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Human phosphodiesterases (PDEs) comprise a complex superfamily of enzymes derived

from 24 genes separated into 11 PDE gene families (PDEs 1–11), expressed in different

tissues and cells, including heart and brain. The isoforms PDE4, PDE7, and PDE8 are

specific for the second messenger cAMP, which is responsible for mediating diverse

physiological actions involving different hormones and neurotransmitters. The cAMP

pathway plays an important role in the development and function of endocrine tissues

while phosphodiesterases are responsible for ensuring the appropriate intensity of the

actions of this pathway by hydrolyzing cAMP to its inactive form 5’-AMP. PDE1, PDE2,

PDE4, and PDE11A are highly expressed in the pituitary, and overexpression of some

PDE4 isoforms have been demonstrated in different pituitary adenoma subtypes. This

observed over-expression in pituitary adenomas, although of unknown etiology, has

been considered a compensatory response to tumorigenesis. PDE4A4/5 has a unique

interaction with the co-chaperone aryl hydrocarbon receptor-interacting protein (AIP), a

protein implicated in somatotroph tumorigenesis via germline loss-of-function mutations.

Based on the association of low PDE4A4 expression with germline AIP-mutation-positive

samples, the available data suggest that lack of AIP hinders the upregulation of PDE4A4

protein seen in sporadic somatotrophinomas. This unique disturbance of the cAMP-PDE

pathway observed in the majority of AIP-mutation positive adenomas could contribute

to their well-described poor response to somatostatin analogs and may support a role

in tumorigenesis.

Keywords: phosphodiesterases, cAMP pathway, pituitary, AIP (Aryl hydrocarbon receptor interacting protein),

acromegaly, gigantism

INTRODUCTION

Human phosphodiesterases (PDEs) comprise a complex superfamily of enzymes classified into 11
families, encoded by 24 genes representing over 100 different proteins. Many of these genes express
several different mRNAs, and the resulting proteins vary widely in their distribution in various
tissues and in various intracellular compartments (1).
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PDE isoforms differ in their kinetics, distribution, and
susceptibility to pharmacological inhibition, as well as selectivity
for their different substrates, 3’,5’ cyclic monophosphate (cAMP)
and 3’,5’ cyclic guanosine monophosphate (cGMP) (1). PDEs
share some common structural characteristics: all PDE isoforms
have a conserved catalytic domain of ∼300 amino acids, located
in the C-terminal portion of the protein, and most PDE isoforms
contain family-specific regulatory regions in their N-terminal
portions (2).

The catalytic regions of each family member differ in amino
acid sequence and tertiary structure, which accounts for their
specificity for substrate (cAMP and/or cGMP) and their ability
to be inhibited by family- and isoform-specific inhibitors. PDE 4,
7, and 8 selectively hydrolyze cAMP, PDE 5, 6, and 9 are selective
for cGMP, while PDEs 1, 2, 3, 10, and 11 hydrolyze both, although
the specificity is variable (1, 3, 4).

The expression pattern of PDE isoforms varies between tissues
and reflects their proliferative state and hormonal stimuli. In
this mini review we aim to highlight the important role of these
enzymes in pituitary diseases, especially the PDE4A4/5 isoform,
encoded by the PDE4A gene, which has been implicated in GH-
secreting adenomas due to its selective interaction with aryl
hydrocarbon receptor-interacting protein (AIP), a known tumor
suppressor gene (5).

PDEs AND cAMP PATHWAYS IN THE
NORMAL PITUITARY GLAND

The pituitary gland is a target of different neuroendocrine
hormones, which play a crucial role in the control of cell

FIGURE 1 | The role of phosphodiesterases (PDEs) in the pituitary gland: After stimulation of somatotroph cells via GHRH, the G protein coupled receptor is activated,

which causes a conformational change of the receptor. The Gsα subunit detaches from the complex, and binds to adenylyl cyclase, which catalyzes the conversion of

ATP to cAMP. Elevation of intracellular cAMP leads to dissociation of the catalytic subunit and the regulatory subunit of protein kinase A (PKA). Activation of protein

kinase A can then phosphorylate a number of targets that regulate effector enzymes and ion channels as well as activates gene transcription that play a role in cell

growth and differentiation. PDEs are fundamental in regulating this pathway, since they are the only enzymes capable of hydrolyzing cAMP to its inactive 5’-AMP form.

PDE4A, PDE4B, PDE4C, PDE4D, PDE8B, and PDE11A are increased in GH-secreting adenomas, possibly as a compensatory mechanism. However, gsp and AIP

mutations interfere with the expression of these PDEs.

differentiation and proliferation, in addition to hormone
secretion, through specific interactions with members of the
superfamily of G protein-coupled receptors (GPCRs) (6, 7)
(Figure 1). The regulatory, usually hypothalamic, hormone
couples to the G protein-coupled receptor in the cell of interest
and a conformational change results in activation of the G protein
complex. In the case of GHRH, the Gsα subunit is released
from the αβγ G protein complex and binds to adenylyl cyclase,
which then catalyzes the conversion of ATP into the second
messenger cAMP. cAMP activates a cascade of other enzymes,
thus amplifying the cellular reaction (3). Following GHRH
activation of somatotrophs cAMP binds the regulatory subunit of
protein kinase A (PKA) (3, 6). The activated catalytic subunit of
PKA then phosphorylate a series of targets that regulate effector
enzymes, ion channels, and activate the transcription of specific
genes that mediate cell growth and differentiation. Additional
effectors of cAMP include the exchange factor regulated by cAMP
(EPAC) protein, cyclic nucleotide-gated ion channels, Popeye
proteins, and possibly additional targets that are still under
investigation (1, 8).

PDEs act as regulators of the cAMP pathway, as they are
capable of hydrolyzing cAMP to its inactive 5’-AMP form, which
is the main pathway for inactivation of cAMP (3, 6). As a

consequence, cAMP can either suppress cell proliferation and
the mitogenic action of growth factors in some cell types, or

conversely, promote the transition from cell cycle G0 to G1 and

stimulate cell growth in others (9, 10). It is unclear, for example,

why cAMP has a proliferative role in the somatotroph cells while
an anti-proliferative role in gonadotroph cells (6, 9, 10). cAMP
signaling is temporally, spatially, and functionally regulated by
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compartmentalization and influenced by a complex network
of cell- and tissue-specific downstream effectors and regulators
(11). In the pituitary, cAMP acts as a key signaling molecule
that controls responsiveness to mitogens and secretagogues,
such as hypothalamic hormones, neurotransmitters, and other
peripheral factors (7) and a dysregulated cAMP-pathway is
involved in the pathogenesis and response to therapy of pituitary
adenomas (11).

PDEs are directly implicated in various endocrine disorders
affecting the pituitary, adrenals, thyroid, testes, and ovaries (3).
Little is known about the expression of PDE isoforms in the
pituitary gland, especially in humans, since the vast majority of
studies on the association between PDEs and endocrine functions
have been performed in vitro or in animals. mRNA studies have
implicated PDE1, PDE2, PDE4, and PDE11A as being the most
highly expressed PDEs in the pituitary (3, 12–14). Interestingly,
PDE4 is the only selective PDE for cAMP. The discovery of
the physiological role of PDEs in the human pituitary has been
hindered due to the lack of availability of specific antibodies.
In addition, mRNA does not always reflect the protein amount
or function due to variations in translation, protein stability, or
posttranslational modifications.

PDE4 isoforms in mammals are encoded by four different
genes (PDE4A, PDE4B, PDE4C, and PDE4D) and each of these
genes encodes multiple isoforms, through the use of specific
promoters for each isoform and alternative messenger RNA
processing (15–17). PDE4s differ from the other PDE families by
their specific catalytic regions (15–17), as well as by the presence
of two “signature” regions called upstream conserved regions
(UCRs), which are located in the N-terminal third of the proteins
and referred to as UCR1 and UCR2 (18). The various isoforms
encoded by each of the PDE4A, PDE4B, PDE4C, and PDE4D
genes are divided into three groups: ’long’ isoforms that contain
both UCR1 and UCR2, “short” isoforms that do not have UCR1
but include UCR2, and “super short” isoforms that do not have
UCR1 and contain a truncated UCR2 (18).

PDE4A8 is a long isoform of the PDE4A family with an N-
terminal region distinct from the other PDE4A long isoforms
PDE4A4, PDE4A10, and PDE4A11 (19–22). It is expressed at
significant levels in various regions of the brain, especially in
regions involved in coordination, sensation and higher cognitive
functions (12, 20). It is also expressed in the pituitary gland (23).

PDE4A4, the human analog of rodent PDE4A5, is an isoform
expressed in a wide variety of tissues, including lung and various
brain regions (18–20, 24, 25). This isoform has UCR1 and UCR2
as well as a unique N-terminal region, which is highly conserved
in mammals and has 88% similarity to the N-terminal region
of rat PDE4A5 (20). This high degree of conservation between
species suggests that the unique amino-terminal region of the
PDE4A4 isoform has specific functions (26). The truncation of
the PDE4A4 N-terminal region alters its enzymatic activities, its
intracellular targeting, and its interaction with other proteins (27,
28). PDE4A5 interacts with AIP and has a reduced expression
in AIP-mutation-positive adenomas (5, 26, 29, 30). PDE4A4 is
expressed in the human pituitary (23). Furthermore, reduced
AIP levels were shown to disproportionally enhance the PKA
pathway activity under PDE4-specific inhibition in pituitary

somatotrophs, pointing out to a link with the disease process
involved in Carney complex (31).

By semi quantitative RT-PCR, PDE4C, and PDE4D were
also shown to be expressed in the normal pituitary while no
expression was detected for PDE8B (14).

PHOSPHODIESTERASES IN
PITUITARY TUMORS

Both PDE4A4 and PDE4A8 expression is increased in GH-,
PRL-, ACTH- and FSH-secreting adenoma cells compared
to their respective normal pituitary cells (23). Interestingly,
the augmentation of PDEs observed in pituitary adenomas
reflects a consequent increase in PKA activating transcription
of cell growth promoting genes, suggesting that these
phosphodiesterases might be increased as a possible adaptation
or compensation to tumorigenesis, in an attempt to suppress the
proliferative drive (23).

Protein-protein interaction between AIP and PDE2A
(PDE2A1, PDE2A2, and PDE2A3) has been described (32).
Although PDE2As has cGMP as their preferred substrate it may
also hydrolyze cAMP (33).

PDE11A has higher expression in GH-secreting adenomas
when compared with normal GH-cells (13), which is also
described as a phenotype modifier in patients with Carney
complex due to PRKAR1A mutations (34). The presence
and role of PDE11A expression and variants were studied
in somatotroph adenomas. Although nonsense and missense
PDE11A variants were found in 20% of patients with acromegaly,
there was no significant difference in variant frequency compared
with controls, suggesting that these variants are unlikely to
contribute to the pathogenesis of GH-secreting adenomas since
the conservation of the wild-type allele of PDE11A remains in the
majority of tumor samples and no significant clinical phenotype
could be observed in patients with variant PDE11A (13).

Interestingly, although PDE8B was not detected in normal
pituitary, this isoform was shown to be overexpressed in
all GH-secreting adenomas, especially higher levels were
observed in gsp-positive tumors (14). This study also showed
that while PDE4C and 4D RNA expression is not increased
in gsp-mutation negative GH-secreting adenomas compared
to normal pituitary, gsp-positive samples had seven times
higher expression (14). As cAMP-responsive element-binding
protein represents the main endpoint of the cAMP pathway,
the observed enhanced phosphodiesterase activities may
significantly impact the phenotypic expression of gsp mutations
in somatotrophinomas (14).

PDE4A FAMILY AND AIP

Compared to other PDE isoforms, human PDE4A4 is specifically
associated with AIP (also called XAP2 or ARA9), a co-chaperone
of HSP90 andHSC70 (26, 35). AIP has several partners, including
the aryl hydrocarbon receptor (AhR), PDE4A5, PDE2A, survivin,
Tom20, hepatitis B virus protein X, thyroid hormone receptor
1 (TRβ1), Epstein-Barr virus encoded nuclear antigen 3 and
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peroxisome proliferator-activated receptor—PPARα (36). This
gene is described as a tumor suppressor gene in the pituitary (37,
38). Loss-of-function germline mutations predispose to pituitary
adenomas, while reduced expression could be lead to altered
epigenetic regulation via microRNAs alterations (39, 40).

AIP is expressed in GH- and PRL-cells and electron
microscopy studies have identified AIP in the secretory vesicles
(5). AIP is abundant in NFPAs (non-functioning pituitary
adenomas), and has been shown in corticotrophinomas, although
not in the secretory vesicles. However, no AIP expression has
been detected in normal gonadotroph and corticotroph cells.
Interestingly, it has been demonstrated that the overexpression
of wild-type AIP reduces the cell proliferation in three different
types of cell lines: GH3 cells, HEK293 cells, and TIG3 fibroblasts
(5). These data confirmed that AIP has tumor suppressor gene
properties (37, 41). Loss of interaction between AIP and PDE4A5
was seen in a β-galactosidase quantitative two-hybrid assay
for pathogenic AIP mutations (R81∗, Q164∗, K103R, Q217∗,
C238Y, Y248del, R271W, V291M, and R304∗ (5, 23). For the
K241E and R304Q variants, a borderline statistical significance
was found for this interaction. For the R16H, V49M, I257V,
and A229V variants, there were no clear reduction in their
binding (23, 29). Many of the changes disrupting PDE4A5—
AIP interaction are known to be important to the stability of
the TPR structure of the AIP (42). Clinical data suggest that
the R16H, V49M, and A229V may be polymorphisms while
the I257V variant affects the TPR structure and clinical data
would support a functional impact (29). We summarized data
from variants tested in the PDE4A4/5—AIP interaction assay or
with PDE4A4 or PDE4A8 immunostaining (Table 1), gathering
clinical, frequency, prediction, and experimental data. We note
that few variants were tested withmore than one functional assay.

There are different PDE4A4 and PDE4A8 expression patterns
in somatotroph adenomas from patients with AIP mutations
compared to patients with wild-type AIP (Table 2). It has
been previously shown that the C-terminal part of AIP is
a key for its functional effects. Mutations affecting the C-
terminal end lead either to nonsense-mediated decay of the
abnormal RNA (probably relevant for p.E222∗), create a
protein with significantly shortened half-life [as shown for
p.F269_H275dup (44) and p.R304∗ (35)], or lose interaction
with protein partners (91). AIP mutation-positive samples
had significantly decreased PDE4A4 expression compared to
sporadic somatotroph adenomas, suggesting that AIP mutation-
positive somatotroph cells are unable to upregulate PDE4A4
expression (30).

For PDE4A8, although no interaction with AIP has been
shown due to the fact that this protein cannot be produced in
vitro for the two-hybrid assay, a reduced protein expression
was observed in AIP mutation-positive samples (30). These
differences in PDE4A8 protein expression suggest that,
similarly to PDE4A4/5, AIP may support expression or stability
of PDE4A8, leading to closely regulated cAMP pathway
activity (30).

PHOSPHODIESTERASE INHIBITION

The use of PDEs inhibitors, either selective or nonselective,
represents an effective targeted strategy for the treatment of
many human diseases, such as respiratory disorders, erectile
dysfunction, prostate cancer and inflammatory diseases (92–95).

The inhibitory effect of heterologously expressed AIP on
cAMP levels has not been altered by the general inhibition of
phosphodiesterases (by IBMX) or the PDE4-specific inhibitor

TABLE 2 | Phosphodiesterases (PDE) isoforms and their respective protein/RNA expression in different pituitary cells types.

Normal pituitary Sporadic

GH-secreting

Adenomas

Sporadic PRL-

secreting adenomas

Sporadic ACTH-

secreting Adenomas

Sporadic

Non-functioning

adenomas (FSH+)

GH-secreting

adenoma AIP

mutation

PDE4A (14) Presence of RNA

in GH cells

Gsp+ RNA ↑

Gsp– RNA =

NA NA NA NA

PDE4A4 (23, 30) Presence of the protein

in GH/PRL/ACTH/FSH

cells

↑ ↑ ↑ ↑ F269_H275dup =

R304* =

E222* =

PDE4A8 (23, 30) Presence of the protein

in

GH/PRL/ACTH/FSH

cells

↑ ↑ ↑ ↑ F269_H275dup ↓

R304* =

Q164* ↓

PDE4B (14) Presence of RNA in

GH cells

Gsp+ RNA ↑

Gsp- RNA ↑

NA NA NA NA

PDE4C (14) Presence of RNA in

GH cells

Gsp+ RNA ↑

Gsp- RNA =

NA NA NA NA

PDE4D (14) Presence of RNA in

GH cells

Gsp+ RNA ↑

Gsp- RNA =

NA NA NA NA

PDE8B (14) Absent GH cells Gsp+ RNA ↑

Gsp- RNA ↑

NA NA NA NA

PDE11A (13) Presence of the protein

GH cells

Protein ↑ NA NA NA NA

All comparisons are in relation to the respective normal cell. ↑ increase ↓ decrease = equal.
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rolipram. Furthermore, the GH secretion was not altered by
the use of these inhibitors (45). However, it has been shown
that in rat somatotrophinoma GH3 cells, AIP regulates cAMP
signaling and GH secretion independently of the AIP–PDE
interaction. In the rat somatotrophinoma GH3 cells treated
with forskolin, a drug that increases the cAMP levels, it was
shown that the AIP overexpression could attenuate the cAMP
response to the drug, even in the absence of PDE activity, while
AIP knockdown activates the cAMP pathway. Although these
effects are not observed in untreated cells, these results suggest
that AIP may itself act as a tumor suppressor by reducing
cAMP signaling (38, 45). However, GH-secreting adenomas with
positive AIP mutation show reduced phosphorylation of the
mitogen-activated protein kinases (MAPKs) 3 and 1 as well as
reduction of phosphorylation of the cAMP response element
binding protein (CREB). Also, AIP knockout causes reduced
CREB phosphorylation in mouse embryonic fibroblasts although
AIP knockdown rat somatotrophinoma GH3 cells do not show
any of these changes on cAMP effectors (38, 96). To this point,
the binding between PDE4A5-AIP does not seem to be the only
regulator of this pathway.

In rat corticotroph cells, cAMP levels are related to selective
activity of PDE1 (PDE1A or PDE1C) or PDE4, depending
on the type and intensity of stress conditions (97). On the
other hand, mouse corticotroph cell line AtT-20 with forskolin-
induced elevated cAMP levels showed no response to IBMX

with or without rolipram (98). Further studies are needed to
clarify the possible therapeutic role of PDE manipulation in
pituitary adenomas.

SUMMARY

The cAMP pathway plays a key role in somatotroph
tumorigenesis, as suggested by altered cAMP pathway in
GNAS, PRKAR1A, AIP, and GPR101 mutated samples.
Targeted therapies influencing this pathway may have a
key role in the medical treatment of these currently often
treatment-resistant conditions.
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