence (WoE) approach  

The determination of the ecotoxicological potential of a metal-contaminated sediment 
ultimately requires the integrated use of a battery of techniques – a Weight of Evidence 
(WOE) assessment combining evidence from different lines of evidence (LOE) (Chapman, 
2007; Benedetti et al., 2012). WOE determinations include both chemical and biological 
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measurements, and typically include both laboratory and field components which may be 
observational or involve experimental manipulation (Chapman, 2007). The original Sediment 
Quality Triad of Long and Chapman (1985) was a pioneer of this approach, and this triad 
has now been expanded, for example to include biomarkers (Chapman and Hollert, 2006; 
Chapman, 2007)   
 
There are examples of the integration of laboratory and field approaches to assess the 
impact of metal pollution in mining-impacted streams, extending back to times before the 
establishment of Weight of Evidence terminology. Thus Clements and Kiffney (1994) 
measured water metal concentrations, bioaccumulation of metals by periphyton and selected 
benthic macroinvertebrates, and parameters (e.g. abundance, species richness and 
percentage Ephemeroptera) of the community structure of benthic invertebrates at sites in 
the Arkansas River, a stream impacted by historic mining activities. In the laboratory 7-day 
toxicity tests were carried out with the planktonic cladoceran crustacean Ceriodaphnia dubia 
exposed to water from the Arkansas River (Clements and Kiffney, 1994). In this very early 
integrated study, Clements and Kiffeney (1994) were able to conclude that an integrated 
approach be recommended for assessing effects of metals in streams. In subsequent years, 
Clements and colleagues took this recommendation forward with great success in the 
Colorado area, incorporating the more ecologically relevant results from mesocosm 
experiments to provide necessary toxicity test data (e.g. Scmidt et al., 2011; Clements et al., 
2013). 

In Europe, Wolfram et al. (2012) combined a great deal of laboratory-based and field 
evidence in a very impressive weight of evidence approach to assess the ecotoxicological 
impact of sediment contamination on benthic invertebrate communities in three river basins 
(Elbe, Scheldt and Llobregat). Chemical analyses of sediments were integrated with a 
remarkable battery of sediment toxicity tests, encompassing bacteria (Vibrio fischeri), 
benthic invertebrates of varying field relevance (the universal laboratory nematode model 
Coenorhabditis elegans, the gastropod mollusc Potamopyrgus antipodarum, the oligochaete 
Lumbriculus variegatus, and the midge larva Chironomus riparius), and fish embryos (Danio 
rerio), together with univariate and non-parametric statistical analyses of biological data on 
the benthic macroinvertebrates (Wolfram et al., 2012). Such biological data included the 
biotic indices, the Belgian Biotic Index (BBI) and the SPEAR Index (see above). A selective 
approach based on this study by Wolfram et al. (2012), but with the addition of biomarkers 
(Allan et al., 2006) has considerable potential for a WOE assessment of metal-contaminated 
sediments in mining-affected streams.   

Recommendations for a WOE approach 

It is possible finally to draw conclusions from this review of available tools for the 
ecotoxicological assessment of metal-contaminated sediments in mining-affected water 
systems and propose a WOE toolbox that would meet the requirements of the Water 
Framework Directive.  
 
a Sediment Metal Concentrations 
 
The WFD requires chemical data and it is appropriate to measure the trace metal 
concentrations of sediments collected from sites under investigation. These can be 
compared against Sediment Quality Guidelines, but it must be remembered that total metal 
concentrations are not measures of bioavailable metal concentrations. Extractions to model 
bioavailable concentrations in sediments have some value given an understanding of the 
routes of metal uptake used by different organisms under investigations. Indices such as the 
AVS index, however, are based on a flawed understanding of the biological processes 
affecting the uptake of metals and are to be avoided (Luoma and Rainbow, 2008; De Jonge 
et al., 2009). 
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b  Bioaccumulated Metal Concentrations in Biomonitors 
 
A real measure of bioavailable metals in a habitat is provided by the bioaccumulated metal 
concentrations in selected biomonitors of known biology and metal accumulation physiology 
and kinetics (Luoma and Rainbow, 2008). Biomonitors provide an integrated measure of the 
uptake and subsequent accumulation of toxic metals from different sources of metal (e.g. 
solution, diet) according to the biomonitor chosen, a carefully chosen suite of biomonitors 
covering all potential routes of uptake (i.e. bioavailable metal sources).  
 
Biomonitors provide vital information on the geographical and temporal variations in metal 
bioavailabilities, in this case in a freshwater system, without direct information as to whether 
that biomonitor is itself suffering ecotoxicological effects of the metal exposure and 
subsequent metal uptake and accumulation. However, it has now been shown that absolute 
bioaccumulated metal concentrations in specific hardy biomonitors can be correlated with 
ecotoxicological changes in the habitat, and this approach, after calibration, offers enormous 
scope for relating the measurement of bioaccumulated concentrations in such selected 
biomonitors to the community structure of local benthic macroinvertebrates. 
 
Species of the caddisfly genus Hydropsyche are prime candidates for this role, although 
other biomonitors also offer potential, perhaps in habitats where these caddisflies might be 
absent, for example as a result of high local sedimentation. Hydropsyche species spin nets 
to collect food, and it can be expected that fine (re)suspended sediment particles will be 
ingested by these caddisflies. Species of the amphipod genus Gammarus, such as G. pulex 
in Britain or G. fossarum in continental Europe, have potential as suitable trace metal 
biomonitors in the absence of Hydropsyche species at depositional stream sites (Fialkowski 
et al., 2003a). Other potential biomonitors are species of the stone fly genus Leuctra in 
upland streams (De Jonge et al., 2013), or species of the mayfly Baetis (Fialkowski et al. 
2003b) which are less metal-sensitive than many other mayflies (Gower et al., 1994; 
Rainbow et al., 2012). 
 
c Toxicity tests 
 
The original Sediment Quality Triad (Long and Chapman, 1985) invoked the use of 
laboratory-based toxicity data, and, given their extent and availability, there is still an 
attraction to use such data to express comparative toxicities of metals to different organisms, 
not least freshwater benthic macroinvertebrates in the establishment of Species Sensitivity 
Distributions (SSD) or to contribute to the development of biotic indices. For assessment of 
sediment toxicities, laboratory sediment toxicity tests are by definition more relevant than 
dissolved toxicity tests. Nevertheless, even in these former tests, extra metals are often 
spiked to increase the range of metal exposure concentrations to be tested. Such spiking 
does have negative implications on the partitioning of added metals to reflect real 
environmental situations (Luoma and Rainbow, 2008), and a better approach might be to 
mix sediments from the field with high and low metal concentrations for use in toxicity tests 
(e.g. Casado-Martinez et al., 2010a).  
 
More ecologically realistic and relevant data can now be obtained from in situ toxicity testing 
or mesocosm toxicity tests. These are the way forward if comparative ecotoxicity data are 
required in a particular WOE assessment.  
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Figure 1.15. Schematic diagram of how metals derived from mine workings and the 
catchment impact the invertebrate community. The bioavailability of metals from 
upstream sources is influenced by local site conditions, which influences the direct 
uptake of metals by invertebrate fauna (primarily through ingestion of particulates). 
Some of the metals taken up are returned to the environment, the remainder are 
bioaccumulated (either detoxified in the tissues or metabolically active and, hence, 
toxic). The toxicity of available metals results in change in the invertebrate fauna. 
Although toxicity of metals taken up by direct consumption is the main route of 
impact, indirect effects of metals can also impact the invertebrate fauna. For 
simplicity feedback loops are not illustrated (e.g. bioaccumulation of metals alters 
food availability and competition [by elimination/reduction of sensitive groups], and 
the metal content of available prey, which combine to alter the rate of metal uptake 
through ingestion).  

 

d Biomarkers 
 
Biomarkers do provide evidence of the presence of an ecotoxicological effect on metal-
exposed organisms, and have great potential for successful inclusion in biological monitoring 
programmes (Allan et al., 2006; Chapman and Hollert, 2006; Collier et al., 2013; Amiard-
Triquet et al., 2015).  
 
Biomarkers at the lower levels of biological organisation (molecular, biochemical and 
cytological) are more sensitive than the more obviously ecologically relevant biomarkers at 
higher levels (e.g. population), have been correlated with higher organisational level effects 
(Moore et al., 2013) and are not difficult to measure in these days of ‘omics’. Without 
resource to ‘omics’, attractive biochemical-level biomarkers include primary antioxidant 
enzymes like catalase, the oxyradical scavenger glutathione, and the Total Oxyradical 
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Scavenging Capacity (TOSC). The metal-binding protein biomarker should only be 
employed with care given the variability in its induction properties. Of the cytological 
biomarkers available, the measurement of lysosomal stability using the neutral red retention 
(NRR) assay has much to recommend it (Moore et al., 2013), after extension to suitable 
candidates from relevant stream biota. Invertebrates with blood cells are the best 
candidates, and so might include Gammarus species, chironomid midge larvae or tubificid 
oligochaetes. In the latter case it would be possible to draw on the extensive experience of 
soil ecotoxicologists using the NRR assay in earthworms, the oligochaete relatives of 
freshwater tubificids (Spurgeon et al. 2003; Svendsen et al., 2004). Biomarkers of 
genotoxicity that are well tested include the comet assay.  
 
Moving up the hierarchy of biological organisation, potential metal-affected biomarkers at the 
level of the organism are the distorted morphology of benthic diatoms (Falasco et al.; 2009) 
and the morphology of the mouthparts of chironomid midge larvae (Martinez et al., 2003; Di 
Veroli et al., 2014) 
 
e  Biotic index 
 
Biotic indices are widely used to meet WFD requirements for assessment of biological 
quality elements in freshwaters, and historically have long been used with benthic 
macroinvertebrate communities to assess the extent of pollution. Such biotic indices, 
however, have typically been developed to address organic pollution, although general 
degradation may be interpreted more generally (e.g. through NTAXA). A European biotic 
index for metal pollution is still to be developed (SNIFFER, 2011a), a non-trivial task. 
However the Australian experience with a diagnostic index for acid mine drainage, SIGNAL-
MET (Chessman and McEvoy, 1998), in combination with a RIVPACS style predictive model 
of community structure, where 70% of the variation in observed/expected was attributable to 
mining impacts, indicates that this approach is highly appropriate for assessing the degree of 
impairment from previous mining activity (Sloane and Norris, 2003). 
 
In the absence of a specific biotic index for metal-contaminated sediments, several authors 
have used a comparative multimetric statistical approach for the comparison of 
macroinvertebrate communities at stream sites under different conditions of metal exposure 
(e.g. Gower et al., 1994; Hirst et al., 2002; De Jonge et al., 2008). Archaimbault et al. (2012) 
have used a multimetric approach to assess the ecotoxicology of contaminated sediments to 
benthic macroinvertebrates in French mountain streams, but this study considered a mixture 
of toxicants, involving organic contaminants such as PAHs and PCBs as well as toxic 
metals. 
 
A biotic index developed by linking community level responses to measures of bioavailability 
and ecotoxicological responses (Figure 1.16) would provide the best route for a rapid, easy 
to use, and WFD compliant method to assess the impact of metal-contaminated sediments 
on biota. 
 
1.4.6 Remediation  

Together with the need to identify where sites are being impacted by metal-contaminated 
sediments, there is a clear ongoing need for a low cost system that is capable of assessing 
the effectiveness of any remediation undertaken to mitigate the impact of metal-
contaminated sediments. This system should be capable of rapid and easily repeatable 
assessments that can be undertaken through time to determine the rate of improvement of 
mining-affected stream sites after mitigation, and in particular after any event that may 
influence the delivery of metal-contaminated sediment from the catchment.   
 
 



57 
 

1.5 Conclusions 

 
It is clear that the way forward in the ecotoxicological assessment of mining-affected stream 
sediments is via an integrated approach involving a multiplicity of tools from different 
disciplines such as biology, ecology, geochemistry and toxicology (Luoma and Rainbow, 
2010), as reflected in a Weight of Evidence approach (Chapman, 2007).   
 
 
 
 
 
 
 

 
 
Figure 1.16. Model of approach proposed here to assess the ecological impact of 
metals. The metal load at a site is derived from various sources, both current and 
historic, and the bioavailability of this load is affected by local environmental 
conditions. The invertebrate community comprises many species, some of which will 
be removed by metal pollution. Hence, the bioaccumulated concentrations of metals 
in tolerant biomonitor species can be used as a measure of bioavailability, and this 
measure of bioavailability used to diagnose ecological impacts from metal stressors 
on the whole stream benthos community.  
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2  Compilation of Existing Data 

Objective 1b 

To compile existing water chemistry, sediment chemistry and biological data from 

potentially impacted stream and river sites (Environment Agency, 2008b,c; British 

Geological Survey Geochemical Baseline Survey of the Environment (G-BASE)).   

 

2.1 Sources of data compiled 

Data have been compiled from the following sources: 

BGS G-BASE  – sediment metal chemistry  

 – water metal chemistry  

BGS G-BASE SW Tellus – sediment metal chemistry 

EA/NRW biological monitoring data  – invertebrates  

 – diatoms  

 – macrophytes  

 – fish  

EA/NRW chemical monitoring data  – sediment metal chemistry  

 

2.1.1 G-BASE 

The British Geological Survey’s Geochemical Baselines Survey of the Environment (G-

BASE) project is a systematic high resolution survey to establish a geochemical baseline 

across the United Kingdom. The regional geochemical sampling programme began in 1968 

in the northern Highlands of Scotland and has progressed southwards (Figure 2.1), with the 

aim of producing maps to show the distribution of trace elements in soils and stream 

sediments. As spatial coverage is a priority in this project, low-order streams are targeted.  

Stream sediment was collected with a trenching tool and, excluding the uppermost heavily 

oxidised sediment, was wet sieved at site to <150 μm (Johnson, 2005). A duplicate field 

sample was collected from one site in 100 for quality control purposes. Sediments are dried 

initially by air drying then freeze drying before being pulverised in agate ball mills. Samples 

are pelletised ready for X Ray Fluorescence Spectroscopy (XRFS) at the BGS laboratories 

in Keyworth, UK. During the lifetime of the project analytical, statistical and data processing 

techniques have evolved substantially. Initial stream sediments were analysed for 16 

elements using Direct-reading DC Arc Optical Emission Spectrometry (DCOES), Atomic 

Absorption Spectroscopy (AAS) and (for U) delayed neutron activation. In the Hebrides and 

subsequent atlas areas (including Northern England) a direct-reading emission spectrometer 

was used to determine some 25 elements. The current analytical method is XRFS, which 

commenced on the Welsh sediments and determines 48 elements, namely Ag, Al, As, Ba, 

Bi, Br, Ca, Cd, Ce, Co, Cr, Cs, Cu, Fe, Ga, Ge, Hf, I, K, La, Mg, Mn, Mo, Na, Nb, Nd, Ni, P, 

Pb, Rb, Sb, Sc, Se, Si, Sm, Sn, Sr, Ta, Te, Th, Ti, Tl, U, V, W, Y, Zn and Zr. 

A total of four spot samples of filtered (0.45 μm cellulose filter) and unfiltered surface water 

are collected from each site at the same time as the stream sediment. Samples are stored in 

Nalgene™ bottles and acidified as required by the analytical method. Alkalinity (by 

colorimetric titration), pH and conductivity determined on site. Samples are analysed at BGS 
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and variously include Inductively Coupled Plasma Mass Spectrometry (ICP-MS) for Ag, Al, 

As, Ba, Be, Bi, Cd, Ce, Co, Cr, Cs, Cu, Ho, La, Li, Mo, Mn, Nd, Ni, Pb, Rb, Sb, Se, Sn, Th, 

Tl, U, V, Y, Zn & Zr [31 elements]; Inductively Coupled Plasma Atomic Emission 

Spectrometry (ICP-AES) for Al, B, Ba, Ca, Fe, K, Mg, Mn, Na, P, Si, S (reported as SO4), Sr 

& Zn [14 elements]; Ion Chromatography for Br, Cl, F, NO2, NO3, SO4, PO4 [7 ions] and a 

TIC/TOC analyser for Non-purgeable organic carbon (NPOC). Again, the range of 

determinands analysed has varied as methods have evolved over the life of the project. 

Data were requested from BGS describing the site location, sampling date, stream sediment 

geochemistry and stream water chemistry. Data from 61,195 locations sampled 1985 – 2008 

were provided (Table 2.1). Due to evolution of techniques, the analysis used and elements 

reported vary among sites: only those sites where the suite of determinands analysed 

included metals were retained. The data were housed in an MS Access data base. 

 

Figure 2.1. Map of G-BASE stream sample locations in England and Wales including the 

data from the SW Tellus project. 

Following the release of data from the SW Tellus project covering Devon and Cornwall, a 

further data request was made to BGS describing the site location, sampling date and 

stream sediment geochemistry. Data from 3,779 sites sampled 2002 – 2012 were provided 

(Table 2.1). The data were housed in the MS Access data base.  

 
2.1.2 EA and NRW – biological monitoring data 

Data describing the Biological Quality Elements (BQE) invertebrates, diatoms, macrophytes 

and fish have been collected using the appropriate field sampling methods by the regulatory 

authorities to assess the biological condition of rivers; although in some cases the samples 
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predate the adoption of the WFD, the field methods have remained largely unchanged. As 

the aim of this monitoring is to report biological condition of rivers the samples have largely 

been collected from main channels of river catchments (Figure 2.2); this concentration on 

main stem sites is particularly pronounced for fish. These data are held by the EA/NRW in 

the BIOSYS (invertebrates, diatoms, macrophytes) and fish databases.  

The data on community composition have been used to derive biotic indices to summarise 

the quality of the site, namely  

Invertebrates  NTAXA  = number of BMWP (Biological Monitoring Working Party) 

families present 

 ASPT = Average BMWP Score Per Taxon present 

Diatoms TDI = Trophic Diatom Index  

 Number of species [not used for WFD classification] 

Macrophytes  RMNI = River Macrophyte Nutrient Index 

 Number of species [not used for WFD classification] 

 Number of aquatic species 

Fish Number of species 

Since the adoption of the WFD the data have been used to calculate the Ecological Quality 

Ratio (EQR) for the site by comparing returned values for the site to those values expected if 

the site were in reference condition.  

All available routine biological monitoring data up to 2012, comprising macroinvertebrate, 

macrophyte, fish and diatom community composition, and derived biotic indices, together 

with site details and environmental characteristics were requested from the EA/NRW. EQR 

values were requested for sites/sampling occasions where these data were available. The 

number of sites and number of samples collected varied dependent upon BQE, with diatoms 

covering the least number of sites and samples (Table 2.1). The time periods covered for the 

different Biological Quality Elements (BQE) also vary: fish 1975-2012, macroinvertebrates 

and macrophytes1994-2012, diatoms 1998-2012. The data were housed in an MS access 

database (see Figure 2.3 for example of structure). 

Where indices have been introduced since the adoption of the WFD [e.g. RMNI has replaced 

the Mean Trophic Rank index], on receipt of the data WFD compliant index values were 

derived using species composition data for samples collected prior to changes. Where 

taxonomic resolution has changed over time, index values appropriate for the resolution 

used at the time were used.  

 

2.1.3 EA and NRW – chemical monitoring data 

 
In order to assess the condition of rivers, samples of water and sediment have been 

collected by the regulatory authorities. These samples have been used to determine various 

hydrochemical parameters, including metal content of water and sediment, with samples 

variously collected over multiple occasions from each location in order to establish 

exceedance (Table 2.1). Both water and sediment hydrochemical data are stored in the 

same database. However, sediment has been collected from a small number of sites 

compared with water chemistry: sediment data are related to specific issues rather than 
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collected systematically as part of an established national monitoring programme. Results of 

sediment metal concentrations have been reported variously for different particle size 

fractions. Where information is available it appears that metal content has been established 

largely on the fine size fraction (e.g. <63 µm, <90 µm) after acid extraction. 

All available river chemistry monitoring data, including trace metals concentrations in 

sediments, were requested from the EA/NRW, together with site location and sampling date. 

Data were housed in MS Access databases. Nine separate databases were used each 

covering a single EA/NRW region (with 2 for the Midlands) and linked together by a hub. 

Those data describing trace metals concentrations in sediments were extracted from these 

holdings. 

 

Table 2.1 Summary of datasets requested 

Organisation Dataset Earliest 
sampling date 

Latest 
sampling date 

No of 
sites 

No of 
samples/surveys 

BGS 
G-BASE sediment 24/06/1985 11/07/2008 61,195 61,195 

G-BASE water 26/06/1986 09/08/2007 24,206 24,206 

EA/NRW 

Invertebrates 03/01/1994 11/12/2012 15,155 121,243 

Diatoms 21/08/1998 30/11/2012 2,837 6,582 

Macrophytes 05/08/1994 10/10/2012 4,592 8,979 

Fish 19/05/1975 13/12/2012 15,268 48,077 

EA/NRW 
Water Chemistry 01/01/1990 12/12/2012 27,050 2,725,344 

Sediment Chemistry 01/01/1990 12/12/2012 964 9,053 

BGS/Tellus G-BASE SW sediment 2002 2012 3,779 3,779 
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a) b) 

 
c) d) 

 

Figure 2.2. Map of EA/NRW river biological sample locations in England and Wales a) 

macroinvertebrates, b) diatoms, c) macrophytes, and d) fish. 
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Figure 2.3. Structure of database housing EA/NRW invertebrate data matched to G-BASE 

data. 

 

 

 

 

 

Figure 2.4. Map of EA/NRW river sediment sample locations in England and Wales. 
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2.2 Spatial matching  

Biological data were matched spatially to data describing sediment chemistry in ArcMap 10.2 

using the river network. Sample site locations were plotted together with the river network 

based on the OS 1:25,000 map. The “blue line” of the river network was divided into 

segments where each segment comprised a continuous section of a single river channel 

without any joining channels: divisions between segments occurred at the confluence of 

channels (tributaries, anastomosing channels). Hence, each segment represents a 

continuous river channel without inflows (as indicated on the OS 1:25,000 map). Biology and 

chemistry sites were matched if they both intersected with the same river segment (Figure 

2.4). A buffer of 50 m was added to the river network, i.e. sites were regarded as intersecting 

with a segment if they occurred within 50 m of that segment of the blue line. This allowed for 

imperfect location of sites and for the fact that the “blue line” may not accurately represent 

the full width of the channel. However, sites could be erroneously clipped to a river segment 

if they were located near a confluence. Manual checks were undertaken to avoid such 

errors. Segments that contained multiple biological or chemical sampling sites were also 

checked manually, and where multiple sites were verified as matching with the same river 

segment the pair of sites representing the closest spatial match was chosen. Site identities 

were then used to match chemical and biological data using MS Access. 

To ensure that sites with high sediment metal concentrations were included wherever 

possible a further directed search was made. G-BASE sites were ranked according to their 

sediment cadmium, copper, nickel, lead and zinc concentrations and the 1483 sites with 

exceptionally high levels (> Probable Effect Level: Canadian Council of Ministers of the 

Environment, 1999) for one or more of these elements were selected. These G-BASE sites 

were linked to river segments (as above) and the closest EA/NRW biological sampling sites 

to these river segments identified and checked manually. Most biological sampling sites 

were too far from the river segment to provide a valid match to the G-BASE sites and a 

further sub-set had already been identified and matched. However, a small number of 

additional sites (47 for invertebrates) were identified that had been missed in the original 

screening and the spatial matching was sufficient to warrant inclusion. 

Once sites had been matched spatially the BQE sampling year which represented the best 

temporal match with the chemical sampling occasion was chosen. Where multiple BQE 

samples were collected within the year that represented the best temporal match, the 

sample with the highest index value was chosen as representative of the condition of the 

site. 

Despite the high density of G-BASE sample sites there was, to some extent, a spatial 

mismatch between the G-BASE and EA/NRW biological monitoring sites, with the former 

focussing on headwaters and the latter on the main stem. Nevertheless, for invertebrates 

and fish, matches were found for a substantial number of sites (Table 2.2). 
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Figure 2.4. Example of spatial matching of G-BASE sites (blue dots) to EA/NRW biological 

sampling sites (red dots) using the river network (blue line). The two segments containing 

matched sediment chemistry – biology sites are marked in bold. Note that the two sites near 

the confluence of the segments containing matched sites have been correctly paired within 

their segments, despite these sites being spatially close to one another. 

Table 2.2 Number of sites with matched biology and sediment chemistry data. 

 G-BASE EA/NRW 
 Sediment chemistry* Water chemistry* Sediment chemistry° 
 Sites Samples Sites Samples Sites Samples 

       
Invertebrates 1,377 1,776 995 1,258 178 902 
EQR 963 963 589 589 97 152 
       

       
Diatoms 324 539 278 453   
EQR 189 189 151 151   
       

       
Macrophytes 439 439 372 376   
EQR 209 209 161 161   
       

       
Fish 1,367 1,367 1,184 1,184   
EQR 1,367 1,367 1,184 1,184   
       
 
* numbers shown are for all sites/samples, actual numbers vary dependent upon element. 
° numbers shown are for cadmium, number of matched sites/samples are considerably lower for other elements. 

 

Due to the evolution of methods during the lifetime of the G-BASE project it was necessary 

to level the concentration of metals and metalloids in stream sediments determined using 

XRFS and DCOES so that concentrations were not influenced by analytical method. 
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A similar process of matching EA/NRW sediment chemistry and biology sites using river 

segments was undertaken. It was decided to keep these data separate from the matched 

biology – G-BASE sediment chemistry data due to differences in the analytical approaches 

used and size fractions analysed between EA/NRW and BGS. Considerably fewer EA/NRW 

sediment chemistry sites provided matches to the biology than did G-BASE (Table 2.2), with 

the number of matches varying across the different metals. The most abundant EA/NRW 

biology – sediment chemistry matched data was for cadmium and the least for arsenic.  

 

Figure 2.5. Map of all sites with matched G-BASE sediment chemistry and EA/NRW 

biological data (total number of sites = 2833). 
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2.3 Analysis of G-BASE data 

As the purpose of compiling the existing data was to produce a matched sediment chemistry 

– biology dataset for further analysis, it was necessary to develop our understanding of the 

variation in sediment metal concentrations in the G-BASE dataset. The initial analysis 

involved a pairwise comparison of variation in the elements of interest, namely the metals 

silver, cadmium, chromium, copper, nickel, mercury, lead, tin and zinc, and the metalloids 

arsenic and antimony. Here all the G-BASE sediment chemistry data available were used as 

the objective was to establish the co-occurrence of elements and, hence, identify any 

potential confounding effects that should be considered when interpreting any relationships 

based on these data.  

Several elements were correlated in the G-BASE data (Figure 2.5). Of particular note were 

arsenic, cadmium, copper, nickel, lead and zinc which tended to co-occur. Nevertheless, 

there did appear to be sufficient variation within the relationships between elements to 

enable the influence of each element to be assessed independently. There were 

considerably fewer data describing the occurrence of mercury in stream sediments than 

other metals or metalloids, making it difficult to establish any relationships between mercury 

and other elements (Figure 2.5).  

To understand better the range and distribution of concentrations of metals and metalloids in 

stream sediments, a frequency distribution plot was derived for each element (Figure 2.6a-

c). Here the data describing sediment concentrations of each element were ranked and the 

percentile position of each sample within this ranking calculated.  

To enable the stream sediment metal concentrations to be put into context, the frequency 

distribution of sites (samples) were compared with the Canadian interim sediment quality 

guidelines (Canadian Council of Ministers of the Environment, 1999) and the Australian and 

New Zealand Low Trigger Value (ANZECC and ARMCANZ, 2000) where available. Thus, 

the proportion of sites (samples) exceeding these sediment quality guidelines can be 

established. However, it should be noted that for certain elements the geochemical analytical 

methods used by BGS (XRFS/DCOES/AAS) may return higher metal concentrations than 

analyses based on acid extraction (typically undertaken for toxicological analysis), as the 

geogenic component derived from the underlying parent material (geology) may be included 

in the former. 

Again it was clear that the low frequency of data describing mercury in stream sediments 

within G-BASE limits the conclusions that can be drawn for this element (Figure 2.6b). Whilst 

there were fewer sites with data describing antimony, cadmium and silver concentrations 

than for the other elements, which resulted in rather abrupt changes in the frequency 

distribution for these elements, there was sufficient to draw reasonable conclusions. 

With the exception of mercury, the Canadian interim sediment quality guidelines are more 

prescriptive than the corresponding Australia and New Zealand low trigger values. This is 

reflected in the proportion of sites where sediment metal/metalloid concentrations measured 

by G-BASE were in exceedance of these limits, with more sites in exceedance of the 

Canadian guidelines (Table 2.3). For chromium, nickel and possibly arsenic, the 

exceptionally high proportion of sites exceeding the guideline concentrations suggests that 

the G-BASE methods may not be compatible with those used to derive these standards for 
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these elements, more reflecting the mineralogy than the biologically available component. 

Nevertheless, it is apparent that for most metals a relatively large proportion of sites sampled 

in G-BASE are in exceedance of these guidelines, suggesting that the data should be 

adequate to detect effects on biota (Objective 1b).  

 

 

Figure 2.5. Pairwise correlations showing co-occurrence of metals and metalloids in stream 

sediments, from G-BASE. 

  



69 
 

 

 

 
 

Figure 2.6a. Frequency distribution plots of antimony, arsenic, cadmium and chromium in 
stream sediments (from G-BASE). Also shown are the concentrations of the Canadian 
interim sediment quality guidelines (red dashed line) and the Australian and New Zealand 
low trigger value (green dotted line) where available 
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Figure 2.6b. Frequency distribution plots of copper, lead, mercury, and nickel in stream 
sediments (from G-BASE). Also shown are the concentrations of the Canadian interim 
sediment quality guidelines (red dashed line) and the Australian and New Zealand low 
trigger value (green dotted line) where available. 
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Figure 2.6c. Frequency distribution plots of silver, tin and zinc in stream sediments (from G-
BASE). Also shown are the concentrations of the Canadian interim sediment quality 
guidelines (red dashed line) and the Australian and New Zealand low trigger value (green 
dotted line) where available. 
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Table 2.3. Percentage of G-BASE sites where sediment metal concentrations were in 
exceedance of the Canadian interim sediment quality guidelines and the Australia and 
New Zealand low trigger values.  

 

 

 

 
Percentage of G-BASE sites in exceedance 

 

 

Australia and New 
Zealand: 

Low trigger value 

Flanders: 
Sediment quality 

guidelines 

Canada: 
Interim sediment quality 

guidelines 

Antimony Sb 9.2 – – 

Arsenic As 28.7 32.2 92.4 

Cadmium Cd 15.1 18.0 59.9 

Chromium Cr 75.8 – 98.1 

Copper Cu 4.3 59.4 16.2 

Lead Pb 37.3 50.5 60.0 

Mercury Hg 31.3 9.5 31.3 

Nickel Ni 88.0 93.9 – 

Silver Ag 20.2 – – 

Tin Sn – – – 

Zinc Zn 22.4 38.6 52.4 

 

[ – guideline concentrations not available] 
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3 Analysis of Existing Data 

Objective 2a 
To analyse existing ecological (macroinvertebrates, benthic algae, macrophytes and 
fish) and chemical (water and sediment) monitoring data from water bodies at risk to 
sediment-borne mining-related metal contamination (Environment Agency, 2008b) to 
identify if and where such stressors result in sites failing to achieve EU WFD good 
ecological status. 

 

3.1 Methods 

The spatially and temporally matched sediment chemistry – biology datasets compiled in 

objective 1b were used to explore the relationships between sediment chemistry and 

biological response. As the toxic effects of trace metals were not expected to occur until the 

uptake rate has exceeded the combined rates of efflux and detoxification (Luoma and 

Rainbow, 2008) a threshold biological response to sediment metal concentration was 

expected (see Figure 1.4). It was also assumed that where sediment metal concentrations 

were below the threshold, other factors could potentially influence the biological response. 

Hence, quantile regression was used where the 95%ile was modelled using a threshold 

response of biological variables where there was no influence of sediment metal content 

below a cut-point concentration (Figure 3.1). Relationships were modelled in R version 3.2.0 

using the pricefit procedure, an iterative parameter optimisation procedure using the pseudo-

random search algorithm of Price (1997). R code for the modelling procedure is given in 

appendix 2. Three parameter values were obtained using this procedure (Figure 3.1). 

a – The 95%ile below the threshold. A fixed value of the biological response variable 

describing the upper range of values obtained at sites where the sediment metal 

concentration does not cause toxic effects. 

b – The threshold sediment metal concentration. A fixed value of the sediment metal 

concentration above which the sediment metal concentration constrains the upper range of 

biological response values, i.e. the threshold above which toxic effects are apparent. 

c – The slope of the 95%ile of the biological response above the threshold. At these 

sediment metal concentrations toxic effects are increasingly apparent. The slope of the 

relationship above the threshold is determined by how toxic the metal is.  

 

 

Figure 3.1 Schematic diagram 

illustrating the threshold relationship 

expected between sediment metal 

concentration and biological 

response variables and the three 

parameters fitted using quantile 

regression and the pricefit procedure. 
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The significance of the threshold model was determined using Akaike's Information Criterion 

(AIC) values calculated based on the sum of weighted absolute deviation using the method 

described in Pacheco et al. (2005). AIC values for the threshold model were compared with 

values obtained for an exponential, a linear and a null model. The threshold model was 

selected as optimal if it had the lowest AIC values and differences in AIC values from other 

models were >2 (Anderson and Burnham, 2002). It was noted where AIC values indicated 

that the threshold model was not optimal as defined by these criteria, but was not worse than 

optimal model, i.e. where the difference in AIC values was between 0 and 2. Also, it was 

noted where the threshold model was selected as optimal but the parameter estimates did 

not fit with the assumptions of toxic effects (Figure 3.1), i.e. parameter c was positive. 

Of the three modelled parameters, the value of b – the threshold sediment metal 

concentration – is of most interest. This value represents the concentration above which a 

negative relationship is apparent between sediment metal concentration and biological 

response values, suggesting that the toxic effect of the metal are being expressed.  

Biological response data were summarised as indices used for WFD classification, other 

indices that are used to interpret WFD classifications (although not used in the classification 

per se), taxonomic richness (where this is not used as an index for WFD classification), and 

as Ecological Quality Ratios (EQR) which are the value of the WFD index compared with the 

expected value of the index if the site were in reference condition (i.e. observed/expected). 

As EQR values were obtained from the EA/NRW data holdings, values were only available 

for those data collected after the adoption of the WFD. As models were fitted to the 95%ile, 

where multiple biological samples were collected in the year that provided the best temporal 

match to the chemical sampling occasion, the highest value of the biological response was 

used (following from the expectations of the response modelled – see Figure 3.1).  

Matched datasets describing the response of invertebrates, macrophytes, diatoms and fish 

to sediment chemistry were analysed for the elements antimony, arsenic, cadmium, 

chromium, copper, iron, lead, nickel, silver, tin and zinc.  

Confidence intervals for each parameter were determined by bootstrapping. Here, 

distributions of model parameters were estimated by implementing 200 resamples of the 

observed dataset, each of which is obtained by random sampling with replacement from the 

original dataset (with each resample producing a dataset of equal size to the observed 

dataset). Bootstrapping is recommended when the theoretical distribution of a statistic of 

interest is complicated or unknown. Since the bootstrapping procedure is distribution-

independent it provides an indirect method to assess the properties of the distribution 

underlying the sample and the parameters of interest that are derived from this distribution. 

Due to the shape of the curve being modelled here, this approach has a tendency to 

produce wide (and not normally distributed) confidence intervals, dependent upon how the 

upper range of sediment metal concentrations (above the threshold, b in Figure 3.1) is 

included within the resampling. Confidence intervals can also be estimated through a jack-

knife procedure, a linear approximation of the bootstrap produced by systematically leaving 

out each observation from a dataset and calculating the estimate and then establishing the 

distribution of these estimates. Jack-knifing produces more normally distributed parameter 

estimates and smaller confidence intervals, but only the influence of each individual point is 

being considered. As more iterations are required to resample the full dataset as required by 

the jack-knife procedure, considerably more computing time is required compared with the 
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bootstrap procedure. A compromise between these two approaches was tested where the 

resampling procedure used in the bootstrap was structured to ensure that the resampling 

included data from across the whole range of sediment metal concentrations in the dataset. 

Here the range of sediment metal concentrations was divided into 5 equal sized bins, and 

the bootstrap resampling constrained such that each bin was sampled in proportion to the 

number of sites within the bin. Whilst the performance of the structured bootstrap was better 

using an artificial test dataset, similar non-normal confidence intervals were produced when 

the matched biology – chemistry datasets were used and it was decided that the additional 

computing time required did not justify the structured approach.  

3.2 Results 

The number of matched sites varied among BQEs with the highest number of matched sites 

for fish and invertebrates. Also, within BQEs the number of matched sites varied among the 

different metals, with mercury and silver typically having the least number of matched sites. 

There were also differences in the number of matched sites within each BQE, dependent 

upon which metric was used. As a consequence of these differences in the sizes of the 

datasets, for each metal, the range of sediment concentrations used, and the density of data 

across the range, varied with BQE. As quantile regression is sensitive to the density 

distribution of the data used, particularly with the threshold model used here, the variation in 

the size of data sets and range of sediment concentrations may have influenced the 

likelihood of detecting a threshold across the range of sediment metal – BQE combinations.  

For fish, the EQR for individual species (as obtained from FCS2) was explored as a potential 

response variable, initially focussing on salmon (Salmo salar L.) and brown trout (Salmo 

trutta L.) as the most likely species to be found in mining areas. However, it became 

apparent that the probabilistic assumptions of the FCS2 tool resulted in data that did not fully 

satisfy the assumptions of the quantile regression threshold model. FCS2 produces a value 

for individual species, termed the EQR for that species, which represents the probability that 

the catch is equal to or greater than the expected catch for that species: if the expected 

catch is 0 for that species the EQR is 1. Thus, sites with high sediment metal concentrations 

returned high scores if they had a low probability of that species occurring there. Whilst the 

results for brown trout were more encouraging, those for salmon (which overall has a lower 

probability of occurrence) were difficult to interpret. The EQR for fish for the site as a whole 

is a compilation of the “EQR” values for individual species, is not affected in the same way 

and is a true EQR value. 

Overall there appeared to be considerable differences in sensitivity across the different 

BQEs (Table 3.1). Across the suite of elements tested very few thresholds were detected for 

macrophytes, but all elements produced fits to the threshold model that were optimal for the 

number of taxa of invertebrates. Based on the number of taxa (and including those threshold 

values where the fit was close to optimal), the rank order from most sensitive to least 

sensitive was diatoms > invertebrates > fish > macrophytes. Diatoms had the lowest 

threshold values (with optimal or near optimal fits) for seven metals (cadmium, chromium, 

copper, iron, nickel, antimony and tin) and invertebrates for four metals (silver, arsenic, lead 

and zinc), again based on the number of taxa; macrophytes and fish were not lowest for any 

element. When other metrics were considered, diatoms had the lowest threshold for seven 

elements, invertebrates had three and fish one (Table 3.2). Whilst the diatom metrics % 

motile and TDI (Trophic Diatom Index – based on nutrient affinity) are relevant to the 
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functioning of the diatom assemblage and the latter to WFD classification, variation in these 

metrics may be influenced by factors other than the toxic effects of metals.  

It should be noted, also, that the density of data and range of sediment metal concentrations 

varied across the different BQEs which will have influenced the likelihood of detecting a 

significant threshold.  

For both invertebrates and diatoms the number of taxa provide a better response to 

sediment metal concentrations than did the other metrics tested (ASPT for invertebrates, 

and TDI and % motile taxa). This is not surprising as ASPT was developed as an index of 

sensitivity to organic pollution and TDI as an index of sensitivity to nutrient pollution, whereas 

the number of taxa is likely to indicate loss of those species that are sensitive to metals from 

the community. 

With the exception of fish, surprisingly few thresholds were detected when the condition of 

sites was calculated as an ecological quality ratio (EQR). For invertebrates this is likely to be 

a consequence of fewer data (maximum 963 matched sites) being available for EQR than for 

NTAXA and ASPT. For diatoms and macrophytes it may be because EQRs are heavily 

weighted towards detection of nutrient stress: for diatoms the calculation of EQR is based 

entirely on TDI and does not involve the number of taxa present (which here appeared to be 

sensitive to sediment metal concentrations).  

It was also apparent that for diatom EQR, macrophyte EQR and invertebrate ASPT EQR 

there were positive threshold relationships with sediment metal concentrations (i.e. response 

values increased once a threshold sediment metal concentration had been exceeded: Table 

3.3.). It is possible that the areas around abandoned metal mines have not been subject to 

the same development and/or agricultural intensification that could influence the metrics 

behind these EQR values, i.e. through organic pollution or increased nutrient concentrations. 

However, it is likely that these metrics are confounded by the effects of metal contamination. 

These metrics could be affected if certain parts of the biological community are more 

sensitive to metal contamination, and thus affected preferentially. For diatoms, if the rapidly 

growing diatom taxa characteristic of higher nutrient conditions, which typically have 

mechanisms to facilitate rapid uptake of ions, are more sensitive to metal contamination and, 

therefore, are lost from the community, TDI scores would drop and EQR increase at high 

metal concentrations. Similarly for macrophytes, high metal concentrations may supress 

rapidly growing competitive taxa typical of higher nutrient conditions (reducing River 

Macrophyte Nutrient Index scores), increase species richness (Table 3.3) and, therefore, 

result in an apparent increase in EQR based on these two metrics. For invertebrates, the 

taxa with low ASPT scores are often sediment dwelling which could increase their 

susceptibility to sediment metal contamination: if these taxa are lost from the community 

ASPT would increase. The fish tool, FCS2, does not use metrics rather EQR is based on 

catch returns compared with expected catch.  
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Table 3.1 Summary of modelled threshold sediment metal concentrations (mg Kg-1) from quantile regression.  

 Canada° 

Interim 
sediment 

quality 
guidelines 

Australia 
and New 
Zealand* 

Low trigger 
value  

Invertebrates Diatoms Macrophytes Fish 
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Cadmium 0.6 1.5 14.8  8.7  4 3.1       12  9.6 5.4 

Chromium 37.3 80 391    182        128  261  

Copper 35.7 65 99  98  75  32.6   104       

Iron       41,404            

Lead 35 50 49.6    2,617 399       2,354   198 

Nickel  21 202    41.4        169 170 197 156 

Silver  1 7.9             49.6 51  

Tin   18.8    9  326  31    62.7 338   

Zinc 123 200 286    1043 382 153         2053 

Antimony  2 13.7    1.8 9       55.5 65 85  

Arsenic 5.9 20 27    46.6        104  46 168 

 
Threshold sediment metal concentrations for the biological quality elements and indices tested (parameter b in Figure 3.1) together with threshold 
environmental standards for Canada (° Canadian Council of Ministers of the Environment, 1999), and Australia and New Zealand (* ANZECC and 
ARMCANZ, 2000). Figures shown are from model fits that were optimal based on AIC criteria, figures in red are from models that were close to optimal. 
Details were not included, even if  model fits were optimal, where the biological response did not fit expectations, i.e. the slope of the response above the 

threshold (parameter c in Figure 3.1) was positive. Full details of the modelled relationships are available in Appendix 2.
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Table 3.2 Compiled results from quantile regression showing the geometric mean of 

threshold values and the lowest threshold value based on number of taxa (from 

optimal models), and the lowest of all metrics for each element. 

 

 
Canada° 

Interim sediment 
quality guidelines 

Australia and New 
Zealand* 

Low Trigger Value 
(10% probability of 

effect) 

Geometric 
mean 

based on 
number of 

taxa 

Lowest 
based 

on 
number 
of taxa 

Lowest of all metrics 

Cadmium 0.6 1.5 6.8 4 3.1 
Diatom 

% motile 

Chromium 37.3 80 267 182 128 
Fish 
EQR 

Copper 35.7 65 86.2 75 32.6 
Diatom 

TDI 

Iron   41,404 41,404 41,404 
Diatom 

No. Taxa 

Lead 35 50 295 49.6 49.6 
Invertebrate 

NTAXA 

Nickel  21 109 41.4 41.4 
Diatom 

No. Taxa 

Silver  1 7.9 7.9 7.9 
Invertebrate 

NTAXA 

Tin   17.4 9 9 
Diatom 

TDI 

Zinc 123 200 849 286 153 
Diatom 

TDI 

Antimony  2 5 1.8 1.8 
Diatom 

No. Taxa 

Arsenic 5.9 20 59.6 27 27 
Invertebrate 

NTAXA 

° Canadian Council of Ministers of the Environment (1999).  
* ANZECC and ARMCANZ (2000). 
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Table 3.3 Summary of modelled threshold sediment metal concentrations (mg Kg-1) from quantile regression where the biological 

response did not fit expectations, i.e. the slope of the response above the threshold (parameter c in Figure 3.1) was positive.  
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Cadmium                 

Chromium    90     137        

Copper    251             

Iron    86,853  35,712  44,272  44,832  39,866     

Lead         1,700        

Nickel                 

Silver                 

Tin                 

Zinc                 

Antimony                 

Arsenic        77.8    38.1     

 

Figures shown are from model fits that were optimal based on AIC criteria, figures in red are from models that were close to optimal.
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The values of modelled thresholds found here were compared with the Canadian interim 

sediment quality guidelines (Canadian Council of Ministers of the Environment, 1999, 1995) 

and the Australian and New Zealand Low Trigger Value (ANZECC and ARMCANZ, 2000) 

which are both largely based on laboratory trials (Table 3.1).  

It was apparent that for copper the existing Canadian, and Australian and New Zealand 

sediment threshold environmental standards are comparable to the findings here, with 

threshold responses at relatively consistent concentrations across invertebrates (NTAXA, 

EQR NTAXA), diatoms (No. Taxa, TDI) and macrophytes (No. Aquatic Taxa).  

A particular sensitivity to tin was noted across all BQEs (invertebrate NTAXA 18.8 mg Kg-1, 

diatom No. taxa 20 mg Kg-1, macrophyte plant richness 31 mg Kg-1, fish site EQR 62.7 mg 

Kg-1). The Canadian and the Australian and New Zealand sediment quality guidelines do not 

currently include values for tin.  

For other elements, threshold concentrations varied over the different BQEs, with the 

response for diatoms similar to existing environmental standards for nickel, silver and 

antimony, and (accepting close to optimal models) for cadmium and arsenic. For 

invertebrates (NTAXA) the threshold concentrations for lead, arsenic and zinc were close to 

existing environmental standards. For fish and invertebrates (other metals), the modelled 

thresholds were typically an order of magnitude greater than existing sediment quality 

guidelines. Despite the uncertainty involved in the data matching exercise used to produce 

the datasets, these findings based on field data suggest that several of the existing sediment 

quality guidelines may be too precautionary, at least for fish and invertebrates. 
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4  Targeted Field Data Relating Bioavailable Metal Exposure to 

Community Response 

Objective 3a 
To undertake targeted field data collection to allow the measurement of bioavailable 

metal exposure in terms of the concentration bioaccumulated into the tissues of 

widespread benthic biomonitoring species, calibrate these measures of bioavailable 

metal against community response data.  

4.1 Identification of field sites. 

Informed by the collation of existing data undertaken in WP1b and consultation with EA staff 

involved with previous reviews (Environment Agency 2012a, b) 20 spatially-independent, 

replicate river catchments have been identified from across England and Wales in areas 

affected by metal mining facilities.  Within each catchment, five monitoring sites have been 

selected (see Figure 4.1).  The five sites include: 

 an upstream control site, 

 a site immediately downstream of the impacted stream reach, 

 an additional control site on a comparable adjacent unimpacted watercourse, 

 a site on the impacted stream further downstream in an erosional reach, 

 and a site further downstream on the impacted stream along a depositional reach 

(but staying upstream of major urban areas). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1. Schematic diagram of the arrangement of monitoring sites within each replicate 
catchment. 
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Catchments have been selected where mining is the dominant stressor on the system, 

avoiding catchments with large urban areas or other serious water quality issues that would 

confound our ability to link the biological response to the extent of metal-mining 

contamination. 

To ensure that 20 catchments can be sampled an extended list of potential sites was drawn 

up from which the 20 would be selected (Table 4.1). The extended list was drawn up in case 

on arrival at a site it was clear that field conditions made it unsuitable to collect the samples 

required. The mining facilities associated with each catchment are given in Table 4.2.  

4.2 Field sampling and laboratory methods 

20 catchments have been sampled (see Figure 4.2 and Table 4.1). At each site four different 

types of data were collected:  

 a sample of the macroinvertebrate community,  

 biomonitor specimens for metal bioaccumulation analysis,  

 a quantitative estimate of the amount of fine sediment in the stream bed, and  

 a sample of the stream bed fine sediment for metals content, organic carbon, iron 

oxide, pH and particle size analysis.   

4.2.1 Biological community sampling 

At each site the benthic macroinvertebrate community was sampled using the standard UK 

WFD monitoring technique (3-minute kick sample plus 1 minute hand search) where all in-

stream habitats were sampled in proportion to their occurrence in the sample reach (Murray-

Bligh et al., 1997).  The standard range of environmental variables were recorded either at 

the site (stream width and depth, velocity, substrate composition, pH and conductivity), or 

from map-based data (discharge category, altitude, distance from source and slope; Murray-

Bligh et al., 1997). In addition photographs of the site were taken. Macroinvertebrate 

samples were fixed with dilute formalin and returned to the laboratory for subsequent 

identification and quantification to the lowest practicable taxonomic level, usually species or 

genus. 

4.2.2 Biomonitor species sampling 

A separate sample of >20 individuals from the biomonitor groups (Hydropsychidae, 

Rhycophilidae, Baetidae, Leuctridae and Gammaridae) have been collected from each site 

(as appropriate).  Kick samples (additional to those outlined in 4.2.1) were collected until 

sufficient individuals found, and individuals picked and bagged in the field. Larger individuals 

were collected in preference to smaller individuals to ensure enough material for metal 

analysis. As a rule of thumb each bag contained the equivalent biomass of late instar 

Hydropsychidae; where only early instar individuals were present at a site then each bag 

was filled with sufficient small individuals to give the equivalent biomass of a late instar 

specimen. 

By using common and ubiquitous biomonitor species we ensured that we had a measure of 

bioavailable metal from all sites.  
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Table 4.1 Field sites, grouped by catchment, with prior information on sediment metal 
concentrations (where available).  

 
 Catchment River_Name Sampling_Site EA_WB_ID As Cu Fe Zn 

 
South West A 

Halgavor Stream Independent_Control GB108049000040     

St. Lawrence Stream Downstream GB108049000040  H  H 

St. Lawrence Stream Downstream_Erosional GB108049000040  H  H 

St. Lawrence Stream Downstream_Depositional GB108049000040   H   H 

B 

Bolingey Stream Upstream_Control GB108049000700  H  M 

Nanteague Stream Independent_Control GB108048002360     

Bolingey Stream Downstream GB108049000700  H  M 

Bolingey Stream Downstream_Erosional GB108049000700  H  M 

Bolingey Stream Downstream_Depositional GB108049000700   H   M 

C 

Porthleven Stream Upstream_Control GB108048002060     

Tregew Stream Independent_Control GB108048002060     

Porthleven Stream Downstream GB108048002060     

Porthleven Stream Downstream_Erosional GB108048002060     

Porthleven Stream Downstream_Depositional GB108048002060         

D 

Hayle Upstream_Control GB108049000380  M  M 

Trevaylor Stream Independent_Control GB108048002100  H  H 

Hayle Downstream GB108049000380  M  M 

Hayle Downstream_Erosional GB108049000380  M  M 

Hayle Downstream_Depositional GB108049000380   M   M 

E 

River Burn Upstream_Control GB108047007880  M  M 

Quither Brook Independent_Control GB108047007731  H  H 

River Burn Downstream GB108047007880  M  M 

River Burn Downstream_Erosional GB108047007880  M  M 

River Burn Downstream_Depositional GB108047007880   M   M 

F 

Mardle Upstream_Control GB108046005220     

Dean Burn Independent_Control GB108046005190     

Mardle Downstream GB108046005220     

Mardle Downstream_Erosional GB108046005220     

Mardle Downstream_Depositional GB108046005220         

 
Wales  

and 
Shropshire 

G 

Afon Melindwr Upstream_Control GB110063041590  M  M 

Penbryn Independent_Control GB110063041590     

Afon Melindwr Downstream GB110063041590  M  M 

Afon Melindwr Downstream_Erosional GB110063041590  M  M 

Afon Melindwr Downstream_Depositional GB110063041590   M   M 

H 

Nant Gwyn Upstream_Control GB110063041680     

Nant Magwr Independent_Control GB110063041680  M  M 

Nant Cwmnewydion Downstream GB110063041680     

Nant Cwmnewydion Downstream_Erosional GB110063041680     

Nant Magwr Downstream_Depositional GB110063041680   M   M 

I 

Afon Cyneiniog Upstream_Control GB110064043581     

Nant Cwmere Independent_Control GB110064043581     

Afon Cyneiniog Downstream GB110064043581     

Afon Cyneiniog Downstream_Erosional GB110064043581     

Afon Cyneiniog Downstream_Depositional GB110064043581         

J 

Afon Ystwyth Upstream_Control GB110063041720  M  M 

Afon Elan Independent_Control GB109055042300  H  H 

Afon Ystwyth Downstream GB110063041720  M  M 

Afon Ystwyth Downstream_Erosional GB110063041720  M  M 

Afon Ystwyth Downstream_Depositional GB110063041720   M   M 

K 

Wye Upstream_Control GB109055042360  M  M 

Afon Bidno Independent_Control GB109055042340  H  H 

Wye Downstream GB109055042360  M  M 

Wye Downstream_Erosional GB109055042360  M  M 

Wye Downstream_Depositional GB109055042360   M   M 

L 

Rea Brook Upstream_Control GB109054049540  H  H 

Pontesford Brook Independent_Control GB109054049500     

Rea Brook Downstream GB109054049570  H  M 

Rea Brook Downstream_Erosional GB109054049570  H  M 

Rea Brook Downstream_Depositional GB109054049570  H  M 
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North East 

and  
North West 

M 

Black Burn Upstream_Control GB103023075410   H   H 

Gilderdale Burn Independent_Control GB103023075430     

River South Tyne Downstream GB103023075530  H H H 

River South Tyne Downstream_Erosional GB103023075530  H H H 

River South Tyne Downstream_Depositional GB103023075530   H H H 

N 

Red Tarn Beck Upstream_Control GB102076070740     

Glencoyne Beck Independent_Control GB102076071020     

Red Tarn Beck Downstream GB102076070740     

Red Tarn Beck Downstream_Erosional GB102076070740     

Red Tarn Beck Downstream_Depositional GB102076070740         

O 

River Glendermackin Upstream_Control GB112075070460  M  H 

Naddle Beck Independent_Control GB112075070420     

River Glendermackin Downstream GB112075070460  M  H 

River Greta Downstream_Erosional GB112075073561  M H M 

River Greta Downstream_Depositional GB112075073561   M H M 

P 

Arkle Beck Upstream_Control GB104027069170     

Marske Beck Independent_Control GB104027069140     

Arkle Beck Downstream GB104027069170     

Arkle Beck Downstream_Erosional GB104027069170     

Arkle Beck Downstream_Depositional GB104027069170         

Q 

Great Eggleshope Beck Upstream_Control GB103025072490  H  M 

Hindon Beck Independent_Control GB103024072690  H  H 

Eggleston Burn Downstream GB103025072490  H  M 

Eggleston Burn Downstream_Erosional GB103025072490  H  M 

Eggleston Burn Downstream_Depositional GB103025072490   H   M 

R 

Hudeshope Beck Upstream_Control GB103025072480     

Hargill Beck Independent_Control      

Hudeshope Beck Downstream GB103025072480     

Hudeshope Beck Downstream_Erosional GB103025072480     

Hudeshope Beck Downstream_Depositional GB103025072480         

S 

Spurlswood Beck Upstream_Control GB103024072700     

Linburn Beck Independent_Control GB103024072720     

Bedburn Beck Downstream GB103024072710     

Bedburn Beck Downstream_Erosional GB103024072750     

Bedburn Beck Downstream_Depositional GB103024072760   H   M 

T 

River East Allen Upstream_Control GB103023074710  H  M 

Knockshield Burn Independent_Control GB103023074710     

River East Allen Downstream GB103023074710  H  M 

River East Allen Downstream_Erosional GB103023074710  H  M 

River East Allen Downstream_Depositional GB103023074710   H   M 
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Table 4.2 Mining facilities in the catchments used as field sites.  

 
Catchment URN8 Site_name Country Local_authority 

A   Tretoil Mine England Cornwall 

B 1294 West Chiverton Mine England Cornwall 
B 1300 Anna Mine England Cornwall 

C 1295 Great Fortune Mine England Cornwall 
C 1296 Metal Mine England Cornwall 

D 1297 Godolphin Bridge Mine England Cornwall 

E   West Wheal Friendship Tin Mine England Cornwall 

F 1283 Brookwood Mine England South Hams District 

G 1086 Cwmbrwyno Wales Ceredigion 
G 1107 Goginan Wales Ceredigion 

H 1115 Wemyss Wales Ceredigion 

I 1123 Bwlchglas Wales Ceredigion 
I 1125 Hafan Wales Ceredigion 

J 1098 Cwmystwyth Wales Ceredigion 

K 1109 Nantiago Wales Powys 

L 1149 Roman Gravels England Shropshire 
L 1151 Tankerville Mine England Shropshire 
L 1155 Snailbeach England Shropshire 
L 1161 Roundhill Mine England Shropshire 
L 1164 Snailbeach Smelter England Shropshire 

M 1005 Nenthead Mines England Eden District 
M 1038 Holyfield Mine England Eden District 
M 1043 Bentyfield Mine England Eden District 
M 1059 White Sikes England Eden District 
M 1072 Brown Gill, Garrigill England Eden District 
M 1137 Hudgill Burn England Eden District 

N 1257 Greenside Mine upper wastes England Eden District 
N 1258 Greenside Mine lower wastes England Eden District 
N 1259 Greenside Mine Tailings Dams England Eden District 

O 1316 Gategill Mine England Eden District 

P 1230 Windegg South Mine England Richmondshire District 
P 1232 Sleigill Lead Mine England Richmondshire District 
P 1233 Black Mine England Richmondshire District 
P 1235 Dodgson Hush Mine England Richmondshire District 
P 1236 Danby Lead Level Mine England Richmondshire District 

Q 1027 California England County Durham 
Q 1041 Wiregill England County Durham 
Q 1053 Manor Gill England County Durham 

R 1042 Lodge Sike England County Durham 
R 1044 Coldberry England County Durham 

S   Sharnberry Lead Mine England County Durham 

T 1037 Mills Vein Level England Northumberland 
T 1062 Swinhope Head Mine England Northumberland 

 

 

 
  



87 
 

All specimens were quickly rinsed in stream water to remove any attached material, 

individually bagged and frozen in the field in a portable freezer. Upon return to the laboratory 

the specimens were transferred to a -20 °C freezer. 

In the laboratory, specimens were rinsed in double-distilled water and dried to constant mass 

in acid-washed Pyrex tubes.  The specimens were then digested in Aristar grade 

concentrated nitric acid at 100 °C, made up to volume with double-distilled water and 

analysed for metals on a Vista-Pro CCD Simultaneous ICPOES.  Accumulated metal 

concentrations were expressed as µg g-1 dry weight. 

4.2.3 Quantitative fine sediment sampling 

Immediately upstream of the RIVPACS and biomonitor sampling, 4 samples of deposited 

sediment mass were collected using the remobilisation technique working in an upstream 

direction, following the protocol of Duerdoth et al. (2015). Two samples are collected from 

depositional areas (patches with a propensity to deposit fine sediment e.g. eddies or areas 

of lower flow velocity such as pools or backwaters) and two from erosional areas (higher 

velocity areas in or close to the thalweg). At each position, the remobilisation stilling well was 

carefully lowered onto and pushed into the river bed to create a seal.  The seal is important 

to prevent the winnowing of fines during the agitation process. The depth of water in the 

stilling well was measured and recorded, then one person stirred the water vigorously for 1 

minute without making contact with the river bed. A sample of the resuspended surface 

drape of fine sediment was collected by drawing a vial through the water column. The first 

person then digs and stirs for 1 minute total (digs for 30 seconds then stirs for 30 seconds), 

aiming to dig to between approximately 10 and 20 cm depth if possible. A sample of the 

resuspended fine sediment (comprising both the surface drape of fine sediment and the fine 

sediment entrained within the river bed) is then collected by drawing a second vial through 

the water column.  

The samples of fine sediment were refrigerated in cool boxes and returned to the laboratory 

within 5 days, where they were processed for dry mass and organic content (i.e. volatile 

solids following combustion at 550 °C). The masses were then converted to the deposited 

mass on the river bed from the concentration of resuspended fine sediment, the volume of 

water within the stilling well and the area of river bed sampled. 

4.2.4 Fine sediment sampling for metals content & particle size analysis 

Undisturbed areas accruing fine sediment were located visually within the same reach as 

used for the quantitative sediment sampling. At each position either the large stilling well or a 

smaller plastic version was placed over the fine sediment patch to isolate it from the flowing 

water and thus reduce the likelihood of loss of fines during removal of the sediment. The fine 

sediment was then scooped into N2 filled pots, filling it right to the brim and ensuring that 

there were no obvious air pockets. This was done in a way that created as little disturbance 

to the fines as possible. While we were not seeking to maintain the integrity of any sediment 

layering, it was important to minimise the loss of very fine material during sampling. At each 

site five 100 ml samples and three 250 ml samples were collected. 

These samples were then immediately placed in a portable freezer in the field and 

transferred to a -20 °C freezer upon return to the laboratory.  Samples were kept at -20 °C 

until required, and then defrosted at room temperature. The samples were then oven dried at 
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40 °C over 1 week in (new) foil trays. Once dry, the samples were gently disaggregated in 

an agate pestle and mortar, which was wiped clean with acetone between samples. The 

samples were then sieved using 2 mm stainless steel test sieves. Sieves were cleaned in an 

ultrasonic bath and wiped with acetone between samples. The <2 mm and >2 mm factions 

were then weighed to 3 d.p. and stored in polyethene bags. The <2 mm fraction was used 

for further analysis. 

a Subsampling: cone and quartering (Adapted from Schumacher et al., 1990) 

Samples were tipped onto fresh baking parchment and subsampled in sections with a 

palette knife, using the cone and quarter technique to ensure the subsamples were 

representative of the whole sample. The palette knife was cleaned in acetone and the 

parchment replaced between each sample. 10 g, 1.5 g and 1 g subsamples were extracted 

for pH, particle size distribution and pseudo-total metal contents, respectively. The pH and 

metal samples were kept in 50 ml centrifuge tubes until required, and the particle size 

samples weighed directly into conical flasks for digestion. The weight of subsamples was 

recorded to 3 d.p. 10% of samples had triplicates taken for all three of the above analyses.    

b pH (Adapted from Rowell, 1996) 

25ml of deionised water (minimum 12 MΩcm) was added to the 10g of sediment in the 

centrifuge tube. Samples were agitated on a flatbed shaker on high speed for 15 minutes 

and then allowed to settle. Samples were analysed that day. Immediately prior to analysis 

each sample was shaken by hand for 10 seconds. A VWR pH100 meter was used to take 

readings. The meter was calibrated at the start of each day. Drift was checked hourly with 

pH 4 and 7 buffer solutions and the meter recalibrated if necessary. Readings were taken 

with the tip of the probe held 1-2cm above the settled sediment. Up to 10 minutes were 

given to allow readings to stabilise. Samples were analysed in batches according to river 

catchment in a randomised order.  

c Particle size distribution 

Removal of organic carbon (Adapted from US EPA methods (Schmacher, 2002) 

10ml of H2O2 was added to each 1.5 g sample. Samples were left undisturbed at room 

temperature for 16 hours. 5 ml of H2O2 was added to each sample and then placed on a 

hotplate at 75 °C. A further 5 ml was added after 2, 4 and 6 hours. After 8 hours the hotplate 

was switched off. The following day samples were returned to the hotplate to evaporate off 

any remaining liquid. If the sample was still reacting with the H2O2 (indicated by 

effervescence) an additional 5 ml was added, and the sample left on the hotplate for a 

further 2 hours. This was repeated up to 3 more times if required. When the excess liquid 

had gone but samples were still moist they were removed from the hotplate and allowed to 

cool. The sediment was decanted directly into PSA tubes from the conical flasks using 

calgon (made by preparing 50 g sodium hexametaphosphate and 7 g anhydrous sodium 

carbonate in 1 L deionised water) and a disposable plastic spatula to get all of the sediment 

out of the flask. All plastics and glassware were washed in Decon-90 detergent for 24 hours 

prior to use. 

Particle size distribution analysis 

Within 2 days of digestion Samples were run on a Beckman coulter LS 12 300 laser 

granulometer. After a series of reproducibility tests, run conditions were optimised as follows; 
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Pump speed 100% 

Obscuration fixed at 10% through auto-dilution 

Run length 60 seconds including PIDS 

Every sample run 3 times 

30 seconds of sonication in the auto-prep station (power: 1) 

5 seconds of sonication in the module before and between each of the 3 runs, (power: 1) 

Samples were analysed in batches according to river catchment in a randomised order.  

d Major and trace metal concentrations 

Aqua Regia extraction (Adapted from Chen and Ma 2001) 

Here all plastics and glassware washed in 10% HCL for 24 hours prior to use. Pre-weighed 

samples were emptied into 150ml conical flasks. Deionised water was used to rinse out any 

remaining sediment. Aqua regia was prepared fresh with 3:1 HCl:HNO3 and 24ml was added 

to each sample (cold), and then capped with a reflux ball. Conical flasks were placed on a 

hotplate and brought up to 100 °C. After 3 hours samples were allowed to cool and then 

filtered through fluted Whatman (542) Ashless Hardened filter paper, through funnels into 50 

ml volumetric flasks and made up to volume. Samples were decanted into centrifuge tubes 

for storage. For each batch, two aqua regia blanks and two certified reference materials 

(LGC river sediment 6187; LGC lake sediment SUD-1) were also run. 

e Organic carbon 

Inorganic carbon digestion: This method is an adaption of the method recommended in the 

instrument manual (Flash Elemental Analyser 1112 series). 

Here all plastics and glassware were washed in 10% HCL for 24 hours prior to use. 

Glassware was then heated to 450 °C in a muffle furnace for 4 hours. 1 g of dry sediment 

taken randomly from sample bag using a spatula and dispensed into glass (pyrex) test 

tubes. Samples were moistened with a few drops of 25% HCl. Concentrated HCl was then 

added dropwise and observed for effervescence. Where the reaction was present, HCl was 

continually added to samples until reaction was complete. Samples were then dried in an 

oven at 40oC (5-10 days). Using a glass rod, the samples were scraped out of the test tubes 

and into an agate pestle and mortar. Samples were crushed and then stored in foil 

envelopes in a desiccator until needed.  

f Iron oxide 

 Oxalate extraction adapted from Philips and Lovley (1987)  

Extraction reagent: ammonium oxalate (28gL-1) in oxalic acid (15gL-1), adjusted to pH 3. 

100-150mg of crushed sample was weighed (4d.p.) into 50ml centrifuge tubes. 10ml of 

solution was pipetted onto each sample. Samples were agitated for 4 hours (Golden, 1994) 

on a flatbed shaker at high speed before being centrifuged at 4200 rpm for 20 minutes. The 

supernatant liquid was poured into 15ml centrifuge tubes and stored wrapped in foil at room 

temperature until analysis. Samples were washed prior to next extraction (van Oorschot and 

Dekkers, 2001).  

Dithionite extraction adapted from Kostka and Luther (1994) 

Extraction reagent: ammonium oxalate sodium dithionite (50gL-1) in 0.2M sodium citrate 

(58.82g/L). 
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10mL of extraction reagent was pipetted onto each rinsed sample. Each sample was then 

sealed and then placed in a water bath at 60oC for 4 hours. Samples were removed and 

shaken by hand every 30 minutes. Samples were then centrifuged at 4200 rpm for 10 

minutes. The supernatant liquid was poured into 15ml centrifuge tubes and stored at room 

temperature until analysis. 
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4.3 Results 

4.3.1 Results of biomonitor analysis 

Mean trace metal body burdens of the five taxa used as biomonitors are given in Tables 4.3 

- 4.7. Arbitrary categories have been used to indicate elevated body burdens, indicating 

where there is high local bioavailability of that metal for that taxon. Differences between taxa 

will reflect differences in accumulation patterns. Because accumulated metal concentrations 

[C] in the insects typically follow a negative power relationship with dry weight [W], i.e. [C] = 

a [W]b where b is negative, concentrations derived from individuals of mean dry weight of 

0.002 g or lower have been eliminated. Also, because of the relatively strong possibility of 

contamination of the odd sample with metal-rich sediment particles, any clear outliers have 

been eliminated.  

Due to differences among the sites, no taxon was present at all the sties. The most complete 

dataset is for Hydropsyche spp. (Table 4.3) and that for Gammarus (Table 4.6) the most 

sparse.  

Clear differences in metal bioavailabilites were apparent among the catchments. Given the 

occurrence of ores, it was expected that copper would be associated with arsenic, and zinc 

with lead. Zinc and lead may also co-occur with silver, and/or, less commonly with cadmium. 

These associations are clear in our data set. There was also considerable variation in the 

overall bioavailabilites between the catchments, with some catchments appearing to have 

relatively low bioavailability, either reflecting little contamination at these sites or that local 

conditions influence uptake of available metals. It is also worthy of note that some of the 

sites chosen as controls clearly had high local bioavailabilites of metals, either through 

unaccounted for mining facilities or local geology. In selecting sites every attempt was made 

to avoid inputs from mining facilities whilst keeping the geology similar to the contaminated 

sites.  

It is logical that the strongest accumulators make the best biomonitors, offering a wider 

range of accumulated concentrations with which to distinguish between sites. Individual taxa 

may have atypically strong accumulation of a particular metal – for example Rhyacophila 

appears to have a strong affinity for silver. If we were just interested in silver, there would be 

almost no point in collecting the other taxa. However, as we are interested in a range of 

metals and a variety of environmental conditions (which influence which taxa are present) a 

suite of biomonitors (as used here) is the most informative approach. 
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Table 4.3 – 4.7. Trace metal body burden (as µg g-1 dry weight) of biomonitor species. 

High local bioavailability of that metal is indicated in red. 

For Hydropsyche spp. 

As – high >200, v high > 1,000, v v high >5,000: 

Cd – high >15: 

Cu – high >300, v high > 1,000: 

Pb – high >100: 

Zn – high >400; v high >1,000; v v high >10,000 

For Baetis spp. 

As – high >100, v high >1,000: 

Cd – high >15: 

Cu – high >100, v high >500: 

Pb – high >100: 

Zn – high >1,000, v high >5,000. 

For Leuctra spp. 

As – high >100, v high >1,000: 

Cd – high >15, v high >50 

Cu – high >100, v high > 1,000: 

Pb – high > 50, v high > 500: 

Zn – high >700, v high >2,000. 

For Gammarus spp 

As – high >75: 

Cd – ?:  

Cu – high >100:  

Pb – high >100:  

Zn – high >300; v high >1,000. 

For Rhyacophila spp 

Ag – high >10:  

As – high >100, v high >1,000:  

Cd – high >15, v high >100:  

Cu – high >200:  

Pb – high >50, v high >200:  

Zn – high >500, v high >2,000. 
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Table 4.3 Trace metal body burden (as µg g-1 dry weight) of Hydropsyche spp.  High local bioavailability of that metal for Hydropsyche spp 

is indicated in red. Blank cells indicate taxa missing from that site or metal below detection limits.  

Catchment Site Ag As Cd Co Cr Cu Fe Mn Ni Pb V Zn 

A 

St Lawrence 

Stream 

Downstream 0.78 417.0 1.41 10.41 3.50 1532 6082 382 37.72 10.6 4.05 358 

Downstream erosional 1.48 234.9 1.72 19.32 8.67 986 7578 548 115.87 12.3 4.89 390 

Downstream depositional 0.63 4.4 1.86 14.12 2.71 82 1165 502 36.73 3.4 1.22 247 

Independent control 1.10 3.6 1.29 8.35 5.19 26 2770 225 61.38 4.6 2.12 187 

B 

Bolingey Stream 

Upstream Control 0.42 12.3 0.42 4.90 3.60 21 3005 749 29.31 3.5 2.55 144 

Downstream 0.37 47.0 4.96 4.66 2.64 112 3088 306 31.53 197.4 2.13 1428 

Downstream erosional 0.63 23.6 3.22 9.71 2.47 37 1868 494 62.89 57.4 1.03 789 

Downstream depositional 0.62 26.5 3.95 12.88 3.82 37 1466 514 109.99 75.1 0.97 920 

Independent control 0.38 26.2 1.15 18.56 2.48 17 1988 876 85.52 5.1 0.92 284 

C 

Porthleven 

Stream 

Upstream Control 0.30 270.5 1.08 6.19 3.08 57 1306 215 12.73 5.0 1.32 148 

Downstream 1.33 11836.3 13.91 3.13 4.90 766 6822 41 31.63 92.2 3.32 361 

Downstream erosional 0.90 6152.1 8.20 3.86 5.88 646 6902 74 21.69 62.6 4.81 383 

Downstream depositional 0.47 9064.7 11.37 4.36 4.93 568 7203 92 14.35 42.2 5.02 395 

Independent control 0.52 178.0 0.71 2.03 3.89 35 2497 128 18.40 6.3 2.74 172 

D 

River Hayle 

Upstream Control 1.31 262.2 3.78 2.65 6.17 298 1662 151 36.60 11.1 3.49 297 

Downstream                         

Downstream erosional 1.26 96.4 14.25 17.19 3.27 118 3455 252 39.01 29.4 3.17 2200 

Downstream depositional 1.08 133.8 16.00 16.70 5.94 194 3800 174 40.71 70.2 3.50 2582 

Independent control                         

E 

River Burn 

Upstream Control 0.73 9.7 0.79 0.96 2.93 18 797 147 16.54 7.1 1.44 190 

Downstream 1.01 19.8 1.14 1.01 2.11 14 354 86 8.27 9.9 1.01 343 

Downstream erosional 0.79 14.8 0.85 0.79 2.35 12 288 37 16.71 8.0 0.85 328 

Downstream depositional 0.99 16.1 0.99 0.99 2.42 24 389 85 12.31 9.6 0.99 594 

Independent control 0.47 6.4 0.47 0.80 1.25 4 340 70 7.88 2.5 0.47 67 

F 

River Mardle 

Upstream Control 2.85 2.9 2.85 2.85 2.85 20 906 132 25.50 3.3 2.85 169 

Downstream 2.77 33.9 2.77 3.31 4.68 53 1600 82 90.03 2.8 2.77 200 

Downstream erosional 1.50 12.0 1.50 1.98 2.72 50 1215 125 45.59 2.0 1.80 173 

Downstream depositional 1.86 9.0 1.86 3.37 5.73 53 1869 198 55.45 5.0 2.38 179 

Independent control 2.36 5.9 2.36 3.47 6.66 29 1782 300 76.99 2.9 2.90 169 
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Catchment Site Ag As Cd Co Cr Cu Fe Mn Ni Pb V Zn 

G 

Afon Melindwr 

Upstream Control 2.66 2.7 2.66 26.26 9.35 24 2113 133 303.05 76.2 2.66 197 

Downstream 1.33 3.1 1.33 3.61 5.11 28 1104 45 96.68 118.4 1.33 174 

Downstream erosional 0.99 4.2 1.12 1.22 2.23 23 1169 72 65.00 167.3 1.06 279 

Downstream depositional 1.17 2.2 1.23 1.96 5.55 24 2126 183 73.50 210.1 1.55 273 

Independent control 1.01 1.9 1.13 2.02 3.85 18 2586 390 81.78 14.3 1.67 137 

H 

Nant 

Cwmnewydion 

Upstream Control 1.40 1.4 1.40 2.12 1.62 18 1335 194 98.03 15.1 1.40 261 

Downstream 1.63 2.2 3.08 2.53 2.16 18 1041 93 106.95 588.1 1.63 639 

Downstream erosional 2.17 2.2 3.98 3.61 2.33 19 1462 71 105.11 549.6 2.17 998 

Downstream depositional 3.31 3.3 6.47 3.31 7.63 24 2518 81 164.46 339.0 3.31 1333 

Independent control 2.55 2.6 2.55 2.82 4.02 9 1621 286 41.99 3.3 2.55 227 

I 

Afon Cyneiniog 

Upstream Control 1.49 6.2 5.53 9.50 1.49 69 9166 217 78.30 21.1 1.71 824 

Downstream 1.17 5.2 1.27 5.25 2.04 56 6420 206 198.61 6.5 1.43 229 

Downstream erosional 1.12 47.2 1.12 3.81 8.51 50 9984 173 177.40 146.5 3.74 239 

Downstream depositional 0.96 11.3 4.70 1.46 7.32 31 4872 141 40.72 128.3 3.63 742 

Independent control 0.41 26.0 0.90 2.15 4.86 31 4888 134 50.62 72.8 3.73 152 

J 

Afon Ystwyth 

Upstream Control 1.14 2.5 1.14 1.63 1.92 19 2489 169 9.86 1.7 1.22 150 

Downstream 0.72 1.5 0.72 1.03 1.18 21 1499 92 4.08 182.7 0.72 226 

Downstream erosional 0.95 1.6 0.95 1.10 1.09 24 1415 99 8.51 147.3 0.95 246 

Downstream depositional 0.93 4.0 0.93 0.93 0.93 19 2202 162 11.31 200.3 0.93 256 

Independent control 0.68 4.0 0.68 0.68 0.68 16 3844 257 33.09 1.6 0.68 119 

K 

River Wye 

Upstream Control                         

Downstream                         

Downstream erosional                         

Downstream depositional                         

Independent control                         

L 

Rea Brook 

Upstream Control 1.83 11.7 1.83 3.01 7.34 33 1416 213 33.77 20.2 4.69 345 

Downstream 0.72 5.5 5.46 1.78 3.61 14 1187 146 13.21 88.8 2.41 672 

Downstream erosional 1.29 8.7 6.55 4.35 7.00 16 2384 895 16.40 257.9 6.21 1233 

Downstream depositional 0.87 6.1 5.02 3.43 7.78 17 3432 1351 22.10 194.6 6.02 1050 

Independent control 1.83 11.8 1.83 1.83 4.03 12 1636 319 18.42 9.9 2.89 174 
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Catchment Site Ag As Cd Co Cr Cu Fe Mn Ni Pb V Zn 

M 

South Tyne 

Upstream Control             

Downstream             

Downstream erosional 1.25 1.3 2.50 8.75 8.75 45 665 133 47.50 1.3 1.25 494 

Downstream depositional 0.59 0.6 5.35 5.35 0.59 44 992 195 50.50 49.3 1.19 493 

Independent control 0.37 0.4 6.55 7.52 0.66 35 1063 155 21.91 15.7 1.11 592 

N 

Red Tarn Beck 

Upstream Control                         

Downstream                         

Downstream erosional                         

Downstream depositional                         

Independent control 1.73 22.1 2.18 1.73 6.76 30 1370 150 121.76 48.1 1.73 1397 

O 

River Greta 

Upstream Control 0.97 39.3 0.97 4.33 2.12 10 911 470 18.52 4.5 1.31 142 

Downstream 0.51 28.3 2.24 3.17 1.86 16 1586 186 16.37 31.8 1.44 331 

Downstream erosional 1.42 47.3 1.42 2.87 3.59 10 1488 188 33.16 11.3 1.78 304 

Downstream depositional 1.26 23.5 1.49 2.80 2.08 7 1019 187 14.04 12.2 1.87 320 

Independent control 1.48 16.9 1.48 1.70 2.04 4 1766 422 9.59 1.9 2.25 136 

P 

Arkle Beck 

Upstream Control 1.02 7.8 2.95 1.13 1.89 53 1373 108 9.29 34.2 1.61 128 

Downstream 1.40 43.3 1.40 1.54 3.01 59 919 84 21.66 1.8 1.63 93 

Downstream erosional 1.24 112.0 37.67 9.57 5.93 110 2625 632 35.87 96.6 1.49 16846 

Downstream depositional 1.70 145.7 48.79 13.31 12.83 158 5886 788 49.33 184.4 7.35 21205 

Independent control 2.21 182.3 50.79 10.84 16.15 182 7331 827 85.77 160.5 5.42 23137 

Q 

Eggleston Burn 

Upstream Control                         

Downstream 1.43 1.6 1.59 1.43 1.43 9 2673 150 5.68 492.1 1.43 316 

Downstream erosional 1.87 2.0 1.87 1.87 3.47 9 1748 235 13.37 259.2 2.40 315 

Downstream depositional 1.26 1.4 1.26 1.26 2.05 9 1039 186 8.22 233.3 1.73 267 

Independent control 1.19 1.2 1.19 1.58 2.81 9 2356 417 9.01 7.9 1.96 130 

R 

Hudeshope Beck 

Upstream Control 0.84 0.8 0.84 0.84 0.84 13 2204 109 10.06 31.4 0.84 149 

Downstream 1.09 1.1 1.09 1.09 1.09 14 1587 188 27.45 368.9 1.09 172 

Downstream erosional 1.40 1.4 1.40 1.40 1.40 14 1555 219 9.49 351.4 1.40 300 

Downstream depositional 0.99 1.0 0.99 0.99 0.99 12 1315 185 5.19 217.4 0.99 186 

Independent control 2.50 2.5 2.50 2.50 2.50 17 1890 168 5.00 2.5 2.50 195 
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Catchment Site Ag As Cd Co Cr Cu Fe Mn Ni Pb V Zn 

S 

Bedburn Beck 

Upstream Control 2.26 2.3 2.26 2.90 3.37 15 2708 603 11.25 3.2 5.53 237 

Downstream 2.13 2.1 2.13 2.28 2.73 14 2602 353 6.31 66.6 3.65 334 

Downstream erosional 2.21 2.2 2.21 2.65 3.29 11 1800 345 6.37 46.6 2.65 277 

Downstream depositional 1.85 1.9 1.85 2.26 2.72 12 1633 265 6.63 56.3 2.00 257 

Independent control 1.27 1.3 1.27 3.12 4.51 18 2412 1218 16.40 8.8 1.95 155 

T 

River East Allen 

Upstream Control                         

Downstream 1.00 50.8 3.47 9.81 3.47 34 1473 274 55.48 3.0 1.42 500 

Downstream erosional 0.60 19.3 2.21 5.10 2.20 14 924 141 34.06 1.7 1.10 251 

Downstream depositional 0.59 44.2 3.56 9.50 2.06 33 1280 263 14.91 2.4 0.84 467 

Independent control 0.49 36.7 8.04 6.64 1.77 44 1166 130 17.40 6.0 0.89 1817 
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Table 4.4 Trace metal body burden (as µg g-1 dry weight) of Baetis spp. High local bioavailability of that metal for Baetis spp is indicated in 

red. Blank cells indicate taxa missing from that site or metal below detection limits.  

Catchment Site Ag As Cd Co Cr Cu Fe Mn Ni Pb V Zn 

A 

St Lawrence 

Stream 

Downstream             

Downstream erosional 0.29 66.0 15.96 88.57 1.55 778 1698 344 20.08 2.3 1.07 2028 

Downstream depositional 0.58 112.0 33.90 39.92 5.16 264 4950 674 41.77 5.9 4.10 2046 

Independent control 0.38 96.0 19.05 45.61 4.08 67 4788 308 15.40 5.9 3.69 1570 

B 

Bolingey Stream 

Upstream Control 0.31 17.0 2.67 7.69 6.31 37 3251 280 19.63 2.8 5.14 480 

Downstream 1.39 24.6 12.22 6.23 5.57 134 6998 192 153.54 267.5 4.18 2909 

Downstream erosional 0.77 53.8 35.05 16.58 5.75 163 6004 507 71.80 151.5 3.23 8542 

Downstream depositional 0.68 75.1 34.62 21.84 6.48 140 5114 296 56.49 121.0 3.58 7668 

Independent control 0.43 68.4 8.77 16.67 5.65 58 4814 471 46.64 8.5 3.57 1820 

C 

Porthleven 

Stream 

Upstream Control 0.23 332.9 11.79 33.54 5.92 116 2476 69 36.70 5.2 2.99 1142 

Downstream 0.65 5734.0 18.80 6.39 3.56 776 3331 32 23.68 40.4 2.82 2290 

Downstream erosional 0.45 2518.9 12.63 5.27 2.42 497 2508 32 12.73 21.1 2.21 1677 

Downstream depositional 0.61 3462.6 13.45 17.34 4.06 437 4731 62 68.04 17.9 3.42 1334 

Independent control 0.51 165.8 2.94 5.23 5.01 69 3529 97 29.45 5.7 4.78 400 

D 

River Hayle 

Upstream Control 1.30 183.1 2.60 1.84 4.50 149 501 34 43.84 2.6 1.30 392 

Downstream 0.41 29.0 0.55 0.58 1.22 13 93 17 10.96 0.7 0.45 134 

Downstream erosional 0.67 108.5 0.92 1.54 3.16 59 635 45 16.27 5.2 1.21 208 

Downstream depositional 1.03 830.8 1.41 3.04 5.48 516 5048 79 28.55 26.8 2.29 233 

Independent control 0.98 1929.8 2.46 4.40 6.15 852 7183 89 23.66 22.9 3.38 308 

E 

River Burn 

Upstream Control 0.13 7.7 0.22 1.73 1.69 6 495 307 9.54 1.1 1.03 41 

Downstream 0.24 26.3 0.51 0.28 1.56 36 446 36 9.76 0.4 0.78 32 

Downstream erosional 0.18 69.1 1.30 0.71 1.22 36 736 38 9.85 1.2 0.70 34 

Downstream depositional 0.27 52.1 3.63 2.91 2.21 49 863 126 14.51 1.8 1.35 68 

Independent control 0.33 24.6 0.83 0.91 4.12 82 1137 313 16.98 1.4 2.51 83 

F 

River Mardle 

Upstream Control 1.80 3.3 2.54 3.33 1.80 34 962 120 17.84 1.8 1.80 213 

Downstream 1.99 124.0 7.18 24.33 2.19 108 3627 195 18.51 4.2 1.99 515 

Downstream erosional 1.48 26.0 8.89 28.20 1.67 81 2376 191 14.98 3.2 1.99 481 

Downstream depositional 2.27 16.0 18.28 43.12 2.84 127 2475 135 32.91 3.6 2.27 1027 

Independent control 2.14 7.5 6.87 19.76 3.29 38 2509 131 49.74 2.4 2.49 400 
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Catchment Site Ag As Cd Co Cr Cu Fe Mn Ni Pb V Zn 

G 

Afon Melindwr 

Upstream Control 0.44 2.0 2.45 5.61 2.19 29 1503 123 20.35 34.8 1.28 231 

Downstream 0.13 2.3 2.77 1.00 0.82 29 447 15 5.57 31.7 0.51 843 

Downstream erosional 0.17 2.5 6.91 1.65 1.06 44 714 39 6.46 76.7 1.20 1805 

Downstream depositional 0.34 2.7 11.63 3.89 2.92 58 2111 99 18.24 123.8 1.86 2407 

Independent control 0.52 0.8 1.57 4.27 3.27 40 4412 258 8.86 7.4 3.22 477 

H 

Nant 

Cwmnewydion 

Upstream Control 0.96 2.8 1.14 6.81 8.05 32 7463 255 35.23 33.3 7.20 478 

Downstream 0.49 1.8 23.29 2.35 2.65 78 1465 100 27.76 602.4 0.89 9473 

Downstream erosional 0.53 1.9 24.42 2.01 3.90 71 2223 72 33.16 620.6 1.25 10860 

Downstream depositional 1.04 1.6 17.02 2.11 2.85 35 944 25 70.89 100.6 1.04 8811 

Independent control 1.54 2.4 2.17 5.88 7.03 33 4087 180 72.68 15.7 3.20 529 

I 

Afon Cyneiniog 

Upstream Control                         

Downstream             

Downstream erosional 0.46 4.7 0.46 1.49 2.70 22 2761 113 16.04 9.4 2.68 132 

Downstream depositional 0.38 7.6 0.38 0.61 1.45 16 670 62 11.27 2.0 0.98 141 

Independent control                         

J 

Afon Ystwyth 

Upstream Control 0.79 14.3 0.79 6.74 5.50 25 1237 76 26.74 0.8 1.12 213 

Downstream 0.23 14.4 6.93 4.73 2.13 48 1436 65 11.46 65.2 1.74 2285 

Downstream erosional             

Downstream depositional             

Independent control             

K 

River Wye 

Upstream Control                         

Downstream                         

Downstream erosional                         

Downstream depositional 0.50 11.6 0.50 0.55 0.98 13 402 16 17.61 15.5 0.50 199 

Independent control                         

L 

Rea Brook 

Upstream Control 0.40 2.5 1.67 2.96 7.10 28 2742 351 19.84 5.1 6.13 328 

Downstream 0.48 1.3 17.09 1.89 4.34 33 1852 87 33.83 53.7 2.18 4049 

Downstream erosional 0.75 1.8 30.99 2.59 5.88 46 2568 735 21.62 158.0 4.50 8317 

Downstream depositional 0.57 2.2 31.79 2.63 4.44 47 1995 733 20.12 140.2 2.96 7350 

Independent control 0.69 1.3 3.00 1.64 2.12 32 1338 242 26.85 2.1 1.28 282 
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Catchment Site Ag As Cd Co Cr Cu Fe Mn Ni Pb V Zn 

M 

South Tyne 

Upstream Control 0.29 3.4 1.40 3.85 1.71 19 2028 118 5.81 1.3 0.64 335 

Downstream 0.45 6.8 0.45 0.78 2.34 12 2417 86 9.54 31.6 1.93 135 

Downstream erosional 0.46 1.9 2.29 0.87 3.39 15 2343 71 22.12 72.5 1.87 384 

Downstream depositional 0.44 7.2 1.43 0.60 3.12 12 1352 79 11.47 36.0 0.91 289 

Independent control 0.21 3.7 0.21 0.21 1.19 8 384 36 4.21 0.4 0.31 73 

N 

Red Tarn Beck 

Upstream Control 0.20 0.5 0.34 0.99 0.68 7 351 39 9.60 13.0 0.48 55 

Downstream 0.23 1.7 0.90 0.49 1.81 9 300 22 9.59 98.4 0.36 56 

Downstream erosional 0.32 5.9 2.09 0.64 3.27 21 950 48 15.26 114.7 1.05 127 

Downstream depositional 0.36 1.6 0.36 1.96 3.28 9 416 45 18.17 16.2 0.47 57 

Independent control 0.19 0.2 0.33 0.42 1.18 3 58 4 6.76 13.7 0.23 50 

O 

River Greta 

Upstream Control 0.31 4.2 0.31 0.31 0.46 1 488 99 1.66 0.4 0.48 28 

Downstream 0.28 28.3 0.35 0.43 1.26 35 649 222 2.85 0.8 1.07 54 

Downstream erosional 0.28 52.2 0.97 0.94 1.24 19 200 22 6.18 0.9 0.37 530 

Downstream depositional 0.18 28.1 6.23 8.77 1.43 24 596 143 22.20 3.7 0.56 2216 

Independent control 0.47 19.0 2.08 2.93 3.38 19 1835 242 50.68 2.5 1.33 326 

P 

Arkle Beck 

Upstream Control 1.01 9.4 2.00 1.40 1.53 14 990 92 37.09 59.6 1.21 756 

Downstream 1.30 1.6 2.60 1.48 2.97 23 841 154 40.29 48.7 1.30 1151 

Downstream erosional 1.65 4.4 1.96 1.65 2.93 19 911 115 43.83 36.7 1.65 950 

Downstream depositional 0.84 6.5 0.84 0.84 2.16 11 573 70 23.18 7.0 0.94 495 

Independent control 0.90 3.4 1.34 0.90 1.58 12 463 47 29.70 22.4 0.90 395 

Q 

Eggleston Burn 

Upstream Control                         

Downstream 0.38 1.4 4.09 0.38 1.21 18 796 52 2.96 131.7 0.38 1844 

Downstream erosional 0.26 1.4 5.37 0.26 1.88 20 884 108 19.33 134.6 0.26 2159 

Downstream depositional 0.26 1.2 6.18 0.26 1.39 23 646 71 11.39 80.2 0.26 1881 

Independent control 0.29 0.8 1.34 0.29 2.13 22 1243 153 5.86 0.5 0.29 376 

R 

Hudeshope 

Beck 

Upstream Control 0.35 0.3 4.14 4.61 1.89 26 1306 120 5.68 23.3 0.35 823 

Downstream 0.23 0.2 9.78 1.54 2.18 21 1244 127 8.38 231.5 0.23 1772 

Downstream erosional 0.29 0.3 6.15 1.34 2.55 19 1235 77 4.54 82.1 0.29 1558 

Downstream depositional 0.32 0.3 9.66 1.75 2.20 22 1138 108 5.00 169.0 0.32 2262 

Independent control 0.30 0.3 3.69 2.06 1.79 14 1032 131 7.50 10.3 0.30 935 
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Catchment Site Ag As Cd Co Cr Cu Fe Mn Ni Pb V Zn 

S 

Bedburn Beck 

Upstream Control 0.62 0.6 6.40 6.45 0.62 25 1665 257 6.68 0.6 0.62 917 

Downstream 0.43 0.4 6.26 2.40 0.43 25 1391 141 6.75 37.1 0.43 1805 

Downstream erosional 0.38 0.4 6.50 3.22 0.38 24 1391 153 7.86 25.1 0.38 1923 

Downstream depositional 0.38 0.4 9.39 3.73 0.38 27 1518 195 9.47 23.6 0.38 2227 

Independent control 0.18 0.2 0.18 2.39 0.18 24 966 251 5.73 1.0 0.18 203 

T 

River East Allen 

Upstream Control                         

Downstream 0.18 3.6 0.46 0.25 1.12 9 555 46 4.75 24.8 0.41 126 

Downstream erosional 0.22 2.5 0.35 0.28 0.90 7 757 48 5.01 21.7 0.94 121 

Downstream depositional 0.22 1.7 0.39 0.44 0.86 6 877 63 5.40 26.1 0.79 129 

Independent control 0.38 1.1 0.38 0.60 1.21 6 1319 79 10.68 1.5 0.78 78 
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Table 4.5 Trace metal body burden (as µg g-1 dry weight) of Leuctra spp. High local bioavailability of that metal for Leuctra spp is indicated 

in red. Blank cells indicate taxa missing from that site or metal below detection limits. 

Catchment Site Ag As Cd Co Cr Cu Fe Mn Ni Pb V Zn 

A 

St Lawrence 

Stream 

Downstream             

Downstream erosional                         

Downstream depositional 1.84 146.1 2.32 9.98 11.89 160 6957 588 88.41 18.1 8.42 298 

Independent control 1.36 117.8 1.36 4.29 6.64 39 5729 152 31.26 9.0 4.69 213 

B 

Bolingey Stream 

Upstream Control                         

Downstream 1.14 62.5 22.33 17.45 9.90 158 8702 487 116.63 306.6 6.83 2295 

Downstream erosional 0.80 10.6 16.43 22.52 4.97 82 3692 433 108.40 83.3 3.02 836 

Downstream depositional 0.84 45.5 16.44 8.55 4.94 75 3389 591 55.66 93.4 4.66 845 

Independent control             

C 

Porthleven 

Stream 

Upstream Control 0.73 210.3 4.19 2.51 4.79 80 2576 77 19.27 7.3 2.95 203 

Downstream 0.88 4199.3 9.29 5.84 6.12 506 4624 68 32.43 38.5 4.75 279 

Downstream erosional 0.93 3519.5 9.86 7.53 10.28 527 6748 134 44.23 48.8 8.85 351 

Downstream depositional             

Independent control                         

D 

River Hayle 

Upstream Control                         

Downstream 1.14 2331.3 2.45 4.18 4.73 674 5965 156 34.32 27.6 3.28 308 

Downstream erosional 0.98 3131.3 5.15 6.08 5.76 1031 8028 266 39.31 20.5 3.57 512 

Downstream depositional             

Independent control             

E 

River Burn 

Upstream Control 0.84 36.3 15.18 6.69 3.35 66 1641 134 25.64 18.2 1.53 4385 

Downstream             

Downstream erosional             

Downstream depositional                         

Independent control             

F 

River Mardle 

Upstream Control                         

Downstream                         

Downstream erosional                         

Downstream depositional                         

Independent control 2.00 2.0 2.00 2.00 2.00 48 1448 126 40.00 2.0 2.00 264 
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Catchment Site Ag As Cd Co Cr Cu Fe Mn Ni Pb V Zn 

G 

Afon Melindwr 

Upstream Control 0.70 0.7 2.11 2.08 4.46 56 4832 167 26.11 172.3 3.29 270 

Downstream 0.53 1.4 4.12 1.18 8.76 73 3474 73 32.33 163.4 2.64 269 

Downstream erosional 0.53 5.6 8.02 1.12 3.74 90 3382 98 20.51 264.1 2.64 338 

Downstream depositional 0.52 0.6 6.71 1.22 4.08 76 3109 92 21.21 160.0 2.35 321 

Independent control 0.55 1.4 0.55 2.86 8.67 54 7948 367 25.98 13.3 6.25 236 

H 

Nant 

Cwmnewydion 

Upstream Control 1.41 1.4 1.41 3.38 6.11 38 5693 271 93.36 25.6 3.08 277 

Downstream                         

Downstream erosional                         

Downstream depositional 2.18 3.0 14.19 2.66 6.78 41 4854 156 73.17 374.8 2.66 1288 

Independent control 1.52 1.5 1.52 2.23 5.43 41 4992 202 76.67 14.9 2.55 257 

I 

Afon Cyneiniog 

Upstream Control 1.62 20.7 1.62 1.62 2.82 31 757 100 51.10 13.8 1.62 689 

Downstream 1.34 5.6 1.34 1.34 1.91 33 834 81 44.66 25.6 1.34 731 

Downstream erosional 1.18 1.1 1.18 1.49 1.18 14 1203 104 39.86 1.2 1.18 207 

Downstream depositional 0.99 1.0 0.99 1.14 0.99 11 3246 77 26.98 197.2 0.99 140 

Independent control 0.76 2.1 0.76 2.70 0.76 18 3345 173 24.18 147.9 0.76 253 

J 

Afon Ystwyth 

Upstream Control                         

Downstream                         

Downstream erosional                         

Downstream depositional                         

Independent control                         

K 

River Wye 

Upstream Control 0.86 7.8 0.86 1.10 2.41 12 874 53 58.24 8.9 0.96 164 

Downstream 0.66 124.0 1.68 1.76 6.23 39 901 72 64.34 4.1 1.07 847 

Downstream erosional 2.37 205.0 18.05 14.56 14.75 137 5736 629 174.73 69.8 4.94 6535 

Downstream depositional 1.16 123.6 12.86 6.72 12.92 69 4735 260 164.89 104.1 5.36 5317 

Independent control 1.46 157.5 3.40 3.60 10.24 33 6419 241 229.87 83.2 3.76 976 

L 

Rea Brook 

Upstream Control                         

Downstream                         

Downstream erosional                         

Downstream depositional                         

Independent control 1.83 1.8 1.83 1.83 6.01 69 1942 221 103.97 3.4 2.52 205 
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Catchment Site Ag As Cd Co Cr Cu Fe Mn Ni Pb V Zn 

M 

South Tyne 

Upstream Control 0.96 18.1 1.37 1.10 3.00 27 675 74 71.27 27.1 1.07 1348 

Downstream 0.73 490.4 0.88 2.25 1.28 19 1988 231 37.96 40.6 1.66 346 

Downstream erosional 0.74 612.2 20.57 6.92 1.48 93 2250 438 38.21 40.9 2.62 1306 

Downstream depositional 0.87 434.5 54.01 4.17 1.74 104 2139 202 29.61 540.1 2.91 3536 

Independent control 0.62 464.6 52.02 2.66 1.51 93 1773 105 26.01 611.5 2.41 3175 

N 

Red Tarn Beck 

Upstream Control 0.91 0.9 1.23 1.38 6.69 19 226 24 33.52 51.1 0.91 280 

Downstream 1.19 1.2 1.19 1.19 6.79 30 573 81 43.03 48.6 1.37 345 

Downstream erosional 1.23 1.2 1.23 1.23 11.13 10 747 31 117.14 26.1 1.48 122 

Downstream depositional 0.66 1.3 0.66 0.77 4.57 16 332 19 32.24 29.8 0.77 112 

Independent control 1.12 21.6 12.53 4.39 5.13 20 2488 182 103.13 28.1 1.86 1141 

O 

River Greta 

Upstream Control 1.35 44.0 1.35 2.71 6.64 35 1370 248 227.53 6.1 1.35 211 

Downstream 0.81 18.9 1.65 1.62 3.27 42 1507 149 51.75 15.7 1.98 294 

Downstream erosional 0.87 45.2 0.87 2.61 5.22 30 2470 220 93.91 26.1 1.74 358 

Downstream depositional 0.82 29.9 1.62 2.20 5.07 33 1739 223 47.55 13.4 1.75 495 

Independent control 1.20 31.6 1.20 1.20 3.79 44 3583 586 11.24 3.8 5.36 233 

P 

Arkle Beck 

Upstream Control                         

Downstream                         

Downstream erosional                         

Downstream depositional 3.33 10.0 6.67 3.33 3.33 123 760 220 66.67 326.7 3.33 2817 

Independent control                         

Q 

Eggleston Burn 

Upstream Control 0.84 2.0 0.84 0.84 2.75 23 5529 122 11.45 7.0 0.84 159 

Downstream 0.58 1.1 1.02 0.76 3.14 19 2638 169 12.62 326.8 2.83 350 

Downstream erosional 0.65 0.7 0.92 0.80 3.13 19 2385 225 9.55 256.9 2.48 302 

Downstream depositional 1.05 1.5 1.61 1.05 1.05 17 1794 135 13.53 180.0 1.05 268 

Independent control 0.90 1.1 0.90 0.90 2.66 27 3600 357 7.79 3.3 0.90 163 

R 

Hudeshope Beck 

Upstream Control 0.94 0.9 0.94 0.94 6.22 22 3317 249 50.03 55.8 0.94 194 

Downstream 0.75 0.7 0.75 0.75 3.31 24 2918 174 4.76 438.5 0.75 243 

Downstream erosional 0.98 1.0 0.98 0.98 3.49 21 2436 161 4.55 309.7 0.98 410 

Downstream depositional 0.99 1.0 0.99 0.99 5.28 26 3159 132 6.40 176.1 0.99 247 

Independent control 0.82 0.8 0.82 0.82 3.94 15 2144 155 24.32 24.3 0.82 209 
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Catchment Site Ag As Cd Co Cr Cu Fe Mn Ni Pb V Zn 

S 

Bedburn Beck 

Upstream Control 0.49 0.5 0.49 0.49 0.49 29 2609 538 13.33 9.5 0.49 219 

Downstream 0.65 0.6 0.65 0.65 0.65 23 3204 488 39.70 99.8 0.65 372 

Downstream erosional 0.83 0.8 0.83 1.32 1.59 19 3096 485 49.21 67.0 1.42 333 

Downstream depositional 0.81 0.8 1.31 1.82 3.35 16 2959 345 21.62 60.0 2.50 251 

Independent control                         

T 

River East Allen 

Upstream Control 1.14 18.4 1.38 1.58 2.05 38 1539 429 36.87 34.0 1.32 1166 

Downstream 0.69 19.9 0.85 1.02 3.10 31 1093 178 43.08 3.7 0.69 419 

Downstream erosional 0.45 0.9 0.81 0.45 0.56 2 147 3 17.65 1.8 0.45 20 

Downstream depositional 0.83 6.3 0.89 1.89 2.14 22 379 169 18.45 1.1 0.97 200 

Independent control 1.09 117.6 1.09 5.52 7.62 32 4543 369 33.53 4.8 4.27 199 
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Table 4.6 Trace metal body burden (as µg g-1 dry weight) of Gammarus spp. High local bioavailability of that metal for Gammarus spp is 

indicated in red. Blank cells indicate taxa missing from that site or metal below detection limits.  

Catchment Site Ag As Cd Co Cr Cu Fe Mn Ni Pb V Zn 

A 

St Lawrence 

Stream 

Downstream             

Downstream erosional                         

Downstream depositional 0.94 41.3 3.92 6.71 3.77 113 1614 163 50.08 3.7 2.22 101 

Independent control 0.77 74.6 2.73 2.08 2.38 78 855 41 46.23 3.6 1.31 90 

B 

Bolingey Stream 

Upstream Control 0.18 28.8 0.47 1.03 3.43 78 1101 105 23.32 0.8 1.85 88 

Downstream             

Downstream erosional             

Downstream depositional             

Independent control                         

C 

Porthleven 

Stream 

Upstream Control             

Downstream             

Downstream erosional             

Downstream depositional                         

Independent control 0.22 85.2 1.74 0.73 2.59 64 1274 55 11.84 3.7 2.10 72 

D 

River Hayle 

Upstream Control             

Downstream                         

Downstream erosional 0.88 0.9 0.88 0.88 0.88 23 1976 154 21.18 0.9 0.88 71 

Downstream depositional 1.00 37.5 1.00 2.34 2.31 23 4511 288 33.90 37.0 2.03 149 

Independent control 0.54 7.8 0.56 1.37 1.29 15 1760 120 15.56 37.1 1.58 134 

E 

River Burn 

Upstream Control 0.48 18.5 0.69 1.98 0.98 8 563 135 9.37 4.3 0.86 105 

Downstream 0.61 39.4 2.95 4.23 2.59 19 2110 288 21.71 46.3 1.69 418 

Downstream erosional 0.47 17.8 0.80 1.22 0.93 4 595 72 7.51 4.7 0.93 129 

Downstream depositional 0.42 9.3 0.49 1.02 1.01 2 368 66 12.89 4.4 0.48 94 

Independent control 0.27 4.6 0.32 0.65 0.46 2 208 51 2.85 1.4 0.42 60 

F 

River Mardle 

Upstream Control             

Downstream             

Downstream erosional 0.42 7.7 1.18 1.02 1.39 69 756 85 9.66 1.0 1.26 65 

Downstream depositional 0.65 8.4 1.42 1.25 2.42 109 985 113 28.88 1.3 0.99 115 

Independent control             
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Catchment Site Ag As Cd Co Cr Cu Fe Mn Ni Pb V Zn 

G 

Afon Melindwr 

Upstream Control             

Downstream             

Downstream erosional             

Downstream depositional             

Independent control             

H 

Nant 

Cwmnewydion 

Upstream Control             

Downstream             

Downstream erosional             

Downstream depositional             

Independent control             

I 

Afon Cyneiniog 

Upstream Control             

Downstream             

Downstream erosional             

Downstream depositional             

Independent control             

J 

Afon Ystwyth 

Upstream Control             

Downstream             

Downstream erosional             

Downstream depositional             

Independent control             

K 

River Wye 

Upstream Control                         

Downstream                         

Downstream erosional                         

Downstream depositional                         

Independent control                         

L 

Rea Brook 

Upstream Control 0.21 9.3 0.22 0.58 1.94 75 940 323 4.77 2.6 1.98 80 

Downstream 0.24 7.6 7.59 0.64 2.58 68 1310 179 8.95 50.3 2.70 286 

Downstream erosional 0.32 8.0 7.41 0.80 3.38 77 1643 250 4.81 89.2 3.22 330 

Downstream depositional 0.30 8.8 6.94 0.67 3.62 73 1401 300 16.32 56.5 2.66 287 

Independent control 0.24 8.1 0.26 0.24 1.43 65 465 98 11.45 0.3 0.89 61 

              



107 
 

Catchment Site Ag As Cd Co Cr Cu Fe Mn Ni Pb V Zn 

M 

South Tyne 

Upstream Control             

Downstream             

Downstream erosional                         

Downstream depositional                         

Independent control             

N 

Red Tarn Beck 

Upstream Control                         

Downstream                         

Downstream erosional 1.11 1.1 1.11 1.11 4.44 8 517 52 97.78 16.7 1.11 328 

Downstream depositional                         

Independent control 1.36 10.9 1.36 1.36 6.82 11 2523 74 114.55 38.2 1.36 679 

O 

River Greta 

Upstream Control             

Downstream             

Downstream erosional             

Downstream depositional             

Independent control 0.35 30.8 0.42 0.49 1.33 40 810 256 3.35 0.8 1.25 61 

P 

Arkle Beck 

Upstream Control 0.99 35.7 2.67 6.84 5.34 40 2145 257 22.07 1.9 1.34 1096 

Downstream 1.18 47.1 1.18 8.24 7.06 29 2788 214 28.24 1.2 2.35 562 

Downstream erosional 0.95 49.5 3.81 14.29 9.52 54 4876 409 31.43 3.8 4.76 1190 

Downstream depositional 0.57 3.9 0.97 2.70 3.18 15 3599 329 15.43 8.5 1.03 215 

Independent control 1.03 12.2 1.03 2.41 3.58 17 5959 568 14.80 19.7 1.93 189 

Q 

Eggleston Burn 

Upstream Control             

Downstream             

Downstream erosional             

Downstream depositional                         

Independent control             

R 

Hudeshope Beck 

Upstream Control                         

Downstream                         

Downstream erosional                         

Downstream depositional                         

Independent control                         
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Catchment Site Ag As Cd Co Cr Cu Fe Mn Ni Pb V Zn 

S 

Bedburn Beck 

Upstream Control 0.62 0.6 1.59 0.67 1.06 53 554 165 9.31 3.3 0.83 78 

Downstream             

Downstream erosional             

Downstream depositional                         

Independent control 0.85 0.9 0.85 0.85 2.15 55 663 128 21.48 5.2 0.85 65 

T 

River East Allen 

Upstream Control             

Downstream             

Downstream erosional             

Downstream depositional                         

Independent control 0.15 122.9 0.15 1.61 1.98 24 1164 53 13.43 2.5 0.95 42 
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Table 4.7 Trace metal body burden (as µg g-1 dry weight) of Rhyacophila spp. High local bioavailability of that metal for Rhyacophila spp is 

indicated in red. Blank cells indicate taxa missing from that site or metal below detection limits.  

Catchment Site Ag As Cd Co Cr Cu Fe Mn Ni Pb V Zn 

A 

St Lawrence 

Stream 

Downstream             

Downstream erosional 0.86 120.0 1.49 4.71 0.86 409 3299 230 29.51 2.1 0.86 428 

Downstream depositional 0.59 9.1 1.65 4.86 0.84 50 697 215 21.02 1.4 0.75 282 

Independent control 0.46 6.5 0.61 1.05 1.07 18 492 38 18.50 1.3 0.46 195 

B 

Bolingey Stream 

Upstream Control             

Downstream                         

Downstream erosional 1.34 1.3 3.58 2.28 2.17 26 518 108 60.74 12.0 1.34 650 

Downstream depositional 0.96 1.0 2.99 2.40 1.80 30 526 150 53.96 17.2 0.96 552 

Independent control 0.90 1.3 1.16 3.07 1.64 22 1325 227 73.78 2.4 1.21 360 

C 

Porthleven 

Stream 

Upstream Control 0.35 84.4 1.24 0.73 0.88 31 420 47 7.70 1.4 0.45 201 

Downstream             

Downstream erosional             

Downstream depositional             

Independent control                         

D 

River Hayle 

Upstream Control             

Downstream                         

Downstream erosional 2.14 9219.9 17.45 41.84 14.25 2734 22503 1089 64.20 50.3 11.13 1774 

Downstream depositional 1.06 1280.3 3.03 4.33 4.31 365 4993 107 25.59 13.4 1.62 281 

Independent control 0.73 36.0 0.84 0.94 2.48 16 691 52 15.06 2.7 1.03 87 

E 

River Burn 

Upstream Control 0.74 82.8 19.17 17.76 4.48 78 2191 348 54.88 16.2 2.13 5707 

Downstream 0.84 111.4 24.90 33.41 6.55 95 2612 564 93.90 16.8 2.36 8548 

Downstream erosional 0.82 30.2 2.62 3.51 5.31 34 2372 308 99.00 5.7 1.99 415 

Downstream depositional                         

Independent control 0.72 19.3 1.18 1.56 3.49 30 1368 132 74.81 14.2 1.56 273 

F 

River Mardle 

Upstream Control 1.73 2.3 1.73 1.73 1.73 17 296 122 31.80 2.8 1.73 305 

Downstream 2.97 3.0 2.97 2.97 2.97 15 83 27 14.85 3.0 2.97 264 

Downstream erosional 1.36 1.4 1.36 1.36 1.36 31 387 134 26.46 1.4 1.36 274 

Downstream depositional 1.81 2.4 1.81 1.81 1.81 19 219 84 23.68 3.0 1.81 266 

Independent control 2.09 2.1 2.09 2.09 2.09 17 385 114 19.24 3.1 2.09 300 
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Catchment Site Ag As Cd Co Cr Cu Fe Mn Ni Pb V Zn 

G 

Afon Melindwr 

Upstream Control 1.54 2.7 1.51 1.54 3.44 24 393 67 58.18 17.8 1.54 388 

Downstream 0.44 0.8 0.42 0.51 1.68 20 250 13 28.33 16.3 0.44 302 

Downstream erosional 0.75 0.8 1.11 0.87 2.19 26 311 18 69.90 22.7 0.75 397 

Downstream depositional 0.69 0.9 0.89 2.24 2.93 21 366 38 66.50 33.0 0.95 398 

Independent control 0.91 0.9 0.91 15.35 3.89 25 632 99 83.79 3.2 0.91 295 

H 

Nant 

Cwmnewydion 

Upstream Control 1.23 1.2 1.23 1.71 2.94 22 617 94 119.44 5.6 1.19 438 

Downstream 1.09 1.1 2.54 1.33 5.07 15 454 37 142.64 68.4 1.34 1094 

Downstream erosional 0.87 0.9 2.60 0.87 1.21 16 320 34 95.26 78.1 1.03 1052 

Downstream depositional 1.02 1.0 1.91 1.02 1.77 20 311 22 58.81 29.6 1.23 1148 

Independent control 1.37 1.4 1.37 1.37 2.09 18 425 69 43.13 6.7 1.37 336 

I 

Afon Cyneiniog 

Upstream Control 0.91 0.9 0.91 2.04 0.91 11 1928 167 50.21 25.9 0.91 179 

Downstream 1.22 1.2 1.22 2.47 1.22 21 3659 271 58.66 3.8 1.22 195 

Downstream erosional 1.46 2.0 1.46 3.69 1.46 20 1219 279 59.50 4.7 1.46 258 

Downstream depositional 71.63 2394.0 260.63 5.24 8.57 1067 1179 133 41.08 0.6 15.68 1918 

Independent control 1.42 1.1 11.25 11.40 3.75 42 4068 114 103.59 67.4 4.13 606 

J 

Afon Ystwyth 

Upstream Control 1.05 2.3 1.05 1.18 3.31 27 800 104 66.76 1.1 1.18 249 

Downstream 0.55 11.5 0.86 0.59 2.19 24 660 66 26.15 98.5 0.87 673 

Downstream erosional 1.19 5.8 1.19 1.19 4.59 31 618 101 86.42 80.1 1.19 879 

Downstream depositional 0.76 4.5 0.96 0.76 2.72 19 612 41 43.13 34.2 1.00 470 

Independent control 0.67 2.8 0.67 0.72 0.92 20 582 136 4.95 0.7 0.80 253 

K 

River Wye 

Upstream Control                         

Downstream 0.53 0.5 0.53 1.22 3.91 10 3166 69 69.77 20.4 1.35 114 

Downstream erosional 1.03 0.9 8.16 2.36 6.48 32 5940 168 68.70 79.5 2.84 2935 

Downstream depositional 0.82 0.8 11.15 2.98 4.35 33 4652 101 21.45 62.8 1.64 4747 

Independent control 0.52 0.5 7.83 2.09 2.09 25 2990 88 14.09 48.0 1.57 3308 

L 

Rea Brook 

Upstream Control 2.68 2.7 2.68 3.79 8.03 20 945 366 217.05 5.4 2.68 311 

Downstream 1.10 1.2 2.48 1.26 5.69 20 1133 382 102.55 17.9 1.66 993 

Downstream erosional 1.83 1.8 3.66 1.83 8.02 23 1242 205 199.22 8.6 1.83 1074 

Downstream depositional 0.67 0.7 1.20 0.67 2.40 19 625 309 57.42 16.6 0.75 635 

Independent control 1.56 2.7 1.56 1.56 5.42 17 744 222 129.10 3.1 1.56 249 
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Catchment Site Ag As Cd Co Cr Cu Fe Mn Ni Pb V Zn 

M 

South Tyne 

Upstream Control 0.32   15.57 0.32 0.97 29 859 49 24.00 314.3 1.62 1171 

Downstream                         

Downstream erosional 0.34 0.3 34.66 1.67 1.00 52 1664 85 19.92 407.2 2.61 2001 

Downstream depositional 0.48 0.5 29.82 3.47 0.78 43 1640 95 36.88 377.5 1.98 1775 

Independent control                         

N 

Red Tarn Beck 

Upstream Control 0.63 8.8 8.34 0.89 3.56 7 815 44 79.91 40.0 0.63 511 

Downstream 0.97 4.8 5.58 1.37 4.75 9 1451 71 43.13 9.7 1.63 412 

Downstream erosional 0.62 1.9 0.76 0.66 1.17 7 685 51 17.09 3.7 0.85 50 

Downstream depositional 0.84 17.5 23.27 3.61 4.13 24 1960 130 35.71 27.3 2.03 1343 

Independent control 0.68 2.3 1.72 1.16 1.60 5 410 31 23.19 4.4 0.92 204 

O 

River Greta 

Upstream Control 0.68 10.2 0.73 0.91 1.89 14 301 103 8.97 6.6 0.78 198 

Downstream 1.49 22.2 2.14 1.49 1.87 8 412 76 19.90 28.7 1.49 570 

Downstream erosional 0.84 15.6 0.90 0.84 2.49 13 305 39 17.72 8.4 0.90 348 

Downstream depositional 0.54 8.8 0.54 0.54 1.10 13 212 46 5.15 5.2 0.54 324 

Independent control 1.58 12.0 1.58 1.58 3.81 13 922 128 19.24 8.9 1.58 221 

P 

Arkle Beck 

Upstream Control 1.93 6.4 5.96 1.93 6.94 51 1472 133 171.73 120.9 2.60 1251 

Downstream 0.95 1.1 0.95 1.11 1.29 5 1074 76 15.40 7.1 1.25 117 

Downstream erosional 0.65 0.7 0.65 0.65 1.21 3 643 46 17.03 30.8 1.06 116 

Downstream depositional 0.77 1.5 1.47 1.36 2.00 6 1117 107 24.03 79.6 1.57 218 

Independent control 0.92 0.9 1.12 0.92 1.59 4 666 60 25.08 32.4 1.12 132 

Q 

Eggleston Burn 

Upstream Control 0.41 0.6 0.41 0.41 0.44 13 1196 46 2.27 2.7 0.41 196 

Downstream 0.80 1.1 0.80 0.80 0.80 12 440 37 3.71 123.7 0.80 511 

Downstream erosional 0.64 1.0 0.64 0.64 0.64 10 270 45 1.48 50.8 0.64 398 

Downstream depositional 0.63 1.0 0.63 0.63 0.63 11 371 68 1.60 114.6 0.63 464 

Independent control 1.84 1.8 1.84 1.84 1.84 7 330 83 1.95 2.4 1.84 192 

R 

Hudeshope Beck 

Upstream Control 2.53 2.5 2.53 2.53 7.91 11 1396 98 204.97 27.3 2.53 509 

Downstream 0.84 0.8 0.84 0.84 4.05 13 537 62 48.14 124.3 0.84 533 

Downstream erosional 1.02 1.0 1.02 1.02 3.33 11 475 58 64.92 80.5 1.02 436 

Downstream depositional 0.51 0.5 0.51 0.51 0.51 15 309 80 9.19 63.2 0.51 378 

Independent control 1.07 1.1 1.07 1.07 1.07 13 381 65 15.41 1.1 1.07 453 
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Catchment Site Ag As Cd Co Cr Cu Fe Mn Ni Pb V Zn 

S 

Bedburn Beck 

Upstream Control 0.79 0.8 0.97 0.85 0.85 13 397 202 3.07 4.1 0.79 381 

Downstream 0.75 0.8 0.89 0.75 0.81 11 361 100 2.78 17.7 0.84 454 

Downstream erosional 0.88 0.9 0.94 1.08 0.94 10 548 127 8.44 25.4 0.88 405 

Downstream depositional 1.14 1.1 1.14 1.23 1.57 10 1177 142 35.84 31.8 1.23 467 

Independent control 0.56 0.6 0.56 0.64 0.74 13 219 119 1.25 1.8 0.64 135 

T 

River East Allen 

Upstream Control 0.26 408.0 0.59 3.62 1.70 70 2994 112 8.33 8.0 1.19 61 

Downstream 0.32 493.4 0.58 2.65 2.10 77 4239 104 13.82 8.3 1.40 66 

Downstream erosional 0.44 480.6 0.80 3.88 3.93 85 4517 162 19.84 12.8 3.07 104 

Downstream depositional 0.42 360.3 0.85 6.84 4.33 82 3157 187 22.63 6.8 3.29 142 

Independent control 0.46 518.9 1.39 10.91 5.68 97 3783 281 23.85 10.8 4.12 188 
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4.3.2 Sediment Geochemistry 

There were clear regional differences in the metal content of river sediments, with higher 

copper and tin concentrations in the southwest, and higher cadmium, lead and zinc 

concentrations in Wales and the north. These differences reflect the regional differences in 

geology. Within regions there were differences among catchments, reflecting the spatially 

clustered pattern of sites. 

The field sampling strategy appeared to have worked: metal concentrations were typically 

higher in the sites downstream of the target mining facilities than in the upstream and 

independent control sites.  

Regarding existing sediment quality guidelines, sites were sampled where the sediment 

concentrations of copper, chromium, lead, nickel and zinc ranged either side of existing 

sediment quality guidelines, indicating that, as expected, the sediment at the targeted mine-

impacted sites was likely to be causing ecological effects.  However, the sediment 

concentrations of cadmium were in excess of existing sediment quality guidelines at the 

majority of sites sampled. This suggests either that cadmium is a widespread issue within 

these mine-impacted sites or that the sediment quality guidelines for cadmium may be overly 

precautionary.  

 

Figure 4.3 Mean (±SE) concentrations (mg Kg-1) of major and trace metals in the river 

bed sediment collected from mining impacted catchments, together with the existing 

sediment quality guidelines (CCME = red dashed line; ANZECC and ARMCANZ = gold 

dotted line) where they exist. a) Cadmium, b) Cobalt, c) Chromium, d) Copper, e) Iron, 

f) Manganese, g) Nickel, h) Lead, i) Tin and j) Zinc. 
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Figure 4.4 Relationships between the body burden of cadmium and the body burden of copper, nickel, lead, and zinc within different 
biomonitor species, a) Rhyacophila, b) Baetis and c) Hydropsyche 
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Figure 4.5 Relationships between the body burden of metals in Baetis with the corresponding metal in different biomonitor species,  
a) arsenic, b) copper and c) lead. 
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4.3.3 Relationships between biomonitor body burden and sediment metal 

concentrations 

The aim of the biomonitor analysis was to provide a measure of local bioavailability of metals 

at sites contaminated by mining, that could then be used to understand the ecological 

responses to sediment contaminated by mining, either directly within or in contact with the 

sediment or via sediment exchange with the water column. Using the data on biomonitor 

body burden and the sediment metal concentrations, we addressed Objective 4a [Establish 

the sensitivity of benthic invertebrate species to metal bioavailability (using partial 

ordination techniques) and, on that basis, devise a new diagnostic index that can be 

used to determine failure of test sites as a consequence of contaminated sediments.].  

a  Relationships among metals within species 

Within individual species there were strong correlations between the body burdens of 

various metals (Figure 4.4). In simple terms, individuals which had a high body burden of, for 

example, cadmium tended to also have a high body burden of other metals (e.g. copper, 

lead and zinc). These results potentially reflect, 

a) the co-occurrence of certain metals due to geology,  

b) variation in bioavailability due to local conditions, affecting all metals present at a site,  

c) behaviour of metals, particularly with regards physiology (e.g. cadmium can act as a 

surrogate for zinc). 

These results can be used to establish which metals present as body burden in the 

biomonitor taxa best reflect local metal bioavailability across species. 

b  Relationships among species 

Due to variation in species occurrence across the sites surveyed, it was decided to collect 

multiple biomonitor species from each site for analysis of body burden. The objective was to 

establish relationships between species so that the bioavailability could be predicted, using 

those species that were present, at sites where the favoured biomonitor species was absent. 

Strong correlations were generally apparent between the body burden of metals in Baetis 

(the most frequently encountered species) and the other species collected as biomonitors, 

particularly Hydropsyche and Leuctra (Figure 4.5). It was noted that there was a poor 

relationship between the body burden of copper in Baetis and that in Gammarus, possibly 

due to physiological differences: haemocyanin, the respiratory protein in Crustacea contains 

copper. Nevertheless, Gammarus was encountered at the least number of sites.  
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c  Relationships with sediment chemistry 

Whilst local conditions may influence the bioavailability of metals, the body burden of metals 

in the biomonitor species was expected to be correlated with the metal concentrations in the 

sediment to a degree. The extent to which the body burden and sediment concentrations are 

correlated will depend on the bioavailability of the metal, and the physiology of the organism.  

Copper and lead showed the strongest relationships between body burden and sediment 

concentrations (Figure 4.6b & d), significant for all four species tested Baetis, Hydropsyche, 

Leuctra and Rhyacophila. The residuals of the relationships between sediment 

concentrations and body burdens of copper and lead in all four taxa (with the exception of 

copper in Rhyacophila) were significantly negatively correlated with the pH measured at the 

time of sampling, indicating an influence of pH (or a correlated variable) on bioavailability. 

For copper, the residuals were also correlated positively with conductivity for all four taxa, 

although (with the exception of Rhyacophila) not as strongly as pH.  

Due to the low frequency of occurrence Gammarus was not used for this analysis. 

Furthermore, preliminary analysis indicated that the relationship between copper in the 

sediment and copper in Gammarus was weak, which again may be related to haemocyanin, 

the respiratory protein in Crustacea which contains copper.  

The relationship between cadmium concentration in the sediment and the body burden of 

cadmium was not significant for any taxon (Figure 4.6a).  

The relationship between nickel in the sediment and the body burden of nickel was 

significant for Leuctra and Rhyacophila (Figure 4.6c). Again, pH was negatively correlated 

with the residuals of the relationship.  

The relationship between the concentration of zinc in the sediment and the body burden of 

zinc was significant for Baetis, Hydropsyche and Leuctra (Figure 4.6e). For Baetis the 

residuals were significantly positively correlated with conductivity, for Leuctra and 

Rhyacophila negatively with pH. 
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Figure 4.6a Relationships between the concentrations of cadmium in fine sediments 

of the stream bed from where the animals were collected and cadmium in the tissues 

of Baetis, Hydropsyche, Leuctra and Rhyacophila. Also shown is the ability of pH and 

conductivity to explain the residuals of the relationship for each species. Lines shown 

where significant. 

 

 

  

-1

-0.5

0

0.5

1

1.5

2

-1 -0.5 0 0.5 1 1.5

-0.5

0

0.5

1

1.5

2

-1 -0.5 0 0.5 1 1.5

-0.5

0

0.5

1

1.5

2

-1 -0.5 0 0.5 1 1.5

-0.5

0

0.5

1

1.5

2

2.5

-1 -0.5 0 0.5 1 1.5

-1.5

-1

-0.5

0

0.5

1

1.5

4 5 6 7 8 9

-1

-0.5

0

0.5

1

1.5

4 5 6 7 8 9

-1

-0.5

0

0.5

1

1.5

4 5 6 7 8 9

-1

-0.5

0

0.5

1

1.5

2

2.5

4 5 6 7 8 9

-1.5

-1

-0.5

0

0.5

1

1.5

1 1.5 2 2.5 3

-1

-0.5

0

0.5

1

1.5

1 1.5 2 2.5 3

-1

-0.5

0

0.5

1

1.5

1 1.5 2 2.5 3

-1

-0.5

0

0.5

1

1.5

2

2.5

1 1.5 2 2.5 3

R
2 

= 0.006

R
2
 = 0.022

R
2
 = 0.012

R
2
 = 0.009

C
d
 b

o
d

y
 b

u
rd

e
n

 (
µ

g
 g

-1
)

in
 B

a
e

ti
s

C
d
 b

o
d

y
 b

u
rd

e
n

 (
µ

g
 g

-1
)

in
 H

y
d

ro
p

s
y
c
h

e
C

d
 b

o
d

y
 b

u
rd

e
n

 (
µ

g
 g

-1
)

in
 L

e
u

c
tr

a
C

d
 b

o
d

y
 b

u
rd

e
n

 (
µ

g
 g

-1
)

in
 R

h
y
a

c
o

p
h

ila

Cd concentration (mg Kg
-1

) in
sediment

R
e
s
id

u
a

l 
o

f 
re

la
ti
o

n
s
h

ip
 i
n

B
a

e
ti
s

R
e
s
id

u
a

ls
 o

f 
re

la
ti
o

n
s
h

ip
 i
n

H
y
d

ro
p

s
y
c
h

e
R

e
s
id

u
a

ls
 o

f 
re

la
ti
o

n
s
h

ip
 i
n

L
e

u
c
tr

a
R

e
s
id

u
a

ls
 o

f 
re

la
ti
o

n
s
h

ip
 i
n

R
h
y
a

c
o

p
h

ila

pH Conductivity

R
2 

= 0.084 R
2 

= 0.075

R
2 

= 0.069

R
2 

= 0.086



124 
 

Figure 4.6b Relationships between the concentrations of copper in fine sediments of 

the stream bed from where the animals were collected and copper in the tissues of 

Baetis, Hydropsyche, Leuctra and Rhyacophila. Also shown is the ability of pH and 

conductivity to explain the residuals of the relationship for each species. Lines shown 

where significant. 
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Figure 4.6c Relationships between the concentrations of nickel in fine sediments of 

the stream bed from where the animals were collected and nickel in tissues of Baetis, 

Hydropsyche, Leuctra and Rhyacophila. Also shown is the ability of pH and 

conductivity to explain the residuals of the relationship for each species. Lines shown 

where significant. 
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Figure 4.6d Relationships between the concentrations of lead in fine sediments of the 

stream bed from where the animals were collected and lead in tissues of Baetis, 

Hydropsyche, Leuctra and Rhyacophila. Also shown is the ability of pH and 

conductivity to explain the residuals of the relationship for each species. Lines shown 

where significant. 
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Figure 4.6e Relationships between the concentrations of zinc in fine sediments of the 

stream bed from where the animals were collected and zinc in tissues of Baetis, 

Hydropsyche, Leuctra and Rhyacophila. Also shown is the ability of pH and 

conductivity to explain the residuals of the relationship for each species. Lines shown 

where significant. 
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d Influence of environmental variables on relationship between body burden and 

sediment chemistry  

The significant relationships between the sediment-body burden residuals and 

environmental variables indicates an influence of environmental conditions on bioavailability. 

Hence, a multiple regression approach was used to identify the environmental variables 

which were best related to the body burden of metals. A stepwise selection procedure was 

used in general linear models in SAS. Variables are entered into the model in sequence 

according to their additional explanatory power. Variables can also be removed if 

subsequent combinations of variables offer more explanatory power. F-tests and AIC rules 

are used to determine inclusion and the stopping point. Various descriptors of the sediment 

(metal concentration in sediment (mg kg-1), reach scale average mass of fine sediment, 

reach scale average mass of metal (mg m-2), organic content of fine sediment, sediment phi 

score), water (pH, conductivity) and site characteristics (width, average depth, distance from 

source, altitude, river slope) were offered as explanatory variables for determining the body 

burden of arsenic, cadmium, copper, nickel, lead and zinc. The first entered variable and the 

variables included in the optimal model were recorded. 

Table 4.8 First entered variables and variables included in optimal models to explain 

body burden of metals in Baetis, Hydropsyche, Leuctra and Rhyacophila. Order of 

variables included as given and positive (+) or negative (-) influence indicated. 

Body 
burden 

Taxon 
First variable 
entered 

R
2
 Optimal model R

2
 

As 

Baetis Cu_mgkg  0.301 
Cu_mgkg -Pb_mgkg -pH +Cond 
-Cd_mgkg +Zn_mgkg 

0.695 

Hydropsyche -Pb_mgm 0.123 -Pb_mgm +Cond +Cu_mgkg -pH 0.364 

Leuctra Cu_mgm 0.295 Cu_mgkg -Pb_mgm +Cond 0.400 

Rhyacophila -Pb_mgm 0.120 
-Pb_mgm +Zn_mgkg 
+Cu_mgkg 

0.291 

Cd 

Baetis altitude 0.197 -altitude +Pb_mgkg  0.320 

Hydropsyche conduct 0.088 Cond +depth -Cu_mgm 0.242 

Leuctra Cu_mgkg 0.154 Cu_mgkg +Ni_mgkg 0.241 

Rhyacophila Cu_mgkg 0.069 Cu_mgkg -pH 0.109 

Cu 

Baetis Cu_mgkg  0.169 Cu_mgkg -pH +Cond -Cd_mgkg  0.455 

Hydropsyche pH 0.164 -pH +Cu_mgkg +Cond -Ni_mgm 0.399 

Leuctra Cu_mgkg 0.293 Cu_mgkg –pH +Cond -Zn_mgkg 0.484  

Rhyacophila Cu_mgkg 0.141 
Cu_mgkg -pH -Pb_mgkg +Cond 
+%Organic +depth +Cd_mgkg 

0.388 

Ni 

Baetis -altitude 0.227 -alt 0.227 

Hydropsyche -pH 0.146 -alt +slope +Cd_mgkg   0.265 

Leuctra - Ca_mgkg 0.130 -Ca_mgkg 0.130 

Rhyacophila Ni_mgkg   0.119 Ni_mgkg -Ca_mgkg 0.192 

Pb 

Baetis Pb_mgkg 0.438 Pb_mgkg -pH 0.530 

Hydropsyche Pb_mgkg 0.323 Pb_mgkg -pH  0.409 

Leuctra Pb_mgkg 0.256 
Pb_mgkg -pH +substrate -
Ni_mgkg 

0.460 

Rhyacophila Pb_mgkg 0.440 Pb_mgkg -pH +altitude +source 0.552 

Zn 

Baetis Conductivity 0.087 Pb_mgkg +substrate 0.177 

Hydropsyche Zn_mgkg  0.132 Zn_mgkg  0.132 

Leuctra Zn_mgkg  0.065 Zn_mgkg -pH 0.178 

Rhyacophila Ni_mgkg  0.064 Ni_mgkg  0.064 
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Arsenic body burden was best explained by either a positive influence of copper 

concentration in the sediment or a negative influence of lead (Table 4.8). Both these 

variables were included in all optimal models. Arsenic concentration in the sediment was not 

measured. Cadmium body burden was best explained by copper concentration in the 

sediment or other variables (Table 4.8). Nickel body burden was best described by a variety 

of variables, with the exception of Rhyacophila where nickel concentration together with a 

negative influence of calcium concentration gave the optimal model. 

Both copper and lead were best described by the concentration of that metal in the sediment 

in combination with negative influence of pH, with some other variables (Table 4.8). For both 

copper and lead, the concentration of metal in the sediment and pH were the first two 

variables included into the models for all taxa (with the exception of copper in Rhyacophila), 

and these two variables alone explained a substantial proportion of the variation in body 

burden (Table 4.9). 

Zinc body burden was best described by zinc concentration in the sediment for Hydropsyche 

and with a negative influence of pH for Leuctra.  

In almost all cases the concentration of metals in the sediment (metal_mgkg) was a better 

descriptor of metal body burden than average mass of metals on the river bed (metal_mgm 

= metal concentration x average fine sediment mass). This may be due to errors from the 

two measurements being compounded when estimating metal mass m-2, or it could be due 

to how the biomonitors accessed metals from the sediment. It should be noted that as a 

separate variable, substrate phi (a measure of whole bed granulometry based on visual 

estimates, inversely related to particle size) was included in two optimal models (lead in 

Leuctra and zinc in Baetis) and % organic of fine sediment in one optimal model (copper in 

Rhyacophila), suggesting that more fine particles in the river bed may influence the uptake of 

metals.  

For arsenic, cadmium and copper, conductivity was frequently included in the optimal model, 

positively correlated with increased body burden. 

Overall these results suggest a strong association between biomonitors and copper and lead 

in the sediment, and for certain taxa, zinc and nickel. There was also a pronounced negative 

influence of pH. 

Table 4.9 First two variables entered into models to explain body burden of copper 

and lead in Baetis, Hydropsyche, Leuctra and Rhyacophila. Order of variables 

included as given and positive (+) or negative (-) influence indicated. R2, adjusted for 

number of variables, of two variable model and optimal model given. 

 Taxon 2 variable model R
2
 Optimal model R

2
 

Cu 

Baetis Cu_mgkg -pH 0.274 0.455 

Hydropsyche -pH +Cu_mgkg 0.368 0.399 

Leuctra Cu_mgkg -pH 0.354 0.484 

Rhyacophila Cu_logmgkg -Pb_logmgkg 0.193 0.388 

Pb 

Baetis Pb_mgkg -pH 0.530 0.530 

Hydropsyche Pb_mgkg -pH 0.423 0.423 

Leuctra Pb_mgkg -pH 0.391 0.460 

Rhyacophila Pb_mgkg -pH 0.501 0.552 
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4.3.4 Relationships between biomonitor body burden and sediment metal 

concentrations derived from samples used for source apportionment 

As part of the tasks comprising work package 3, where sediment source apportionment was 

undertaken to identify the sources of metals arriving at the point of impact, the well-mixed 

fraction (< 63 µm) of fine-grained sediment was collected from the most downstream site in 

the 20 study catchments (see Section 6). Each bed sediment sample (total volume of 5 L) 

comprised a composite of two sub-samples (~ 2.5 L each) retrieved from different points in 

the channel at the outlet of each study catchment. A total of 12 (10 in the case of the River 

Greta) composite samples were retrieved from each catchment outlet (see Table 6.1). These 

samples were oven-dried at 40 °C, manually disaggregated using a rubber-tipped pestle and 

homogenised using a 63 µm sieve (Collins et al., 1997). Concentrations of potential 

geochemical fingerprint properties were determined using a combination of ICP-OES and 

ICP-MS, following an aqua regia acid digest. For full details see Section 6.  

Hence, an independent estimate of the concentration of metals in the sediment, based on a 

larger sample of fine material, was available for one site in each catchment. Although this 

information was available from fewer sites, the larger number of replicates and larger volume 

collected could address any spatial heterogeneity in the composition of fine sediments, 

which may have confounded relationships between sediment metal concentrations and the 

body burden of metals in the biomonitor species. Hence, it was decided to determine the 

relationships between the body burden of metals in the biomonitor species and the 

concentration of metals in the samples used for source apportionment. Furthermore, these 

sediment metal concentrations were based on the finer fraction (< 63 µm), which may be 

more biologically active, and thus provide a better estimate of ecological risk. 

As fewer sites were used for source apportionment, fewer significant relationships were 

identified than in the larger dataset (cf Section 4.3.4c and Figure 4.6). Nevertheless, 

significant (p ≤ 0.05) or close to significant (p ≤ 0.1) relationships were found between the 

concentrations of lead, copper and arsenic in the fine fraction of sediment and the tissue 

concentrations in Baetis, Hydropsyche and Rhyacophila (Figure 4.7). There was also a 

significant relationship between cadmium concentration in the fine fraction of sediment and 

in the tissues of Hydropsyche, and a close to significant relationship for zinc concentrations 

in Hydropsyche. Of the metals of less interest, there was a relationship between the 

concentrations of cobalt in the fine fraction of sediment (< 63 μm) and in the tissue 

concentrations of Leuctra and close to significant for Baetis. Similarly, there was a close to 

significant relationship for manganese in the sediment and in the tissues of Leuctra. For the 

other metal – biomonitor combinations, particularly nickel and zinc, patterns were apparent, 

but a low number and narrow range of data points resulted in non-significant relationships. 

No relationships were seen between chromium concentration in the sediment and that in the 

tissues of the biomonitor taxa, which suggests that factors other than total concentration 

influence the biological availability of chromium in these sites.  

As well as supporting the data from the wider survey of biomonitor taxa, particularly 

regarding copper and lead, these data indicate that arsenic and to an extent cadmium 

bioavailability can be predicted from sediment concentrations. The lack of a more substantial 

result with cadmium is probably due to the difficulties of quantifying this metal, which is 

frequently found at concentrations close to the detection limit. 
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Figure 4.7a Relationships between the concentrations of metals and metalloids (As, 

Cd, Co, Cr, Cu, Mn, Ni, Pb and Zn) in fine sediments (< 63 µm) collected for source 

apportionment and corresponding concentrations in the tissues of Baetis. Solid lines 

shown where significant: dashed lines close to significant. 
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Figure 4.7b Relationships between the concentrations of metals and metalloids (As, 

Cd, Co, Cr, Cu, Mn, Ni, Pb and Zn) in fine sediments (< 63 µm) collected for source 

apportionment and corresponding concentrations in the tissues of Hydropsyche. 

Solid lines shown where significant: dashed lines close to significant. 
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Figure 4.7c Relationships between the concentrations of metals and metalloids (As, 

Cd, Co, Cr, Cu, Mn, Ni, Pb and Zn) in fine sediments (< 63 µm) collected for source 

apportionment and corresponding concentrations in the tissues of Leuctra. Solid 

lines shown where significant: dashed lines close to significant. 
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Figure 4.7d Relationships between the concentrations of metals and metalloids (As, 

Cd, Co, Cr, Cu, Mn, Ni, Pb and Zn) in fine sediments (< 63 µm) collected for source 

apportionment and corresponding concentrations in the tissues of Rhyacophila. Solid 

lines shown where significant: dashed lines close to significant. 

 

 

  

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

0 0.5 1 1.5 2 2.5 3

-0.5

0

0.5

1

1.5

2

2.5

0 0.5 1 1.5

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1 1.5 2

0

0.5

1

1.5

2

2.5

3

3.5

0 1 2 3 4

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2 3 4

0

0.5

1

1.5

2

0 0.5 1 1.5 2 2.5

-0.5

0

0.5

1

1.5

2

2.5

3

0 1 2 3 4

0

0.5

1

1.5

2

2.5

3

3.5

4

0 1 2 3 4

As concentration (mg Kg
-1

) in
sediment

Cd concentration (mg Kg
-1

) in
sediment

Co concentration (mg Kg
-1

) in
sediment

Cr concentration (mg Kg
-1

) in
sediment

Cu concentration (mg Kg
-1

) in
sediment

Mn concentration (mg Kg
-1

) in
sediment

Ni concentration (mg Kg
-1

) in
sediment

Pb concentration (mg Kg
-1

) in
sediment

Zn concentration (mg Kg
-1

) in
sediment

A
s
 c

o
n

c
e

n
tr

a
ti
o

n
 (

µ
g

 g
-1

)
in

 R
h
y
a

c
o

p
h

ila

C
u
 c

o
n

c
e

n
tr

a
ti
o

n
 (

µ
g

 g
-1

)
in

 R
h
y
a

c
o

p
h

ila
P

b
 c

o
n

c
e

n
tr

a
ti
o

n
 (

µ
g

 g
-1

)
in

 R
h
y
a

c
o

p
h

ila

Z
n

 c
o

n
c
e

n
tr

a
ti
o

n
 (

µ
g

 g
-1

)
in

 R
h
y
a

c
o

p
h

ila

C
d
 c

o
n

c
e

n
tr

a
ti
o

n
 (

µ
g

 g
-1

)
in

 R
h
y
a

c
o

p
h

ila

C
o
 c

o
n

c
e

n
tr

a
ti
o

n
 (

µ
g

 g
-1

)
in

 R
h
y
a

c
o

p
h

ila

C
r 

c
o

n
c
e

n
tr

a
ti
o

n
 (

µ
g

 g
-1

)
in

 R
h
y
a

c
o

p
h

ila

M
n

 c
o

n
c
e

n
tr

a
ti
o

n
 (

µ
g

 g
-1

)
in

 R
h

y
a

c
o

p
h

ila

N
i 
c
o

n
c
e

n
tr

a
ti
o

n
 (

µ
g

 g
-1

)
in

 R
h
y
a

c
o

p
h

ila

R
2
 = 0.209

R
2
 = 0.139

R
2
 = 0.450



135 
 

4.3.5 Relationships between biomonitor body burden and dissolved metal 

concentrations in river water 

EA water chemistry monitoring data were available for 46 of the field sites. For these sites, 

long-term mean dissolved metal concentrations in the overlying water were calculated from 

the available data and compared to the body burdens of the biomonitor species, sediment 

metal concentrations and, for the most downstream sites in each catchment, metal 

concentrations in fine sediments collected for source apportionment. Here, we attempted to 

establish the influence of dissolved metals in river water on bioavailability measured as 

tissue concentrations in the biomonitor taxa, by comparing relationships with those derived 

for sediment metal concentrations. It should be noted that the measures of water chemistry 

were long-term averages based on multiple sampling occasions and, therefore, are more 

likely to represent an accurate characterisation of site conditions than the sediment samples 

collected in this project. However, water chemistry data were not available for all sites used 

in the field survey, reducing the statistical power to detect relationships. 

Mean dissolved concentrations of copper, lead and zinc in river water were correlated with 

corresponding concentrations in the fine sediment and in the fine sediments (< 63 µm) 

collected for source apportionment. Mean dissolved concentrations of cadmium were also 

correlated with corresponding concentrations in the fine sediment. These results suggest 

that either: 

a) the abandoned metal mines targeted in this project were releasing both particulate 

and dissolved metals into the environment, with the extent of release of both forms 

dependent on the extent of contamination at each site, and/or  

b) metals in river water and sediment are not independent. Rather they can move 

between these two compartments. 

Due to the strong correlations between sediment and dissolved metal concentrations, it was 

not possible to determine the relative importance of sediment and water using this approach. 

An experimental approach (see Section 7) or a field campaign that targeted sites where 

abandoned mine facilities are releasing either contaminated water or sediment alone would 

be required to determine the relative influence of these two compartments.  

Nevertheless, the body burdens of arsenic in Baetis was correlated with the concentration in 

the sediment fraction used for source apportionment (Figure 4.8a). Cadmium in 

Hydropsyche was correlated with cadmium in the sediment fraction used for source 

apportionment and weakly correlated with the water (Figure 4.8b). Copper in all biomonitor 

taxa were correlated with copper concentrations in both water and fine sediment, and in the 

case of Baetis the sediment fraction used for source apportionment (Figure 4.8c). Here the 

relationships with body burdens in biomonitor taxa were stronger with water than sediment 

for Hydropsyche, Leuctra and Rhyacophila, but it should be noted that relationships with the 

sediment copper concentrations were stronger in the full data set and particularly when the 

influence of environmental conditions was taken into account (see Sections 4.3.3 and 4.3.4). 

Lead in all the biomonitor taxa was correlated with lead in the water and both measures in 

the sediment, with no clear pattern between the different compartments (Figure 4.8e). Zinc in 

Baetis and Leuctra were correlated with concentrations in both fine sediment and water 

(Figure 4.8f). Nickel in Leuctra and Rhyacophila were correlated with concentrations in the 

sediment (Figure 4.8d).  
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As stated above, due to the correlation between the mean dissolved metal concentrations in 

river water and the concentrations of metals in the sediment, this analysis was not able to 

draw any substantial conclusion on the relative importance of sediment and water as 

sources of bioavailable metal. However, at least for arsenic, cadmium and nickel, sediment 

appears to be a more important source than river water. The results for copper, lead, and 

zinc are less easy to interpret.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8 (overleaf) Relationships between mean concentrations of dissolved metals 

and metalloids (As, Cd, Cu, Ni, Pb and Zn) in river water, metal concentrations in fine 

sediments collected for source apportionment and corresponding concentrations in 

the tissues of biomonitor taxa. Solid lines shown where significant: dashed lines 

close to significant. 
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b) Cadmium
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4.3.6 Relationships between biomonitor body burden and species richness 

Following the model of uptake of metals described in Section 1, it was decided to use 

quantile regression with a threshold response model (as described in Section 3.1) to 

determine if bioavailability of metals as measured using the body burden of the biomonitor 

taxa (as described in Section 4.3.1) was related to changes in taxon richness in the 

invertebrate samples collected from the same site. Here, again, we expected taxon richness 

to show a significant decline once a threshold bioavailability of metal was exceeded. As 

before, significance was determined using AIC values calculated using the method 

described in Pacheco et al. (2005). The threshold model was selected as optimal if it had the 

lowest AIC values compared with an exponential, a linear and a null model. 

Baetis provided optimal fits for arsenic, cadmium, copper and zinc, and a close to optimal fit 

for lead. However, the threshold for the model with zinc was near to the upper limit of the 

range of body burden measured and may be trivial (i.e. the relationship may be highly 

influenced by the few points above the threshold). Hydropsyche provided optimal fits for 

copper and nickel, and a close to optimal fit for lead. Leuctra provided optimal fits for 

arsenic, cadmium, copper, nickel and zinc. Rhyacophila only provided a close to optimal fit 

for lead. In each case where lead provided a close to optimal model, the linear model was 

the other selected model, which is consistent with the relatively low threshold bioavailability 

for lead detected for all three species. 

These results confirm that the biomonitor approach can be used to assess the bioavailability 

of metals from sediment at ecologically significant concentrations. This may allow regulatory 

agencies to survey possible risks at sites simply by analyzing body burdens in certain 

species and comparing measured metal residues with those corresponding to undamaged 

conditions (i.e. no community level impact). 

Table 4.10 Summary of results from quantile regression showing modelled thresholds 

in taxon richness of invertebrates in relation to the body burden (μg g-1) of arsenic, 

cadmium, copper nickel, lead and zinc for the biomonitor species Baetis, 

Hydropsyche, Leuctra and Rhyacophila collected from the same site. Figures shown 

are from model fits that were optimal based on AIC criteria: figures in red are from 

models that were close to optimal, figures in italics are potentially trivial. 

 Baetis Hydropsyche Leuctra Rhyacophila 

As 274  210  

Cd 8.8  7.7  

Cu 89 29 80  

Ni  86 80  

Pb 8.5 24  1.8 

Zn 6480  294  

 

Figure 4.9 (overleaf) Relationships between taxon richness of invertebrates and the 

body burden (μg g-1) of arsenic, cadmium, copper nickel, lead and zinc for the 

biomonitor species A) Baetis, B) Hydropsyche, C) Leuctra and D) Rhyacophila 

collected from the same site, as modelled using quantile regression with a threshold 

response. Lines are shown for optimal or close to optimal models.  
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Hydropsyche 
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Leuctra 
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Rhyacophila 
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The relationship between between biomonitor body burden and sediment metal 

concentrations (Section 4.3.4c) was used to determine the sediment metal concentrations at 

which the biomonitor body burdens indicated a threshold in taxon richness of invertebrates 

(Table 4.10 and Figure 4.9). Here the threshold in biomonitor body burden identified using 

quantile regression was used to calculate sediment metal concentrations using the 

equations in Table 4.11 (from Figures 4.6 and 4.7). Using this two-step procedure, the 

influence of bioavailability of sediment metals is more accurately represented than if 

sediment concentrations were directly related to taxon richness of invertebrates. However, 

this approach introduces more uncertainty, as the result is dependent upon two relationships 

each with their associated uncertainty. 

 

Table 4.11 Summary of sediment metal concentrations derived from quantile 

regression modelled thresholds in taxon richness of invertebrates in relation to the 

body burden (μg g-1) for the biomonitor species collected from the same site.  

 Baetis Hydropsyche Leuctra Rhyacophila Mean 

As 372 a  396 a  384 a 

Cd –  54 b  54 b 

Cu 135 21 70  75 

Ni  537 b 231  384 

Pb 65 96  1.5 54 c 

Zn 517,176  1,561  1,561 d 

      

 

Figures calculated from relationships between sediment metal concentrations and 

biomonitor body burden where model fits were optimal based on AIC criteria: figures in red 

are from models that were close to optimal, figures in italics are potentially trivial.  

– No significant relationship between sediment and biomonitor body burden  
a based on relationship with fine sediment <63 µm used for source apportionment.  
b based on weak relationship between sediment and biomonitor body burden 
c based on threshold model that was close to optimal. 
d threshold model that was trivial not included. 
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4.3.7 Community response 

The aim of the biomonitor analysis is to provide a measure of local bioavailability of metals at 

sites contaminated by mining, that can then be related to the ecological responses of the 

benthic macroinvertebrate community, either directly within or in contact with the sediment or 

via sediment exchange with the water column. With these data we will address Objective 4a 

[Establish the sensitivity of benthic invertebrate species to metal bioavailability (using 

partial ordination techniques) and, on that basis, devise a new diagnostic index that 

can be used to determine failure of test sites as a consequence of contaminated 

sediments.] 

For each of the 99 stream sites sampled we had data describing the benthic 

macroinvertebrate community, the physicochemical characteristics of the sampled reach 

(Table 4.12) , and the metal body burden of Baetis spp., Hydropsyche spp., Leuctra spp. and 

Rhyacophila spp. (see Section 4.2 for description of sampling and laboratory methods). 

Table 4.12 Environmental variables used to account for natural background variation 

in the sampled stream macroinvertebrate community, showing the independent 

explanatory power of each variable (marginal effect), and the additional contribution 

of each successive variable to the forward selected model (conditional effect). 

Environmental 
variable 

Units Minimum 
(untransformed) 

Maximum 
(untransformed) 

Marginal 
fit  

Conditional 
fit  

Distance from 
source 

log km 1.05 24.1 0.06 0.06 

Elevation m 7 425 0.17 0.17 

Stream slope log m km
-1

 0.9 66 0.10 0.04 

Stream width log m 1.5 19.6 0.07 - 

Stream depth log cm 4.3 67.3 0.05 0.05 
Substrate phi 
score

1
 

- -7.3 0.95 0.11 0.03 

pH - 4.2 8.77 0.05 0.03 

Conductivity log μS cm
-1

 23 736 0.09 0.07 
Organic fine 
sediment content 

Arcsine 
mean % 

3.4 34.8 0.03 - 

Mass of calcium in 
fine sediment 

log mg m
-2

 1.02 4.67 0.06 0.02 

      
1 Substrate phi score is the weighted sum of percent cover values for different substrate size categories: phi score = -7.75(% 

cover of boulders and cobbles) -3.25(% cover of pebbles and gravel )+2(% cover sand) + 8(% cover of silt and clay). 

Across the 99 sites we recorded the abundance of 196 discrete taxa (see Appendix 5).  

Taxon richness varied from 15 (River Hayle, downstream of Godolphin Bridge Mine) to 66 

(Linburn Beck, independent control stream in Weardale).  Abundance of individuals captured 

in a sample varied widely from 44 (R. Wye, downstream of Nantiago Mine) to 7067 

(Porthleven Stream, upstream of Great Fortune Mine).   

The specific objective of the field survey was to quantify the association between variation in 

the macroinvertebrate assemblage and the metals stressor gradient having first factored out 

that portion of the biological variation correlated with natural background variation among 

streams.  From such an analysis, the relative sensitivity of a range of macroinvertebrates to 
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metals stress could be quantified and would form the empirical basis for a new diagnostic 

biotic index.   

Multivariate ordination was used to first quantify variation in the macroinvertebrate 

assemblage, and then to determine which set of natural environmental variables best 

described the pattern.  Of the 196 recorded taxa, 106 occurred in fewer than 10 samples and 

therefore were excluded to ensure that inferences about sensitivities to metal pollution were 

based on a reasonable number of replicate occurrences. An initial detrended 

correspondence analysis on the matrix of log-transformed abundance data for 90 taxa 

across 99 samples found that that taxa turnover (DCA axis 1 gradient length = 2.41) was 

sufficient to meet the unimodal response assumption of canonical correspondence analysis 

(CCA) (ter Braak, 1994). A CCA of the biotic data against the environmental variables (Table 

4.12) was undertaken with Hill’s scaling of ordination scores with focus on inter-species 

distances, and manual forward selection (n = 999 permutations, p ≤ 0.01 as the significance 

threshold for inclusion in the model) to determine the optimal subset of predictor variables 

that accounted for natural background gradients in the macroinvertebrate assemblage. The 

10 variables were ranked according to their independent ability to account for variation in the 

biological data. The highest ranking variable was added to the model and then remaining 

variables were again ranked according to their independent ability to account for the 

subsequent residual variation in the biological data. This process continued until the addition 

of another variable would not lead to a significant gain in the explanatory power of the 

model. The most parsimonious explanatory model included elevation, conductivity, distance 

from source, depth, slope, pH, substrate composition and mass of calcium in stream bed fine 

sediment (Table 4.12). Width and fine sediment organic content were not selected. 

A partial CCA (pCCA) was then carried out with the selected environmental variables 

describing the natural background characteristics of the sites considered as co-variables in 

the analysis. Residual variation in the macroinvertebrate assemblage, having factored out 

that associated with the co-variables, was then related to measures of metal bioavailability at 

each site i.e. arsenic, cadmium, copper, nickel, lead and zinc body burden.  Not all 

biomonitor groups were present at all catchments or sites (Table 4.13).  Baetis and 

Rhyacophila were the most widespread biomonitors with specimens collected from 86 of the 

99 sites.  Gammarus were collected from only 30 sites.  Baetis tended to be more abundant 

at sites than the equally widespread Rhyacophila and hence was chosen as the group to 

represent the level of metal bioavailability at each site in the pCCA.  For the 13 sites where 

Baetis was absent, a modelled tissue concentration for each metal (arsenic, cadmium, 

copper, nickel, lead and zinc) was derived based on statistically significant relationships 

between Baetis metal tissue concentration and that of Hydropsyche for missing sites in 

Catchments A, I and J, Leuctra for missing sites in Catchments K, Q and T and Rhyacophila 

for missing Sites in Catchments Q and T (Appendix 5).  Where possible, regressions were 

calculated for missing sites based only on data from other sites in the same region, e.g. for 

Catchment I Baetis-Hydropsyche regressions were based on data from other Welsh 

catchments. 

The pCCA of the biotic data against the Baetis metal body burden variables was undertaken 

with Hill’s scaling of ordination scores with focus on inter-species distances, and manual 

forward selection (n = 999 permutations, p ≤ 0.01 as the significance threshold for inclusion 

in the model) to determine the optimal subset of metals that could account for variation in the 

macroinvertebrate assemblage across the metal stress gradients 
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Table 4.13. Number of sites within each catchment where specimens of each of the 

five genera were collected for metal body burden analysis. 

Catchment Baetis Hydropsyche Leuctra Rhyacophila Gammarus 

A 3 4 2 3 2 

B 5 5 3 3 1 

C 5 5 3 1 1 

D 5 3 2 3 3 

E 5 5 1 4 5 

F 5 5 1 5 2 

G 5 5 5 5 - 

H 5 5 3 5 - 

I 2 5 5 5 - 

J 2 5 - 5 - 

K 1 - 5 4 - 

L 5 5 1 5 5 

M 5 1 5 5 2 

N 5 5 5 5 1 

O 5 3 5 3 - 

P 5 5 1 5 5 

Q 4 4 5 5 - 

R 5 5 5 5 - 

S 5 5 4 5 2 

T 4 4 5 5 1 

Total 86 84 66 86 30 

      

 

Table 4.14. Baetis metal tissue concentration variables used to account for residual 

variation in the sampled stream macroinvertebrate community, showing the 

independent explanatory power of each variable (marginal effect), and the additional 

contribution of each successive variable to the forward selected model (conditional 

effect). 

Metal concentration 
in Baetis 

Units Minimum μg g
-1

 
(untransformed) 

Maximum μg g
-1

 
(untransformed) 

Marginal 
fit  

Conditional 
fit  

Arsenic log μg g
-1

 0.18 5734 0.02 - 

Cadmium log μg g
-1

 0.18 35.05 0.02 - 

Copper log μg g
-1

 1.27 1008 0.02 0.02 

Nickel log μg g
-1

 1.66 153.5 0.03 0.03 

Lead log μg g
-1

 0.41 620.6 0.04 0.04 

Zinc log μg g
-1

 28.2 10859 0.02 - 

      

 

The pCCA model selected included lead, nickel, and copper, with arsenic, cadmium or zinc 

not making a significant additional contribution to the model (Table 4.13).  The three 

constrained axes in the ordination accounted for 45%, 32% and 22% respectively of the 

pCCA biology-metals relationship.  Axis 1 was most strongly correlated with the lead body 

burden (r = 0.67), axis 2 with nickel body burden (r = 0.71) and axes 3 with Cu (r = 0.63) 
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(Table 2.14, Figure 4.10).  The position of taxa (their pCCA species scores) along the three 

constrained axes of the pCCA ordination space provide a robust ranking of taxa in terms of 

their association with the three metal body burden gradients, without the confounding 

influence of other measured environmental factors. The pCCA species scores are calculated 

as the weighted average of the sample scores and indicate the centre of the taxon 

distribution (its mode, assuming a Gaussian response curve) along each constrained 

ordination axis (ter Braak and Šmilauer, 2002).  For each axis in turn, tolerance scores from 

0 to 100 were allocated to taxa based on their relative position along the axis, with the most 

metal-tolerant species being scored 0 and taxa successively more distant along the axis 

being assigned scores equivalent to the percent of the axis distance between the highest 

and lowest scoring taxa (Table 4.15).  The tolerance scores for each taxon for the three axes 

were combined as a weighted sum, with the weights being the proportion of the variance in 

the pCCA biology-metals relationship accounted for by each axis (0.45, 0.32 and 0.22 

respectively).  The weighted-sum of tolerance scores were converted to the percent of the 

distance between the highest and lowest scoring taxa, as before, such that the water snipe 

fly Ibisia marginata scored zero as the taxon most associated with high metal concentrations 

in Baetis, and the mayfly Caenis rivulorum scored 100 as the taxon most associated with low 

metal concentrations in Baetis (Table 4.16). 

Table 4.15. Correlation coefficients between metal bioavailability variables and the 

three constrained pCCA axes. 

Metal bioavailability pCCA axis 1 pCCA axis 2 pCCA axis 3 

Cu in Baetis -0.146 -0.200 0.625 

Ni in Baetis 0.043 -0.712 -0.022 

Pb in Baetis 0.665 -0.197 0.242 

 

Other taxa associated with high levels of metals include the beetles Orectochilus villosus 

and Platambus maculatus, the stoneflies Protonemura meyeri, Chloroperla tripunctata, 

Leuctra fusca and L. hippopus, the caddis fly Hydropsyche pellucidula, the dragonfly 

Cordulegaster boltoni, the blackfly Prosimulium and the flatworms Crenobia alpina and 

Phagocata vitta.  At the other end of the gradient are taxa associated with low levels of 

metals including the caddis flies Ithytrichia, Drusinae, Glossosoma, Lepidostomatidae and 

Silo pallipes, the mayflies Paraleptophlebia and Centroptilum luteolum, the freshwater 

shrimp Gammarus pulex, the worms Tubificidae and Enchytraeidae, and the gastropod snail 

Potamopyrgus antipodarum.  There was a distinct pattern of decreasing taxon richness 

along the first pCCA axis, correlated with increasing lead concentrations in Baetis.  Such a 

gradient was not as strong along the second or third axes. 
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Figure 4.10 a) Partial canonical correspondence analysis biplot illustrating the 

positions of the 44 (out of 90) macroinvertebrate taxa with the greatest fit to the 

ordination axes. b) The direction of influence of the three selected explanatory 

variables along axes 1 and 2, and axes 1 and 3.  c) The taxon richness gradient in the 

ordination space.  

a) 

a) 
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Table 4.16. The assignment of taxon scores for the species-level Metal Tolerance 

index (MetTol). Also presented are the pCCA axes species scores that form the basis 

for the ranking of taxa, and the percentile data that was used to derive the MetTol 

scores for each taxon. 

 
pCCA axis 1 

 
pCCA axis 2 

 
pCCA axis 3 Weighted 

Sum of % 
MetTol 
score TAXON NAME score % 

 
score % 

 
score % 

Ibisia marginata 0.5587 20 
 

-0.2434 30 
 

0.2994 34 26.37 0.0 

Cordulegaster boltonii 0.0842 50 
 

-0.1007 39 
 

0.724 0 35.25 14.6 

Platambus maculatus 0.4582 26 
 

-0.2451 30 
 

-0.0562 63 35.65 15.3 

Hydropsyche pellucidula 0.0694 51 
 

-0.7486 0 
 

0.0195 57 35.76 15.4 

Protonemura meyeri 0.307 36 
 

-0.3354 25 
 

0.0051 58 37.17 17.8 

Orectochilus villosus 0.1243 47 
 

-0.4155 20 
 

0.208 42 37.25 17.9 

Chloroperla tripunctata 0.543 21 
 

0.1448 54 
 

0.1265 48 37.49 18.3 

Prosimulium sp. 0.8665 0 
 

0.2259 58 
 

-0.3098 83 37.54 18.4 

Leuctra fusca 0.4436 27 
 

-0.1795 34 
 

-0.1014 67 38.16 19.4 

Crenobia alpina 0.4742 25 
 

-0.061 41 
 

-0.1167 68 39.85 22.2 

Phagocata vitta 0.188 43 
 

-0.2045 33 
 

0.0925 51 41.59 25.0 

Serratella ignita 0.1955 43 
 

-0.1225 38 
 

0.0871 51 43.06 27.4 

Leuctra hippopus 0.186 44 
 

-0.1985 33 
 

0.0141 57 43.17 27.6 

Diplectrona felix 0.168 45 
 

-0.032 43 
 

0.182 44 43.91 28.8 

Perlodes microcephalus 0.2019 42 
 

-0.1793 34 
 

-0.0415 62 44.09 29.1 
Hydropsyche instabilis 0.342 34 

 
0.0376 47 

 
-0.1237 68 45.73 31.8 

Polycentropus sp. 0.1495 46 
 

0.226 58 
 

0.3843 27 45.82 32.0 
Plectrocnemia sp. -0.0496 59 

 
-0.2271 31 

 
0.1741 44 46.56 33.2 

Hemerodrominae 0.1105 48 
 

0.0409 47 
 

0.2036 42 46.60 33.3 
Oulimnius tuberculatus 0.0015 55 

 
-0.1962 33 

 
0.1188 49 46.68 33.4 

Simulium (Simulium) 
argyreatum group 0.1875 43 

 
-0.0483 42 

 
-0.0546 63 47.29 34.4 

Simulium (Nevermannia) 
cryophilum-vernum group -0.069 60 

 
-0.2434 30 

 
0.1416 47 47.39 34.6 

Agapetus sp. -0.1212 63 
 

-0.4611 17 
 

-0.0136 60 47.47 34.7 

Pisidium sp. 0.1066 49 
 

-0.021 44 
 

0.0766 52 47.80 35.2 

Leuctra nigra -0.2404 71 
 

-0.5416 12 
 

0.0572 54 48.08 35.7 

Ceratopogonidae 0.2296 41 
 

0.0494 48 
 

-0.0787 65 48.40 36.2 

Rhyacophila dorsalis 0.0995 49 
 

-0.0223 44 
 

0.0302 56 48.82 36.9 
Simulium (Eusimulium) 
aureum group 0.0235 54 

 
-0.2043 33 

 
-0.0518 63 48.95 37.1 

Amphinemura sulcicollis 0.0082 55 
 

0.011 46 
 

0.1746 44 49.51 38.0 

Pericoma group 0.1146 48 
 

-0.3764 22 
 

-0.4172 92 49.55 38.1 

Dicranota sp. 0.0613 51 
 

-0.0752 40 
 

-0.0098 59 49.61 38.2 

Rhithrogena sp. 0.1516 46 
 

-0.0192 44 
 

-0.1144 68 49.97 38.8 

Limnius volckmari 0.0127 55 
 

-0.0485 42 
 

0.0727 53 50.05 38.9 

Leuctra inermis 0.11 48 
 

0.052 48 
 

0.0226 57 50.09 39.0 

Baetis rhodani 0.1359 47 
 

0.0533 48 
 

-0.0466 62 50.61 39.9 

Tanypodinae [sub-family] 0.0794 50 
 

0.0842 50 
 

0.0681 53 50.79 40.1 

Potamophylax sp. -0.0492 59 
 

-0.0609 41 
 

0.1157 49 50.83 40.2 
Simulium (Simulium) ornatum 
group 0.0239 54 

 
-0.0353 43 

 
0.0237 57 50.87 40.3 

Lumbriculidae -0.1286 64 
 

-0.1859 34 
 

0.0958 51 51.06 40.6 

Esolus parallelepipedus 0.0729 51 
 

0.2126 58 
 

0.2009 42 51.08 40.6 

Hydraena sp. -0.0215 57 
 

-0.0789 40 
 

0.0275 56 51.27 40.9 

Elmis aenea -0.0368 58 
 

-0.0588 41 
 

0.0435 55 51.81 41.8 

Ancylus fluviatilis -0.0668 60 
 

-0.1348 37 
 

0.0091 58 51.82 41.9 
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pCCA axis 1 

 
pCCA axis 2 

 
pCCA axis 3 Weighted 

Sum of % 
MetTol 
score TAXON NAME score % 

 
score % 

 
score % 

Electrogena lateralis 0.2076 42 
 

0.2329 59 
 

-0.0422 62 51.95 42.1 

Nemoura avicularis 0.0784 50 
 

-0.1518 36 
 

-0.2544 79 52.03 42.2 

Eloeophila sp. -0.1496 65 
 

-0.1882 34 
 

0.0621 53 52.23 42.5 

Ephemera danica -0.1452 65 
 

-0.1994 33 
 

0.0364 55 52.35 42.7 

Polycelis felina -0.1552 65 
 

-0.1192 38 
 

0.1365 47 52.39 42.8 

Isoperla grammatica -0.0009 55 
 

0.0491 48 
 

0.0402 55 52.93 43.7 

Limnephilidae -0.069 60 
 

-0.1891 34 
 

-0.1134 68 53.04 43.8 

Brachyptera risi -0.1043 62 
 

0.1285 53 
 

0.2741 36 53.26 44.2 

Nemoura cambrica group 0.0679 51 
 

-0.0164 44 
 

-0.1748 73 53.53 44.7 

Orthocladiinae [sub-family] -0.0155 56 
 

0.0468 48 
 

0.0226 57 53.63 44.8 

Philopotamus montanus 0.0258 54 
 

-0.1891 34 
 

-0.3325 85 54.23 45.8 
Tipula (Yamatotipula) montium 
group -0.0086 56 

 
-0.0648 41 

 
-0.1545 71 54.44 46.2 

Clinocerinae 0.137 47 
 

0.2319 59 
 

-0.0686 64 54.45 46.2 

Dinocras cephalotes -0.0345 58 
 

-0.1864 34 
 

-0.2954 82 55.36 47.7 

Odontocerum albicorne -0.017 56 
 

-0.0712 41 
 

-0.2015 75 55.41 47.7 

Wormaldia sp. -0.1193 63 
 

-0.235 31 
 

-0.2184 76 55.49 47.9 

Lumbricidae -0.1175 63 
 

-0.0996 39 
 

-0.0822 65 55.62 48.1 

Tanytarsini [tribe] -0.0353 58 
 

0.0625 49 
 

-0.0434 62 55.69 48.2 

Hydracarina 0.0834 50 
 

0.1967 57 
 

-0.0956 66 55.80 48.4 

Asellus aquaticus 0.0186 54 
 

0.1368 53 
 

-0.064 64 55.95 48.6 

Pedicia sp. 0.184 44 
 

0.154 54 
 

-0.3131 84 55.97 48.7 

Mystacides sp. -0.2801 73 
 

-0.0499 42 
 

0.2088 42 56.06 48.8 

Hydropsyche siltalai -0.1364 64 
 

0.1479 54 
 

0.1887 43 56.10 48.9 

Siphonoperla torrentium -0.1638 66 
 

0.0185 46 
 

0.0669 53 56.57 49.7 

Sericostoma personatum -0.2456 71 
 

-0.0086 44 
 

0.1426 47 57.05 50.5 

Halesus sp. 0.0427 53 
 

0.3224 64 
 

-0.0047 59 57.79 51.7 

Perla bipunctata 0.1384 47 
 

0.3928 68 
 

-0.1201 68 58.46 52.8 

Ecdyonurus sp. -0.1701 66 
 

-0.061 41 
 

-0.1762 73 59.58 54.6 

Diamesinae [sub-family] 0.2279 41 
 

0.5946 81 
 

-0.1143 68 59.69 54.8 

Elodes sp. -0.1452 65 
 

-0.0124 44 
 

-0.1878 74 60.02 55.3 

Naididae -0.0501 59 
 

0.0744 49 
 

-0.2517 79 60.10 55.5 

Chironomini [tribe] -0.0726 60 
 

0.2157 58 
 

-0.1111 67 60.97 56.9 

Oreodytes sanmarkii -0.1331 64 
 

0.0559 48 
 

-0.2144 76 61.47 57.7 

Alainites muticus -0.1037 62 
 

0.1655 55 
 

-0.1525 71 61.64 58.0 

Silo pallipes -0.3328 77 
 

0.0427 47 
 

0.081 52 61.68 58.1 

Lepidostomatidae -0.3931 81 
 

0.0412 47 
 

0.1599 46 61.98 58.6 

Enchytraeidae -0.434 83 
 

-0.1507 36 
 

-0.0581 63 63.36 60.8 

Nematoda 0.1245 47 
 

0.3776 68 
 

-0.407 91 63.73 61.4 

Potamopyrgus antipodarum -0.2606 72 
 

0.0404 47 
 

-0.1765 73 64.18 62.2 

Glossosoma sp. 0.0545 52 
 

0.4419 71 
 

-0.2653 80 64.46 62.6 

Drusinae -0.2447 71 
 

0.2105 58 
 

-0.1161 68 65.94 65.1 

Gammarus pulex -0.4307 83 
 

-0.1363 37 
 

-0.2189 76 66.44 65.9 

Centroptilum luteolum -0.1107 62 
 

0.9182 100 
 

0.2696 37 68.88 69.9 

Tubificidae -0.4366 83 
 

0.1759 55 
 

-0.0897 66 70.35 72.3 

Paraleptophlebia sp. -0.6503 97 
 

-0.2479 30 
 

-0.5153 100 75.96 81.6 

Ithytrichia sp. -0.586 93 
 

0.3604 67 
 

-0.0778 65 78.05 85.0 

Caenis rivulorum -0.6977 100 
 

0.6036 81 
 

-0.1426 70 87.18 100.0 
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B MetTol index testing 

Having ranked macroinvertebrate taxa according to their association with metal gradients 

and assigned tolerance scores (MetTol) we can now calculate a MetTol index value for any 

river site where the macroinvertebrate community has been similarly sampled and 

processed by simply averaging the MetTol scores for those taxa present in the sample.  We 

tested the performance of this new biotic index using both the calibration dataset from which 

it was developed and also an independent dataset drawn from existing datasets. 

Calibration dataset testing 

The calibration dataset consisted of the 86 sites for which we had direct measures of the 

metal concentrations in Baetis tissue (Table 4.12).  To represent the metal stress gradient in 

testing we presented the Baetis tissue metal concentrations relative to a calculated threshold 

value above which toxic effects are apparent.  For each metal this threshold value was 

calculated using the same quantile regression approach as described in the analysis of the 

GBASE sediment chemistry data (Section 4.3.6).  Here we related biomonitor tissue metal 

concentration and macroinvertebrate community taxon richness using quantile regression 

(95 percentile) to identify the value above which the biomonitor tissue metal concentration 

constrains the upper range of taxon richness, i.e. the threshold above which toxic effects are 

apparent.  This analysis was carried out for arsenic, cadmium, copper, nickel, lead and zinc 

against Baetis, Hydropsyche, Leuctra and Gammarus tissue metal concentrations.  See 

Section 3.1 for details of quantile regression methods and Section 4.3.6 for results. 

Optimal Baetis tissue concentration threshold models were identified for three of the six 

metals (Table 4.17).  For lead, the Baetis tissue concentration threshold model was close to 

optimal. For nickel, we applied the average of the values derived from optimal Hydropsyche 

and Leuctra tissue concentration threshold models.  For zinc we applied the optimal Leuctra 

tissue concentration thresholds.   

 

Table 4.17. Modelled threshold tissue metal concentrations (log μg g-1) for each 

biomonitor taxa. Values in red are thresholds from close to optimal models.  Empty 

cells indicate where threshold models could not be fitted to the data. 

log μg g
-1

 Baetis Hydropsyche Leuctra Rhyacophila 

As 2.44 - 2.32 - 

Cd 0.94 - 0.89 - 

Cu 1.95 1.46 1.90 - 

Ni - 1.93 1.91 - 

Pb 0.93 1.38 0.26 - 

Zn - - 2.47 - 

 

Mean log Baetis tissue metal concentrations at each site were divided by the log threshold 

values to derive a standardised measure of metal stress whereby values greater than unity 

indicated tissue concentrations above the threshold for community effects. We then related 

variation in the MetTol index across the 99 calibration sites to the sum of standardised metal 

concentrations (Sum SMC) and to the maximum standardised metal concentration (Max 
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SMC).  The former measure assumes an additive effect for metal mixtures, while the latter 

focusses on the metal that is most substantially exceeding its threshold and hence is likely to 

be the primary stressor at the site.  We found a significant negative relationship between 

MetTol and both measures of metal stress, though the relationship was more pronounced 

with the maximum standardised metal concentration (Figure 4.11). 

We also related other routinely used biotic indices (WHPT-ASPT, WHPT-NTAXA and 

AWICsp) to the two measures of metal stress and to MetTol to assess whether it offered 

additional explanatory power over the status quo.  WHPT-ASPT is a biotic index designed to 

assess the impacts of organic pollution on stream macroinvertebrates (Walley and Hawkes 

1996, Clarke et al., 2011).  WHPT-NTAXA is simply the count of WHPT-scoring taxa present 

in a sample and provides an indication of general degradation.  WHPT-ASPT and WHPT-

NTAXA are the EU Water Framework Directive-compliant indices used by UK environment 

agencies to formally report stream water quality at a national scale.  AWICsp is a biotic index 

designed to detect the impact of acidic conditions on stream macroinvertebrates (Murphy et 

al., 2013).  We found that MetTol was consistently better related to metal stress than the 

other indices (Table 4.18).  MetTol was not correlated with WHPT-ASPT but was positively 

related with WHPT-NTAXA and AWICsp (Table 4.18). 

These findings offer encouragement that the MetTol index can used to detect where metal-

contaminated sediments are causing ecological impacts.  However the index first needs to 

be tested against an appropriate independent test dataset, as described in Section 4.3.9. 

Table 4.18. Pearson correlation coefficients, based on the calibration dataset, between 

the MetTol index, three other established indices and two measures of metal stress; 

the sum of standardised metal concentrations (Sum SMC) and the maximum 

standardised metal concentration (Max SMC).  Statistically significant correlations are 

in bold. 

 Sum SMC Max SMC 
WHPT-
ASPT 

WHPT-
NTAXA AWICsp 

MetTol -0.531 -0.615 -0.109 0.312 0.278 

WHPT-ASPT -0.168 0.187 -  - 

WHPT-NTAXA 0.021 -0.182 - - - 

AWICsp -0.077 -0.126 - - - 
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Figure 4.11 Relationship between MetTol index and two measures of metal stress; the 

sum of standardised metal concentrations (Sum SMC) and the maximum standardised 

metal concentration (Max SMC) assessed on the calibration dataset. 
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4.3.8 Independent testing of index   

Objective 4b [Test the performance of the new diagnostic index on an independent 

dataset to confirm its sensitivity to variation in extent of mining-derived metal 

bioavailability]. 

To confirm the sensitivity of the new diagnostic index (MetTol) to variation in the extent of 

mining-derived bioavailable metal [Objective 4b] we tested it on an independent dataset we 

compiled from existing biological and chemical data sources.  We were aware of only two 

independent UK datasets consisting of macroinvertebrate community data and site-matched 

metal body burden data.  In the first of these, Rainbow et al. (2012) and Awrahman et al. 

(2016) measured the metal content of specimens of Hydropsyche, Diplectrona and 

Plectrocnemia caddis flies collected from 30 Cornish stream sites.  At each site they also 

sampled the mayfly community but not the entire macroinvertebrate community, meaning we 

were not able to use these data to test the MetTol index.  We spatially matched 17 of the 30 

sites to Environment Agency monitoring sites but the EA macroinvertebrate community data 

was not resolved to a sufficient taxonomic level to allow calculation of MetTol index values. 

A second dataset was collected as part of a study of new approaches to setting 

environmental quality standards (EQS) for trace metals in the aquatic environment (Bass et 

al., 2008).  This study attempted to establish dose-response relationships for 

macroinvertebrates and diatoms in stream waters contaminated to different extents with 

trace metals (cadmium, copper, nickel, lead and zinc).  As part of the work, the 

macroinvertebrate community was sampled at 33 stream sites in Cumbria and the North 

Pennines using the same standard RIVPACS protocol as was used in the present study (see 

Section 4.2.1).  The 33 sites were purposely selected to span a range of contamination from 

abandoned metal mines (mainly copper, lead and zinc mines).  At each site metal body 

burdens were estimated for four taxa (Rhithrogena, Leuctra, Perlodidae and Simuliidae: De 

Jonge et al., 2013). 

We requested and were kindly given access to the macroinvertebrate community, 

associated water chemistry and metal body burden data from the Bass et al. (2008) study.  

Macroinvertebrate communities had been sampled and processed appropriately to allow 

calculation of a MetTol index value.  Water chemistry (major solutes, pH and trace metals) 

was measured at each site on four occasions over a two-month period prior to the 

macroinvertebrate sampling.  Mean trace metal concentrations were calculated from the four 

sampling occasions.  Using the UKTAG metal bioavailability tool (M-BAT) we were able to 

produce a site-specific estimate of the bioavailable concentrations of copper, nickel, lead 

and zinc in the stream water.  M-BAT is a simplified version of the biotic ligand model 

(Environment Agency, 2009, WFD-UKTAG, 2014).  The bioavailable concentration of each 

metal was compared with the EQS for the bioavailable fraction and expressed as a risk 

characterisation ration (RCR).  RCR values greater than unity indicate exceedance of 

targets.  RCR values were summed across the four trace metals to derive a combined 

measure of metal stress.  The maximum RCR was also recorded as it indicates the metal 

that is most substantially exceeding its threshold and hence is likely to be the primary 

stressor at the site.  Macroinvertebrate specimens for metal body burden analysis were 

collected from each stream site on the same days as the community sampling, returned to 

the laboratory, processed and analysed using a ICP-MS following the same protocols as in 

the current study (see Section 4.2.2 and De Jonge et al., 2013).  Tissue concentrations of 
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cadmium, copper, nickel, lead and zinc (log μg g-1 dw) in the four biomonitor taxa were 

related to MetTol index values.  Additionally, we related MetTol index values to a measure of 

combined metal stress by standardising the metal tissue concentrations in Leuctra by the 

threshold values derived using quantile regression in Section 4.3.6.  For each site mean 

measured cadmium, copper and zinc Leuctra tissue concentrations were divided by the 

respective threshold values (Cd:7.7 μg g-1, Cu: 80 μg g-1, Ni: 80 μg g-1, Zn 294 μg g-1).  We 

were not able to determine a threshold value for lead in Leuctra so this metal was not 

included in the measure of combined metal stress.  However, De Jonge et al. (2013) 

considered that cadmium, copper and zinc were the principle metals affecting the 

macroinvertebrate community at these sites.  Standardised metal concentration (SMC) 

values greater than unity indicate exceedance of biological effect thresholds.  Nickel SMC 

values were considerably below unity at all sites (0.026-0.317, mean = 0.089).  SMC values 

were summed across cadmium, copper, nickel and zinc for each site to provide a measure 

of combined metal stress.  The maximum of the four SMC values was also noted as it 

indicates the metal that is most substantially exceeding its threshold and, hence, likely to be 

the primary stressor at the site. 

We also collated sediment chemistry data from the British Geological Survey GBASE 

sampling programme (see Section 2.1.1) for 22 sites that could be spatially matched to Bass 

et al. (2008) sites.  Stream sediments were sampled at these sites between 1985 and 1988, 

while the macroinvertebrate community was sampled in 2006.  Sediment metal 

concentrations (cadmium, copper, nickel, lead, tin and zinc) were presented relative to 

macroinvertebrate threshold values derived using quantile regression in Section 3 of the 

current study (see Table 3.1), i.e. as standardised metal concentration (SMC).  As before, 

SMC values greater than unity indicate exceedance of biological effect thresholds. 

Results 

There were no significant correlations between MetTol values and variation in summed or 

maximum RCR values (Figure 4.12), though both correlations were close to significance.  

Correlations became significant when three outlier sites (Uldale Beck, Dale Head Gill and 

Mosedale Beck) were excluded from the independent test dataset (Figure 4.13). These sites 

returned low RCR values and had no mining influences in their catchments, but the 

invertebrate community indicated significant acidification stress (mean pH 5.2-5.7; AWICsp 

3.4-4.3). These three sites were excluded from all subsequent analyses. 

When we related MetTol to the predicted bioavailable stream water concentrations for 

individual metals we found significant negative correlations with copper, lead and zinc, but 

not nickel (Figure 4.14).  However, only two of the sites (Threlkeld and Nent) were markedly 

affected by high nickel bioavailability in the stream water.  Two outlier sites (Dell Beck and 

Levers Water Beck) in the lead and zinc relationships flowed through Coniston Copper Mine 

and had among the highest concentrations of bioavailable copper in the dataset; hence their 

low MetTol scores were most likely as a result of copper impacts. 

We found no significant correlation between MetTol and the summed or maximum 

standardized sediment metal concentrations; though both correlations were significant at 

P<0.07 (Figure 4.15).  There were significant negative correlations between MetTol and the 

standardized sediment concentrations of cadmium, copper, tin and zinc but not for nickel or 

lead (Figure 4.16).  Copper, lead and zinc were the metals most frequently with sediment 
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SMC values in excess of unity and lead was the metal with maximum sediment SMC value 

at all sites.  Copper was the next most prominent metal in the sediment at Dell Beck and 

Levers Water Beck; at all other sites it was zinc.  The four sites with highest sediment metal 

content did not have the lowest MetTol values.  Two of these four sites (Slei Gill and Black 

Mires Gill) are in the lead mining area of Swaledale on alkaline geologies, conditions which 

will have reduced the toxic effects of the high sediment metal levels on the 

macroinvertebrate fauna (See Section 4.3.4d).  Metal-sensitive taxa such as Gammarus 

pulex, Glossosoma, Silo pallipes and Alainites muticus were found at both sites.  The other 

two sites (Roughton Gill and Wood Head Stream) are on the northern edge of the Lake 

District in a copper and lead mining area and on mixed igneous and sedimentary geology 

but still support metal-sensitive taxa such as Gammarus pulex, Drusinae, Ecdyonurus, and 

Alainites muticus.  Risk characterization ratios (RCR) of lead and zinc (but not copper) 

bioavailability from the stream water were relatively high at these sites, in particular at the 

Lake District streams.  In addition, copper, lead and zinc tissue concentrations in biomonitor 

taxa from these four streams were consistently among the highest in the dataset.  Therefore, 

despite the considerable amount of metals bound to the fine sediment and bioavailable from 

the water column and the fact that much of these metals are being taken up into tissues, 

diversity and mean metal-tolerance level of the macroinvertebrate assemblages suggest that 

the stream faunas were only moderately impacted. 

 

 

Figure 4.12 Relationship between MetTol index and two measures of bioavailable 

metal in stream water; the sum of M-BAT risk characterisation ratios and the 

maximum of M-BAT risk characterisation ratio for copper, nickel, lead and zinc, 
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assessed on an independent dataset. Mean stream water pH category is indicated by 

the different symbols.  Significance of correlation coefficients (r) is indicated within 

each panel. 

 

 

 

Figure 4.13 Relationship between MetTol index and two measures of bioavailable 

metal in stream water; the sum of M-BAT risk characterisation ratios and the 

maximum of M-BAT risk characterisation ratio for copper, nickel, lead and zinc, 

assessed on an independent dataset, having excluded three non-mining sites 

impacted by acidification.  Significance of correlation coefficients (r) is indicated 

within each panel. 
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Figure 4.14 Relationship between MetTol index and M-BAT predicted bioavailable 

stream water concentrations for copper, nickel, lead and zinc, assessed on an 

independent dataset.  Significance of correlation coefficients (r) is indicated within 

each panel. 

 

 

 

 

 

 

 

 

 

Figure 4.15 Relationship between MetTol index and sum and maximum of 

standardised sediment metal concentrations (SMC) for cadmium, copper, nickel, lead, 

tin and zinc.  Significance of correlation coefficients (r) is indicated within each panel. 
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Figure 4.16 Relationship between MetTol index and standardised sediment metal 

concentrations (SMC) for cadmium, copper, nickel, lead, tin and zinc.  Significance of 

correlation coefficients (r) is indicated within each panel. 
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We found significant negative relationships between the MetTol index and tissue 

concentrations of cadmium and lead in Rhithrogena, lead in Leuctra, copper and lead in 

Perlodidae, and copper in Simuliidae (Table 4.19, Figure 4.17).  MetTol values were not 

correlated with nickel or zinc tissue concentrations in any of the four biomonitor taxa used by 

De Jonge et al. (2013).  As with the MetTol-bioavailable metal relationships, there was 

considerable scatter of MetTol values for a given metal tissue concentration.  This is in part 

due to the confounding effect of other metals on the bivariate associations between MetTol 

and a single metal.  When we related MetTol to a measure of combined metal stress; SMC 

based on cadmium, copper, nickel and zinc tissue concentrations in Leuctra, we found 

significant negative relationships with both the sum of SMC (r =-0.396, P=0.033) and the 

maximum SMC value (r =-0.402, P=0.030: Figure 4.18).  At 10 of the 29 sites in the 

relationship, none of the metals exceeded the biological effects threshold.  At four of the 

sites copper was the metal with the highest SMC values and at the remaining 16 sites zinc 

was the metal with the highest SMC values. 

 

Table 4.19. Pearson correlations between MetTol index and log-transformed tissue 

concentrations (log μg g-1 dw) of cadmium, copper, nickel, lead and zinc in 

Rhithrogena, Leuctra, Perlodidae, and Simuliidae.  Number in parenthesis is the 

number of sites from which specimens were collected.  Significant correlations are 

indicated in bold; * P<0.05, ** P<0.01. 

 Cd Cu Ni Pb Zn 

Rhithrogena (n=19) -0.594** -0.247 -0.427 -0.484* -0.433 

Leuctra (n=29) -0.238 -0.276 -0.315 -0.399* -0.298 

Perlodidae (n=24) -0.232 -0.413* -0.060 -0.469* -0.172 

Simuliidae (n=22) -0.100 -0.605**  0.052 -0.066 -0.264 

 

 

 

 

 

 

 

 

 

Figure 4.17 (overleaf) Relationships between MetTol index and tissue concentrations 

(μg g-1 dw) of cadmium, copper, nickel, lead and zinc in Rhithrogena, Leuctra, 

Perlodidae, and Simuliidae.  See Table 4.19 for details of statistical significance of 

relationships. 
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Figure 4.18 Relationship between MetTol index and sum and maximum of 

standardised tissue metal concentrations (SMC) for cadmium, copper, nickel and zinc 

in Leuctra.  Symbols indicate the metal with the highest SMC value in exceedance of 

the biological effects threshold at each site. 

Finally, we compared the relationship between concentrations of each of cadmium, copper, 

nickel, lead and zinc in the tissues of Leuctra and metal concentrations in the sediments and 

bioavailable concentrations in the stream water to give some insight into which uptake route, 

sediment or water, was the more important.  Bioavailable concentrations of cadmium in 

stream water were not available so we used the stream water concentrations instead for this 

metal.  We found significant positive correlations between cadmium, copper, lead and zinc 

tissue concentrations and both sediment and stream water concentrations (Figure 4.19).  

However, for copper, lead and zinc the relationships with sediment metal concentrations 

were more pronounced than those with bioavailable stream water concentrations. 
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Figure 4.19 Relationship between concentrations of each of cadmium, copper, lead 

and zinc in the tissues of Leuctra and standardised metal concentrations in the 

sediments and bioavailable concentrations in the stream water (stream water 

concentration for cadmium).  Significance of correlation coefficients (r) is indicated 

within each panel. 
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There were no significant relationships between nickel tissue concentrations and the 

bioavailable fraction in stream water or nickel in the sediment (rbio = 0.102, p = 0.60; rsed = -

0.095, p = 0.71).   

Overall, the independent testing has confirmed that the new MetTol index is sensitive to 

bioavailable metal contamination, be it quantified from analysis of tissue concentrations in 

selected biomonitor taxa, predicted from stream water chemistry or inferred from metal 

concentrations in the bed sediment.  In this test dataset, variation in MetTol values were 

strongly associated with bioavailable copper in stream water, overall metal bioavailability in 

stream water (sum and maximum RCR), copper concentrations in Simuliidae tissues, 

cadmium concentrations in Rhithrogena tissues, and copper, nickel and zinc concentrations 

in stream sediments.  
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5 Dose-Response Curves 

Objective 3b  

Derive dose–response curves for metal effects in streams and estuaries using the 
combination of bioaccumulated metal data and traditional measures of stress, such 
as changes in community structure.   

 
5.1 Methods 

Two approaches were taken to identify the threshold bed sediment concentrations beyond 

which river macroinvertebrate communities are likely to be harmed by a given metal.  First 

we used the approach to deriving ecological effect concentrations described by de Deckere 

et al. (2011) to calculate the Lowest Effect Level (LEL) and the Severe Effect Level (SEL).  

Second, we used species sensitivity distributions (SSD) to identify the Hazardous 

Concentration (HC) to 5%, 10% and 20% of taxa (HC5, HC10, HC20).  The SSD approach 

involves plotting the cumulative distribution of sensitivities of taxa against a threshold 

concentration, e.g. 50 or 90 percentile of the distribution of measured bed sediment 

concentrations at sites where the taxon is present.  From the SSD, a lower limit is estimated 

determined by the proportion of the taxa used in the analysis likely to be impacted if 

sediment concentrations exceed this value, which then should be protective for the majority 

of the taxa assessed (Posthuma et al., 2002). 

5.1.1 Sediment Effect Concentrations 

Taxa were selected from the field survey dataset (90 most frequently occurring taxa across 

99 sites) for inclusion in species sensitivity distributions according to their tolerance to each 

of the five main metals of concern, cadmium, copper, nickel, lead and zinc.  For each metal, 

24 taxa were selected to represent the full range of responses evident from the partial 

ordinations carried out as part of the MetTol index development, from the most sensitive 

taxon to the taxon that was found to be most tolerant of each metal.  For each taxon, the 

distribution of bed sediment metal concentrations (log mg kg-1) across sites where the taxon 

was present was summarised as a cumulative percentage histogram (Figure 5.1), from 

which the 50th and 90th percentile bed sediment metal concentrations were derived, i.e. the 

metal concentration below which 50% and 90% of occurrences of that taxon were recorded. 

The 50th percentile value represents an estimate of the mid-point of the distribution of each 

taxon, in terms of the response to sediment metal concentrations, whereas the 90th 

percentile represents an estimate of the upper limit of the distribution of each taxa. Estimates 

of the 50th percentile are more robust than corresponding estimates of the 90th percentile, 

but in terms of protecting species from hazard, the 90th percentile is probably more relevant.   

The 5th percentile and 95th percentile of the distribution of 90th percentile bed sediment metal 

concentrations for the 24 selected taxa were then derived, which represent the LEL and SEL 

respectively.  These values were compared with those calculated by de Deckere et al. 

(2011) based on benthic macroinvertebrate data from 600 freshwater sites in Flanders, 

northern Belgium. 
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5.1.2 Species Sensitivity Distributions 

SSDs were generated for each metal by plotting the cumulative distribution of the 90th 

percentile values of the 24 taxa (Figure 5.2), then modelling the variation in sensitivity across 

the sediment concentration gradient and estimating the 5, 10 and 20 percentiles of the 

distribution based on the chosen model. The 5, 10 and 20 percentiles of the distribution 

based on the chosen model correspond to the sediment metal concentrations that present a 

hazard to 5, 10, and 20% of taxa. SSDs were also created based on the cumulative 

distribution of the 50th percentile values of the 24 taxa.  

5.2 Results 

With the exception of the SEL for cadmium, the sediment metal concentrations 

corresponding to the Lowest Effect Level (LEL) and the Severe Effect Level (SEL) calculated 

using the approach of de Deckere et al. (2011) were higher than the corresponding 

concentrations derived from the Flemish freshwater sites (Table 5.1). This may be a 

consequence of the current study targeting catchments containing abandoned metal mining 

facilities and, thus, using a wider range of sediment metal concentrations, rather than a true 

biological difference between the two areas of study.  

Table 5.1 Lowest effect level (LEL) and Severe effect level (SEL) values (mg kg-1) for 

cadmium, copper, nickel, lead and zinc derived from the current study dataset and 

from the de Deckere et al. (2011) study of Flemish freshwater sites. 

 Current study  De Deckere et al. (2011) 

 
LEL 

(5 percentile) 
SEL 

(95 percentile) 
 LEL 

(5 percentile) 
SEL 

(95 percentile) 

Cd 4.7 11.0  0.71 13 
Cu 37.9 225  13 85 
Ni 39.8 55.7  15 44 
Pb 133 3108  19 167 
Zn 447 1413  129 1300 

 

For most metals the SSD was best explained by a probit rather than a linear relationship, 

suggesting a few sensitive and/or tolerant species.  As the uncertainty associated with fitting 

the 50th percentile of species occurrences is lower than that associated with fitting the 90th 

percentile, the prediction limits for hazardous concentrations (HCx) derived from the former 

are smaller than those derived from the latter (Table 5.2). Although hazardous 

concentrations (HC5, HC10, HC20) were derived from both, those based on the sediment 

metal concentration below which 90% of occurrences of that taxon were recorded are 

probably more relevant in terms of protecting species, as this represents an upper limit of 

sediment metal concentrations which the species can tolerate (Table 5.2). 
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Figure 5.1 Cumulative percentage histogram of taxon occurrences across the copper 

sediment concentration gradient (log mgkg-1) for three example taxa; Dinocras 

cephalotes, Esolus parallelepipedus and Tipula montium group. 
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Figure 5.2 Copper sediment concentrations (log mgkg-1) below which 90% of taxon 

occurrences are recorded for 24 taxa selected to represent the full range of responses 

evident in the dataset. 
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Table 5.2  Hazardous concentrations to 5%, 10% and 20% (HC5, HC10, HC20) of taxa 

assessed with associated prediction limits based on 50th percentile and the 90th 

percentile of the distribution of measured bed sediment metal concentrations (mg   

kg-1) at sites where the taxon was present.  The form of the Species Sensitivity 

Distribution model used to estimate the HC values is also indicated. 

 

 Based on 
50

th
 

percentile 
Lower 

PI 
Upper 

PI 
SSD 
Model 

 Based on 
90

th
 

percentile 
Lower 

PI 
Upper 

PI 
SSD 
Model 

Cd 
HC5 2.1 1.9 2.4   4.7 4.0 5.5  

HC10 2.2 2.0 2.5 Linear  4.9 4.2 5.7 Linear 
HC20 2.3 2.1 2.6   5.3 4.5 6.2  

           

Cu 
HC5 10.4 9.5 11.3   27.6 21.5 35.5  
HC10 10.9 10.0 11.9 Linear  34.3 26.8 43.9 Probit 
HC20 12.1 11.1 13.2   44.5 34.9 56.7  

           

Ni 
HC5 18.2 17.7 18.7   37.9 36.4 39.5  
HC10 19.1 18.6 19.7 Probit  39.8 38.2 41.4 Probit 
HC20 20.4 19.8 20.9   42.2 40.5 43.9  

           

Pb 
HC5 21.6 15.6 30.0   151 99 231  
HC10 27.8 20.2 38.3 Probit  220 145 334 Probit 
HC20 37.7 27.5 51.7   348 231 524  

           

Zn 
HC5 132 121 144   431 402 463  
HC10 143 131 156 Probit  498 465 535 Probit 
HC20 157 144 171   594 554 636  
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5.3 Comparison among the various approaches used 

A number of approaches have been used in this report to establish thresholds for sediment 

metal concentrations based on ecological data. Each approach has its benefits (e.g. in terms 

of the range of species and environmental conditions represented in the data used) and 

drawbacks (e.g. in terms of uncertainties associated with the data). Here we compare the 

values derived using these various approaches, and existing sediment quality guidelines 

(Table 5.3). 

Broadly, the approaches fall into three classes, a) approaches based on species sensitivities 

established through ordination of newly collected field data (Section 5), b) thresholds derived 

from species richness and measured bioavailability (as body burden), in turn translated into 

a sediment concentration (Section 4.3.6), and c) thresholds based on relationships between 

G-BASE sediment metal concentrations and EA/NRW biological monitoring data (Section 3).  

Both the Canadian and Australasian sediment quality guidelines (SQG) are based on 

laboratory-based toxicological studies. The Canadian interim sediment quality guidelines are 

based on the upper limit of the range of sediment chemical concentrations that is dominated 

by no-effect data entries (corresponding to a threshold effect level; the geometric mean of 

the lower 15th percentile concentration of the effect data set), such that adverse biological 

effects are not predicted when the measured concentrations are at or below guideline 

concentrations (CCME, 1995). The ANZECC and ARMCANZ low trigger value corresponds 

to a 10% statistical probability of effects when tested against only one or two species, 

principally amphipods (Long et al. 1995). 

Lowest Effect Levels (LEL) calculated using the approach of de Deckere et al. (2011) 

approximated to the Hazardous Concentrations (HC5, HC10, HC20) determined from species 

sensitivity distributions (SSD), as both are derived from the same data. The approach based 

on quantile regression using biomonitor body burdens returned considerably higher 

threshold concentrations for cadmium, nickel and zinc than the other approaches. For 

cadmium and nickel the relationships between body burden and sediment metal 

concentrations were weak (Figure 4.5), which introduces considerable uncertainty into the 

values derived. Even for the other metals derived using this approach, the two-step 

calculation (derivation of threshold/translation into sediment concentration) increases the 

uncertainty of the thresholds. 

With the exception of copper, and to an extent lead, all thresholds derived using ecological 

data were considerably higher than existing Canadian and Australasian guidlines based on 

toxicological data (Table 5.3). For copper, the thresholds based on species sensitivities (27.6 

– 44.5 mg kg-1) approximate to the Canadian interim sediment quality guidelines (35.7 mg 

kg-1), whereas those based on quantile regression (75 – 86.2 mg kg-1) approximate to the 

ANZECC and ARMCANZ low trigger value (65 mg kg-1). For lead, the thresholds based on 

quantile regression approaches using the body burden of biomonitors (54 mg kg-1) and the 

lowest BQE metric using G-BASE data (49.6 mg kg-1) approximate to the ANZECC and 

ARMCANZ low trigger value (50 mg kg-1), whereas the other thresholds based on ecological 

data were higher (LEL = 151 mg kg-1 – HC20 = 348 mg kg-1).  
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Table 5.3  Thresholds for sediment metal concentrations (mg kg-1) based on ecological data.  

  

   Section 5 Section 4.3.6 Section 3 

 
CCME° 

ANZECC and 
ARMCANZ* 

Sediment Effect 
Concentrations 

Species Sensitivity Distributions 
Based on 90

th
 percentile 

Quantile regression 
biomonitor body burden 

Quantile regression 
G-BASE data 

 
Interim 
SQG 

Low Trigger 
Value 

LEL HC5 HC10 HC20 Mean threshold 
Geometric mean 

based on 
number of taxa 

Lowest 
based on 
number of 

taxa 

Lowest of 
all BQE 
metrics 

Ag  1      7.9 7.9 7.9 

As 5.9 20     384
 a
 59.6 27 27 

Cd 0.6 1.5 4.7 4.7 4.9 5.3 54
b
 6.8 4 3.1 

Cu 35.7 65 37.9 27.6 34.3 44.5 75 86.2 75 32.6 

Ni  21 39.8 37.9 39.8 42.2 384
b
 109 41.4 41.4 

Pb 35 50 133 151 220 348 54
 
 295 49.6 49.6 

Sn        17.4 9 9 

Sb  2      5 1.8 1.8 

Zn 123 200 447 431 498 594 1,561 849 286 153 

 
Thresholds derived using a) species sensitivities used to derive lowest effect levels (De Deckere et al., 2011) and hazardous sediment concentrations to 5%, 
10% and 20% (HC5, HC10, HC20) of taxa, b) sediment metal concentrations and thresholds from quantile regression between biomonitor body burden and 
species richness, and c) threshold quantile regression using data from G-BASE and EA/NRW biological quality monitoring data. Existing safe limits for North 
America and Australasia are shown for comparison 
° Canadian Council of Ministers of the Environment. 1999. Canadian sediment quality guidelines for the protection of aquatic life: Winnipeg 
* ANZECC and ARMCANZ [Australian and New Zealand Environment and Conservation Council, Agriculture and Resource Management Council of Australia 
and New Zealand] (2000) Australian and New Zealand guidelines for fresh and marine water quality. Volume 1, The guidelines. National water quality 
management strategy; no.4.  
a
 Based on relationship with fine sediment <63 µm samples used for source apportionment.  

b
 Based on poor relationship between sediment metal concentration and biomonitor body burden 
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For cadmium, the thresholds based on species sensitivities (4.7 – 5.3 mg kg-1) and on G-

BASE quantile regression (3.1 – 6.8 mg kg-1) were approximately an order of magnitude 

above the Canadian interim sediment quality guidelines (0.6 mg kg-1), and two to four times 

the ANZECC and ARMCANZ low trigger value (1.5 mg kg-1). 

For nickel, the safe limits based on species sensitivities (37.9 – 42.2 mg kg-1) and on the 

lowest metric in the G-BASE quantile regression were approximately twice the ANZECC and 

ARMCANZ low trigger value (21 mg kg-1). The other quantile regressions returned 

concentrations approximately an order of magnitude above the low trigger value. 

For zinc, the safe limits based on species sensitivities (431 – 594 mg kg-1) were 

approximately twice the ANZECC and ARMCANZ low trigger value (200 mg kg-1), and four 

times the Canadian interim sediment quality guidelines (123 mg kg-1). With the exception of 

the lowest metric in the G-BASE analysis, safe limits based on quantile regression were 

higher than those based on species sensitivities.  

5.4 Conclusions 

The safe limits derived from ecological data most consistent with existing sediment 

guidelines were for copper.  

The safe limits for other metals (cadmium, nickel, lead and zinc) derived from ecological data 

were approximately two to four times higher than the ANZECC and ARMCANZ low trigger 

value, and up to an order of magnitude above the Canadian interim sediment quality 

guidelines. These existing guidelines, based on toxicological data, may be too precautionary, 

and we suggest that guideline sediment concentrations based on the species sensitivities 

derived from ecological data may provide a more appropriate level of protection for the 

environment.  

Of the approaches used, the sediment thresholds based on biomonitor body burden were 

the most uncertain (due to the two-step process used in their calculation). We suggest that 

these values are best used as confirmation where they are consistent with thresholds 

derived by other approaches. As sediment metal concentrations were measured with either 

X Ray Fluorescence Spectroscopy (XRFS) or Direct-reading DC Arc Optical Emission 

Spectrometry (DCOES), rather than acid extraction, we suggest that less weight is given to 

the thresholds based on these data where other data are available. We suggest that the 

thresholds derived from analysis of the field data collected in this project, where the methods 

for estimating sediment metal concentrations are more consistent with monitoring 

approaches used, are the most reliable. Here, two approaches were used, to derive Lowest 

Effect Levels (LEL) and Hazardous Concentrations (HC5, HC10, HC20). As the HC5 is towards 

the lower tail of the species sensitivity distribution (SSD), there will be more uncertainty 

associated with the derived threshold at this point in the curve compared with HC10, and 

suggest the latter provides a more robust estimate. For this reason, we suggest that the 

lowest threshold derived using these two approaches (LEL and HC10) is used, although this 

deviates from conventional practice when estimating thresholds for an SSD. 

Due to the influence of environmental conditions, particularly pH, on bioavailability noted in 

the field data, we also suggest caution in setting a single threshold for all environmental 

conditions. 
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Table 5.3 Summary of thresholds for sediment metal concentrations (mg kg-1) based 

on ecological data.  

 
 

Existing Safe Limits Based on Ecological Data 

Suggested 
Threshold  

Canada° 
Australia 
and NZ* 

SEC† SSD 
Biomonitor 

body 
burden 

Quantile regression 
G-BASE data 

 
Interim 
SQG‡ 

Low 
Trigger 
Value 

LEL HC10 
Mean 

threshold 

Geometric 
mean of 
No Taxa 

Lowest 
of 

No taxa 

Ag  1    7.9 7.9 7.9 

As 5.9 20   384 59.6 27 27 

Cd 0.6 1.5 4.7 4.9  6.8 4 4.7 

Cu 35.7 65 37.9 34.3 75 86.2 32.6 34.3 

Ni  21 39.8 39.8  109 41.4 39.8 

Pb 35 50 133 220 54 295 49.6 133 

Sn      17.4 9 9 

Sb  2    5 1.8 1.8 

Zn 123 200 447 498 1,561 849 286 447 

° Canadian Council of Ministers of the Environment (1999)  
* Australian and New Zealand Environment and Conservation Council, Agriculture and Resource 
Management Council of Australia and New Zealand (2000) 
†
 Sediment Effect Concentrations 

‡
 Sediment Quality Guidelines 
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6 Source Apportionment  

Objective 3b  

Source apportionment analysis, carried out on a sub-set of the targeted field survey 

sites, will be used to quantify the relative importance of different catchment sources 

of fine sediment and thus provide an insight into how the contamination is being 

delivered to the point of impact. 

As part of the tasks comprising work package 3, source apportionment of fine-grained 

sediment (< 63 µm) was investigated at the most downstream freshwater depositional site in 

20 of the study catchments. Here, the potential fine-grained sediment sources in each 

catchment, including mine waste material, were characterised and a statistical approach 

used to determine the relative importance of mine waste as a source of fine sediment to the 

river. 

6.1 Methods 

6.1.1 Field sampling of catchment source and sediment samples 

A source material sampling exercise was conducted in the 20 catchments where the relevant 

potential primary fine-grained sediment source types were identified and characterised. 

These sources were agricultural (grass and arable) topsoils, damaged road verges, channel 

banks/subsurface sources, urban street dust and the dis-used metal mines. Samples 

retrieved from agricultural fields and damaged road verges represented the uppermost 0 - 2 

cm susceptible to runoff detachment and mobilisation during precipitation events. Care was 

taken not to sample road sediment deposits, but rather, primary road verge material 

damaged by passing vehicles or poached by livestock movements. Representative samples 

of damaged road verges were retrieved from 100 m sections of road margins exhibiting 

erosion and selected randomly to be representative of the entire road network in each study 

catchment where this source was included in the sample collection programme. Between 5-

10 sub-samples were collected from each 100 m road section targeted by the sampling 

exercise and bulked into composites. Collection of channel bank samples avoided the 

uppermost (0-2 cm) topsoil at the river edge and focused on the lower horizons (B and C) 

exposed by fluvial erosion. These samples included material from the entire bank face 

comprising the B and C horizons at each channel location, rather than from a specific point 

within the vertical profile of any given channel bank face. Subsurface sampling targeted 

features of incision, including any gullies observed on agricultural fields or incised farm 

tracks, again collecting material below (lower than 2 cm depth) the soil surface. Although the 

catchments were all largely rural (to avoid any effects of urban development, e.g. sewage 

treatment works, on ecology) the settlements were present in the catchments, Samples of 

“urban street dust” were collected using a dustpan and brush and typically involved the 

retrieval of deposits (sub-samples = ~5 per composite sample) near road drains along the 

streets of rural settlements (villages and hamlets) within the catchments.  Samples of mine 

waste were primarily collected from slag, spoils heaps and tailings as appropriate, 

depending on the structure of the mine site and ease of accessibility. The most extensive 

and actively eroding spoil heaps were found at the study sites in Wales and Northern 

England. Advice from the Environment Agency was used to help target the most actively 

eroding spoil heaps in these study regions. Each individual source sample collected from the 

agricultural topsoil and mine sources represented a composite of sub-samples (n = 5 – 10) 
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representative of that source across the 100 – 500 m2 within the immediate vicinity of the 

sampling point (Table 6.1). In total, 804 composite source material samples were retrieved 

from the study catchments. 

Table 6.1: Summary of the source and channel bed sediment samples collected to 
characterise key sources of fine-grained sediment identified in the 20 catchments. (A 
zero indicates that the source type was identified as not important for the catchment 
in question). 

Catchment Region 
Bed 

Sediment 
Channel 

Bank 
Top Soil 

Mine 
Waste 

Damaged 
Roadside 

Verge 

Urban 
Street 
Dust 

A St Lawrence Stream SW 12 9 10 14 9 10 

B Bolingey Stream SW 12 10 10 18 10 0 

C Porthleven Stream SW 12 9 9 8 5 5 

D Hayle SW 12 10 10 12 10 5 

E River Burn (Tavy) SW 12 9 9 12 10 7 

F Mardle SW 12 10 10 12 10 0 

G Afon Melindwr W 12 10 10 5 10 9 

H Nant Magwr W 12 10 10 12 10 1 

I Afon Cyneiniog W 12 11 11 11 0 0 

J Afon Ystwyth W 12 10 10 12 10 0 

K Wye W 12 10 10 9 0 0 

L Rea Brook M 12 10 10 9 7 9 

M River South Tyne NE 12 8 10 12 9 5 

N Red Tarn Beck NE 12 3 10 11 0 7 

O River Greta NE 10 9 10 10 2 9 

P Arkle Beck NE 12 8 10 12 0 0 

Q Egglestone Burn NE 12 9 9 12 2 0 

R Hudeshope Beck NE 12 10 10 12 5 7 

S Bedburn Beck NE 12 8 9 10 4 0 

T River East Allen NE 12 10 10 12 9 5 

 

Representative channel bed sediment samples were collected from the outlet of the 20 study 

catchments using a re-suspension method (Lambert and Walling, 1988; Collins and Walling 

2007; Duerdoth et al., 2015) in order to assess the primary sources of the local sediment-

associated pollution problem. During sample collection, a purpose-built metal stilling well 

(height 1.1 m, surface area 0.18 m) was carefully lowered onto, and pushed into, the river 

bed to provide a means of minimising the loss of remobilised sediment by winnowing. The 

river water and upper 5 cm of the channel bed enclosed in the stilling well were stirred and 

agitated using a portable battery-powered drill equipped with a plaster stirrer fitting (Collins 

et al., 2012b). Previous work using a hand held rod has identified the potential problem of 

inconsistent effort to collect samples on a purely manual basis (Lambert and Walling, 1988; 

Collins and Walling, 2007). Regular replacement of the drill batteries helped to ensure 

consistent agitation during the collection of samples. Agitation of both the water column and 

river bed provided a basis for sampling sediment stored both as a surface drape and within 

the interstices of the gravel matrix. Each bed sediment sample (total volume of 5 L) 

comprised a composite of two sub-samples (~ 2.5 L each) retrieved from different points in 
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the channel at the outlet of each study catchment. A total of 12 (10 in the case of the River 

Greta) composite samples were retrieved from the catchment outlets (Table 6.1). On this 

basis, a total of 238 composite channel bed sediment samples were collected for laboratory 

analyses. The river water and substrate were consistently agitated for 60 seconds prior to 

the depth-integrated sampling of the remobilised sediment within the stilling well. Collection 

of sediment to a depth of 5 cm helped to ensure retrieval of interstitial material from the most 

oxygenated layer of the river bed and thereby the minimisation of issues associated with the 

potential geochemical transformation of sediment fingerprint properties that could occur 

deeper in the river substrate where more anoxic conditions might exist (cf. Collins et al., 

2012c). The river channel bed at the catchment outlets was sampled on a single basis given 

the resources available to this project. Single site visits have been used by international 

studies to characterise the geochemical properties of channel bed sediment in river systems 

(e.g. Horowitz et al., 2012).  

6.1.2 Laboratory work and analyses 

All samples retrieved to characterise the source type end members were returned to the 

laboratory, oven-dried at 40 °C, manually disaggregated using a rubber-tipped pestle and 

mortar and homogenised using a 63 µm sieve (cf. Collins et al., 1997). Channel bed 

sediment samples were returned to the laboratory on the day of sampling in acid-washed 

polyethylene containers, de-watered using settling and decanting, freeze-dried and sieved to 

<63 µm. Following pre-treatment with hydrogen peroxide at 100 °C on a hotplate to destroy 

organics, chemical dispersion with calgon and sonification (~ 5 minutes per sample), the 

ultimate grain size distribution of all catchment source and channel bed sediment samples 

was measured using a Malvern Mastersizer laser diffraction granulometer. The grain size 

measurements were used to estimate sample specific surface area as a surrogate for 

absolute grain size distribution and because this parameter is used in the numerical mass 

balance modelling for predicting sediment source apportionment. Concentrations of potential 

geochemical fingerprint properties were determined using a combination of ICP-OES and 

ICP-MS, following an acid digest using aqua regia. Concentrations of Al, As, Ba, Bi, Cr, Cu, 

Fe, K, Li, Mg, Mn, Na, Ni, Pb, Sr, Ti and Zn were determined using ICP-OES, whilst the 

concentrations of Cd, Ce, Co, Cs, Dy, Er, Eu, Ga, Gd, Ge, Hf, Ho, La, Lu, Mo, Nd, Pr, Rb, 

Sb, Sc, Sm, Sn, Tb, Tl, Tm, U, V, Y, Yb and Zr were measured using ICP-MS. 

6.1.3 Statistical verification of source end member discrimination 

A data processing procedure outlined in Collins et al. (2012c, 2013, 2014) was modified for 

the purposes of the work reported here. It was considered important to test for normality 

prior to proceeding with the selection of scaling metrics for fingerprint property parameter 

location and scale (Arcones and Wang, 2006). The Lilliefors test (Lilliefors, 1969; 

Henderson, 2006) was used to assess normality prior to the selection of appropriate metrics 

for estimating the location (e.g. mean or median) and scale (e.g. deviation) of the source end 

member and channel bed sediment fingerprint property datasets during the mass balance 

modelling. As an example, Tables 6.2 and 6.3 show the results of the Lilliefors test for the 

Afon Cyneiniog and Afon Melindwr study catchments. Appendix A (Tables A1-A18) presents 

the Lilliefors test results for the remainder of the study catchments. A statistically significant 

(p ≤ 0.05) result indicates that the tracer property in question does not conform to a uniform 

distribution. The results of the Lilliefors tests confirmed that not all tracers were 

characterised by uniform distributions. On the basis of these results, the measured median 
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and robust scaling estimator nQ  (Rousseeuw and Croux, 1993) were applied to define the 

catchment source tracer property distributions, where nQ  is defined as: 

  )(; kjin jixxdQ   

Where d  is a constant factor (1.0483), ji xx   is the pairwise distances and k  = 
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h  is roughly half the number of the observations. On the basis of 

corresponding results for the channel bed sediment sample sets collected from each study 

catchment, the same procedure was used to define the tracer distributions for measured 

sediment mixtures. 

Table 6.2:  The results of the Lilliefors test for Normality using the source and 

sediment tracer data measured for the Afon Cyneiniog study catchment. 

Property P-value Property P-value Property P-value 

Al 0.001* Sc 0.001* Nd 0.001* 
Ba 0.114 Co 0.001* Sm 0.016* 
Cr 0.025* Ga 0.001* Eu 0.004* 
Cu 0.001* Ge 0.001* Gd 0.019* 
Fe 0.001* As 0.001* Tb 0.001* 
K 0.314 Rb 0.500 Dy 0.001* 
Li 0.013* Y 0.001* Ho 0.001* 

Mg 0.231 Zr 0.001* Er 0.001* 
Mn 0.001* Mo 0.001* Tm 0.001* 
Na 0.028* Cd 0.001* Yb 0.001* 
Ni 0.001* Sn 0.001* Lu 0.001* 
Pb 0.001* Sb 0.001* Hf 0.001* 
Sr 0.500 Cs 0.001* Tl 0.001* 
Ti 0.001* La 0.005* Bi 0.001* 
V 0.015* Ce 0.001* U 0.002* 
Zn 0.001* Pr 0.001*     

* statistically significant values at p ≤ 0.05 

Table 6.3:  The results of the Lilliefors test for Normality using the source and 

sediment tracer data measured for the Afon Melindwr study catchment. 

Property P-value Property P-value Property P-value 

Al 0.500 Sc 0.001* Nd 0.001* 
Ba 0.001* Co 0.001* Sm 0.001* 
Cr 0.003* Ga 0.021* Eu 0.001* 
Cu 0.001* Ge 0.001* Gd 0.001* 
Fe 0.500 As 0.003* Tb 0.001* 
K 0.302 Rb 0.020* Dy 0.003* 
Li 0.319 Y 0.122 Ho 0.011* 

Mg 0.001* Zr 0.001* Er 0.020* 
Mn 0.067 Mo 0.001* Tm 0.026* 
Na 0.001* Cd 0.001* Yb 0.044* 
Ni 0.266 Sn 0.001* Lu 0.011* 
Pb 0.001* Sb 0.001* Hf 0.001* 
Sr 0.001* Cs 0.018* Tl 0.001* 
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Ti 0.001* La 0.001* Bi 0.001* 
V 0.001* Ce 0.001* U 0.022* 
Zn 0.001* Pr 0.001*     

* statistically significant values at p ≤ 0.05 

A fingerprint property conservation test was applied to the measured tracer data for each 

individual catchment, based on the mixing space defined by the ranges in the medians of the 

property values measured for each source type end member (with corrections applied during 

the mass balance modelling – see section on numerical modelling). This conservation test 

was used to identify those properties for which the bed sediment sample tracer medians 

were located in the corresponding end member mixing polygon. Properties outside the 

mixing polygon violate a fundamental assumption of the numerical modelling and generate 

unacceptable mixing model performance. An additional preliminary screening of the 

individual tracer properties for discriminating the fine-grained sediment sources was based 

on a tracer discriminatory ratio (Table 6.4). This was based on the ratio of between-source to 

within-source variation. A fundamental requirement of source fingerprinting is that individual 

properties should have higher between-source than within-source variation (cf. Collins and 

Walling, 2002; Pulley et al., 2015). In combination, the range test for tracer conservation and 

the variability ratio screening identified the lists of individual tracers (Table 6.5) that were 

taken forward into statistical testing. 

 

 

Table 6.4: Summary information on the variability ratio screening of tracer properties. 

Catchment Sources 
Summary statistics on 

variance ratio Threshold 
No. of tracer 
properties 

 
 

Q1 median Q3 ratio used selected 

A St Lawrence Stream 5 13.1 18.3 22.9 10 34 

B Bolingey Stream 4 10.5 15.7 20.5 10 28 

C Porthleven Stream 5 4.2 6.7 8 5 26 

D Hayle 5 7.3 10 14.7 10 23 

E River Burn(Tavy) 5 9.5 16.1 30.1 10 26 

F Mardle 4 14.4 19.6 22.1 10 31 

G Afon Melindwr 5 8.1 10.7 12.6 10 25 

H Nant Magwr 5 7.8 10 11.6 10 19 

I Afon Cyneiniog 3 4.7 7 13.6 10 14 

J Afon Ystwyth 4 10.3 12.3 15.4 10 14 

K Wye 3 6.1 16.1 28.3 10 22 

L Rea Brook 5 7.5 12.3 16.9 10 29 

M River South Tyne 5 6.7 9.2 12.3 10 19 

N Red Tarn Beck 4 5.3 8.6 13.7 10 14 

O River Greta 4 7.2 16.2 23.7 10 26 

P Arkle Beck 3 4.6 10.9 14.8 10 21 

Q Egglestone Beck 4 7.2 9.8 11.7 5 22 

R Hudeshope Beck 5 5.5 8.3 14.3 10 16 

S Bedburn Beck 4 8.3 14.2 19.2 10 21 

T River East Allen 5 7.2 9 13.8 5 20 
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Table 6.5: Lists of tracer properties passing the range test and variability ratio 
thresholds and thereby included in further statistical analyses for the selection of 
composite signatures for sediment source discrimination.   

  Catchment Properties 

A St Lawrence  As,Bi,Co,Cr,Cu,Dy,Er,Eu,Fe,Gd,Ge,Ho,La,Li,Lu,Mg,Mn,Mo,Nd,Pr,Rb,Sb,Sc,Sm,Sr,Tb,Ti,Tl,Tm,Yb 

B Bolingey Stream Al,As,Bi,Cr,Dy,Er,Gd,Ge,Ho,La,Li,Mg,Na,Nd,Pb,Pr,Sb,Sc,Sm,Sr,Tb,Ti,Tl,Tm,Yb 

C Porthleven  Ce,Cr,Dy,Er,Eu,Gd,Ge,Ho,La,Li,Lu,Mg,Na,Nd,Ni,Pr,Sm,Sn,Tb,Tl,Tm,Yb,Zr 

D Hayle As,Ba,Bi,Cr,Dy,Er,Fe,Ga,Ho,Li,Lu,Mg,Na,Pb,Sb,Sr,Tb,Ti,Tm,Yb,Zr 

E River Burn(Tavy) Ce,Cs,Cu,Dy,Er,Eu,Fe,Gd,Ge,Hf,La,Lu,Mo,Nd,Pr,Sb,Sc,Sm,Sn,Sr,Tl,Tm,Yb 

F Mardle Al,As,Ba,Bi,Cd,Ce,Co,Cs,Cu,Dy,Er,Eu,Fe,Ga,Lu,Mg,Mo,Na,Pb,Rb,Sb,Sc,Sn,Sr,Ti,Tl,Yb,Zr 

G Afon Melindwr Ba,Ce,Cr,Dy,Er,Eu,Gd,Ge,La,Lu,Mo,Nd,Ni,Pb,Pr,Sb,Sm,Sn,Sr,Tb,Ti,Yb 

H Nant Magwr As,Co,Dy,Eu,Ga,Gd,Ge,La,Mo,Pr,Sb,Sc,Sm,Sn,Sr,Tb,Tl,Tm 

I Afon Cyneiniog Al,Ce,Ge,La,Li,Mg,Na,Nd,Pb,Pr,Sb,Sc,Sm 

J Afon Ystwyth As,Cs,Cu,Ga,Hf,Pb,Sb,Sc,Sm,Sn,Tl,Zr 

K Wye Al,Bi,Cd,Cs,Dy,Er,Eu,Gd,Ho,Li,Lu,Mn,Rb,Sb,Sc,Sr,Tb,Tm,Yb,Zn 

L Rea Brook Al,Ba,Ce,Cr,Cu,Dy,Er,Eu,Ga,Gd,Ge,Ho,La,Lu,Mg,Mo,Nd,Pb,Pr,Sm,Sn,Sr,Tb,Ti,Tm,Yb,Zn 

M River South Tyne As,Cd,Co,Cs,Ga,Mg,Mn,Na,Ni,Pb,Rb,Sc,Sr,Ti,Zn,Zr 

N Red Tarn Beck As,Bi,Ga,Gd,Hf,Mo,Nd,Sm,Sn,Sr,Tb,Tm,Zr 

O River Greta As,Ba,Bi,Ce,Cs,Cu,Dy,Eu,Fe,Ga,Gd,Ge,La,Li,Mg,Mo,Nd,Pb,Pr,Sb,Sm,Sn,Sr,Ti 

P Arkle Beck As,Bi,Cs,Cu,Er,Eu,Ho,Li,Mo,Ni,Rb,Sb,Sc,Sn,Tm,Yb,Zn,Zr 

Q Egglestone Beck Al,As,Cs,Cu,Dy,Eu,Fe,Ga,Gd,Li,Mg,Na,Pb,Rb,Sb,Sc,Sr,Tm,Zr 

R Hudeshope Beck Al,As,Cs,Cu,Ga,Li,Mg,Na,Ni,Rb,Sc,Sr,Ti,Tm 

S Bedburn Beck Al,As,Cs,Cu,Dy,Er,Eu,Ga,Gd,Li,Na,Pb,Rb,Sb,Sc,Sr,Ti,Zn,Zr 

T River East Allen As,Bi,Cs,Cu,Dy,Er,Gd,Hf,Ho,Mg,Na,Ni,Sr,Tb,Ti,Tm,Yb,Zr 

 

The statistical verification of the discrimination of the sediment source type end members 

involved the use of the Kruskal-Wallis H-test (KW-H), Principal Component Analysis (PCA) 

and genetic algorithm-driven Discriminant Function Analysis (GA-DFA) as outlined in Collins 

et al. (2012c). For the KW-H test, the Chi-square and p-value for each geochemical tracer 

passing the mass conservation and tracer variability screening (Table 6.5) were used to 

select properties (see examples in Tables 6.6 and 6.7 for the Afon Cyneiniog and Afon 

Melindwr study catchments, respectively). The corresponding KW-H outputs for the 

remainder of the study catchments are presented in Appendix A (Tables A19-A36). The use 

of PCA for selecting geochemical tracers with the highest ranked loadings provided a basis 

for verifying additional optimum composite signatures (see example PCA outputs for the 

Afon Cyneiniog and Afon Melindwr study catchments in Tables 6.8 and 6.9, respectively). In 

these examples, two components were sufficient for explaining up to 99.9% of the variance. 

The corresponding PCA outputs for the remainder of the study catchments are presented in 

Appendix A (Tables A37-A54). In these cases, two components were sufficient for explaining 

up to 100% of the variance. 
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Table 6.6: KW-H results for the Afon Cyneiniog study catchment.  

Property H-value p-value Property H-value p-value 

Pb 19.8 0.000 Sb 21.1 0.000 
Na 11.7 0.003 K 9.4 0.009 
Li 17.3 0.000 La 17.1 0.000 
Al 17.2 0.000 Ce 15.8 0.000 
Pr 17.1 0.000 Ge 14.4 0.001 
Nd 15.0 0.001 Sm 8.2 0.016 
Mg 11.4 0.003 Sc 13.2 0.001 

 

Table 6.7: KW-H results for the Afon Melindwr study catchment. 

Property H-value p-value Property H-value p-value 

 Ba 21.9 0.000  Ni 22.3 0.000 

 Ce 14.1 0.007  Pb 16.9 0.002 
 Cr 25.0 0.000  Pr 19.3 0.001 
 Dy 22.0 0.000  Sb 15.6 0.004 
 Er 21.1 0.000  Sm 14.6 0.006 
 Eu 17.2 0.002  Sn 28.6 0.000 
 Gd 12.5 0.014  Sr 26.7 0.000 
 Ge 25.5 0.000  Tb 29.9 0.000 
 K 14.8 0.005  Ti 31.2 0.000 
 La 19.2 0.001  U 29.2 0.000 
 Lu 26.7 0.000  Y 24.2 0.000 
 Mo 29.4 0.000  Yb 22.3 0.000 
 Nd 18.1 0.001       

 

Table 6.8: Highest ranked property loadings provided by the outputs of the PCA for 

the Afon Cyneiniog study catchment. 

Property PC-1
a
 Property PC-2

b
 

Pb 0.937 Al 0.893 
Al 0.348 Pb 0.340 
K 0.034 Mg 0.290 

Mg 0.022 K 0.052 
Na 0.005 Ce 0.006 
Sb 0.004 Na 0.005 
Ce 0.003 Li 0.004 
Nd 0.002 Nd 0.003 
La 0.002 La 0.003 
Li 0.001 Pr 0.001 
Pr 0.000 Ge 0.001 
Ge 0.000 Sm 0.000 
Sm 0.000 Sc 0.000 
Sc 0.000 Sb 0.000 

VE% 88.2 VE% 10.6 
a
 Principal Component 1; 

b
 Principal Component 2; VE % variance explained  
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Table 6.9: Highest ranked property loadings provided by the outputs of the PCA for 

the Afon Melindwr study catchment. 

Property PC-1
a
 Property PC-2

b
 

Pb 1.000 K 0.993 
Sb 0.006 Ti 0.116 
K 0.006 Ce 0.013 
Ti 0.005 La 0.008 
Ba 0.001 Nd 0.008 
Ce 0.001 Sb 0.006 
Ni 0.001 Sr 0.006 
Nd 0.000 Pb 0.005 
La 0.000 Ni 0.003 
Sr 0.000 Cr 0.003 
Pr 0.000 Pr 0.002 
Cr 0.000 Ge 0.002 
Ge 0.000 Sn 0.002 
Sm 0.000 Ba 0.001 
Gd 0.000 Sm 0.001 
Mo 0.000 Gd 0.001 
Y 0.000 Y 0.001 
Sn 0.000 Mo 0.001 
U 0.000 U 0.000 
Eu 0.000 Dy 0.000 
Yb 0.000 Eu 0.000 
Tb 0.000 Tb 0.000 
Er 0.000 Yb 0.000 
Dy 0.000 Er 0.000 
Lu 0.000 Lu 0.000 

VE% 99.5 VE% 0.4 
a
 Principal Component 1; 

b
 Principal Component 2; VE % variance explained 

Final composite signatures were identified using the highest ranked properties from either 

the KW-H test or PCA outputs for each study catchment. Each individual tracer for each 

composite fingerprint as well as the property sets in their entirety, were passed through the 

DFA to calculate the tracer discriminatory weightings and the total discriminatory efficiency 

of each set of properties. Examples of final signatures based on the KW-H test are provided 

in Tables 6.10 and 6.11 for the Afon Cyneiniog and Afon Melindwr study catchments, 

respectively. The corresponding results for the additional study catchments are presented in 

Tables A55-A72 in Appendix A. The KW-H optimum signatures presented in Tables 6.10 

and 6.11, as examples, correctly distinguished between 73% and 90% of the source type 

end member samples. In the case of the remaining study catchments, the KW-H optimum 

fingerprints classified between 74-100% of the source type samples into the correct end 

members (Tables A55-A72 in Appendix A). Examples of the final composite signatures 

selected using PCA are also provided in Tables 6.10 and 6.11. For these two examples, the 

PCA optimum geochemical signatures correctly classified between 88% (Afon Melindwr) and 

91% (Afon Cyneiniog) of the source samples. For the additional study catchments, the 

optimum geochemical signatures selected using PCA correctly distinguished between 68- 

93% of the catchment source type end member samples (Tables A55-A72 in Appendix A). 
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Table 6.10: The final composite signatures selected using KW-H and PCA for the Afon 

Cyneiniog study catchment. 

KW-H PCA 

Property %
1
  TDW

2
 Property %

1
  TDW

2
 

Al 61 1.11 Al 61 1.43 
La 67 1.22 Ce 64 1.50 
Li 67 1.22 K 42 1.00 
Pb 61 1.11 Mg 64 1.50 
Pr 64 1.17 Na 64 1.50 
Sb 55 1.00 Pb 61 1.43 

Total
3
 73   Total

3
 91   

1 
% source type end member samples classified correctly by individual properties 

2 
tracer discriminatory weighting used in the mass balance modelling 

3 
% source type end member samples classified correctly by composite signature 

 

Table 6.11:  The final composite signatures selected using KW-H and PCA for the 

Afon Melindwr study catchment. 

KW-H PCA 

Property %
1
  TDW

2
 Property %

1
  TDW

2
 

Lu 45 1.16 Ba 42 1.12 
Mo 43 1.12 Ce 37 1.00 
Sn 46 1.18 K 42 1.13 
Sr 52 1.33 La 41 1.10 
Tb 53 1.36 Pb 54 1.44 
Ti 49 1.28 Sb 42 1.14 
U 39 1.00 Ti 49 1.32 

Total
3
 90   Total

3
 88   

1 
% source type end member samples classified correctly by individual properties 

2 
tracer discriminatory weighting used in the mass balance modelling 

3 
% source type end member samples classified correctly by composite signature 

 

As examples, Tables 6.12 and 6.13 present the results of the GA-DFA for the Afon 

Cyneiniog and Afon Melindwr catchments, respectively. The GA-DFA procedure was used to 

identify three optimum composite signatures for each study catchment (see results tables for 

remaining study catchments in Appendix A – Tables A73-A90). Each GA-DFA optimum 

signature was selected on the basis of 200 repeat iterations, using the minimisation of Wilks’ 

lambda as a stepwise selection algorithm and a probability value for parameter entry of 0.05. 

GA-DFA was used as a basis for assessing the percentage of the source type end member 

samples discriminated correctly by each individual geochemical tracer selected for each 

optimum composite signature, as well as the total discriminatory efficiency of the property 

sets (Tables 6.12 and 6.13 as examples). In the case of the examples in Tables 6.12 and 

6.13, the total discriminatory power of the GA-DFA composite signatures ranged from 91% 

(GA-DFA run 2) to 94% (GA-DFA runs 1,3) for the Afon Cyneiniog and from 96% (GA-DFA 

run 2) to 98% (GA-DFA runs 1, 3) for the Afon Melindwr catchment. The relative 

discriminatory efficiency of the individual geochemical tracers comprising each composite 

signature was used to provide tracer discriminatory weightings for the mass balance 

modelling (see examples in Tables 6.12 and 6.13). These values were calculated using the 

ratio of the proportion of the source type end member samples classified correctly by any 
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individual tracer to the corresponding value for the property in the same signature with the 

lowest discriminatory efficiency. The latter were therefore assigned tracer discriminatory 

weightings of 1.0. Between 90-100% of the source type end member samples collected in 

the remaining 18 study catchments were classified correctly on the basis of the final 

signatures selected using GA-DFA (Tables A73-A90 in Appendix A).   

 

Table 6.12: The results of GA-DFA for the Afon Cyneiniog study catchment. 

GA-DFA 1 GA-DFA 2 GA-DFA 3 

Property %
1
 TDW

2
 Property %

1
 TDW

2
 Property %

1
 TDW

2
 

Al 61 1.43 K 42 1.00 K 42 1.00 
K 42 1.00 Li 67 1.57 Li 67 1.57 
Pb 61 1.43 Sb 55 1.29 Sb 55 1.29 
Pr 64 1.50 Sc 67 1.57 Sc 67 1.57 
Sc 67 1.57 Sm 48 1.14 Sm 48 1.14 

Total
3
 94 

 
Total

3
 91 

 
Total

3
 91 

 1 
% source type end member samples classified correctly by individual properties 

2 
tracer discriminatory weighting used in the mass balance modelling 

3 
% source type end member samples classified correctly by composite signature 

 

Table 6.13: The results of GA-DFA for the Afon Melindwr study catchment. 

GA-DFA 1 GA-DFA 2 GA-DFA 3 

Property %
1
 TDW

2
 Property %

1
 TDW

2
 Property %

1
 TDW

2
 

Ba 42 1.00 Ba 42 1.00 Cr 52 1.52 
Dy 44 1.06 Dy 44 1.06 Dy 44 1.30 
Mo 43 1.04 Mo 43 1.04 Gd 36 1.07 
Nd 42 1.01 Pb 54 1.29 Mo 43 1.27 
Pb 54 1.29 Sr 52 1.23 Pb 54 1.58 
Sb 42 1.02 Tb 53 1.26 Sb 42 1.25 
Tb 53 1.26   

 
Sm 34 1.00 

  
    

Tb 53 1.55 

Total
3
 98 

 
Total

3
 96 

 
Total

3
 98 

 1 
% source type end member samples classified correctly by individual properties 

2 
tracer discriminatory weighting used in the mass balance modelling 

3 
% source type end member samples classified correctly by composite signature 
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6.1.4 Mass balance modelling for sediment source apportionment and uncertainty 

analysis 

The numerical mass balance model described in Collins et al. (2010a) was used to apportion 

the relative contributions from the source type end members in each of the 20 catchments. 

This model is based on the following algorithm: 
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                                                                     (1) 

where:  

iC = deviate median concentration of fingerprint property  i  in channel bed sediment 

sample; 

sP = the optimised percentage contribution from source type end member  s ; 

siS = deviate median concentration of fingerprint property  i  in source type end member  s ;  

Z = particle size correction factor for source type end member  s ; 

siSV = weighting representing the within-source variation of geochemical tracer  i  in source 

type end member  s ;  

iW = tracer discriminatory weighting;  

n = number of geochemical tracers comprising the optimum composite fingerprint;  

m = number of source type end members. 

Detailed descriptions of the various components of the mass balance model are provided in 

Collins et al. (1997, 2010a, 2012c). The work reported here used some of the latest revisions 

to this model; the within-source variation and tracer discriminatory efficiency weightings. The 

former weighting is included in the algorithm to ensure that those geochemical tracers with 

smaller variance exert more influence on the solutions generated for any specific composite 

signature. This weighting is based on the inverse of the coefficient of variation for individual 

tracers. The basis for estimating the tracer discriminatory power weighting is provided in the 

previous section detailing statistical analyses. For the work reported here, no upper 

boundary constraint of 0.5 (as opposed to 1.0 used for all other end members) was used as 

prior information on the potential relative contribution of channel banks (cf. Collins et al., 

2010a) to in-stream sediment mixtures since this prior was based on a strategic dataset not 

including headwater metal mine catchments. The mass balance model uses median tracer 

values in the source end members and corresponding instream sediment as input and 

uncertainties in characterising these values on the basis of relatively few samples were 

quantified explicitly using the scaling of the tracer parameter distributions (probability density 

functions; pdfs) based on nQ and a Monte Carlo framework. The Monte Carlo framework 

included local optimisation of the model repeat solutions. Repeat solutions using the local 

optimisation (30,000 for each composite fingerprint identified for each study catchment) were 

generated using a stratified approach (Latin Hypercube) to sampling the input tracer 

distributions.  
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Uncertainty associated with the predicted sediment source proportions was assessed in the 

following ways, viz: 

 quantifying the full ranges in the predicted deviate median source proportions as 

represented by the output pdfs generated by the mass balance model and using 

these to estimate relative frequency-weighted average median inputs (R) from the 

individual sediment sources. 





n

i

ii FvR
1

                                                                                                     (2) 

where n is the number of intervals for the predicted deviate relative contribution, 

scaled between 0 and 1; and v and F are the mid-value and the relative frequency for 

the ith interval, respectively (Collins et al., 2012c).   

 quantifying the convergence of the model solutions and their precision by calculating 

95% confidence limits about the average median source proportions, using 10 sets 

of 30,000 repeat iterations for one composite signature identified for each study 

catchment 

 assessing the goodness-of-fit (GOF) as represented by the relative mean error 

squared (RMES) between the source-weighted predicted sediment chemistry and 

the measured signatures of the sampled channel bed sediment, using: 
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where n is the number of tracer properties comprising any composite signature. This 

GOF estimator has been widely used in sediment source fingerprinting studies 

(Motha et al., 2003; Collins et al., 2010a; Haddachi et al., 2013). 

 assessing the goodness-of-fit (GOF) as represented by the absolute relative mean 

error (ARME) between the source-weighted predicted sediment chemistry and the 

measured signatures of the sampled channel bed sediment, using: 
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where n is the number of tracer properties comprising any composite signature. This 

GOF estimator has also been used previously (e.g. Collins et al., 1997). 

 

6.2 Results 

Previous sediment source fingerprinting studies have generally used a threshold of 15-20% 

error in the assessment of the goodness-of-fit (GOF) between predicted source-weighted 

and measured sediment geochemistry (cf. Walling and Collins, 2000). Table 6.14 shows that 

nearly all statistically-verified composite signatures identified for the 20 catchments 

generated acceptable (GOF ≥0.8) goodness-of-fit estimates on the basis of equation 3. The 

exceptions were the composite signatures identified on the basis of PCA for the Afon 

Cyneiniog catchment, KW-H, PCA and GA-DFA2 for Porthleven Stream and GA-DFA2 for 

Rea Brook (Table 6.14). As an additional evaluation of the modelled estimates of source 

proportions, equation 4 was also used. Here, the results in Table 6.14 confirmed that more 
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of the mixing model source-weighted predictions of channel bed sediment geochemistry 

failed to return an acceptable (≥0.8) GOF. Most noticeably, the numerical mass balance 

modelling using the five composite signatures for the Rea Brook study catchment failed to 

return source-weighted predictions of sediment geochemistry with an acceptable GOF to 

values measured in the laboratory (Table 6.14). 

Table 6.15 presents the relative frequency-weighted average median source proportions 

predicted by the mass balance modelling using each of the five composite signatures 

identified for each of the 20 catchments. The final weighted-average median source 

proportions (Table 6.15) were generated taking the modelled predictions for signatures 

returning acceptable (≥0.8) GOF estimates using both the RMSE and ARME estimators and 

weighting these on the basis of the absolute relative error and % discriminatory power 

associated with each composite signature. These weighted-average estimates should be 

taken as the final predictions of sediment source proportions. Here, it is important to note 

that composite signatures yielding acceptable estimates of GOF can generate contrasting 

source apportionment for any given catchment (Table 6.15). This reflects the equifinality 

associated with source fingerprinting procedures and underscores the need to base final 

source estimates on multiple, rather than single, composite signatures (Collins et al., 2012c, 

2013, 2014). The final source apportionment estimates are, however, weighted to reflect the 

GOF and discriminatory power afforded by the individual composite signatures deemed 

acceptable for any given location. Further analysis using artificial mixtures would be needed 

to test the final source apportionment estimates. Given the poor performance of the source-

weighted predictions of sediment geochemistry for Rea Brook, on the basis of ARME, no 

reliable source proportions could be generated for this study catchment. 

 

Figure 6.1:   Plot of AMRE versus RMES for all modelled artificial channel bed 
sediment mixtures. 
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Table 6.14: The relative mean error squared (RMES) and absolute relative mean error 
(ARME) associated with the predicted source proportions using each composite 
signature identified for each study catchment. 

Catchment Signature RMES ARME Catchment Signature RMES ARME 

A 
St Lawrence 

Stream 

KW-H* 0.82 -0.13 

K 
Wye 

KW-H 0.99 0.80 

PCA 1.00 0.82 PCA 0.99 0.84 

GA - 1 1.00 0.83 GA - 1 0.99 0.80 

GA - 2 1.00 0.85 GA - 2 0.99 0.84 

GA - 3 1.00 0.85 GA - 3* 0.84 0.20 

B 
Bolingey 
Stream 

KW-H 1.00 0.85 

L 
Rea Brook 

KW-H* 0.95 0.31 

PCA 1.00 0.86 PCA* 0.88 -0.11 

GA – 1 1.00 0.85 GA - 1* 0.82 -0.21 

GA – 2 0.99 0.83 GA - 2* 0.79 -0.44 

GA – 3 1.00 0.84 GA - 3* 0.84 -0.28 

C 
Porthleven 

Stream 

KW-H* 0.70 -0.45 

M 
River South 

Tyne 

KW-H 1.00 0.82 

PCA* 0.71 -0.43 PCA 1.00 0.83 

GA - 1 1.00 0.84 GA - 1 1.00 0.83 

GA - 2* 0.74 -0.45 GA - 2 1.00 0.84 

GA - 3 1.00 0.82 GA - 3* 0.82 -0.33 

D 
Hayle 

KW-H 1.00 0.84 

N 
Red Tarn 

Beck 

KW-H 0.99 0.82 

PCA 1.00 0.82 PCA 1.00 0.84 

GA - 1 1.00 0.83 GA - 1 0.99 0.83 

GA - 2 1.00 0.83 GA - 2* 0.97 0.60 

GA - 3 1.00 0.82 GA - 3 0.99 0.80 

E 
River Burn 

(Tavy) 

KW-H 1.00 0.84 

O 
River Greta 

KW-H 1.00 0.84 

PCA 0.99 0.81 PCA 1.00 0.83 

GA - 1 1.00 0.84 GA - 1 1.00 0.83 

GA - 2 1.00 0.85 GA - 2 1.00 0.86 

GA - 3 1.00 0.83 GA - 3 1.00 0.83 

F 
Mardle 

KW-H* 0.95 0.25 

P 
Arkle Beck 

KW-H 0.99 0.86 

PCA* 0.92 0.01 PCA 0.99 0.85 

GA - 1 1.00 0.84 GA - 1 1.00 0.86 

GA - 2* 0.80 -0.56 GA - 2 1.00 0.86 

GA - 3* 0.81 -0.53 GA - 3 1.00 0.86 

G 
Afon 

Melindwr 

KW-H 1.00 0.83 

Q 
Egglestone 

Beck 

KW-H 1.00 0.83 

PCA 0.99 0.81 PCA 1.00 0.84 

GA – 1 1.00 0.84 GA – 1 1.00 0.84 

GA – 2 1.00 0.85 GA - 2 1.00 0.83 

GA – 3 1.00 0.83 GA - 3 1.00 0.83 

H 
Nant Magwr 

KW-H 1.00 0.83 

R 
Hudeshope 

Beck 

KW-H 1.00 0.84 

PCA 1.00 0.83 PCA 1.00 0.84 

GA - 1 0.99 0.82 GA - 1 1.00 0.83 

GA - 2 1.00 0.83 GA - 2 1.00 0.84 

GA - 3 1.00 0.84 GA - 3 0.99 0.82 

I 
Afon 

Cyneiniog 

KW-H 1.00 0.84 

S 
Bedburn 

Beck 

KW-H 1.00 0.84 

PCA* -1.60 -2.95 PCA* 0.87 0.19 

GA – 1 1.00 0.85 GA – 1 1.00 0.84 

GA – 2 0.99 0.81 GA – 2 1.00 0.85 

GA – 3 1.00 0.85 GA – 3 1.00 0.85 

J 
Afon Ystwyth 

KW-H 0.99 0.82 

T 
River East 

Allen 

KW-H 1.00 0.81 

PCA* 0.88 0.14 PCA* 0.87 -0.14 

GA - 1* 0.82 -0.05 GA - 1 1.00 0.83 

GA - 2 0.99 0.82 GA - 2 1.00 0.84 

GA - 3 0.99 0.82 GA - 3 1.00 0.83 

* model runs returned acceptably low ARME 
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In the case of the mine waste sources, the final estimates of predicted relative contributions 

to the fine-grained channel bed sediment ranged from 3% in the River Greta to 26% in the 

Red Tarn Beck catchment. Within this overall range, reasonably high relative contributions 

were also predicted for the River East Allen (19%), Hayle (18%), Egglestone Beck (16%) 

and Bolingey Stream (16%) study catchments (Table 6.15). Fine-grained sediment inputs 

from the dis-used mine workings at the remaining sites were lower, reflecting a combination 

of the coarse grain-size of the mine workings/waste, the development of protective 

vegetation cover and the insertion of pollution mitigation measures including settling ponds.  

The contributions from urban street dust ranged from 3% for the Hudeshope Beck catchment 

to 61% for Red Tarn Beck (Table 6.15). This source category was also predicted to be 

important for the Hayle (35%) and Nant Magwr (22%) catchments (Table 6.15). Urban street 

dust along roadsides in rural settlements and besides road drains has a strong chance of 

being delivered into neighbouring streams due to the connectivity provided by rural road 

drain networks.  

In the case of eroding channel banks and subsurface sources, the corresponding 

contributions across the 20 catchments ranged from 5% in Red Tarn Beck to 76% for 

Porthleven Stream. High contributions were also estimated for the Mardle (67%), Arkle Beck 

(62%), St Lawrence Stream (54%) and Hudeshope Beck (52%) catchments. Given the 

juxtaposition of eroding channel banks to streams, mobilised material is readily delivered into 

the watercourse in contrast to some of the fine-grained sediment mobilised from more distal 

catchment sediment sources (cf. Collins and Walling, 2004). For the majority of the 20 

catchments, the relative contribution of fine-grained sediment from eroding channel 

banks/subsurface sources was less than 50% and therefore in agreement with the national 

data for river catchments previously reported by Walling and Collins (2005).  

Recent work using sediment source tracing procedures has identified that damaged road 

verges can make important contributions to fine-grained sediment pressures in river 

catchments across the UK (Collins et al., 2010b, 2012b). These areas of river catchments 

are increasingly damaged by the growing volume of road traffic in rural areas, larger farm 

machinery, as well as by livestock moving between fields or between fields and milking 

parlours on a regular basis. Due to the low surface roughness of metalled roads, the 

trampled material is readily mobilised by rainstorms, with as little as 5 mm of rain mobilising 

material, which is readily delivered to streams via road drains and river crossings. In the 

case of the 20 catchments used for source apportionment work, the final estimates of the 

relative contributions from damaged road verges ranged from 8% for Porthleven Stream to 

44% for the Afon Melindwr catchment. The fact that the highest estimates of sediment 

contributions from damaged road verges were not predicted for the two catchments with the 

highest rural road density (St Lawrence Stream – 2 km/km2; Bolingey Stream – 1.3 km/km2) 

underscores that additional factors are at play in governing sediment loss from this source 

end member. The damaged road verge contribution in the latter study area (25%) was, 

however, reasonably high within the range across the study catchments (Table 6.15). The 

lower contribution from damaged road verges predicted for the Porthleven Stream is, in part, 

likely to reflect the low number (6) of river crossings identified in this catchment. More river 

crossing (10) were identified in the Afon Melindwr catchment and this is likely to have 

contributed to the higher predicted contribution from damaged road verges (Table 6.15). 

Although the highest number of river crossings (41) was recorded in the Arkle Beck 

catchment, damaged road verges were not identified as a sediment source in this locality. 
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Nevertheless, the high number of river crossings in Arkle Beck is likely to be playing an 

important role in the delivery of mobilised fine-grained sediment to the channel network.  

Fine-grained sediment loss from eroding agricultural topsoils was estimated to contribute 

between 3% (River Mardle) and 85% (Afon Cyneiniog) of the fine-grained channel bed 

sediment sampled at the catchment outlets. In the case of the River Mardle, ~53% of the 

land cover is rough grazing, where lower stocking densities can sometimes be expected to 

avoid widespread severe soil erosion and sediment mobilisation. This is borne out by the 

fact that the catchment with the largest proportion of rough grazing (~93% - Red Tarn Beck) 

was also predicted to have a low sediment contribution (8% - Table 6.15) from eroding 

agricultural topsoils. A number of studies have reported problems of soil erosion and 

sediment loss to rivers in association with higher stocking densities on improved grassland 

and consequential widespread soil pugging, poaching and compaction (Trimble and Mendel, 

1995; Evans, 1998; Singleton et al., 2000; Kurz et al., 2006; Drewry et al., 2008; Collins et 

al., 2010b, 2012b). The important agricultural topsoil contributions in the Afon Cyneiniog 

(86%), Wye (71%) and Nant Magwr (41%) catchments (Table 6.15) are likely to reflect the 

importance of improved pasture for local land cover (~59%, ~78%, ~68%). Again, however, 

the much lower predicted contribution from the agricultural topsoil end member estimated for 

the St Lawrence Stream (11%) belies the importance of improved grazing for local land 

cover (~59%), revealing the complexity of controls on catchment sediment dynamics. 

Although soil erosion and sediment loss are important issues associated with arable land 

cover and cropping practices, the two catchments with the highest proportion of arable land 

(Porthleven Stream – 25% and the River Hayle – 27%) were not associated with high 

relative contributions from the agricultural source end member (9% and 13%, respectively – 

Table 6.15). 
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Table 6.15: Estimated relative frequency-weighted median sediment source 
contributions in each study catchment.  

* Estimated using a weighting combining the absolute relative error and % discriminatory power 
associated with each composite signature  

Catchment Signature Agricultural  
topsoils 

Damaged  
road 

verges 

Channel 
banks/ 

subsurface 
sources 

Urban 
street 
dust 

Mine 
Waste 

A 
St Lawrence 

Stream 

KW-H 0.03 0.22 0.64 0.03 0.08 

PCA 0.03 0.48 0.43 0.03 0.03 

GA – 1 0.03 0.13 0.68 0.03 0.13 

GA – 2 0.33 0.04 0.30 0.05 0.28 

GA – 3 0.03 0.03 0.74 0.10 0.10 

Weighted average* 0.11 0.15 0.54 0.06 0.14 

B 
Bolingey 
Stream 

KW-H 0.07 0.20 0.57 - 0.16 

PCA 0.27 0.37 0.23 - 0.13 

GA – 1 0.31 0.19 0.27 - 0.23 

GA – 2 0.06 0.40 0.35 - 0.19 

GA – 3 0.53 0.12 0.26 - 0.09 

Weighted average* 0.25 0.25 0.34 - 0.16 

C 
Porthleven 

Stream 

KW-H 0.03 0.03 0.88 0.03 0.03 

PCA 0.88 0.03 0.03 0.03 0.03 

GA – 1 0.05 0.07 0.82 0.03 0.03 

GA – 2 0.03 0.38 0.53 0.03 0.03 

GA – 3 0.14 0.10 0.69 0.03 0.04 

Weighted average* 0.09 0.08 0.76 0.03 0.04 

D 
Hayle 

KW-H 0.03 0.03 0.63 0.28 0.03 

PCA 0.25 0.03 0.03 0.41 0.28 

GA – 1 0.11 0.05 0.20 0.46 0.18 

GA – 2 0.11 0.18 0.17 0.34 0.20 

GA – 3 0.13 0.20 0.17 0.27 0.23 

Weighted average* 0.13 0.10 0.24 0.35 0.18 

E 
River Burn 

(Tavy) 

KW-H 0.12 0.41 0.08 0.29 0.10 

PCA 0.03 0.66 0.03 0.03 0.25 

GA – 1 0.43 0.24 0.19 0.04 0.10 

GA – 2 0.34 0.32 0.18 0.05 0.11 

GA – 3 0.28 0.35 0.27 0.05 0.05 

Weighted average* 0.25 0.38 0.16 0.09 0.12 

F 
Mardle 

KW-H 0.32 0.13 0.52 - 0.03 

PCA 0.03 0.47 0.47 - 0.03 

GA – 1 0.03 0.22 0.67 - 0.08 

GA – 2 0.67 0.22 0.03 - 0.08 

GA – 3 0.03 0.56 0.38 - 0.03 

Weighted average* 0.03 0.22 0.67 - 0.08 
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Catchment Signature Agricultural  
topsoils 

Damaged  
road 

verges 

Channel 
banks/ 

subsurface 
sources 

Urban 
street 
dust 

Mine 
Waste 

G 
Afon 

Melindwr 

KW-H 0.25 0.40 0.18 0.04 0.13 

PCA 0.13 0.74 0.04 0.04 0.05 

GA – 1 0.36 0.37 0.07 0.13 0.07 

GA – 2 0.28 0.40 0.11 0.12 0.09 

GA – 3 0.36 0.33 0.04 0.21 0.06 

Weighted average* 0.28 0.44 0.09 0.11 0.08 

H 
Nant 

Magwr 

KW-H 0.44 0.32 0.13 0.08 0.03 

PCA 0.18 0.27 0.03 0.49 0.03 

GA – 1 0.43 0.11 0.04 0.28 0.14 

GA – 2 0.42 0.36 0.04 0.10 0.08 

GA – 3 0.55 0.21 0.04 0.17 0.03 

Weighted average* 0.41 0.25 0.06 0.22 0.06 

I 
Afon 

Cyneiniog 

KW-H 0.89 - 0.08 - 0.03 

PCA 0.94 - 0.03 - 0.03 

GA – 1 0.81 - 0.03 - 0.16 

GA – 2 0.92 - 0.05 - 0.03 

GA – 3 0.83 - 0.07 - 0.10 

Weighted average* 0.86 - 0.06 - 0.08 

J 
Afon 

Ystwyth 

KW-H 0.30 0.30 0.35 - 0.05 

PCA 0.03 0.22 0.72 - 0.03 

GA – 1 0.38 0.42 0.17 - 0.03 

GA – 2 0.45 0.26 0.26 - 0.03 

GA – 3 0.21 0.52 0.12 - 0.15 

Weighted average* 0.32 0.36 0.24 - 0.08 

K 
Wye 

KW-H 0.82 - 0.13 - 0.05 

PCA 0.47 - 0.47 - 0.06 

GA – 1 0.94 - 0.03 - 0.03 

GA – 2 0.62 - 0.33 - 0.05 

GA – 3 0.84 - 0.03 - 0.13 

Weighted average* 0.71 - 0.24 - 0.05 

L 
Rea Brook 

KW-H 0.83 0.03 0.03 0.03 0.08 

PCA 0.35 0.03 0.46 0.03 0.13 

GA – 1 0.83 0.03 0.03 0.03 0.08 

GA – 2 0.54 0.03 0.32 0.03 0.08 

GA – 3 0.74 0.03 0.17 0.03 0.03 

Weighted average* NR NR NR NR NR 

M 
River 

South Tyne 

KW-H 0.29 0.42 0.17 0.07 0.05 

PCA 0.56 0.14 0.17 0.10 0.03 

GA – 1 0.47 0.24 0.20 0.05 0.04 

GA – 2 0.33 0.40 0.16 0.07 0.04 

GA – 3 0.63 0.28 0.03 0.03 0.03 

Weighted average* 0.41 0.30 0.18 0.07 0.04 
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Catchment Signature Agricultural  
topsoils 

Damaged  
road 

verges 

Channel 
banks/ 

subsurface 
sources 

Urban 
street 
dust 

Non- 
coal 
mine 

N 
Red Tarn 

Beck 

KW-H 0.03 - 0.03 0.61 0.33 

PCA 0.28 - 0.11 0.25 0.36 

GA – 1 0.03 - 0.06 0.50 0.41 

GA – 2 0.03 - 0.03 0.86 0.08 

GA – 3 0.03 - 0.03 0.77 0.17 

Weighted average* 0.08 - 0.05 0.61 0.26 

O 
River Greta 

KW-H 0.61 - 0.28 0.08 0.03 

PCA 0.46 - 0.45 0.06 0.03 

GA – 1 0.62 - 0.31 0.04 0.03 

GA – 2 0.65 - 0.23 0.08 0.04 

GA – 3 0.62 - 0.31 0.04 0.03 

Weighted average* 0.60 - 0.31 0.06 0.03 

P 
Arkle Beck 

KW-H 0.16 - 0.77 - 0.07 

PCA 0.30 - 0.50 - 0.20 

GA – 1 0.34 - 0.56 - 0.10 

GA – 2 0.20 - 0.74 - 0.06 

GA – 3 0.33 - 0.52 - 0.15 

Weighted average* 0.27 - 0.62 - 0.11 

Q 
Egglestone 

Beck 

KW-H 0.27 0.30 0.35 - 0.08 

PCA 0.35 0.18 0.24 - 0.23 

GA – 1 0.45 0.12 0.24 - 0.19 

GA – 2 0.46 0.18 0.25 - 0.11 

GA – 3 0.45 0.07 0.30 - 0.18 

Weighted average* 0.40 0.17 0.27 - 0.16 

R 
Hudeshope 

Beck 

KW-H 0.45 0.09 0.39 0.04 0.03 

PCA 0.40 0.10 0.41 0.04 0.05 

GA – 1 0.09 0.29 0.56 0.03 0.03 

GA – 2 0.13 0.19 0.60 0.04 0.04 

GA – 3 0.03 0.30 0.59 0.03 0.05 

Weighted average* 0.20 0.21 0.52 0.03 0.04 

S 
Bedburn 

Beck 

KW-H 0.46 0.22 0.28 - 0.04 

PCA 0.17 0.33 0.47 - 0.03 

GA – 1 0.20 0.20 0.57 - 0.03 

GA – 2 0.24 0.18 0.55 - 0.03 

GA – 3 0.31 0.28 0.32 - 0.09 

Weighted average* 0.30 0.22 0.43 - 0.05 

T 
River East 

Allen 

KW-H 0.53 0.04 0.31 0.04 0.08 

PCA 0.46 0.03 0.40 0.03 0.08 

GA – 1 0.37 0.09 0.23 0.03 0.28 

GA – 2 0.54 0.08 0.13 0.07 0.18 

GA – 3 0.33 0.31 0.13 0.03 0.20 

Weighted average* 0.44 0.13 0.20 0.04 0.19 
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6.2.1 Limitations: 

 Because of the reconnaissance nature of the study, driven by the need to cover 20 

study rivers, the results are necessarily based on limited numbers of composite 

samples of both fine-grained interstitial sediment and potential source materials for 

any individual location. However, the general consistency of the results obtained for 

the individual rivers within the context of existing understanding of catchment fine-

grained sediment sources for the UK (e.g. Walling and Collins, 2005), lends weight to 

the findings.  

 It should be recognised that the provenance of the fine-grained channel bed 

sediment could vary seasonally, in response to the seasonal pattern of land use 

practices and the overall hydrological regimes of the study rivers. The 

representativeness of the sediment provenance data obtained from this study might 

therefore have been biased by the timing of the river sampling and the fact that a 

single sediment sampling campaign was undertaken. Some international peer 

reviewed studies have, however, argued that single visit channel bed sediment 

sampling at downstream depositional sites in rivers can be used as a reliable means 

of characterising bed-sediment associated geochemistry (cf. Gilliom et al., 1995; 

Horowitz et al., 2012).  

 River sediment samples for this study were collected using an established 

remobilisation technique. An alternative approach would be to use time-integrating 

suspended sediment samplers which are widely used for source tracing studies. 

These require Flood Defence Consents and so in the context of the number of study 

areas, these passive samplers were discounted. Time-integrating samplers sample 

sediment fluxes continuously and so provide temporally representative data. 

 The bed sediment source data were not linked to corresponding information on the 

amounts of fine-grained sediment accumulating in the river channel gravels. It was 

therefore not possible to comment on potential contrasts in the severity of the 

siltation/fine-grained sediment problem between the different study rivers and to link 

such contrasts to the importance of particular catchment sediment sources.  

 Equally, it must be recognised that the results presented relate to the relative 

importance of the potential catchment sediment sources. Thus, it is possible that the 

actual amount of sediment contributed by a particular source could be greater in one 

study area than another, even though the relative importance of that source was 

predicted by the exercise reported here to be lower. 

 The sourcing estimates reported here are only based on a local search tool rather 

than a comparison of both a local and global search tool (cf. Collins et al., 2012b). 

This was due to the late arrival of the fingerprinting data in the context of the project 

final reporting deadline and the computational time needed to run global searches 

using source tracing data. It should be noted, nonetheless, that recent studies have 

shown that local search tools alone can perform well for source tracing exercises (cf. 

Collins et al., 2012c).  

 For this study, contemporary river channel bed sediment was collected from a single 

depositional reach at the downstream end of each catchment. The estimated source 

proportions therefore relate to these sampling points. Source estimates are scale 

dependent in that they can differ for different sampling locations along a channel 

network as the mixture of potential sources and their connectivity to the channel 

system varies spatially. Future work could extend the sediment sampling along the 
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channel systems of some of the catchments to improve the robustness of the 

estimates by reducing scale dependency. On the basis of catchment size, the 

improved consideration of scale dependency would be most relevant to the River 

South Tyne (~163 km2), River Greta (~150 km2), Rea Brook (~89 km2), Arkle Beck 

(~67 km2) and Afon Ystwyth (~60 km2) catchments.  

 Artificial mixtures were not used to assess the mixing model outputs.  

 The source apportionment is for fine-grained sediment rather than sediment-

associated heavy metal pollution. The two cannot necessarily be taken to represent 

the same thing since a source could be significant for sediment release whilst having 

low concentrations of sediment-associated contaminants, or vice versa. This issue 

has been explored for sediment-associated nutrient pollution in river systems.  
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6.3 Conclusions 

Estimates of the contribution of mine waste to the fine-grained channel bed sediment ranged 

from 3% in the River Greta to 26% in Red Tarn Beck. High relative contributions were also 

predicted for the River East Allen (19%), Hayle (18%), Egglestone Beck (16%) and Bolingey 

Stream (16%). Higher contributions from mine waste were associated with steeper 

catchments, with good connectivity between mine waste facilities and the river, and where 

mine facilities comprised a larger proportion of the catchment.  

 
Table 6.16: Summary of estimated sediment source contributions in each study 

catchment, ranked by the proportion of mine waste. 

 

Catchment Code 
Agricultural  

topsoils 

Damaged  
road 

verges 

Channel banks/ 
subsurface 

sources 

Urban 
street dust 

Mine 
Waste 

Rea Brook L NR NR NR NR NR 

River Greta O 0.6 - 0.31 0.06 0.03 

Porthleven Stream C 0.09 0.08 0.76 0.03 0.04 

River South Tyne M 0.41 0.3 0.18 0.07 0.04 

Hudeshope Beck R 0.2 0.21 0.52 0.03 0.04 

Wye K 0.71 - 0.24 - 0.05 

Bedburn Beck S 0.3 0.22 0.43 - 0.05 

Nant Magwr H 0.41 0.25 0.06 0.22 0.06 

Mardle F 0.03 0.22 0.67 - 0.08 

Afon Melindwr G 0.28 0.44 0.09 0.11 0.08 

Afon Cyneiniog I 0.86 - 0.06 - 0.08 

Afon Ystwyth J 0.32 0.36 0.24 - 0.08 

Arkle Beck P 0.27 - 0.62 - 0.11 

River Burn (Tavy) E 0.25 0.38 0.16 0.09 0.12 

St Lawrence 
Stream 

A 0.11 0.15 0.54 0.06 0.14 

Bolingey Stream B 0.25 0.25 0.34 - 0.16 

Egglestone Beck Q 0.4 0.17 0.27 - 0.16 

Hayle D 0.13 0.1 0.24 0.35 0.18 

River East Allen T 0.44 0.13 0.2 0.04 0.19 

Red Tarn Beck N 0.08 - 0.05 0.61 0.26 

NR – not resolved.  
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B Bolingey Stream

Figure 6.2 Summary of sediment source relative contributions in each study 
catchment. 
Note that these estimates of weighted averages of relative (not absolute) contributions are subject to 
the limitations detailed in section 6.2.1. 
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7 Laboratory Experiments 

Objective 5a 

Replicated laboratory mesocosm experiments (bioassays) will be conducted to 

quantify changes to metal partitioning in sediments (sampled from rivers across a 

gradient of contamination) and to understand the impacts on toxicity in response to 

altered environmental conditions (e.g. pH, redox potential; cf. Spencer et al 2006; 

Kadiri et al., 2012) and following cycles of sediment re-suspension and deposition.  

These experiments will further our understanding of how site-specific conditions alter 

the toxic effect and will inform the prioritisation of remediation works. Sediments and 

organisms will be analysed using the same protocols as WP3. 

 

7.1 Methodology 

A laboratory experiment was undertaken in replicated aquaria (mesocosms) where a chosen 

biomonitor species (Baetis spp) was incubated with contaminated sediment and overlying 

water under controlled conditions. The sediment was manipulated following a replicated 

block design, to provide experimental gradients of organic matter content of the sediment 

and water hardness, together with an additional treatment of resuspension/no resuspension 

(Figure 7.1). The body burden of metals in the biomonitor species was determined at the 

start (a sample of the Baetis spp to be used) and at the end of the incubation period, to 

establish the influence of the gradients of environmental conditions on the bioavailability of 

metals.  

Figure 7.1 Schematic diagram of the experimental design used (total number of 

mesocosms = 54). All treatments were set up and allowed to equilibrate for three 

weeks. After this initial equilibration period the sediment in those replicates to be 

resuspended was disturbed and allowed to settle. The biomonitor species (Beatis) 

were then added and the experimental incubation period began. 
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Sediment collections for use in the laboratory experiment were made from three sites: 

i) Brookwood mine settlement pond (river Mardle) 

ii) The river Mardle downstream of Brookwood mine  

iii) The downstream depositional site of Cotehele Stream 

At each site, undisturbed areas with obvious deposits of fine sediment were located visually 

and collections of the bed made using a shovel and containers whilst ensuring minimal loss 

of fine material. On return to the laboratory, any overlying water was reduced by siphoning 

without drying the sediment. Samples of each type of sediment were collected for analysis of 

metal content using aqua regia extraction (see Section 4.2.4), which revealed a substantial 

metal content in all three sediments (Table 7.1; Figure 7.2). 

It was decided to use the sediment from the River Mardle for the following reasons: 

a) the material from the Brookwood Mine settlement pond was likely to be too toxic and 

lead to mortality of the biomonitor species. 

b) the Cotehele stream was not included in the field survey, therefore there were no 

existing data available on the biomonitor species. In addition, for project consistency 

it was preferable not to use this site. 

c) the metal content of the River Mardle sediment was sufficiently metal rich, particularly 

copper, to be used without mixing with the more contaminated settlement pond 

sediment. 

Larvae of mayflies, Baetis spp., were chosen as the biomonitor species to be used as they 

are more abundant than caddis flies, making collection from the field easier, are robust to 

laboratory conditions, and had a high body burden of arsenic, cadmium, copper and zinc 

downstream of Brookwood mine at the Mardle site when collected during the field survey 

(Table 7.2). In addition, the Baetis spp. collected from the independent control used in the 

field survey (Dean Burn) had a low body burden of metals. 

Water (conductivity approx. 40 µS) and Baetis to be used in the experiment were collected 

from Dean Burn, so that the only source of any metals accumulated by the Baetis was the 

sediment, either directly or indirectly.  

Approximately 3 cm depth of sediment was added to each of the mesocosms.  

To obtain organic matter, dried freshly fallen oak leaves collected from woodland at East 

Stoke, Dorset, were conditioned by incubating them in hessian sacks in the River Frome, 

Dorset, for 6 weeks. The conditioned leaf material was then rinsed clean of fine sediment 

and mashed with a blender. This material was mixed into the sediment once in the 

mesocosms. The mesocosms were then carefully filled with water and gently aerated. 

The experimental treatments used in a fully factorial design were: 

Organic matter: 0, 50 or 100 g wet weight of mashed leaf litter added to the sediment, 

Water hardness: CaCO3 added to the water to achieve 50, 150 or 250 mg l-1, 

Resuspension: either mesocosom subject to a single resuspension event (inverted) or not. 

The mesocosms were arranged in three blocks (Figure 7.3) and incubated at 12 °C for three 

weeks, for the sediment and water to equilibrate. After this initial equilibration period, a 

sample of the sediment was collected from each mesocosm and immediately frozen, for 
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determination of particle size distribution, organic carbon content, and Fe oxides (for 

methods see Section 4.2.4). These samples were also used to determine metal content, 

using aqua regia extraction (see Section 4.2.4), and by the BCR three step sequential 

extraction procedure as detailed in Rauret et al. (1999) using, step 1) acetic acid (0.11 mol   

l-1), step 2) hydroxylamine hydrochloride (0.5 mol l−1), and step 3) hydrogen peroxide (300 

mg g−1, which was evaporated off) and ammonium acetate (1.0 mol l−1). 

 

Table 7.1 Metal content of the three sediments collected for potential use in the 

experiments, together with ANZEEC & ARMCANZ and CCME sediment quality 

guidelines. 

 Mean Concentrations (mg kg
-1

). Range values shown in brackets 

 Co Cr Cu Mn Ni Pb Sn Zn 

Settlement 
Pond  
(n=4) 

89 15 6048 169 33 294 113 271 

(24-124) (15-17) (409-7082) (169-195) (33-41) (29-325) (13-174) (141-305) 

Mardle 
n=5 

24 22 409 689 36 28 102 140 

(21-27) (20-27) (158-1254) (627-739) (33-41) (26-31) (102-102) (129-158) 

Cotehele 
n=5 

37 31 510 2323 68 69 12 461 

(30-48) (28-40) (395-608) (1236-5142) (57-93) (53-85) (5-21) (358-520) 

ANZEEC & 
ARMCANZ 
Low Trigger 

 80 65  21 50  200 

CCME 
ISQG 

 37.3 35.7   35  123 

Suggested 
Theshold 
(Section 5.4) 

  34.3  39.8 133 9 447 

 

Figure 7.2 Mean metal content (error bars show range) of the three sediments 

collected for potential use in the experiments 
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Table 7.2. Trace metal body burden (as µg g-1 dry weight) of Baetis spp. Collected from 

the River Mardle and Dean Burn (independent control) during the field survey 

(reproduced from Table 4.4). High local bioavailability of that metal for Baetis spp is 

indicated in red. Blank cells indicate metal below detection limits.  

Site As Cd Co Cr Cu Mn Ni Pb Zn 

Upstream Control 6.5 3.24 4.32  35.1 127 22.8  218 

Downstream 127 7.98 24.5  111 225 24.3 6.99 525 

Downstream erosional 28.1 9.02 28.6 3.33 81.5 198 19.2 7.47 483 

Downstream depositional 16.7 19.0 43.8 4.14 128 197 39.7 9.43 1046 

Independent control 8.2 7.01 20.3 5.13 38.3 157 62.1 4.39 406 

 

After the initial equilibration period, the sediment in those replicates to be resuspended was 

disturbed and allowed to settle. Then 20 individuals of the biomonitor species (Baetis) were 

added and the experimental incubation period began.  

pH and dissolved oxygen of the water were measured through the initial equilibration period 

and incubation period with the Baetis present. 

The Baetis were incubated in the mesocosms for two weeks. At the end of the incubation 

period the remaining Baetis individuals from each mesocosm were collected and 

immediately frozen. These Baetis were used to determine the trace metal body burden 

following the methods outlined in 4.2.2, thus acting as a measure of the bioavailability of 

metals under the experimental treatments. Once the collection of Baetis was completed a 

second sample of sediment was collected and immediately frozen, as before, for 

determination of particle size distribution, organic carbon content, and Fe oxides (for 

methods see Section 4.2.4). These samples were also used to determine metal content, 

using aqua regia extraction (see Section 4.2.4), and by the BCR three step sequential 

extraction procedure (Rauret et al., 1999). 

Data were analysed using generalized linear models in SAS. A repeated measures ANOVA 

(for repeat samples collected over time) was used to determine the influence of the 

experimental treatments on the sediment and water. A MANOVA (for multiple measures 

collected at the same time) was used to establish the effect of the experimental treatments, 

and any interactions among them, on the body burden of trace metals in Baetis: our 

measure of the bioavailability of metals in the experimental mesocosms.  
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Figure 7.3 Mesocosms set up in the temperature controlled growth room. 

 

 

7.2 Results 

7.2.1 Water 

The pH of the water varied significantly over the duration of the experiment (Table 7.3: 

Figure 7.4). pH also varied significantly with the addition of organic matter to the sediment, 

and there was an interaction between organic matter and time. An additional main effect of 

hardness was also apparent on the pH (Table 7.3), possibly due to increased buffering 

capacity in the treatments with larger additions of CaCO3 (Figure 7.4). Dissolved oxygen was 

influenced by block (the aeration system was set up to reflect the block design) and time 

(Table 7.3), although the trend over time was not directional. There was also an effect of 

hardness, where the mesocosms that received larger additions of CaCO3 had slightly, but 

significantly, higher concentrations of dissolved oxygen (Figure 7.4). 

7.2.2 Sediment 

As organic matter was added experimentally to the sediment there was a significant effect of 

this treatment on the percentage organic matter of the sediment collected from the 

mesocosms (Table 7.4: Figure 7.5a). The pH of the sediment was significantly affected by 

the organic matter additions (Table 7.4) where larger additions of organic matter resulted in 

a higher sediment pH (Figure 7.5b). There was also a significant effect of time, with a 

decrease in sediment pH between the first and second collection of sediment, presumably 

due to decomposition (Figure 7.5b). Oxalate extractable iron oxide increased between the 

two sediment collections, but was not significantly affected by the experimental treatments 

(Figure 7.5c). Dithionite extractable iron oxides did not vary significantly, hence the ratio of 

oxalate to dithionite extractable iron oxides increased significantly over time (Table 7.4). 

There was no effect of treatment on the particle size distribution of the sediment. The 

sediments were mostly coarse, with the exception of a single replicate, silty sands (Figure 

7.6). 
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Table 7.3 Results of repeated measures ANOVA on water pH and dissolved oxygen.  

* p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001. 

 Water 

 pH DO 

Block  ** 

Organic ***  

Hardness * ** 

Resuspend   

Organic * Hardness   

Organic * Resuspend   

Hardness * Resuspend   

Organic * Hardness * Resuspend   

Time *** *** 

Time * Block  *** 

Time * Organic **  

Time * Hardness   

Time * Resuspend   

 

 

Figure 7.4 Variation of mean (± SE) pH and dissolved oxygen concentration of the 

water in the mesocosms over time and by main experimental treatments. 
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Table 7.4 Results of repeated measures ANOVA on sediment organic content, pH and 

iron oxides.   * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001. 

 % Organic pH FeO 
Oxalate 

FeO 
Dithionite 

Oxalate: 
Dithionite 

Block      

Organic *** ***    

Hardness      

Resuspend      

Organic * Hardness      

Organic * Resuspend      

Hardness * Resuspend      

Organic * Hardness * Resuspend      

Time  *** ***  *** 

Time * Block      

Time * Organic      

Time * Hardness      

Time * Resuspend      

 

Figure 7.5 Variation in mean (± SE) % organic content, pH and oxlate extractable iron 

oxide concentration in the sediment over time and by main experimental treatments. 
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Figure 7.6 Ternary diagram of particle size composition of the sediment collected at 

the end of the experiment. 
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Aqua regia extraction 

The aqua regia extractable metal content of the sediment varied significantly over time 

(MANOVA p ≤ 0.0001), with a tendency for concentrations to decrease between the first and 

second sampling occasions, particularly cadmium, copper, iron and lead (Figure 7.7: Table 

7.5). There was also an interaction between organic matter and time for aqua regia 

extractable lead, where a more pronounced decrease over time was seen in treatments with 

more organic matter (Figure 7.7e). Resuspension increased the aqua regia extractable 

concentration of nickel (Table 7.5), and there was an interaction between organic matter and 

resuspension on the aqua regia extractable lead concentration (Table 7.5), where higher 

concentrations were observed in resuspended treatments with more organic matter.  

BCR three step sequential extraction  

As sequential extraction provides information on the partitioning of metals in the sediment, 

results are presented for both the metals of interest and other metals.  

The method of extraction had a highly significant effect on all metals except lead, where the 

effect was close to significant (Table 7.6). The concentrations of lead were low with all three 

extraction methods. Concentrations of barium and zinc decreased with increasingly 

aggressive extraction method suggesting that these metals were largely readily 

exchangeable, soluble in either water or acid (i.e. as carbonates), or in oxidised forms 

(Figures 7.8-7.11a & j). The highest concentrations of iron and manganese were obtained 

with step 2, hydroxylamine hydrochloride, suggesting that these metals were mainly present 

in oxidised forms (Figures 7.8-7.11e & h). Concentrations of calcium and magnesium were 

lowest when extracted with hydroxylamine hydrochloride and highest when extracted with 

hydrogen peroxide and ammonium acetate suggesting they were mostly either present in 

reduced forms, associated with organic matter, or readily exchangeable, possibly as 

carbonates or associated with clay minerals (Figures 7.8-7.11b & g). Chromium, copper, 

potassium and lead increased with increasingly aggressive extraction method, suggesting 

that these metals were present in the oxidisable fraction, either in a reduced form or 

associated with organic matter (Figures 7.8-7.11c, d, f, g & i). Cadmium and nickel were not 

detected with any of the three sequential extractions, but were extracted with aqua regia 

(Figure 7.7), suggesting they were largely present in recalcitrant, possibly mineral, forms. 

Time had an influence on measured concentrations of chromium, iron and (close to 

significant) lead (Table 7.6) where, as with the aqua regia extractions, measured 

concentrations were lower on the second occasion (Figure 7.8). There was also a close to 

significant interaction between time and extraction method for chromium, iron and zinc, but 

these largely reflected the main effect of time; where the metals were detected they tended 

to decrease over time. However, the significant interaction between time and extraction 

method for copper (Table 7.6) reflected a different response: concentrations measured with 

hydrogen peroxide and ammonium acetate increased with time, but declined for acetic acid 

and hydroxylamine hydrochloride, suggesting that copper became more associated with 

organic matter, and hence less mobile, over time.  

The organic matter added experimentally to the sediment only had a significant influence on 

barium (Figure 7.9: Table 7.6), where measured concentrations were highest in sediments 

that received the largest amounts of organic matter. There was a significant interaction 
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between organic matter and extraction method for calcium (Table 7.6): measured 

concentrations increased with organic matter additions when extracted with acetic acid, but 

decreased with organic matter additions when extracted with hydrogen peroxide and 

ammonium acetate (Figure 7.9). There was a close to significant interaction between time 

and organic matter for barium and manganese. Magnesium also returned a significant 

interaction between organic matter, extraction method, hardness and resuspension, and a 

close to significant interaction between organic matter, hardness and resuspension. Organic 

matter additions to the sediment had no significant effect on any other metal, irrespective of 

extraction method.  

Water hardness had a significant effect on calcium, copper, iron and magnesium, and a 

significant interaction with extraction method for calcium, copper, potassium and magnesium 

(Table 7.6). Measured concentrations of these metals were higher with increased hardness, 

particularly when hydrogen peroxide and ammonium acetate were used (Figure 7.10), 

suggesting that hardness influenced the oxidisable fraction, i.e. either in a reduced form or 

associated with organic matter. However, for calcium, increased hardness also influenced 

measured concentrations when acetic acid was used for extraction (Figure 7.10b), 

suggesting precipitation as carbonate.  

Resuspension had a significant influence on calcium, iron, magnesium and zinc, and an 

interaction with extraction method for the same metals and lead (Table 7.6). Resuspension 

tended to result in lower measured concentrations particularly when hydrogen peroxide and 

ammonium acetate were used for extraction, with the exception of lead where this fraction 

increased with resuspension (Figure 7.11).  

To better understand how metals were responding to the experimental treatments, metals 

were grouped following their response to the BCR three step sequential extraction, i.e. 

according to their partitioning within the sediments, and the data analysed by these groups 

using MANOVA. The four groups were: 

1 Metals that were mainly in readily exchangeable forms, soluble in either water or 

acid (i.e. as carbonates), where concentrations were highest when extracted with 

acetic acid, comprising barium, strontium and zinc. 

2 Metals that were mainly present in oxidised forms, where concentrations were 

highest when extracted with hydroxylamine hydrochloride, comprising cobalt, iron 

and manganese. 

3 Metals that were mainly present in the oxidisable fraction, either in a reduced form 

or associated with organic matter, where concentrations were highest when 

extracted with hydrogen peroxide and ammonium acetate, comprising silver, 

aluminium, chromium, copper, potassium and lead. 

4 Metals that were mainly in either readily exchangeable or reduced forms, where 

concentrations were lowest when extracted with hydroxylamine hydrochloride, 

comprising calcium, lithium, magnesium and sodium. 

Where detected, measured concentrations of readily exchangeable metals (Group 1) in the 

sediment were significantly lower with time (time*extraction), suggesting release to the water 

column, which was significantly enhanced by resuspension (Table 7.7).  
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Measured concentrations of metals that were mainly present in oxidised forms (Group 2), 

were influenced by time, water hardness and resuspension, suggesting loss to the water 

column particularly where the water was soft or the sediment disturbed (Table 7.7). 

Measured concentrations of metals that were mainly present in reduced forms (Group 3), 

were also influenced by time, water hardness (both close to significant) and resuspension, 

suggesting some loss to the water column particularly where the water was soft (Table 7.7). 

However, here resuspension tended to result in higher measured concentrations, suggesting 

release from mineral forms when the sediment was disturbed. 

Metals that were mainly in either readily exchangeable or reduced forms (Group 4), were 

close to significant for the interaction between time and extraction method, becoming more 

reduced over time, i.e. moving towards more strongly held forms over time and becoming 

less labile, and significant for the interaction between organic matter and extraction method 

(Table 7.7), where increased organic matter was associated with an increase in readily 

exchangeable forms. Here also, resuspension and the interaction between resuspension 

and extraction method were significant, indicating release from the forms present when the 

sediment was disturbed. The interactions between organic matter and resuspension, 

extraction method, water hardness and resuspension, and organic matter, water hardness 

and resuspension were close to significant for these metals also (Table 7.7), suggesting that 

these metals were more influenced by environmental conditions than the other groups.  
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Figure 7.7 Variation in mean (± SE) aqua regia extractable metal concentration in the 

sediment over time and by main experimental treatments, a) Cadmium, b) Copper, c) 

Iron, d) Nickel, e) Lead and f) Zinc. 
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Table 7.5 Results of repeated measures ANOVA on aqua regia extractable sediment 

metal content.  

 

 Sediment  
 Cd Cu Fe Ni Pb Zn 

Block       
Organic       
Hardness       
Resuspend    *   
Organic * Hardness       
Organic * Resuspend     **  
Hardness * Resuspend       
Organic * Hardness * Resuspend       
Time *** *** ***  ***  
Time * Block       
Time * Organic     **  
Time * Hardness       
Time * Resuspend       

 

* P ≤ 0.05, ** P ≤ 0.01, *** P ≤ 0.001.  
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Table 7.6 Results of ANOVA on sediment metal content determined by sequential 

extractions.  

 

 
Ca Ba Cr Cu Fe K Mg Mn Pb Zn 

Block 
          Extraction *** *** *** *** *** *** *** *** ‡ *** 

Time 
  

* 
 

* 
   

‡ 
 Time*Extraction 

  
‡ * ‡ 

    
‡ 

Org 
 

* 
        Org*Extraction *** 

         Time*Org 
 

‡ 
     

‡ 
  Time*Org*Extraction 

          Hard *** 
  

** ** 
 

* 
   Extraction*Hard ** 

  
** 

 
* ** 

   Time*Hard 
        

‡ 
 Time*Extraction*Hard 

          Org*Hard 
      

‡ 
   Org*Extraction*Hard 

      
** 

   Time*Org*Hard 
   

* 
      Time*Org*Extrac*Hard 

          Resusp *** 
   

*** 
 

*** 
  

* 

Extraction*Resusp ** 
   

** 
 

*** 
 

** ‡ 

Time*Resusp 
       

‡ 
  Time*Extracti*Resusp 

       
* 

  Org*Resusp * 
         Org*Extractio*Resusp 

          Time*Org*Resusp 
          Time*Org*Extra*Resus 
       

* 
  Hard*Resusp 

          Extracti*Hard*Resusp 
          Time*Hard*Resusp 
          Time*Extr*Hard*Resus 
  

* 
       Org*Hard*Resusp 

      
‡ 

   Org*Extra*Hard*Resusp 
      

* 
   Time*Org*Hard*Resusp 

          Tim*Org*Ext*Har*Resu 
           

‡ P ≤ 0.01, * P ≤ 0.05, ** P ≤ 0.01, *** P ≤ 0.001. 
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Figure 7.8 Influence of time on mean (± SE) metal concentrations determined by 

sequential extraction of the sediment, a) Barium, b) Calcium, c) Chromium, d) Copper, 

e) Iron, f) Potassium, g) Magnesium, h) Manganese, i) Lead and j) Zinc. 
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Figure 7.9 Influence of sediment organic matter on mean (± SE) metal concentrations 

determined by sequential extraction, a) Barium, b) Calcium, c) Chromium, d) Copper, 

e) Iron, f) Potassium, g) Magnesium, h) Manganese, i) Lead and j) Zinc. 
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Figure 7.10 Influence of water hardness on mean (± SE) metal concentrations 

determined by sequential extraction, a) Barium, b) Calcium, c) Chromium, d) Copper, 

e) Iron, f) Potassium, g) Magnesium, h) Manganese, i) Lead and j) Zinc. 
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Figure 7.11 Influence resuspension of sediment on mean (± SE) metal concentrations 

determined by sequential extraction, a) Barium, b) Calcium, c) Chromium, d) Copper, 

e) Iron, f) Potassium, g) Magnesium, h) Manganese, i) Lead and j) Zinc. 
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Table 7.7 Results of MANOVA on sediment metal content in groups determined by 

their response to sequential extractions (see text for details). 

 

 
Grp 1 Grp 2 Grp 3 Grp 4 

 Ba, Sr, Zn Co, Fe, Mn Ag, Al, Cr, Cu, K, Pb Ca, Li, Mg, Na 

Block 
    

Extraction *** *** *** *** 

Time 
 

* ‡ 
 

Time*Extraction * ‡ 
 

‡ 

Org 
    

Org*Extraction 
   

*** 

Time*Org 
    

Time*Org*Extraction 
    

Hard 
 

* ‡ * 

Extraction*Hard 
  

‡ * 

Time*Hard 
    

Time*Extraction*Hard 
    

Org*Hard 
    

Org*Extraction*Hard 
   

‡ 

Time*Org*Hard 
    

Time*Org*Extrac*Hard 
    

Resusp ** *** *** *** 

Extraction*Resusp 
 

* *** *** 

Time*Resusp 
    

Time*Extracti*Resusp 
    

Org*Resusp 
   

‡ 

Org*Extractio*Resusp 
    

Time*Org*Resusp 
    

Time*Org*Extra*Resus 
 

‡ 
  

Hard*Resusp 
    

Extracti*Hard*Resusp 
   

‡ 

Time*Hard*Resusp 
    

Time*Extr*Hard*Resus 
    

Org*Hard*Resusp 
   

‡ 

Org*Extra*Hard*Resus 
    

Time*Org*Hard*Resusp 
    

Tim*Org*Ext*Har*Resu 
     

‡ P ≤ 0.01, * P ≤ 0.05, ** P ≤ 0.01, *** P ≤ 0.001. 
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7.2.3 Bioavailability 

The body burden of all metals in Baetis increased over the duration of the incubation, 

compared with the starting condition (Figure 7.12), particularly those metals that were in 

notably high concentrations in the sediment and Baetis collected from the river Mardle (i.e. 

arsenic, cadmium, copper and zinc). However, it should be noted that only cadmium, copper 

and zinc were found in the tissues of Baetis in concentrations that would be considered high 

(i.e. >15, >100 and >1,000 µg g-1 respectively: see Section 4.3.1 and Table 4.4). In addition 

there was a significant effect of the organic matter added to the sediment: body burdens, 

particularly of cadmium, copper and zinc, were higher in Baetis from those treatments that 

had larger amounts of organic matter added to the sediment (Table 7.7: Figure 7.12a). On 

the other hand, the body burden of arsenic tended to be lower with increased organic matter 

in the sediment. MANOVA detected marginally significant effects of water hardness (p = 

0.0575) and the interaction between water hardness and resuspension (p = 0.0933): in 

contrast with the effect of hardness in field studies, bioavailability was marginally higher in 

treatments with increased CaCO3 (Figure 7.12b). 

 

Table 7.6 Results of MANOVA on body burden of arsenic, cadmium, copper, nickel, 

lead and zinc in Baetis at the end of the incubation period. 

 p 

Block  

Organic 0.0018 

Hardness 0.0575 

Resuspend  

Organic * Hardness  

Organic * Resuspend  

Hardness * Resuspend 0.0933 

Organic * Hardness * Resuspend  
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Figure 7.12 Variation in body burden (mean ± SE) of arsenic, cadmium, copper, nickel, 

lead and zinc in Baetis in response to A) organic matter and B) water hardness. 

Horizontal dashed line = body burden at the start of the experiment (+ SE dotted line); 

horizontal red line = body burden considered high for Baetis (As and Pb = 100 µg mg-1). 
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7.3 Discussion 

The sediment collected from the River Mardle was contaminated with metals from the 

Brookwood Mine. In particular, copper and nickel concentrations were in excess of the 

ANZEEC & ARMCANZ Low Trigger concentration and zinc concentrations were in excess of 

the CCME ISQG. Furthermore, the Baetis collected from the Mardle during the field survey 

had high body burdens of arsenic, cadmium, copper and zinc, indicating that bioavailability 

of these metals was high in the River Mardle. The body burden of all metals in Baetis 

increased over the duration of the incubation, compared with the starting condition. At the 

end of the experiment the body burdens of cadmium, copper and zinc were in excess of, or 

close to concentrations considered high for Baetis (15, 100 and 1,000 µg g-1 respectively: 

see Section 4.3.1 and Table 4.4). As both the water and Baetis used in the experiment were 

from the Dean Burn, the sediment was the only substantial source of metals. It is apparent 

that the contaminated sediment from the River Mardle was acting as a source of bioavailable 

metals in this experiment. From this we can conclude that it is likely, even where mine 

drainage water is treated to reduce metal concentrations, contaminated sediments, including 

river bed sediment, will act as a source of bioavailable metals. 

Furthermore, the addition of organic matter to the sediment increased bioavailability 

significantly, particularly of cadmium, copper and zinc. The bioavailability of arsenic tended 

to decrease with organic matter additions perhaps indicative of arsenic partitioning in the 

sediment. However, it should be noted that the body burdens of arsenic were not high (<10 

µg g-1 cf. >100 µg g-1: see Section 4.3.1 and Table 4). Additions of organic matter were also 

associated with increased pH of the sediment and water, but did not appear to have a 

substantial influence on the concentrations of metals extracted from the sediment using 

either aqua regia or the BCR three step sequential extraction method (Tables 7.5, 7.6 & 7.7). 

This latter result is somewhat surprising: the addition of particulate organic matter to the 

sediment did not have a substantial effect on the partitioning of metals in the sediment, but 

did influence bioavailability, suggesting that bioavailability was influenced by more than just 

the form that the metals were in. As Baetis consume particulate organic matter it is possible 

that they were accessing metals via their diet. 

The BCR three step sequential extractions of sediment indicated that zinc was relatively 

readily available to solution from the sediment and was not associated with organic matter in 

the sediment. In contrast, copper, lead and cadmium were all relatively recalcitrant, with 

copper and lead mainly in the oxidisable fraction, either in a reduced form or associated with 

organic matter. Cadmium was only retrieved in measurable concentrations when extracted 

with aqua regia.  

Dissolved organic carbon (DOC) reduces the bioavailability of metals in solution by forming 

complexes with the metals. It is likely that the mashed leaves added to the sediment did 

release DOC into the water, particularly as the organic matter appeared to decompose over 

time. It has been noted previously that increased DOC (along with higher water ionic 

concentration) can encourage metals into solution (Butler, 2009), but such an effect is most 

likely as a result of DOC (and the other factors) forming complexes with metals from the 

sediment. Here we used particulate organic matter and it is probable that in addition to 

releasing DOC, metals present in the oxidisable fraction (Ag, Al, Cr, Cu, K and Pb) were 

associated with this particulate material, and increasingly so as time progressed. Such 
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particulate material would in turn provide a route for uptake by the Baetis biomonitors, which 

consume fine particulate material.  

It is not clear how the organic matter additions influenced the bioavailability of zinc, which 

appeared to be mainly in a readily exchangeable form in the sediment, suggesting that it was 

not strongly associated with any of the sediment fractions. 

Water hardness had a marginally significant effect on bioavailability, with increased 

hardness associated with increased uptake of metals. This again appears contrary to 

expectations: water hardness reduces bioavailability of dissolved metals (albeit with less 

effect than DOC), through precipitation of insoluble salts. This was seen to a certain extent 

where metals mainly present in oxidised (Group 2: Co, Fe, Mn), reduced (Group 3: Ag, Al, 

Cr, Cu, K, Pb) and either reduced or readily exchangeable forms (Group 4: Ca, Li, Mg, Na) 

were found in the sediment at lower concentrations in the softer water. Whilst increased ionic 

activity of water does encourage metals out of sediment (Butler, 2009), and it is possible that 

any precipitates could have been ingested by the Baetis, too much weight should not be put 

on the influence of hardness as the effect was only marginally significant. 

The effect of the single resuspension event did not cause any increase in bioavailability, yet 

it did cause effects on several of the metals. The increased exposure of deeper sediment, 

and increased physical mixing of water and sediment, that occurred as a consequence of 

such an event appeared to alter partitioning of the metals in the sediment and exchange with 

the water column. It had been presumed that such changes would influence bioavailability, 

but this did not appear to be the case. Again, it appears that bioavailability was influenced by 

more than the behaviour of the metals. Whilst, this is an encouraging result, suggesting that 

disturbance of this sediment through events such as flooding is unlikely to influence 

bioavailability, only a single resuspension was undertaken and (despite the fine sediment 

component being collected from the river) the sediment used was relatively coarse. It is 

possible that disturbance of other, finer sediments would have a more substantial impact and 

that the changes in metal partitioning and with the water column may influence bioavailability 

in the longer term. 

Overall, the disparity between the influence of the experimental treatments on bioavailability 

and on the behaviour of metals in the sediment suggests that the uptake of metals by biota 

is influenced by some factor other than the chemical behaviour of the metals. We suggest 

that this is most likely to be biological, i.e. the consumption of metals through the diet.  
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8 Simple Rules to Identify Where Contaminated Sediments Pose 

Greatest Risk  

Objective 6a. To develop simple rules and build upon existing models for 

characterising the effect on ecology of release or remobilisation of contaminants from 

sediment and to identify when remediation of sediment is required in addition to 

treatment of mine water discharge. 

We have attempted to identify a series of criteria that will help identify whether a site is likely 

to be at risk from metals associated with sediments. The risk from contaminated sediment 

from abandoned metal mine facilities is comprised of four components: 

A) the concentration of contaminants in the source material, 

B) the delivery of contaminated sediment to the site, 

C) the retention of contaminated sediment at the site, 
D) the influence of environmental conditions at the site on bioavailability of metals from 

contaminated sediment. 

These four components can be used to develop simple rules to characterise the effect of 

contaminated sediment on ecology. 

8.1 Concentration of contaminants in the source material 

The data describing sediment sources from the apportionment work (Section 6) was used to 

assess the influence of the concentration of metals in the source material at abandoned 

metal mining facilities. To account for differences in absolute concentrations among metals, 

the mean metal concentrations in metal mine sediment sources were ranked, 1 to 20, for 

each metal (arsenic, cadmium, copper, nickel, lead, tin and zinc), with the highest rank 

ascribed to the catchment with the highest concentration of that metal. The sum of all ranks 

was then calculated for each catchment as a measure of the relative contamination of 

source material, with a maximum value of 140. Actual values ranged from 20 (Catchment T, 

River East Allen) to 104 (Catchments I, Afon Cyneiniog, and M, South Tyne). To determine 

the relationship between the concentration of contaminants in source material and ecological 

damage, the sum of ranks was then compared with the MetTol index value for the sites 

downstream of the abandoned non-coal mining facilities in each catchment.  

A significant negative relationship was found between ecological damage and relative 

contamination of source material (Figure 8.1), indicating that the risk was greater at sites 

where the sources of metal mine sediment were more contaminated with metals. Hence, we 

suggest the following influence,  

1) The concentration of metals in the source material 

The extent of contamination of  metal mine sediment sources at a site will depend on a 
variety of factors including the geology (of both mineral veins and overburden), economics 
(value of minerals extracted or discarded) and location (activities undertaken on site, e.g. 
crushing or smelting). There does not appear to be a strong pattern in the extent of source 
contamination associated with mine types or regions.  
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Figure 8.1 Relationship between relative contamination of non-coal mine source 
material and ecological damage, as MetTol index value. p = 0.036 

 

8.2 Delivery of contaminated sediment to the site 

The risk from contaminated  metal mine sediment sources is dependent upon the sediment 

entering the river and being retained at a site. Here we have explored the extent to which  

metal mine sediment sources contribute to the biologically active fine component of river bed 

sediments using source apportionment approaches, and have provided estimates of the 

relative importance of  metal mine sources in the 20 catchments studied. Using these 

results, and our understanding of sediment source delivery we have derived the following 

influences associated with risk. 

2) Grain-size of the mine workings/waste. 

3) Proximity of  metal mine sediment sources to flowing watercourses. 

4) Gradient of catchment containing  metal mine sediment sources. 

5) Indications of erosion of  metal mine sediment sources. 

6) Surface vegetation covering  metal mine sediment sources. 

7) Effective pollution mitigation measures including settling ponds. 

The catchment where  metal mine sources contributed most was N, Red Tarn Beck, and the 

least was O, River Glendermackin/River Greta. The former is a steep upland catchment 

where the mine is next to the river, a tributary flows through the mine, and the catchment is 

relatively small. In the latter, the mine is on a small tributary (Gategill Beck) within a large 

catchment (~150 km2): whilst the mine has a significant impact upon Gategill Beck, the 

contribution to the sediment in the main river is small (3%).  

8) Footprint of  metal mine sites within the catchment, i.e. the proportion of the 

catchment that the mine facility comprises.  

In catchments where the  metal sources comprise a small proportion of the sediment relative 

to uncontaminated sources, the concentration of metals in river bed sediment is diluted: the 

results presented in Sections 4.3.4 and 4.3.5 indicate that the bioavailability of metals from 

sediment is related to concentration in the sediment rather than total load (concentration x 

mass of fine sediment). Hence, we suggest the following influence, 

9) Sediment from other, uncontaminated sources. 
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The source apportionment work indicated that sediment from eroding agricultural topsoils 

comprised a smaller proportion where the catchment was dominated by rough grazing, 

particularly catchment F, River Mardle. As agricultural topsoils are unlikely to be 

contaminated with metals, the likelihood of uncontaminated sediment diluting metal 

concentrations in riverbed sediments is reduced in situations where the catchment was 

dominated by rough grazing.  

The delivery of sediment from sources other than mine workings/waste facilities to the river 

is enhanced in catchments with a high number of road crossings and/or road drains.  

8.3 Retention of contaminated sediment at the site 

The retention of contaminated sediment at a site is likely to increase the risk to ecology, with 

risk increasing where more contaminated sediment is retained. The extent to which a site 

retains fine sediment can be predicted from stream power (Naden et al., 2016). As most of 

the annual load of suspended sediment is carried during high flows, stream power should be 

calculated using the median annual flood (similar in return period to bankfull flow) which can 

be estimated from catchment characteristics (catchment area, average annual rainfall, flood 

attenuation due to reservoirs and lakes, and baseflow index), using the formula  

Ω = ρg QMED S 

where Ω is stream power (W/m), ρ is density of water (kg/m3), g is acceleration due to 

gravity (m/s2), QMED is median annual flood (m3/s), S is channel slope (m/m). Of these 

parameters, channel slope is the easiest to determine, with lower channel slope associated 

with increased retention of sediment. Hence, we suggest the following influence, 

10) Slope of stream channel 

Nevertheless, as the results presented in Sections 4.3.4 and 4.3.5 indicate that the 

bioavailability of metals from sediment is related to concentration in the sediment rather than 

total load (concentration x mass of fine sediment), the influence of other sediment sources in 

the catchment is important. Where large amounts of sediment from other sources are 

retained, the effect of contaminated sediment from metal mine sources can be diluted. 

Hence, the footprint of the metal mine facility within the catchment is important. It should be 

noted that proximity to the mine facility is not a good predictor of the risk to ecology from 

contaminated sediment: with distance downstream from the mine facility metal 

concentrations and bioavailability tended to increase in some catchments (e.g. M, South 

Tyne), decrease in some (e.g. J, Afon Ystwyth), and appeared unrelated in others. 

8.4 The influence of environmental conditions at the site on 

bioavailability of metals from contaminated sediment 

From the results of Section 4.3.4d it is clear that pH has a significant influence on 

bioavailability of metals from the sediment, with reduced bioavailability at higher pH.  

11) pH of river water 
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From the results of the controlled laboratory experiment (Section 7), it is apparent that the 

organic matter content of sediment increases the bioavailability of metals. 

12) Organic content of the sediment 

The results of the controlled laboratory experiment (Section 7) did not indicate a strong 

influence of water hardness and no effect of resuspension, although these may be important 

in the field.  

The results of the controlled laboratory experiment (Section 7) demonstrated that 

contaminated riverbed sediment can act as a source of bioavailable metals in the absence of 

other sources, suggesting that remediation of sediment is likely to be required in addition to 

treatment of mine water discharge at sites where river bed sediments contain high 

concentrations of metals. 
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8.5 Summary of simple rules 

We have attempted to identify a series of criteria that will help identify whether a site is likely 

to be at risk from metals associated with sediments. These criteria are summarised as a 

checklist of yes/no questions (Table 8.1), which could be used to identify situations where 

the risk to ecology from sediment from non-coal mines is enhanced. As the risk will vary at 

different points in the catchment downstream of mine facilities, the checklist should be used 

to determine the total risk score for a river site. We suggest that sites with a total risk score 

≥10 are likely to be at high risk of impact from sediment contaminated by mine waste, sites 

with a total risk score of 5 – 9 are likely to be at moderate risk of impact from sediment 

contaminated by mine waste. Sites with scores below 5 are not likely to be at risk. 

Table 8.1 Checklist to identify sites at high risk of sediment contaminated by mine 

waste. 

  Marks Risk 
Score 

1 The concentration of metals is high in the mine sediment 
sources/waste facilities material. 

3  

2 Mine sediment sources/waste facilities comprise a high proportion of 
fine-grained material.  

1  

3 Mine sediment sources/waste facilities are immediately adjacent to 
flowing watercourses. 

1  

4 The area surrounding mine sediment sources/waste facilities has a 
high gradient. 

1  

5 Mine sediment sources/waste facilities show indications of erosion. 3  

6 Mine sediment sources/waste facilities lack surface vegetation. 3  

7 Pollution mitigation measures including settling ponds are lacking or 
have failed. 

3  

8 The mine sites have a large footprint within the catchment, i.e. the 
mine facility comprises a large proportion of the catchment (e.g. 
>2% catchment area). 

1  

9 There is a low supply of sediment from other, uncontaminated 
sources, e.g. the river has few (≤10) road crossings/road drains, 
urban development is low (<5%) in the catchment, the catchment is 
dominated (> 50%) by rough grazing. 

1  

10 The channel slope is low (< 15m km-1) 1  

11 pH of river water is low (pH < 6) 3  

12 The organic content of riverbed sediment is high. 1  

Total Risk Score 
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9 Future research 

Objective 7a  
To provide guidance on the further evidence required to establish where mining-
contaminated sediment gives rise to ecological impact or poses a significant risk. 

Here we have reviewed available evidence and demonstrated experimentally that sediment 

contaminated with metals from abandoned mines presents a risk to ecology in the absence 

of other sources of metals. We have also used existing field data to determine the 

relationship between the extent of contamination and ecological damage, and thus identified 

conditions where sediments contaminated with metals exceed ecologically safe limits. 

Furthermore, we have developed a new invertebrate based biotic index that can be used to 

identify sites where mine impacts, particularly from contaminated sediment, represents a risk 

to ecology. However, as with all research some questions remain unanswered. Here we 

highlight areas where knowledge gaps are hindering our ability to predict the best mitigation 

strategy for rivers impacted by mine waters.   

1) Further development and testing of the biotic index. 

Although we have used existing data to test the MetTol index, the constraints on the data 

available have limited this assessment. In particular, we were not able to find a suitable data 

set that contained information on sediment metal concentrations. For a full independent test, 

we suggest that further data should be collected to specifically test, and if necessary, refine 

the index. These data would comprise information on sediment and water metal 

concentrations, biomonitor body burdens, and invertebrate community composition from 

sites that were not used in this study. As well as providing a full independent test of the 

index, such a dataset could be used to establish the index values (as Ecological Quality 

Ratios) that correspond to WFD classification boundaries and/or environmentally safe limits 

of sediment contamination. This work would provide further verification that the index can be 

used to identify sites where sediment is contaminated with metals from past mining activities. 

2) Inclusion of biotic index into the River Invertebrate Classification Tool  

For full operational use, the MetTol index should be incorporated into the River Invertebrate 

Classification Tool (RICT), the WFD tool used to assess ecological quality using 

invertebrates. Classification boundaries and uncertainty estimates would need to be derived 

(possibly through 1 above) to enable assessments. Once the MetTol index has been 

incorporated into RICT, assessments of the extent of ecological damage caused by metal 

contamination could be made during routine assessments of biology. 

3) Field scale experiments 

We suggest that manipulative experiments undertaken in field scale artificial channels would 

provide a further robust test of the impact of metal contaminated sediment on ecology (and 

of the MetTol index). Such experimental facilities could be set up streamside in situations 

where the water was not impacted by metal mining (e.g. upstream of failing mine facilities or 

downstream of mine water treatment facilities) but be filled with contaminated sediment (of 

varying composition). Such an approach would provide an assessment of the extent to which 

sediment is a source of bioavailable metals under field conditions and establish the 

conditions required to reduce this risk.  
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4) Establish impact of contaminated sediment on recovery. 

In order to determine the extent to which contaminated sediment constrains recovery after 

treatment facilities for mine water discharges have been established, it would be useful to 

monitor any changes in bioavailability (i.e. change in biomonitor body burden), and 

concentrations of metals in sediment and water that occur over time downstream of 

treatment facilities post implementation. Thus, the extent to which the biota and sediment 

respond to treatment of mine water would be established. Similarly, it would be useful to 

determine the influence of contaminated sediment on recovery after the treatment of mine 

waste sediment sources (e.g. by capping of spoil heaps). 

5) Further controlled laboratory experiments. 

In order to establish the conditions that influence the bioavailability of metals from sediment 

and the mechanisms of uptake more precisely, it would be useful to undertake further 

controlled laboratory experiments. For example, to establish more precisely the influence of 

pH (and alkalinity) on metal bioavailability from the sediment, to establish differences in 

bioavailabilities among metals, and the use organic matter spiked with metals to determine 

more precisely the route of uptake. It would also be useful to undertake experiments to 

assess the relative importance of uptake of metals from water and sediments (e.g. using 

clean sediments and contaminated water), and to establish if sediment plays a role in the 

uptake of dissolved metals from the water. 

6) Bioaccumulation  

Here we have investigated the relationships between sediment contaminated with metals 

from abandoned metal mines and invertebrates. Impacts at higher trophic levels (i.e. fish) 

were only explored using existing data. As aquatic invertebrates comprise a large proportion 

of the diet of fish in rivers impacted by abandoned metal mines, the role that invertebrates 

play in the uptake of metals by fish would be of key interest. It is typically assumed that fish 

acquire metals from the environment in dissolved form via the gills. Uptake of metals via the 

gut from food particles (i.e. aquatic invertebrates), which in turn acquire metals from the 

sediment, presents an alternative uptake mechanism and one that is likely to be of 

increasing importance as mine waters are treated. As salmonids typically occur in the rivers 

draining geologies associated with metal mining, the concentration of metals in fish tissues 

has potential implications for human health should these fish enter the human food chain. 

Thus, the extent to which fish tissues are contaminated with metals, and the route of uptake 

of these metals are of particular interest.  A study of the food webs of metal mine impacted 

rivers, focussing on the bioaccumulation of metals from the sediment, would provide 

considerable understanding of the pathways of metal uptake into biota at impacted sites and, 

hence, the likely continued influence of metal contaminated sediment on fish after mine 

waters have been treated. 
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Appendix 1 EA/NRW water chemistry determinands 

Det_co
de 

Determinand     
0061 pH - AS pH UNITS  0209 POTASSIUM DISSOLVED - as K (mg/l

) 0076 TEMPERATURE WATER CELSIUS 0207 SODIUM - as Na (mg/l
) 0062 CONDUCTIVITY @20C µS/cm  0205 SODIUM DISSOLVED - as Na (mg/l
) 0077 CONDUCTIVITY @25C µS/cm  PCP   (μg/l) 

0163 HARDNESS CALCIUM (mg/l) 6056 PCB   (mg/l
) 0164 HARDNESS MAGNESIUM (mg/l) 9050 1,2,3-Trichlorobenzene   (µg/l) 

0158 HARDNESS TOTAL - as 
CACO3 

(mg/l) 9051 1,2,4-Trichlorobenzene   (µg/l) 

0162 ALKALINITY pH 4.5 - as 
CACO3 

(mg/l) 9052 1,3,5-Trichlorobenzene   (µg/l) 

0081 OXYGEN DISSOLVED % 
SATURATION (LAB) 

%  1,1,1-Trichloroethane   (μg/l) 

0082 OXYGEN DISSOLVED - as O  
(LAB) 

(mg/l)  1,2-Dichloroethylene   (μg/l) 

9901 OXYGEN DISSOLVED 
(INSTRUMENTAL) - AS % 
SATN 

%  2,4-Ethenoic   (μg/l) 

9924 OXYGEN DISSOLVED 
(INSTRUMENTAL - IN SITU) - 
AS O 

(mg/l)  2-Chlorophenol   (μg/l) 

0085 BOD ATU as O2 (mg/l) 6404 TETRACHLOROMETHANE 
{CARBON TETRACHLORIDE} 

(mg/l
) 0111 AMMONIA - as N (mg/l)  Aldrin   (μg/l) 

0119 AMMONIA UN-IONISED 
(CALCULATED) 

(mg/l)  Atrazine   (μg/l) 

0068 TURBIDITY FTU  Azinphos   (μg/l) 

0135 SOLIDS SUSPENDED 
@105C 

(mg/l)  Azinphos-ethyl   (μg/l) 

0143 SOLIDS NON-VOLATILE 
@500C 

(mg/l)  Chlorfenvinphos   (μg/l) 

0116 NITROGEN TOTAL 
OXIDISED - AS N 

(mg/l)  DDD pp   (μg/l) 

3683 NITROGEN TOTAL 
INORGANIC (CALCULATED) 

(mg/l)  DDE pp   (μg/l) 

0117 NITRATE - as N (mg/l)  DDE pp'   (μg/l) 

0118 NITRITE - as N (mg/l)  DDT op   (μg/l) 

9194 NITROGEN TOTAL (µg/l)  DDT op'   (μg/l) 

9195 PHOSPHORUS TOTAL (µg/l)  DDT pp   (μg/l) 

0348 PHOSPHORUS TOTAL - as P (mg/l)  DDT pp'   (μg/l) 

0180 ORTHOPHOSPHATE - as P (mg/l)  Diazinon   (μg/l) 

0191 ORTHO PHOSPHATE 
DISSOLVED 

(mg/l)  Dichlorvos   (μg/l) 

7692 PHOSPHORUS SOLUBLE 
REACTIVE GF/C FILTERED 

(mg/l)  Dieldrin   (μg/l) 

0192 PHOSPHATE (mg/l)  Dimethoate   (μg/l) 

0947 CHLOROPHYLL (A + B) (µg/l)  Endosulfan A   (μg/l) 

0172 CHLORIDE ION - as Cl (mg/l)  Endosulfan Total   (μg/l) 

0050 LEAD - as Pb (µg/l)  Endrin   (μg/l) 

0052 LEAD DISSOLVED - as Pb (µg/l)  Fenitrothion   (μg/l) 

0108 CADMIUM - as Cd (µg/l)  Fenthion   (μg/l) 

0106 CADMIUM DISSOLVED - as 
Cd 

(µg/l)  HCB   (μg/l) 

3164 CHROMIUM - as Cr (µg/l)  HCBD   (μg/l) 

3409 CHROMIUM DISSOLVED - as 
Cr 

(µg/l)  HCH  (μg/l) 

6455 ZINC - as Zn (µg/l)  Isodrin   (μg/l) 

3408 ZINC DISSOLVED - as Zn (µg/l)  Linuron   (μg/l) 

6462 NICKEL - as Ni (µg/l)  Malathion   (μg/l) 

3410 NICKEL DISSOLVED - as Ni (µg/l)  MBAS   (μg/l) 

6452 COPPER - as Cu (µg/l)  Mecoprop   (μg/l) 

6450 COPPER DISSOLVED - as 
Cu 

(µg/l)  Mevinphos   (μg/l) 

0105 MERCURY - as Hg (µg/l)  Parathion   (μg/l) 

0103 MERCURY DISSOLVED - as 
Hg 

(µg/l)  Parathion-methyl   (μg/l) 

0287 ALUMINIUM - as Al (mg/l)  Propetamphos   (μg/l) 

0285 ALUMINIUM DISSOLVED - as 
Al 

(mg/l)  Simazine   (μg/l) 

0352 VANADIUM - as V (mg/l)  TDE pp'   (μg/l) 

0350 VANADIUM DISSOLVED - as 
V 

(mg/l)  Triazophos   (μg/l) 

0356 ARSENIC - as As (mg/l)  Trifluralin   (μg/l) 

0354 ARSENIC DISSOLVED - as 
As 

(mg/l)    

0421 IRON - as Fe (mg/l)    

0419 IRON DISSOLVED - as Fe (mg/l)    

0403 MANGANESE - as Mn (mg/l)    

0237 MAGNESIUM - as Mg (mg/l)    

0235 MAGNESIUM DISSOLVED - 
as Mg 

(mg/l)    

0211 POTASSIUM - as K (mg/l)    



253 
 

Appendix 2 Details of quantile regression 

A2.1 Details of R script for threshold model 

yy <- NTAXA 

xx <- LCd 

n <- length(xx) # sample size 

resd1 <- rep(9999, n) 

nlrq.f <- function(para){ 

 pre.yy <- para[1] +(para[2] * (xx - para[3]))*(xx > para[3]) 

 for (i in 1:n){ 

 resd1[i]<- ifelse(yy[i] >= pre.yy[i], 

 tau1*(yy[i]-pre.yy[i]),(1-tau1)*(pre.yy[i]-yy[i])) 

 } 

 sum (resd1) 

 } 

   

library (ecolMod)  # required to use the function “pricefit” 

# More details on this function are available in Soetaert and Herman (2009). 

  

## Initial settings 

# The quantile to be estimated 

tau1 <- 0.95 

ini.para <- c(20, -1, 1)  

 

# The number of iterations 

# Value determined from the results of trials 

 

n.ite <- 50000 

 

# Assign minimum and maximum values for the estimation of parameters 

# Values assigned from the scatter plot and results of trials.  

# Particularly for the threshold concentration, the range is set to be sufficiently large. 

# Here is the example for Cd 

 

min.para <- c(10, -100, -0.5) 

max.para <- c(40, 100, 2.12) 

 

# (max. and min. values for Cd are given, be aware that the range of y and slope need to be 

appropriate too) 

# (if par estimates return on the boundary, expand the range) 

  

## Run the estimation 

 

p1 <- pricefit(par=ini.para, func=nlrq.f, numiter=n.ite, minpar=min.para, maxpar=max.para ) 

 

p1$par 
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# The sum of weighted absolute deviation 

 

p1$cost 

 

p1$cl 

 

## Compare the AIC values 

 

# Threshold model 

2*n*log(p1$cost/n)+2*3 

 

# Exponential model 

library(quantreg) 

2*n*log(rq(yy~exp(xx),tau=0.95)$rho/n)+2*2 

 

# Linear model 

2*n*log(rq(yy~xx,tau=0.95)$rho/n)+2*2 

 

# Null model 

2*n*log(rq(yy~1,tau=0.95)$rho/n)+2*1 
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A2.2 Test data used to Illustrate Confidence Intervals 

An artificial test dataset was constructed with one data point in each position 1-10, with the 

maximum declining by one with each step above 5. A curve was fitted by 95 %tile regression 

using the threshold model as detailed in section A2.1. The upper horizontal line 95% 

corresponds to the confidence intervals of the cut point established by bootstrap and the 

lower horizontal line to the 95% confidence intervals established by jackknife. The 

distribution of the bootstrap results are shown in the panel below.  
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A2.3 Results of Quantile Model fits  

i) Invertebrates  

NTAXA and ASPT 

Fitted models shown: modelled threshold values indicated by dot-dashed black lines. 

Canadian interim sediment quality guidelines (CCME, 1999) shown with dashed red lines, 

ANZECC and ARMCANZ (2000) low trigger values shown with dotted yellow lines. 
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Arsenic 
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Chromium 
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Antimony 
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Lead 
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EQR NTAXA and EQR ASPT 
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Nickel 
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Zinc 
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ii) Diatoms  

Taxon Richness, % Metal tolerant taxa, % Motile taxa, and TDI 
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Arsenic
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Cadmium
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Chromium
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Copper 

  

1
0

2
0

3
0

4
0

5
0

6
0

Cu (mg/Kg)

T
a
x
o
n
 R

ic
h
n
e
s
s

10 100 1000

0
5

1
0

1
5

2
0

Cu (mg/Kg)
%

 M
e
ta

l 
T

o
le

ra
n
t

10 100 1000

0
2
0

4
0

6
0

8
0

1
0
0

Cu (mg/Kg)

%
 M

o
ti
le

10 100 1000

0
2
0

4
0

6
0

8
0

Cu (mg/Kg)

T
D

I

10 100 1000



273 
 

Iron 
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Antimony
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Tin
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Zinc 
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iii) Macrophytes 

Plant Richness (all taxa), No. Aquatic Taxa, River Macrophyte Nutrient Index, EQR 
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Arsenic 
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Cadmium 
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Chromium 
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Copper 
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Iron 
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Nickel 
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Lead 
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Antimony 
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Tin 

 

 

  

0
5

1
0

1
5

2
0

2
5

3
0

Sn (mg/Kg)

T
a
x
o
n
 R

ic
h
n
e
s
s

10 100

0
5

1
0

1
5

Sn (mg/Kg)
A

q
u
a
ti
c
 T

a
x
o
n
 R

ic
h
n
e
s
s

10 100

5
6

7
8

9

Sn (mg/Kg)

R
M

N
I

10 100

0
.2

0
.4

0
.6

0
.8

1
.0

Sn (mg/Kg)

E
Q

R

10 100



289 
 

Zinc 
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iv) Fish 

Site EQR, Salmon EQR, Trout EQR, Number of Species 
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Arsenic 
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Cadmium 
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Chromium 
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Copper 
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Iron 
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Nickel 
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Lead 

[including the Stanhope Burn] 
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Lead  

[excluding the Stanhope Burn] 
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Antimony 
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Tin 

 

 

  

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Sn (mg/Kg)

S
it
e
 E

Q
R

1 10 100 1000

0
.2

0
.4

0
.6

0
.8

1
.0

Sn (mg/Kg)

S
a
lm

o
n
 E

Q
R

1 10 100 1000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Sn (mg/Kg)

T
ro

u
t 

E
Q

R

1 10 100 1000

2
4

6
8

1
0

1
2

Sn (mg/Kg)

N
u
m

b
e
r 

o
f 

S
p
e
c
ie

s

1 10 100 1000



301 
 

Zinc 
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Appendix 3 Key to abbreviated taxon names 

Abbreviated 
Taxon 
Name Full Name 

Polyfeli Polycelis felina 

Phagvitt Phagocata vitta 

Crenalpi Crenobia alpina 

Nematomo Nematomorpha 

Nematoda Nematoda 

Potaanti Potamopyrgus antipodarum 

Physidae Physidae 

Lymnaeid Lymnaeidae 

Ancyfluv Ancylus fluviatilis 

Pisidium Pisidium sp. 

Lumbricu Lumbriculidae 

Enchytra Enchytraeidae 

Naididae Naididae 

Tubifici Tubificidae 

Lumbrici Lumbricidae 

Erpoocto Erpobdella octoculata 

Hydracar Hydracarina 

Aselaqua Asellus aquaticus 

Cranpseu Crangonyx pseudogracilis 

Gammpule Gammarus pulex 

Baetrhod Baetis rhodani 

Baetvern Baetis vernus 

Baetscgp Baetis scambus group 

Centlute Centroptilum luteolum 

Alaimuti Alainites muticus 

Nigrnige Nigrobaetis niger 

Rhithrog Rhithrogena sp. 

Ecdyonur Ecdyonurus sp. 

Eleclate Electrogena lateralis 

Parasubm Paraleptophlebia submarginata 

Ephedani Ephemera danica 

Serrigni Serratella ignita 

Caenrivu Caenis rivulorum 

Bracrisi Brachyptera risi 

Protmeye Protonemura meyeri 

Protprae Protonemura praecox 

Amphsulc Amphinemura sulcicollis 

Nemupict Nemurella picteti 

Nemoavic Nemoura avicularis 

Nemocagp Nemoura cambrica group 

Leucfusc Leuctra fusca 

Leuchipp Leuctra hippopus 

Leuciner Leuctra inermis 

Leucnigr Leuctra nigra 

Perlmicr Perlodes microcephalus 

Isopgram Isoperla grammatica 

Perlidae Perlidae 

Chlorope Chloroperlidae 

Calopter Calopteryx sp. 

Cordbolt Cordulegaster boltonii 

Velicap Velia (Plesiovelia) caprai 

Oreosanm Oreodytes sanmarkii 

Oreosept Oreodytes septentrionalis 

Platmacu Platambus maculatus 

Agabus  Agabus sp. 

Orecvill Orectochilus villosus 

Hydrgrac Hydraena gracilis 

Elodes  Elodes sp. 

Elmiaena Elmis aenea 

Esolpara Esolus parallelepipedus 

Limnvolc Limnius volckmari 

Oulitube Oulimnius tuberculatus 

Rhyacoph Rhyacophila sp. 

Glossoso Glossosoma sp. 

Agapetus Agapetus sp. 

Hydropti Hydroptila sp. 

Ithytric Ithytrichia sp. 

Philmont Philopotamus montanus 

Wormaldi Wormaldia sp. 

Lype sp. Lype sp. 

Plectroc Plectrocnemia sp. 

Polycent Polycentropus sp. 

Hydrinst Hydropsyche instabilis 

Hydrpell Hydropsyche pellucidula 

Hydrsilt Hydropsyche siltalai 

Diplfeli Diplectrona felix 

Lepidost Lepidostomatidae 

Limnephi Limnephilidae 

Halesus  Halesus sp. 

Potagrp Potamophylax group 

Drusinae Drusinae 

Silopall Silo pallipes 

Seripers Sericostoma personatum 

Odonalbi Odontocerum albicorne 

Athripso Athripsodes sp. 

Mystacid Mystacides sp. 

Adicella Adicella reducta 

Oecetis  Oecetis sp. 

Tipumngp Tipula (Yamatotipula) montium group 

Tipumaxi Tipula (Acutipula) maxima 

Eloeophi Eloeophila sp. 

Pedicia  Pedicia sp. 

Dicranot Dicranota sp. 

Pericoma Pericoma group 

Dixapube Dixa puberula 

Ceratopo Ceratopogonidae 

Proshirt Prosimulium hirtipes 

Simucvgp 
Simulium (Nevermannia) cryophilum-vernum 
group 

Simuaugp Simulium (Eusimulium) aureum group 

Simurept Simulium (Simulium) reptans 

Simuargp Simulium (Simulium) argyreatum group 

Simuorgp Simulium (Simulium) ornatum group 

Tanypodi Tanypodinae [sub-family] 

Diamesin Diamesinae [sub-family] 

Orthocla Orthocladiinae [sub-family] 

Chironom Chironomini [tribe] 

Tanytars Tanytarsini [tribe] 

Atheibis Atherix ibis 

Ibismarg Ibisia marginata 

Clinocer Clinocerinae 

Hemerodr Hemerodrominae 

Limnripa Limnophora riparia 
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Appendix 4 Key to abbreviated variable names 

Abbreviated 
Variable 
Name Variable 

logDfS log Distance from source (km) 

logAlt log Altitude (m asl) 

logSlp log Slope (mkm
-1

) 

StrOrd Strahler stream order 

logWid log Stream width (m) 

logDep log Stream Depth (cm) 

VeloCat Velocity category 

Subsphi Substratum phi score 

Conduct Conductivity (μS cm
-1

) 

lgCdBaet log (x+1) Cd in Baetidae (μg g
-1

) 

lgCuBaet log (x+1) Cu in Baetidae (μg g
-1

) 

lgNiBaet log (x+1) Ni in Baetidae (μg g
-1

) 

lgPbBaet log (x+1) Pb in Baetidae (μg g
-1

) 

lgZnBaet log (x+1) Zn in Baetidae (μg g
-1

) 

lgCuHydro log (x+1) Cu in Hydropsychidae (μg g
-1

) 

lgNiHydro log (x+1) Ni in Hydropsychidae (μg g
-1

) 

lgPbHydro log (x+1) Pb in Hydropsychidae (μg g
-1

) 

lgZnHydro log (x+1) Zn in Hydropsychidae (μg g
-1

) 
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Appendix 5 Regression equations used to model missing Baetis tissue metal concentrations 

Catchment Site As µg g
-1

 Cd µg g
-1

 Cu µg g
-1 Ni µg g

-1
 Pb µg g

-1
 Zn µg g

-1
 

A ds 1.039 + 0.5861 
log10(As_Hydrop) 

0.9628 + 0.4086 
log10(Cd_Hydrop) 

0.9697 + 0.6385 
log10(Cu_Hydrop) 

0.7590 + 0.3095 
log10(Ni_Hydrop) 

0.0235 + 0.9355 
log10(Pb_Hydrop) 

0.8039 + 0.9675 
log10(Zn_Hydrop) 

I ds 1.039 + 0.5861 
log10(As_Hydrop) 

0.9628 + 0.4086 
log10(Cd_Hydrop) 

0.9697 + 0.6385 
log10(Cu_Hydrop) 

0.7590 + 0.3095 
log10(Ni_Hydrop) 

0.1016 + 0.7545 
log10(Pb_Hydrop) 

- 0.230 + 1.288 
log10(Zn_Hydrop) 

I Ind Cont 1.039 + 0.5861 
log10(As_Hydrop) 

0.9628 + 0.4086 
log10(Cd_Hydrop) 

0.9697 + 0.6385 
log10(Cu_Hydrop) 

0.7590 + 0.3095 
log10(Ni_Hydrop) 

0.1016 + 0.7545 
log10(Pb_Hydrop) 

- 0.230 + 1.288 
log10(Zn_Hydrop) 

I us 1.039 + 0.5861 
log10(As_Hydrop) 

0.9628 + 0.4086 
log10(Cd_Hydrop) 

0.9697 + 0.6385 
log10(Cu_Hydrop) 

0.7590 + 0.3095 
log10(Ni_Hydrop) 

0.1016 + 0.7545 
log10(Pb_Hydrop) 

- 0.230 + 1.288 
log10(Zn_Hydrop) 

J ds depo 1.039 + 0.5861 
log10(As_Hydrop) 

0.9628 + 0.4086 
log10(Cd_Hydrop) 

0.9697 + 0.6385 
log10(Cu_Hydrop) 

0.7590 + 0.3095 
log10(Ni_Hydrop) 

0.1016 + 0.7545 
log10(Pb_Hydrop) 

- 0.230 + 1.288 
log10(Zn_Hydrop) 

J ds eros 1.039 + 0.5861 
log10(As_Hydrop) 

0.9628 + 0.4086 
log10(Cd_Hydrop) 

0.9697 + 0.6385 
log10(Cu_Hydrop) 

0.7590 + 0.3095 
log10(Ni_Hydrop) 

0.1016 + 0.7545 
log10(Pb_Hydrop) 

- 0.230 + 1.288 
log10(Zn_Hydrop) 

J Ind Cont 1.039 + 0.5861 
log10(As_Hydrop) 

0.9628 + 0.4086 
log10(Cd_Hydrop) 

0.9697 + 0.6385 
log10(Cu_Hydrop) 

0.7590 + 0.3095 
log10(Ni_Hydrop) 

0.1016 + 0.7545 
log10(Pb_Hydrop) 

- 0.230 + 1.288 
log10(Zn_Hydrop) 

K ds - 0.1578 + 0.2980 
log10(As_Leuc) 

0.0212 + 0.6450 
log10(Cd_Leuc) 

0.9565 + 0.3153 
log10(Cu_Leuc) 

0.6072 + 0.3218 
log10(Ni_Leuc) 

0.2680 + 0.5564 
log10(Pb_Leuc) 

- 2.197 + 3.594 
log10(Zn_Leuc) - 0.6409 
log10(Zn_Leuc)

2
 

K ds eros - 0.1578 + 0.2980 
log10(As_Leuc) 

0.0212 + 0.6450 
log10(Cd_Leuc) 

0.9565 + 0.3153 
log10(Cu_Leuc) 

0.6072 + 0.3218 
log10(Ni_Leuc) 

0.2680 + 0.5564 
log10(Pb_Leuc) 

- 2.197 + 3.594 
log10(Zn_Leuc) - 0.6409 
log10(Zn_Leuc)

2
 

K Ind Cont - 0.1578 + 0.2980 
log10(As_Leuc) 

0.0212 + 0.6450 
log10(Cd_Leuc) 

0.9565 + 0.3153 
log10(Cu_Leuc) 

0.6072 + 0.3218 
log10(Ni_Leuc) 

0.2680 + 0.5564 
log10(Pb_Leuc) 

- 2.197 + 3.594 
log10(Zn_Leuc) - 0.6409 
log10(Zn_Leuc)

2
 

K us - 0.1578 + 0.2980 
log10(As_Leuc) 

0.0212 + 0.6450 
log10(Cd_Leuc) 

0.9565 + 0.3153 
log10(Cu_Leuc) 

0.6072 + 0.3218 
log10(Ni_Leuc) 

0.2680 + 0.5564 
log10(Pb_Leuc) 

- 2.197 + 3.594 
log10(Zn_Leuc) - 0.6409 
log10(Zn_Leuc)

2
 

Q us - 0.1578 + 0.2980 
log10(As_Leuc) 

0.0212 + 0.6450 
log10(Cd_Leuc) 

1.885 - 0.5275 
log10(Cu_Rhya) 

0.6072 + 0.3218 
log10(Ni_Leuc) 

- 0.0413 + 1.066 
log10(Pb_Rhya) 

- 1.291 + 1.680 
log10(Zn_Rhya) 

T us - 0.1578 + 0.2980 
log10(As_Leuc) 

0.0212 + 0.6450 
log10(Cd_Leuc) 

1.885 - 0.5275 
log10(Cu_Rhya) 

0.6072 + 0.3218 
log10(Ni_Leuc) 

- 0.0413 + 1.066 
log10(Pb_Rhya) 

- 1.291 + 1.680 
log10(Zn_Rhya) 
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Appendix 6 Benthic macroinvertebrate taxa recorded across the 99 stream sites.

TAXON_NAME 
No. of 

occurrences 

Microturbellaria 1 

Polycelis felina 39 

Polycelis nigra group 3 

Phagocata vitta 19 

Crenobia alpina 27 

Dendrocoelum lacteum 3 

Nemertea 3 

Nematomorpha 5 

Nematoda 10 

Trichocercidae 1 

Potamopyrgus antipodarum 22 

Physidae 5 

Lymnaeidae 9 

Planorbidae 2 

Ancylus fluviatilis 23 

Pisidium sp. 41 

Lumbriculidae 60 

Haplotaxidae 1 

Enchytraeidae 36 

Naididae 46 

Tubificidae 44 

Lumbricidae 53 

Piscicola geometra 2 

Glossiphonia complanata 3 

Helobdella stagnalis 2 

Erpobdella octoculata 6 

Trocheta sp. 1 

Hydracarina 52 

Oribatei 4 

Cladocera 1 

Ostracoda 3 

Asellus aquaticus 10 

Proasellus meridianus 2 

Orchestia cavimana 2 

Crangonyx pseudogracilis 6 

Gammarus pulex 40 

Collembola 1 

Siphlonurus sp. 2 

Baetis rhodani 92 

Baetis vernus 9 

Baetis scambus group 6 

Centroptilum luteolum 11 

Alainites muticus 55 

Nigrobaetis niger 6 

Rhithrogena sp. 79 

Heptagenia sulphurea 3 

Ecdyonurus sp. 57 

Electrogena lateralis 48 

Leptophlebia marginata 5 

Paraleptophlebia sp. 24 

Habrophlebia fusca 1 

Ephemera danica 10 

Serratella ignita 14 

Caenis rivulorum 14 

Taeniopteryx nebulosa 2 

Brachyptera risi 45 

Protonemura meyeri 67 

Protonemura montana 1 

Protonemura praecox 7 

Amphinemura standfussi 2 

Amphinemura sulcicollis 66 

Nemurella picteti 6 

Nemoura avicularis 17 

Nemoura cinerea 1 

Nemoura cambrica group 16 

Leuctra fusca 17 

Leuctra geniculata 4 

Leuctra hippopus 44 

Leuctra inermis 76 

Leuctra nigra 22 

Perlodes microcephalus 44 

Diura bicaudata 3 

Isoperla grammatica 80 

Dinocras cephalotes 16 

Perla bipunctata 21 

Chloroperla tripunctata 36 

Siphonoperla torrentium 75 

Pyrrhosoma nymphula 1 

Calopteryx sp. 8 

Cordulegaster boltonii 14 

Hydrometra stagnorum 1 

Velia (Plesiovelia) caprai 7 

Aquarius najas 3 

Micronecta sp. 1 

Agriotypus armatus 1 

Brychius elevatus 1 

Oreodytes davisii 6 

Oreodytes sanmarkii 46 

Oreodytes septentrionalis 9 

Platambus maculatus 11 

Agabus sp. 5 

Gyrinus natator group 1 

Gyrinus urinator 1 

Orectochilus villosus 31 

Helophorus (Rhopalohelophorus) 
brevipalpis 

2 

Anacaena globulus 3 

Cercyon sp. 1 

Ochthebius exsculptus 1 

Hydraena sp. 63 

Limnebius truncatellus 2 

Elodes sp. 19 

Cyphon sp. 1 

Hydrocyphon sp. 7 

Scirtes sp. 1 

Dryops sp. 3 

Elmis aenea 84 

Esolus parallelepipedus 49 

Limnius volckmari 78 

Oulimnius tuberculatus 33 
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Sialis fuliginosa 3 

Sialis lutaria 1 

Osmylus fulvicephalus 1 

Rhyacophila dorsalis 91 

Rhyacophila munda 3 

Glossosoma sp. 16 

Agapetus sp. 23 

Hydroptila sp. 9 

Oxyethira sp. 1 

Ithytrichia sp. 15 

Philopotamus montanus 17 

Wormaldia sp. 10 

Lype sp. 6 

Psychomyia pusilla 2 

Tinodes waeneri 1 

Plectrocnemia sp. 30 

Polycentropus sp. 37 

Hydropsyche angustipennis 1 

Hydropsyche fulvipes 1 

Hydropsyche instabilis 34 

Hydropsyche pellucidula 13 

Hydropsyche siltalai 78 

Diplectrona felix 11 

Lepidostomatidae 46 

Limnephilidae 69 

Allogamus auricollis 4 

Halesus sp. 45 

Melampophylax mucoreus 1 

Micropterna lateralis 1 

Micropterna sequax 1 

Potamophylax sp. 50 

Chaetopteryx villosa 7 

Limnephilus lunatus 1 

Drusinae 31 

Silo nigricornis 3 

Silo pallipes 51 

Beraea maurus 2 

Sericostoma personatum 61 

Odontocerum albicorne 44 

Athripsodes sp. 6 

Mystacides sp. 10 

Adicella reducta 8 

Oecetis sp. 9 

Tipula (Yamatotipula) montium group 11 

Tipula (Acutipula) maxima group 9 

Antocha (Antocha) vitripennis 1 

Limnophila sp. 1 

Eloeophila sp. 26 

Pilaria sp. 1 

Hexatoma sp. 2 

Lipsothrix sp. 1 

Molophilus sp. 2 

Pedicia sp. 11 

Dicranota sp. 76 

Tricyphona sp. 2 

Psychoda group 2 

Pericoma group 26 

Dixa dilatata 1 

Dixa nebulosa 1 

Dixa puberula 8 

Dixa maculata complex 1 

Ceratopogonidae 23 

Prosimulium sp. 18 

Simulium (Nevermannia) costatum 1 

Simulium (Nevermannia) cryophilum-
vernum group 

64 

Simulium (Nevermannia) angustitarse 
group 

4 

Simulium (Eusimulium) aureum group 11 

Simulium (Wilhelmia) sp. 1 

Simulium (Simulium) reptans 6 

Simulium (Simulium) argyreatum group 67 

Simulium (Simulium) ornatum group 36 

Tanypodinae [sub-family] 48 

Diamesinae [sub-family] 30 

Prodiamesinae [sub-family] 3 

Orthocladiinae [sub-family] 97 

Chironomini [tribe] 43 

Tanytarsini [tribe] 57 

Rhagionidae 1 

Chrysops sp. 1 

Tabanus sp. 1 

Atherix ibis 5 

Ibisia marginata 16 

Clinocerinae 58 

Hemerodrominae 48 

Ephydridae 2 

Scathophagidae 1 

Limnophora riparia 8 
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Appendix 7 Source apportionment statistical results 

Table A7.1:  The results of the Lilliefors test for Normality using the source and sediment 

tracer data measured for the Afon Ystwyth study catchment. 

Property P-value Property P-value Property P-value 

Al 0.500 Sc 0.500 Nd 0.001* 

Ba 0.028* Co 0.003* Sm 0.001* 

Cr 0.154 Ga 0.001* Eu 0.001* 

Cu 0.001* Ge 0.001* Gd 0.001* 

Fe 0.500 As 0.001* Tb 0.006* 

K 0.490 Rb 0.001* Dy 0.001* 

Li 0.123 Y 0.002* Ho 0.001* 

Mg 0.500 Zr 0.001* Er 0.001* 

Mn 0.001* Mo 0.001* Tm 0.001* 

Na 0.284 Cd 0.001* Yb 0.001* 

Ni 0.292 Sn 0.001* Lu 0.001* 

Pb 0.001* Sb 0.001* Hf 0.001* 

Sr 0.001* Cs 0.001* Tl 0.001* 

Ti 0.001* La 0.001* Bi 0.320 

V 0.041* Ce 0.001* U 0.197 

Zn 0.001* Pr 0.001*     

* statistically significant values at p ≤ 0.05 

 

Table A7.2:  The results of the Lilliefors test for Normality using the source and sediment 

tracer data measured for the Arkle Beck study catchment. 

Property P-value Property P-value Property P-value 

Al 0.037* Sc 0.435 Nd 0.001* 

Ba 0.297 Co 0.001* Sm 0.001* 

Cr 0.001* Ga 0.107 Eu 0.500 

Cu 0.001* Ge 0.019* Gd 0.001* 

Fe 0.121 As 0.001* Tb 0.001* 

K 0.001* Rb 0.001* Dy 0.022* 

Li 0.001* Y 0.053 Ho 0.098 

Mg 0.001* Zr 0.001* Er 0.144 

Mn 0.001* Mo 0.001* Tm 0.002* 

Na 0.001* Cd 0.001* Yb 0.225 

Ni 0.032* Sn 0.001* Lu 0.001* 

Pb 0.001* Sb 0.001* Hf 0.001* 

Sr 0.001* Cs 0.001* Tl 0.001* 

Ti 0.001* La 0.001* Bi 0.006* 

V 0.001* Ce 0.001* U 0.002* 

Zn 0.001* Pr 0.001*     

* statistically significant values at p ≤ 0.05 
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Table A7.3:  The results of the Lilliefors test for Normality using the source and sediment 

tracer data measured for the Bedburn Beck study catchment. 

Property P-value Property P-value Property P-value 

Al 0.084 Sc 0.500 Nd 0.453 

Ba 0.007* Co 0.109 Sm 0.285 

Cr 0.026* Ga 0.064 Eu 0.001* 

Cu 0.014* Ge 0.346 Gd 0.001* 

Fe 0.500 As 0.002* Tb 0.009* 

K 0.001* Rb 0.001* Dy 0.001* 

Li 0.004* Y 0.001* Ho 0.001* 

Mg 0.001* Zr 0.001* Er 0.001* 

Mn 0.052 Mo 0.001* Tm 0.001* 

Na 0.002* Cd 0.001* Yb 0.078 

Ni 0.058 Sn 0.101 Lu 0.001* 

Pb 0.001* Sb 0.001* Hf 0.001* 

Sr 0.001* Cs 0.002* Tl 0.113 

Ti 0.069 La 0.500 Bi 0.001* 

V 0.001* Ce 0.500 U 0.059 

Zn 0.001* Pr 0.500     

* statistically significant values at p ≤ 0.05 

 

Table A7.4:  The results of the Lilliefors test for Normality using the source and sediment 

tracer data measured for the Bolingey Stream study catchment. 

Property P-value Property P-value Property P-value 

Al 0.081 Zn 0.001* Pr 0.500 

Ba 0.067 Sc 0.314 Nd 0.162 

Cr 0.411 Co 0.001* Sm 0.014* 

Cu 0.001* Ga 0.376 Eu 0.001* 

Fe 0.001* Ge 0.500 Gd 0.202 

K 0.259 As 0.001* Tb 0.500 

Li 0.144 Rb 0.487 Dy 0.385 

Mg 0.500 Y 0.001* Ho 0.001* 

Mn 0.006* Zr 0.001* Er 0.001* 

Na 0.017* Cd 0.001* Tm 0.001* 

Ni 0.500 Sn 0.001* Yb 0.001* 

Pb 0.001* Sb 0.001* Hf 0.001* 

Sr 0.005* Cs 0.015* Tl 0.003* 

Ti 0.001* La 0.218 Bi 0.001* 

V 0.001* Ce 0.277 U 0.001* 

* statistically significant values at p ≤ 0.05 
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Table A7.5:  The results of the Lilliefors test for Normality using the source and sediment 

tracer data measured for the Egglestone Beck study catchment. 

Property P-value Property P-value Property P-value 

Al 0.169 Sc 0.266 Nd 0.500 

Ba 0.002* Co 0.192 Sm 0.282 

Cr 0.094 Ga 0.300 Eu 0.007* 

Cu 0.001* Ge 0.301 Gd 0.498 

Fe 0.500 As 0.049* Tb 0.091 

K 0.046* Rb 0.030* Dy 0.018* 

Li 0.340 Y 0.003* Ho 0.030* 

Mg 0.216 Zr 0.001* Er 0.164 

Mn 0.105 Mo 0.001* Tm 0.001* 

Na 0.115 Cd 0.045* Yb 0.364 

Ni 0.500 Sn 0.001* Lu 0.001* 

Pb 0.053 Sb 0.001* Hf 0.001* 

Sr 0.001* Cs 0.338 Tl 0.001* 

Ti 0.001* La 0.083 Bi 0.001* 

V 0.424 Ce 0.111 U 0.001* 

Zn 0.023* Pr 0.066     

* statistically significant values at p ≤ 0.05 

 

Table A7.6:  The results of the Lilliefors test for Normality using the source and sediment 

tracer data measured for the Hayle study catchment. 

Property P-value Property P-value Property P-value 

Al 0.500 Sc 0.001* Nd 0.001* 

Ba 0.500 Co 0.001* Sm 0.001* 

Cr 0.002* Ga 0.001* Eu 0.001* 

Cu 0.001* Ge 0.003* Gd 0.001* 

Fe 0.001* As 0.001* Tb 0.001* 

K 0.001* Rb 0.001* Dy 0.001* 

Li 0.047* Y 0.001* Ho 0.001* 

Mg 0.500 Zr 0.001* Er 0.001* 

Mn 0.002* Mo 0.001* Tm 0.004* 

Na 0.366 Cd 0.001* Yb 0.001* 

Ni 0.009* Sn 0.002* Lu 0.004* 

Pb 0.001* Sb 0.001* Hf 0.001* 

Sr 0.148 Cs 0.047* Tl 0.003* 

Ti 0.001* La 0.001* Bi 0.001* 

V 0.009* Ce 0.001* U 0.001* 

Zn 0.001* Pr 0.001*     

* statistically significant values at p ≤ 0.05 
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Table A7.7:  The results of the Lilliefors test for Normality using the source and sediment 

tracer data measured for the Hudeshope Beck study catchment. 

Property P-value Property P-value Property P-value 

Al 0.468 Zn 0.001* Ce 0.104 

Ba 0.346 Sc 0.500 Pr 0.500 

Cr 0.239 Co 0.008* Nd 0.309 

Cu 0.001* Ga 0.120 Sm 0.500 

Fe 0.186 Ge 0.079 Eu 0.001* 

K 0.011* As 0.001* Gd 0.003* 

Li 0.374 Rb 0.500 Tb 0.001* 

Mg 0.001* Y 0.001* Dy 0.001* 

Mn 0.113 Zr 0.001* Ho 0.001* 

Na 0.001* Mo 0.001* Er 0.008* 

Ni 0.169 Cd 0.001* Tm 0.001* 

Pb 0.001* Sn 0.004* Yb 0.008* 

Sr 0.001* Sb 0.001* Lu 0.001* 

Ti 0.001* Cs 0.461 Tl 0.445 

V 0.001* La 0.500 U 0.050 

* statistically significant values at p ≤ 0.05 

 

Table A7.8:  The results of the Lilliefors test for Normality using the source and sediment 

tracer data measured for the Mardle study catchment. 

Property P-value Property P-value Property P-value 

Al 0.008* Sc 0.002* Nd 0.500 

Ba 0.001* Co 0.001* Sm 0.399 

Cr 0.040* Ga 0.041* Eu 0.500 

Cu 0.001* Ge 0.243 Gd 0.500 

Fe 0.001* As 0.001* Tb 0.064 

K 0.001* Rb 0.002* Dy 0.099 

Li 0.364 Y 0.084 Ho 0.046* 

Mg 0.335 Zr 0.001* Er 0.385 

Mn 0.001* Mo 0.001* Tm 0.473 

Na 0.001* Cd 0.001* Yb 0.176 

Ni 0.024* Sn 0.001* Lu 0.215 

Pb 0.001* Sb 0.001* Hf 0.001* 

Sr 0.001* Cs 0.500 Tl 0.012* 

Ti 0.001* La 0.416 Bi 0.001* 

V 0.037* Ce 0.204 U 0.026* 

Zn 0.001* Pr 0.500     

* statistically significant values at p ≤ 0.05 
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Table A7.9:  The results of the Lilliefors test for Normality using the source and sediment 

tracer data measured for the Nant Magwr study catchment. 

Property P-value Property P-value Property P-value 

Al 0.279 Sc 0.032* Nd 0.001* 

Ba 0.101 Co 0.500 Sm 0.001* 

Cr 0.001* Ga 0.001* Eu 0.001* 

Cu 0.001* Ge 0.001* Gd 0.001* 

Fe 0.054 As 0.001* Tb 0.001* 

K 0.500 Rb 0.190 Dy 0.001* 

Li 0.026* Y 0.009* Ho 0.002* 

Mg 0.500 Zr 0.001* Er 0.004* 

Mn 0.001* Mo 0.001* Tm 0.008* 

Na 0.026* Cd 0.001* Yb 0.147 

Ni 0.003* Sn 0.001* Lu 0.058 

Pb 0.001* Sb 0.001* Hf 0.001* 

Sr 0.001* Cs 0.007* Tl 0.001* 

Ti 0.001* La 0.001* Bi 0.344 

V 0.460 Ce 0.001* U 0.005* 

Zn 0.001* Pr 0.001*     

* statistically significant values at p ≤ 0.05 

 

Table A7.10:  The results of the Lilliefors test for Normality using the source and sediment 

tracer data measured for the Porthleven Stream study catchment. 

Property P-value Property P-value Property P-value 

Al 0.054 Sc 0.097 Sm 0.009* 

Ba 0.500 Co 0.001* Eu 0.001* 

Cr 0.168 Ga 0.004* Gd 0.005* 

Cu 0.001* Ge 0.001* Tb 0.442 

Fe 0.001* As 0.001* Dy 0.293 

K 0.004* Rb 0.500 Ho 0.037* 

Li 0.138 Y 0.116 Er 0.088 

Mg 0.001* Zr 0.001* Tm 0.361 

Mn 0.001* Cd 0.001* Yb 0.177 

Na 0.066 Sn 0.001* Lu 0.086 

Ni 0.008* Sb 0.001* Hf 0.001* 

Pb 0.001* Cs 0.500 Tl 0.001* 

Sr 0.003* La 0.001* Bi 0.001* 

Ti 0.314 Ce 0.014* U 0.027* 

V 0.035* Pr 0.001* 
  Zn 0.007* Nd 0.004*     

* statistically significant values at p ≤ 0.05 
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Table A7.11:  The results of the Lilliefors test for Normality using the source and sediment 

tracer data measured for the Rea Brook study catchment. 

Property P-value Property P-value Property P-value 

Al 0.341 Sc 0.001* Nd 0.001* 

Ba 0.001* Co 0.001* Sm 0.001* 

Cr 0.131 Ga 0.287 Eu 0.001* 

Cu 0.001* Ge 0.006* Gd 0.001* 

Fe 0.165 As 0.001* Tb 0.001* 

K 0.423 Rb 0.247 Dy 0.001* 

Li 0.069 Y 0.001* Ho 0.001* 

Mg 0.001* Zr 0.001* Er 0.001* 

Mn 0.001* Mo 0.001* Tm 0.001* 

Na 0.001* Cd 0.001* Yb 0.021* 

Ni 0.001* Sn 0.001* Lu 0.006* 

Pb 0.001* Sb 0.001* Hf 0.001* 

Sr 0.001* Cs 0.001* Tl 0.001* 

Ti 0.001* La 0.001* Bi 0.001* 

V 0.001* Ce 0.001* U 0.010* 

Zn 0.001* Pr 0.001*     

* statistically significant values at p ≤ 0.05 

 

Table A7.12:  The results of the Lilliefors test for Normality using the source and sediment 

tracer data measured for the Red Tarn Beck study catchment. 

Property P-value Property P-value Property P-value 

Al 0.162 Sc 0.039* Nd 0.029* 

Ba 0.002* Co 0.001* Sm 0.331 

Cr 0.001* Ga 0.126 Eu 0.001* 

Cu 0.001* Ge 0.163 Gd 0.079 

Fe 0.160 As 0.001* Tb 0.001* 

K 0.030* Rb 0.001* Dy 0.500 

Li 0.181 Y 0.304 Ho 0.061 

Mg 0.085 Zr 0.020* Er 0.209 

Mn 0.001* Mo 0.001* Tm 0.004* 

Na 0.005* Cd 0.001* Yb 0.175 

Ni 0.180 Sn 0.041* Lu 0.001* 

Pb 0.001* Sb 0.001* Hf 0.001* 

Sr 0.001* Cs 0.001* Bi 0.016* 

Ti 0.001* La 0.021* U 0.001* 

V 0.001* Ce 0.040* 
  Zn 0.001* Pr 0.086     

* statistically significant values at p ≤ 0.05 
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Table A7.13:  The results of the Lilliefors test for Normality using the source and sediment 

tracer data measured for the River Burn (Tavy) study catchment. 

Property P-value Property P-value Property P-value 

Al 0.340 Zn 0.001* Pr 0.030* 

Ba 0.001* Sc 0.017* Nd 0.006* 

Cr 0.079 Co 0.001* Sm 0.003* 

Cu 0.001* Ga 0.500 Eu 0.001* 

Fe 0.001* Ge 0.001* Gd 0.001* 

K 0.001* As 0.001* Tb 0.208 

Li 0.124 Rb 0.041* Dy 0.001* 

Mg 0.001* Y 0.001* Er 0.001* 

Mn 0.001* Mo 0.001* Tm 0.001* 

Na 0.001* Cd 0.001* Yb 0.001* 

Ni 0.001* Sn 0.001* Lu 0.001* 

Pb 0.001* Sb 0.500 Hf 0.001* 

Sr 0.001* Cs 0.081 Tl 0.001* 

Ti 0.006* La 0.106 Bi 0.001* 

V 0.001* Ce 0.007* U 0.121 

* statistically significant values at p ≤ 0.05 

 

Table A7.14:  The results of the Lilliefors test for Normality using the source and sediment 

tracer data measured for the River East Allen study catchment. 

Property P-value Property P-value Property P-value 

Al 0.001* Sc 0.500 Nd 0.056 

Ba 0.039* Co 0.001* Sm 0.457 

Cr 0.385 Ga 0.003* Eu 0.001* 

Cu 0.001* Ge 0.004* Gd 0.500 

Fe 0.236 As 0.197 Tb 0.262 

K 0.005* Rb 0.500 Dy 0.148 

Li 0.026* Y 0.021* Ho 0.262 

Mg 0.001* Zr 0.001* Er 0.336 

Mn 0.001* Mo 0.001* Tm 0.364 

Na 0.001* Cd 0.001* Yb 0.228 

Ni 0.158 Sn 0.001* Lu 0.244 

Pb 0.001* Sb 0.001* Hf 0.001* 

Sr 0.001* Cs 0.052 Tl 0.254 

Ti 0.001* La 0.094 Bi 0.002* 

V 0.003* Ce 0.068 U 0.319 

Zn 0.001* Pr 0.157     

* statistically significant values at p ≤ 0.05 
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Table A7.15:  The results of the Lilliefors test for Normality using the source and sediment 

tracer data measured for the River Greta study catchment. 

Property P-value Property P-value Property P-value 

Al 0.047* Sc 0.500 Nd 0.014* 

Ba 0.002* Co 0.001* Sm 0.117 

Cr 0.001* Ga 0.270 Eu 0.500 

Cu 0.090 Ge 0.099 Gd 0.299 

Fe 0.047* As 0.001* Tb 0.001* 

K 0.179 Rb 0.007* Dy 0.500 

Li 0.408 Y 0.119 Ho 0.001* 

Mg 0.001* Zr 0.001* Er 0.001* 

Mn 0.001* Mo 0.001* Tm 0.001* 

Na 0.001* Cd 0.028* Yb 0.008* 

Ni 0.236 Sn 0.001* Lu 0.001* 

Pb 0.001* Sb 0.001* Hf 0.001* 

Sr 0.001* Cs 0.001* Tl 0.001* 

Ti 0.001* La 0.014* Bi 0.001* 

V 0.001* Ce 0.022* U 0.001* 

Zn 0.007* Pr 0.015*     

* statistically significant values at p ≤ 0.05 

 

Table A7.16:  The results of the Lilliefors test for Normality using the source and sediment 

tracer data measured for the River South Tyne study catchment. 

Property P-value Property P-value Property P-value 

Al 0.157 Sc 0.500 Nd 0.004* 

Ba 0.001* Co 0.001* Sm 0.193 

Cr 0.001* Ga 0.005* Eu 0.001* 

Cu 0.001* Ge 0.068 Gd 0.016* 

Fe 0.175 As 0.001* Tb 0.055 

K 0.012* Rb 0.002* Dy 0.266 

Li 0.132 Y 0.001* Ho 0.003* 

Mg 0.001* Zr 0.001* Er 0.094 

Mn 0.001* Mo 0.001* Tm 0.002* 

Na 0.001* Cd 0.001* Yb 0.235 

Ni 0.001* Sn 0.001* Lu 0.005* 

Pb 0.001* Sb 0.001* Hf 0.001* 

Sr 0.001* Cs 0.001* Tl 0.001* 

Ti 0.001* La 0.001* Bi 0.500 

V 0.014* Ce 0.001* U 0.004* 

Zn 0.001* Pr 0.001*     

* statistically significant values at p ≤ 0.05 
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Table A7.17:  The results of the Lilliefors test for Normality using the source and sediment 

tracer data measured for the St Lawrence Stream study catchment. 

Property P-value Property P-value Property P-value 

Al 0.068 Sc 0.272 Nd 0.001* 

Ba 0.001* Co 0.001* Sm 0.001* 

Cr 0.073 Ga 0.194 Eu 0.001* 

Cu 0.001* Ge 0.001* Gd 0.001* 

Fe 0.001* As 0.001* Tb 0.001* 

K 0.095 Rb 0.152 Dy 0.001* 

Li 0.137 Y 0.001* Ho 0.001* 

Mg 0.001* Zr 0.001* Er 0.001* 

Mn 0.001* Mo 0.001* Tm 0.001* 

Na 0.001* Cd 0.001* Yb 0.001* 

Ni 0.001* Sn 0.001* Lu 0.001* 

Pb 0.264 Sb 0.001* Hf 0.001* 

Sr 0.001* Cs 0.106 Tl 0.001* 

Ti 0.016* La 0.001* Bi 0.001* 

V 0.054 Ce 0.500 U 0.001* 

Zn 0.001* Pr 0.001*     

* statistically significant values at p ≤ 0.05 

 

Table A7.18:  The results of the Lilliefors test for Normality using the source and sediment 

tracer data measured for the Wye study catchment. 

Property P-value Property P-value Property P-value 

Al 0.021* Sc 0.001* Nd 0.001* 

Ba 0.001* Co 0.001* Sm 0.036* 

Cr 0.047* Ga 0.001* Eu 0.025* 

Cu 0.286 Ge 0.001* Gd 0.137 

Fe 0.015* As 0.001* Tb 0.026* 

K 0.184 Rb 0.308 Dy 0.014* 

Li 0.399 Y 0.001* Ho 0.027* 

Mg 0.381 Zr 0.012* Er 0.001* 

Mn 0.001* Mo 0.225 Tm 0.001* 

Na 0.001* Cd 0.001* Yb 0.001* 

Ni 0.001* Sn 0.009* Lu 0.001* 

Pb 0.001* Sb 0.001* Hf 0.032* 

Sr 0.001* Cs 0.046* Tl 0.001* 

Ti 0.500 La 0.001* Bi 0.051 

V 0.001* Ce 0.001* U 0.050 

Zn 0.001* Pr 0.001*     

* statistically significant values at p ≤ 0.05 
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Table A7.19: KW-H results for the Afon Ystwyth study catchment. 

Property H-value p-value Property H-value p-value 

 As 34.1 0.000  Sc 16.8 0.001 

 Cs 27.7 0.000  Sm 27.4 0.000 

 Cu 21.2 0.000  Sn 28.8 0.000 

 Ga 30.3 0.000  Tl 33.2 0.000 

 Hf 25.9 0.000  U 23.5 0.000 

 Pb 26.3 0.000  V 28.6 0.000 

 Sb 28.3 0.000  Zr 29.4 0.000 

 

 

Table A7.20: KW-H results for the Arkle Beck study catchment. 

Property H-value p-value Property H-value p-value 

 As 8.5 0.015  Rb 13.1 0.001 

 Bi 23.3 0.000  Sb 12.8 0.002 

 Cs 12.8 0.002  Sc 12.1 0.002 

 Cu 13.3 0.001  Sn 23.0 0.000 

 Er 18.2 0.000  Tm 20.9 0.000 

 Eu 13.7 0.001  U 13.3 0.001 

 Ho 20.9 0.000  V 22.4 0.000 

 K 19.0 0.000  Yb 20.9 0.000 

 Li 5.6 0.060  Zn 11.5 0.003 

 Mo 18.6 0.000  Zr 20.9 0.000 

 Ni 16.6 0.000       
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Table A7.21: KW-H results for the Bedburn Beck study catchment. 

Property H-value p-value Property H-value  p-value 

 Al 19.8 0.000  Na 21.7 0.000 

 As 23.1 0.000  Pb 21.1 0.000 

 Cs 23.6 0.000  Rb 23.8 0.000 

 Cu 23.3 0.000  Sb 23.1 0.000 

 Dy 20.5 0.000  Sc 21.3 0.000 

 Er 21.8 0.000  Sr 14.0 0.003 

 Eu 20.5 0.000  Ti 17.2 0.001 

 Ga 23.3 0.000  Y 20.4 0.000 

 Gd 22.7 0.000  Zn 19.9 0.000 

 K 20.4 0.000  Zr 24.0 0.000 

 Li 21.2 0.000       

 

 

Table A7.22: KW-H results for the Bolingey Stream study catchment. 

Property H-value p-value Property H-value p-value 

 Al 12.6 0.006  Pb 25.1 0.000 

 As 20.1 0.000  Pr 23.6 0.000 

 Bi 22.2 0.000  Sb 21.1 0.000 

 Cr 6.3 0.097  Sc 19.2 0.000 

 Dy 31.4 0.000  Sm 27.1 0.000 

 Er 24.7 0.000  Sr 29.0 0.000 

 Gd 30.4 0.000  Tb 21.7 0.000 

 Ge 26.2 0.000  Ti 28.1 0.000 

 Ho 30.9 0.000  Tl 22.3 0.000 

 La 27.2 0.000  Tm 26.3 0.000 

 Li 8.1 0.044  U 28.8 0.000 

 Mg 11.7 0.009  V 26.3 0.000 

 Na 16.8 0.001  Y 28.4 0.000 

 Nd 25.5 0.000  Yb 22.3 0.000 
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Table A7.23: KW-H results for the Egglestone Beck study catchment. 

Property H-value p-value Property H-value p-value 

 Al 10.2 0.017  Mg 15.2 0.002 

 As 13.5 0.004  Na 3.4 0.331 

 Cs 15.1 0.002  Pb 9.5 0.023 

 Cu 13.4 0.004  Rb 11.0 0.012 

 Dy 15.8 0.001  Sb 10.5 0.015 

 Eu 14.5 0.002  Sc 16.8 0.001 

 Fe 18.1 0.000  Sr 5.7 0.127 

 Ga 13.4 0.004  Tm 17.2 0.001 

 Gd 17.7 0.001  V 10.9 0.012 

 K 10.2 0.017  Y 14.2 0.003 

 Li 7.1 0.070  Zr 16.8 0.001 

 

Table A7.24: KW-H results for the Hayle study catchment. 

Property H-value p-value Property H-value p-value 

 As 18.0 0.001  Na 36.7 0.000 

 Ba 24.0 0.000  Pb 27.2 0.000 

 Bi 19.0 0.001  Sb 23.7 0.000 

 Cr 16.1 0.003  Sr 27.6 0.000 

 Dy 20.7 0.000  Tb 20.1 0.000 

 Er 21.3 0.000  Ti 31.7 0.000 

 Fe 28.3 0.000  Tm 22.6 0.000 

 Ga 24.2 0.000  V 37.3 0.000 

 Ho 22.1 0.000  Y 27.1 0.000 

 Li 28.2 0.000  Yb 22.7 0.000 

 Lu 21.8 0.000  Zr 33.2 0.000 

 Mg 32.4 0.000       

 

Table A7.25: KW-H results for the Hudeshope Beck study catchment. 

Property H-value p-value Property H-value p-value 

 Al 25.991 0.000  Na 23.828 0.000 

 As 33.681 0.000  Ni 23.303 0.000 

 Cs 34.061 0.000  Rb 36.629 0.000 

 Cu 19.810 0.001  Sc 21.711 0.000 

 Ga 24.231 0.000  Sr 23.866 0.000 

 K 34.056 0.000  Ti 27.082 0.000 

 Li 20.448 0.000  Tm 22.686 0.000 

 Mg 30.624 0.000  V 24.156 0.000 
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Table A7.26: KW-H results for the Mardle study catchment. 

Property H-value p-value Property H-value p-value 

 Al 28.3 0.000  Mg 30.1 0.000 

 As 27.1 0.000  Mo 27.0 0.000 

 Ba 26.5 0.000  Na 21.9 0.000 

 Bi 26.6 0.000  Pb 29.5 0.000 

 Cd 21.7 0.000  Rb 29.5 0.000 

 Ce 20.9 0.000  Sb 25.6 0.000 

 Co 25.5 0.000  Sc 26.8 0.000 

 Cs 21.1 0.000  Sn 27.8 0.000 

 Cu 25.0 0.000  Sr 31.4 0.000 

 Dy 26.9 0.000  Ti 14.8 0.002 

 Er 28.7 0.000  Tl 34.2 0.000 

 Eu 25.4 0.000  U 21.9 0.000 

 Fe 25.9 0.000  V 15.5 0.001 

 Ga 27.9 0.000  Yb 28.3 0.000 

 K 27.1 0.000  Zr 25.0 0.000 

 Lu 28.5 0.000       

 

 

Table A7.27: KW-H results for the Nant Magwr study catchment. 

Property H-value p-value Property H-value p-value 

 As 25.3 0.000  Sb 28.3 0.000 

 Co 25.0 0.000  Sc 21.1 0.000 

 Dy 25.0 0.000  Sm 25.8 0.000 

 Eu 32.0 0.000  Sn 23.6 0.000 

 Ga 29.9 0.000  Sr 20.0 0.001 

 Gd 26.1 0.000  Tb 30.7 0.000 

 Ge 26.3 0.000  Tl 25.4 0.000 

 La 28.9 0.000  Tm 18.8 0.001 

 Mo 36.7 0.000  Y 24.1 0.000 

 Pr 30.5 0.000       
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Table A7.28: KW-H results for the Porthleven Stream study catchment. 

Property H-value p-value Property H-value p-value 

 Ce 11.7 0.019  Nd 11.8 0.019 

 Cr 6.3 0.177  Ni 6.7 0.152 

 Dy 21.3 0.000  Pr 12.6 0.013 

 Er 11.7 0.020  Sm 12.7 0.013 

 Eu 11.5 0.022  Sn 13.3 0.010 

 Gd 13.2 0.010  Tb 15.0 0.005 

 Ge 14.5 0.006  Tl 22.7 0.000 

 Ho 16.1 0.003  Tm 14.7 0.005 

 La 11.9 0.018  U 14.8 0.005 

 Li 7.3 0.122  V 27.5 0.000 

 Lu 26.2 0.000  Y 20.2 0.000 

 Mg 5.9 0.206  Yb 11.2 0.024 

 Na 18.9 0.001  Zr 19.5 0.001 

 

 

Table A7.29: KW-H results for the Rea Brook study catchment. 

Property H-value p-value Property H-value p-value 

 Al 23.4 0.000  Mo 23.7 0.000 

 Ba 22.9 0.000  Nd 29.1 0.000 

 Ce 25.9 0.000  Pb 22.5 0.000 

 Cr 16.9 0.002  Pr 27.3 0.000 

 Cu 21.3 0.000  Sm 30.2 0.000 

 Dy 32.2 0.000  Sn 31.2 0.000 

 Er 31.6 0.000  Sr 25.7 0.000 

 Eu 28.7 0.000  Tb 27.8 0.000 

 Ga 34.2 0.000  Ti 29.3 0.000 

 Gd 30.3 0.000  Tm 29.5 0.000 

 Ge 37.2 0.000  V 32.0 0.000 

 Ho 30.2 0.000  Y 32.5 0.000 

 La 27.0 0.000  Yb 30.4 0.000 

 Lu 30.2 0.000  Zn 21.9 0.000 

 Mg 29.5 0.000       
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Table A7.30: KW-H results for the Red Tarn Beck study catchment. 

Property H-value p-value Property H-value p-value 

 As 20.3 0.000  Sm 13.7 0.003 

 Bi 23.0 0.000  Sn 17.3 0.001 

 Ga 15.4 0.002  Sr 17.9 0.000 

 Gd 14.3 0.002  Tb 4.7 0.192 

 Hf 23.6 0.000  Tm 23.3 0.000 

 Mo 22.4 0.000  U 15.8 0.001 

 Nd 11.8 0.008  Zr 23.1 0.000 

 

 

Table A7.31: KW-H results for the River Burn (Tavy) study catchment. 

Property H-value p-value Property H-value p-value 

 Ce 35.3 0.000  Mo 33.7 0.000 

 Cs 21.0 0.000  Nd 37.9 0.000 

 Cu 33.4 0.000  Pr 37.7 0.000 

 Dy 35.5 0.000  Sb 25.3 0.000 

 Er 34.7 0.000  Sc 31.1 0.000 

 Eu 35.4 0.000  Sm 39.7 0.000 

 Fe 31.0 0.000  Sn 29.8 0.000 

 Gd 39.3 0.000  Sr 23.1 0.000 

 Ge 40.8 0.000  Tl 32.6 0.000 

 Hf 27.6 0.000  Tm 36.2 0.000 

 K 24.2 0.000  U 33.7 0.000 

 La 37.2 0.000  Y 36.0 0.000 

 Lu 36.6 0.000  Yb 35.0 0.000 
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Table A7.32: KW-H results for the River East Allen study catchment. 

Property H-value p-value Property H-value p-value 

 As 15.0 0.005  Na 29.6 0.000 

 Bi 20.1 0.000  Ni 9.2 0.057 

 Cs 37.8 0.000  Sr 26.7 0.000 

 Cu 17.6 0.001  Tb 17.0 0.002 

 Dy 17.4 0.002  Ti 38.7 0.000 

 Er 13.9 0.008  Tm 13.2 0.010 

 Gd 22.0 0.000  V 35.0 0.000 

 Hf 15.6 0.004  Y 14.5 0.006 

 Ho 14.6 0.006  Yb 12.8 0.012 

 Mg 34.1 0.000  Zr 14.7 0.005 

 

 

Table A7.33: KW-H results for the River Greta study catchment. 

Property H-value p-value Property H-value p-value 

 As 31.6 0.000  Li 19.5 0.000 

 Ba 18.3 0.000  Mg 22.0 0.000 

 Bi 27.5 0.000  Mo 28.1 0.000 

 Ce 29.6 0.000  Nd 28.0 0.000 

 Cs 26.8 0.000  Pb 21.9 0.000 

 Cu 15.8 0.001  Pr 26.7 0.000 

 Dy 22.1 0.000  Sb 27.7 0.000 

 Eu 19.2 0.000  Sm 26.4 0.000 

 Fe 30.5 0.000  Sn 22.3 0.000 

 Ga 30.9 0.000  Sr 26.6 0.000 

 Gd 26.4 0.000  Ti 30.8 0.000 

 Ge 27.8 0.000  V 31.5 0.000 

 La 27.8 0.000  Y 11.2 0.011 

 

Table A7.34: KW-H results for the River South Tyne study catchment. 

Property H-value p-value Property H-value p-value 

 As 31.6 0.000  Pb 22.5 0.000 

 Cd 28.2 0.000  Rb 31.8 0.000 

 Co 29.3 0.000  Sc 24.7 0.000 

 Cs 31.7 0.000  Sr 18.3 0.001 

 Ga 19.8 0.001  Ti 27.9 0.000 

 K 26.9 0.000  U 22.2 0.000 

 Mg 23.0 0.000  V 20.4 0.000 

 Mn 26.7 0.000  Zn 27.4 0.000 

 Na 22.4 0.000  Zr 25.2 0.000 

 Ni 33.0 0.000       
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Table A7.35: KW-H results for the St Lawrence Stream study catchment. 

Property H-value p-value Property H-value p-value 

 As 30.6 0.000  Mn 32.0 0.000 

 Bi 19.8 0.001  Mo 19.7 0.001 

 Co 29.0 0.000  Nd 28.1 0.000 

 Cr 26.2 0.000  Pr 27.9 0.000 

 Cu 25.9 0.000  Rb 31.6 0.000 

 Dy 27.5 0.000  Sb 37.1 0.000 

 Er 24.7 0.000  Sc 22.5 0.000 

 Eu 29.3 0.000  Sm 28.1 0.000 

 Fe 32.1 0.000  Sr 37.9 0.000 

 Gd 28.9 0.000  Tb 27.3 0.000 

 Ge 41.8 0.000  Ti 26.2 0.000 

 Ho 26.4 0.000  Tl 37.7 0.000 

 K 24.2 0.000  Tm 26.8 0.000 

 La 27.0 0.000  U 31.6 0.000 

 Li 24.6 0.000  V 36.3 0.000 

 Lu 27.1 0.000  Y 26.6 0.000 

 Mg 30.9 0.000  Yb 26.9 0.000 

 

 

Table A7.36: KW-H results for the Wye study catchment. 

Property H-value p-value Property H-value p-value 

 Al 18.8 0.000  Lu 18.3 0.000 

 Bi 13.9 0.001  Mn 18.1 0.000 

 Cd 17.8 0.000  Rb 16.4 0.000 

 Cs 14.6 0.001  Sb 16.7 0.000 

 Dy 17.3 0.000  Sc 17.2 0.000 

 Er 18.2 0.000  Sr 18.3 0.000 

 Eu 16.5 0.000  Tb 14.7 0.001 

 Gd 10.7 0.005  Tm 18.2 0.000 

 Ho 18.1 0.000  Y 18.1 0.000 

 K 17.2 0.000  Yb 18.3 0.000 

 Li 17.8 0.000  Zn 18.1 0.000 
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Table A7.37: Highest ranked property loadings provided by the outputs of the PCA for the 

Afon Ystwyth study catchment. 

Property PC-1
a
 Property PC-2

b
 

Pb 1.000 Cu 1.000 

Cu 0.012 Pb 0.012 

Sb 0.004 Sb 0.011 

As 0.003 Sn 0.006 

Ga 0.000 Ga 0.006 

V 0.000 As 0.004 

Zr 0.000 Sm 0.002 

Sn 0.000 V 0.002 

Sm 0.000 Cs 0.001 

Tl 0.000 Sc 0.001 

Sc 0.000 Tl 0.001 

Cs 0.000 U 0.000 

U 0.000 Zr 0.000 

Hf 0.000 Hf 0.000 

VE% 100.0 VE% 0.0 

a Principal Component 1; b Principal Component 2; VE % variance explained 
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Table A7.38: Highest ranked property loadings provided by the outputs of the PCA for the 

Arkle Beck study catchment. 

Property PC-1
a
 Property PC-2

b
 

Zn 0.998 K 0.998 

K 0.066 Zn 0.066 

Ni 0.002 Cu 0.007 

Cu 0.002 Li 0.005 

Zr 0.000 Rb 0.004 

V 0.000 V 0.003 

As 0.000 Zr 0.002 

Sb 0.000 Ni 0.002 

Sn 0.000 Cs 0.001 

Li 0.000 Sn 0.001 

Rb 0.000 Sc 0.000 

Mo 0.000 As 0.000 

U 0.000 Sb 0.000 

Bi 0.000 Mo 0.000 

Cs 0.000 Bi 0.000 

Sc 0.000 U 0.000 

Er 0.000 Er 0.000 

Yb 0.000 Yb 0.000 

Ho 0.000 Eu 0.000 

Eu 0.000 Ho 0.000 

Tm 0.000 Tm 0.000 

VE% 90.1 VE% 9.9 

a Principal Component 1; b Principal Component 2; VE % variance explained 
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Table A7.39: Highest ranked property loadings provided by the outputs of the PCA for the 

Bedburn Beck study catchment. 

Property PC-1
a
 Property PC-2

b
 

Al 0.835 Pb 0.900 

K 0.431 Al 0.402 

Pb 0.336 Zn 0.149 

Zn 0.065 Na 0.060 

Na 0.008 K 0.054 

Li 0.002 Ti 0.010 

Rb 0.002 Sb 0.005 

Y 0.001 Y 0.003 

Sb 0.001 Cu 0.002 

Sr 0.001 Li 0.002 

Cu 0.001 Zr 0.001 

Zr 0.001 As 0.001 

Ti 0.000 Eu 0.000 

As 0.000 Gd 0.000 

Cs 0.000 Dy 0.000 

Eu 0.000 Sr 0.000 

Ga 0.000 Er 0.000 

Gd 0.000 Rb 0.000 

Dy 0.000 Sc 0.000 

Sc 0.000 Ga 0.000 

Er 0.000 Cs 0.000 

VE% 89.1 VE% 9.8 

a Principal Component 1; b Principal Component 2; VE % variance explained 
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Table A7.40: Highest ranked property loadings provided by the outputs of the PCA for the 

Bolingey Stream study catchment. 

Property PC-1
a
 Property PC-2

b
 

Pb 0.717 Pb 0.696 

Al 0.675 Al 0.681 

Mg 0.176 Mg 0.226 

As 0.011 As 0.010 

Na 0.007 Li 0.002 

Li 0.003 Sb 0.002 

Sb 0.002 Ti 0.002 

Cr 0.001 Cr 0.002 

Sr 0.001 Na 0.001 

Ti 0.001 Sr 0.001 

Y 0.000 La 0.000 

V 0.000 Nd 0.000 

La 0.000 Y 0.000 

Nd 0.000 V 0.000 

Ge 0.000 Ge 0.000 

Bi 0.000 Sc 0.000 

U 0.000 U 0.000 

Sm 0.000 Bi 0.000 

Pr 0.000 Pr 0.000 

Tl 0.000 Sm 0.000 

Dy 0.000 Dy 0.000 

Er 0.000 Gd 0.000 

Sc 0.000 Ho 0.000 

Yb 0.000 Tl 0.000 

Ho 0.000 Er 0.000 

Gd 0.000 Yb 0.000 

Tb 0.000 Tb 0.000 

Tm 0.000 Tm 0.000 

VE% 65.5 VE% 30.5 

a Principal Component 1; b Principal Component 2; VE % variance explained 
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Table A7.41: Highest ranked property loadings provided by the outputs of the PCA for the 

Egglestone Beck study catchment. 

Property PC-1
a
 Property PC-2

b
 

Al 0.776 Fe 0.651 

Fe 0.445 Al 0.548 

K 0.322 Pb 0.511 

Pb 0.310 Mg 0.090 

Na 0.004 K 0.074 

Li 0.002 Na 0.021 

Rb 0.002 Sb 0.006 

Cu 0.001 Cu 0.004 

Mg 0.001 Sr 0.002 

Sb 0.001 Li 0.002 

Sr 0.001 Y 0.001 

Y 0.001 As 0.001 

As 0.001 Zr 0.001 

Zr 0.001 V 0.001 

V 0.000 Rb 0.001 

Ga 0.000 Eu 0.000 

Cs 0.000 Ga 0.000 

Sc 0.000 Dy 0.000 

Gd 0.000 Cs 0.000 

Eu 0.000 Gd 0.000 

Dy 0.000 Sc 0.000 

Tm 0.000 Tm 0.000 

VE% 69.1 VE% 24.0 

a Principal Component 1; b Principal Component 2; VE % variance explained 
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Table A7.42: Highest ranked property loadings provided by the outputs of the PCA for the 

Hayle study catchment. 

Property PC-1
a
 Property PC-2

b
 

Fe 0.996 Mg 0.985 

Mg 0.090 Ti 0.135 

As 0.020 Fe 0.087 

Pb 0.013 As 0.062 

Ti 0.003 Na 0.029 

Bi 0.003 Bi 0.013 

Na 0.003 Pb 0.009 

Li 0.001 V 0.007 

Sr 0.001 Li 0.005 

Ba 0.000 Cr 0.005 

V 0.000 Ba 0.001 

Cr 0.000 Sr 0.001 

Y 0.000 Y 0.000 

Ga 0.000 Ga 0.000 

Sb 0.000 Zr 0.000 

Zr 0.000 Sb 0.000 

Dy 0.000 Dy 0.000 

Er 0.000 Er 0.000 

Yb 0.000 Yb 0.000 

Ho 0.000 Tb 0.000 

Tb 0.000 Lu 0.000 

Tm 0.000 Tm 0.000 

Lu 0.000 Ho 0.000 

VE% 99.4 VE% 0.6 

a Principal Component 1; b Principal Component 2; VE % variance explained 
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Table A7.43: Highest ranked property loadings provided by the outputs of the PCA for the 

Hudeshope Beck study catchment. 

Property PC-1
a
 Property PC-2

b
 

Al 0.879 Mg 0.933 

K 0.449 Na 0.283 

Mg 0.153 Ti 0.146 

Na 0.039 Al 0.122 

Ti 0.025 K 0.112 

Sr 0.004 Sr 0.022 

Rb 0.002 Cu 0.010 

Li 0.002 V 0.006 

Cu 0.001 Li 0.002 

As 0.000 Rb 0.001 

V 0.000 Cs 0.001 

Cs 0.000 Ni 0.000 

Ga 0.000 As 0.000 

Sc 0.000 Tm 0.000 

Ni 0.000 Sc 0.000 

Tm 0.000 Ga 0.000 

VE% 93.7 VE% 3.9 

a Principal Component 1; b Principal Component 2; VE % variance explained 
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Table A7.44: Highest ranked property loadings provided by the outputs of the PCA for the 

Mardle study catchment. 

Property PC-1
a
 Property PC-2

b
 

Fe 0.965 Al 0.879 

Al 0.170 K 0.422 

As 0.135 Fe 0.216 

K 0.134 Mg 0.039 

Cu 0.044 Na 0.017 

Mg 0.031 Bi 0.015 

Bi 0.008 Pb 0.013 

Pb 0.006 Cu 0.009 

Na 0.004 As 0.005 

Ti 0.002 Ba 0.004 

Co 0.001 Rb 0.004 

Sn 0.001 Sn 0.004 

Ba 0.001 Sr 0.002 

Rb 0.001 Ti 0.002 

Sr 0.001 Sb 0.001 

Sb 0.001 Zr 0.001 

Zr 0.000 Ce 0.001 

Mo 0.000 Ga 0.000 

Ga 0.000 Cs 0.000 

V 0.000 V 0.000 

Sc 0.000 Sc 0.000 

Ce 0.000 Mo 0.000 

Cs 0.000 U 0.000 

Cd 0.000 Tl 0.000 

Tl 0.000 Dy 0.000 

U 0.000 Co 0.000 

Eu 0.000 Yb 0.000 

Yb 0.000 Er 0.000 

Er 0.000 Eu 0.000 

Lu 0.000 Cd 0.000 

Dy 0.000 Lu 0.000 

VE% 91.4 VE% 7.9 

a Principal Component 1; b Principal Component 2; VE % variance explained 
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Table A7.45: Highest ranked property loadings provided by the outputs of the PCA for the 

Nant Magwr study catchment. 

Property PC-1
a
 Property PC-2

b
 

Sb 0.860 La 0.784 

La 0.428 Sb 0.438 

As 0.154 Pr 0.265 

Pr 0.144 Ga 0.175 

Co 0.101 Ge 0.159 

Ge 0.088 Sr 0.152 

Sm 0.081 Sm 0.141 

Gd 0.052 As 0.119 

Ga 0.046 Gd 0.088 

Mo 0.033 Eu 0.032 

Y 0.029 Y 0.032 

Sr 0.025 Dy 0.018 

Eu 0.018 Co 0.011 

Sn 0.016 Tb 0.008 

Dy 0.012 Sc 0.008 

Tl 0.012 Sn 0.006 

Sc 0.009 Tl 0.003 

Tb 0.005 Mo 0.002 

Tm 0.000 Tm 0.000 

VE% 66.8 VE% 28.7 

a Principal Component 1; b Principal Component 2; VE % variance explained 
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Table A7.46: Highest ranked property loadings provided by the outputs of the PCA for the 

Porthleven Stream study catchment. 

Property PC-1
a
 Property PC-2

b
 

Mg 0.999 Na 0.987 

Na 0.045 Sn 0.111 

Ni 0.005 Li 0.089 

Sn 0.005 Mg 0.044 

Cr 0.004 Cr 0.043 

V 0.003 Ce 0.033 

Ce 0.003 V 0.013 

Li 0.002 U 0.013 

La 0.001 La 0.013 

Nd 0.001 Nd 0.012 

Pr 0.000 Y 0.008 

Ge 0.000 Ni 0.007 

Sm 0.000 Zr 0.005 

Y 0.000 Pr 0.003 

Gd 0.000 Ge 0.001 

Dy 0.000 Sm 0.001 

Eu 0.000 Dy 0.001 

Er 0.000 Ho 0.001 

Zr 0.000 Eu 0.001 

Yb 0.000 Tl 0.001 

Ho 0.000 Gd 0.001 

Tb 0.000 Tb 0.000 

U 0.000 Lu 0.000 

Tm 0.000 Er 0.000 

Tl 0.000 Tm 0.000 

Lu 0.000 Yb 0.000 

VE% 99.6 VE% 0.3 

a Principal Component 1; b Principal Component 2; VE % variance explained 
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Table A7.47: Highest ranked property loadings provided by the outputs of the PCA for the 

Rea Brook study catchment. 

Property PC-1
a
 Property PC-2

b
 

Pb 0.837 Al 0.849 

Zn 0.458 Mg 0.510 

Mg 0.279 Pb 0.080 

Ba 0.099 Ti 0.080 

Al 0.048 Zn 0.068 

Ti 0.011 Ba 0.036 

Sr 0.008 Cu 0.004 

Ce 0.002 Sr 0.004 

Y 0.001 V 0.004 

V 0.001 Sn 0.001 

Nd 0.001 Ce 0.001 

La 0.001 Y 0.000 

Cr 0.000 Cr 0.000 

Gd 0.000 Nd 0.000 

Sm 0.000 La 0.000 

Ga 0.000 Ga 0.000 

Ge 0.000 Gd 0.000 

Dy 0.000 Eu 0.000 

Pr 0.000 Mo 0.000 

Eu 0.000 Sm 0.000 

Cu 0.000 Pr 0.000 

Sn 0.000 Dy 0.000 

Mo 0.000 Er 0.000 

Er 0.000 Yb 0.000 

Yb 0.000 Ho 0.000 

Tb 0.000 Ge 0.000 

Ho 0.000 Tb 0.000 

Tm 0.000 Tm 0.000 

Lu 0.000 Lu 0.000 

VE% 70.0 VE% 18.3 

a Principal Component 1; b Principal Component 2; VE % variance explained 
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Table A7.48: Highest ranked property loadings provided by the outputs of the PCA for the 

Red Tarn Beck study catchment. 

Property PC-1
a
 Property PC-2

b
 

Sr 0.892 As 0.895 

As 0.441 Sr 0.442 

Nd 0.088 Sn 0.063 

Ga 0.025 Bi 0.014 

Sn 0.017 Zr 0.011 

Sm 0.017 Nd 0.010 

Mo 0.016 Ga 0.008 

Gd 0.014 Mo 0.006 

Hf 0.011 U 0.004 

U 0.004 Tb 0.002 

Zr 0.003 Gd 0.002 

Tb 0.002 Hf 0.001 

Bi 0.002 Tm 0.001 

Tm 0.000 Sm 0.000 

VE% 66.3 VE% 32.0 

a Principal Component 1; b Principal Component 2; VE % variance explained 
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Table A7.49: Highest ranked property loadings provided by the outputs of the PCA for the 

River Burn (Tavy) study catchment. 

Property PC-1
a
 Property PC-2

b
 

Fe 1.000 K 0.999 

Cu 0.004 Cu 0.041 

K 0.004 Sr 0.005 

Y 0.000 Fe 0.004 

Ce 0.000 La 0.002 

Nd 0.000 Ce 0.002 

La 0.000 Sb 0.001 

Sr 0.000 Y 0.001 

Ge 0.000 Mo 0.001 

Mo 0.000 Sn 0.001 

Gd 0.000 Nd 0.000 

Dy 0.000 Sc 0.000 

Sm 0.000 Pr 0.000 

Pr 0.000 Ge 0.000 

Sn 0.000 Dy 0.000 

Sc 0.000 Sm 0.000 

Er 0.000 Er 0.000 

Yb 0.000 Lu 0.000 

Sb 0.000 Yb 0.000 

Cs 0.000 Eu 0.000 

Eu 0.000 Tm 0.000 

U 0.000 Cs 0.000 

Lu 0.000 U 0.000 

Tm 0.000 Hf 0.000 

Tl 0.000 Tl 0.000 

Hf 0.000 Gd 0.000 

VE% 100.0 VE% 0.0 

a Principal Component 1; b Principal Component 2; VE % variance explained 
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Table A7.50: Highest ranked property loadings provided by the outputs of the PCA for the 

River East Allen study catchment. 

Property PC-1
a
 Property PC-2

b
 

Mg 0.912 Na 0.912 

Na 0.390 Mg 0.401 

Ti 0.128 Ti 0.081 

Sr 0.019 Sr 0.030 

V 0.003 Cu 0.014 

Cu 0.003 Zr 0.007 

Zr 0.001 Ni 0.006 

Cs 0.001 Y 0.005 

As 0.001 As 0.002 

Ni 0.001 Cs 0.001 

Y 0.000 V 0.000 

Gd 0.000 Dy 0.000 

Bi 0.000 Hf 0.000 

Dy 0.000 Gd 0.000 

Hf 0.000 Bi 0.000 

Er 0.000 Er 0.000 

Yb 0.000 Ho 0.000 

Ho 0.000 Tb 0.000 

Tm 0.000 Yb 0.000 

Tb 0.000 Tm 0.000 

VE% 97.4 VE% 2.2 

a Principal Component 1; b Principal Component 2; VE % variance explained 
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Table A7.51: Highest ranked property loadings provided by the outputs of the PCA for the 

River Greta study catchment. 

Property PC-1
a
 Property PC-2

b
 

Fe 0.964 Pb 0.916 

Pb 0.256 Mg 0.330 

Mg 0.064 Fe 0.221 

Ti 0.016 Ti 0.044 

As 0.009 Ba 0.043 

Ba 0.005 As 0.017 

Sr 0.004 Sr 0.014 

Ce 0.002 Cu 0.006 

Sb 0.001 Sb 0.005 

La 0.001 V 0.004 

Li 0.001 Sn 0.002 

Nd 0.001 Li 0.002 

V 0.001 Ce 0.001 

Sn 0.000 La 0.001 

Ga 0.000 Nd 0.000 

Cu 0.000 Mo 0.000 

Pr 0.000 Y 0.000 

Ge 0.000 Cs 0.000 

Sm 0.000 Gd 0.000 

Cs 0.000 Sm 0.000 

Gd 0.000 Dy 0.000 

Mo 0.000 Bi 0.000 

Eu 0.000 Pr 0.000 

Y 0.000 Ge 0.000 

Dy 0.000 Ga 0.000 

Bi 0.000 Eu 0.000 

VE% 96.1 VE% 3.0 

a Principal Component 1; b Principal Component 2; VE % variance explained 
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Table A7.52: Highest ranked property loadings provided by the outputs of the PCA for the 

River South Tyne study catchment. 

Property PC-1
a
 Property PC-2

b
 

Zn 0.841 Pb 0.699 

Pb 0.495 Mg 0.494 

K 0.156 Zn 0.397 

Mg 0.119 K 0.326 

Mn 0.090 Mn 0.046 

Na 0.009 Na 0.026 

Ti 0.008 Ti 0.025 

As 0.004 Sr 0.004 

Cd 0.002 As 0.003 

Ni 0.001 Ni 0.002 

Rb 0.001 Rb 0.002 

Co 0.001 Cd 0.001 

Ga 0.000 Co 0.001 

Cs 0.000 V 0.000 

Sr 0.000 Cs 0.000 

Zr 0.000 Zr 0.000 

Sc 0.000 Ga 0.000 

V 0.000 Sc 0.000 

U 0.000 U 0.000 

VE% 86.2 VE% 7.6 

a Principal Component 1; b Principal Component 2; VE % variance explained 
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Table A7.53: Highest ranked property loadings provided by the outputs of the PCA for the St 

Lawrence Stream study catchment. 

Property PC-1
a
 Property PC-2

b
 

Fe 0.999 Mg 0.998 

Mn 0.041 Ti 0.052 

Mg 0.020 Fe 0.021 

Cu 0.016 Mn 0.015 

K 0.010 Cu 0.010 

As 0.005 K 0.009 

Co 0.001 Li 0.005 

Ti 0.001 Cr 0.004 

Li 0.000 V 0.003 

Nd 0.000 Sr 0.003 

La 0.000 As 0.003 

Y 0.000 La 0.001 

Rb 0.000 Nd 0.001 

Cr 0.000 Rb 0.001 

Ge 0.000 Co 0.000 

V 0.000 Y 0.000 

Sr 0.000 Pr 0.000 

Pr 0.000 Sb 0.000 

Gd 0.000 Sc 0.000 

Sm 0.000 Sm 0.000 

Dy 0.000 U 0.000 

U 0.000 Gd 0.000 

Sb 0.000 Ge 0.000 

Er 0.000 Bi 0.000 

Bi 0.000 Mo 0.000 

Eu 0.000 Dy 0.000 

Tl 0.000 Eu 0.000 

Yb 0.000 Tl 0.000 

Tb 0.000 Er 0.000 

Mo 0.000 Yb 0.000 

Ho 0.000 Tb 0.000 

Sc 0.000 Ho 0.000 

Tm 0.000 Tm 0.000 

Lu 0.000 Lu 0.000 

VE% 99.5 VE% 0.4 

a Principal Component 1; b Principal Component 2; VE % variance explained 
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Table A7.54: Highest ranked property loadings provided by the outputs of the PCA for the 

Wye study catchment. 

Property PC-1
a
 Property PC-2

b
 

Zn 0.788 Al 0.779 

Al 0.510 Zn 0.593 

Mn 0.344 Mn 0.197 

K 0.034 K 0.059 

Cd 0.004 Cd 0.003 

Li 0.001 Li 0.002 

Y 0.001 Sb 0.001 

Sr 0.001 Sr 0.001 

Sb 0.001 Y 0.001 

Gd 0.000 Rb 0.000 

Eu 0.000 Cs 0.000 

Dy 0.000 Eu 0.000 

Rb 0.000 Dy 0.000 

Sc 0.000 Gd 0.000 

Cs 0.000 Sc 0.000 

Er 0.000 Er 0.000 

Yb 0.000 Yb 0.000 

Tb 0.000 Tb 0.000 

Ho 0.000 Ho 0.000 

Tm 0.000 Tm 0.000 

Lu 0.000 Lu 0.000 

Bi 0.000 Bi 0.000 

VE% 89.3 VE% 9.0 

a Principal Component 1; b Principal Component 2; VE % variance explained 
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Table A7.55: The final composite signatures selected using KW-H and PCA for the Afon 

Ystwyth study catchment. 

KW-H PCA 

Property %
1
 TDW

2
 Property %

1
 TDW

2
 

As 78 1.43 As 78 1.79 

Ga 58 1.07 Cu 43 1.00 

Sn 54 1.00 Ga 58 1.34 

Tl 65 1.21 Pb 65 1.50 

V 56 1.04 Sb 63 1.44 

Zr 58 1.06 Sn 54 1.25 

Total
3
 88 

 
Total

3
 75 

 1 
% source type end member samples classified correctly by individual properties 

2 
tracer discriminatory weighting used in the mass balance modelling 

3 
% source type end member samples classified correctly by composite signature 

 

 

 

 

 

 

 

Table A7.56: The final composite signatures selected using KW-H and PCA for the Arkle 

Beck study catchment. 

KW-H PCA 

Property %
1
  TDW

2
 Property %

1
  TDW

2
 

Bi 78 1.10 K 75 1.47 

Ho 71 1.00 Li 61 1.20 

Sn 89 1.26 Ni 54 1.05 

V 80 1.13 Zn 51 1.00 

Total
3
 93   Total

3
 68   

1 
% source type end member samples classified correctly by individual properties 

2 
tracer discriminatory weighting used in the mass balance modelling 

3 
% source type end member samples classified correctly by composite signature 
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Table A7.57: The final composite signatures selected using KW-H and PCA for the Bedburn 

Beck study catchment. 

KW-H PCA 

Property %
1
  TDW

2
 Property %

1
  TDW

2
 

Cs 71 1.19 Al 56 1.21 

Cu 60 1.00 K 62 1.33 

Ga 72 1.20 Na 46 1.00 

Rb 66 1.10 Pb 61 1.32 

Zr 74 1.25 Zn 47 1.01 

Total
3
 85   Total

3
 73   

1 
% source type end member samples classified correctly by individual properties 

2 
tracer discriminatory weighting used in the mass balance modelling 

3 
% source type end member samples classified correctly by composite signature 

 

 

 

 

Table A7.58: The final composite signatures selected using KW-H and PCA for the Bolingey 

Stream study catchment. 

KW-H PCA 

Property %
1
 TDW

2
 Property %

1
 TDW

2
 

Dy 73 1.33 Al 47 1.28 

Gd 61 1.10 As 44 1.21 

Ho 69 1.26 Mg 48 1.32 

Sr 55 1.00 Na 47 1.29 

U 58 1.06 Pb 36 1.00 

Total
3
 89 

 
Total

3
 72 

 1 
% source type end member samples classified correctly by individual properties 

2 
tracer discriminatory weighting used in the mass balance modelling 

3 
% source type end member samples classified correctly by composite signature 
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Table A7.59: The final composite signatures selected using KW-H and PCA for the 

Egglestone Beck study catchment. 

KW-H PCA 

Property %
1
 TDW

2
 Property %

1
 TDW

2
 

Dy 66 1.19 Al 49 1.39 

Fe 67 1.21 Fe 67 1.90 

Gd 75 1.35 K 49 1.37 

Mg 56 1.00 Li 51 1.45 

Sc 58 1.05 Mg 56 1.57 

Tm 73 1.31 Na 35 1.00 

Zr 63 1.13 Pb 48 1.35 

Total
3
 95 

 
Total

3
 92 

 1 
% source type end member samples classified correctly by individual properties 

2 
tracer discriminatory weighting used in the mass balance modelling 

3 
% source type end member samples classified correctly by composite signature 

 

Table A7.60: The final composite signatures selected using KW-H and PCA for the Hayle 

study catchment. 

KW-H PCA 

Property %
1
 TDW

2
 Property %

1
 TDW

2
 

Fe 48 1.09 As 47 1.21 

Li 46 1.05 Bi 39 1.00 

Mg 53 1.20 Fe 48 1.23 

Na 70 1.59 Li 46 1.19 

Sr 44 1.00 Mg 53 1.36 

Ti 59 1.33 Na 70 1.79 

V 67 1.52 Pb 47 1.20 

Zr 48 1.09 Ti 59 1.50 

Total
3
 90 

 
Total

3
 84 

 1 
% source type end member samples classified correctly by individual properties 

2 
tracer discriminatory weighting used in the mass balance modelling 

3 
% source type end member samples classified correctly by composite signature 
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Table A7.61: The final composite signatures selected using KW-H and PCA for the 

Hudeshope Beck study catchment. 

KW-H PCA 

Property %
1
 TDW

2
 Property %

1
 TDW

2
 

As 48 1.00 Al 48 1.07 

Cs 63 1.31 K 57 1.27 

K 57 1.18 Mg 60 1.35 

Mg 60 1.25 Na 54 1.21 

Rb 60 1.25 Sr 45 1.00 

Ti 58 1.19 Ti 58 1.29 

Total
3
 82 

 
Total

3
 82 

 1 
% source type end member samples classified correctly by individual properties 

2 
tracer discriminatory weighting used in the mass balance modelling 

3 
% source type end member samples classified correctly by composite signature 

 

 

 

Table A7.62: The final composite signatures selected using KW-H and PCA for the Mardle 

study catchment. 

KW-H PCA 

Property %
1
 TDW

2
 Property %

1
 TDW

2
 

Al 68 1.33 Al 68 1.67 

As 51 1.00 As 51 1.26 

Er 68 1.33 Ba 61 1.49 

Ga 71 1.38 Bi 49 1.19 

Lu 68 1.32 Cu 51 1.24 

Mg 65 1.27 Fe 53 1.30 

Pb 64 1.24 K 50 1.23 

Rb 68 1.33 Mg 65 1.59 

Sn 59 1.15 Na 41 1.00 

Sr 60 1.16 Pb 64 1.56 

Tl 69 1.34 Sn 59 1.44 

Yb 68 1.33 Ti 43 1.04 

Total
3
 95 

 
Total

3
 90 

 1 
% source type end member samples classified correctly by individual properties 

2 
tracer discriminatory weighting used in the mass balance modelling 

3 
% source type end member samples classified correctly by composite signature 
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Table A7.63: The final composite signatures selected using KW-H and PCA for the Nant 

Magwr study catchment. 

KW-H PCA 

Property %
1
 TDW

2
 Property %

1
 TDW

2
 

Eu 44 1.12 As 52 1.31 

Ga 39 1.00 Co 46 1.17 

La 41 1.03 Ga 39 1.00 

Mo 67 1.70 La 41 1.03 

Pr 48 1.22 Pr 48 1.22 

Sb 48 1.22 Sb 48 1.22 

Tb 56 1.43 Sm 54 1.38 

Total
3
 74 

 
Total

3
 80 

 1 
% source type end member samples classified correctly by individual properties 

2 
tracer discriminatory weighting used in the mass balance modelling 

3 
% source type end member samples classified correctly by composite signature 

 

 

 

Table A7.64: The final composite signatures selected using KW-H and PCA for the 

Porthleven Stream study catchment. 

KW-H PCA 

Property %
1
 TDW

2
 Property %

1
 TDW

2
 

Dy 55 1.13 Cr 37 1.14 

Lu 51 1.04 Li 37 1.14 

Na 55 1.14 Mg 53 1.65 

Tl 49 1.01 Na 55 1.71 

V 66 1.36 Ni 39 1.21 

Y 57 1.17 Sn 32 1.00 

Zr 49 1.00 V 66 2.05 

Total
3
 100 

 
Total

3
 90 

 1 
% source type end member samples classified correctly by individual properties 

2 
tracer discriminatory weighting used in the mass balance modelling 

3 
% source type end member samples classified correctly by composite signature 
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Table A7.65: The final composite signatures selected using KW-H and PCA for the Rea 

Brook study catchment. 

KW-H PCA 

Property %
1
 TDW

2
 Property %

1
 TDW

2
 

Dy 61 1.21 Al 44 1.23 

Er 59 1.17 Ba 36 1.00 

Ga 54 1.07 Ce 58 1.60 

Gd 63 1.25 Mg 56 1.56 

Ge 70 1.39 Pb 50 1.39 

Lu 62 1.23 Sr 62 1.72 

Sn 51 1.00 Ti 53 1.47 

V 60 1.19 V 60 1.67 

Y 68 1.35 Y 68 1.90 

Yb 58 1.15 Zn 54 1.49 

Total3 94 
 

Total
3
 92 

 1 
% source type end member samples classified correctly by individual properties 

2 
tracer discriminatory weighting used in the mass balance modelling 

3 
% source type end member samples classified correctly by composite signature 

 

 

Table A7.66: The final composite signatures selected using KW-H and PCA for the Red Tarn 

Beck study catchment. 

KW-H PCA 

Property %
1
 TDW

2
 Property %

1
 TDW

2
 

As 65 1.00 As 65 1.22 

Bi 69 1.06 Ga 58 1.09 

Hf 83 1.28 Nd 56 1.05 

Mo 85 1.30 Sm 59 1.12 

Tm 70 1.08 Sn 53 1.00 

Zr 72 1.11 Sr 56 1.06 

Total
3
 82 

 
Total

3
 87 

 1 
% source type end member samples classified correctly by individual properties 

2 
tracer discriminatory weighting used in the mass balance modelling 

3 
% source type end member samples classified correctly by composite signature 
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Table A7.67: The final composite signatures selected using KW-H and PCA for the River 

Burn (Tavy) study catchment. 

KW-H PCA 

Property %
1
 TDW

2
 Property %

1
 TDW

2
 

Gd 67 1.00 Ce 53 1.20 

Ge 69 1.03 Cu 44 1.00 

La 67 1.01 Fe 57 1.30 

Nd 66 1.00 K 45 1.02 

Pr 69 1.04 La 67 1.53 

Sm 70 1.05 Y 68 1.54 

Total
3
 90 

 
Total

3
 85 

 1 
% source type end member samples classified correctly by individual properties 

2 
tracer discriminatory weighting used in the mass balance modelling 

3 
% source type end member samples classified correctly by composite signature 

 

 

Table A7.68: The final composite signatures selected using KW-H and PCA for the River 

East Allen study catchment. 

KW-H PCA 

Property %
1
 TDW

2
 Property %

1
 TDW

2
 

Bi 39 1.06 Cs 72 2.07 

Cs 72 1.96 Cu 39 1.12 

Cu 39 1.06 Mg 62 1.79 

Dy 37 1.00 Na 57 1.64 

Gd 47 1.27 Ni 36 1.04 

Mg 62 1.69 Sr 37 1.06 

Na 57 1.55 Ti 60 1.71 

Sr 37 1.01 V 64 1.84 

Ti 60 1.62 Y 40 1.15 

V 64 1.75 Zr 35 1.00 

Total
3
 92 

 
Total

3
 86 

 1 
% source type end member samples classified correctly by individual properties 

2 
tracer discriminatory weighting used in the mass balance modelling 

3 
% source type end member samples classified correctly by composite signature 
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Table A7.69: The final composite signatures selected using KW-H and PCA for the River 

Greta study catchment. 

KW-H PCA 

Property %
1
 TDW

2
 Property %

1
 TDW

2
 

As 66 1.08 As 66 1.28 

Ce 66 1.08 Ba 51 1.00 

Fe 74 1.22 Fe 74 1.45 

Ga 76 1.26 Mg 66 1.29 

Ti 61 1.00 Pb 58 1.13 

V 72 1.18 Ti 61 1.18 

Total
3
 89 

 
Total

3
 79 

 1 
% source type end member samples classified correctly by individual properties 

2 
tracer discriminatory weighting used in the mass balance modelling 

3 
% source type end member samples classified correctly by composite signature 

 

 

Table A7.70: The final composite signatures selected using KW-H and PCA for the River 

South Tyne study catchment. 

KW-H PCA 

Property %
1
 TDW

2
 Property %

1
 TDW

2
 

As 49 1.24 As 49 1.24 

Cd 43 1.10 K 52 1.32 

Co 48 1.21 Mg 49 1.25 

Cs 52 1.32 Mn 54 1.36 

K 52 1.32 Na 40 1.00 

Ni 53 1.35 Pb 42 1.07 

Rb 55 1.41 Sr 43 1.10 

Ti 57 1.45 Ti 57 1.45 

Zn 39 1.00 Zn 39 1.00 

Total
3
 82 

 
Total

3
 76 

 1 
% source type end member samples classified correctly by individual properties 

2 
tracer discriminatory weighting used in the mass balance modelling 

3 
% source type end member samples classified correctly by composite signature 
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Table A7.71: The final composite signatures selected using KW-H and PCA for the St 

Lawrence Stream study catchment. 

KW-H PCA 

Property %
1
 TDW

2
 Property %

1
 TDW

2
 

Fe 41 1.11 As 41 1.11 

Ge 58 1.57 Cu 48 1.28 

Mn 37 1.00 Fe 41 1.11 

Sb 62 1.67 K 46 1.26 

Sr 61 1.64 Li 51 1.37 

Tl 44 1.19 Mg 48 1.30 

V 50 1.36 Mn 37 1.00 

Total
3
 96 

 
Total

3
 80 

 1 
% source type end member samples classified correctly by individual properties 

2 
tracer discriminatory weighting used in the mass balance modelling 

3 
% source type end member samples classified correctly by composite signature 

 

 

Table A7.72: The final composite signatures selected using KW-H and PCA for the Wye 

study catchment. 

KW-H PCA 

Property %
1
  TDW

2
 Property %

1
  TDW

2
 

Al 70 1.05 Al 70 1.12 

Lu 67 1.00 K 63 1.00 

Rb 69 1.03 Mn 70 1.12 

Yb 70 1.05 Zn 67 1.07 

Total
3
 86   Total

3
 93   

1 
% source type end member samples classified correctly by individual properties 

2 
tracer discriminatory weighting used in the mass balance modelling 

3 
% source type end member samples classified correctly by composite signature 
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Table A7.73: The results of GA-DFA for the Afon Ystwyth study catchment. 

GA-DFA 1 GA-DFA 2 GA-DFA 3 

Property %
1
 TDW

2
 Property %

1
 TDW

2
 Property %

1
 TDW

2
 

Cs 65 1.26 As 78 1.44 As 78 1.51 

Sb 63 1.22 Cs 65 1.20 Cs 65 1.26 

Sc 51 1.00 Sb 63 1.16 Hf 60 1.17 

Sn 54 1.06 U 54 1.00 Sc 51 1.00 

Tl 65 1.28 V 56 1.05 Sn 54 1.06 

V 56 1.10 Total
3
 93 

 
V 56 1.10 

Total
3
 93 

    
Total3 90 

 1 
% source type end member samples classified correctly by individual properties 

2 
tracer discriminatory weighting used in the mass balance modelling 

3 
% source type end member samples classified correctly by composite signature 

 

 

Table A7.74: The results of GA-DFA for the Arkle Beck study catchment. 

GA-DFA 1 GA-DFA 2 GA-DFA 3 

Property %
1
  TDW

2
 Property %

1
  TDW

2
 Property %

1
  TDW

2
 

Cs 60 1.00 Bi 78 1.19 Mo 55 1.08 

Er 66 1.10 Er 66 1.00 U 67 1.31 

Ho 71 1.19 Ho 71 1.08 V 80 1.56 

Yb 71 1.19 Yb 71 1.08 Zn 51 1.00 

Total
3
 100   Total

3
 100   Total

3
 100   

1 
% source type end member samples classified correctly by individual properties 

2 
tracer discriminatory weighting used in the mass balance modelling 

3 
% source type end member samples classified correctly by composite signature 
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Table A7.75: The results of GA-DFA for the Bedburn Beck study catchment. 

GA-DFA 1 GA-DFA 2 GA-DFA 3 

Property %
1
 TDW

2
 Property %

1
 TDW

2
 Property %

1
 TDW

2
 

Al 56 1.00 Al 56 1.00 As 67 1.45 

Cs 71 1.26 Cs 71 1.26 Cs 71 1.52 

Dy 58 1.03 Ga 72 1.28 Gd 53 1.15 

Ga 72 1.28 Rb 66 1.17 Na 46 1.00 

Rb 66 1.17 Sb 68 1.21 Rb 66 1.41 

Sb 68 1.21 Total
3
 97 

 
Total

3
 97 

 
Total

3
 97 

       1 
% source type end member samples classified correctly by individual properties 

2 
tracer discriminatory weighting used in the mass balance modelling 

3 
% source type end member samples classified correctly by composite signature 

 

 

Table A7.76: The results of GA-DFA for the Bolingey Stream study catchment. 

GA-DFA 1 GA-DFA 2 GA-DFA 3 

Property %
1
 TDW

2
 Property %

1
 TDW

2
 Property %

1
 TDW

2
 

Al 47 1.00 Al 47 1.00 La 56 1.31 

Gd 61 1.30 Ho 69 1.49 Li 43 1.01 

La 56 1.19 La 56 1.19 Nd 54 1.27 

Nd 54 1.16 Nd 54 1.16 Sc 43 1.00 

V 56 1.20 V 56 1.20 Ti 56 1.31 

Total
3
 100 

 
Total

3
 100 

 
Total

3
 100 

 1 
% source type end member samples classified correctly by individual properties 

2 
tracer discriminatory weighting used in the mass balance modelling 

3 
% source type end member samples classified correctly by composite signature 
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Table A7.77: The results of GA-DFA for the Egglestone Beck study catchment. 

GA-DFA 1 GA-DFA 2 GA-DFA 3 

Property %
1
 TDW

2
 Property %

1
 TDW

2
 Property %

1
 TDW

2
 

Al 49 1.01 Al 49 1.01 Cs 54 1.39 

As 69 1.43 K 49 1.00 Gd 75 1.93 

Cs 54 1.11 Sb 56 1.16 Rb 39 1.00 

K 49 1.00 Sc 58 1.20 Sb 56 1.45 

Sb 56 1.16 Sr 58 1.20 Sr 58 1.50 

Sr 58 1.20 Y 60 1.24 V 39 1.00 

Total
3
 100 

 
Zr 63 1.29 Y 60 1.55 

   
Total

3
 100 

 
Total

3
 100 

 1 
% source type end member samples classified correctly by individual properties 

2 
tracer discriminatory weighting used in the mass balance modelling 

3 
% source type end member samples classified correctly by composite signature 

 

 

Table A7.78: The results of GA-DFA for the Hayle study catchment. 

GA-DFA 1 GA-DFA 2 GA-DFA 3 

Property %
1
 TDW

2
 Property %

1
 TDW

2
 Property %

1
 TDW

2
 

Ba 40 1.13 Er 37 1.04 Dy 36 1.01 

Dy 36 1.01 Li 46 1.31 Er 37 1.04 

Er 37 1.04 Lu 39 1.10 Li 46 1.31 

Li 46 1.31 Na 70 1.98 Lu 39 1.10 

Na 70 1.98 Sb 35 1.00 Na 70 1.98 

Sb 35 1.00 Tb 48 1.36 Sb 35 1.00 

Tm 41 1.16 Tm 41 1.16 Tm 41 1.16 

Yb 36 1.03 Yb 36 1.03 Yb 36 1.03 

Total
3
 100 

 
Total

3
 100 

 
Total

3
 100 

 1 
% source type end member samples classified correctly by individual properties 

2 
tracer discriminatory weighting used in the mass balance modelling 

3 
% source type end member samples classified correctly by composite signature 
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Table A7.79: The results of GA-DFA for the Hudeshope Beck study catchment. 

GA-DFA 1 GA-DFA 2 GA-DFA 3 

Property %
1
 TDW

2
 Property %

1
 TDW

2
 Property %

1
 TDW

2
 

Al 48 1.24 Cu 45 1.17 Cs 63 1.47 

Ga 60 1.55 Ga 60 1.55 Cu 45 1.05 

Ni 39 1.00 Ni 39 1.00 Ga 60 1.39 

Rb 60 1.56 Rb 60 1.56 Rb 60 1.40 

Tm 43 1.12 Tm 43 1.12 Tm 43 1.00 

V 59 1.52 V 59 1.52 V 59 1.36 

Total
3
 100 

 
Total

3
 100 

 
Total

3
 100 

 1 
% source type end member samples classified correctly by individual properties 

2 
tracer discriminatory weighting used in the mass balance modelling 

3 
% source type end member samples classified correctly by composite signature 

 

 

Table A7.80: The results of GA-DFA for the Mardle study catchment. 

GA-DFA 1 GA-DFA 2 GA-DFA 3 

Property %
1
 TDW

2
 Property %

1
 TDW

2
 Property %

1
 TDW

2
 

Al 68 1.67 Ba 61 1.43 Al 68 1.36 

Ba 61 1.49 Bi 49 1.15 As 51 1.02 

Er 68 1.66 Cd 52 1.22 Ba 61 1.21 

Lu 68 1.65 Er 68 1.60 Co 57 1.13 

Mg 65 1.59 Eu 55 1.28 Er 68 1.35 

Na 41 1.00 Lu 68 1.59 Ga 71 1.40 

Rb 68 1.66 Mg 65 1.53 K 50 1.00 

Ti 43 1.04 Rb 68 1.60 Mg 65 1.29 

Yb 68 1.66 Sr 60 1.40 Rb 68 1.35 

Total
3
 100 

 
Ti 43 1.00 Sn 59 1.17 

   
Tl 69 1.62 Sr 60 1.18 

   
Yb 68 1.60 Yb 68 1.35 

   
Total

3
 100 

 
Total

3
 100 

 1 
% source type end member samples classified correctly by individual properties 

2 
tracer discriminatory weighting used in the mass balance modelling 

3 
% source type end member samples classified correctly by composite signature 
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Table A7.81: The results of GA-DFA for the Nant Magwr study catchment. 

GA-DFA 1 GA-DFA 2 GA-DFA 3 

Property %
1
 TDW

2
 Property %

1
 TDW

2
 Property %

1
 TDW

2
 

Gd 50 1.24 Eu 44 1.02 Ga 39 1.00 

La 41 1.00 Gd 50 1.17 Gd 50 1.28 

Mo 67 1.65 Sm 54 1.26 Sm 54 1.38 

Sm 54 1.34 Sn 43 1.00 Sn 43 1.09 

Tb 56 1.39 Sr 48 1.12 Tb 56 1.43 

Y 43 1.06 Y 43 1.00 Tm 45 1.14 

Total
3
 94 

 
Total

3
 94 

 
Y 43 1.09 

      
Total

3
 96 

 1 
% source type end member samples classified correctly by individual properties 

2 
tracer discriminatory weighting used in the mass balance modelling 

3 
% source type end member samples classified correctly by composite signature 

 

 

Table A7.82: The results of GA-DFA for the Porthleven Stream study catchment. 

GA-DFA 1 GA-DFA 2 GA-DFA 3 

Property %
1
 TDW

2
 Property %

1
 TDW

2
 Property %

1
 TDW

2
 

Ce 52 1.41 Ce 52 1.43 Cr 37 1.14 

Cr 37 1.00 Cr 37 1.02 Er 40 1.23 

Eu 39 1.05 Eu 39 1.07 Eu 39 1.19 

Gd 47 1.27 Ni 39 1.08 Ho 44 1.35 

V 66 1.79 Pr 43 1.17 Nd 36 1.12 

Zr 49 1.32 Sm 36 1.00 Tm 33 1.00 

Total
3
 100 

 
V 66 1.82 V 66 2.03 

   
Zr 49 1.34 Total

3
 100 

 

   
Total

3
 100 

    1 
% source type end member samples classified correctly by individual properties 

2 
tracer discriminatory weighting used in the mass balance modelling 

3 
% source type end member samples classified correctly by composite signature 
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Table A7.83: The results of GA-DFA for the Rea Brook study catchment. 

GA-DFA 1 GA-DFA 2 GA-DFA 3 

Property %
1
 TDW

2
 Property %

1
 TDW

2
 Property %

1
 TDW

2
 

Al 44 1.00 Al 44 1.13 Al 44 1.00 

Ga 54 1.23 Ce 58 1.47 Ce 58 1.30 

Ho 54 1.22 Cr 43 1.09 Ga 54 1.23 

Lu 62 1.41 Ga 54 1.39 Gd 63 1.43 

Nd 64 1.45 Ge 70 1.80 Ge 70 1.59 

Sr 62 1.40 Pb 50 1.28 Ho 54 1.22 

Ti 53 1.19 Ti 53 1.35 Nd 64 1.45 

V 60 1.36 Tm 39 1.00 Sr 62 1.40 

Total
3
 98 

 
V 60 1.54 V 60 1.36 

   
Yb 58 1.48 Yb 58 1.31 

   
Total

3
 98 

 
Total

3
 98 

 1 
% source type end member samples classified correctly by individual properties 

2 
tracer discriminatory weighting used in the mass balance modelling 

3 
% source type end member samples classified correctly by composite signature 

 

 

 

Table A7.84: The results of GA-DFA for the Red Tarn Beck study catchment. 

GA-DFA 1 GA-DFA 2 GA-DFA 3 

Property %
1
 TDW

2
 Property %

1
 TDW

2
 Property %

1
 TDW

2
 

As 65 1.28 Bi 69 1.47 Bi 69 1.47 

Gd 51 1.00 Mo 85 1.80 Mo 85 1.80 

Mo 85 1.66 Nd 56 1.18 Nd 56 1.18 

Sm 59 1.16 Tb 47 1.00 Tb 47 1.00 

Tm 70 1.38 Tm 70 1.49 Tm 70 1.49 

Total
3
 100 

 
Zr 72 1.53 Zr 72 1.53 

 
100 

 
Total

3
 98 

 
Total

3
 98 

 1 
% source type end member samples classified correctly by individual properties 

2 
tracer discriminatory weighting used in the mass balance modelling 

3 
% source type end member samples classified correctly by composite signature 
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Table A7.85: The results of GA-DFA for the River Burn (Tavy) study catchment. 

GA-DFA 1 GA-DFA 2 GA-DFA 3 

Property %
1
 TDW

2
 Property %

1
 TDW

2
 Property %

1
 TDW

2
 

Ge 69 1.15 Gd 67 1.47 Gd 67 1.48 

Mo 61 1.02 Ge 69 1.51 Ge 69 1.52 

Nd 66 1.11 Nd 66 1.46 K 45 1.00 

Pr 69 1.16 Pr 69 1.52 Mo 61 1.36 

Tl 60 1.00 Sb 45 1.00 Nd 66 1.48 

Y 68 1.13 Tl 60 1.32 Pr 69 1.53 

Total
3
 100 

 
Total

3
 100 

 
Tl 60 1.33 

      
Total

3
 100 

 1 
% source type end member samples classified correctly by individual properties 

2 
tracer discriminatory weighting used in the mass balance modelling 

3 
% source type end member samples classified correctly by composite signature 

 

 

Table A7.86: The results of GA-DFA for the River East Allen study catchment. 

GA-DFA 1 GA-DFA 2 GA-DFA 3 

Property %
1
 TDW

2
 Property %

1
 TDW

2
 Property %

1
 TDW

2
 

Bi 39 1.29 Bi 39 1.37 As 37 1.13 

Cs 72 2.39 Cs 72 2.55 Bi 39 1.18 

Dy 37 1.22 Cu 39 1.38 Cs 72 2.19 

Er 39 1.29 Dy 37 1.30 Dy 37 1.12 

Ho 45 1.49 Ho 45 1.58 Gd 47 1.42 

Na 57 1.90 Na 57 2.02 Hf 33 1.00 

Sr 37 1.23 Sr 37 1.31 Ho 45 1.36 

Ti 60 1.98 Ti 60 2.10 Tb 37 1.12 

Y 40 1.33 Tm 28 1.00 Y 40 1.22 

Yb 30 1.00 Y 40 1.41 Zr 35 1.06 

Total
3
 96 

 
Total

3
 98 

 
Total

3
 96 

 1 
% source type end member samples classified correctly by individual properties 

2 
tracer discriminatory weighting used in the mass balance modelling 

3 
% source type end member samples classified correctly by composite signature 
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Table A7.87: The results of GA-DFA for the River Greta study catchment. 

GA-DFA 1 GA-DFA 2 GA-DFA 3 

Property %
1
 TDW

2
 Property %

1
 TDW

2
 Property %

1
 TDW

2
 

Cs 66 1.47 As 66 1.10 Cs 66 1.47 

Eu 49 1.11 Bi 60 1.00 Eu 49 1.11 

Ge 66 1.47 Ge 66 1.10 Ge 66 1.47 

Li 45 1.00 Nd 66 1.10 Li 45 1.00 

Mg 66 1.48 V 72 1.20 Mg 66 1.48 

Sb 67 1.50 Total
3
 97 

 
Sb 67 1.50 

Total
3
 97 

    
Total

3
 97 

 1 
% source type end member samples classified correctly by individual properties 

2 
tracer discriminatory weighting used in the mass balance modelling 

3 
% source type end member samples classified correctly by composite signature 

 

 

Table A7.88: The results of GA-DFA for the River South Tyne study catchment. 

GA-DFA 1 GA-DFA 2 GA-DFA 3 

Property %
1
 TDW

2
 Property %

1
 TDW

2
 Property %

1
 TDW

2
 

Cd 43 1.34 As 49 1.51 As 49 1.51 

Cs 52 1.60 Cs 52 1.60 Cd 43 1.34 

Ga 45 1.39 Ga 45 1.39 Co 48 1.47 

Mg 49 1.52 Na 40 1.22 Cs 52 1.60 

Mn 54 1.66 Ni 53 1.64 Ga 45 1.39 

Na 40 1.22 Zn 39 1.22 Mg 49 1.52 

Sc 46 1.42 Zr 32 1.00 Pb 42 1.30 

U 53 1.64 Total
3
 90 

 
Sr 43 1.34 

Zr 32 1.00 
   

U 53 1.64 

Total
3
 92 

    
Zr 32 1.00 

      
Total

3
 90 

 1 
% source type end member samples classified correctly by individual properties 

2 
tracer discriminatory weighting used in the mass balance modelling 

3 
% source type end member samples classified correctly by composite signature 
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Table A7.89: The results of GA-DFA for the St Lawrence Stream study catchment. 

GA-DFA 1 GA-DFA 2 GA-DFA 3 

Property %
1
 TDW

2
 Property %

1
 TDW

2
 Property %

1
 TDW

2
 

Dy 62 1.50 As 41 1.00 As 41 1.00 

Fe 41 1.00 Er 51 1.23 Dy 62 1.50 

Ho 51 1.24 Gd 57 1.40 Fe 41 1.00 

Mg 48 1.17 Ge 58 1.41 Ho 51 1.24 

Nd 57 1.39 Nd 57 1.39 Lu 52 1.28 

Sb 62 1.51 Sb 62 1.51 Pr 58 1.40 

Sr 61 1.48 Tb 50 1.21 Sb 62 1.51 

V 50 1.23 Total
3
 100 

 
Total

3
 100 

 
Total

3
 100 

       1 
% source type end member samples classified correctly by individual properties 

2 
tracer discriminatory weighting used in the mass balance modelling 

3 
% source type end member samples classified correctly by composite signature 

 

 

 

Table A7.90: The results of GA-DFA for the Wye study catchment. 

GA-DFA 1 GA-DFA 2 GA-DFA 3 

Property %
1
 TDW

2
 Property %

1
 TDW

2
 Property %

1
 TDW

2
 

Al 70 1.12 Al 70 1.12 Al 70 1.12 

Er 70 1.12 K 63 1.00 Er 70 1.12 

K 63 1.00 Lu 67 1.07 K 63 1.00 

Rb 69 1.09 Mn 70 1.12 Rb 69 1.09 

Total
3
 93 

 
Total

3
 93 

 
Total

3
 93 

 1 
% source type end member samples classified correctly by individual properties 

2 
tracer discriminatory weighting used in the mass balance modelling 

3 
% source type end member samples classified correctly by composite signature 

 


