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Abstract: In this paper, systematic design and analysis of thin-film graphene-silicon solar cells 

with the addition of Anti-Reflection Coating (ARC), hexagonal Boron Nitride (h-BN) 

interlayer and decorated with Au/Ag NPs infused in rear ZnO: Al buffer layer is reported. The 

3D NPs are located on the top and rear side of the solar cell. Initially, we simulated a reference 

2D graphene-silicon solar cell with highest simulated short circuit current density (Jsc) 30mA/ 

cm2 and Power Conversion Efficiency (PCE) of 10.65%. Using 2D and 3D Full Vectorial Finite 

Element Method (FVFEM) simulations, we significantly improved the Jsc by 6.2mA/ cm2 from 

30mA/cm2 to 36.21mA/cm2 and PCE from 10.93% to 12.03%. We utilised a patterned graphene 

sheet with small nanoholes to increase surface and optical conductivity. Plasmonic NPs 

embedded in a graphene-silicon solar cell to increase plasmonic resonance effects is 

investigated. The 3D position of the patterned graphene, rear buffer layer stack, size, shape, 

and periodicity of NPs were well-controlled and analysed under certain parametric variation 

conditions. Ag NPs located inside textured ZnO: Al detached to metal contact and small 

periodic Au NPs decorated beneath h-BN interlayer lead to highly efficient light confinement 

and increase photon current generation. The proposed device exhibits 12.03% PCE, maximum 

light absorption over 80% and high overall Quantum Efficiency (QE). Furthermore, this 

structure offers major light trapping advantages, including significant EM light propagation 

throughout the solar cell structure.  

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 
During the past few years, graphene has been employed in a variety of semiconductor 

heterostructures for optoelectronic devices such as solar cells, photosensors, optical detectors 

etc. [1-4]. However, it has always been a dilemma in choosing the perfect material and layer 

thickness for heterojunction assemblies. Two-dimensional (2D) graphene has been proved to 

be a promising material for photonic applications as it offers high optical/electrical conductivity 

and transparency; still, the absorption rate in graphene is limited and can be tuned by adjusting 

layer thickness [5-6]. Graphene has promising scope in Schottky junction or graphene on 

silicon-based solar cells. In graphene-on-Silicon Schottky junction solar cells graphene can 

function as transparent electrode for light transmission as well as carrier transport and 

separation phenomena, where a graphene film can be transferred onto n-silicon semiconductor 

at room temperature offering low cost and easy fabrication compared to traditional Schottky 

junction solar cells [7-10]. Recently, various approaches have been made to increase power 

conversion efficiency of graphene-silicon solar cells by using several layers of graphene, 

chemical doping of graphene, addition of anti-reflection coatings, presenting light-trapping 

layers, introducing hole transport layer, plasmonic enhancement via nanoparticles, graphene on 

III-V group compounds, adding oxide buffer layers on top or bottom of substrate [11-20]. 

According to recently reported structures, the power conversion efficiency of graphene-silicon 

solar cells was improved in different ways from 8% to 9% [13, 21, 22]. When these solar cells 

are combined with anti-reflection coatings, the light refractions were significantly improved in 

case of Schottky junction solar cells, but still, the efficiency is low due to low barrier height of 
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graphene-silicon junction which causes an increase in leakage current and low open-circuit 

voltage [23]. Numerous approaches reported tackling this problem such as insertion of fragile 

insulating layer as an electron blocking layer in metal-insulator-semiconductor structures 

serving as preventing layer for the diffusion of carriers from silicon to graphene and less carrier 

recombination at interfaces [24-27]. Additionally, the thickness of this insulating sheet between 

graphene and silicon should be very selective and uniform to avoid high series resistance 

effects. The h-BN a mechanical referent of graphene appears to be an attractive candidate as an 

interfacial insulating layer for graphene-silicon solar cell structures [28-31]. h -BN can work as 

an effective electron blocking or hole transporting layer due to its exceptional structural 

properties and suitable band arrangement with semiconductor substrates [29, 31]. 

    Several exceptional functionalities of 2D/3D photonic device assemblies have been 

established recently with a continual focus on heterojunction photovoltaics. Though the key 

novelty of such devices was in their surface interfacial and material logs. Moreover, inserting 

plasmonic NPs on substrate/Transparent Conductive Oxide (TCO) layers, depositing buffer 

layer, and interlayers for carrier transport were used frequently [32-37]. Moreover, graphene 

configured with semiconductor essentially allows the derivation of the surface junction with a 

central driving voltage for electrons and holes transport across 2D/3D device junction. 

    In this work, initially, we have simulated two recent reference device structures. Firstly, an 

h-BN interlayer between graphene and n-Si device structure to increase the photovoltaic 

performance of graphene-silicon solar cells. Secondly, another structure is simulated with ARC 

on top of the device and HNO3 vapours doping under the graphene layer for efficient light 

management [38]. To improve the overall proficiency of graphene-silicon solar cells, we 

proposed a novel 2D and 3D device configuration and observed dramatic enhancement in PCE 

along with optical absorption. The simulated Jsc for reference graphene-silicon solar cell was 

achieved by 30mA/ cm2 and 25.2mA/ cm2 with and without h-BN interlayer, respectively [38]. 

Also, we simulated reference Jsc by 30mA/ cm2 and 22mA/ cm2 with and without TiO2 layer, 

respectively [38]. 

    To establish a highly efficient device assembly, amplify the Jsc and provide a better 3D 

interior vision, the following exclusive techniques have been employed in this research. 

Graphene layer was perforated with an intervallic arrangement of nanoholes at the top of a unit 

cell to tune the optical surface conductivity and optical absorption throughout the device. TiO2 

as ARC to decrease the incident light reflections from the solar cell surface. Integration of 

Au/Ag NPs to boost the optical absorption through plasmonic resonance effects through an 

active region that leads to increased Jsc. An insertion of thin interlayer or carrier transporting 

layer between graphene and substrate to increase surface junction barrier height. We introduced 

a textured ZnO: Al buffer layer objectively on the rear side of a solar cell to surge surface 

roughness, increase photocurrent, to de-convolute plasmonic effects from texturing 

contributions, and substantial light detention in ZnO: Al. An addition of well-defined plasmonic 

Au and Ag NPs deposited inside ZnO: Al buffer layer on the backside of the device to increase 

electric field and optical confinement or light trapping characteristics. Plasmonic thin-film 

graphene solar cells (revised with metallic nanostructures) often exhibit improved light 

absorption due to surface plasmon resonance effects. However, the plasmonic field localisation 

may not be knowingly advantageous to increase photocurrent and PCE for all types of cell 

conformations. For instance, the integration of random metallic NPs into thin-film solar cells 

often present supplementary texturing. This texturing might also contribute to improving the 

photon-current generation. The proposed configuration yields the most significant 

improvement in terms of Jsc and QE.  

2.  Simulation method and Structure description 

Schematic simulated design and analysis of graphene-silicon thin-film solar cell are presented 

in Fig. 1.   The electromagnetic field features are analysed by using FVFEM [39]. In order to 

better evaluate the photon-capturing performances of proposed configuration, 2D and 3D 



simulated visualisation of Transverse Electric (TE) and Transverse Magnetic (TM) fields and 

power loss profiles are displayed. In this structure, graphene can function as a transparent front 

sheet with high optical conductivity deposited on h-BN interlayer. In this heterojunction 

configuration, PCE is amplified from 10.93% to 12.03% with an improved nanoarchitecture 

and interactive interface engineering design. To increase the performance of graphene and 

semiconductor-based heterojunction device, plasmonic excitation can be used whereby locating 

NPs on the top front and rear side of absorber or TCO layers.  

 

 
 

Fig. 1. 3D cross-sectional view of the proposed nanostructured graphene-silicon solar cell light-absorbing configuration 
with anti-reflection coating, graphene on h-BN interlayer, and Au/Ag NPs. Schematic of the distance between a 

semiconductor and the h-BN layer under graphene sheet insight is presented. Au and Ag NPs dimensions were 

systematically varied by changing the period of front Au NPs, diameter and position of the Ag nanostructure within 
the ZnO: Al buffer layer. 

The semiconductor n-silicon absorber layer is sandwiched between top thin dielectric spacer 

SiO2 and rear ZnO: Al buffer layer. The front stack is decorated with periodic Au NPs of height 

40nm and width 0.3µm with different period of 0.15µm  and 0.18µm  consecutively between 

two NPs. One reason for the use of Au NPs on a dielectric spacer layer is to improve the 

percentage of light energy stored into embedded layer through plasmonic effects and then 

converted to electrical power. By depositing Au NPs in the rear and front TCO buffer layer, we 

can take advantage of localised surface plasmon resonance possessions, which means 

plasmonic NPs scatter sunlight, thus allowing a higher percentage of light to renew into 

photocurrent that leads to growing solar cell PCE. Consequently, Au NPs are prevalent due to 

their stability and broad plasmonic resonance effects. The silicon thickness is 0.3µm , and a 

SiO2 dielectric spacer interlayer is used under Au NPs with thickness 20nm which acts as a 

passivation layer, which hinders the formation of Au NPs recombination centres.  

 

    In order to conceivably de-convolute plasmonic properties from texturing contributions, it is 

necessary to assimilate well-organized rear metallic nanostructure in solar cells. Since they can 

also present much more definite optical scattering and absorption characteristics and contribute 

towards solar cell power enhancement. The focus on light generated current improvement lead 

to a substantial extent stem from other factors, such as increased surface roughness of the TCO 

or buffer layers. 

 

    Surface texturing can affect the magnitude and extreme absorption wavelength of the 

photovoltaic device mutually. Therefore, we have used Ag NPs embedded in rear ZnO: Al 

buffer layer where the thickness of ZnO: Al is used to be kept constant at 120nm throughout. 

The distance between back Ag metal electrode and Ag NP structure can also be varied by 

changing the position of rear Ag NPs within the ZnO: Al buffer layer. In this case, we kept the 

distance of Ag NP structure at 20nm away from the Ag back electrode. The adjusted height of 

Ag NPs is 60nm to 80nm where the top and bottom NPs width is also kept constant at 90nm 

and 210nm respectively with the period between two NPs 0.35µm . The purpose for the practice 



of rear Ag NPs is that Ag is frequently preferred primarily for plasmonic applications amongst 

several metallic materials and it also offers low absorption losses and advanced optical cross-

section. ZnO: Al has gained impressive attention as transparent conductive oxide films as well 

as window layer material in silicon thin-film solar cells applications [40].  

 

    The absorption losses at rear interfaces in-plane silicon/Ag back reflector solar cells are high 

because the extinction coefficient of silver back contact is high. Hence, to minimise absorption 

losses at a wide range of wavelengths, we inserted a textured buffer layer in the proposed device 

at the silicon/Ag back metal interface. The dielectric functions were modelled using the Drude-

Lorentz model and refractive index values for considering materials (Si, SiO2, Ag, TiO2) were 

taken from the literature [41,42]. The dielectric constant of Au was specified by the Drude 

model [41]. 

 

    The proposed solar cell device is simulated for light wavelength range 350nm-1200nm, and 

optical absorption is calculated for TE/TM electromagnetic field. The Jsc with respect to Voc 

is calculated under AM1.5 solar spectrum with standard light intensity 1000W/ m2. The 

moderated absorption spectrum has been studied by using 2D and 3D FVFEM computation 

technique. This method numerically resolves Maxwell’s equations under periodic, Floquet, and 

scattering boundary condition, open boundary settings, as well as the application of Perfect 

Matched Layers (PML) [39]. 

 

    The focus of this work is to improve photocurrent and the spectral response of organised 

arrangement of graphene-silicon solar cell nanostructures by considering specific layer material 

geometry and nanoparticle dimensions. Our study shows that the significant contributions of 

each material deposition and geometry outline affect the optical and electrical properties of the 

device. To enhance the overall performance of a device, an exclusively accessible way is to 

engineer the interfacial band structure to control the carrier transport (electron and hole 

generation and transference). For Schottky intersection heterojunction solar cells, the built-in 

electric field or voltage across depletion region at interfaces plays an imperative role because 

it not only motivates photo excited charge carriers in the direction of electrodes but also evades 

charge carrier recombination. The representative current density versus applied voltage (J-V) 

characteristics for the diode is calculated by using the following expressions [43]; 

 

𝐽 = 𝐽0 [𝑒𝑥𝑝 (
𝑞𝑉

𝑁𝑘𝐵𝑇
) − 1]                                      (1) 

 

Where J is current density of device, J0 is reverse biased saturation current density, q is an 

electronic charge (1.6 x 10−19 C), kB is Boltzmann constant (1.38 × 1023 JK−1), T is the 

temperature (300K), V is the voltage across diode, and N is the ideality factor. 

Open circuit voltage (Voc) can be derived when the current through the cell is zero.  Voc can 

be estimated from total photogenerated current and is expressed as [43, 44]; 

𝑉𝑜𝑐 = 𝑁𝑉𝑇ln (1 +
𝐼𝑝ℎ

𝐼0
)    (2) 

Here VT is thermal voltage (kB*T/q). Iph is photogenerated current, I0 is reverse biased saturation 

current. However, at both of these operating points, the solar cell power is zero. The solar cell 

power can be calculated by [43,44]; 

  𝐹𝐹 =
𝑃𝑚𝑎𝑥

𝑉𝑜𝑐𝐼𝑠𝑐
                                    (3) 

 

   𝑃𝑚𝑎𝑥 = 𝑉𝑜𝑐𝐼𝑠𝑐𝐹𝐹                                                       (4) 



Here η denotes solar cell efficiency.  

  𝜂 =
𝑉𝑜𝑐𝐼𝑠𝑐𝐹𝐹

𝑃𝑖𝑛
                                                             (5) 

The electric field amplitude of incident wave was taken 1V/m. Time average power loss Q (x, 

y, z) in a node inside the absorber domain was analyzed via electric field distribution. E (x, y, 

z) is the electric field strength at a corresponding excitation wavelength.  

Power loss is considered via electromagnetic field distribution by using the following Eq. (6) 

[32, 43]; 

𝑄(𝑥, 𝑦, 𝑧) =
1

2
𝑐𝜀0𝑛𝛼|𝐸(𝑥, 𝑦, 𝑧)|2                                       (6) 

Where c is the speed of light, ε0 is free space permittivity, α is the absorption coefficient (α = 

4πk/ λ) with k being the imaginary part of complex refractive index, n is the real part of complex 

refractive index, λ is the wavelength. The optical absorption ‘A’ is considered through the 

integration of power dissipation inactive regions of solar cell device as well as quantum 

efficiency investigation was made by using details from our recently published work [32]. 

    In the proposed device, the unit cell is arranged with nanoholes in the graphene layer in a 

periodic way, and the period between two holes is kept 300nm. The cell is designed such that 

graphene is perforated with spherical nanoholes on the top of semiconductor stack detached by 

an insulator layer. Here the diameter ‘d’ of circular nanoholes is 180nm, and the adequate 

thickness of graphene is set to be 100nm. The graphene is deposited on interlayer or thin hole 

transporting layer with 30nm thickness. The thicknesses of the insulator and semiconductor 

layer are 20nm and 300nm, respectively. The insulator or dielectric spacer layer is treated as 

the lossless dielectric material. The surface conductivity of graphene can be described by using 

interband and intraband terms [33]. 

    To analyse graphene conductivity of plane sheet with nanohole patterns, we have used 

surface conductivity terms with the real and imaginary part of the extinction coefficient. Hence, 

in our simulations, we have defined graphene as a Drude-Lorentz model using a thin sheet with 

plasma frequency dependent on Fermi level. The surface conductivity of graphene reduced to 

Drude-like model and effective anisotropic permittivity of graphene term with random phase 

approximation including interband and intraband evolutions are already explained and derived 

in the latest published research [33]. It is supposed that entire photons are captivated to generate 

electron-hole pair and that discrete light generated carriers can arrive at opposite contact 

electrodes.  

    To balance the simulation time and accuracy in the obtained results, the uniform mapped 

mesh grid inside graphene layer is used while auto non-uniform mesh grid (free triangular) is 

adopted for other regions. Periodic and scattering boundary conditions are employed in x, y and 

z directions, and PMLs are utilised along the propagation of the incident plane wave. Our 

FVFEM simulations confirm that the geometry of our proposed structure and position of front 

and rear NPs within the buffer layer has an immense influence on light trapping properties. 

Moreover, the light absorption and photogenerated current are enhanced when particles with 

specific radii in the upper and lower stack are considered. Our proposed structure geometry 

exhibits a high optical absorption, significant improved Jsc of 36.2mA/cm2, PCE of 12.03% 

and substantial QE across the solar spectrum with an optimised patterned graphene layer and 

h-BN interlayer decorated with Au NPs. 

3. Results and discussions  



 

Graphene-silicon solar cells are experiencing significant interest due to high-scale 

photovoltaics integration and high efficiency vigorous solar technologies [9,10,15]. Still, the 

performance effectiveness of graphene on n-silicon or single layer junction solar cells is less 

than that of wafer-based silicon p-n or p-i-n junction solar cells, which is due to a low Schottky 

barrier height. The barrier height of Schottky junction is calculated by subtracting work 

function of n-silicon from graphene work function (φtt - φSBH = φtt – χ n-Si) which equals to 

0.65eV and is less than the bandgap of n-silicon semiconductor (1.1eV). Moreover, the Voc is 

also defined as a function of φSBH. In this case, the obtained open circuit voltage for graphene-

n silicon heterojunction solar cells is typically less than Voc obtained for p-n, p-i-n/silicon solar 

cells. Another reason for low barrier height or less efficiency could be the deposition of 

graphene sheets direct onto metallic particles (metallic catalytic surfaces) through the chemical 

vapour deposition process. The third cause for low graphene-silicon solar cells efficiency with 

Schottky junction is the higher sheet resistance of graphene layer (100-1000 Ωcm-1) then doped 

silicon. This high resistance of graphene sheet lead to increased parasitic losses, an increase in 

series resistance, and a decrease in fill factor. Numerous routes have been revealed to overcome 

these issues for the low efficiency[44]. 

 

    Plane graphene-silicon solar cells typically have a bare graphene surface where a graphene 

layer on planar silicon substrate creates a Schottky junction with slightly low power conversion 

efficiency of 1.5% under AM1.5 solar spectrum conditions. This planar graphene on silicon 

cells is systematically considered to comprehend the charge transport properties and to utilise 

as an initial structure. Consequently, existing developments in interfacial science to achieve 

high efficiency include maximum optical absorption via plasmons and tuning graphene work 

function by chemical doping or deposition on carrier blocking/transport interlayer. 

 

    In this study, we have simulated an initial reference planar structure of graphene- n-silicon 

solar cell by introducing h-BN interlayer where the geometry parameters are taken accordingly 

from the reference structure [38] Fig. 2(a). The h-BN interlayer deposited under the graphene 

layer seems to be an appealing candidate as an interfacial layer due to its wide bandgap for 

graphene-silicon solar cells. Also, Au plasmons on the SiO2 layer play a vital role to increase 

carrier conductivity and solar cell efficiency [37].  

 

    The simulated structure configuration for a graphene-silicon solar cell is illustrated in Fig. 

2(a) where a square window was defined initially on 300nm thick SiO2 as dielectric blocks, 

exposing a single crystal of n-silicon substrate wafer as a semiconductor layer for carrier 

generation. On top of this dielectric SiO2 blocks, two Au plasmons of 50nm thickness were 

introduced nearby the exposed window as the front electrode to collect charge carriers from 

topside. Ag metal with thickness 80nm was deposited on the rear side of SiO2/n-Si stack as the 

back electrode, and back metal reflector to collect carriers from the bottom side (Fig. 2(a)). 

Graphene sheet and h-BN layers were deposited accordingly onto Au/SiO2/Si stack. Optical 

properties of h-BN combined with graphene, energy band spectra and J-V characteristics have 

been analysed by considering a recent research on graphene-on-silicon solar cell [37] and 

illustrated in Fig. 2(b) and 2(d) [37].  

 



 

Figure 2. a) Schematics and photovoltaic characterisation of an efficient graphene-silicon solar cell by introducing a 
hole-transporting interlayer h-BN between graphene and Si, b) Energy band diagrams of the Gr-Si Schottky junction 

solar cells without and with an h-BN electron blocking layer [37], c) Colloidal ARC TiO2 on the graphene surface, d) 

Simulated J-V characteristics of the Gr-Si solar cells with and without an h-BN interlayer, e) Simulated J-V 
characteristics of G-Si solar cell with TiO2 coating and after HNO3 vapour deposition i. e, with and without ARC. 

To amplify the optical absorption through the application of metal plasmonic is a straight route 

to increase the efficiency of graphene-semiconductor photovoltaic devices [45]. Mainly the Au 

plasmons can increase Jsc that can be extracted from the solar cell. Au plasmons of variable 

thickness on graphene can also be used as a hole conducting dopant. Here the NPs underneath 

graphene exhibit an enhancement in work function and electrical conductivity due to charge 

transport between graphene and metallic plasmons. Thus, the PCE achieved by using plane Au 

plasmons underneath graphene and silicon substrate was between 7%-8% [45]. Fig. 2(d) and 

2(e) shows the J-V characteristics of our simulated reference graphene on silicon solar cell with 

and without h-BN interlayers under sun’s spectral irradiance 1000W/ cm2. The Jsc 

measurements were taken by using a numerical model in Finite Element analysis (Eq. (1)). We 

have observed that the insertion of h-BN interlayer has a significant impact on device 

effectiveness. Compared to the planar graphene-silicon solar cell, the device exhibits an 

improved photovoltaic performance. Simulated reference Jsc and Voc for graphene-silicon 

solar cell without h-BN layer is 25.2mA/ cm2 and 0.41mV. Insertion of the h-BN layer increases 

the Jsc by 4.8mA/ cm2 and photocurrent increase up to 30mA/ cm2 with voltage 0.42V, which 

significantly increase the solar cell PCE. 

 

    Fig. 2(b) shows the energy band diagram [37]. Also, Fig. 2(d) represents the J-V 

characteristics of a graphene-silicon solar cell with and without interlayer. An explicit 

rectifying behaviour is observed for both cases, which is consistent with the development of a 

Schottky barrier junction between graphene and silicon interface. To better understand the 

impact of insertion of h-BN on photocurrent and solar cell competence, the physical mechanism 

of the device before and after the h-BN layer is analysed. As shown in Fig. 2(b), the 



photovoltaic progression in such device is dominated by a Schottky barrier formed due to the 

energy variance (Fermi level difference) or work function alteration between graphene and 

silicon [37]. 

 

    The built-in electric field at graphene-silicon junction splits the photogenerated carriers 

(electrons and holes) to two ways, where electrons pull up toward n-silicon layer and holes drift 

to graphene electrode, which leads to generating photocurrent (Fig. 2(b)) [37]. The built-in 

electric field also avoids diffusion of electrons from the n-silicon layer to graphene electrode 

and therefore decrease the recombination at graphene side. Nevertheless, the surface potential 

φ2 in silicon is quite low in a range of 0.6 - 0.7eV, which is defined as φ2 = WG – WSi. This 

potential can further decrease under light irradiation and thus, low barrier height. Such low 

barrier height will undoubtedly result in excellent leakage current and therefore, high Jsc. To 

minimise this adverse leakage carrier recombination, a thin h-BN interlayer with wide bandgap 

was employed to serve as an active electron blocking layer between graphene and silicon (Fig. 

2(a), (2(b) [37]).  

 

    It was reported that h-BN films exhibit a negative electron affinity (χ h-BN < 0eV) [46]. Hence, 

the conduction band offset (∆EC) of h-BN/Si is resolute to be higher than 0.45eV by means of 

the electron affinity of silicon (χ-Si = 0.45eV), which offers a significant barrier for electron 

passage from silicon to graphene by confining electrons in an active silicon region. In the 

meantime, the valence band offset (∆EV) is assessed to be less than 0.63eV from the numerical 

equation ∆EV = Eg hBN – Eg Si – ∆EC by taking the room-temperature band gaps of h-BN 

(5.80eV) and Si (1.12eV). The small ∆EV tolerates the active transport of holes from silicon to 

graphene through thin h-BN sheet under the built-in electric field, which is a vital factor to 

avoid an unwanted rise in series resistance of cells. Thus, this band diagram demonstrates that 

introduction of the h-BN layer can effectively increase the photocurrent of graphene-silicon 

solar cell from 25.2mA/ cm2 to 30mA/ cm2. The calculated Fill factor and power conversion 

efficiency for solar cell without h-BN layer were 0.681 and 7.08 % and with the addition of h-

BN interlayer is 0.71 and 8.94%, respectively. From the above observations, we can also 

perceive that interface contaminations arising may cause trap states and therefore become 

recombination centres for carriers, leading to lower FF and PCE. 

 

    Another simulated structure configuration consisting of a planar graphene-silicon 

photovoltaic device with the addition of ARC on graphene monolayer is shown in Fig. 2(c) 

[38]. The organic functionalisation or to modify graphene electronic band structure by using 

surface doping is the most appealing approach to tune the work function of graphene and sheet 

resistance. Here various chemical materials for surface doping have been used recently where 

Nitric acid (HNO3) vapours can slightly increase the work function of graphene and Schottky 

barrier height between graphene and the silicon layer. 

 

    For efficient light refraction and optical management in solar cells, ARC along with 

plasmons is also widely used to reduce the photons loss when the light gets reflected from the 

photovoltaic device. Here we have simulated a planar graphene-silicon solar cell structure with 

TiO2 anti-reflection coating to reduce the light reflections as well as to increase photocurrent 

and graphene efficiency. HNO3 vapours are utilised underneath the graphene layer as a doping 

layer to increase graphene work function as can be seen in Fig. 2(c). Here TiO2 is primarily 

used due to its refractive index, large bandgap and suitable processing into thin uniform layers. 

We have analysed the device through J-V characteristics as demonstrated in Fig. 2(c) and 2(e). 

The planar graphene-silicon solar cell without ARC showed low Jsc 22mA/ cm2 and Voc 0.425, 

and Jsc increased to 30.2mA/ cm2 with Voc 0.434V after addition of TiO2 thin layer and HNO3 

vapours beneath graphene layer, as presented in Fig. 2(e). 

 



    The influence on Voc was observed to be very negligible. The calculated FF and solar cell 

PCE for low Jsc was 0.69% and 6.45% respectively, and PCE for higher Jsc values (with the 

addition of ARC and HNO3 vapour) was 9.43%. Here the primary function of the top coating 

is to reduce top light reflections, maximum optical absorption and to increase Jsc, and role of 

HNO3 vapours with graphene layer is to increase FF and Voc. So, these combined effects lead 

to the higher PCE of solar cells.  The TiO2 leads to increase the internal PCE from 6.45% to 

9.43% significantly, as demonstrated in Fig. 2(e). 

 

    In order to minimise the carrier recombination, increased guided resonance, enhance optical 

coupling in the silicon layer and photocurrent generation, we have introduced an efficient 

graphene-silicon solar cell assembly. This proposed device structure has an interlayer of h-BN 

under patterned graphene layer, Au NPs deposited on SiO2 thin layer, an exceptional rear stack 

of textured ZnO: Al buffer layer consuming Ag NPs of specific dimensions. We have analysed 

two different shapes of Au NPs to observe critical coupling of light in additional absorber layers 

as can be seen in Fig. 3(a) and 3(b).  A patterned graphene sheet with nanoholes in a periodic 

array on top of solar cell stack is utilised, as shown in Fig. 3(c). Here, the unit cell of graphene- 

silicon solar cell is settled with nanoholes on the graphene layer in an intervallic way with the 

period between two holes 300nm (Fig. 3(c)).  

 

 
 

Fig. 3. a) 3D cross-sectional view of the proposed graphene/silicon solar cell light absorbing nanostructure design with 

anti-reflection coating, graphene on h-BN interlayer, and periodic square Au NPs of thickness 40nm, b) dome shaped 
front Au NPs with diameter 0.03µm , c) 3D visualisation of patterned graphene layer perforated with circular nanoholes 

on the top of proposed thin-film solar cell. 

 

Graphene attains virtuous electronic possessions, but it is still very challenging to integrate 

graphene into nano-photovoltaic devices by keeping its mechanical stability maintained when 

combining with other thin insulating films. This device is designed with incorporation of 

patterned graphene sheet so that graphene is perforated with circular nanoholes on the top of 



Au NPs and semiconductor stack separated by an insulator layer.  Here the diameter ‘d’ of 

circular nanoholes is 180nm, and the sufficient thickness of graphene is set to be 100nm. 

 

    This structure shows a guided resonance at a broad wavelength spectrum and increases light-

matter interaction through critical coupling and good transport of charge carriers. The charge 

carriers’ passage across ultrathin interlayers through a mechanism called tunnelling can 

improve the performance in terms of Jsc and optical absorption in the active region of solar cell 

layers. 

 

 

Fig. 4: a) J-V characteristics for proposed graphene-silicon solar cell configuration with front and rear NPs and ARC. 

b) Simulated J-V characteristics of proposed configuration with and without h-BN interlayer c) J-V characteristics of 

proposed configuration with different period and width of front Au NPs. d) J-V characteristics of proposed 
configuration with different dome-shaped front Au NPs and with constant width of rear Ag NPs. 

The proposed solar cell device instigate the critical coupling of light trapped inside the active 

region through increased multiple scatterings that leads to high absorption. We demonstrate 

that by using interlayers or dielectric spacer between graphene-silicon and back textured 

nanostructure, and total absorption can be achieved that leads to a maximum Jsc of 36.2mA/ 

cm2. We have improved the Jsc in a pattern of utilising h- BN interlayer and without interlayers, 

by varying the Au NPs width from 0.13µm  to 0.35µm  by means of initial structure simulations 

as shown in Fig. 4. Further, we analysed the Jsc for proposed configuration with the circular 

shape of Au NPs (Fig. 3(b)) and examined the photocurrent values by integrating different 

period and diameter of Au NPs from 0.03µm to 0.08 µm as shown in Fig. 4(c) and 4(d). The 

number of photons absorbed in graphene-silicon solar cell assembly is higher and leads to an 

increase in solar cell PCE as confirmed by the QE graphical data and optical absorption 

(described later). Another advantage of this structure is that rear NPs assembly with textures 

and addition of ZnO: Al layer can efficiently take part in achieving guided resonance at critical 

angles and coupling of light in silicon layers. 

 

As can be seen from Fig. 4(a), the J-V characteristics were observed for the proposed 

configuration of the solar cell with TiO2 ARC, graphene sheet on top of h-BN interlayer. 



Periodic Au NPs were integrated on SiO2 dielectric layer, n-silicon semiconductor, and rear 

structure with ZnO: Al is presented as shown in Fig. 3(a). The Jsc for the reference structure 

presented in recent research was improved by the addition of ARC, periodic Au NPs, and back 

textured barrier layer with Ag NPs (Fig. 3(a), 3(b)). The achieved Jsc was 36.2mA/ cm2 (Fig. 

4(a)). 

 

    Initial J-V characteristics observed for simulated reference structure reveal that Jsc can be 

affected by the integration of interlayers or carrier transport layer beneath graphene. We utilised 

the top TiO2 layer with refractive index 2.2 (n= 2.2), which is transparent to visible light. The 

selection of ARC layer is primarily resolute by its refractive index, large bandgap and its 

appropriate processing into thin uniform layers. The primary Jsc value with h-BN interlayer 

and Au gratings of thickness 40nm was 30mA/ cm2 (Fig. 2(d)). The adjusted height of rear Ag 

NPs is 60nm to 80nm where the top and bottom width of particles is also kept constant at 90nm 

and 210nm with the period between two NPs 0.35µm . Thus, Jsc observed for this proposed 

configuration was 36mA/ cm2 with Voc 0.451mV, FF 0.73, and PCE 12.01%. However, we 

analysed the Jsc of the structure without an h-BN interlayer, and its values dropped to 29.08mA/ 

cm2 (Fig. 4(b)), FF 0.71%, Voc 0.44mV, and PCE 9.08%. Here we can perceive the effect of 

h-BN interlayer on Jsc of the photovoltaic device. According to the thermal emission theory, 

the J-V characteristics of graphene-n silicon solar cells are dominated by majority charge 

carriers, where this majority charge current is dependent on dark saturation current and voltage. 

We can see from Fig. 4(b) that the value of Voc and Jsc is dependent on h-BN interlayer 

possessions, where Jsc slightly reduced from 35.1mA/ cm2 to 29.5mA/ cm2 in case of 

eliminating h-BN interlayer. As a result, the Voc increases from 0.443V to 0.451V in case of 

inserting the h-BN layer leading to an increase in device performance (Fig. 4(a), (4b)). 

 

    The introduction of h-BN in our proposed structure can excavate the band gap of graphene, 

thus improving the substituting performance of graphene electronics. Graphene assimilation on 

top of bare semiconductor surface (or another dielectric substrate like SiO2) can be very uneven, 

and the graphene surface can attain many wrinkles which could confine the properties of 

graphene [47]. The reason behind is that the surface of SiO2 or semiconductors has impurities 

which can originate the scattering of charge carriers or act as charge traps. Consequently, the 

development and charge density dispersal of graphene on the SiO2 substrate is very irregular, 

which results in substantial suppression of the carrier mobility of graphene [47]. Thus, h-BN is 

a superlative substrate and is ideally suitable for graphene structure to preserve its geometrical 

and electrical properties [37]. 

 

    We investigated the Jsc of graphene-silicon solar cell by varying Au NPs width to examine 

the photocurrent behaviour (Fig. 4(c)). However, the thickness variation of Au NPs does not 

affect Jsc values (Fig. 3(a)). As presented in Fig. 4(c), the highest Jsc obtained by keeping the 

Au NPs width up to 0.3µm , where the small width less than 0.2 (w ≤ 0.2) offers low 

photocurrent. The Jsc at 0.35µm  width can still be short up to 32.05mA/ cm2. This can be 

because the specific width of these metallic NPs controls the guided resonance and magnetic 

resonances created by incident light waves that scatter through specific refraction angles to 

these particles. Therefore, lead to generating optical absorption in corresponding areas. The 

attained Jsc was 20mA/ cm2 when the width of Au NPs reduces from 1.5µm . This shows that 

scattering of light through dielectric layer has low magnetic resonance effect, and create less 

optical coupling and more chance for incident light to propagate straight through layers or 

reflect with less scattering possessions. Another simulated examination of proposed structure 

with different diameter of circular Au NPs is presented in Fig. 4(d) (Fig. 3(b)). The width of 

rear Ag NPs was kept constant at 0.03µm  where the front circular NPs was subject under 

different diameter from 0.03µm  to 0.08µm (Fig. 4(d)).  

 



    It is observed that the specific radius of circular Au NPs can affect the Jsc significantly and 

light trapping in thin-film solar cells.   For adjusted interlayer and substrate thickness, the value 

of Jsc at some extent is influenced by spherical NPs radius, interlayer thickness, and periodic 

NPs width, but unaffected by NPs thickness as shown in Fig. 4(d). Hence, we choose to specify 

only one value of NPs thickness. Thus, a higher photocurrent performance is observed with 

optimisation of plasmonic resonance effects generated by varying front/rear Au /Ag NPs 

dimensions. Although, the combination of optimal size, the thickness of metallic NPs, 

interlayer depth, and a rear stack of buffer layer expended with Ag NPs can be the optimum 

configuration for thin-film graphene-silicon solar cell assembly. Thus, the results are more 

convincing by utilising a patterned graphene sheet with nanoholes in a periodic array on top of 

the solar cell stack, as shown in Fig. 5(a). 

 

 

Fig. 5: a) The 3D simulated electric field, magnetic field and power loss distribution in utilized patterned graphene 

with nanoholes in the x-y-z plane at the resonance. b) Dependence of the real and imaginary parts of longitudinal surface 
conductivity of graphene on frequency. c) The conductivity spectra of graphene/silicon solar cell under different varied 

device configurations. 

The potential manufacturing and tuning of such graphene layers decorated with classic patterns 

have been suggested recently in Ref. [48, 49]. In this proposed solar cell device, the unit cell of 

a graphene-silicon solar cell is settled with nanoholes on the graphene layer in an intervallic 

way with the period between two holes 300nm as shown in Fig. 5(a). 

 



    The cell is designed with integration of patterned graphene sheet such that graphene is 

perforated with spherical nanoholes on the top of thin Au NPs and semiconductor stack 

detached by an insulator layer.  Here the diameter ‘d’ of circular nanoholes is 180nm and 

adequate thickness of graphene is set to be 100nm. The semi-metallic graphene with hole 

transport features can generate a rectifying Schottky junction if interfaced with lightly doped 

semiconductors. Therefore, the excited carriers are produced in semiconductor regions 

surveyed by built-in potential induced due to the separation of these charge carriers. Electrons 

are carried in the direction of n-Silicon and holes are transported to graphene layer and can be 

collected by front and back metal contact electrodes. The graphene can perform the dual part, 

as a transparent sheet with high optical conductivity and as a current dispersion sheet for 

electrical conduction.  

 

    We observed the graphene conductivity spectra along with real and imaginary extinction 

graphs that utilised in the solar cell device as presented in Fig. 5(b) and 5(c). With the electric 

field of incident light oriented along the x-axis (x-polarized, i.e. TM plane wave), surface 

resonance in the graphene layer is excited in the spectral region of interest. Fig. 5(a) illustrates 

the simulated 3D spectra of graphene with an initial Fermi level (Ef) 0.6eV. The intense 

resonance occurs at longer wavelengths that leads to the robust optical transmission and 

absorption enhancement since absorption enhancement should be attributed to the excitation of 

plasmonic resonances in the graphene layer. The simulated x, y, z plane electric field 

distribution (|E|), magnetic field distribution (|H|) and power loss profile (|Q|) at the resonances 

in Fig. 5(a) shows a substantial enhancement of optical absorption around the circular 

nanoholes displayed in Fig. 5. This shows a characteristic behaviour of substantial excitation 

method, which results from the accumulated charges around the circular nanoholes due to the 

TE and TM plane waves [50]. Consequently, these plasmon resonances in the graphene layer 

efficiently trap the incident light and boost the absorption in the adjacent semiconductor layer 

that leads to high Jsc.  

 

    As it is well known that light trapping and absorption improvement can be adjusted with the 

geometric variation in graphene-on-semiconductor surfaces. Here we investigated the 

dependence of absorption on graphene conductivity patterns. The accumulation of additional 

layers in-plane structure and the extinction graph with real and imaginary values depending on 

frequency spectra are shown in Fig. 5(b) and 5(c). Recently, graphene permittivity and dynamic 

conductivity were found in agreement with the theory (σ(ω) = e2 /4h), where optical and 

electrical behaviour of graphene was discussed in details [51-54]. We utilised the surface 

conductivity σ as a function of frequency (THz) with the energy band 0.6eV.  Fig. 5(b) 

illustrates the variation of real and imaginary parts of graphene conductivity under variation in 

the frequency spectrum. Here positive values of the imaginary parts are assigned to characterise 

the distribution of TM wave, whereas negative values will characterise the propagation of TE 

wave.  

 

    To realise the excellent optical refraction and absorption in corresponding layers, we need 

graphene with large positive imaginary values of conductivity to interact with light, nonetheless 

small or less real values of conductivity to minimise the material loss as presented in Fig. 5(b) 

and 5(c). As indicated in Fig. 5(b), graphene is lossy at high frequencies when hω>2Ef because 

of Interband transitions (interband and intraband shift are explained in early research [33]). 

However, at some extents at low frequencies when hω ⪅ hγ, graphene also displays a significant 

loss because of the intraband free-carrier absorption enabled by scattering. As shown in Fig. 

5(b), since, there is a spectral series between the two lossy regions, although the imaginary part 

of the conductivity surpasses the real part. This spectral range lies in the visible to the mid-

infrared part of the spectrum, and graphene-based solar cell devices operate better in this region. 

Because graphene is the critical building block in providing useful optical conduction 



possessions, it is essential to have an accurate understanding and measurement of optical 

conduction of the proposed device. Although the theoretical optical conductivity offers a good 

guideline for designing the periodic conditions and material layers to achieve critical insight of 

propagation and absorption of light throughout the device. 

 

    In order to describe the general conduction behaviour due to patterned graphene integration 

onto conforming layers of the proposed device, we have investigated the device assembly under 

three diverse conditions. Initially for plane graphene-silicon layer assembly, then graphene-

SiO2-silicon layer geometry and finally ARC-graphene on h-BN-SiO2-silicon assembly with 

NPs as shown in Fig. 5(c). Fig. 5(c) illustrates the conductivity spectrum for three different 

considering device deposits. In graphene directed on silicon structure, the prominent low peak 

of graphene conductivity is detected in the spectrum with some negative primary values where 

these initial values describe the TE wave propagation.  In contrast, it was observed that the 

spectral features of graphene on SiO2 layer are unlike from those of graphene on h-BN 

interlayer. No developed conduction band was perceived when integrating graphene on SiO2 

due to the absence of the h-BN layer.  However, high graphene conductivity is found when 

coated on top of the h-BN layer that subsidizes to endorse the constancy of the charge carrier’s 

departure to graphene with high consistency in the electronic state.  

 

 
 Fig. 6: Quantum efficiency (QE) spectra of devices simulated for both structures. a) With ARC, patterned graphene, 

h-BN and front/rear NPs. b) without h-BN and front/rear NPs. 

From Fig. 5(c), it is determined that graphene on SiO2 conductivity growth percentage is still 

lower than that graphene on h-BN with additional substrates such as metals and 

semiconductors.  One of the downsides of graphene on SiO2 is that oxide layer is used to grow 



thermally and consequently amorphous state that leads to supplementary SiO2 surfaces 

roughness. Subsequently, graphene tends to imitate to its substrates. Graphene on SiO2 tends 

to display surface roughness at the same extent. However, graphene on h-BN is expected to 

have very less surface roughness due to inevitably smooth nature. Thus, graphene on h-BN and 

Au NPs can offer best structure alignment.  With the optical penetration into the junction, the 

electron-hole pairs are produced in Si substrate, and therefore charge carriers are separated by 

the built-in electric field.  

 

    In graphene-silicon solar cells, since the work function of graphene is adaptable, thus we 

have further choices in device assembly to recover the separation and collection of the electrons 

and holes.  This results in higher potential drop across the depletion range, all of which can 

tolerate an additional operative collection of carriers. Fig. 6(a) and 6(b) demonstrates the QE 

of the anticipated device for two different layer assemblies, i.e., with and without h-

BN/NPs/rear buffer layer. As shown in Fig. 6(b), the QE of the device without rear buffer layer, 

NPs and the h-BN layer was between 70-80% with less extensive spectrum displaying the 

generation of electron-hole pairs under short-range of wavelength 400nm-650nm in the visible 

region. However, QE was detected to be up to 90% for proposed device structure with ARC, 

h-BN, rear ZnO: Al buffer layer enclosing Ag NPs (Fig. 6(a)).  

 

    It is observed that QE spectrum shows substantial growth in the number of electron-hole 

pairs generated and collected after the accumulation of front/rear NPs stack along with buffer 

layer, compared with the device without front/rear stack of NPs, the buffer layer and h-BN. 

Besides, this device has shown highest improved Jsc up to 36.2mA/ cm2 (close inset can be 

seen in Fig.  6(a)) in contrast with those reported short circuit current density 30mA/ cm2 for 

one of the previous structure of graphene-silicon solar cell with h-BN interlayer[38]. The goal 

here was to improve the spectral assortment and QE of the device as well as to optimise the 

effects of rear NPs with a buffer layer. 

 

The best graphene-silicon solar cell nanostructure based on Au NPs (width 0.3µm, thickness 

40nm) and rear Ag NPs (width 0.03µm) showed significant average Jsc improvement (~5mA/ 

cm2) compared to the reference simulated structure without rear buffer layer stack and Au/Ag 

NPs periodicity. Compared to the reference graphene-silicon solar cell, the proposed 3D device 

configuration modified with Ag NPs inside ZnO: Al buffer layer demonstrates substantial QE 

increase in a wider wavelength spectrum (450nm to 1000nm), where the highest peak of QE 

was observed at 820nm, as shown in Fig. 6(a).  

 

    The light-trapping at peak levels in the absorber layer leads to QE improvements at broader 

wavelength series that occur due to high optical scattering and captivation. Correspondingly, it 

is a source of amplified photocurrent generation where light scattering is caused by front and 

rear detailed NPs with minimum parasitic losses. Here, the intention is to access the photon 

apprehending performances for the proposed configuration, as presented in Fig. 7. 

 

It was observed that there is a substantial discrepancy in between two QE spectrums from 

the middle of visible wavelength to high infrared regions (Fig. 6(a)). Moreover, an insignificant 

change was found in between both spectrums at short wavelength ranges which can be due to 

the diverse extents of higher and lower NPs phases in two different kinds of schemes. Though, 

the front NPs (width 0.3µm, thickness 40nm) and rear Ag NPs with undeviating dimensions 

tend to increase photocurrent generation, as well as, and they are probably more corporate to 

localise the light collaboration between higher and inferior NPs deposits as shown in Fig. 7(a). 

First, the outline of front periodic 3D Au NPs and uniform rear stack tend to restore the light 

deception into the active layer (Fig. 7(a)). Second, the increment to light absorption can be due 

to back NPs which subsidise to distribute the plasmonic development at long wavelengths 



which are valuable to enhance coupling of light at critical angles. Fig. 6(a) and 6(b) demonstrate 

the stabilised QE for plasmonic effects. The maximum electric and magnetic fields 

concentrations that are dispersed in the silicon layer are presented in Fig. 7(a) and 7(b).  

 

 
Fig. 7: a) 2D/3D FEM simulations of electric/magnetic field intensity profiles inside graphene-silicon thin-film solar 

cell modified with rear buffer layer stack and Au/Ag NPs and analyzed for three different configurations 1) 
TE/TM/powerloss profile without rear ZnO: Al and Ag NPs stack  2),3)TE/TM/Powerloss profile with periodic square-

shaped front Au NPs and rear semi-hexagonal Ag NPs 4) TE/TM/Powerloss profile with front dome-shaped Au NPs 

and rear Ag NPs enclosed in textured ZnO: Al. b) 3D TE/TM/powerloss profile for 3D configuration of proposed solar 

cell. 1) TE/TM field wave captivation in active region 2) 3D Powerloss profile with field propagation along z-direction, 

3) 3D profile with wave trickling and dissemination from front Au NPs to bottom Ag NPs. The cell configuration is 

indicated in Fig. 3. (a, b) shows the two proposed graphene-silicon solar cell configurations. The excitation wavelength 
is 840 nm, and the periodicity are 900 nm in all graphs. The colour scale is the same in all images (a, b). Highest 

Electric/magnetic field intensities are shown in dark red colour indicated by colour legends. 

 

The field localisation and light interaction among upper and lower barrier layers are caused by 

uniform NPs. Hence another dielectric layer comprises weak electric field intensity. As can be 

seen in Fig. 7(a), good light transmission and optical scattering are distributed among active 

regions of the solar cell. This apprehended light lead to high optical absorption probability and 

thus Jsc generation. Furthermore, electromagnetic field power loss profiles in considering 

domains and inside the active layer for both layer assemblies (with periodic and circular NPs) 

are presented in Fig. 7(a).  

 

    From power loss and light absorption graphs, we observed that optical captivation in the 

nearly entire photoactive region is improved significantly. This amplified optical scattering and 

tricking inside active films is ascribed to three motives. Periodic 3D Au NPs with width 0.3µm 

is located in the upper layer to develop the optical absorption at shorter wavelengths. Though, 

Ag NPs enclosed by the rearmost buffer layer is employed in the lower layer to convey 

plasmonic enhancement at long wavelengths (Fig. 6, Fig. 7). As can be perceived in Fig. 7(a)), 

the plasmonic characteristics of EM fields are extreme at the NPs sideways to dielectric and 

silicon sheet (Fig. 7(a){1}). Where the power loss profile for this primary device structure 

without rear buffer layer and Ag NPs stack is also presented that demonstrates less optical 



scatterings all over the absorber layer. Similarly, an additional layer assembly with the 

accumulation of rear Ag NPs surrounded by textured ZnO: Al window layer is presented (Fig. 

7(a){2,3}), where the EM fields are maximum at NPs exterior, and they degenerate 

exponentially away from metal. This layer stack offered boosted light scattering and trapping 

amongst top and bottom layers. At back Ag NPs with width 0.02µm, the Ag NPs are adjoining 

to solar cell absorber layer and hence subsidise furthest to pulmonically influenced current 

developments by field localisation.  

 

    The current enhancements were detected with a small distance between the absorber layer 

and Ag NPs as demonstrated in Fig. 7(a){3,4}. Peak power loss outlines were observed that 

lead to increased electron-hole sets and high current generation. Consequently, we can assume 

that near field boosts might have some key impact on solar cell competence for these 

conformations, i.e., with and without buffer layer and Ag NPs rear stack as shown in Fig. 7(a).  

 

    Our 3D simulation outcomes designate that durable near field detention is primarily found 

in the ZnO: Al buffer layer next to the Ag NP surface as can be seen in Fig. 7(b){2,3}. Ag NPs 

width = 0.024µm (Fig. 7(b){3}), the improved electric field is virtually completely narrowed 

inside the ZnO: Al layer at the Ag NP surface. In Fig. 7(b), we illustrate 3D power loss profile 

for; 1) TE/TM wave captivation in the active region 2); 3D power loss profile with field 

propagation along the z-direction, and; 3) 3D profile with wave trickling and dissemination 

from front Au NPs to bottom Ag NPs. This enhanced near field plasmonic resonance power is 

extreme at the Ag NPs surface and degenerate evanescently inside the doped silicon n-layer 

(Fig. 7(b){1,3}). The results from Fig. 7(b) confirm that the position of the well-ordered 

nanostructures can be oppressed to moderate captivation in the dielectric or metallic layers. 

These regions display high material imperfection concentrations, which means that photons 

fascinated in these layers or other then absorber layers do not subsidise to the photocurrent. 

Notice that the schematised nanostructure sprinkles the light back to the active region. 

However, electron-hole pairs made in the silicon deposit are the major participants to the 

photocurrent. When the Ag NPs (encoded with ZnO: Al) detachment from the Ag back metal 

rises, the absorption inside the silicon absorber layer is suggestively modified. It can be clearly 

seen in Fig. 7(a), and Fig. 7(b), the light scattering contour inside the graphene-silicon solar 

cell. It is observed that light is more limited exclusively in the absorber region, nevertheless the 

built-in electric field primes to competent departure of the photogenerated charge carriers. 

 

    Plasmonic resonance near field confinements occur due to an amplified optical absorption at 

long infrared wavelengths between 800nm to 1200 nm with the precise settlement of varied 

front circular Au NPs and different periodicity of rear Ag NPs. An improved absorption inside 

silicon layer is also displayed in Fig. 8. Where the layer assembly is composed with the addition 

of h-BN layer underneath patterned graphene in the same spectral range with increasing NPs 

period from 0.02µm to 0.08µm and rear NPs width 0.01µm to 0.04µm. As specified above, this 

requires that plasmonic resonances lead to an energy loss or a reduced amount of power 

absorption for the plane graphene-silicon solar cell with an overall 50% optical absorption. 

However, the highest light absorption up to 80% was achieved for the particular design (Fig. 

8).  

 

    From these absorption graphs, we can presume that the generation of electron-hole pairs 

suggestively contributes towards Jsc. However, light trapping in other regions of the solar cell 

(including ZnO: Al, a dielectric layer, NPs) might primes towards power losses due to the 

increase in recombination at interfaces. Excluding the resonance effect, the upper and lower 

NPs structure take part in substantial converging involvement. Fig. 7(b) specifies that primarily 

the electromagnetic field appears in the spacing between plasmonic NPs at the top of the 

dielectric spacer and strongly confined and uniformly delivered. Employing the graphs 



observed for plane reference cell (Fig. 7(a){1}), the light distribution is caused by visual 

interfering fringes that direct the optical dispersal in the absorber layer. Moreover, the higher 

periodic and lower NPs along with semi-hexagonal shaped textures lead to enormous field 

distributions. Thus, they tend to retain the light restricted to active layers. The optimum 

graphene-silicon solar cell configuration was found with Ag NPs width = 0.03µm and NPs to 

absorber layer distance D=0.04µm which can be seen in Fig. 7 and Fig. 8. 

 

  

Fig. 8: Optical Absorption spectra of proposed graphene/silicon solar cell active layers under varied width and diameter 

of front and rear NPs, with/without graphene on h-BN. 

The TE/TM power loss profiles with 2D and 3D simulated outset is displayed in order to better 

evaluate the photon-capturing presentations of anticipated conformation. As is shown in Fig. 8, 

one can see that the optical absorption is nearly the same 60% and 65 % in both configurations 

(plane graphene-silicon with only front NP, and graphene- h-BN-silicon with front/rear NPs). 

This is ascribed to the high absorption coefficient of silicon material in this wavelength series. 

The slight difference between the two absorption bands is owing to the assorted dimensions of 

the upper layer Au NPs and the addition of h-BN under graphene layer in two kinds of schemes. 

However, the absorption of solar cell configuration has noticeable enhancement up to 80% at 

the long-wavelength range (1100nm) when front Au NPs size is 0.08µm and rear Ag NPs 

diameter is used to be 0.03µm and 0.01µm’ which is attributed to two reasons. First, the Ag 

NPs with uniform dimensions are more expected to localise the light interrelates between the 

upper Au NPs and lower Ag NPs layers. Although the NPs diameter 0.03µm makes it easier to 

couple the light into the active layer. Additionally, the lower layer Ag NPs are the larger 

particles designed inside ZnO: Al in the anticipated assembly of the solar cell system. 

Moreover, the bigger ones subsidise to develop the plasmonic enhancements at long 

wavelengths, which is convenient to surge the optical absorption significantly (Fig. 8). 

 

4. Conclusion 

In this paper, we have demonstrated a novel structure based on a graphene-silicon solar cell. 

The 2D and 3D FVFEM computational technique are deployed to thoroughly investigate the 

structure performance which shows that the geometry of the device and the position of 

front/rear NPs in the buffer layer has a larger influence on Jsc. Initially, we have simulated Jsc 

by 25.2mA/ cm2 and 30mA/ cm2 for 2D reference structure without h-BN interlayer and with 



h-BN interlayer respectively. The solar cell is modified by utilising a patterned graphene sheet 

with small nanoholes to increase surface conductivity. Two diverse profiles of front Au and Ag 

NPs placed at the explicit detachment away from the absorber layer exhibited the highest Jsc 

up to 36.2mA/cm2. This configuration reduced the parasitic absorption loss inside the buffer 

layer, inactive areas between the NPs, and inside the nanoparticles itself. The smaller NPs are 

located in the upper layer to improve the light absorption at shorter wavelengths, and the bigger 

NPs are placed in the lower layer to generate the plasmonic enhancement at longer wavelengths 

presented through QE spectrum. The accumulation of h-BN interlayer as a carrier transport 

layer and communication between the upper and lower NPs deposits supports the absorption 

enhancement up to 80%. The backscattering of the ZnO: Al buffer layer with diverse Ag NPs 

sizes boosts the subtle scattered light, and thus the light reflections inside the active region rise, 

which plays a leading role in refining the light trapping. The proposed design demonstrates an 

increased intergraded PCE from 10.93% to 12.03% across the solar spectrum associated with 

the optimised reference cell. The surface plasmon resonance depends on the particle shape as 

well as the refractive indices of adjacent media. The proposed solar cell device exhibits 

improved Jsc value by 6.2mA/ cm2 with high optical absorption and increased PCE.  
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