
Towards A Better Understanding of

Browser Fingerprinting

Submitted by

Nasser Mohammed Al-Fannah

for the degree of Doctor of Philosophy

of the

Royal Holloway, University of London

2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Royal Holloway - Pure

https://core.ac.uk/display/322475201?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Declaration

I, Nasser Mohammed Al-Fannah, hereby declare that this thesis and the work presented

in it is entirely my own. Where I have consulted the work of others, this is always

clearly stated.

Signed . (Nasser Mohammed Al-Fannah)

Date:

i

To my family �

ii

Abstract

Browser fingerprinting is a relatively new method of uniquely identifying browsers

that can be used to track web users. Collectively unique and hence identifying pieces of

information, making up what is known as a fingerprint, can be collected from browsers

by a visited website, e.g. using JavaScript. Browser fingerprinting is increasingly being

used for online tracking of users even in the absence of a persistent IP address or cookie.

Since this represents a major threat to user privacy, it is therefore extremely important

to understand better how it works, how widely it is being used, and how its use can be

controlled. This observation motivates the work described in this thesis.

We automatically crawled the most visited 10,000 websites; this gave insights into

the number of websites that are potentially using fingerprinting, which websites are

collecting fingerprinting information, and exactly what information is being retrieved.

We found that approximately 69% of websites are, potentially, involved in first-party or

third-party browser fingerprinting.

We examined the fingerprintable attributes made available by a range of modern

browsers. We tested the most widely used browsers for both desktop and mobile

platforms. The results reveal significant differences between browsers in terms of their

fingerprinting potential, meaning that the choice of browser has significant privacy

implications.

The recently-introduced WebRTC API enables client IP addresses to become avail-

able to a visited website via JavaScript, even if a VPN is in use. We performed

experiments with the five most widely used WebRTC-enabled browsers and five widely

used commercial VPN services to investigate this further. Our experiments revealed

that the number and type of leaked IP addresses are affected by the choice of browser

as well as the VPN service and program settings.

We describe FingerprintAlert, a freely available browser extension we developed

that detects and, optionally, blocks fingerprinting attempts by visited websites. It also

provides users with a log of detected fingerprinting attempts including what information

was collected and by whom.

Our investigations confirm previous findings that third-party fingerprinting coun-

termeasures have inherit limitations and many browser vendors do not appear to have

made significant efforts to control browser fingerprinting. To help provide a better

understanding of the problem, we provide a comprehensive and structured discussion

of measures to limit or control browser fingerprinting, covering both user-based and

browser-based techniques. Further, a somewhat counterintuitive possible new browser

identifier is proposed which could make cookies and fingerprint-based tracking redundant;

the need for, and possible effect of, this feature is discussed.

iii

Acknowledgements

First and foremost I thank God for the countless blessings he bestowed upon me.

I am thankful beyond words to my supervisor, and mentor, Professor Chris Mitchell

who has patiently guided and supported me during the past four years.

I would like to thank my colleagues and friends, who I have been fortunate to work

with in of our reading group, Zhaoyi Fan, Angela Heeler, Mohammed Shafiul Alam

Khan, Wanpeng Li, Gaëtan Pradel, Zhang Xiao, and my wife Fatma Al-Maqbali. They

have truly created a very friendly atmosphere in which we exchanged ideas, feedback,...

and laughs.

I extend my thanks to my sponsor, the Ministry of Higher Education and the College

of Applied Sciences, Sultanate of Oman.

I would also like to give a very special thanks to my mother Suad and my father

Mohammed. They both have always been there for me to support, teach and encourage

throughout the years.

Last, but certainly not least, I thank my wife Fatma and my daughter Azzahraa as

they have been, without a doubt, my driving force all these years and are still. They

are truly one of the greatest blessings in my life.

iv

Contents

1 Introduction 1

1.1 Context of Research . 1

1.2 Motivation . 2

1.3 Contributions . 2

1.4 Joint Work . 4

1.5 Publications . 4

1.6 Thesis Outline . 5

2 Background 6

2.1 Introduction . 6

2.2 Browser Fingerprinting . 7

2.2.1 Fundamentals . 7

2.2.2 Effectiveness . 8

2.2.3 Applications . 8

2.2.4 Third-Party Fingerprinting . 8

2.3 Browser Fingerprinting Techniques . 9

2.3.1 Passive Fingerprinting . 10

2.3.2 Active Fingerprinting . 11

2.4 Online Tracking . 13

2.5 Browser Fingerprinting Privacy Concerns 14

2.6 Summary . 15

3 A Large-Scale Study 16

3.1 Introduction . 16

3.2 Previous Work . 17

3.3 Analysis . 19

3.4 Motivation . 20

3.5 Data Collection Methodology . 20

v

3.5.1 Data Gathering . 20

3.5.2 Experimental Set Up . 21

3.5.3 Data Processing . 23

3.6 Challenges and Limitations . 25

3.7 Results . 26

3.8 Analysis . 28

3.8.1 Processing Collected Data . 28

3.8.2 Prevalence of Fingerprinting . 29

3.8.3 Fingerprinting Attributes . 31

3.8.4 Deployment of HTTPS . 31

3.8.5 Fingerprint IDs . 32

3.9 Relationship to the Prior Art . 32

3.10 Summary . 33

4 Comparing Browser Fingerprintability 34

4.1 Introduction . 34

4.2 Methodology . 35

4.2.1 Browsers . 35

4.2.2 Installation Options . 35

4.2.3 Experimental Scripts . 36

4.2.4 Attributes . 37

4.2.5 Performing the Experiments . 40

4.3 Results . 42

4.3.1 Desktop Browsers . 42

4.3.2 Mobile Browsers . 44

4.3.3 Other Remarks . 46

4.4 Summary . 46

5 IP Address Compromise through Browser Fingerprinting 47

5.1 Introduction . 47

5.2 IP Addresses At Risk . 48

5.3 Previous Work . 49

5.4 Experimental Methodology . 50

5.5 Details of Experiments . 51

5.6 Results and Analysis . 53

5.6.1 VPNs . 54

5.6.2 Browsers . 54

5.7 Countermeasures . 55

vi

5.8 Disclosure . 55

5.9 Summary . 56

6 FingerprintAlert Browser Extension 57

6.1 Introduction . 57

6.2 Overview . 58

6.3 Blocking . 58

6.4 Details of Operation . 60

6.4.1 Overview . 60

6.4.2 User Interface Component . 60

6.4.3 Functional Component . 61

6.4.4 Installation and Use . 62

6.5 Review . 62

6.5.1 Strengths . 62

6.5.2 Shortcomings . 62

6.6 Challenges . 63

6.7 Awareness . 63

6.8 Summary . 63

7 Controlling Browser Fingerprinting 64

7.1 Introduction . 64

7.2 Limiting Browser Fingerprinting . 65

7.2.1 General Approaches . 65

7.2.2 Challenges . 66

7.3 User-based Countermeasures . 67

7.3.1 Browser Choice and Configuration 67

7.3.2 Browser Extensions . 68

7.3.3 Limitations . 69

7.4 Browser-based Countermeasures . 70

7.4.1 Reducing the Fingerprinting Surface 70

7.4.2 Context-based API Access Control 71

7.4.3 Deprecate/Limit Unnecessary APIs 72

7.4.4 Alerts and Prompts . 72

7.4.5 Reduction in API accuracy . 73

7.4.6 Secure Data Handling . 74

7.4.7 Challenges . 74

7.5 Making Browser Fingerprinting Unnecessary? 75

7.5.1 A Different Approach . 75

vii

7.5.2 Configuring Identifiers . 76

7.5.3 UBI and Cookies . 76

7.5.4 Privacy Considerations . 77

7.6 Discussion . 78

7.6.1 Browsers with Fingerprinting-Resisting Features 78

7.6.2 A Possible Role for Regulation 79

7.7 Summary . 79

8 Conclusions and Future Work 80

8.1 Conclusions . 80

8.2 Future Work . 82

Bibliography 82

Appendices I

A Results of Crawling Experiment . II

A.1 Major Fingerprinters . II

A.2 Suspected Fingerprinter Domains II

B Crawler Script . XIII

C Attributes Collected by Fingerprinters XVI

C.1 WebGL . XVI

C.2 Features . XVII

C.3 Media . XVII

C.4 Input/Output . XVIII

C.5 Network . XVIII

C.6 Miscellaneous . XVIII

D Fingerprinting Test Code . XIX

E Browser Versions, OS Versions and Device Specifications XX

E.1 Browser and OS Versions . XX

E.2 Summary . XX

E.3 Details . XXI

F WebRTC Leaks Test Code . XXIV

viii

List of Figures

2.1 A sample user agent string . 9

3.1 Crawler components and their interactions 22

3.2 Excerpt of collected data . 27

3.3 Top 10 fingerprinters in terms of collected data volume per browser . . . 28

3.4 Top 10 collected attributes . 29

3.5 Top third-party fingerprinting domains 30

4.1 Partial screenshot of the Fingerprintability Test page 37

4.2 Sample canvas-rendered image used in our tests 39

5.1 WebRTC leak detector . 52

6.1 An example of a FingerprintAlert warning 58

6.2 Example report produced by FingerprintAlert 59

6.3 A partial browser screenshot showing the Main pop-up user interface . . 60

6.4 Partial browser screenshot showing the Configuration user interface . . 61

7.1 Firefox anti-fingerprinting options . 78

ix

List of Tables

2.1 Explanation of the various components of a sample user agent string . . 10

3.1 Prevalence of fingerprinting according to previous studies 19

3.2 Crawler software components . 22

3.3 Computing environment used for crawling 22

3.4 The 17 chosen browser attributes and their values for the test platform . 24

3.5 Summary of identified fingerprinting attributes 28

4.1 Desktop browser fingerprintability . 44

4.2 Mobile browser fingerprintability . 45

5.1 VPN program versions . 51

5.2 Browser versions . 51

5.3 Tested VPN program configurations . 52

5.4 Results of experiments on Windows . 53

5.5 Results of experiments on macOS . 54

1 Fingerprinters present on at least 100 websites II

2 Browser and OS Details . XX

3 Specifications of devices used for experiments XX

x

List of Abbreviations

API Application Programming Interface
CSS Cascading Style Sheets
FI Fingerprintability Index
GPU Graphics Processing Unit
HDD Hard Disk Drive
HTML Hypertext Markup Language
HTTP Hypertext Transfer Protocol
HTTPS Hypertext Transfer Protocol Secure
ICE Interactive Connectivity Establishment
ID Identifier
IP Internet Protocol
IPsec Internet Protocol Security
IPv4 Internet Protocol version 4
IPv6 Internet Protocol version 6
L2TP Layer 2 Tunneling Protocol
LAN Local Area Network
NAT Network Address Translator
ORTC Object Real-Time Communications
OS Operating System
PC Personal Computer
PPTP Point-to-Point Tunneling Protocol
SSD Solid-State Drive
SSL Secure Sockets Layer
STUN Session Traversal Utilities for NAT
TCP Transmission Control Protocol
TLS Transport Layer Security
TURN Traversal Using Relay NAT
UDP User Datagram Protocol
ULA Unique Local Address
URL Uniform Resource Locator
VPN Virtual Private Network
WebGL Web Graphics Library
WebRTC Web Real-Time Communication

xi

Chapter 1

Introduction

1.1 Context of Research

A number of authors have discussed the very wide variety of readily available attributes

collectable by websites from a visiting browser. Because the set of retrievable attributes

is in most cases unique per browser instance, this enables websites to uniquely identify

browsers; this is known as browser fingerprinting [1, 18, 52, 61]. The main reason

browser fingerprinting has attracted so much attention is that it enables tracking of

user platforms, i.e. linking of multiple visits by a single browser instance to the same or

multiple websites.

Because of its potential use for tracking, browser fingerprinting is becoming an

increasingly serious privacy concern despite some apparently benign applications. Its

virtually permanent nature is something that might be subject to future regulation,

much as the use of cookies has recently received the attention of regulators in Europe

[21]. Several studies (e.g. [47, 57, 86]) have suggested that browser fingerprinting has

been used to track users by re-spawning tracking cookies and, as a result, limit the degree

to which user cookie deletion protects user privacy. Fingerprinting is also potentially

being used as an alternative to cookie tracking. It is interesting to note that the use of

browser fingerprinting by websites is to some extent regulated by the European Union’s

General Data Protection Regulation (GDPR) [14] that was adopted in 20161. However,

browser fingerprinting remains widely used and appear to be largely uncontrolled.

Browser fingerprinting use is virtually invisible to users and there is no direct way

of preventing it. Moreover, we found that the four browsers used by more than 88% of

web users (i.e. Chrome, Internet Explorer, Firefox and Edge) do almost nothing to help

1Given that browser fingerprinting involves collecting user-related data as well as potentially tracking
users, GDPR would appear to require websites to both announce and justify its use [78].

1

1.2. Motivation 1. Introduction

mitigate fingerprinting2, alert the user to its occurrence, or even provide information

about it in user help documents.

This chapter provides an overview of the thesis, and is organized as follows. In

Section 1.2 we discuss the motivation for the research described in this thesis. Section

1.3 outlines the major contributions. The role of co-authors in the work described in

this thesis is clarified in Section 1.4. A list of relevant ublications is presented in Section

1.5, and Section 1.6 concludes the chapter with a brief outline of the thesis.

1.2 Motivation

The thesis attempts to answer the following question. To what extent does real world

browser fingerprinting affect user privacy?

As noted above, in recent years browser fingerprinting has been widely discussed

not least because of its potential use for user tracking. This is a fast-moving area, and

hence findings from only a few years ago may no longer give a true picture of its current

effectiveness and prevalence. In particular, modern browsers are constantly adding new

features with the introduction of new APIs such as Canvas, WebGL, and WebRTC.

These new additions have an unintended effect of increasing the fingerprinting surface

of browsers [17, 66]. Indeed, the range of attributes retrievable from browsers, as well

as methods for retrieving them, have been widely discussed. However, relatively little

has been published regarding the real-world prevalence of browser fingerprinting, who

is deploying it, the types of attributes collected to achieve it and how to control it.

In addition, no previous author has compared how browsers differ in terms of their

susceptibility to fingerprinting.

Because of the serious privacy concerns arising from fingerprinting-enabled tracking,

these issues clearly merit further investigation, and this observation has motivated the

work described in this thesis.

1.3 Contributions

In this thesis, we performed a number of studies to learn more about the nature and

prevalence of browser fingerprinting. In the first of these we attempted to gain a better

understanding of the degree to which widely visited websites are performing or enabling

browser fingerprinting.

• We assembled a script that crawled the 10,000 most widely visited websites to

detect the unprompted collection of information that could be used for fingerprint-

2Firefox has a limited set of options to reduce the effectiveness of fingerprinting.

2

1.3. Contributions 1. Introduction

ing. We were able to identify websites that collect such information as well as the

types of information they collected. Whilst we are not the first to perform such a

study, we used a novel method of identifying possible browser fingerprinting that

provides an upper bound on the number of sites that perform it.

In our second group of contributions, we examine specific aspects of fingerprinting

techniques, with the goal of understanding their effectiveness. As part of this work,

we were the first to demonstrate that browsers vary in their susceptibility to browser

fingerprinting. In related work, we also examined one of the techniques that could be

used to compromise user privacy through the exploitation of a feature in the WebRTC

API. This API can be used to learn a client’s private IP address(es) even if the client

is connected via an anonymizing VPN. We examined the extent to which this privacy

vulnerability can be exploited in widely used browsers and VPN clients.

• The most widely used browsers were tested and shown to vary in the amount of

information useful for fingerprinting that can be retrieved. This means that some

browsers are more likely to enable an instance to be uniquely identified.

• We conducted a study to determine whether a recently proposed means of learning

private client IP addresses via the WebRTC API works in practice; in particular,

we focussed on the case where the client is using a VPN, often with the specific

goal of enhancing privacy. In this study we examined every combination of five

widely used browsers and five widely used VPN clients, in each case enumerating

which IP addresses could be obtained.

Whilst the first chapters of the thesis are directed at understanding the prevalence

and effectiveness of browser fingerprinting methods, the rest of the thesis is aimed at

trying to improve the current situation, by giving users greater control over fingerprinting.

We describe the design and implementation of a browser extension that alerts users to

browser fingerprinting attempts, and gives them the option to block them. Furthermore,

we analyze all previously discussed fingerprinting countermeasures, and use this analysis

to formulate a set of recommendations that could help control browser fingerprinting.

Finally, we propose a novel type of browser identifier with the goal of obviating the

need for browser fingerprinting, which could help bring to an end its current widespread

and uncontrolled use.

• A detailed description is given of a novel browser extension. The extension helps

users be aware of fingerprinting attempts by websites they visit. Moreover, it can

also help to reduce the effectiveness of browser fingerprinting.

3

1.4. Joint Work 1. Introduction

• We provide comprehensive guidance on how browser fingerprinting can be con-

trolled, especially by browser vendors. We also propose a new type of browser

identifier that could provide a standardized alternative to browser fingerprinting.

The identifiers would enable online tracking but, unlike fingerprinting, would be

transparent and user controllable.

1.4 Joint Work

With the following exceptions, all relating to software development, I have performed all

the research described in this thesis, under the supervision of Professor Chris Mitchell.

• The coding for the crawler software used to perform the experiments described in

Chapter 3 was mainly performed by Dr Wanpeng Li, although decisions about

functionality were primarily under my control.

• The scripts that support the Fingerprintability website, discussed in Chapters 4

and 5, were jointly developed with Dr Wanpeng Li.

• Coding for the FingerprintAlert browser extension, described in Chapter 6, was

mainly performed by Dr Wanpeng Li, although user interface design and decisions

about functionality were primarily under my control.

1.5 Publications

Publications containing some of the research results described in this thesis are listed

below.

• N. M. Al-Fannah and W. Li. Not all browsers are created equal: Comparing

web browser fingerprintability. In S. Obana and K. Chida, editors, Advances in

Information and Computer Security — 12th International Workshop on Security,

IWSEC 2017, Hiroshima, Japan, August 30 – September 1, 2017, Proceedings,

volume 10418 of Lecture Notes in Computer Science, pages 105–120. Springer,

2017. [Winner of best student paper.]

• N. M. Al-Fannah. One leak will sink a ship: WebRTC IP address leaks. In

International Carnahan Conference on Security Technology, ICCST 2017, Madrid,

Spain, October 23–26, 2017, pages 1–5. IEEE, 2017.

• N. M. Al-Fannah, W. Li, and C. J. Mitchell. Beyond cookie monster amnesia: Real

world persistent online tracking. In L. Chen, M. Manulis, and S. Schneider, editors,

4

1.6. Thesis Outline 1. Introduction

Information Security — 21st International Conference, ISC 2018, Guildford, UK,

September 9–12, 2018, Proceedings, volume 11060 of Lecture Notes in Computer

Science, pages 481–501. Springer, 2018.

1.6 Thesis Outline

The remainder of this thesis is organized as follows.

• Chapter 2 gives the background material necessary for the remainder of the

thesis. It describes the various aspects of the browser fingerprinting ecosystem

that are necessary to understand the rest of the thesis.

• Chapter 3 is concerned with gaining a better understanding of the current

prevalence of browser fingerprinting as well as the extent of its tracking capabilities.

It first examines previous work aimed at determining the prevalence of browser

fingerprinting in the Web. Then it describes a study we conducted to identify the

possible conduct of browser fingerprinting by the top 10,000 websites.

• Chapter 4 reviews the differences between widely used browsers in terms of their

susceptibility to browser fingerprinting. The tests were performed on a range of

browsers and operating systems (both desktop and mobile).

• Chapter 5 describes the results of a study on the leakage of client IP address(es)

even when using an anonymizing VPN. This leak of IP addresses can be very

useful for browser fingerprinting, and is also a major privacy threat in that in

some cases it can reveal a user’s geographic locality. We examined the presence of

this problem in a range of widely used VPN clients and browsers.

• Chapter 6 describes a novel anti-fingerprinting browser extension, Fingerprint-

Alert. It details the operation of the FingerprintAlert extension which was used

in the study described in Chapter 3 and is also of value in its own right.

• Chapter 7 considers the degree to which browser fingerprinting can be con-

trolled by examining all previously proposed countermeasures, and assessing their

real-world effectiveness. This leads to a set of recommendations for browser

fingerprinting control, as well as a proposal for the use of a standardized browser

identifier to help make browser fingerprinting unnecessary.

• Chapter 8 concludes the thesis by summarizing the main contributions as well

as highlighting possible areas for future work.

5

Chapter 2

Background

2.1 Introduction

In this chapter we provide background information that is necessary to understand the

rest of thesis. We are concerned throughout this thesis with HTTP interactions between

a browser running on a user platform, e.g. a phone or PC (the client), and a remote

(web) server. Browser fingerprinting relies on the server gaining information about

the client platform via HTTP, including via executable code (typically in JavaScript)

downloaded to the client as part of an HTTP exchange and subsequently executed on

that client. Downloaded JavaScript code is typically able to access a wide range of

internal browser APIs1 completely transparently to the user, and these APIs can reveal

a range of information about the client which can be reported back to the web server,

again completely transparently to the user.

Client-server interactions supporting browser fingerprinting may also include the

involvement of third-party web servers, to which the client will send HTTP requests as

a result of links included in the HTTP message sent to the client. We do not go into

the technical details of HTTP and JavaScript here — the interested reader is referred

to one of the many textbooks on the subject, e.g. Crockford [15] or Gorley and Totty

[30], as well as RFC 7231 [25].

The remainder of the chapter is organized as follows. Section 2.2 provides an

overview of browser fingerprinting. Some key techniques commonly used for browser

fingerprinting are described in Section 2.3. Section 2.4 provides an overview of online

tracking. We discuss privacy concerns related to browser fingerprinting in Section 2.5.

The summary in Section 2.6 concludes the chapter.

1A web API, i.e. a web Application Programming Interface, is a set of functions or methods that
can be used to access certain functionality of web browsers.

6

2.2. Browser Fingerprinting 2. Background

2.2 Browser Fingerprinting

2.2.1 Fundamentals

Browser fingerprinting is a technique that can be used by a web server to uniquely

identify a platform; it involves using information provided by the browser, e.g. website-

originated JavaScript, to assemble a platform-specific fingerprint. The differences in

web browser instances were first discussed 10 years ago by Mayer [51], albeit in a very

limited way. A year later, Mayer’s work was followed by the seminal work of Eckersley

[18]. Eckersley coined the term browser fingerprinting and performed a detailed study,

including a number of important experiments. Since then, the range and richness of

fingerprinting information retrievable from a browser has substantially increased [44]. Of

course, cookies2 and/or the client IP address can also be used for platform identification,

but browser fingerprinting is designed to enable identification even if cookies are not

available and the IP address is obfuscated, e.g. through the use of anonymizing proxies.

Back in 2010, Eckersley [18] described how the collection of a range of apparently

trivial and readily-available browser attributes, such as time zone, screen resolution,

set of installed plugins, and operating system version, could be combined to uniquely

identify a browser instance; this is the process he dubbed browser fingerprinting. Since

then, many other authors, including Mowery and Shacham [56], Mowery et al. [55],

Boda et al. [10], Olejnik et al. [63], Fifield and Egelman [26] and Mulazzani et al. [57],

have described a range of ways of enhancing its effectiveness. In parallel, and motivated

by the threat to user privacy posed by browser fingerprinting, a number of authors, e.g.

Nikiforakis et al. [60], Fiore et al. [27] and FaizKhademi et al. [22] have proposed ways

of limiting its effectiveness.

The BrowserLeaks website3 (https://www.browserleaks.com) and Alaca and Van

Oorschot [6] catalogue a wide range of types of information that could be used for

browser fingerprinting. Pathilake et al. [83] have also classified some of the most widely

used methods for fingerprinting. As discussed in 2.2.2, browser fingerprinting is clearly

very effective.

Browser fingerprinting enables user web activity to be tracked. It relies on learning

properties of a browser and its host platform, including both hardware properties and

software state (cf. the term device fingerprinting [28]). Browser fingerprinting typically

2A web cookie is a small amount of data sent by a website as part of an HTTP response and then
stored by the browser. The browser then provides the contents of the cookie back to the same server in
subsequent HTTP requests [7].

3This website is the most comprehensive source for fingerprintable attributes we were able to find on
the web. It uses a variety of scripts to display retrievable fingerprintable attributes. Most fingerprintable
attributes discussed in the literature can be found on the website as well as many that are not.

7

https://www.browserleaks.com

2.2. Browser Fingerprinting 2. Background

involves a web server performing some combination of: (a) collecting and analyzing

information contained in HTTP request headers, and (b) downloading JavaScript to

the browser which collects and sends back information gathered from browser APIs.

Examples of collected information include: screen resolution, CPU/GPU model, and

names of installed fonts4. As in these examples, collectable attributes relate to both

browser and host platform. Some attributes change over time (e.g. browser version)

but uniquely identifying a browser instance is usually still possible [86], and uniquely

identifying the hosting platform may still be possible even if a different browser is used

[12].

2.2.2 Effectiveness

Browser fingerprinting is clearly very effective; for example, in a large-scale study,

Laperdrix et al. [44] observed that an average of 86% of desktop and mobile browsers

possess a unique fingerprint; other studies [18, 55] have reported similar results (80–90%).

It is important to note that some of the attributes that can be used for fingerprinting

vary between desktop and mobile platforms; as a result the efficiency of fingerprinting

also varies between platform types [44]. For example, a device model name can be

retrieved from a mobile browser’s user agent HTTP header field but not from its desktop

counterpart. This is an issue examined in detail in Chapter 4.

2.2.3 Applications

Apart from client tracking, discussed in Section 2.4, four widely discussed uses of browser

fingerprinting are: targeted advertising [2, 45]; social media sharing [45, 68]; analytics

services [2, 45]; and web security [2, 82]. Browser fingerprinting also has other potential

uses, e.g. to act as a second layer of authentication [18]. However, even in these cases

the server gets the benefit, and the user is often not informed that fingerprinting is in

use [90]. Determining the exact reason(s) why a website deploys browser fingerprinting

is extremely difficult.

2.2.4 Third-Party Fingerprinting

Browser fingerprinting websites perform it either as a first-party or a third-party (or

both). That is, a website may download a piece JavaScript code to the browser, which

can send the collected attributes back to either its own site (first-party fingerprinting)

or to a third-party site (third-party fingerprinting) [70]. It is even possible that some

4A demonstration of the wide range of information collectable from any browser is available at
https://fingerprintable.org/test.

8

https://fingerprintable.org/test

2.3. Browser Fingerprinting Techniques 2. Background

website operators are not aware that a third-party is performing browser fingerprinting

via their website [20]. This could arise because third-party fingerprinting sites typically

provide client websites with the JavaScript code which collects and sends back to

the third-party site the attributes used for fingerprinting; in return for serving this

JavaScript, the third-party site provides a range of services to the client website (e.g.

data analytics or social plugins). As a result, some website operators may not know

what data the third-party JavaScript script collects from user browsers, or what it might

be used for.

In the context of tracking, first-party fingerprinting gives relatively little information

to a website — it merely enables multiple visits by the same browser to be linked,

and gives no information about other visited websites. If the user identity is known

by other means (e.g. because the user logs in) it can also indicate when this user is

employing multiple devices [2]. Third-party fingerprinting, on the other hand, is much

more privacy-damaging in that it enables browsers (and hence users) to be tracked

across multiple websites. In Chapter 3 we report on the websites that perform the

majority of third-party tracking.

2.3 Browser Fingerprinting Techniques

As first noted by Eckersley [18], one fundamental source of client information that can

be used to help fingerprinting is the user agent field of an HTTP request header [25]. It

gives information related to the browser, including its type and version. This field can

be used to enable a website to tailor content to meet the needs of differing browsing

platforms [25]. An example of the contents of this field as generated by the Mozilla

Firefox browser running on a Windows 10 PC is given in Figure 2.1. The various

components of the example user agent5 are explained in Table 2.1.

Figure 2.1: A sample user agent string

More generally, browser fingerprinting can be performed by either active or passive

means [17]. Passive fingerprinting depends entirely on information retrievable through

regular HTTP requests, such as the user agent field discussed above, whereas active

fingerprinting involves the use of scripts to retrieve further information about the

browser and its configuration. Active fingerprinting enables websites to collect far

5The components are explained following to Mozilla developer’s website https://developer.mozilla.
org/docs/Web/HTTP/Headers/User-Agent/Firefox [accessed on 16/05/2019]

9

https://developer.mozilla.org/docs/Web/HTTP/Headers/User-Agent/Firefox
https://developer.mozilla.org/docs/Web/HTTP/Headers/User-Agent/Firefox

2.3. Browser Fingerprinting Techniques 2. Background

Table 2.1: Explanation of the various components of a sample user agent string
Component Meaning

Mozilla/5.0 Compatible with the last version of the legacy Mozilla browser*

Windows NT 10.0 Operating system is Windows 10

Win64 64-bit browser running on Windows

x64 64-bit operating system

rv:66.0 Rendering engine version

Gecko Rendering engine

20100101 Build date 01/01/2010*

Firefox/66.0 Browser name and version

*Obsolete fields.

more information than is collectable via passive fingerprinting, and thus makes browser

fingerprinting much more effective [6]. However, while active fingerprinting is in principle

detectable through analysis of downloaded JavaScript, information useable for passive

fingerprinting is automatically received by websites (i.e. without prompting) and that

makes it virtually undetectable.

We next provide more details about the types of information that can be used for

both passive and active fingerprinting.

2.3.1 Passive Fingerprinting

As noted above, passive fingerprinting uses attributes that are part of routine communi-

cations between a client (i.e. browser) and a server (i.e. website). In particular it does

not involve any active probing of the client’s browser such as the use of JavaScript.

Examples of attributes that can be gathered in this passive way include the following.

• Clock skew involves identifying the deviation of a client’s clock, in milliseconds,

from the true time [40]. Clock skew for a client device can be estimated by

gathering and processing a number of TCP timestamps.

• As discussed above, the user agent [25] HTTP header string provides web servers

with information related to the client’s browser and hosting platform. This string

is sent by a client browser to the web server of a visited website as part of a client

HTTP request for web resources. As has been widely discussed [18, 29, 88], this

string is a rich source of discriminating information for fingerprinting. According

to RFC 7231 [25], the user agent should be included in all HTTP request headers

but it is not mandatory. A browser can be configured by a user to exclude the

user agent string from its HTTP request headers. The user agent string can also

be retrieved if a website used JavaScript to probe the browser. Hence, the user

10

2.3. Browser Fingerprinting Techniques 2. Background

agent can also be part of active fingerprinting (see 2.3.2).

• The IP address of a client can be used for browser fingerprinting [18]. Typically, a

client device possess at least two IP addresses, one public and another private/local.

However, only the public IP address is readily known by visited websites. The

usefulness of an IP address for fingerprinting varies depending on the client network

setup. For example, a dedicated static client IP address is significantly more

distinguishing than a dynamically assigned client IP address that is potentially

shared by other clients. IP addresses can also be retrieved via active fingerprinting

using the WebRTC API (see 2.3.2).

2.3.2 Active Fingerprinting

This involves the execution of attribute-gathering scripts within the client browser. The

number of possible attributes of this type that have been discussed in the literature is

far larger than the number of passive fingerprinting attributes. Some key examples of

attributes of this type are as follows.

• Canvas fingerprinting is a widely discussed and highly effective browser finger-

printing technique [56]. The Canvas API is a recently widely-deployed HTML5

API that allows websites to render an image for display by the user browser, a

bandwidth-efficient alternative to downloading an image file from the server [87].

A number of authors [1, 44, 56] have demonstrated the possibility of uniquely

fingerprinting browsers and their host platforms based on subtle differences in

how an image is rendered by the browser.

This method works because the Canvas API allows a visited website to request the

return of the RGBA6 values of a canvas-rendered image pixels7 [56]. The details

of this image will vary depending on the platform and the browser, meaning that

the details of the rendered image can be used as a fingerprinting attribute. For

convenience, the image data set can be input to a hash function and the output of

this used as the Canvas attribute. This technique is known a canvas fingerprinting.

• WebRTC [9] is a set of APIs and communications protocols that provides browsers

and mobile applications with Real-Time Communications (RTC) capabilities. This

set of APIs can be used in a variety of ways to obtain information useful for

browser fingerprinting.

6Red, Green, Blue and Alpha (i.e. opacity).
7The canvas.toDataURL() function is used to achieve this.

11

2.3. Browser Fingerprinting Techniques 2. Background

For example, identifying one or more of the client IP addresses via a feature of

WebRTC was first reported and demonstrated by Roesler8 in 2015. The disclosure

of client private IP address(es) in this way is informally known as a WebRTC

Leak. The IP address(es) revealed through a WebRTC leak could include the

client’s local IPv4 address as well as one or more of the client’s unique local

addresses (ULAs)9. As discussed by a number of authors (e.g. Hosoi et al. [35],

Jakobsson [37] and Sandholm et al. [72]), a WebRTC-enabled browser uses the

Interactive Connectivity Establishment (ICE) [38] Protocol to establish a P2P

connection. This protocol enables it to retrieve both public and local IP addresses

to establish a connection. To acquire the IP addresses, the ICE protocol utilizes a

STUN (Session Traversal Utilities for NAT) [71] server, and if that fails, it relays

the connection through a TURN (Traversal Using Relay NAT) [50] server. A

tracking website could use STUN/TURN servers to trick a browser into revealing

IP addresses that are otherwise invisible to websites.

A different means of using WebRTC for browser fingerprinting arises from the

fact that apparently unique IDs are assigned to certain types of hardware device

within a client platform. These IDs vary in length and persistence depending on

the browser (see Chapter 4) and can potentially be used for fingerprinting since

they are made available to executing JavaScript by the WebRTC API.

• The set of installed fonts on a device can be used as a fingerprinting attribute,

as this set appears to vary widely across devices, [2, 18]. Using this information

for browser fingerprinting was first described by Eckersley [18] in 2010, who found

it to be one of the most useful techniques from amongst those he examined. The

method originally discussed for retrieving this information was through probing

a Flash-enabled browser for the list of installed fonts. This method for learning

the set of installed fonts is more effective for browser fingerprinting purposes than

other techniques because Flash provides the font list sorted in the installation

order, where this ordering is itself of value for fingerprinting. The enumeration of

fonts through Flash is typically achieved by including a Flash object on a website

that allows the retrieval of font information. However, since 2010, this method

of retrieving font information is no longer very effective, since Flash is no longer

widely used (indeed, many browsers do not allow its use). However, despite this,

the set of installed fonts is still a very valuable fingerprinting attribute as this

8The report and the demonstration script can be found at https://github.com/diafygi/

webrtc-ips [accessed on 24/05/2017]
9The ULA is the approximate IPv6 counterpart of the IPv4 local address; see https://tools.ietf.

org/html/rfc4193 [accessed on 03/03/2017]

12

https://github.com/diafygi/webrtc-ips
https://github.com/diafygi/webrtc-ips
https://tools.ietf.org/html/rfc4193
https://tools.ietf.org/html/rfc4193

2.4. Online Tracking 2. Background

information can be obtained in a number of other ways. For example, the font

list can be obtained using JavaScript and Cascading Style Sheets (CSS)10, as well

as via the Canvas API as reported by Englehardt and Narayanan [20].

• The WebGL API [36] is used to render graphics within a browser. As part

of its functionality it reveals various host attributes (e.g. render buffer size and

GPU/CPU model) of the hardware that hosts the browser [6, 44, 56]. In Appendix

C.1 we provide a list of WebGL attributes that were collected by websites that

were surveyed in the experiment described in Chapter 3.

Some browsers provide access to the identity of the vendor and the specific model

of the user platform’s CPU or GPU. These two pieces of information are obtained

by requesting the following WebGL attributes: UNMASKED VENDOR WEBGL and

UNMASKED RENDERER WEBGL. These attributes could reveal the Central Processing

Unit (CPU) type if there is no GPU or if the GPU is not used by the browser.

• Although the user agent is typically received by a web server at first point of

contact, it can also be actively retrieved via the JavaScript navigator.userAgent

property. This potentially allows any third-party script to retrieve a browser’s

user agent string even though it does not receive the initial HTTP request header

from the browser (it is only received by the first-party web server [25]). Moreover,

as reported by Nikiforakis et al. [61], some privacy browser extensions spoof the

user agent string in the HTTP request header but not in the browser itself and so

actively probing a browser for the user agent could reveal the real string.

2.4 Online Tracking

Online tracking (or web tracking) is the process of monitoring a user’s online activities;

entities that perform tracking are known as trackers [45]. It is virtually impossible to

determine if a website is actually tracking users; one can simply observe whether a

website collects attributes from browsers that would allow it to track a client via browser

fingerprinting. In line with common usage, we refer to recipients of fingerprintable data

(whether first- or third-party) as trackers or fingerprinters.

In practice, the most common motive for online tracking is to enable online be-

havioural advertising. This describes the practice by web advertising companies of

tracking users’ online activities in order to display personalised and targeted advertise-

ments [84]. Additionally, tracking is used as a tool for market research [52]. There are

10As reported by Takei et al. [79], installed fonts can be detected through CSS even when JavaScript
is disabled on a client’s browser.

13

2.5. Browser Fingerprinting Privacy Concerns 2. Background

two main approaches to online tracking — stateful tracking involving the use of cookies

[52], and stateless tracking, including the use of browser fingerprinting as defined in

Section 2.2. In this thesis, we focus on the latter.

Tracking web users has long been possible by using cookies. However, the absence of

a cookie (e.g. because it has been deleted by the user) means that the device is unlikely

to continue to be tracked [18]. By contrast, browser fingerprinting requires no files to be

stored on the user’s device, its effectiveness partly depends on the browser, and users

have virtually no control over it. It can be used for tracking web users by creating a

unique ID derived by combining collected attributes [44].

That is, browser fingerprinting is in some ways a more reliable method of tracking

than the use of cookies [47], and it appears that browser fingerprinting is increasingly

being used for this purpose. Unlike browser fingerprinting, cookies are stored on user

devices and so can be controlled or deleted by users. In particular, the use of a private

browsing mode11, as provided by many browsers, whilst limiting the use of cookies does

very little to protect users against browser fingerprinting (as discussed in Chapter 4).

Furthermore, while modern browsers provide a user-selectable Do Not Track option,

this apparently does not prevent widespread tracking [2].

2.5 Browser Fingerprinting Privacy Concerns

As noted above, concern has been expressed about the threat to user privacy posed

by browser fingerprinting. Since Eckersley first described it, the range and richness of

information retrievable from a browser that is usable for fingerprinting has substantially

increased, as has real-world deployment of fingerprinting by websites (see Chapter 3).

As has been widely discussed, for example by Eckersley [18], Narayanan and Reisman

[58], and Perry [65], there are a number of reasons why browser fingerprinting represents

a more significant threat to user privacy than cookies.

• Typically there is no simple way to determine for certain whether a website is

deploying any of the various browser fingerprinting techniques.

• A user can limit the tracking power of cookies in a number of ways, e.g. by regularly

deleting cookies or blocking them altogether (as supported by most browsers),

but there are no comparable, easily configured, means of limiting fingerprinting.

• Unlike cookies, browser fingerprinting is not dependent on a single explicit feature

of HTTP. Fingerprinting rather relies on many techniques to collect various

11Modes of this type, which have various names, are intended to enhance the privacy properties of
the browser [89].

14

2.6. Summary 2. Background

information about the properties and configuration of the browser and its host

platform. Any of this information has the potential to be used for fingerprinting.

2.6 Summary

Browser fingerprinting is a relatively new method of uniquely identifying browser

instances that can be used to track web users. A range of individual pieces of information

(attributes) about a platform can be collected from a browser by a visited website,

e.g. using downloaded JavaScript; whilst typically not individually unique, the set of

attributes make up what is known as a fingerprint, and this fingerprint can typically

be used to uniquely identify a platform. In some ways browser fingerprinting is more

privacy-threatening than tracking via cookies, as users have no direct control over it. It

is increasingly being used for online tracking of users even in the absence of a persistent

IP address or cookie.

15

Chapter 3

A Large-Scale Study

3.1 Introduction

The work described in this chapter and Chapter 6, is largely based on [5]. In this chapter

we review previous work looking at this issue and we report on a survey we undertook

to discover the current situation. In this rapidly evolving area, repeated surveys are

vitally important and, as we discuss in this chapter, it appears that fingerprinting has

become much more common since previous studies were performed.

A number of authors (e.g. Eckersley [18], Acar et al. [1], Mayer and Mitchell [52]

and Nikiforakis et al. [61]) have examined the range of attributes that could be used

for browser fingerprinting — a summary of some of these attribute types was given in

the previous chapter. Although the range of retrievable attributes, as well as methods

for retrieving them, have been widely discussed, relatively little has been published

regarding the real-world prevalence of browser fingerprinting, who is deploying it, and the

types of attributes collected to achieve it. This issue clearly merits further investigation,

and has motivated the work described in the next chapter.

In this chapter we also describe the results of a study of the fingerprinting behaviour

of the 10,000 most visited websites. We aimed to discover how many websites deploy

active browser fingerprinting, whether directly or through third parties. We also

examined and, where possible, identified the attributes that were collected by the sites

that were identified as performing browser fingerprinting. One important motive for

understanding better the prevalence and nature of browser fingerprinting is to help in

developing tools that inform the user about fingerprinting, and also enable users to

exert control over the degree to which fingerprinting is possible. To this latter end, in

Chapter 6 we describe FingerprintAlert, a browser extension developed as part of the

study, which makes users aware whenever a website is collecting information usable for

16

3.2. Previous Work 3. A Large-Scale Study

browser fingerprinting. It also allows all detected fingerprinting to be blocked.

The remainder of the chapter is organized as follows. Section 3.2 reviews relevant

prior art, and in Section 3.3 we briefly discuss the limitations of this previous work. In

Section 3.4 we discuss the main motivations for the study described in this chapter. In

Section 3.5 the procedure we used to collect data from 10,000 websites is described;

the results obtained are reported in Section 3.7 and are analyzed in Section 3.8. In

Section 3.9 we discuss the relationship of our study to the prior art. We summarize the

chapter in Section 3.10.

3.2 Previous Work

The following list summarizes (in chronological order) all the previous work which in

some way has examined the prevalence of browser fingerprinting. A summary of the

findings of these previous studies is given in Table 3.1. As discussed below, many of

these papers give only a very limited examination of real-world browser fingerprinting,

e.g. by focussing on a single fingerprinting technique.

• In 2013, Nikiforakis et al. [61] attempted to discover the prevalence of browser

fingerprinting the top 10,000 websites. This is the first study of this type. They

crawled up to 20 pages of each website, searching for specific fingerprinting

scripts supplied by three major third-party fingerprinters. The chosen scripts

recovered information useful for several browser fingerprinting techniques, including

font detection through JavaScript and Flash; and user agent detection through

JavaScript and HTTP. The study revealed that fingerprinting is being performed

by only 0.4% of the tested websites.

• In 2013, Acar et al. [2] crawled the top one million websites to identify the

deployment of a single fingerprinting technique, namely determining the set of

installed fonts. They found that 0.04% of tested websites deployed this technique.

This was the first study to examine use of the Canvas API for fingerprinting. It

was also the first fingerprinting study to examine as many as one million websites

and it remains amongst the largest studies of the prevalence of fingerprinting in

terms of the number of tested websites.

• In 2014, Acar et al. [1] examined the top 100,000 websites for the presence of

three tracking techniques, including a fingerprinting tracking technique using the

Canvas API. They found that 5% of the tested websites used this technique.

The fingerprinting technique considered in this study differs from the technique

17

3.2. Previous Work 3. A Large-Scale Study

examined in the 2013 Acar et al. study [2] in that it involves canvas-rendered

images rather than canvas-rendered fonts.

• In 2015, FaizKhademi et al. [22] described FPGuard, a browser extension they

developed that resists fingerprinting. The extension detects various fingerprinting

scripts that are indicative of four fingerprinting techniques, namely JavaScript

Objects Fingerprinting, JavaScript-based Font Detection, Flash-based Fingerprint-

ing, and Canvas Fingerprinting. The study found that the first three of these

techniques are used by the two major fingerprinting providers they examined. The

authors used the FPGuard extension on the top 10,000 websites and found that

42.6% of the tested websites appeared to perform fingerprinting.

• In 2015, Libert [47] examined the top one million websites for the presence of

third-party JavaScript. He used this as an indication of the possible presence

of fingerprinting scripts. He found that 83% of the tested websites contained

third-party scripts. Libert argued that this might still be a slight underestimate

of the real percentage for a number of reasons, including that a small number

of websites could be using non-JavaScript scripts/plugins (e.g. Adobe Flash or

Microsoft Silverlight).

• In 2016, Engelhardt and Narayanan [20] reported on a study involving crawling

the one million most visited websites for the possible deployment of 15 tracking

techniques including five widely discussed fingerprinting techniques, namely: use

of the Canvas API, detecting the set of installed fonts using the Canvas API, calls

to WebRTC, use of AudioContext, and detection of battery charge level using the

Battery API. They found a very low rate of use of the last two techniques. On

the other hand, they found that Canvas API fingerprinting, font set detection

via the Canvas API, and WebRTC-based fingerprinting were being performed by

1.4%, 0.3% and 0.07%, respectively, of the tested websites.

• In 2017, Olejnik et al. [64] crawled the top 50,000 websites to identify the possible

use of the battery API for fingerprinting purposes. They found that 1.7% of the

tested websites served scripts that accessed this API. This study was the first

to examine the use of the battery API for fingerprinting purposes. However, as

discussed in 7.4.3, many browsers no longer support this API.

• In 2017, Haga et al. [32] reported on a study which found that 17.3% of the top

100,000 websites were using at least one fingerprinting script. They reached this

result by attempting to detect the presence of various known fingerprinting scripts

18

3.3. Analysis 3. A Large-Scale Study

on the tested websites. They concluded that 50% of the identified suspected

fingerprinting is associated with google-analytics.

• In 2018, Das et al. [16] checked whether websites attempted to access motion

sensors, which they suggested are mostly used for fingerprinting purposes. They

found that 3.7% of the top 100,000 websites attempted to retrieve information

through such sensors from visitor devices. It is worth noting that the technique

examined in this study can only be used to fingerprint mobile devices. They also

found that of the devices which did attempt to retrieve motion sensor data, 63%

also gathered other data likely to be useful for fingerprinting purposes.

Table 3.1: Prevalence of fingerprinting according to previous studies
Year Study Detection Method Websites Fingerprinters%
2013 Nikiforakis et al. [61] limited scripts 10K 0.4%
2013 Acar et al. [2] canvas font 1M 0.04%
2014 Acar et al. [1] canvas 100K 5%
2015 FaizKhademi et al. [22] various scripts 10K 42.6%
2015 Libert [47] 3rd-party scripts 1M 83%
2016 Englehardt and Narayanan [20] canvas

canvas font
WebRTC

1M 1.4%
0.3%
0.07%

2017 Olejnik et al. [64] battery 50K 1.7%
2017 Haga et al. [32] various scripts 100K 17.3%
2018 Das et al. [16] motion sensors 100K 3.7%

3.3 Analysis

As many authors have reported, there are a large number of techniques that could

be used for browser fingerprinting. For example, in 2016 Alaca and van Oorschot [6]

described 29 different such techniques, and more than 50 methods are demonstrated

on the BrowserLeaks website. Moreover, this is a rapidly evolving area, where new

techniques are constantly being devised and at the same time other techniques are

becoming less effective (e.g. those based on the use of Flash). Thus studies such as those

of Acar et al. [2], Acar et al. [1], Englehardt and Narayanan [20] and Olejnik et al. [64],

which attempt to detect browser fingerprinting by checking for the use of a small number

of fingerprinting techniques, risk seriously underestimating the actual prevalence. It

is also interesting to note that all these studies identified possible fingerprinting by

examining the downloaded scripts, rather than by looking at the behaviour of these

scripts. Interestingly, these studies were the first to identify possible fingerprinting using

the Battery and Canvas APIs.

19

3.4. Motivation 3. A Large-Scale Study

An alternative approach to detecting browser fingerprinting is to detect the presence

of certain scripts known to be widely used for the purpose. This is the approach followed

by Nikiforakis et al. [61], FaizKhademi et al. [22] and Haga et al. [32]. However, this

approach again risks underestimating the actual prevalence, given that the set of scripts

is constantly evolving. However, detecting only known fingerprinting scripts has the

advantage of not giving any false positives, i.e. providing a lower bound on the level of

fingerprinting.

The study of Libert [47] is likely to overestimate the presence of fingerprinting since

it is based on the presence of any third-party scripts on an examined website. Of

course, this approach is still valuable as it provides an approximate upper-bound on the

proportion of websites performing active fingerprinting.

Finally, Das et al. [16] report on a study performed after that described in Chapter 4,

which looked only at fingerprinting that involved the use of mobile phone sensors. This

was the first study to examine the real-world use of mobile phone motion sensors for

fingerprinting. Unsurprisingly, the study found that only a relatively small proportion

of websites were fingerprinting using this approach.

3.4 Motivation

Despite the fact that browser fingerprinting techniques have been extensively studied, as

noted above, relatively limited information is available on its prevalence and the browser

attributes that are collected in practice. To the author’s knowledge, no study prior to

that described in Chapter 4 has attempted to discover all the browser fingerprinting

attributes that are collected by a large set of real-world websites. Moreover, all previous

studies except Libert [47] identified fingerprinting by the presence of certain scripts.

Fingerprinting using any other scripts would therefore have been missed.

These observations motivate the work described in the next chapter, in which we

report on a study of the fingerprinting behaviour of the 10,000 most popular websites.

Determining which attributes are being used for browser fingerprinting (regardless of

scripts deployed) is a key step in trying to understand how best to control it, a key goal

of this thesis.

3.5 Data Collection Methodology

3.5.1 Data Gathering

The main objectives of the data collection exercise were to assess the number of websites

performing browser fingerprinting, and discover what types of data are being collected

20

3.5. Data Collection Methodology 3. A Large-Scale Study

for this purpose. To achieve our objectives, we decided to crawl a large number of

well-used websites and to test their data gathering behaviour. We chose 10,000 sites

as this seemed both sufficiently many to generate representative results, and also a

manageable number so we could analyze the considerable volumes of data generated.

Unlike the work others including Englehardt and Narayanan [20] and Acar et al.

[2], we chose not to examine the JavaScript itself, but instead monitor the data that is

actually transferred back from the browser. We only looked at the data transmitted,

rather than analyzing the downloaded JavaScript, for two main reasons: manual analysis

of JavaScript on this scale was infeasible, and detection of certain scripts, as noted in

3.2, has limitations. Moreover, the data that is sent was the key issue of concern for us,

not so much how it is gathered. That is, we based our fingerprinting detection on an

analysis of the data that is communicated, regardless of the recipient.

We used a simple method to decide whether a web server is performing browser

fingerprinting. That is, we looked at the data sent back from the browser to the visited

website after the first web page was loaded, and checked whether we could detect any

data that is potentially being collected for the purposes of fingerprinting. The precise

definition of the data types that triggered our decision is given in Section 3.5.3. To try

to “normalize” web server behaviour, we looked only at the interactions that occur when

a browser initially visits the homepage of the website, rather than other information

gathering exercises that might occur (e.g. when a user tries to log in). We opted only to

examine the homepages of tested websites since other studies, such as that of Nikiforakis

et al. [61] that involved crawling up to 20 pages of every tested website, failed to find

any benefit from visiting pages other than homepages.

3.5.2 Experimental Set Up

In order to select which websites to crawl, we retrieved the top 10,000 websites from the

freely available Majestic list of the one million most visited websites1. As noted above,

we only looked at the interactions that occur when a browser initially visits the homepage

of a website, rather than other information gathering exercises that may occur (e.g.

when a user tried to log on), in order to try to “normalize” website behaviour. This of

course means that we missed websites that employ interaction-triggered fingerprinting.

The crawler was created using Selenium WebDriver2, a Python script, the Finger-

printAlert Chrome extension (described in Chapter 6), and the Chrome browser itself.

Summaries of the crawler components and the devices used for the study are given

1Majestic is a website specializing in web usage statistics, and provides a daily-updated list of the top
one million websites, https://majestic.com/reports/majestic-million [accessed on 09/10/2017].

2Selenium is open-source software used to automate browsers for testing purposes — see https:

//www.seleniumhq.org.

21

https://majestic.com/reports/majestic-million
https://www.seleniumhq.org
https://www.seleniumhq.org

3.5. Data Collection Methodology 3. A Large-Scale Study

in Tables 3.2 and 3.3 respectively, and the structure of the experimental platform is

depicted in Figure 3.1. The Python script instructs Selenium to visit the 10,000 websites

in the list, wait for each to fully load, and then wait for a further short period before

moving to the next website. The code for the Python script is given in Appendix B.

Table 3.2: Crawler software components

Component Details

Browser extension FingerprintAlert 1.0

Programming language Python 3.6.3

Automation tool Selenium 3.8.1

Table 3.3: Computing environment used for crawling

Component Details

Device MacBook Pro (10.1.1)

OS MacOS Sierra 12.1

Browser Chrome 62.0.3202.94

Figure 3.1: Crawler components and their interactions

The delay is included because, in preparatory work, we manually visited 50 websites

on the list and found that following the full loading of the page some only relayed

information after a delay ranging from one second to several minutes. Such waits seem

likely to be both to allow the various elements of the web page to be loaded and executed,

and to take account of dynamic content (e.g. advertisements) being continuously loaded.

22

3.5. Data Collection Methodology 3. A Large-Scale Study

We set the short delay to three seconds; this was a fairly arbitrary choice, although it was

long enough to cause a number of websites to transmit data, although not sufficiently

long to make the crawling process significantly more time consuming.

The extension collects and stores all data that is relayed from the browser to one or

more web servers using the GET, POST or HEAD HTTP methods3 [25], i.e. the commonly

used means by which information, including attributes used for fingerprinting, is relayed

from browser to server. Whether or not the data was sent SSL/TLS-protected, i.e. using

HTTPS [69], was also recorded.

The crawling process took approximately 300 hours to complete. It took this long

for several reasons, including that some websites took several minutes to fully load, and

that Selenium occasionally crashed. In such cases, the crawler was restarted manually,

and we re-crawled websites after a crash to ensure we did not miss any data.

3.5.3 Data Processing

Prior to the full crawling process we initially crawled a smaller sample (approximately

1,000 of the websites) to test the crawler. In this process we indiscriminately collected all

data sent (if any) from the browser to web servers. Manual examination of the collected

data revealed that in many cases it included information unrelated to the visiting device

or the browser (e.g. the URLs of displayed advertisements), i.e. of no interest to this

study. Most importantly for our purposes, we were also able to identify fingerprinting

attributes that had unique formats or values (e.g. screen resolution: 1920x1080) that

made automatic detection possible.

Using these preliminary findings, we programmed our crawler to automatically

detect a set of 17 attribute values. To achieve this we first collected the precise values

of these 17 attributes for our experimental platform, as summarized in Table 3.4. For

example, this included the public IP address in use at the time of the experiments, i.e.

165.120.95.194. The crawler then used regular expressions to examine all relayed data

and match them against the set of 17 attribute values for the experimental platform. If

the crawler detected that a website was causing the browser to send any of these 17

attribute values to the same or a different website, then it captured the entire HTTP

message and stored it as part of the data collected.

The presence of one or more of the experimental platform attribute values in data

returned by the browser was used to determine whether or not a website was engaged in

fingerprinting. This set of 17 attribute types includes many of the attributes whose use

for fingerprinting is most widely discussed, so we believe that the presence or absence

3The quantity of data that can be relayed using GET or HEAD is very limited, whereas POST allows
the transmission of very large volumes (megabytes) of data.

23

3.5. Data Collection Methodology 3. A Large-Scale Study

of an attribute of one of these types is a reasonable indicator of whether fingerprinting

is being performed. However, some other attribute values are much more complex,

and hence are difficult to automatically identify. In subsequent manual analysis of the

recorded data, we were able to identify many additional attributes because they were

labelled by name in the captured data and their values matched those of the browser

used in the experiment. To perform this task automatically would have been extremely

difficult because some sections of the recorded data were not parsed, and the substrings

of the data that were parsed varied in format (unsurprisingly given the absence of any

standards for data formats for transferred attribute values).

Table 3.4: The 17 chosen browser attributes and their values for the test platform

Attribute Value

Resolution 1280x800

OS Mac OS X

OS Version 10.12.6

User Agent Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_6)

AppleWebKit/537.36 (KHTML, like Gecko)

Chrome/62.0.3202.94 Safari/537.36

Browser Name Chrome

Browser Version C62.0.3202.94

WEBGL Renderer WebKit WebGL

WEBGL Vendor WebKit

WEBGL Version WebGL 1.0 (OpenGL ES 2.0 Chromium)

GPU Intel(R) Iris(TM) Graphics 6100

GPU Vendor Intel Inc.

Installed Plugins Chrome PDF Plugin, Chrome PDF Viewer, Native Client,

Widevine Content Decryption Module, Widevine Content

Decryption Module

Language en-GB

Location 51.4167,-0.5667

City EGHAM

IP Address 165.120.98.194

Character Set UTF-8

In order to manually identify fingerprinting attributes in the collected data we

searched for the fingerprinting attributes reported by Alaca and Van Oorschot [6] and

24

3.6. Challenges and Limitations 3. A Large-Scale Study

the BrowserLeaks.com website, including attributes not in the list of 17 attribute types

detectable by the crawler. We then attempted to match these values with the values

in the collected data. Once we completed the matching, we manually inspected the

matches found; this was necessary to ensure that the matches found were genuine

and not coincidental similarities in strings or numbers. In most cases the match was

confirmed by finding labels followed by the expected values in the collected data.

3.6 Challenges and Limitations

We faced a number of challenges in both implementing crawling and processing the

collected data. First, websites are unlikely to admit use of browser fingerprinting, and

so we can only attempt to judge their behaviour based on the types of information

retrieved from the browser, and when it was collected. As discussed in Chapter 2, there

is a wide range of attributes that, when put together, can be used to create a unique

device fingerprint. Identifying and monitoring all such attributes is very challenging,

especially since new attributes seem to arise frequently (given continuously evolving

browser functionality). Moreover, many websites cause the browser to send a series

of data strings back to the server; automatically, or even manually, identifying what

these data represent is highly non-trivial. It was not always possible to parse the data

sent since there is no standard for such data transmissions; indeed, some websites may

deliberately obfuscate the data they send. It was therefore impossible to fully interpret

all the data. Fortunately, there are certain attributes that are easily identifiable because

of their special format and range of values, such as screen resolution (e.g. 1920x1080),

fonts (e.g. Arial), or geolocation coordinates (e.g. 51.4167, -0.5667).

It is very difficult to determine the minimum number of attributes needed to produce

a unique fingerprint. Fingerprint uniqueness depends on many factors, including the

range of values of an attribute, how often it changes, and how much it varies across

browsers and host platforms. As a result, we made the simplifying assumption that a

website is deemed to be engaging in browser fingerprinting if it causes a browser to send

at least one of the 17 attribute values given in Table 3.4.

As noted in Section 3.5.2, the crawler only visited the homepages of the chosen

10,000 websites. Websites we reported as not deploying browser fingerprinting might

nevertheless still be doing so on other pages. Moreover, the attribute collection reported

here was unprompted (i.e. no clicking, cursor movements or typing was involved) except

for loading of the web page. Through manual visits to selected websites, we found that

some websites only cause the browser to send fingerprinting attribute values when there

are further interactions. Moreover, some websites only retrieved attributes when a user

25

3.7. Results 3. A Large-Scale Study

submits a form or logs in, and such cases would be too complex (if not impossible) to

capture automatically. The focus of this study is fingerprinting that targets everyone,

including those engaged in casual browsing.

As our crawler was Selenium-based, it suffered from the known crashing problem [20]

on certain websites, e.g. when it was unable to fully load all the elements of a website.

In such cases the crawler had to be manually restarted. On average, Selenium crashed

after crawling 155 websites. Moreover, Chrome extensions are limited to 5MB of storage

and so, to ensure that the collected data did not reach that limit, we programmed the

crawler to stop after every 200 visited websites, yielding an average of 3MB of collected

data. However, Selenium usually crashed before reaching the 200-website limit.

The crawler was set to allow a website a maximum of 60 seconds to fully load before

it timed out. We found that the tested 10,000 websites took an average of 19 seconds

to fully load. Our tests were performed using an Internet connection with a minimum

bandwidth of 40 Mbps, and so connection limitations are unlikely to be the reason for

the loading delays. The time to load a website noticeably increased as we went through

the list of crawled websites, i.e. the less popular websites loaded more slowly. So, in

future similar experiments, we would recommend that crawlers should not timeout until

at least 20 seconds have elapsed.

3.7 Results

The data collected in this study, as well as the tools we used for data collection

and analysis, are available at https://github.com/fingerprintable. The dataset

includes the contents of all HTTP messages sent by and to the crawled websites that

the crawler identified as performing fingerprinting. This includes the data retrieved

from the visiting device (i.e. the device used for data gathering), as well as the domain

names of the sender and receiver of the data. Figure 3.2 shows a sample of a complete

block of data from amongst those collected in our study.

Using a combination of automated parsing and manual inspection, we detected the

transmission of 286 different attribute types. We further detected 1,914 distinct websites

that collected data for fingerprinting. 70 of the 10,000 websites (i.e. 0.7%) timed out

(e.g. because the website did not respond) during the crawling process and thus were

fully, or partially, excluded from our findings. Overall, 6,876 (68.8%) of the crawled

websites caused the browser on the experimental platform to send data that could be

used for browser fingerprinting (either to the same or another website, i.e. first-party

or third-party fingerprinting). We refer to such websites as fingerprinting websites; of

course, despite the name, the fingerprinting websites might not actually be using the

26

 https://github.com/fingerprintable

3.7. Results 3. A Large-Scale Study

Figure 3.2: Excerpt of collected data

collected data for fingerprinting.

Fingerprinting is most commonly performed by third-party sites; 84.5% of the 6,876

sites collecting data sent it only to third parties. Of the rest, 2.4% were exclusively

first-party fingerprinters, with the other 13.1% using both first- and third-party data

collection. Over the 6,876 fingerprinting websites, data was sent to an average of 3.42

domains. The largest number of different data-collecting websites to which data was

sent for a single visited website was 42.

Fingerprinting websites collected an average of 1.75KB of data. The third-party

websites that collected the most data were yandex4 (2.9MB), optimizely5 (2.8MB) and

casalemedia6 (2.1MB). Figure 3.3 shows the top 10 third-party websites in terms of

collected data volume for a single visiting browser.

Of the attributes the crawler can automatically detect, the three most frequently

collected were: screen/browser resolution, language, and charset (i.e. character encoding).

We found that fingerprinters collected, on average, five of the attribute types listed

in Table 3.4. Figure 3.4 summarizes the 10 most frequently collected attribute types.

The most widely used fingerprinting third-party was google-analytics7 (see Appendix

A.2 for a complete list of fingerprinting third parties); google-analytics provides web

analytics as well as other web-based services to websites. This finding is consistent with

studies those of non-fingerprinting-based tracking (e.g. of Schelter and Kunegis [73]

and Metwalley et al. [54]), which revealed that google-analytics is the most commonly

occurring third-party tracker.

4https://yandex.ru
5https://www.optimizely.com
6http://casalemedia.com
7https://analytics.google.com

27

https://yandex.ru
https://www.optimizely.com
http://casalemedia.com
https://analytics.google.com

3.8. Analysis 3. A Large-Scale Study

Figure 3.3: Top 10 fingerprinters in terms of collected data volume per browser

As noted above, amongst the collected data we were able to identify 286 fingerprinting

attributes, which we divided into six categories (see Table 3.5). The full list of 286

attributes can be found in Appendix C.

Table 3.5: Summary of identified fingerprinting attributes
Attribute Type WebGL Features Media IO* Network Misc. Total
Count 114 66 41 20 10 35 286

*Input/Output

3.8 Analysis

3.8.1 Processing Collected Data

As described above, the crawler logged every website that relayed data if one, or more, of

the 17 pre-programmed attribute values were detected. We examined random samples of

the collected data to identify the presence of any false positives. We found some HTTP

28

3.8. Analysis 3. A Large-Scale Study

Figure 3.4: Top 10 collected attributes

messages that contained data that were incorrectly matched with one of the 17 attribute

values. We wrote a script to remove such records (e.g. if the string 1280088.jpeg

matched with the screen resolution width 1280). However, in general, identifying false

positives (if any) in the filtered data is non-trivial, since the ability to fingerprint

browsers typically depends on both the number and type of collected attributes. For

example, Mowery and Shacham [56] have demonstrated that the Canvas API alone could

be enough to fingerprint a browser, and Laperdrix et al. [44] demonstrated a seemingly

successful method of fingerprinting based on a specific set of just 17 attributes.

3.8.2 Prevalence of Fingerprinting

Our study confirms the findings of Englehardt and Narayanan [20] that fingerprinting

is commonplace, at least by widely-used websites, and yet there are a relatively small

number of entities actually collecting and processing attributes (mainly third-party

trackers). Indeed, the top five third-party fingerprinting domains (see Figure 3.5) are

all part of a single company, Google Inc. This finding is consistent with Libert [47],

29

3.8. Analysis 3. A Large-Scale Study

who found that 78.07% of the top one million websites send data to a Google-owned

domain. Moreover, it is consistent with Haga et al. [32] who found that google-analytics

is, potentially, the most prevalent fingerprinter. An extended list of fingerprinters can

be found in Appendix A.

Figure 3.5: Top third-party fingerprinting domains

We found that 68.8% of the top 10,000 websites are potentially engaged in finger-

printing, although, as shown in Table 3.2, previous studies have yielded rather different

results. For example, in 2013, Nikiforakis et al. [61] found that only 0.4% of the top

10,000 websites deployed fingerprinting. A year later, Acar et al. [1] reported that

5% of the top 100,000 websites deployed browser fingerprinting using the Canvas API.

In 2015, FaizKhademi et al. [22] found that 42.6% of the top 10,000 websites were

likely to be engaging in fingerprinting. It thus seems likely that both the prevalence of

browser fingerprinting and the number of attributes being collected for this purpose

have significantly increased.

30

3.8. Analysis 3. A Large-Scale Study

3.8.3 Fingerprinting Attributes

As discussed in 3.5.3, we were able to identify 286 fingerprintable attribute values

retrievable from the browser used in our experiment. We were able to confirm their

presence by comparing attributes in data collected by the crawler with attributes

reported by Alaca and Van Oorschot [6] and the BrowserLeaks website. This gave us

an indication of the range of attributes that are collected in the real world, as opposed

to those discussed in the literature, and also helped us improve the functioning of the

extension described in Chapter 6.

It is worth noting that the number of attributes reported in our study is much

larger than those reported by previous studies. This is partly explained by the fact

that previous studies have searched for a smaller number of attributes; for example

Eckersley [18] and Cao et al. [12] looked for just 10 and 53 attributes respectively. The

significantly higher number we found also seems likely to be a result of the growing use

of browser fingerprinting [2, 61], and the fact that we monitored the HTTP messages

transmitted between visited websites and potential trackers as opposed to only detecting

the presence of known fingerprinting scripts, as previously widely performed. All of

the attributes we were able to identify are collectable by BrowserLeaks.com. However,

BrowserLeaks.com can also collect many attributes that we did not find any websites to

be collecting, including many of the browser features collectable by Modernizr8.

3.8.4 Deployment of HTTPS

Some fingerprinting websites do not use HTTPS to send the fingerprinting attributes,

which are thus transmitted in plaintext; this is a potentially significant user privacy

threat. Of the 1,914 distinct fingerprinters we detected, as many as 683 used only

HTTP for attribute transmission, 274 mixed use of HTTP and HTTPS, and the

remaining 957 used only HTTPS. That is, 50% of the fingerprinting websites used

HTTP at least in some cases for transmitting what could be construed as personally

identifiable information. Seemingly, the use of HTTP is more common in less popular

websites, as Merzdovnik et al. [53] reported that as many as 60% of the top 100,000

websites performing fingerprinting used HTTP. These results apply only to the use of

HTTP/HTTPS for transmitting browser attributes, not to whether or not the visited

website uses HTTPS. It is interesting to note that we identified a fingerprinting website

that used the WebSocket protocol9 as well as HTTP.

8A JavaScript library that help websites detect the availability of CSS and HTML5 features in a
visitor’s browser https://modernizr.com.

9WebSocket is a relatively new full-duplex TCP communication protocol [24]. Bashir et al. [8] have
described how trackers typically utilize the WebSocket protocol to circumvent ad blockers on browsers.

31

https://modernizr.com

3.9. Relationship to the Prior Art 3. A Large-Scale Study

3.8.5 Fingerprint IDs

Some websites cause a browser to send a value that is explicitly labelled fingerprint

or fp, along with fingerprinting attribute values. These values are typically strings of

alphanumerics (e.g. b5a2ab93-9415-32be-b1ca-c3ddabb110cc) that appear to func-

tion as platform/user identifiers. Evidently, some first- and third-party trackers share

such user identifiers [23], allowing them to compile extensive profiles of users. This also

means that a website or a tracker could acquire user- or platform-related information

without any prior interaction with that user. Such ID-sharing practices clearly make

browser fingerprinting-based tracking more privacy-threatening.

3.9 Relationship to the Prior Art

As discussed in 3.2, the study of Libert [47] provides an upper bound on the prevalence

of browser fingerprinting at the time it was conducted, because he assumed that all

third-party scripts could potentiality be used for fingerprinting. Hence, it might be

expected that the prevalence of fingerprinting found by this study would be less, given

the method used was less indiscriminate, which was indeed the case. A further difference

between the work described here and all other previous studies, including that of

Englehardt and Narayanan [20], is that they examined the fingerprinting scripts while

we examined the data relayed back to server via HTTP. Most significantly, and as

discussed in 3.8.2, we not only detected a level of fingerprinting prevalence that was less

than that found by Libert [47], but it was much greater than that found by all other

studies. Indeed, our results suggest that fingerprinting is becoming ubiquitous. This is

consistent with the findings of the large scale study by Lerner et al. [45], that examined

the prevalence of online tracking between 1996 and 2016. They have demonstrated an

exponential increase in the use of fingerprinting-based tracking in recent years.

Given that this is a rapidly changing and evolving area, it is important to repeat

studies frequently, and so one contribution of this study is to reveal the current state

of the art. We do not claim that the approach we have adopted is better than other

approaches, but it does have the advantage of being based purely on the data itself,

and not on the many and various scripts that might be used to fingerprint browsers.

Our study has enabled us to give an up to date, fairly comprehensive, and large-scale

list of the attributes being used in practice for browser fingerprinting.

Ethical Issues. Clearly any experiment involving real world websites raises po-

tential ethical issues. However, no data relating to individuals were accessed, no

vulnerabilities in websites were discovered or exploited, and all websites were accessed

as intended by their providers. Websites were crawled only once, except in cases of

32

3.10. Summary 3. A Large-Scale Study

a crawler crash where an additional visit was required. All the results are publicly

available, as described in Section 3.7.

3.10 Summary

Browser fingerprinting is a relatively new method of uniquely identifying browsers that

can be used to track web users. In some ways it is more privacy-threatening than

tracking via cookies, as users have no direct control over it. A number of authors have

considered the wide variety of techniques that can be used to fingerprint browsers;

however, as we have described, relatively limited information is available on how

widespread browser fingerprinting is, and what information is collected to create these

fingerprints in the real world. There is limited information available in the literature

on how widespread browser fingerprinting is at present, and what information is being

collected to create these fingerprints. To address this we crawled the 10,000 most visited

websites; this gave insights into the number of websites that are using the technique,

which websites are collecting fingerprinting information, and exactly what information is

being retrieved. We found that approximately 69% of websites are, potentially, involved

in first-party or third-party browser fingerprinting. We further found that third-party

browser fingerprinting, which is potentially more privacy-damaging, appears to be

predominant in practice.

33

Chapter 4

Comparing Browser

Fingerprintability

4.1 Introduction

The work described in this chapter is mostly based on [4]. In this chapter we describe

a series of systematic tests performed on currently widely used browsers, which show

that some browsers reveal substantially more fingerprinting information than others.

Hence users of the least privacy-respecting browsers can more readily be identified

and/or tracked. As discussed in Chapter 2, a number of authors have examined the

effectiveness of various techniques for browser fingerprinting, but to our knowledge

no-one has previously compared the effectiveness of fingerprinting across a range of

browsers.

We performed the tests using a specially established website1. This website does not

retain any data recovered from visiting browsers, but simply displays the information

that it is able to collect from the currently employed browser. We hope that this site

will be a useful tool in promoting general understanding of the privacy threat arising

from browser fingerprinting, and more generally from some of the features provided by

today’s browsers when executing JavaScript.

As discussed in 2.2, over the last nine years, a number of authors have performed

detailed studies of the effectiveness of a range of browser fingerprinting techniques. We

used a selection of known fingerprinting approaches to compare the fingerprintability

of widely used web browsers on both desktop and mobile platforms. Since desktop

browsers differ significantly from their mobile counterparts in their capabilities and

1https://fingerprintable.org. All the scripts used in our experiments are publicly available —
see Appendix D.

34

https://fingerprintable.org

4.2. Methodology 4. Comparing Browser Fingerprintability

features (e.g. plugins cannot be installed on mobile browsers), we made parallel studies

for these two platform types.

The remainder of the chapter is structured as follows. We start in Section 4.2 with

the methodology used in our experiments. In Section 4.3 we discuss the experimental

results. In 4.4, a summary of the chapter is provided.

4.2 Methodology

We performed our experiments on five of the most widely used platform types. Specif-

ically, we chose to examine browsers running on Windows 10 and Mac OS X 10.12

(Sierra) for desktop platforms, and Android 7.0 (Nugget), iOS 10.2.1 and Windows 10

Mobile for mobile devices (full specifications of the devices used in this experiment are

given in Appendices E.2 and E.3). Further details of the methodology we employed

to examine browser fingerprintability, including the set of browsers we examined, are

given below. Precise details of the versions of operating systems and browsers used are

given in Appendix E.1.

4.2.1 Browsers

As noted above, given the major functional differences between desktop and mobile

browsers, we made parallel studies of the two classes. For both mobile and desk-

top platforms, we chose to examine the five most widely used browsers according to

netmarketshare.com2.

• The desktop browsers we examined were Chrome, Internet Explorer, Firefox,

Edge and Safari.

• The mobile browsers used in our tests were Chrome, Safari, Opera Mini,

Firefox and Edge. We excluded Mobile Internet Explorer and Android Browser

because they are no longer being developed or included with new devices3. Specifi-

cally, Google has replaced its native Android Browser with Chrome, and Microsoft

has replaced Internet Explorer with Edge in Windows 10 Mobile.

4.2.2 Installation Options

The use of browser extensions and plugins can both increase and decrease the information

available for fingerprinting. The presence of extensions inherently increases fingerprinting

2https://www.netmarketshare.com/browser-market-share.aspx [accessed on 03/03/2017]
3At the time of the study, Internet Explorer and Android Browser were used by approximately 5%

of mobile browser users, according to NetMarketShare.

35

https://www.netmarketshare.com/browser-market-share.aspx

4.2. Methodology 4. Comparing Browser Fingerprintability

capabilities, since the set of installed extensions (information that is typically available

to executing JavaScript) helps individualize a browser; in addition, some extensions

reveal information that can identify the user or browser instance (see 2.3.2 and Fiore et

al. [27]). On the other hand, as we discuss in Chapter 7, specially designed anonymizing

extensions can be used to conceal a browser’s fingerprint. To avoid biasing the results,

in our tests we used clean installations of browsers so that they did not include any

extensions or plugins other than those installed and enabled by default. We could have

chosen to disable even those extensions that are present and enabled by default, but we

chose to leave them on the basis that many users will not change the browser default

settings; hence testing the browser “out of the box” gives the fairest assessment of its

privacy properties.

In fact, the browsers we examined come with very few installed and enabled exten-

sions; Edge and Internet Explorer are the only browsers we tested that come with the

Flash plugin installed and enabled by default. Although Chrome comes with the Flash

plugin installed, it is disabled.

The mobile browsers require various permissions to be set as part of their installation.

In addition, browsers may request extra permissions while executing, depending on

the features of a visited website (e.g. to request permission to take pictures and record

video). For testing purposes, we did not grant any permissions other than those needed

for browser installation.

4.2.3 Experimental Scripts

To test the fingerprintability of the selected browsers, a web page containing JavaScript

was constructed, intended to be served by our experimental website. Whenever the

website is visited by a client browser, e.g. one of those being tested, the scripts in the

web page interrogate the browser to learn the values of a set of identifying attributes

(as discussed in Section 4.2.4). The scripts used in the experiments were largely based

on the BrowserLeaks website as well as those available in the GitHub open repositories.

The web page displayed by the browser contains a summary of the information

gathered by the script, and thereby provides an instant summary of the privacy properties

of the browser. As mentioned elsewhere, this site is publicly available, and is open for

general use. A partial screenshot of a typical displayed page is shown in Figure 4.1.

The total size of the script used is approximately 70KB; in informal tests it loaded

and displayed the results without any noticeable delay.

36

4.2. Methodology 4. Comparing Browser Fingerprintability

Figure 4.1: Partial screenshot of the Fingerprintability Test page

4.2.4 Attributes

The original goal of our experiments was to sample all the attributes that can be

collected from a web browser. Any attribute that is not fixed for all browsers has

potential value for fingerprinting. However, a large number of attributes have Boolean

values (e.g. Java installed?) or one of a very limited set of values (e.g. Java version) and

hence they typically give relatively little identifying information. Given the significant

number of such attributes, we therefore omitted all attributes of this type from our

tests, and focused on a set of six that have the potential to give significantly more

information.

We omitted attributes that, according to Laperdrix et al. [44], take more than a few

seconds to collect (e.g. font metrics [26]), or are unreliable for fingerprinting purposes

(e.g. battery level [63]). Additionally, we omitted attributes that are made available by

all tested browsers as part of their typical functionality (e.g. screen resolution). It is

worth noting that some attributes are related to the user’s machine and thus can be

used to help identify a specific platform even if a user subsequently switches browsers

[12]. Others are browser-specific, and hence can only be used for fingerprinting as long

37

4.2. Methodology 4. Comparing Browser Fingerprintability

as the same browser is used.

We next discuss in detail the six fingerprinting attributes used in our tests.

Installed Font Set through Flash

As described in 2.3, several methods can be used to identify the set of fonts installed

on a device; one involves the use of Flash. If the Adobe Flash plugin is installed

and enabled, it can be used to reveal the set, and installation order, of fonts installed

on the user platform; this is known to be a highly discriminating attribute (see, for

example, Eckersley [18]). Moreover, this attribute can be used to fingerprint a platform

even if multiple browsers are used. However, of the desktop browsers we examined,

only Edge and Internet Explorer have Flash installed and enabled by default. In this

respect, Edge and Internet Explorer are therefore significantly less privacy-protecting

than their competitors, since a browser/platform is less identifiable when learning the

set of installed fonts is performed without using Flash.

None of the mobile browsers we examined support Flash, so the set of installed

fonts was not used when comparing the fingerprintability of this class of browsers.

Furthermore, the most widely used mobile operating systems (i.e. Android and iOS) do

not give the user the option to install fonts.

Again as described in 2.3, there are other, albeit less accurate, methods of discovering

the set of installed fonts using website-supplied JavaScript. However, we do not consider

these methods as part of our comparison, since they work in much the same way for all

the tested browsers.

Device ID(s)

The use of a device ID as a fingerprintable attribute was proposed by an anonymous

developer on BrowserLeaks.com4. According to this website, a device ID is a hash value

generated by a browser by applying a cryptographic hash function to the unique ID

of a hardware component in the user platform (combined with other data values); as

described in 2.3 it is retrieved by requesting the WebRTC hardware ID attribute.

The main intended application of such device IDs would appear to relate to managing

multimedia content, and the platform components whose identifiers are used are typically

the loudspeaker, microphone and/or camera. Since the device ID is computed on other

data in addition to a unique hardware identifier, the value computed by a browser will

typically change when accessed by different websites. However, for a single website, the

device ID appears likely to remain constant (at least for some browsers) across multiple

4 https://browserleaks.com/webrtc#webrtc-device-id [accessed on 03/03/2017]

38

https://browserleaks.com/webrtc#webrtc-device-id

4.2. Methodology 4. Comparing Browser Fingerprintability

visits, giving it high value for fingerprinting purposes. Moreover, a device ID seems

to be constant when queried in different ways; for example, we obtained the value via

an embedding iframe on a different website, and it gave the same value as that for

the framed site. In addition to iframe, we were able to achieve the same results using

other HTML embedding tags, namely embed and object.

To the author’s knowledge, there is no description in the literature of any practical

evaluations of this attribute as a technique for fingerprinting, and so its robustness and

usefulness for this purpose has yet to be determined. However, experiments conducted

as part of this study (see Section 4.3) suggests that it has great promise for use in

fingerprinting. This would be an interesting topic for further research. Gaining a better

understanding of how exactly the device ID is computed by the various browsers would

certainly help in such an investigation, although such information does not appear to

be publicly available.

Canvas Image

As described in 2.3, the Canvas API allows a web server to request the return of details

of a rendered image, and since different browsers and platforms will render images

differently, this can be used for browser fingerprinting. All the tested browsers rendered

the sample canvas-rendered image provided by the test script (see Figure 4.2), and as a

result give a fingerprint for that browser. We based our tests on the particularly effective

canvas fingerprinting approach of Englehardt and Narayanan [20]. Although not part

of our comparative experiments, it is interesting to observe that the Tor browser (a

modified version of Firefox that uses the Tor network) displays a warning and asks

the user for permission before rendering a canvas image. However, none of the tested

browsers made such a request.

Figure 4.2: Sample canvas-rendered image used in our tests

Not only does this attribute enable fingerprinting based on the browser in use, but in

39

4.2. Methodology 4. Comparing Browser Fingerprintability

some cases it provides the ability to discriminate between two similar platforms running

the same browser. That is, in some cases the image rendered by the same browser will

differ given a small change in the computing environment.

WebGL Renderer

As described in 2.3, the WebGL Renderer value, as made available via the WebGL

API (if supported), indicates either the CPU or GPU of the host platform. This partic-

ular attribute contains two sub-attributes: UNMASKED VENDOR WEBGL (i.e. CPU/GPU

manufacturer) and UNMASKED RENDERER WEBGL (i.e. CPU/GPU model).

The experiments revealed that the UNMASKED VENDOR WEBGL either states the browser

vendor or the CPU/GPU vendor. In both cases it does not provide any useful informa-

tion that cannot be readily found from the UNMASKED RENDERER WEBGL (i.e. identifying

a vendor is trivial once the full CPU/GPU model details are known) or the user agent

HTTP header field readily reveals the browser vendor. We therefore focussed solely on

the UNMASKED RENDERER WEBGL value.

User Agent

As discussed in 2.3, the user agent HTTP header field is a rich source of fingerprinting

information. However, we found that all tested desktop browsers provide much the same

level of detail, and so this attribute is not useful in comparing their fingerprintability.

We therefore do not use this attribute when comparing desktop browsers. However, it

remains useful for comparing the fingerprintability of mobile browsers, since in some

browsers it includes an indication of the model of the mobile phone.

Private IP Address(s)

Ideally, a website cannot discover the real public IP address of a user platform that is

employing a VPN. However, as discussed in greater detail in the next chapter, a website

can learn the browser public IP address as well as the IP address assigned by NAT or a

VPN by exploiting a feature of its WebRTC implementation. Given its potential for

uniquely identifying a platform on its own, we included this attribute in the tests.

4.2.5 Performing the Experiments

Platforms of the specified types, running the chosen operating systems, were equipped

with the relevant browsers (clean installs, as discussed above). The browser was then

made to visit the test website (https://fingerprintable.org) and the data generated

by the script was collected and recorded. The 10 datasets (five for the desktop platform

40

https://fingerprintable.org

4.2. Methodology 4. Comparing Browser Fingerprintability

and five for the mobile platform) generated were then processed and used to derive the

information given in Section 4.3 below.

Attribute Processing

Each browser was tested for the retrievability of discriminating information for each of

the six fingerprinting attributes described in Section 4.2.4 (except for the user agent

on desktop platforms and the set of installed fonts on mobile devices). For most

attributes, it was straightforward to determine whether or not the browser returned any

fingerprintable values. However, some attributes required some processing to be useful.

For example, an attribute such as user agent always returns a string of information. The

key difference between one browser and another was whether it included information

specific to the system hosting it. These differences were observed and noted.

The device ID was tested for both its existence as well as its persistence. We

observed that the browsers that calculate such a value, at some point calculate a new

value. The main difference between browsers in this respect is in the nature of the

trigger that causes recalculation. This means that some browsers have a more persistent

device ID, i.e. one that is more valuable for fingerprinting, than others.

In most cases the returned canvas-rendered image was the same for a single platform

regardless of the browser. Some browsers also render the same image when running on

two devices that have relatively similar specifications. To find these cases we tested and

compared canvas-rendered images of each browser on two devices with similar hardware.

Fingerprintability Index

For comparison purposes, we ranked each attribute as having a high (3), medium (2)

or low (1) attribute fingerprintability, where high indicates an attribute giving more

information useful for fingerprinting. These assignments are based on previous work as

well as our own qualitative estimations. We have refrained from using the term entropy

or precise entropy values taken from the prior art, as such values are not available for

all the attributes we considered in our study. It is important to note that, regardless of

the ranking of attributes, all attributes in our study provide relatively high entropies,

as explained earlier in the chapter. Based on the study results, we assigned each tested

browser a Fingerprintability Index (FI), which is defined to be the sum of the attribute

fingerprintability values of the six attributes we tested; this gives as a simple rough

measure of the fingerprintability of the browser.

The fonts attribute is ranked as high as it is a highly discriminating piece of

information [18]. Device IDs also have the potential of being highly discriminating;

41

4.3. Results 4. Comparing Browser Fingerprintability

however, as discussed earlier, browsers that provide device IDs differ in terms of the

persistence of the values. This attribute is therefore assigned high if the browser shows

no signs of changing this value under typical browser usage, and is assigned medium

if a browser provides a new value with every browsing session. It is assigned low if a

browser provides a new value with every visit or page refresh.

We rank the Canvas API attribute as medium, based on the analysis of Laperdrix

et al. [44]. However, we rank it as low for any browser that returns the same image on

two devices with similar specifications. The WebGL information is ranked as low, as

Alaca and Van Oorschot [6] argue that it provides relatively little information useful for

fingerprinting. This is to be expected since many devices could be using an identical

CPU and/or GPU.

The user agent reveals a lot of information valuable for fingerprinting [6, 12, 44].

However, we rank it only as medium since we focus here purely on whether or not it

includes information on the mobile phone model. We assign a rank of low to the leaking

of private IP addresses. This is because most clients are assigned local IPv4 addresses in

the 192.168.0.x range [6] and such IP addresses tend to be dynamically assigned and so

can change regularly. However, we assign a medium ranking to any browser that reveals

one, or more, of the client’s ULAs in addition to the aforementioned IPv4 address.

4.3 Results

We next summarize the results of our experiments. We divide the discussion into two

parts, first addressing the tests on desktop platforms and second the experiments using

mobile devices.

4.3.1 Desktop Browsers

Overview

We summarize below the key observations arising from our examination of desktop

browsers.

• Chrome did not reveal the set of installed fonts through Flash probing despite

the presence of the Flash plugin; this was because the plugin is disabled by

default. Chrome is unique in generating a very discriminating device ID. The

value remained the same for at least a month, and seems unlikely to change until

the browser cache is cleared.

Canvas image rendering in Chrome resulted in the same hash value on both test

machines. We made the same observation on the mobile version of Chrome.

42

4.3. Results 4. Comparing Browser Fingerprintability

When probed for the WebGL attribute values, Chrome gave the full details of the

GPU, including the name and version of the installed graphics API. The local

IPv4 and temporary IPv6 addresses were also revealed.

• Because Internet Explorer comes with the Flash plugin installed and enabled

by default, it can be used to determine the set of installed fonts. Internet Explorer

does not disclose any device IDs (due to its lack of WebRTC support). The hash

value of the image produced using the Canvas API was the same as that generated

by Edge on both test machines. Internet Explorer revealed the specific model of

the CPU. However, Internet Explorer did not reveal the local IP address.

• Firefox does not include the Flash plugin, and hence it does not reveal the list

of installed fonts through Flash probing. It generated device IDs, although this

attribute is less discriminating than in Chrome as the device IDs change with

every browser session.

Firefox produced two different hash values for the canvas-rendered images on the

two test machines. The WebGL probing yielded Mozilla as both the vendor and

renderer (i.e. neither CPU or GPU were revealed). However, Firefox revealed the

client’s local IPv4 address.

• Safari revealed no information for most of the attributes we tested. This is mainly

because of its lack of full WebRTC support and the absence of the Flash plugin.

However, it does support the Canvas API and produced the same image hashes

on the two test devices. Safari also revealed the WebGL renderer details.

• Just like Internet Explorer, Edge comes with the Flash plugin installed and

enabled by default. This reveals the set of fonts installed on the computer, which

is highly valuable for fingerprinting. Edge generates device IDs but they change

every time a website is revisited or even refreshed. It gave the same canvas hash

value as Internet Explorer on the test machines. It also revealed the CPU model.

Moreover, amongst tested desktop browsers, it was unique in exposing three IP

addresses, namely the client’s local IPv4, IPv6 and ULA.

Discussion

The results of our tests are summarized in Table 4.1. Only Chrome, Firefox, and Edge

provided device IDs. The fingerprintability of this attribute varies significantly between

tested browsers. Chrome device IDs are consistent and do not change unless the user

43

4.3. Results 4. Comparing Browser Fingerprintability

Table 4.1: Desktop browser fingerprintability
Attribute / Browser Chrome Internet Explorer Firefox Safari Edge

Fonts - ••• - - •••
Device ID ••• - •• - •

Canvas • • •• • •
WebGL Renderer •• • - • •
Local IP Address •• - • - •••

Fingerprintability Index 8 5 5 2 9

•= low; ••= medium; •••= high

selects the private browsing mode5 feature or clears the browser cache. The Firefox

device ID remained the same during multiple visits in a single browsing session, but

changed once the browser was reopened. Of the browsers generating device IDs, Edge

gave the value that changed most readily; merely refreshing a web page caused Edge

to generate a new value. This makes this attribute in Edge of very limited use for

fingerprinting.

All the tested browsers support the Canvas API and rendered the scripted image in

our test, i.e. they all reveal this fingerprinting attribute. However, in the case of Firefox,

the image resulted in a different hash when rendered on the two test machines. As a

result, the canvas-rendered images attribute is more fingerprintable in Firefox than the

other tested browsers.

With the exception of Safari and Internet Explorer, all the tested browsers exposed

the client’s local IPv4 address. Both Edge and Chrome also revealed the IPv6 address.

However, Edge was the only tested browser to reveal the client’s ULAs. Overall, Edge

was the most fingerprintable (FI: 9) and Safari the least (FI: 2).

4.3.2 Mobile Browsers

Overview

Summarized below are the main observations arising from our examination of mobile

browsers.

• The Chrome user agent revealed the specific phone model. Just like its desktop

counterpart, Chrome provided persistent device IDs. Chrome’s rendering of the

canvas image resulted in the same hash on both testing devices. It also revealed

the vendor and model of the GPU, as well as the local IPv4 and ULA addresses.

• Safari mobile did not reveal much fingerprinting information except the informa-

5Chrome did not assign a device ID when private mode was enabled.

44

4.3. Results 4. Comparing Browser Fingerprintability

tion derivable from rendering the canvas image and the CPU model through the

WebGL API. It rendered the same canvas image on both test devices.

• The Opera Mini user agent revealed the phone model. It provided device

IDs that were similar to Firefox in terms of calculating a new value with every

new browsing session. It also rendered unique canvas images on tested devices.

Moreover, it revealed the GPU model, as well as the local IPv4 and ULA addresses.

• Firefox did not reveal the phone model in the user agent field, which makes this

attribute significantly less revealing. However, Firefox did provide device IDs in

the same way as its desktop counterpart. It also rendered unique canvas images

on tested devices and allowed the retrieval of the client’s local IPv4 and ULA

addresses. The WebGL did not reveal the vendor nor renderer.

• The Edge user agent included the model of the phone. Edge provided device IDs

but, like its desktop counterpart, the IDs change with every page refresh or revisit.

It also revealed the model of the GPU. The canvas-rendered image was the same

on both test devices. Unlike its desktop version, Edge did not expose any private

IP addresses.

Table 4.2: Mobile browser fingerprintability
Attribute / Browser Chrome Safari Opera Mini Firefox Edge

User Agent •• - •• - ••
Device ID ••• - •• •• •

Canvas • • •• •• •
WebGL Renderer • • • - •
Local IP Address •• - •• •• -

Fingerprintability Index 9 2 9 6 5

•= low; ••= medium; •••= high

Discussion

The results of our tests are summarized in Table 4.2. Chrome, Opera Mini and Edge

included the phone model as part of the user agent field. With the exception of Safari,

all tested browsers calculated device IDs.

Although all tested browsers rendered the canvas image, Chrome, Safari, and Edge

(both desktop and mobile) rendered exactly the same image on the test devices with

similar specifications. This makes Chrome, Safari and Edge canvas-rendered images

less fingerprintable than the other tested browsers.

45

4.4. Summary 4. Comparing Browser Fingerprintability

Chrome, Opera Mini, and Firefox exposed the local IPv4 addresses. However, unlike

their desktop counterparts, they also exposed the client’s ULA(s). Overall, Chrome

and Opera Mini were the most fingerprintable browsers (FI: 9). Just like its desktop

counterpart, Safari was the least fingerprintable (FI: 2).

4.3.3 Other Remarks

It seems reasonable to expect that browser fingerprinting based on the Flash plugin will

soon become irrelevant given the imminent disappearance of Flash [44]. In regards to

the Canvas API, it is important to note that it is not the rendering aspect of the Canvas

API that endangers user privacy but the ability to retrieve details of the rendered image

by visited websites. Thus, if this feature was removed from the Canvas API, it would

eliminate any possible fingerprinting based on it (at least using current methods). This

is an issue that we revisit in a more general context in Chapter 7.

Device IDs have the potential to seriously endanger user privacy, especially given

their persistence in Chrome. Moreover, Chrome’s persistent device IDs seem unnecessary,

given that Edge constantly provides new values.

4.4 Summary

Collectively unique and hence identifying pieces of information, making up what is

known as a fingerprint, can be collected from browsers by a visited website, e.g. using

JavaScript. However, browsers vary in precisely what information they make available,

and hence their fingerprintability may also vary. In this chapter, we reported on the

results of experiments examining the fingerprintable attributes made available by a

range of modern browsers. We tested the most widely used browsers for both desktop

and mobile platforms. The results revealed that Safari was the least fingerprintable

browser in both mobile and desktop devices. On the other hand, Chrome was the

most fingerprintable mobile browser, while Edge was the most fingerprintable desktop

browser. The results revealed significant differences between browsers in terms of their

fingerprinting potential, meaning that the choice of browser has significant privacy

implications.

46

Chapter 5

IP Address Compromise through

Browser Fingerprinting

5.1 Introduction

The work described in this chapter is largely based on [3]. This chapter focuses on a

potentially rich source of browser fingerprinting information arising from a feature of

the WebRTC API. We evaluated the availability of this source in a number of browsers.

Since the information leaked consists of one or more IP addresses, this leak is especially

significant when a VPN is in use, and hence we also tested a number of different VPNs.

Ideally, when a user connects to the Internet via a Virtual Private Network (VPN),

the IP addresses (e.g. the public IP address) of the client device are hidden from visited

websites. However, as described in 2.3, the client’s public IP address can be retrieved

by successfully pinging a STUN/TURN server through a visiting WebRTC-supporting

browser. If a user is using a VPN for anonymity reasons, then revealing one, or more, of

the client’s IP addresses to a visited website (or any browser extension that can execute

JavaScript on the client’s browser) is likely to negate one major purpose of VPN use.

Revealing client IP address(es) could also help enable tracking and/or identification of

the client as part of browser fingerprinting. Moreover, by using geolocation lookup, a

client’s public IP address could disclose its country and city [39].

In this chapter, we describe experiments performed to examine five types of client

IP address that could be revealed via WebRTC functionality. We also examined to what

degree the choice of browser, VPN service and VPN client-side configuration affects the

number and type of leaked addresses. A related investigation has been described by

Perta et al. [67], who observed the role of the VPN service in IP address leaks. However,

they focused only on IPv6 address leaks without looking at other types of IP address or

47

5.2. IP Addresses At Risk 5. IP Address Compromise through Browser Fingerprinting

the role of the browser in the leaks. Moreover, the address leaks they considered are

apparently not WebRTC-related. This is the first study to examine all the types of IP

address that could leak, as well the first to consider the role of the browser in these

leaks.

It is important to note that a WebRTC leak could damage client privacy even if a

VPN is not in use. This is because the client private IP address could be leaked, a piece

of information which would not otherwise be available to a visited website even in the

absence of a VPN. However, these addresses are not necessarily very privacy-sensitive,

since clients are typically assigned private IPv4 addresses in the 192.168.0.x range [6].

The remainder of the chapter is structured as follows. In Section 5.2 we discuss the

types of IP address that could potentially be leaked via WebRTC. We review prior work

related to WebRTC leaks in Section 5.3. The research methodology employed as well as

details of the experiments performed are discussed in Sections 5.4 and 5.5. In Section

5.6, we report on and analyze the results of these experiments. Before summarizing the

chapter in Section 5.9, we discuss WebRTC leak countermeasures in Section 5.7 and

briefly mention disclosure issues in Section 5.8.

5.2 IP Addresses At Risk

In the experiments (see Section 5.5) we found that WebRTC functionality can be

exploited to reveal one or more of five types of client IP address, as listed below. Note

that the public IPv4 address of a client is not in the list, as in the experiments we

performed we were never able to learn such an address using WebRTC.

• Public IPv6 address: this is the IPv6 address of the platform and is typically

assigned by the ISP of the client.

• Public Temporary IPv6 address: this address is assigned by the network to which

the client platform is attached.

• Unique local address (ULA) assigned by LAN : this IPv6 address is assigned by

the network to which the client platform is attached, and is the approximate IPv6

counterpart of the Private IPv4 address assigned by LAN [34].

• Private IP address assigned by the VPN server : this private (IPv4 or IPv6,

depending on the VPN configuration) address is assigned by the VPN server.

• Private IPv4 address assigned by LAN : this address is assigned by the network to

which the client platform is attached.

48

5.3. Previous Work 5. IP Address Compromise through Browser Fingerprinting

It is important to note that due to differences in length and uniqueness, the disclosure

of an IPv6 address is more privacy-damaging than that of the private IPv4 address.

Moreover, the Public IPv6 address on the experimental platforms remained the same

throughout more than two months of testing, while the temporary IPv6 address changed

with every connection instance. While the persistence of an IP address depends on the

client and network configuration, it seems clear that the public IPv6 address is more

persistent than a temporary IPv6 address (hence the name temporary).

More generally, the degree to which the disclosure of a particular type of IP address

degrades user privacy depends on its uniqueness and persistence. For example, a

private IPv4 address (4 bytes) is typically in the 192.168.0.x range, and is thus far

less privacy-sensitive than a public IPv6 address (16 bytes). Moreover, a leak of the

IP addresses of clients that are assigned static (i.e. fixed) IP addresses will be more

privacy-compromising than if these addresses are dynamically assigned (i.e. they change

regularly).

5.3 Previous Work

WebRTC leaks (see also 2.3.2) have been discussed by a number of authors — see, for

example, [6, 20, 35, 37, 48, 67]. Of this prior art, Jakobsson [37] explores WebRTC

leaks in the greatest depth, but focuses only on public IP address leaks.

Alaca and Van Oorschot [6] observed that WebRTC features could enable a visited

website to learn the IP addresses assigned to all the network interfaces of a client

platform, including the private IP addresses assigned by a VPN. They deemed this

possibility to be a medium-level threat, which seems a reasonable evaluation given they

only observed the possibility of private IP address leaks. However, they state in their

evaluation that the WebRTC leak issue requires further study.

Englehardt and Narayanan [20] consider the WebRTC threat in some depth, but

like many other authors they also only examine private IP address leaks. Liu et al. [48]

also only examine leaking of private IP addresses. They claim that the WebRTC issue

is only applicable to Chrome and Firefox, but it is not clear what browsers and which

versions they tested (the results we obtained, described in Section 5.5, contradict this

claim).

Hosoi et al. [35] point out that public IP addresses could be amongst those leaked.

As previously mentioned, Perta et al. [67] explore IPv6 address leaks in detail. They

report on the results of IP address leak tests of 14 VPN services; however, they do not

describe the role of WebRTC in these leaks. A recent IETF Internet Draft [81], details

browser mechanisms that can potentially prevent WebRTC-related IP address leaks.

49

5.4. Experimental Methodology 5. IP Address Compromise through Browser Fingerprinting

In summary, a number of authors have examined the WebRTC issue, but none have

made a comprehensive survey of the issue; typically they have either only examined

some of the possible IP addresses that can be leaked, or they have not considered the

roles of both the browser and the VPN service in affecting the magnitude of the leaks.

In the remainder of this chapter we describe the results of the first comprehensive study

of the WebRTC leak issue, including examining the roles of the browser, VPN service

and VPN configuration in affecting the nature and volume of IP addresses leaked. This

enables us to make recommendations to end users on how they might optimize their

behaviour to minimize their loss of privacy. We have also provided a website which

enables users to test the privacy properties of their own current browser and VPN

configurations.

5.4 Experimental Methodology

We used a modified version of Roesler’s publicly available JavaScript1 to perform the

experiments (see Appendix F for the code). The modification incorporates some of the

features provided by BrowserLeaks.com that enable the script to work with Edge, which

Roesler’s original script does not support. Preliminary tests revealed that the number

and type of leaked addresses are affected by the choices for both the web browser and

the VPN service. We therefore tested five different widely used VPN services running

on eight different browser-OS combinations, namely four browsers each running on

Windows2 and macOS3. Since we had no information regarding the VPN services that

are most widely used, we informally selected five of the top search results in Google. The

VPN services we chose to examine are: Hide My A**! (HMA!), ZenMate, ExpressVPN,

VyprVPN and TorGuard. Full details of the experimental platforms and VPNs used

in the experiments can be found in Table 5.1. Details of the precise versions of the

browsers we tested are given in Table 5.2.

We chose to examine the five most widely used desktop browsers according to

netmarketshare.com4, namely Chrome, Firefox, Edge, Safari and Opera. Although

Internet Explorer is the second most widely used browser, we excluded it from the study

because it does not support WebRTC and so is not affected by the leaks discussed in

this chapter. Moreover, it has been replaced by Edge as the default browser in Windows.

Since Chrome, Firefox and Opera are available on Windows and macOS, we tested

these three browsers on both operating systems.

1https://github.com/diafygi/webrtc-ips [accessed on 17/04/2019]
2Windows 10.0.14393 (Build 14393)
3macOS 10.12.4 (16E195)
4https://www.netmarketshare.com/browser-market-share.aspx [accessed on 14/05/2017]

50

https://github.com/diafygi/webrtc-ips
https://www.netmarketshare.com/browser-market-share.aspx

5.5. Details of Experiments 5. IP Address Compromise through Browser Fingerprinting

Table 5.1: VPN program versions

VPN / Specs Windows MacOS URL

HMA! 3.4.6.1 2.2.7.0 https://hidemyass.com

ZenMate 3.4.7.17 1.5.4 https://zenmate.com

ExpressVPN 6.0.9 6.3.3 https://expressvpn.com

VyprVPN 2.9.6.7227 2.14.0.5485 https://goldenfrog.com/vyprvpn

TorGuard 0.3.69 0.3.69 https://torguard.net

Table 5.2: Browser versions
Browser Version

Chrome 58.0.3029.110

Firefox 53.0.2

Edge 38.14393.1066.0

Opera 45.0.2552.635

Safari 10.1 (12603.1.30.0.34)

Most of the tested VPN programs provide means for the users to modify certain

VPN configurations, for example, to switch from one VPN protocol (e.g. L2TP) to

another (e.g. PPTP). We found that in some cases this also affects which IP addresses

are leaked. This seems likely to be because of the VPN server configuration rather than

the protocol itself. Nevertheless, this fact is important to recognize and so we indicate

in our results summary below the VPN programs that exhibited such differences (see

Table 5.3 for details of the tested VPN configurations).

5.5 Details of Experiments

To perform the experiments, a website (https://fingerprintable.org/webrtcleaks)

was specially established. The web page contains JavaScript that, when executed in a

client browser, fetches all the IP addresses it can retrieve using WebRTC; the retrieved

IP addresses (if any) are then displayed on the page (see Figure 5.1). When using it

for the tests, the visiting device used either the Windows ipconfig command in the

command prompt, or ifconfig in macOS terminal to identify the types of address

displayed on the page.

51

https://hidemyass.com
https://zenmate.com
https://expressvpn.com
https://goldenfrog.com/vyprvpn
https://torguard.net
https://fingerprintable.org/webrtcleaks

5.5. Details of Experiments 5. IP Address Compromise through Browser Fingerprinting

Figure 5.1: WebRTC leak detector

We deployed all five of the chosen VPN programs with each of the eight selected

browser-OS combinations, giving a total of 40 test cases. In each case, we caused the

client to visit the test page on the specially established website, and documented the IP

address(es) displayed. For each of the 40 (VPN, OS, browser) combinations, we visited

the test page using all the protocols/configurations supported by the VPN to detect any

differences in leaked IP addresses, i.e. for each of the 40 test cases we made between one

and five tests (for full details see Table 5.3), giving a total of 116 tests. For example,

for each browser-OS combination we visited the test page using VyprVPN a number of

times, once using L2TP/IPsec once using PPTP, and so on.

Table 5.3: Tested VPN program configurations

OS / VPN HMA! ZenMate ExpressVPN VyprVPN TorGuard

Windows OpenVPN UDP

OpenVPN TCP

N/A OpenVPN UDP

OpenVPN TCP

L2TP/IPsec

PPTP

SSTP

Chameleon*

OpenVPN

L2TP/IPsec

PPTP

OpenVPN UDP

OpenVPN TCP

OpenConnect UDP

OpenConnect TCP

macOS OpenVPN

PPTP

N/A OpenVPN UDP

OpenVPN TCP

L2TP/IPsec

Chameleon*

OpenVPN

L2TP/IPsec

OpenVPN UDP

OpenVPN TCP

OpenConnect UDP

OpenConnect TCP

*VyprVPN proprietary protocol

The tested VPN services provide access to VPN servers in a range of countries.

52

5.6. Results and Analysis 5. IP Address Compromise through Browser Fingerprinting

However, in a series of informal tests we found no difference in the set of leaked IP

addresses when connecting to VPN servers for the same service in different countries.

5.6 Results and Analysis

Tables 5.4 and 5.5 summarize the experimental results for Windows and macOS,

respectively. Listed in the tables are the types of IP addresses leaked in each test

environment. The VPN protocols are also given in the cases where the choice of protocol

made a difference to the set of leaked IP addresses. It is worth noting that tests on

macOS while deploying a VPN did not reveal a client private IPv4 address, public IPv6

address or ULA.

Table 5.4: Results of experiments on Windows
VPN / Browser Chrome Firefox Edge Opera
Without VPN pvt. IPv4

IPv6
pvt. IPv4 pvt. IPv4

IPv6
ULA

pvt. IPv4
IPv6

HMA! (all protocols) VPN IPv4 VPN IPv4 VPN IPv4
pvt. IPv4
IPv6
ULA

VPN IPv4

ZenMate VPN IPv4
temp. IPv6

VPN IPv4 VPN IPv4
pvt. IPv4
IPv6
ULA

VPN IPv4
temp. IPv6

ExpressVPN (all protocols) VPN IPv4
temp. IPv6

VPN IPv4 VPN IPv4
pvt. IPv4
IPv6
ULA

VPN IPv4;
temp. IPv6

VyprVPN (Chameleon & OpenVPN) VPN IPv4
temp. IPv6

VPN IPv4 pvt. IPv4
IPv6
ULA

VPN IPv4
temp. IPv6

VyprVPN (L2TP/IPsec & PPTP) temp. IPv6 no leak pvt. IPv4
IPv6
ULA

temp. IPv6

TorGuard (OpenVPN) VPN IPv4 VPN IPv4 pvt. IPv4
VPN IPv4

VPN IPv4

TorGuard (OpenConnect) VPN IPv4 VPN IPv4 no leak VPN IPv4
IPv6 = public IPv6 address; temp. IPv6 = public temporary IPv6 address; ULA = unique local address;
VPN IPv4 = private IP address assigned by VPN server; pvt. IPv4 = private IPv4 address assigned by
LAN.

53

5.6. Results and Analysis 5. IP Address Compromise through Browser Fingerprinting

Table 5.5: Results of experiments on macOS
VPN / Browser Chrome Firefox Safari Opera
Without VPN pvt. IPv4

IPv6
pvt. IPv4 no leak pvt. IPv4

IPv6
HMA! (PPTP) VPN IPv4 VPN IPv4 no leak VPN IPv4
HMA! (OpenVPN) VPN IPv4

temp. IPv6
VPN IPv4 no leak VPN IPv4

temp. IPv6
ZenMate VPN IPv4

temp. IPv6
VPN IPv4 no leak VPN IPv4

temp. IPv6
ExpressVPN (OpenVPN) VPN IPv4

temp. IPv6
VPN IPv4 no leak VPN IPv4

temp. IPv6
ExpressVPN (L2TP/IPsec) VPN IPv4 VPN IPv4 no leak VPN IPv4
VyprVPN (Chameleon & OpenVPN) VPN IPv4 VPN IPv4 no leak VPN IPv4
VyprVPN (L2TP/IPsec) no leak no leak no leak no leak
TorGuard (all protocols) VPN IPv4 VPN IPv4 no leak VPN IPv4

temp. IPv6 = public temporary IPv6 address; VPN IPv4 = private IP address assigned by VPN server;
pvt. IPv4 = private IPv4 address assigned by LAN.

5.6.1 VPNs

The choice of VPN service had a significant effect on the number and type of IP addresses

leaked. In some cases, using one VPN protocol (e.g. L2TP/IPsec) in a VPN program

leaked a different number of addresses than another protocol in the same application.

We observed no differences in address leakage when switching between the TCP and

UDP network protocols, where such options were available. However, when testing

different VPN programs, variations in the sets of leaked IP addresses were observed

even when the same protocol was in use. We therefore concluded that these differences

can be attributed to how the VPN service is configured to handle the connection when

using particular protocols.

As can be seen from the tables, TorGuard proved to be the least privacy-compromising

VPN service. In all test cases, it revealed none of the client’s public IP addresses. At

the other extreme, VyprVPN and ExpressVPN did not prevent any of the WebRTC

leaks.

5.6.2 Browsers

Safari revealed no IP addresses regardless of which VPN was in use. It is important to

note that at the time of the study Safari did not fully support WebRTC, as revealed

by the (WebKit) specifications status page5. However, with the release of Safari 12 in

2018, WebRTC is now fully supported. We re-tested the new version without a VPN

service and it still did not reveal any IP addresses; this finding has been confirmed by

5https://webkit.org/status/ [accessed on 14/05/2017]

54

https://webkit.org/status/

5.7. Countermeasures 5. IP Address Compromise through Browser Fingerprinting

Hazhirpasand and Ghafari [33]. By contrast, Edge revealed four of the five IP addresses

discussed in this chapter (only the temporary IPv6 address was not leaked). Edge was

the only browser to reveal the public IPv6 address(es) and ULA(s). This makes it

the most privacy-damaging browser. This might be because at the time of the study

(April 2017)6 Edge was the only browser that supported ORTC (Object Real-Time

Communications)7, the next generation WebRTC API.

Opera and Chrome were identical in terms of the number and type of leaked

addresses. This is likely because both are based on Google’s open-source browser

project, Chromium8. In all the individual tests that resulted in IP address leakage,

they both revealed the temporary IPv6 address as well as either the local private IP

address or the VPN-assigned private IP address. Somewhat different behaviour was

exhibited by Firefox, which in most cases revealed either the local private IP address or

the VPN-assigned private IP address; in some cases it did not reveal any addresses.

Firefox was the least privacy-damaging of the Windows-based browsers and Edge the

most. In macOS, Safari revealed no IP addresses and so it is the least privacy-damaging.

Chrome and Opera were the most privacy-damaging macOS browsers.

5.7 Countermeasures

The main lesson from the experiments described in this study is that users concerned

about IP address leaks should select their browser and VPN service with care, perhaps

using the https://fingerprintable.org/webcrtleaks site to check the properties

of the chosen combination. Over and above this, users interested in maintaining their

privacy by preventing WebRTC leaks can perform one or more of the countermeasures

discussed in Chapter 7.

It is worth noting that disabling JavaScript or WebRTC itself would prevent WebRTC

leaks, but would also disable many features and functionality of modern websites. Most

users are likely to find this an unacceptably high cost for the privacy benefit they would

receive, in the same way that whilst disabling cookies has significant privacy benefits,

the usability impact is too great to make it a widely used protection measure.

5.8 Disclosure

We contacted all five of the VPN service providers tested in this study and provided them

with our results. We were only received a response from ExpressVPN, who informed

6Still true as of April 2019.
7https://ortc.org/faq [accessed on 17/4/2019]
8http://www.chromium.org/blink/developer-faq [accessed on 14/05/2017]

55

https://fingerprintable.org/webcrtleaks
https://ortc.org/faq
http://www.chromium.org/blink/developer-faq

5.9. Summary 5. IP Address Compromise through Browser Fingerprinting

us that they were working on resolving the problem. They subsequently provided us

with the beta version of an upgraded client which, when tested, no longer leaked IP

addresses.

5.9 Summary

We performed experiments with the five most widely used WebRTC-enabled browsers,

i.e. Chrome, Firefox, Opera, Edge and Safari. We tested each of them with five widely

used commercial VPN services in order to discover which client IP addresses can be

revealed. Our experiments employed a specially established website which downloaded

a slightly modified version of publicly available JavaScript to the client under test. The

script fetches IP addresses made available via the browser WebRTC functionality. In

most cases, at least one of the client IP addresses was leaked. Edge was the most

seriously affected by WebRTC leaks, whereas Safari leaked no addresses at all. Our

experiments revealed that the number and type of leaked IP addresses are affected by

the choice of browser as well as the VPN service and program settings. We concluded the

chapter by proposing countermeasures that can be used to help mitigate this problem.

56

Chapter 6

FingerprintAlert Browser

Extension

6.1 Introduction

This chapter contributes to the goal of increasing end-user awareness about browsing

fingerprinting. We describe FingerprintAlert, a Chrome browser extension that uses

a novel approach to detect (and optionally block) browser fingerprinting. We discuss

several anti-fingerprinting browser extensions in 7.3.2.

Commonly used browsers such as Chrome, Edge and Internet Explorer include very

little functionality to help mitigate fingerprinting, alert the user to its occurrence, or

even provide information about it in user help documents. Therefore, in order to help

resist and raise awareness of browser fingerprinting, we developed a browser extension

that alerts users whenever a visited website attempts to fingerprint their browser; users

can also opt to enable a fingerprinting blocking feature. The development of this

extension was developed in parallel with performing the study described in Chapter 3.

The extension uses the same set of 17 attribute values to detect browser fingerprinting

as were used in that study.

The remainder of this chapter is structured as follows. Section 6.2 provides a brief

overview of the FingerprintAlert extension. In Section 6.3, we discuss its blocking

feature. Section 6.4 provides details of its operation. In Section 6.5 we review its

strengths and shortcomings. Section 6.6 describes some of the challenges that might

limit its effectiveness. We describe its potential role in improving the awareness of users

about browser fingerprinting in Section 6.7. We conclude the chapter with a summary

in Section 6.8.

57

6.2. Overview 6. FingerprintAlert Browser Extension

6.2 Overview

As part of the research described in Chapter 3, we developed FingerprintAlert1,2, a

browser extension usable with both Windows and macOS. It was initially developed to

work on Chrome; however we later migrated it to also work with Firefox.

Based on the preliminary crawling described in 3.5.3, the extension detects possible

browser fingerprinting by looking for the transmission of the values of the same set

of 17 attributes as described in Chapter 3. That is, FingerprintAlert checks for the

presence of the values these attributes take for the browser and host platform on which

the extension is being run. It is activated whenever a web page is loaded, and checks

whether any of these 17 attribute values are being relayed back to a web server. To the

author’s knowledge, this method of fingerprinting detection has not previously proposed

in the literature.

If the extension detects such activity, it displays an alert that includes both the

sending and receiving URLs (see Figure 6.1 for an example alert message). The extension

also provides a detailed report of detected activities, including data relayed and the

corresponding destination(s) (see Figure 6.2 for an example). Finally, the extension

offers a user-selectable option to automatically block detected fingerprinting attempts.

If selected, an HTTP message including any of the monitored attributes will be blocked

from being relayed back to a remote server.

Figure 6.1: An example of a FingerprintAlert warning

6.3 Blocking

Websites typically send collected data in a series of HTTP messages, and if the blocking

feature is activated FingerprintAlert blocks all HTTP messages that contain at least

one of the 17 attribute values. This has a greater impact than just blocking the transfer

1https://chrome.google.com/webstore/detail/ielakmofegkdlpnlppfikmkbceajdofo
2https://addons.mozilla.org/en/firefox/addon/fingerprintalert

58

https://chrome.google.com/webstore/detail/ielakmofegkdlpnlppfikmkbceajdofo
https://addons.mozilla.org/en/firefox/addon/fingerprintalert

6.3. Blocking 6. FingerprintAlert Browser Extension

Figure 6.2: Example report produced by FingerprintAlert

of the 17 selected attribute values, since the experiments reported in Chapter 3 suggest

that these attributes are typically transmitted in the same HTTP message as a large

number of other fingerprinting attributes, which are also blocked as a result. We verified

that the extension successfully blocked the messages by setting up an HTTP proxy

server (Burp Suite Scanner3) that allowed us to monitor raw traffic between the browser

and destination web servers.

As with any extension that interferes with browser behaviour, the blocking feature

of FingerprintAlert might cause unexpected results or even break some websites. To

ensure it does not cause significant usability issues, we tested it on the 50 most visited

websites from the list used in the Chapter 3 experiments. We enabled the blocking

feature, and spent around two minutes on each website performing actions such as

signing up, logging in and clicking on links. During the tests we did not observe any

unexpected behaviour or errors except for minor glitches on two websites (e.g. unable

to load support chat window). Nonetheless, in the unlikely event that the extension

damages a user’s experience at a website, the blocking option or the notifications option

can easily be disabled. The extension will continue to record detected fingerprinting

attempts even if both blocking and notifications are disabled.

3This is a tool for testing web application security. https://portswigger.net/burp

59

https://portswigger.net/burp

6.4. Details of Operation 6. FingerprintAlert Browser Extension

6.4 Details of Operation

6.4.1 Overview

The extension is made up of two main components. The first component (see 6.4.3)

consists of three pieces of JavaScript code that implement the functionality of the

extension. The second component (see 6.4.2) is the interface, that is rendered using

HTML, CSS and images. The user interface component incorporates three HTML files,

Figure 6.3: A partial browser screenshot showing the Main pop-up user interface

the pop-up user interface (see Figures 6.3 and 6.4), the fingerprinting detection report

(see Figure 6.2) and the help page.

6.4.2 User Interface Component

The pop-up user interface consists of two pages, between which a user can switch by

clicking on one of the top tabs. The first tab (i.e. Main — see Figure 6.3) displays the

number of blocked fingerprinting attempts. The second tab (i.e. Configuration — see

Figure 6.4) contains the following five options.

• The Notifications option switch (top left in Figure 6.4) is enabled by default

and causes the extension to display in-browser alerts whenever a fingerprinting

attempt is detected. The user can slide the switch to the left to disable these

alerts.

• The Block Fingerprinting option switch (top right in Figure 6.4) is disabled

by default and, if enabled, causes the extension to block detected fingerprinting

60

6.4. Details of Operation 6. FingerprintAlert Browser Extension

attempts. The user can slide the switch to the right to enable it.

• The Fingerprinting Report button (centre in Figure 6.4) opens a new page

that contains details of detected fingerprinting attempts.

• The Reset button (bottom left in Figure 6.4) deletes all data collected by the

extension and restores all options to their defaults.

• The Help button (bottom right in Figure 6.4) opens a page that serves as the

extension’s user manual.

Figure 6.4: Partial browser screenshot showing the Configuration user interface

6.4.3 Functional Component

The three scripts making up the functional component are listed below along with a

high-level description of their functions.

• background.js is the main script. It extracts the 17 browser attribute values for

the client, and then monitors traffic between the client browser and remote web

servers for the presence of any of these values. If the blocking option (see top

right of Figure 6.4) is enabled, the script prevents the browser transmitting any

HTTP message that contains one or more of of the attribute values.

• popup.js executes the user commands entered via the pop-up user interface.

• buildmap.js constructs reports detailing detected fingerprinting attempts.

The FingerprintAlert scripts can be found in the GitHub open repositories4.

4https://github.com/fingerprintable/FingerprintAlert

61

https://github.com/fingerprintable/FingerprintAlert

6.5. Review 6. FingerprintAlert Browser Extension

6.4.4 Installation and Use

There are two versions of FingerprintAlert, one compatible with Chrome and the other

with Firefox. They can be downloaded and installed by visiting the corresponding

Chrome and Firefox official browser extension page5,6.

After installation, the extension will operate immediately. Every time the browser

is opened (or the extension re-installed), the extension will extract the values of the 17

browser attributes. Examples of extracted attribute values can be found in Table 3.4.

It will then monitor all information transmitted between the client browser and any

web server, looking for exact string matches with the 17 attribute values.

The extension monitors all outgoing traffic from the browser to a web server. If

the notifications option is enabled, it will notify the user via an alert message (see

Figure 6.1) whenever an HTTP message is discovered to contain one or more of the

17 attribute values. In parallel, if the blocking option is enabled, the transmission of

any messages found to contain one or more of the 17 values will be blocked; the two

options work independently. The extension will collect data for its reporting functions

regardless of the options settings.

6.5 Review

6.5.1 Strengths

Despite the fact that FingerprintAlert only detects 17 attributes, these attributes are

typically transmitted alongside other attributes which are also detected/blocked, given

that they are in the same HTTP message. The extension can be used in conjunction

with other anti-fingerprinting browser extensions (see 7.3.2) since it uses a different

approach to detection and blocking.

6.5.2 Shortcomings

Of course, if a fingerprinting website does not collect any of the 17 attributes that

FingerprintAlert searches for, then it will give a false negative. Similarly, if the website

encodes the collected information in some way, i.e. so that a simple string search will

fail, then again a false negative will result.

In its default setting, i.e. with blocking disabled, FingerprintAlert has no effect on

the appearance and functionality of websites. However, as discussed in 6.3, if blocking

is enabled then it may occasionally cause minor problems.

5https://chrome.google.com/webstore/detail/ielakmofegkdlpnlppfikmkbceajdofo
6https://addons.mozilla.org/en/firefox/addon/fingerprintalert

62

https://chrome.google.com/webstore/detail/ielakmofegkdlpnlppfikmkbceajdofo
https://addons.mozilla.org/en/firefox/addon/fingerprintalert

6.6. Challenges 6. FingerprintAlert Browser Extension

6.6 Challenges

Detecting novel approaches to fingerprinting is an obstacle that faces all privacy exten-

sions (see 7.2.2). A major challenge facing the approach adopted by FingerprintAlert is

that websites could choose to conceal transmitted attributes, e.g. using encryption, or

use attributes that are not publicly known. Additionally, it is difficult to automatically

detect all fingerprinting attribute values, as they may be similar to other data or have

no specific set of values. On the other hand, the script analysis approach adopted widely

by other anti-fingerprinting extensions, has its own issues. In particular detecting and

examining scripts executed on websites is likely to be hindered by changes in code,

syntax and execution.

6.7 Awareness

The main purpose of FingerprintAlert is to make users aware of fingerprinting attempts

as they happen and the identity of domains collecting the fingerprinting data, and as a

result increase their awareness of how widespread such practices are. The results of our

study could also help in developing new tools designed to thwart fingerprinting.

If user privacy is to be preserved on the web, it is also important that fingerprinting

technology is made user-controllable, so that users can limit the degree to which they

are tracked. FingerprintAlert helps contribute to this by providing users with the option

to block browser fingerprinting.

6.8 Summary

In this chapter we described FingerprintAlert, a freely available browser extension that

detects fingerprinting attempts by visited websites. It also blocks detected attempts

if the user enabled the option. Furthermore, it maintains a user-accessible record

of detected fingerprinting attempts. This record includes the visited website, the

information collected, the recipient web domain for the collected information and the

HTTP method used. The extension is designed to make browser users aware of the

prevalence of browser fingerprinting and to give them some control over it.

63

Chapter 7

Controlling Browser

Fingerprinting

7.1 Introduction

In this chapter we focus on means of controlling browser fingerprinting. We look at

measures that can be taken by both end-users and browser vendors. We examine

previously proposed guidelines for browser vendors and formulate a comprehensive

set of recommendations for browser vendors to give users greater control over browser

fingerprinting. In a slightly different direction, we also propose a browser identifier that

could serve as a standardized, and controllable, alternative to browser fingerprinting.

The fact that tracking can so readily be performed using browser fingerprinting is

potentially a major threat to the privacy of web users, and as noted above it is one over

which users currently have no control. Whilst there are uses of browser fingerprinting

not directly relating to tracking, the lack of user control combined with the serious

privacy threat suggests that means of limiting its effectiveness, i.e. what we refer to

here as fingerprinting countermeasures, are of potentially huge importance, motivating

the work described in this chapter.

Fingerprinting countermeasures can be divided into two categories, depending on

whether they are directly implementable by the user regardless of the browser, or

whether they require support from the browser vendor. In the remainder of this

chapter we provide a comprehensive and systematic review of possible fingerprinting

countermeasures. This is significant for a number of reasons. First, some of these

techniques, whilst apparently known, have not previously been described in the academic

literature. Second, this review enables us to compare their effectiveness (and their

limitations) and also consider how best such countermeasures could be implemented,

64

7.2. Limiting Browser Fingerprinting 7. Controlling Browser Fingerprinting

from the perspectives of both the user and the browser vendor. Third, it enables us to

identify areas where further research is urgently needed.

Finally, given that fingerprint-based tracking is so privacy intrusive (and uncontrol-

lable), we also consider a way in which the major fingerprinters might be encouraged

to abandon the practice. We, possibly controversially, propose that browsers should

support a new type of website-accessible identifier, referred to as a Unique Browser

Identifier, which would enable a level of user-controllable tracking without involving the

collection of other user and browser data. This could make browser vendors willing to

change behaviour to make fingerprinting difficult, leading to its use becoming redundant

and (potentially) prevented. The possible operation of this identifier, and its advantages

and disadvantages, are discussed.

The remainder of the chapter is organized as follows. In Section 7.2, a general

overview of approaches to limiting fingerprinting is provided. Sections 7.3 and 7.4 provide

detailed descriptions of all known user-based and browser-based anti-fingerprinting

measures, respectively. In Section 7.5, we discuss a browser identifier-based proposal

that aims at making browser fingerprinting redundant. Building on the previous sections,

in Section 7.6 we review the degree to which browser fingerprinting can be controlled

using current technology and consider ways in which greater control can be exercised in

the future. The summary in Section 7.7 concludes the chapter.

7.2 Limiting Browser Fingerprinting

7.2.1 General Approaches

Most techniques aimed at limiting the effectiveness of fingerprinting either involve user-

enabled options such as installing extensions, or operate via browsers that incorporate

anti-fingerprinting features. We discuss these two general classes of countermeasures in

greater detail in Sections 7.3 and 7.4 below.

A number of authors have proposed extensions that could help counter fingerprinting.

Examples include FP-Block [80], Blink [43] and FingerprintAlert (see Chapter 6).

There are also widely discussed extensions of this type that do not seem to have any

corresponding published research, such as CanvasBlocker1 and Stop Fingerprinting2.

Luangmaneerote et al. [49] surveyed several of the more widely discussed fingerprinting

countermeasures. They concluded that no single countermeasure can protect against

all known fingerprinting methods, and that such countermeasures are likely to both

negatively affect the user experience, and fail to block newly deployed fingerprinting

1https://addons.mozilla.org/en/firefox/addon/canvasblocker/
2https://addons.mozilla.org/en/firefox/addon/stop-fingerprinting

65

https://addons.mozilla.org/en/firefox/addon/canvasblocker/
https://addons.mozilla.org/en/firefox/addon/stop-fingerprinting

7.2. Limiting Browser Fingerprinting 7. Controlling Browser Fingerprinting

methods. In this chapter, we do not attempt to evaluate or enumerate individual anti-

fingerprinting extensions; instead our goal is to consider the possible general approaches

and in each case examine its effectiveness.

As far as browser-incorporated anti-fingerprinting techniques are concerned, a

number of documents provide recommendations and guidelines to browser vendors

aimed at limiting the effectiveness of fingerprinting, including RFC 6973 [13], a W3C

Note [17], Eckersley [18], and Nikiforakis et al. [61]. However, the detailed technical

aspects of such recommendations are outside the scope of this study, which is intended

to provide a roadmap for policymakers, developers, browser vendors and interested

general web users who wish to help control browser fingerprinting.

7.2.2 Challenges

A number of proposed browser fingerprinting countermeasures involve adding features

to the browser, typically in the form of a browser extension. However, approaches of

this type have serious limitations [49] and might even lead to effects opposite to those

intended (see Section 7.3.3). By contrast, and as discussed in greater detail in Section

7.4, browser vendors could potentially control fingerprinting very effectively by making

modifications to the way browsers operate. To help substantiate these claims, we next

consider some of the main challenges in controlling browser fingerprinting.

Misuse of Browser Features

One major challenge in controlling fingerprinting is that information useful for finger-

printing can be obtained from “regular” web interactions, including website-originated

browser scripts that access standardized APIs. That is, preventing fingerprinting might

necessitate stopping, or restricting, such interactions, scripts and the APIs they access,

which will almost certainly damage the user’s browsing experience. For example, canvas

fingerprinting makes use of the Canvas API (see Chapter 2), and simply blocking this

API would result in browsers being unable to render images that could be critical to

use of a web page.

Detection

Unlike tracking via cookies, that can be detected by the presence of cookies stored on user

device, there are no unambiguous methods of detecting browser fingerprinting. Moreover,

it can be performed passively (see Chapter 2) and is thus virtually undetectable (except,

perhaps, by second order effects, such as receipt of targeted advertising). As discussed in

Chapter 2, active fingerprinting can also be very hard to detect, as it can take advantage

66

7.3. User-based Countermeasures 7. Controlling Browser Fingerprinting

of almost any existing web API. The same applies almost certainly to any future new

APIs, unless new APIs are developed with built-in resistance to fingerprinting.

7.3 User-based Countermeasures

We now describe and analyze a variety of ways in which users can reduce the effectiveness

of browser fingerprinting. We also consider the main challenges to user-based approaches,

in particular observing that none of these techniques prevent fingerprinting — indeed,

some may even make it more effective.

7.3.1 Browser Choice and Configuration

Browsers vary in their susceptibility to fingerprinting — see Chapter 4. These variations

arise for a variety of reasons, including that some browsers, such as Firefox, have (possibly

user-selectable) features that are designed to help resist fingerprinting. Moreover, as

described by Boda et al. [10], some browser configuration options, such as disabling

JavaScript, can affect fingerprinting. That is, a user’s choice of browser and configuration

options can change the effectiveness of fingerprinting. Finally, selecting a browser and

version that is used by many users is also likely to help in making the browser a little

less fingerprintable3.

Before proceeding it is important to mention the Tor browser4, which is specifically

designed to be privacy-protecting; hence selecting Tor could be seen as a potentially

effective user-based countermeasure. Unlike several widely-used browsers, the Tor

browser includes by default a range of features intended to counter fingerprinting.

These include using a fixed set of system colours, disabling plugins by default, limiting

the number of fonts a document is allowed to load, and disallowing read access to

canvas-rendered images unless express permission is granted by the user5.

However, use of the Tor browser has a number of serious practical drawbacks including

a seriously compromised browsing experience, one aspect of which is a slow browsing

speed; there are also relatively few users (less than 1% of web users employ the Tor

browser6) which might itself make fingerprinting possible because of the fingerprintability

paradox (see 7.3.3). Tor also possesses other serious usability issues: it breaks some

websites, some websites opt to block Tor clients, and changes in IP address negatively

3https://panopticlick.eff.org/self-defense
4The Tor browser is a modified version of Firefox that has enhanced security and privacy features,

https://www.torproject.org/projects/torbrowser
5https://www.torproject.org/projects/torbrowser/design [accessed on 13/02/2019].
6Estimated by comparing the number of Tor browser clients during January 2019 as reported

on https://metrics.torproject.org with the total number of web users reported on http://www.

internetlivestats.com/internet-users.

67

https://panopticlick.eff.org/self-defense
https://www.torproject.org/projects/torbrowser
https://www.torproject.org/projects/torbrowser/design
https://metrics.torproject.org
http://www.internetlivestats.com/internet-users
http://www.internetlivestats.com/internet-users

7.3. User-based Countermeasures 7. Controlling Browser Fingerprinting

affect the localized web browsing experience. Another example of a usability issue arises

when Tor advises a user against maximizing the browser window via an in-browser

notification. This is intended to keep the window at the default size and thereby the

same size as other Tor users, hence preventing websites from learning the device’s display

size. Whilst this reduces browser fingerprintability, it will clearly have a negative effect

on the user experience.

More generally, making attributes the same across multiple browser instances and

hence reducing their uniqueness would make fingerprinting more difficult. However, it

is also likely to damage the user experience by preventing a website tailoring its site

to match the characteristics of the user device [66]. These serious disadvantages mean

that the Tor browser is unlikely ever to be widely adopted, and hence cannot be seen

as a generally applicable means of controlling fingerprinting.

7.3.2 Browser Extensions

Apart from the fundamental choice of browser, the main option for users wishing to

limit the effectiveness of browser fingerprinting is to install one or more special-purpose

browser extensions. As noted in Section 7.2.1, a number of such extensions exist, and

we now consider these extensions in greater detail.

We were unable to find any detailed and generally applicable evidence regarding the

relative effectiveness of the existing extensions; however they all seem to share common

weaknesses. The limited effectiveness of some individual extensions has been evaluated

in controlled environments, including by Nikiforakis et al. [62] and Luangmaneerote

et al. [49]. It seems unlikely that a single extension is able to completely prevent

fingerprinting, given the multiplicity of fingerprinting approaches, potentially including

methods not in the public domain. Furthermore, there is no known method of learning

whether extensions that counter certain fingerprinting techniques are in fact able to

prevent real-world fingerprinting. This is especially apparent given that it is not always

possible to detect when fingerprinting is occurring in the first place [1].

We also observe that some extensions not specifically designed for the purpose can

nonetheless reduce the effectiveness of fingerprinting, as a by-product of their intended

functionality. One such example is NoScript7, that controls which scripts deployed by

a visited website are allowed to run on the browser; depending on its configuration it

might prevent execution of scripts used for browser fingerprinting. However, in this

study we only consider purpose-built anti-fingerprinting extensions.

We next briefly review the three main techniques employed by the anti-fingerprinting

browser extensions of which we are aware. We consider the limitations they all share in

7https://noscript.net

68

https://noscript.net

7.3. User-based Countermeasures 7. Controlling Browser Fingerprinting

Section 7.3.3 below.

• Script Blocking: this works by blocking suspected fingerprinting scripts. Scripts

are identified as suspect either via a blacklist of script providers and/or by their

inclusion of known fingerprinting code. One example of an extension adopting the

script blocking approach is Privacy Badger8, developed by the Electronic Frontier

Foundation. It detects canvas fingerprinting and prevents third-party scripts that

deploy it from executing.

• Attribute Spoofing: extensions that use this technique attempt to prevent

fingerprinting by constantly spoofing browser/platform attributes. Examples of

extensions using this approach include: PriVaricator (due to Nikiforakis et al.

[60]), FPRrandom (due to Laperdrix et al. [42]), FPGuard (due to FaizKhademi

et al. [22]) and an unnamed extension due to Fiore et al. [27]. FP-Block (due to

Torres et al. [80]), also fabricates some browser attributes, but it also blocks some

scripts. That is, it employs both script blocking and attribute spoofing.

• Data Blocking: this involves blocking the retrieval of attributes that might be

used for fingerprinting from the browser. This approach is used by FingerprintAlert

(see Chapter 6).

7.3.3 Limitations

The main disadvantage of user-based countermeasures is that they all depend on

manipulating or blocking data sent by the browser to remote web servers. This gives

rise to two major limitations, which we now discuss.

• Compromised Browsing Experience: many browser-based countermeasures

compromise the browsing experience in some way [49]. This is especially true

when such countermeasures block certain scripts or spoof properties that may be

important for the functionality of a visited website. There is also the possibility

of a false positive, i.e. an incorrectly detected fingerprinting attempt, breaking

some “innocent” websites.

• Fingerprintability Paradox: this phenomenon has been widely discussed —

see, for example, Eckersley [18], Torres et al. [80], and Gulyás and Somé [31]. The

term captures the fact that measures taken to reduce browser fingerprintability

can unintentionally create a new source of fingerprinting. A simple example arises

where the installation of an anti-fingerprinting browser extension that is only

8https://www.eff.org/privacybadger

69

https://www.eff.org/privacybadger

7.4. Browser-based Countermeasures 7. Controlling Browser Fingerprinting

installed in a small number of devices can be detected by a web server. That

is, the presence of the extension is itself an attribute that can contribute to

fingerprinting. This is a special case of what to refer to as detection of defence,

where the deployment of a countermeasure can be detected and can be used to

contribute to fingerprinting [61, 77]. This problem is especially significant if the

number of users of the countermeasure is relatively small.

A related but distinct issue arises from the deployment of a browser extension

that spoofs browser attributes for anonymization purposes but as a result exhibits

a set of browser characteristics that is unrealistic or rare. This behaviour can

make a browser more identifiable. Further, Vastel et al. [85] argue that some

countermeasures potentially make browsers more fingerprintable since both spoofed

and correct browser attributes can be discovered, e.g. using two different APIs.

Finally, it has also been observed by Perry [65] that privacy-cautious users who

opt to enable the Do Not Track (DNT)9 option in their browsers increase their

fingerprintability surface by doing so. In fact, the DNT option is no longer officially

endorsed by the W3C [75]; while it is still supported by some browsers, Apple has

announced10 that version 12.1 of its Safari browser will drop support.

7.4 Browser-based Countermeasures

We next discuss the various countermeasures that could be implemented by browser

vendors, as well as the associated challenges.

7.4.1 Reducing the Fingerprinting Surface

Having browsers exhibit similar information wherever possible would help limit fin-

gerprinting [13, 17]. For example, as discussed in 2.3.1, the HTTP user agent header

field is an important source of information for browser fingerprinting since, as currently

implemented, it contains many browser and platform details, including full details of

the browser version and, in some mobile browsers, the mobile phone model. Restricting

the information included to only what is vital for the functioning of websites would

clearly help reduce its utility for fingerprinting, whilst not affecting its usefulness for

tailoring website content.

Currently, the specifics of API implementation are typically left to browser vendors,

9DNT is a standard browser feature that sends a request to websites that the browser user does not
wish to be tracked [75].

10https://developer.apple.com/documentation/safari_release_notes/safari_12_1_release_

notes [accessed on 13/02/2019]

70

https://developer.apple.com/documentation/safari_release_notes/safari_12_1_release_notes
https://developer.apple.com/documentation/safari_release_notes/safari_12_1_release_notes

7.4. Browser-based Countermeasures 7. Controlling Browser Fingerprinting

which increases their usefulness for fingerprinting by enabling one browser to be dis-

tinguished from another through minor implementation differences [58]. However, if

the standards included enough details to ensure these APIs are implemented in a way

that would make browsers indistinguishable, then this will in turn limit fingerprinting

effectiveness.

One of the methods used by some browsers (e.g. Firefox) to limit fingerprinting is

attribute spoofing (as used in anti-fingerprinting extensions, cf. 7.3.2). However, as

discussed in Section 7.3, attribute spoofing can seriously damage the user experience, and

may also have a computational cost. Thus, whilst attribute spoofing may be necessary

as a short-term expedient, in the longer term arranging for as much cross-browser

attribute uniformity as possible is clearly a preferable approach [66]. As a result, it is

likely that browsers that resort to spoofing are doing so as a temporary measure, as

achieving behavioural uniformity would require, a currently absent, consensus amongst

browser vendors.

In conclusion, and as recommended by RFC 6973 [13], it would be highly desirable

for browsers to minimize the information content of browser-retrievable attributes to

that needed to deliver the user experience, whilst also working to remove unnecessary

differences in browser behaviour, including the order and presence of HTTP fields. Such

changes could make a significant difference to the effectiveness of fingerprinting, with

no obvious disadvantages in terms of the delivery of web content.

7.4.2 Context-based API Access Control

If browsers could be designed to control access to certain APIs based on the context

of use, this would be very useful in controlling fingerprinting. For example, and as

demonstrated by the Fingerprintability test web page (see 5.5), the client platform

private IP address can be exposed via the WebRTC API. The specific feature of

WebRTC that reveals the IP address is intended for video chat purposes. Currently,

again as shown by Fingerprintability, this API can be accessed in many widely-used

browsers regardless of whether or not video conferencing is taking place (or even without

prompting the user). Hence (by some means) restricting access to the WebRTC API to

video chat sites would clearly be beneficial in limiting fingerprinting.

There are many other examples of APIs whose use could be limited with similar

benefits, such as access to processing and graphics hardware information through the

WebGL API11 in cases where it is not used to render any graphics. Analogously, since

tracking is mostly performed by third parties, it would be very helpful if third-party

11A web API that renders 2D and 3D graphics on supported browsers.

71

7.4. Browser-based Countermeasures 7. Controlling Browser Fingerprinting

scripts were prevented from accessing any API unless there is a clear reason for its use

by a party other than the visited website [66].

7.4.3 Deprecate/Limit Unnecessary APIs

There is a need for the set of standardized APIs to be revisited and pruned where

possible, since some APIs are apparently used almost exclusively by fingerprinters [66].

Of course, such APIs were not developed for fingerprinting purposes. Supporting this,

Snyder et al. [76] have shown that many APIs are not utilized by any of top 100,000

visited websites. Such lightly used APIs create avoidable fingerprinting opportunities.

Removing such APIs, or at least limiting their functionality, would therefore limit

fingerprinting with minimal impact on the user experience. Two examples of such APIs

are as follows.

• As noted by Olejnik et al. [64], the battery API is almost solely used for finger-

printing purposes. This API allows websites to detect the battery level of the

client’s device and optionally adjust website content to reduce battery-draining

features if low battery levels are detected [41]. Safari never supported this API

while Firefox did support it for a while but deprecated it in 2017 (possibly because

of privacy issues). This move was followed by several other browser vendors. At

the time of writing, Chrome is the only one of the top five browsers that still

supports this API.

• An example of an API with features which seem primarily useful for fingerprinting

is provided by the Canvas API, that enables a website to specify an image in

code form (reducing data transfer requirements). Mowery and Shacham [56]

showed that browsers and platforms vary in how they render canvas images. This

is made valuable for fingerprinting by an API feature that allows a website to

retrieve the canvas-rendered image. Disabling this latter feature would remove

the fingerprinting function without preventing use of the API for its intended

purpose.

7.4.4 Alerts and Prompts

As noted by Doty [17] and Fette and Melnikov [13], it would enhance user control if users

were made aware whenever a browser detects behaviour which suggests fingerprinting is

being performed. In addition, it would also be helpful if users could be given the means

to control such behaviour. Of course, as we have discussed above, reliably detecting

fingerprinting is a hard problem. However, it might be possible to detect when a website

72

7.4. Browser-based Countermeasures 7. Controlling Browser Fingerprinting

is collecting information which is apparently unrelated to the information being served

to the user. This could, perhaps, involve the use of machine learning techniques.

Examples of possible controls that could be given to users when a website is detected

collecting fingerprintable data include:

• blocking the data collection;

• anonymizing the collectable data by spoofing or removing unique values;

• allowing users to select what data can be collected by a visited website.

Even if it is not possible to control the potential fingerprinting, it would help if users

could be notified when such activity, e.g. involving the Canvas API, is detected. To a

limited, and varying, extent this is implemented in both the Safari and Tor browsers.

However, browser vendors need to be wary of warning fatigue [66], as over-frequent alerts

might cause users to pay less attention to prompts and click on them without considering

their content. Usefully, the number of times a user is prompted could be reduced if

appropriate options were made available to users, such as enabling/disabling prompts,

blacklisting, and automatically blocking certain third-party interactions. Moreover,

prompts could be reduced if users were prompted only when suspicious behaviour is

detected. An example of such suspicious behaviour would be a website that attempts

to retrieve a canvas-rendered image while the image itself cannot be seen by the user

because it is invisible or too small.

In a small investigation we found that none of the top four desktop browsers12

(i.e. Chrome, Internet Explorer, Firefox and Edge) alert users when a visited website

performs actions typical of fingerprinters, nor do they appear to incorporate any specific

measures to prevent fingerprinting13. By contrast, as discussed in 7.3.1, the Tor browser

protects against canvas fingerprinting by default as it prompts users before allowing the

retrieval of canvas-rendered images by a visited website.

7.4.5 Reduction in API accuracy

Several authors (e.g. Eckersley [18] and Olejnik at al. [63]) have suggested using a

reduction in the accuracy and level of detail provided by a browser in order to help

counter fingerprinting. As discussed in 7.4.1, reducing the level of detail in the HTTP

header would significantly help in limiting fingerprinting. The reporting of constantly

12The list of the most widely-used browsers was retrieved from https://www.netmarketshare.com/

browser-market-share.aspx [accessed on 06/08/2018].
13Firefox has a small set of configurable anti-fingerprinting settings; however, these are only likely to

be employed by technically aware users.

73

https://www.netmarketshare.com/browser-market-share.aspx
https://www.netmarketshare.com/browser-market-share.aspx

7.4. Browser-based Countermeasures 7. Controlling Browser Fingerprinting

varying values, such as time and battery level could also be made less accurate to help

prevent fingerprinting.

A further example of this type is provided by location information. Currently, all

widely-used browsers prompt users to give permission if a website tries to access the

location of the user. However, while the currently high level of accuracy obtainable (e.g.

up to 4–5 metres) is likely to be necessary for applications such as satellite navigation,

the need for such accuracy for most cases is arguable at best. Reducing the level of

accuracy of the data provided, e.g. by enhancing the API to allow two or more levels of

accuracy, could help limit fingerprinting. In addition to the prompt for user permission

to access location information implemented by many browsers, the browser could also

warn the user if a website is requesting highly-accurate location information.

7.4.6 Secure Data Handling

As described in 3.8.4, potentially privacy-sensitive fingerprinting data is often retrieved

from a browser in plaintext via HTTP. Browsers could usefully enforce the use of

HTTPS for such information transfers, as advised in RFC 6973 [13]. Currently, Chrome

is the only browser that forces websites to use HTTPS in order to access the user

location through the Geolocation API14. However, this restriction is not extended to

other APIs.

Currently, several browsers such as Firefox warn users if they are visiting a website

not using HTTPS, and prompt users to deny transmission if they are about to submit

information that does not use it. However, no warnings and almost no restrictions are

in place if a script from a third-party website retrieves information via HTTP. This

shortcoming clearly merits consideration by browser vendors.

7.4.7 Challenges

Perhaps the main challenge for implementing browser-based countermeasures is to

make browsers, wherever possible, behave indistinguishably to websites while keeping

retrievable information to a minimum. Achieving the necessary agreement amongst

competing vendor providers is likely to be difficult without enforcement by regulatory

or standard bodies.

Another obvious challenge is ensuring changes implemented by browser vendors

have minimal negative impact on the browsing experience of users. Achieving this is

non-trivial given that, as discussed earlier, changes could include restricting APIs as

well as occasionally prompting users.

14https://www.w3schools.com/html/html5_geolocation.asp [accessed on 18/02/2019]

74

https://www.w3schools.com/html/html5_geolocation.asp

7.5. Making Browser Fingerprinting Unnecessary? 7. Controlling Browser Fingerprinting

Finally, some browser vendors might not wish to limit fingerprinting given that their

parent companies apparently depend on it for their own services, such as providing web

analytics and personalized online advertising.

7.5 Making Browser Fingerprinting Unnecessary?

7.5.1 A Different Approach

As noted briefly above, whilst browser vendors are in a strong position to decide how

effective browser fingerprinting is, some of the key players in this space, notably Google,

may be unlikely to take steps to limit it since, as shown by the study described in

Chapter 3, they also appear to play a major role in browser fingerprinting. That is,

there is clearly a desire by at least some key browser vendors to be able to track user

behaviour. Indeed, to some extent this is necessary to enable these vendors to continue

to support “free” (and highly valued) services, such as web search.

In this respect, it might be argued that trying to restrict cookies has been counter-

productive for user privacy; at least cookies are, to a high degree, user-controllable, i.e.

users can delete all cookies from time to time and thereby refresh their online identity.

Exerting usage control is much more difficult when browser fingerprinting is employed for

tracking, since as we have argued it is far less controllable and far more privacy-damaging

in that it retrieves a wide variety of information about a user’s platform and browser

configuration. That is, pressure to limit cookies may have encouraged trackers to adopt

browser fingerprinting, with an associated worsening of end-user privacy protection.

Apparently, five years ago Google intended to replace the use of cookies with some

form of browser-generated ID (confirmed by a Google official [11]). However, no further

information was ever made available. This apparently abandoned proposal suggests a

possible new, and apparently paradoxical, approach to limiting browser fingerprinting.

That is, if trackers can be offered a means of tracking browsers that is less privacy-

damaging than browser fingerprinting, then browser vendors might be more willing to

countenance adopting measures to reduce the effectiveness of fingerprinting.

Currently, operating systems such as Windows and Android support an advertising

ID [74]. This serves as a unique identifier for the device/user for locally installed

programs/apps to serve personalized ads. This ID can be reset, meaning that all

previous associations are removed. This suggests a similar scheme in which a novel

user-controllable ID is accessible by websites through browsers. This ID (which we call

the Unique Browser Identifier (UBI)) would be managed by the browser itself, rather

than the host operating system, since it is intended for use solely by the browser.

The main reason to introduce a browser-managed UBI is to provide a replacement

75

7.5. Making Browser Fingerprinting Unnecessary? 7. Controlling Browser Fingerprinting

for both cookies and browser fingerprinting for the purposes of tracking, e.g. for the

support of personalized advertising. That is, by providing a legitimate, simple and user-

controllable method of enabling tracking, the use of cookies and browser fingerprinting

for this purpose could be made redundant. Simultaneously with the introduction of

the UBI, measures would also need to be put in place to prevent trackers using both

the UBI and browser fingerprinting (hence damaging privacy even further). This could

be achieved by regulation and/or standardization, as well as by implementing the

recommendations given in Section 7.4. Apart from making fingerprinting for tracking

redundant, the UBI could also replace other existing uses of browser fingerprinting. In

particular it could serve as an additional layer of authentication.

7.5.2 Configuring Identifiers

To ensure that the introduction of the UBI gives the user the control that is currently

lacking with browser fingerprinting, browsers will need to enable users to limit access to

the UBI (and reset it). It could be advantageous for a browser to support more than one

UBI, for example one for personalization (e.g. for personalized advertising) and another

for authentication purposes (e.g. as a factor in multi-factor authentication). This would

allow the access settings for the various UBIs to be separately configurable. For example,

a user might choose to allow third parties to have access to a personalization UBI, e.g. as

used for personalized advertising, and might also choose to automatically reset this UBI

at fixed intervals (e.g. monthly). In parallel, an authentication UBI might be configured

to only be available under very restricted circumstances, e.g. only to the site visited

by the user and/or to a “login” web page and/or if the user gives explicit permission.

UBIs, depending on their type, might also be unique per website, as opposed to being

the same regardless of the retrieving party.

7.5.3 UBI and Cookies

It could be argued that the functionality of a UBI could just as easily be implemented

through the use of a special cookie. However, as we discuss below, there are a number

of reasons why the UBI offers desirable features not accessible through the simple use of

cookies. Of course the UBI would not replace cookies, as they serve as a general-purpose

means of adding state to HTTP, an otherwise stateless protocol.

One major difference between cookies and the proposed UBI is that the user has no

means of controlling how cookies are used; all a user can do is have them deleted. By

contrast, the UBI has a well-defined role and its use could be configured to meet user

privacy requirements. That is, by providing explicit browser support for the UBI, its

76

7.5. Making Browser Fingerprinting Unnecessary? 7. Controlling Browser Fingerprinting

use can be controlled much more precisely than would be the case for cookies.

To help enable transparency of use and make websites accountable for their actions,

browsers could usefully maintain a log of accesses to each type of UBI, e.g. including

access date/time and accessing URL, just as is the case for cookies. However, unlike the

case for cookies, it would also be helpful to log details of whether the requesting site is

a third-party site, while also identifying the first-party site whose website contained the

third-party link. Recording this additional information is made possible by implementing

the UBI as a distinct browser feature.

Browsers should also enforce the use of HTTPS for UBI transfers, i.e. preventing

access via HTTP. Currently, unless the appropriate flag is set, cookies can be transferred

via HTTP, and transferring the UBI unencrypted would clearly be a privacy risk. As

we discussed in Chapter 3, it is interesting to observe that browser fingerprinting

information is currently often transferred using HTTP.

Currently the expiry date of cookies is controlled by the server that created them,

whereas UBI expiry would ideally be user-controllable. Moreover, if a multi-UBI system

was implemented, UBIs would serve a range of purposes, and their behaviour and

handling could be managed individually.

7.5.4 Privacy Considerations

Ideally, the use and functioning of a UBI should be standardized by an official body

rather than being left to an initiative by a browser vendor. As mentioned in 7.5.1,

Google considered replacing the use of cookies with a browser generated ID. Had such

functionality been unilaterally added, perhaps with minimal user controls, it would

potentially have given Google even greater control over online personalized advertising,

to the detriment of user privacy, given that Google currently [19, 59] also owns the

largest shares of both online advertising and browser users.

It might be argued that potential sharing of a UBI amongst trackers might increase

privacy concerns. Analogously, concerns about sharing of browser fingerprinting IDs

have recently been expressed [23]. However, in the case of UBIs, this might be avoided

if the recommendations below and those in 7.5.1 and 7.5.3 are followed.

To help minimize the threat posed to user privacy, we propose that the following

rules governing UBIs should be enforced by the browser.

• UBI Access Control: users should have full control over the use of all UBIs.

This can be through prompts as well as enabling blacklisting/whitelisting of

websites. Usage control should include providing means to enable/disable UBI

access to third party websites. Denied websites could be provided with a dummy

77

7.6. Discussion 7. Controlling Browser Fingerprinting

ID to prevent them learning that the user has denied them access.

• UBI Reset: like the existing advertising IDs, UBIs should be resettable, allowing

users to opt to be forgotten by all websites that possess any of the previous UBI(s).

• UBI Opacity: UBIs should be generated in a way that reveals no information

about its platform/client, nor linking with previously generated values.

7.6 Discussion

7.6.1 Browsers with Fingerprinting-Resisting Features

Some initial steps have been taken by certain browser vendors to tackle browser

fingerprinting. However, apart from the Tor browser, these steps remain small and

many browser vendors have not added any such features to their browsers. Firefox

calls its techniques of this type resistFingerprinting. Using the term “resist” seems

appropriate given that the measures certainly do not prevent it altogether. Firefox

version 62 incorporates four options that can be enabled to resist fingerprinting, although

some are disabled by default.

It is not clear what exactly they do, but apparently one of them reduces time-

reporting precision and another tackles one aspect of canvas fingerprinting. For reasons

that are unclear, Firefox has opted not to make these options available in the main

Options menu; instead, access is via the somewhat obscure advanced options, that are

only accessible by typing about:config in the address bar (see Figure 7.1).

Figure 7.1: Firefox anti-fingerprinting options

Apart from these limited measures in Firefox, only Safari and the Tor browser appear

to contain significant anti-fingerprinting features. Even in this case, only the latest

Safari version possesses such features. This leaves around 98%15 of web users without

15https://netmarketshare.com/browser-market-share.aspx [accessed 30/10/2018].

78

https://netmarketshare.com/browser-market-share.aspx

7.7. Summary 7. Controlling Browser Fingerprinting

any default anti-fingerprinting protection. The Safari and Tor browser implementations

of anti-fingerprinting measures differ, although both Safari and Tor are designed to

make all versions indistinguishable. It is important that other browsers follow similar

design considerations.

7.6.2 A Possible Role for Regulation

As discussed in 7.4, a number of steps could be taken by browser vendors to make

fingerprinting significantly less effective, including removing (or limiting) rarely used

APIs and reducing API accuracy. The main question is how to persuade browser vendors

to implement such steps. One possible route might involve some kind of regulation.

More than 92%16 of users use one of the five most widely used browsers, but trackers

and the domains they use are very numerous. It therefore seems reasonable to focus more

on controlling browser fingerprinting by regulating browsers rather than by regulating

websites. Moreover, browsers act as a kind of middle man between websites and users,

and can thus act as a type of privacy regulator [58]. However, it is important to note

that some browser vendors also make extensive use of browser fingerprinting, and are

thus likely to be reluctant to restrict it. Finally, despite the primary focus on browsers,

the regulation of websites remains an important possibility, especially given that it

appears that most tracking is performed by a limited number of third parties (see

Chapter 3).

7.7 Summary

Browser fingerprinting is increasingly being used for online tracking of users, and,

unlike the use of cookies, is almost impossible for users to control. This has a major

negative impact on online privacy. Despite the availability of a range of fingerprinting

countermeasures as well as some limited attempts by browser vendors to curb its

effectiveness, it remains largely uncontrolled. Third-party countermeasures have inherent

limitations and many browser vendors do not appear to have made significant efforts to

control it. This chapter provided a comprehensive and structured discussion of measures

to limit or control browser fingerprinting, covering both user-based and browser-based

techniques. It also discusses the limitations of these measures and the need for browser

vendor support in controlling fingerprinting. Further, a somewhat counterintuitive

possible new browser identifier is proposed which could make cookies and fingerprint-

based tracking redundant; the need for, and possible effect of, this feature had been

discussed.

16https://netmarketshare.com/browser-market-share.aspx [accessed 30/08/2018].

79

https://netmarketshare.com/browser-market-share.aspx

Chapter 8

Conclusions and Future Work

8.1 Conclusions

The work described in this thesis has been motivated by the growing privacy threat

posed by browser fingerprinting. Of course, addressing such a threat requires that we

understand in detail how it works and who is doing it. Chapters 2 to 5 of this thesis

describe work directed at learning more about the prevalence and nature of browser

fingerprinting. The rest of the thesis builds on the understanding derived from the

first chapters, and considers the question of giving users greater control over browser

fingerprinting. We next examine in greater detail the contributions in each of the

chapters of the thesis.

In Chapter 2 we reviewed browser fingerprinting and its related prior art. We

observed that, since users have no direct means of controlling it, in some ways browser

fingerprinting poses a higher risk to privacy than tracking via cookies. We also observed

that it is increasingly being used for online tracking of users even in the absence of a

persistent IP address or cookie.

In Chapter 3 we reviewed prior art that attempted to measure the prevalence of

browser fingerprinting. We explained how the variety of different fingerprinting detection

methods used in previous studies has given rise significantly varying results. In particular,

most previous studies have been based on detecting a very limited number of techniques

or scripts. We also described the results of a study showing that browser fingerprinting

is being conducted on a significantly larger scale than previously reported, involving the

transmission of large volumes of browser and device-specific data to trackers. We also

reported on the large number of fingerprinting attributes collected. As other authors

have described, browser fingerprinting has significant negative implications on user

privacy, and it is therefore important that the web user community is made aware of

80

8.1. Conclusions 8. Conclusions and Future Work

its prevalence and potential effectiveness. To this end, we developed FingerprintAlert,

used in the study and discussed in detail in Chapter 6.

In Chapter 4 we discussed an investigation of an aspect of browser fingerprinting

that has not previously been explored in the literature, namely the differences between

browsers in terms of the amount of information they reveal to executing scripts (and

hence to fingerprinting websites). For example, some mobile browsers reveal (for no

obvious reason) the specific phone model, and browsers differ widely in how they imple-

ment the WebRTC and Canvas APIs, both of key importance for browser fingerprinting.

It would therefore be highly desirable if all browsers asked for user permission before

rendering a canvas image, or at least disabled the option that allows servers to retrieve

details of the rendered image. At the time we performed our experiments, Safari would

appear to be the best choice in this respect on both mobile and desktop platforms.

Despite Chrome being the most widely used browser, it proved to be one of the most

fingerprintable.

In Chapter 5 we reported on experiments examining the disclosure of IP addresses

via the WebRTC API. In this study, Safari did not allow any client IP addresses to be

leaked via WebRTC. Edge, on the other hand, proved to be the most privacy-damaging

in this respect. However, regardless of the user browser choice, we found that some

VPN implementations prevent leaking of client public IP address(es). Moreover, in some

cases, selecting an appropriate client VPN configuration fully or partially prevented

disclosure of IP addresses via WebRTC. The experiments we performed in this study

explored an aspect of WebRTC leaks that has not been addressed in previous work,

namely that the choice of browser and VPN service can make a significant difference

to the number of IP addresses that are leaked. The results will help users decide on

best practices to minimize the risk of loss of IP confidentiality. We also hope it will

encourage VPN and browser providers to work on mitigating the privacy-compromising

properties of their implementations of the WebRTC API.

In Chapter 6, we described FingerprintAlert, a freely available browser extension

that detects, and optionally blocks, transfers of data likely to be used for browser

fingerprinting. It also provides users with detailed reports of detected fingerprinting.

Whilst it is not 100% accurate, the main purpose of developing the extension was to

make browser users aware of the wide use of browser fingerprinting and to enable them

to exert some control over it.

In Chapter 7 we discussed how browser fingerprinting is becoming commonplace,

with browsers leaving users unequipped with the means to control it. This is likely

to damage online privacy. This privacy risk is particularly serious since third-party

countermeasures are inherently limited. In the chapter we reviewed and analysed a

81

wide range of measures that can be performed by browser vendors to help address this

problem. We also propose a new browser identifier that would serve as a standardized

and controllable method for online tracking.

8.2 Future Work

In Chapter 3 we described a study aimed at learning how many of the 10,000 most

visited websites are performing browser fingerprinting. In this study, detection was

based on identifying the presence of one or more of 17 specific attribute values in HTTP

messages sent by the browser. No doubt it would be useful for future studies of this

type to include a larger number of attributes. Moreover, increasing the number of the

crawled websites would also be valuable; indeed ideally we should try to examine all

the active websites on the web.

As discussed in 4.2.4, the unique device IDs that are assigned to video/audio devices

(e.g. microphones or loudspeakers), and that are revealed by the WebRTC API, are

potentially a rich source of information for fingerprinting. This is particularly so if they

remain unchanged for long periods of time, as is the case for some browsers. Despite the

privacy risk they pose, to the author’s knowledge, no study has evaluated their potential

role in fingerprinting. Moreover, the privacy risk posed by these IDs would be increased

if the current ID for a device could somehow be linked to previous IDs. Clearly, further

studies are needed to better understand these device IDs, their potential usefulness in

fingerprinting, and the reason for the varying implementations by browsers.

In the near future we aim to improve FingerprintAlert by increasing the number

of automatically-detectable attributes. This can be achieved by further in-depth

examination of the formats and values of attributes that are currently undetectable.

Since the crawler used to perform the experiments described in Chapter 3 is based on the

extension, any future crawls would also be made more effective by such improvements.

For example, the device ID values discussed in Chapter 4 could be included as a new

detectable attribute. However, the usefulness of including such an attribute depends on

it remaining unchanged for long enough to be useful in fingerprinting and tracking.

If it is to be pursued further, the UBI proposed in 7.5 would require a detailed

analysis of its possible implementation and use, as well as its impact on user privacy

both from an ethical and a legal/regulatory perspective. To have any chance of it being

adopted as a possible standard feature for inclusion in browsers, it would be necessary

to get wider agreement that such an approach is desirable. That is, promoting an open

debate on such an issue, e.g. through conference presentations and panel discussions,

would appear to be the logical next step.

82

Bibliography

[1] G. Acar, C. Eubank, S. Englehardt, M. Juárez, A. Narayanan, and C. Dı́az. The

web never forgets: Persistent tracking mechanisms in the wild. In G. Ahn, M. Yung,

and N. Li, editors, Proceedings of the 2014 ACM SIGSAC Conference on Computer

and Communications Security, Scottsdale, AZ, USA, November 3–7, 2014, pages

674–689. ACM, 2014. 1, 11, 16, 17, 19, 30, 68

[2] G. Acar, M. Juárez, N. Nikiforakis, C. Dı́az, S. F. Gürses, F. Piessens, and

B. Preneel. Fpdetective: dusting the web for fingerprinters. In A. Sadeghi, V. D.

Gligor, and M. Yung, editors, 2013 ACM SIGSAC Conference on Computer and

Communications Security, CCS’13, Berlin, Germany, November 4–8, 2013, pages

1129–1140. ACM, 2013. 8, 9, 12, 14, 17, 18, 19, 21, 31

[3] N. M. Al-Fannah. One leak will sink a ship: WebRTC IP address leaks. In

International Carnahan Conference on Security Technology, ICCST 2017, Madrid,

Spain, October 23–26, 2017, pages 1–5. IEEE, 2017. 47

[4] N. M. Al-Fannah and W. Li. Not all browsers are created equal: Comparing

web browser fingerprintability. In S. Obana and K. Chida, editors, Advances in

Information and Computer Security — 12th International Workshop on Security,

IWSEC 2017, Hiroshima, Japan, August 30 – September 1, 2017, Proceedings,

volume 10418 of Lecture Notes in Computer Science, pages 105–120. Springer, 2017.

34

[5] N. M. Al-Fannah, W. Li, and C. J. Mitchell. Beyond cookie monster amnesia: Real

world persistent online tracking. In L. Chen, M. Manulis, and S. Schneider, editors,

Information Security — 21st International Conference, ISC 2018, Guildford, UK,

September 9–12, 2018, Proceedings, volume 11060 of Lecture Notes in Computer

Science, pages 481–501. Springer, 2018. 16

[6] F. Alaca and P. C. van Oorschot. Device fingerprinting for augmenting web authen-

tication: classification and analysis of methods. In S. Schwab, W. K. Robertson,

83

and D. Balzarotti, editors, Proceedings of the 32nd Annual Conference on Computer

Security Applications, ACSAC 2016, Los Angeles, CA, USA, December 5–9, 2016,

pages 289–301. ACM, 2016. 7, 10, 13, 19, 24, 31, 42, 48, 49

[7] A. Barth. HTTP state management mechanism. RFC 6265, RFC Editor, April

2011. http://www.rfc-editor.org/rfc/rfc6265.txt. 7

[8] M. A. Bashir, S. Arshad, E. Kirda, W. K. Robertson, and C. Wilson. How

tracking companies circumvented ad blockers using websockets. In Proceedings of

the Internet Measurement Conference 2018, IMC 2018, Boston, MA, USA, October

31 – November 02, 2018, pages 471–477. ACM, 2018. 31

[9] A. Bergkvist, D. C. Burnett, C. Jennings, B. A. Anant Narayanan, T. Brandstetter,

and J.-I. Bruaroey. WebRTC 1.0: Real-time communication between browsers.

Candidate recommendation, W3C, September 2018. https://www.w3.org/TR/

webrtc. 11

[10] K. Boda, Á. M. Földes, G. G. Gulyás, and S. Imre. User tracking on the web via

cross-browser fingerprinting. In P. Laud, editor, Information Security Technology

for Applications — 16th Nordic Conference on Secure IT Systems, NordSec 2011,

Tallinn, Estonia, October 26–28, 2011, Revised Selected Papers, volume 7161 of

Lecture Notes in Computer Science, pages 31–46. Springer, 2011. 7, 67

[11] Business Insider. Google And Facebook To Replace Cookies. https://www.

businessinsider.com/google-and-facebook-to-replace-cookies-2014-2?

r=US&IR=T, 2014. Accessed 19/12/2018. 75

[12] Y. Cao, S. Li, and E. Wijmans. (Cross-)browser fingerprinting via OS and hardware

level features. In 24th Annual Network and Distributed System Security Symposium,

NDSS 2017, San Diego, California, USA, February 26 – March 1, 2017. The Internet

Society, 2017. 8, 31, 37, 42

[13] A. Cooper, H. Tschofenig, B. Aboba, J. Peterson, J. Morris, M. Hansen, and

R. Smith. Privacy considerations for internet protocols. RFC 6973, RFC Editor,

July 2013. https://tools.ietf.org/rfc/rfc6973.txt. 66, 70, 71, 72, 74

[14] Council of the European Union. Regulation (EU) 2016/679

(General Data Protection Regulation), April 2016. https://

publications.europa.eu/en/publication-detail/-/publication/

3e485e15-11bd-11e6-ba9a-01aa75ed71a1. 1

84

http://www.rfc-editor.org/rfc/rfc6265.txt
https://www.w3.org/TR/webrtc
https://www.w3.org/TR/webrtc
https://www.businessinsider.com/google-and-facebook-to-replace-cookies-2014-2?r=US&IR=T
https://www.businessinsider.com/google-and-facebook-to-replace-cookies-2014-2?r=US&IR=T
https://www.businessinsider.com/google-and-facebook-to-replace-cookies-2014-2?r=US&IR=T
https://tools.ietf.org/rfc/rfc6973.txt
https://publications.europa.eu/en/publication-detail/-/publication/3e485e15-11bd-11e6-ba9a-01aa75ed71a1
https://publications.europa.eu/en/publication-detail/-/publication/3e485e15-11bd-11e6-ba9a-01aa75ed71a1
https://publications.europa.eu/en/publication-detail/-/publication/3e485e15-11bd-11e6-ba9a-01aa75ed71a1

[15] D. Crockford. JavaScript: The Good Parts. Yahoo Press, Sebastopol, California,

2008. 6

[16] A. Das, G. Acar, N. Borisov, and A. Pradeep. The web’s sixth sense: A study

of scripts accessing smartphone sensors. In D. Lie, M. Mannan, M. Backes, and

X. Wang, editors, Proceedings of the 2018 ACM SIGSAC Conference on Computer

and Communications Security, CCS 2018, Toronto, ON, Canada, October 15–19,

2018, pages 1515–1532. ACM, 2018. 19, 20

[17] N. Doty. Fingerprinting guidance for web specification authors (draft).

Interest group note, W3C, November 2015. https://www.w3.org/TR/

fingerprinting-guidance. 2, 9, 66, 70, 72

[18] P. Eckersley. How unique is your web browser? In M. J. Atallah and N. J. Hopper,

editors, Privacy Enhancing Technologies, 10th International Symposium, PETS

2010, Berlin, Germany, July 21–23, 2010. Proceedings, volume 6205 of Lecture

Notes in Computer Science, pages 1–18. Springer, 2010. 1, 7, 8, 9, 10, 11, 12, 14,

16, 31, 38, 41, 66, 69, 73

[19] eMarketer Inc. Global ad spending update. https://www.emarketer.com/

content/global-ad-spending-update, 2019. Accessed 25/02/2019. 77

[20] S. Englehardt and A. Narayanan. Online tracking: A 1-million-site measurement

and analysis. In E. R. Weippl, S. Katzenbeisser, C. Kruegel, A. C. Myers, and

S. Halevi, editors, Proceedings of the 2016 ACM SIGSAC Conference on Computer

and Communications Security, Vienna, Austria, October 24–28, 2016, pages 1388–

1401. ACM, 2016. 9, 13, 18, 19, 21, 26, 29, 32, 39, 49

[21] European Commission. Cookies. http://ec.europa.eu/ipg/basics/legal/

cookies/index_en.htm. Accessed 11/04/2019. 1

[22] A. FaizKhademi, M. Zulkernine, and K. Weldemariam. Fpguard: Detection and

prevention of browser fingerprinting. In P. Samarati, editor, Data and Applications

Security and Privacy XXIX — 29th Annual IFIP WG 11.3 Working Conference,

DBSec 2015, Fairfax, VA, USA, July 13–15, 2015, Proceedings, volume 9149 of

Lecture Notes in Computer Science, pages 293–308. Springer, 2015. 7, 18, 19, 20,

30, 69

[23] M. Falahrastegar, H. Haddadi, S. Uhlig, and R. Mortier. Tracking personal

identifiers across the web. In T. Karagiannis and X. A. Dimitropoulos, editors,

Passive and Active Measurement — 17th International Conference, PAM 2016,

85

https://www.w3.org/TR/fingerprinting-guidance
https://www.w3.org/TR/fingerprinting-guidance
https://www.emarketer.com/content/global-ad-spending-update
https://www.emarketer.com/content/global-ad-spending-update
http://ec.europa.eu/ipg/basics/legal/cookies/index_en.htm
http://ec.europa.eu/ipg/basics/legal/cookies/index_en.htm

Heraklion, Greece, March 31 – April 1, 2016. Proceedings, volume 9631 of Lecture

Notes in Computer Science, pages 30–41. Springer, 2016. 32, 77

[24] I. Fette and A. Melnikov. The WebSocket protocol. RFC 6455, RFC Editor,

December 2011. http://www.rfc-editor.org/rfc/rfc6455.txt. 31

[25] R. Fielding and J. Reschke. Hypertext transfer protocol (HTTP/1.1): Semantics

and content. RFC 7231, RFC Editor, June 2014. http://www.rfc-editor.org/

rfc/rfc7231.txt. 6, 9, 10, 13, 23

[26] D. Fifield and S. Egelman. Fingerprinting web users through font metrics. In

R. Böhme and T. Okamoto, editors, Financial Cryptography and Data Security —

19th International Conference, FC 2015, San Juan, Puerto Rico, January 26–30,

2015, Revised Selected Papers, volume 8975 of Lecture Notes in Computer Science,

pages 107–124. Springer, 2015. 7, 37

[27] U. Fiore, A. Castiglione, A. D. Santis, and F. Palmieri. Countering browser

fingerprinting techniques: Constructing a fake profile with google chrome. In

L. Barolli, F. Xhafa, M. Takizawa, T. Enokido, A. Castiglione, and A. D. Santis,

editors, 17th International Conference on Network-Based Information Systems,

NBiS 2014, Salerno, Italy, September 10–12, 2014, pages 355–360. IEEE Computer

Society, 2014. 7, 36, 69

[28] J. Franklin and D. McCoy. Passive data link layer 802.11 wireless device driver

fingerprinting. In A. D. Keromytis, editor, Proceedings of the 15th USENIX

Security Symposium, Vancouver, BC, Canada, July 31 – August 4, 2006. USENIX

Association, 2006. 7

[29] A. Gómez-Boix, P. Laperdrix, and B. Baudry. Hiding in the crowd: an analysis

of the effectiveness of browser fingerprinting at large scale. In P. Champin, F. L.

Gandon, M. Lalmas, and P. G. Ipeirotis, editors, Proceedings of the 2018 World

Wide Web Conference on World Wide Web, WWW 2018, Lyon, France, April

23–27, 2018, pages 309–318. ACM, 2018. 10

[30] D. Gorley and B. Totty. HTTP: The Definitive Guide. O’Reilly Media, Sebastopol,

California, 2002. 6

[31] G. G. Gulyás, D. F. Somé, N. Bielova, and C. Castelluccia. To extend or not

to extend: on the uniqueness of browser extensions and web logins. CoRR,

abs/1808.07359, 2018. http://arxiv.org/abs/1808.07359. 69

86

http://www.rfc-editor.org/rfc/rfc6455.txt
http://www.rfc-editor.org/rfc/rfc7231.txt
http://www.rfc-editor.org/rfc/rfc7231.txt
http://arxiv.org/abs/1808.07359

[32] Y. Haga, Y. Takata, M. Akiyama, and T. Mori. Building a scalable web tracking

detection system: Implementation and the empirical study. IEICE Transactions,

100-D(8):1663–1670, 2017. 18, 19, 20, 30

[33] M. Hazhirpasand and M. Ghafari. One leak is enough to expose them all — from

a WebRTC IP leak to web-based network scanning. In M. Payer, A. Rashid, and

J. M. Such, editors, Engineering Secure Software and Systems — 10th International

Symposium, ESSoS 2018, Paris, France, June 26–27, 2018, Proceedings, volume

10953 of Lecture Notes in Computer Science, pages 61–76. Springer, 2018. 55

[34] R. Hinden and B. Haberman. Unique local IPv6 unicast addresses. RFC 4193,

RFC Editor, October 2005. https://tools.ietf.org/rfc/rfc4193.txt. 48

[35] R. Hosoi, T. Saito, T. Ishikawa, D. Miyata, and Y. Chen. A browser scanner:

Collecting intranet information. In 19th International Conference on Network-

Based Information Systems, NBiS 2016, Ostrava, Czech Republic, September 7-9,

2016, pages 140–145. IEEE Computer Society, 2016. 12, 49

[36] D. Jackson and J. Gilbert. WebGL 2.0 specification. Khronos working draft,

Khronos Group, February 2019. https://www.khronos.org/registry/webgl/

specs/latest/2.0. 13

[37] C. Jakobsson. Peer-to-peer communication in web browsers using WebRTC a

detailed overview of WebRTC and what security and network concerns exists.

Master’s thesis, Ume̊a University, Department of Computing Science, 2015. http://

www8.cs.umu.se/education/examina/Rapporter/ChristerJakobsson.pdf. 12,

49

[38] A. Keranen, C. Holmberg, and J. Rosenberg. Interactive connectivity establishment

(ICE): A protocol for network address translator (NAT) traversal. RFC 8445, RFC

Editor, July 2018. https://tools.ietf.org/rfc/rfc8445.txt. 12

[39] R. Koch, M. Golling, and G. D. Rodosek. Geolocation and verification of ip-

addresses with specific focus on IPv6. In G. Wang, I. Ray, D. Feng, and M. Ra-

jarajan, editors, Cyberspace Safety and Security, volume 8300 of Lecture Notes in

Computer Science, pages 151–170. Springer International Publishing, 2013. 47

[40] T. Kohno, A. Broido, and K. C. Claffy. Remote physical device fingerprinting.

In 2005 IEEE Symposium on Security and Privacy (S&P 2005), 8-11 May 2005,

Oakland, CA, USA, pages 211–225. IEEE Computer Society, 2005. 10

87

https://tools.ietf.org/rfc/rfc4193.txt
https://www.khronos.org/registry/webgl/specs/latest/2.0
https://www.khronos.org/registry/webgl/specs/latest/2.0
http://www8.cs.umu.se/education/examina/Rapporter/ChristerJakobsson.pdf
http://www8.cs.umu.se/education/examina/Rapporter/ChristerJakobsson.pdf
https://tools.ietf.org/rfc/rfc8445.txt

[41] M. Lamouri and A. Kostiainen. Battery status API. Candidate recommendation,

W3C, July 2016. https://www.w3.org/TR/2016/CR-battery-status-20160707.

72

[42] P. Laperdrix, B. Baudry, and V. Mishra. FPRandom: Randomizing core browser

objects to break advanced device fingerprinting techniques. In E. Bodden, M. Payer,

and E. Athanasopoulos, editors, Engineering Secure Software and Systems — 9th

International Symposium, ESSoS 2017, Bonn, Germany, July 3-5, 2017, Proceed-

ings, volume 10379 of Lecture Notes in Computer Science, pages 97–114. Springer,

2017. 69

[43] P. Laperdrix, W. Rudametkin, and B. Baudry. Mitigating browser fingerprint

tracking: Multi-level reconfiguration and diversification. In 10th IEEE/ACM

International Symposium on Software Engineering for Adaptive and Self-Managing

Systems, SEAMS 2015, Florence, Italy, May 18–19, 2015, pages 98–108, 2015. 65

[44] P. Laperdrix, W. Rudametkin, and B. Baudry. Beauty and the beast: Diverting

modern web browsers to build unique browser fingerprints. In IEEE Symposium

on Security and Privacy, SP 2016, San Jose, CA, USA, May 22–26, 2016, pages

878–894. IEEE Computer Society, 2016. 7, 8, 11, 13, 14, 29, 37, 42, 46

[45] A. Lerner, A. K. Simpson, T. Kohno, and F. Roesner. Internet jones and the

raiders of the lost trackers: An archaeological study of web tracking from 1996

to 2016. In T. Holz and S. Savage, editors, 25th USENIX Security Symposium,

USENIX Security 16, Austin, TX, USA, August 10–12, 2016. USENIX Association,

2016. 8, 13, 32

[46] T. Li, H. Hang, M. Faloutsos, and P. Efstathopoulos. Trackadvisor: Taking back

browsing privacy from third-party trackers. In J. Mirkovic and Y. Liu, editors,

Passive and Active Measurement — 16th International Conference, PAM 2015,

New York, NY, USA, March 19–20, 2015, Proceedings, volume 8995 of Lecture

Notes in Computer Science, pages 277–289. Springer, 2015.

[47] T. Libert. Exposing the invisible web: An analysis of third-party http requests on

1 million websites. International Journal of Communication, 9:18, October 2015.

1, 14, 18, 19, 20, 29, 32

[48] X. Liu, Q. Liu, X. Wang, and Z. Jia. Fingerprinting web browser for tracing

anonymous web attackers. In IEEE First International Conference on Data Science

in Cyberspace, DSC 2016, Changsha, China, June 13-16, 2016, pages 222–229.

IEEE Computer Society, 2016. 49

88

https://www.w3.org/TR/2016/CR-battery-status-20160707

[49] S. Luangmaneerote, E. Zaluska, and L. Carr. Survey of existing fingerprint coun-

termeasures. In 2016 International Conference on Information Society (i-Society),

pages 137–141. IEEE Computer Society, October 2016. 65, 66, 68, 69

[50] R. Mahy, P. Matthews, and J. Rosenberg. Traversal using relays around NAT

(TURN): Relay extensions to session traversal utilities for NAT (STUN). RFC

5766, RFC Editor, April 2010. http://www.rfc-editor.org/rfc/rfc5766.txt.

12

[51] J. R. Mayer. Any person... a pamphleteer: Internet Anonymity in the Age of Web

2.0. Bachelor’s thesis, Princeton University, 2009. 7

[52] J. R. Mayer and J. C. Mitchell. Third-party web tracking: Policy and technology.

In IEEE Symposium on Security and Privacy, SP 2012, 21–23 May 2012, San

Francisco, California, USA, pages 413–427. IEEE Computer Society, 2012. 1, 13,

14, 16

[53] G. Merzdovnik, M. Huber, D. Buhov, N. Nikiforakis, S. Neuner, M. Schmiedecker,

and E. R. Weippl. Block me if you can: A large-scale study of tracker-blocking

tools. In 2017 IEEE European Symposium on Security and Privacy, EuroS&P

2017, Paris, France, April 26-28, 2017, pages 319–333. IEEE, 2017. 31

[54] H. Metwalley, S. Traverso, M. Mellia, S. Miskovic, and M. Baldi. The online

tracking horde: A view from passive measurements. In M. Steiner, P. Barlet-Ros,

and O. Bonaventure, editors, Traffic Monitoring and Analysis — 7th International

Workshop, TMA 2015, Barcelona, Spain, April 21–24, 2015. Proceedings, volume

9053 of Lecture Notes in Computer Science, pages 111–125. Springer, 2015. 27

[55] K. Mowery, D. Bogenreif, S. Yilek, and H. Shacham. Fingerprinting information in

JavaScript implementations. In W2SP 2011, Oakland, CA, USA, May 26, 2011,

volume 2, pages 180–193, 2011. 7, 8

[56] K. Mowery and H. Shacham. Pixel perfect: Fingerprinting canvas in HTML5. In

M. Fredrikson, editor, W2SP 2012, San Francisco, CA, USA. IEEE Computer

Society, May 2012. 7, 11, 13, 29, 72

[57] M. Mulazzani, P. Reschl, M. Huber, M. Leithner, S. Schrittwieser, E. Weippl,

and F. Wien. Fast and reliable browser identification with javascript engine

fingerprinting. In W2SP 2013, San Francisco, CA, USA, May 24, 2013, volume 5,

2013. 1, 7

89

http://www.rfc-editor.org/rfc/rfc5766.txt

[58] A. Narayanan and D. Reisman. The Princeton web transparency and accountability

project. In T. Cerquitelli, D. Quercia, and F. Pasquale, editors, Transparent Data

Mining for Big and Small Data, volume 32 of Studies in Big Data, pages 45–67.

Springer International Publishing, 2017. 14, 71, 79

[59] NetMarketShare. Browser market share. https://netmarketshare.com/

browser-market-share.aspx. Accessed 25/02/2019. 77

[60] N. Nikiforakis, W. Joosen, and B. Livshits. Privaricator: Deceiving fingerprinters

with little white lies. In A. Gangemi, S. Leonardi, and A. Panconesi, editors,

Proceedings of the 24th International Conference on World Wide Web, WWW

2015, Florence, Italy, May 18–22, 2015, pages 820–830. ACM, 2015. 7, 69

[61] N. Nikiforakis, A. Kapravelos, W. Joosen, C. Kruegel, F. Piessens, and G. Vigna.

Cookieless monster: Exploring the ecosystem of web-based device fingerprinting.

In 2013 IEEE Symposium on Security and Privacy, SP 2013, Berkeley, CA, USA,

May 19–22, 2013, pages 541–555. IEEE Computer Society, 2013. 1, 13, 16, 17, 19,

20, 21, 30, 31, 66, 70

[62] N. Nikiforakis, A. Kapravelos, W. Joosen, C. Kruegel, F. Piessens, and G. Vigna.

On the workings and current practices of web-based device fingerprinting. IEEE

Security & Privacy, 12(3):28–36, June 2014. 68

[63] L. Olejnik, G. Acar, C. Castelluccia, and C. Dı́az. The leaking battery — A privacy

analysis of the HTML5 battery status API. In J. Garćıa-Alfaro, G. Navarro-

Arribas, A. Aldini, F. Martinelli, and N. Suri, editors, Data Privacy Management,

and Security Assurance — 10th International Workshop, DPM 2015, and 4th

International Workshop, QASA 2015, Vienna, Austria, September 21-22, 2015.

Revised Selected Papers, volume 9481 of Lecture Notes in Computer Science, pages

254–263. Springer, 2015. 7, 37, 73

[64] L. Olejnik, S. Englehardt, and A. Narayanan. Battery status not included: Assessing

privacy in web standards. In 3rd International Workshop on Privacy Engineering

(IWPE’17), San Jose, USA, March 2017. 18, 19, 72

[65] M. Perry. Do not beg: Moving beyond DNT through privacy by design.

W3C DNT, Tor Project, November 2012. https://www.w3.org/2012/dnt-ws/

position-papers/21.pdf. 14, 70

[66] M. Perry, E. Clark, and S. Murdoch. The design and implementation of the

tor browser. Draft, Tor Project, June 2013. https://www.torproject.org/

projects/torbrowser/design. 2, 68, 71, 72, 73

90

https://netmarketshare.com/browser-market-share.aspx
https://netmarketshare.com/browser-market-share.aspx
https://www.w3.org/2012/dnt-ws/position-papers/21.pdf
https://www.w3.org/2012/dnt-ws/position-papers/21.pdf
https://www.torproject.org/projects/torbrowser/design
https://www.torproject.org/projects/torbrowser/design

[67] V. C. Perta, M. V. Barbera, G. Tyson, H. Haddadi, and A. Mei. A glance through

the VPN looking glass: IPv6 leakage and DNS hijacking in commercial VPN clients.

PoPETs, 2015(1):77–91, 2015. 47, 49

[68] G. Portokalidis, M. Polychronakis, A. D. Keromytis, and E. P. Markatos. Privacy-

preserving social plugins. In T. Kohno, editor, Proceedings of the 21th USENIX

Security Symposium, Bellevue, WA, USA, August 8–10, 2012, pages 631–646.

USENIX Association, 2012. 8

[69] E. Rescorla. HTTP over TLS. RFC 2818, RFC Editor, May 2000. http://www.

rfc-editor.org/rfc/rfc2818.txt. 23

[70] F. Roesner, T. Kohno, and D. Wetherall. Detecting and defending against third-

party tracking on the web. In S. D. Gribble and D. Katabi, editors, Proceedings of

the 9th USENIX Symposium on Networked Systems Design and Implementation,

NSDI 2012, San Jose, CA, USA, April 25–27, 2012, pages 155–168. USENIX

Association, 2012. 8

[71] J. Rosenberg, R. Mahy, P. Matthews, and D. Wing. Session traversal utilities for

NAT (STUN). RFC 5389, RFC Editor, October 2008. http://www.rfc-editor.

org/rfc/rfc5389.txt. 12

[72] T. Sandholm, B. Magnusson, and B. A. Johnsson. An on-demand WebRTC and

IoT device tunneling service for hospitals. In M. Younas, I. Awan, and A. Pescapè,

editors, 2014 International Conference on Future Internet of Things and Cloud,

FiCloud 2014, Barcelona, Spain, August 27–29, 2014, pages 53–60. IEEE Computer

Society, 2014. 12

[73] S. Schelter and J. Kunegis. On the ubiquity of web tracking: Insights from a

billion-page web crawl. J. Web Science, 4(4):53–66, 2018. 27

[74] L. Simpkins, X. Yuan, J. Modi, J. Zhan, and L. Yang. A course module on web

tracking and privacy. In M. E. Whitman and H. Zafar, editors, Proceedings of the

2015 Information Security Curriculum Development Conference, InfoSecCD 2015,

Kennesaw, GA, USA, October 10, 2015, pages 10:1–10:7. ACM, 2015. 75

[75] D. Singer and R. Fielding. Tracking preference expression (DNT). W3C

working group note, W3C, Jan. 2019. https://www.w3.org/TR/2019/

NOTE-tracking-dnt-20190117. 70

[76] P. Snyder, L. Ansari, C. Taylor, and C. Kanich. Browser feature usage on the

modern web. In Proceedings of the 2016 ACM on Internet Measurement Conference,

91

http://www.rfc-editor.org/rfc/rfc2818.txt
http://www.rfc-editor.org/rfc/rfc2818.txt
http://www.rfc-editor.org/rfc/rfc5389.txt
http://www.rfc-editor.org/rfc/rfc5389.txt
https://www.w3.org/TR/2019/NOTE-tracking-dnt-20190117
https://www.w3.org/TR/2019/NOTE-tracking-dnt-20190117

IMC 2016, Santa Monica, CA, USA, November 14–16, 2016, pages 97–110. ACM,

2016. 72

[77] O. Starov and N. Nikiforakis. XHOUND: quantifying the fingerprintability of

browser extensions. In 2017 IEEE Symposium on Security and Privacy, SP 2017,

San Jose, CA, USA, May 22–26, 2017, pages 941–956. IEEE Computer Society,

2017. 70

[78] K. SZYMIELEWICZ and B. BUDINGTON. The gdpr and

browser fingerprinting. https://www.eff.org/deeplinks/2018/06/

gdpr-and-browser-fingerprinting-how-it-changes-game-sneakiest-web-trackers.

Accessed 23/07/2019. 1

[79] N. Takei, T. Saito, K. Takasu, and T. Yamada. Web browser fingerprinting using

only cascading style sheets. In L. Barolli, F. Xhafa, M. R. Ogiela, and L. Ogiela,

editors, 10th International Conference on Broadband and Wireless Computing,

Communication and Applications, BWCCA 2015, Krakow, Poland, November 4–6,

2015, pages 57–63. IEEE Computer Society, 2015. 13

[80] C. F. Torres, H. L. Jonker, and S. Mauw. Fp-block: Usable web privacy by

controlling browser fingerprinting. In G. Pernul, P. Y. A. Ryan, and E. R. Weippl,

editors, Computer Security — ESORICS 2015 — 20th European Symposium

on Research in Computer Security, Vienna, Austria, September 21–25, 2015,

Proceedings, Part II, volume 9327 of Lecture Notes in Computer Science, pages

3–19. Springer, 2015. 65, 69

[81] J. Uberti and G. wei Shieh. WebRTC IP Address Handling Require-

ments. Internet-Draft draft-ietf-rtcweb-ip-handling-09, Internet Engineer-

ing Task Force, June 2018. https://datatracker.ietf.org/doc/html/

draft-ietf-rtcweb-ip-handling-09. 49

[82] T. Unger, M. Mulazzani, D. Fruhwirt, M. Huber, S. Schrittwieser, and E. R.

Weippl. SHPF: enhancing HTTP(S) session security with browser fingerprinting.

In 2013 International Conference on Availability, Reliability and Security, ARES

2013, Regensburg, Germany, September 2–6, 2013, pages 255–261. IEEE Computer

Society, 2013. 8

[83] R. Upathilake, Y. Li, and A. Matrawy. A classification of web browser fingerprinting

techniques. In M. Badra, A. Boukerche, and P. Urien, editors, 7th International

Conference on New Technologies, Mobility and Security, NTMS 2015, Paris, France,

July 27–29, 2015, pages 1–5. IEEE, 2015. 7

92

https://www.eff.org/deeplinks/2018/06/gdpr-and-browser-fingerprinting-how-it-changes-game-sneakiest-web-trackers
https://www.eff.org/deeplinks/2018/06/gdpr-and-browser-fingerprinting-how-it-changes-game-sneakiest-web-trackers
https://datatracker.ietf.org/doc/html/draft-ietf-rtcweb-ip-handling-09
https://datatracker.ietf.org/doc/html/draft-ietf-rtcweb-ip-handling-09

[84] B. Ur, P. G. Leon, L. F. Cranor, R. Shay, and Y. Wang. Smart, useful, scary, creepy:

perceptions of online behavioral advertising. In L. F. Cranor, editor, Symposium

On Usable Privacy and Security, SOUPS ’12, Washington, DC, USA — July 11 –

13, 2012, page 4. ACM, 2012. 13

[85] A. Vastel, P. Laperdrix, W. Rudametkin, and R. Rouvoy. FP-Scanner: The privacy

implications of browser fingerprint inconsistencies. In W. Enck and A. P. Felt,

editors, 27th USENIX Security Symposium, USENIX Security 2018, Baltimore,

MD, USA, August 15–17, 2018, pages 135–150. USENIX Association, August 2018.

70

[86] A. Vastel, P. Laperdrix, W. Rudametkin, and R. Rouvoy. FP-STALKER: tracking

browser fingerprint evolutions. In 2018 IEEE Symposium on Security and Privacy,

SP 2018, Proceedings, 21–23 May 2018, San Francisco, California, USA, pages

728–741. IEEE, 2018. 1, 8

[87] WHATWG community. The canvas element. Living standard, Web Hypertext

Application Technology Working Group, April 2019. https://html.spec.whatwg.

org/multipage/canvas.html. 11

[88] T. Yen, Y. Xie, F. Yu, R. P. Yu, and M. Abadi. Host fingerprinting and tracking

on the web: Privacy and security implications. In 19th Annual Network and

Distributed System Security Symposium, NDSS 2012, San Diego, California, USA,

February 5–8, 2012. The Internet Society, 2012. 10

[89] B. Zhao and P. Liu. Private browsing mode not really that private: Dealing

with privacy breach caused by browser extensions. In 45th Annual IEEE/IFIP

International Conference on Dependable Systems and Networks, DSN 2015, Rio de

Janeiro, Brazil, June 22–25, 2015, pages 184–195. IEEE Computer Society, 2015.

14

[90] S. Zimmeck, J. S. Li, H. Kim, S. M. Bellovin, and T. Jebara. A privacy analysis

of cross-device tracking. In E. Kirda and T. Ristenpart, editors, 26th USENIX

Security Symposium, USENIX Security 2017, Vancouver, BC, Canada, August

16–18, 2017, pages 1391–1408. USENIX Association, 2017. 8

93

https://html.spec.whatwg.org/multipage/canvas.html
https://html.spec.whatwg.org/multipage/canvas.html

Appendices

This thesis concludes with a series of appendices containing supplementary information

about the experiments described in Chapters 3, 4 and 5.

Appendix A gives details of the websites identified as performing fingerprinting in

the crawl of 10,000 websites (described in Chapter 3).

Appendix B lists the Python script that was used to control the crawler discussed

in Chapter 3.

Appendix C lists the 286 fingerprintable browser attributes (divided into six cate-

gories) that were discovered in the data collected in the experiment described in Chapter

3.

Appendix D lists the sources of the code used on the fingerprintable website as well

as the HTML source code of the fingerprintability test page. This test page was used

for the experiments described in Chapter 4.

Appendix E lists the specifications and versions of operating systems, browsers and

devices used in the experiments described in Chapter 4.

Appendix F lists the sources of the code as well as the code used on https://

fingerprintable.org/webrtcleaks for the experiments described in Chapter 5.

I

https://fingerprintable.org/webrtcleaks
https://fingerprintable.org/webrtcleaks

A Results of Crawling Experiment

A.1 Major Fingerprinters

Table 1 lists the fingerprinter domains that were present on at least 100 of the 10,000

websites tested as part of the experiment described in Chapter 3.

Table 1: Fingerprinters present on at least 100 websites
Number of Websites Fingerprinter Domain
5,860 google-analytics.com

3,233 doubleclick.net

1,377 google.com

1,349 google.co.uk

1,117 googlesyndication.com

879 quantserve.com

528 rubiconproject.com

506 omtrdc.net

498 openx.net

473 bing.com

432 moatads.com

388 adsafeprotected.com

276 baidu.com

220 parsely.com

212 bluekai.com

197 pubmatic.com

172 2o7.net

172 criteo.com

150 cloudfront.net

138 googleadservices.com

123 cnzz.com

115 krxd.net

113 pinterest.com

A.2 Suspected Fingerprinter Domains

Listed below are all 1,914 domains that were recipients of detected browser fingerprinting

information in the experiment described in Chapter 3.

192.61.11.116,218.145.26.75,5.45.67.97,165.194.95.13,106.3.131.15,11

5.182.217.24,01net.com,0catch.com,10010.com,10jqka.com.cn,11alive.com,1

2371.cn,126.net,110.93.143.144,15gifts.com,17u.cn,1gb.ru,1plus1.ua,1rx.

io,21cn.com,247-inc.net,2gis.ru,2o7.net,33across.com,360.cn,360buyimg.c

om,39.net,3ders.net,3dprint.com,3gl.net,3m.com,40nuggets.com,4dsply.com,

4players.de,50bang.org,51.com,51.la,51cto.com,51yes.com,6.cn,6rooms.com

,99designs.com,9c9media.ca,9news.com,aa.com,aa.org,aa.org,aafp.org,aams

II

google-analytics.com
doubleclick.net
google.com
google.co.uk
googlesyndication.com
quantserve.com
rubiconproject.com
omtrdc.net
openx.net
bing.com
moatads.com
adsafeprotected.com
baidu.com
parsely.com
bluekai.com
pubmatic.com
2o7.net
criteo.com
cloudfront.net
googleadservices.com
cnzz.com
krxd.net
pinterest.com

itecertifier.com,aao.org,aarp.org,abb.com,abc.net.au,abduzeedo.com,abeb

ooks.com,abercrombie.co.uk,abercrombie.com,a-cast.jp,accenture.com,acec

ounter.com,acecounter.com,acehardware.com,acint.net,aclu.org,acquia.com

,acronymfinder.com,acs.org,acs86.com,active.com,ad6media.fr,adage.com,a

dalyser.com,adapf.com,adasiaholdings.com,adbetnet.com,adbutler-alion.co

m,addroplet.com,adelement.com,adform.net,adfox.ru,adhigh.net,adikteev.c

om,adinall.com,adiode.com,adledge.com,adlmerge.com,adlooxtracking.com,a

dmaster.com.cn,admaxim.com,admeira.ch,admixer.net,adnxs.com,adobe.com,a

docean.pl,adrcntr.com,adriver.ru,adrta.com,adsafeprotected.com,ad-srv.n

et,adsrvr.org,ad-stir.com,adsupply.com,adswizz.com,adtarget.me,adtech.d

e,adtechjp.com,adtechus.com,adtelligence.de,adultswim.com,adventive.com,

adventori.com,advertising.com,advinapps.com,adworx.at,adxvip.com,ae.com

,aegpresents.com,aeroflot.ru,aetn.com,aetna.com,aetnamedicare.com,affin

ity.com,affirm.com,afsanalytics.com,aftonbladet.se,ageuk.org.uk,ahalogy

.com,ahrq.gov,aig.com,airbnb.co.uk,aircanada.com,akamaihd.net,akro.io,a

kstat.io,alaskaair.com,albacross.com,al-consulting.com,alibaba.com,alim

ama.com,aller.fi,allrecipes.com,allstate.com,al-monitor.com,altitude-ar

ena.com,altitudeplatform.com,alwaysdata.com,amazing-media.com,amazon.ca,

amazon.cn,amazon.co.jp,amazon.co.uk,amazon.com,amazon.de,amazon.es,amaz

on.fr,amazon.in,amazon.it,amazon-adsystem.com,amazonaws.com,ambra.com,a

mcnetworks.com,amctv.com,americanairlines.co.uk,americanbar.org,america

nexpress.com,amplitude.com,analog.com,analyticsbridge.io,analyze.ly,anc

estry.com,and.co.uk,angsrvr.com,animoto.com,anrdoezrs.net,antenna.is,an

thropologie.com,ants.vn,anyclip-media.com,aol.com,apa.org,app.com,appbo

y.com,apple.com,appspot.com,apptentive.com,aptrackr.com,aqtracker.com,a

rbeitsagentur.de,architecturaldigest.com,archive-it.org,arcpublishing.c

om,areyouahuman.com,argos.co.uk,art.com,aruba.it,asics.com,asme.org,aso

s.com,astd.org,asus.com,atatus.com,atdmt.com,atemda.com,ati-host.net,at

lanticinsights.com,atp.io,att.com,att.net,attributionapp.com,au.com,aud

i.com,audible.co.uk,audienceinsights.net,augsburger-allgemeine.de,auspo

st.com.au,autobild.de,autodesk.com,autohome.com.cn,automobilemag.com,au

tonews.com,autoscout24.com,av.st,avg.com,aviationweek.com,axs.com,azale

ad.com,azcentral.com,b2b168.com,babator.com,babycenter.com,babytree.com,

backcountry.com,baden-wuerttemberg.de,badoo.com,bahn.de,baicai.cn,baidu.

com,baifendian.com,baike.com,baltimoresun.com,bam-x.com,banggood.com,ba

nkofamerica.com,bankrate.com,barclays.co.uk,barilliance.net,basf.com,ba

sspro.com,bayern.de,bazaarvoice.com,bbc.co.uk,bbelements.com,beatsbydre

III

.com,bedbathandbeyond.com,beemray.com,belfasttelegraph.co.uk,bell.ca,be

mobile.ua,benetton.com,beopinion.com,bergdorfgoodman.com,berlinonline.d

e,bestadbid.com,bestbuy.ca,bestbuy.com,bet.com,betweendigital.com,bfmio

.com,bfmtv.com,bhphotovideo.com,bidfluence.com,bidswitch.net,bihk.de,bi

ld.de,billingsgazette.com,bing.com,bing-int.com,bitauto.com,bitdefender

.com,blog.de,blog.hu,blogads.com,blogg.se,blogher.com,blogmura.com,bloo

mingdales.com,blueconic.net,bluehost.com,bluekai.com,bmbfcluster.de,bmm

etrix.com,bmo.com,bna.com,bodybuilding.com,bol.com,bonappetit.com,bookd

epository.com,booking.com,bose.com,boston.com,bostonglobemedia.com,boun

ceexchange.com,bouncex.net,boutell.com,bpb.de,brandcrumb.com,brides.com

,brightcove.com,brightfunnel.com,brighthub.com,brightinfo.com,britishai

rways.com,brocade.com,brookstone.com,brownpapertickets.com,bt.com,bttta

g.com,bugsnag.com,burlingtonfreepress.com,buzzfeed.com,bzgint.com,c3tag

.com,ca.com,cabelas.com,caesars.com,cafe24.com,caixa.gov.br,calgaryhera

ld.com,callrail.com,canadapost.ca,canal-plus.com,canoe.com,canopylabs.c

om,canopylabs.com,capcom.co.jp,capitalone.com,capturehighered.net,caree

ronestop.org,carnival.com,carrierzone.com,castle.io,cbc.ca,cbn.com,cbsi.

com,cbsistatic.com,cc.com,ccb.com,c-ctrip.com,cdlib.org,cdnwebcloud.com,

cdvcloud.com,cdw.com,ceair.com,cedexis.com,centurylink.com,cerebroad.co

m,change.org,changeagain.me,channel4.com,charter.com,chase.com,chatpath.

com,checkm8.com,chegg.com,cheshi.com,chicagobusiness.com,chicagotribune.

com,chinaacc.com,chinanews.com,chip.de,chitika.net,chowhound.com,christ

ies.com,chronicle.com,cigna.com,cihar.com,cincinnati.com,cisco.com,citi

.com,citicards.com,citizen-times.com,citrix.com,clarionledger.com,click

ability.com,clickiocdn.com,clicktale.net,clicrbs.com.br,cliqz.com,clnmd

e.com,cloudfront.net,clrstm.com,cmt.com,cmu.edu,cnet.com,cnfol.com,cngo

ld.org,cnil.fr,cnixon.com,cnn.com,cnrs.fr,cntvwb.cn,cnwest.com,cnzz.com

,co.kr,codeproject.com,coe.int,cohesionapps.com,collegeboard.org,com.cn

,come.to,comm100.com,commercesciences.com,commercialappeal.com,comodo.c

om,compuserve.com,computerbild.de,concurra.com,condenast.com,condenastd

igital.com,congress.gov,connexity.net,constant.co,constantcontact.com,c

onstitution.org,consultant.ru,consumerreports.org,contently.com,content

sfeed.com,contentsquare.net,contextweb.com,converse.com,conversionlogic.

net,convertlanguage.com,convertro.com,coremetrics.com,corriere.it,corus.

ca,courant.com,courier-journal.com,coursera.org,cox.com,cqdailynews.com,

crainsnewyork.com,crateandbarrel.com,craveonline.com,creativemarket.com

,creditcards.com,credit-suisse.com,criteo.com,crobox.com,crowdskout.com

IV

,crunchbase.com,crutchfield.com,crwdcntrl.net,csair.com,csbew.com,csmon

itor.com,csu.edu.cn,ctags.cn,ctnsnet.com,ctrip.com,ctv.ca,customer.io,c

ustora.com,cvent.com,cvshealth.com,cxense.com,daad.de,daemon-tools.cc,d

ailymotion.com,dailypress.com,dailyprogress.com,dangdang.com,danzz.ch,d

aringfireball.net,datacenterknowledge.com,dc-storm.com,debenhams.com,de

ep.bi,deepsight.io,defense.gov,delawareonline.com,delfi.ee,delfi.lv,del

iverimp.com,dell.com,deloitte.com,delta.com,deluxe.com,demdex.net,democ

ratandchronicle.com,deployads.com,desmoinesregister.com,detroitnews.com

,deutsche-bank.de,df-srv.de,dhm.de,dialogtech.com,dianping.com,dice.com,

dickssportinggoods.com,diesel.com,digicert.com,digikey.com,digitaltrend

s.com,directv.com,discover.com,discoverhongkong.com,diynetwork.com,dm.g

g,dmm.com,dmp.org.cn,dmtracker.com,dmtry.com,dmv.org,dnb.com,do-analyti

cs.net,doctoroz.com,documentfoundation.org,dotomi.com,doubleclick.net,d

oublepimp.com,doublepimpssl.com,doubleverify.com,dowjoneson.com,drift.c

om,dtic.mil,duowan.com,dxc.technology,dxy.cn,dynamicyield.com,dynatrace.

com,dynatrace-managed.com,dynatracesaas.com,dyntrk.com,easeus.com,eastm

oney.com,easy-ads.com,easyjet.com,ebay.com,ebrun.com,ebu.io,ecn.cl,econ

omist.com,ecustomeropinions.com,edgesuite.net,edigitalsurvey.com,edmont

onjournal.com,edmunds.com,edu.co,edu.sg,edweek.org,ee.co.uk,effectiveme

asure.net,egovsum.com,ehawaii.gov,eiu.com,element14.com,elignum.net,elm

undo.es,el-mundo.net,elong.com,elongstatic.com,elsevier.com,eltiempo.co,

eluniversal.com,eluniversal.com.mx,emarbox.com,emarketer.com,emc.com,em

irates.com,engadget.com,enorth.com.cn,enterprise.com,eol.cn,eonline.com,

epicurious.com,epo.org,eproof.com,equifax.com,eqxiu.com,esearchvision.c

om,espn.com,estara.com,estat.com,ethz.ch,etihad.com,etracker.de,ets.org

,etsy.com,eum-appdynamics.com,eventim.de,everesttech.net,everydayhealth.

com,exoclick.com,exosrv.com,expansion.com,expedia.co.uk,expedia.com,exp

onea.com,express.co.uk,extreme-dm.com,extremetech.com,facebook.com,fair

mont.com,faithlifeads.com,famfamfam.com,familysearch.org,fandango.com,f

arfetch.com,farfetch.net,farsnews.com,fastapi.net,fastly.net,fau.de,fbc

dn.net,fc2web.com,fcacert.com,feathr.co,federalreserve.org,fedex.com,fe

edjit.com,feedsportal.com,fender.com,fengniao.com,fes.de,ffx.io,fidelit

y.com,fifa.com,filemaker.com,financialpost.com,findify.io,findlaw.com,f

inland.fi,finnair.com,firstcoastnews.com,firstimpression.io,fivetran.co

m,flashtalking.com,floridatoday.com,flow.io,flysas.com,fnac.com,focus.d

e,foodnetwork.com,forbes.com,ford.com,foreignpolicy.com,foresee.com,for

milla.com,forward.com,fotolia.net,foxnews.com,foxsports.com,fqtag.com,f

V

rancetelecom.com,freecreditreport.com,freelancer.com,freemake.com,freep

.com,freepeople.com,freiheit.org,fs-bdash.com,fuel451.com,fullstory.com,

funnelenvy.com,funshion.com,futurelearn.com,fwmrm.net,g4tv.com,gamestop.

com,gap.com,garmin.com,gatesfoundation.org,gatesnotes.com,gator.io,gaug.

es,gazeta.pl,gazzetta.it,gcimetrics.com,geek.com,gehealthcare.com,gemiu

s.pl,genieesspv.jp,geniuskitchen.com,getambassador.com,getclicky.com,ge

tresponse.com,getsentry.com,gettyimages.com,gh-base.com,gibson.com,giga

zine.net,gilt.com,giosg.com,github.com,githubapp.com,globalsecurity.org

,glotgrx.com,gmossp-sp.jp,gnome.org,gnpge.com,gnpiwik.com,go.com,goarmy.

com,godaddy.com,golem.de,golfdigest.com,gome.com.cn,gomeplus.com,google.

co.uk,google.com,googleadservices.com,google-analytics.com,googleapis.c

om,googlesyndication.com,gosquared.com,gostats.com,gov.au,gov.uk,graing

er.com,grammarly.com,grammarly.io,granify.com,gravity.com,gridsumdissec

tor.com,groupon.com,grundfos.com,gtags.net,guidestar.org,guitarcenter.c

om,gumgum.com,gwallet.com,gwdg.de,haaretz.co.il,hadvid.com,haiyunpush.c

om,hallmark.com,hankooki.com,hao123.com,harborfreight.com,harley-davids

on.com,harrods.com,hbo.com,hc360.com,headspace.com,healthcentral.com,he

althgrades.com,heathrow.com,heias.com,heise.de,heraldcorp.com,herokuapp

.com,hexagon-analytics.com,hgtv.com,hiido.com,hilton.com,hit.ua,hitslin

k.com,hitsprocessor.com,hjapi.com,hktdc.com,hm.com,holland.com,homeadvi

sor.com,homedepot.com,honda.com,hongxiu.com,hoodin.com,hoovers.com,hory

zon-media.com,hostelbookers.com,hostelworld.com,hostinger.io,hostmonste

r.com,hotelgroup.com,hotels.com,hotelsapi.io,hotjar.com,hotlog.ru,hotsc

ripts.com,hp.com,hpe.com,hub.com.pl,hubpd.com,hubspot.com,hudong.com,hu

ffingtonpost.com,hugoboss.com,hujiang.com,hulu.com,hupu.com,hurpass.com

,hurriyet.com.tr,huxiu.com,hyatt.com,i.ua,iberia.com,ibtimes.com,icloud.

com,icm.edu.pl,idgesg.net,ifeng.com,iheart.com,ihg.com,ihs.com,ikea.com,

ilsole24ore.com,imagineinspired.com,imf.org,imgur.com,immobilienscout24

.de,imninjas.com,imonomy.com,impact-ad.jp,imrworldwide.com,in.th,indepe

ndent.co.uk,independent.ie,index.ru,indiegogo.com,indigo.ca,industrywee

k.com,indystar.com,infinity-tracking.net,infolinks.com,informz.net,infu

sionsoft.com,inist.fr,inq.com,inria.fr,inside-graph.com,inskinad.com,in

stagram.com,instantssl.com,intel.com,intentmedia.net,intergi.com,interg

ient.com,interia.pl,intuit.com,investors.com,invoca.net,invodo.com,ioam

.de,iocnt.net,iogous.com,ipinyou.com,iprom.net,ireland.com,irib.ir,iris

hcentral.com,irishtimes.com,irna.ir,ironad.de,istockphoto.com,itamaraty

.gov.br,itu.int,itzbund.de,iubenda.com,ivcbrasil.org.br,ixbt.com,ixquic

VI

k.com,janrain.xyz,jaywing.com,jbl.com,jc001.cn,jcrew.com,jd.com,jetblue

.com,jetstar.com,jia.com,jiameng.com,jiemian.com,joann.com,johnlewis.co

m,joins.com,journalnow.com,journalstar.com,journity.com,jsonline.com,js

tor.org,juicer.cc,juicer.io,jumei.com,juntadeandalucia.es,justgiving.co

m,justhost.com,justpremium.com,justuno.com,jyu.fi,kaercher.com,kaipuyun

.cn,kaiserpermanente.org,kaixin001.com.cn,kandle.org,kankanews.com,kare

11.com,kas.de,kasperskycontenthub.com,kbb.com,kck.st,kde.org,keybase.io,

keytiles.com,keywee.co,kfw.de,kgw.com,kharkov.ua,khou.com,kicker.de,kij

iji.ca,king5.com,kiosked.com,kissmetrics.com,kmart.com,km-sea.net,knoxn

ews.com,kochava.com,kohls.com,komoona.com,koolearn.com,kpmg.com,kpn.com

,kroger.com,krxd.net,ksdk.com,kugou.com,kurier.at,kvue.com,labocleo.org

,lacoste.com,ladepeche.fr,lancasteronline.com,landsend.com,lanl.gov,lap

topmag.com,latrobe.edu.au,law.com,lawyers.com,lds.org,leadboxer.com,lea

dforensics.com,leadformix.com,leanplum.com,lego.com,leju.com,lenovo.com

,letv.com,lexpress.fr,lexus.com,lg.com,liadm.com,liberation.fr,libertym

utual.com,lifehack.org,lightstep.com,linkedin.com,linkfire.com,liqwid.n

et,list.ru,litix.io,livehelpnow.net,livescience.com,livingsocial.com,lk

qd.net,llbean.com,llnl.gov,llnw.net,loc.gov,lofter.com,logentries.com,l

ogger.co.kr,loggly.com,loginside.co.kr,lohud.com,lotour.com,louisvuitto

n.com,lowes.com,lrb.co.uk,ltn.com.tw,lufthansa.com,lululemon.com,luxupa

dva.com,luxupcdna.com,luxupcdnc.com,lww.com,lytics.io,macobserver.com,m

acys.com,madison.com,mafengwo.cn,magazinereadermall.com,mail.ru,majesti

c.com,makepolo.com,makeuseof.com,malaysiaairlines.com,mapmylead.com,map

smarker.com,mapyourshow.com,marcjacobs.com,marketingautomation.services,

marketingpower.com,marksandspencer.com,marriott.com,mars.com,marvel.com,

marykay.com,mashable.com,mastercard.com,matheranalytics.com,mathtag.com

,mathworks.com,matraxis.net,maxthon.com,maxymiser.net,mbmedien.de,mcall.

com,mdanderson.org,mdctrail.com,med66.com,media.net,mediapostcommunicat

ion.net,mediatoday.ru,mediav.com,mediawayss.com,medicaldaily.com,medium.

com,medpagetoday.com,medtronic.com,meilele.com,meituan.com,meizu.com,me

lia.com,member-hsbc-group.com,mercadolibre.com,mercer.com,mercure.com,m

erkur.de,metacritic.com,metrics-shell.com,metro.co.uk,metrolyrics.com,m

etronews.ca,mezzobit.com,mgtv.com,mheducation.com,mi.com,miaozhen.com,m

ichaelkors.co.uk,michaels.com,microsoft.com,milb.com,military.com,mille

nniumhotels.com,mindbox.ru,mirror.co.uk,missoulian.com,ml.com,ml314.com,

mlb.com,mmapiws.com,mmstat.com,moatads.com,mobicast.io,mobile.de,modclo

th.com,modernhealthcare.com,mogujie.com,momtastic.com,monarchads.com,mo

VII

ndediplo.com,monde-diplomatique.fr,monetate.net,monsido.com,monster.com,

montrealgazette.com,mop.com,morganstanley.com,morningstar.com,motigo.co

m,motortrend.com,mouseflow.com,mouser.com,moveaws.com,moviefone.com,moz

.com,mpg.de,mpnrs.com,mql5.com,mrpfd.com,mrporter.com,msecnd.net,msgapp.

com,msn.com,msu.edu,mtime.cn,mtv.com,murdoch.edu.au,musee-orsay.fr,mway

ss.com,mycounter.ua,mydatabankapp.com,myfinance.com,myhsw.cn,mytopf.com,

mywebstats.eu,nakanohito.jp,nanovisor.io,naplesnews.com,nasa.gov,nascar

.com,nasdaq.com,natify.io,nationalpost.com,nationbuilder.com,nature.org

,naver.com,naver.jp,nba.com,nbcuas.com,nbcuni.com,ncaa.com,neimanmarcus

.com,nejm.org,neogaf.com,nero.com,nervoussummer.com,net-a-porter.com,ne

tflix.com,netmng.com,newbalance.com,newcouponuk.info,newegg.com,news.cn

,news.co.uk,news10.net,newsarama.com,newscgp.com,newsinc.com,news-leade

r.com,news-press.com,newyorker.com,next.co.uk,nextuser.com,nexusmods.co

m,nfl.com,nfpa.org,ngacm.com,nhs.uk,ni.com,nielsen.com,nih.gov,nike.com,

nikkeibp.co.jp,nine.com.au,nintendo.com,nissanusa.com,nj.us,nmgnews.com.

cn,nordstrom.com,nordstromdata.com,northeastern.edu,northernandshell.co

.uk,northjersey.com,norton.com,nr-data.net,ns8ds.com,nt.vc,nvidia.com,n

witimes.com,nxp.com,nycgo.com,nycgovparks.org,nymag.com,nytimes.com,nzz

.ch,o2.co.uk,ocdn.eu,oed.com,oewabox.at,offcn.com,officedepot.com,ogsta

tic.com,omaha.com,omnigroup.com,omnitagjs.com,omtrdc.net,on.cc,onecount

.net,onenote.com,onet.pl,onet.tv,online.net,onscroll.com,onthe.io,opecl

oud.com,openlibrary.org,openstat.net,openstreetmap.org,opensuse.org,ope

ntable.com,opentext.com,opentracker.net,openx.net,openxmarket.jp,opinio

nlab.com,oprah.com,optimix.asia,optimizely.com,optkit.com,ora.tv,orange

.fr,orbitz.com,orcinus.ai,oreilly.com,ornl.gov,os-data.com,osnews.com,o

sxdaily.com,otracking.com,ottawacitizen.com,otto.de,outbrain.com,overcl

ock.net,overstock.com,owncloud.org,owox.com,oxfam.org.uk,ozon.ru,paddle.

com,panasonic.com,pandora.net,panerabread.com,parker.com,parsely.com,pa

stebin.com,patagonia.com,paypal.com,pcauto.com.cn,pcbaby.com.cn,pchouse.

com.cn,pclady.com.cn,pconline.com.cn,pennwell.com,people.com,pepsico.co

m,perfdrive.com,permutive.com,persgroep.net,petametrics.com,petco.com,p

etsmart.com,petsmartdmz.com,pga.com,philanthropy.com,picreel.com,piloto

nline.com,pingan.com,pingdom.net,pinterest.ca,pinterest.co.uk,pinterest

.com,pitchfork.com,piwigo.us,piwik.org,pixanalytics.com,pixfuture.net,p

lala.or.jp,playstation.com,plista.com,plug.it,po.st,poco.cn,pointillist.

com,politico.com,politico.eu,popads.net,popsci.com,popsugar.com,positiv

essl.com,postandcourier.com,potterybarn.com,powster.com,poznan.pl,prada

VIII

.com,preamp.io,presidencia.gov.br,pressofatlanticcity.com,pressreader.c

om,priceline.com,princess.com,pro6e.com,probtn.com,proper.io,protecmedi

a.com,provenpixel.com,proxad.net,pubmatic.com,pubwise.io,puma.com,pushw

oosh.com,q1connect.com,qantas.com,qatarairways.com,qchannel03.cn,qctime

s.com,qidian.com,qq.com,qsstats.com,qtmojo.com,qualtrics.com,quantserve.

com,queit.in,qunar.com,qut.edu.au,qvc.com,qyer.com,rakuten.co.jp,rakute

n.com,ralphlauren.com,rambler.ru,randomhouse.com,ranker.com,ray-ban.com

,raygun.io,raytheon.com,rbc.ru,rcsmetrics.it,readnovel.com,realclearpol

itics.com,realestate.com.au,realtor.com,realvu.net,rebsrv.tk,redcross.o

rg,redcrossblood.org,reddit.com,redfin.com,rediff.com,redplanetgroup.co

m.au,reebok.co.uk,reedbusiness.net,reevoo.com,register.com,reitingas.lt,

renewableenergyworld.com,report-uri.com,report-uri.io,repubblica.it,res

earch.gov,researchandmarkets.com,research-int.se,responsetap.com,respon

siveads.com,retailmenot.com,retentionscience.com,rfihub.com,rgj.com,ric

haudience.com,richmetrics.com,richmond.com,ricoh.co.jp,rijksoverheid.nl

,ringier.ch,ripe.net,rlp.de,rnet.plus,roanoke.com,rogers.com,rogersmedi

a.com,rolex.com,rollbar.com,romsenergy.com,rosettastone.com,royalcaribb

ean.com,royalmail.com,rphelios.net,rp-online.de,rtb-media.me,rtm.com,ru

b.de,rubiconproject.com,ryanair.com,s6w.de,sa-as.com,sacbee.com,sacbeel

abs.com,safer-networking.ie,saksfifthavenue.com,salecycle.com,salesforc

e.com,salesgenius.com,samsclub.com,samsung.com,sandiegouniontribune.com

,sanoma.fi,sas.com,savethechildren.org,saveur.com,sberbank.ru,schibsted.

io,scholarlyiq.com,schwab.com,sciencedaily.com,sciencemag.org,scorecard

research.com,scotiabank.com,scroll.com,searchlinks.com,sears.com,seattl

epi.com,securedvisit.com,secureserver.net,securityfocus.com,seek.com,se

ek.com.au,segment.io,sekindo.com,selectmedia.asia,self.com,selfcampaign

.com,sentry.io,seobook.com,servedbyadbutler.com,servedbyopenx.com,servi

ng-sys.com,sessioncam.com,sfr.fr,sgs.com,shapeways.com,sharecare.com,sh

arefile.com,sharethrough.com,sherdog.com,sherwin-williams.com,shinystat

.com,shoprunner.com,shopstyle.co.uk,shutterfly.com,siftscience.com,sigm

aaldrich.com,signalvnoise.com,similarweb.com,simplymeasured.com,sina.cn

,sina.com.cn,singaporeair.com,siriusxm.com,sitecues.com,siteimprove.com

,sketchfab.com,skimresources.com,sky.com,sky.it,skyscanner.net,sl.pt,sl

acker.com,slashdotmedia.com,slate.com,smartadserver.com,smartertravel.c

om,smartlook.com,smashingmagazine.com,s-microsoft.com,smithsonian.museu

m,smugmug.com,snapfish.com,snoobi.com,socialhoney.co,softonic-analytics

.net,sogou.com,sohu.com,so-net.ne.jp,sonos.com,sony.jp,sonypictures.com

IX

,sophus3.com,sothebys.com,southwest.com,space.com,spartanrtb.com,spbu.r

u,specless.io,spectate.com,spectrum.com,spiceworks.com,spie.org,spike.c

om,splunkcloud.com,sportingnews.com,sports.ru,spotxchange.com,spreadshi

rt.com,spreadshirt.net,springserve.com,spring-tns.net,sprint.com,sputni

k.ru,spylog.com,squarespace.com,squareup.com,sspinc.io,ssrn.com,st.com,

standardandpoors.com,starpulse.com,startribune.com,starwoodhotels.com,s

tatcounter.com,statefarm.com,statesmanjournal.com,staticstuff.net,stats

event.com,stellarium.org,stjude.org,stltoday.com,storetail.io,stormcont

ainertag.com,stormiq.com,strato.de,streamrail.com,streamrail.net,streem

.com.au,streetinsider.com,stridespark.com,strikingly.com,stripe.com,stu

bhub.com,study.com,stuff.co.nz,stuttgarter-zeitung.de,stylemepretty.com

,styria-digital.com,sueddeutsche.de,summerhamster.com,sumo.com,suning.c

om,sun-sentinel.com,supportindeed.com,survicate.com,suunto.com,svd.se,s

vtrd.com,swarovski.com,sway.com,swiss.com,switchadhub.com,sydney.edu.au,

sylon.net,symantec.com,synopsys.com,t3n.sc,taboola.com,tagesanzeiger.ch

,tagtic.cn,tailsweep.com,tallahassee.com,tampabay.com,taobao.com,target

.com,tcm.com,td.com,tda.io,te.com,tealiumiq.com,teamcoco.com,techcrunch.

com,techinasia.com,techweb.com.cn,teenvogue.com,telegraph.co.uk,telenet

.be,telestream.net,telia.se,telllwrite.com,telstra.com.au,telus.com,ten

nessean.com,tenpay.com,terra.com.br,tes.com,tesco.com,test.de,testin.cn,

theadex.com,theadvocate.com,thebigwillow.work,thebrighttag.com,thefreed

ictionary.com,thefreelibrary.com,theglobeandmail.ca,theglobeandmail.com,

thehindu.co.in,theinformation.com,theintercept.com,theoreminc.net,thepe

titionsite.com,theprovince.com,thermofisher.com,thestar.com,thinkgeek.c

om,thinkvine.com,thomson.co.uk,thomsonreuters.com,tianpeng.com,ticketma

ster.com,tiffany.com,tim.it,time.com,timeout.com,timeshighereducation.c

om,timewarnercable.com,tingyun.com,tinyurl.com,t-mobile.com,tmz.com,tns

-cs.net,tns-gallup.dk,to8to.com,tom.com,tomonline-inc.com,tomsguide.com,

tomshardware.com,top.ge,topshop.com,topsrvimp.com,toptenreviews.com,tot

albeauty.com,tourmake.it,townnews365.com,toysrus.com,trackad.cz,tracked

web.net,trackjs.com,tradelab.fr,trafficjunky.net,travelchannel.com,trav

elocity.com,trb.com,treasury.gov,trello.com,tremorhub.com,trendmicro.co

m,trib.com,tribalfusion.com,triblive.com,trs.cn,trugaze.io,trulia.com,t

rustedreviews.com,trustpilot.com,truvidplayer.com,tsite.jp,tsn.ua,tso.c

o.uk,ttlbd.net,tu-berlin.de,tu-bs.de,tucson.com,tu-dresden.de,tugraz.at

,tui.co.uk,tulsaworld.com,tum.de,tuniu.cn,tuniu.com,turkishairlines.com

,turner.com,tuwien.ac.at,tv.com,tv2.dk,tvguide.com,tvn.pl,twcc.com,twea

X

kers.nl,twitch.tv,twitter.com,typesquare.com,ua.com,ub.edu,uber.com,ubi

.com,uc.cn,ucdenver.edu,uclouvain.be,udemy.com,udimg.com,ufc.com,ufrj.b

r,uibk.ac.at,uio.no,uiowa.edu,ui-portal.com,ui-portal.de,uk2group.com,u

nblog.fr,underarmour.co.uk,uni-bielefeld.de,unibo.it,uni-bremen.de,unic

a.com,unicc.org,unice.fr,uni-halle.de,uni-hannover.de,uni-heidelberg.de

,uni-jena.de,uni-koeln.de,uni-konstanz.de,uni-leipzig.de,uni-marburg.de,

uni-muenster.de,uni-oldenburg.de,uni-paderborn.de,uniqlo.com,uni-saarla

nd.de,uni-stuttgart.de,united.com,united-domains.de,uni-tuebingen.de,un

i-wuerzburg.de,unl.edu,unrulymedia.com,unsplash.com,uplift-platform.com,

upscore.io,uptolike.com,upwork.com,uralweb.ru,urbanoutfitters.com,urchi

n.com,usatoday.com,usbank.com,usehero.com,userreplay.net,userreport.com

,usopen.org,uspech.sk,ustream.tv,utdstc.com,utu.fi,uvic.ca,uzh.ch,uzone

.id,vancouversun.com,vanityfair.com,vast.com,vdopia.com,veinteractive.c

om,velaro.com,vemba.io,venatusmedia.com,ventunotech.com,verifystore.com

,verizon.com,verizonwireless.com,versace.com,vevo.com,vh1.com,viadeo.co

m,viafoura.co,viator.com,victoriassecret.com,videolan.org,vidible.tv,vi

dyard.com,viostream.com,viralize.tv,virginmoneygiving.com,virgul.com,vi

siblemeasures.com,visualstudio.com,visualwebsiteoptimizer.com,vivocha.c

om,vizual.ai,vmall.com,vmware.com,vodafone.co.uk,voice-of-customers.com,

volkswagen.com,voltairenet.org,volvogroup.com,voxmedia.com,voyages-sncf.

com,vsco.co,vtracy.de,vueling.com,vulture.com,vw.com,w3t.cn,waitrose.co

m,walgreens.com,walkme.com,walmart.com,wanmei.com,washingtonpost.com,wb

ir.com,weather.com,webdissector.com,webeyez.com,webglstats.com,webhosti

ngtalk.com,webmd.com,weborama.fr,webspectator.com,webterren.com,webtrad

ecenter.com,webtrekk.net,webtrends.com,webtrendslive.com,weebly.com,wei

bo.com,weiyun.com,weizmann.ac.il,wemfbox.ch,westelm.com,westernunion.co

m,wetransfer.net,wfaa.com,whatculture.com,wheretowatch.com,whitepages.c

om,widengle.com,wikia-services.com,wikihow.com,wiley.com,williamhill.co

m,williams-sonoma.com,wimbledon.com,windows.net,windowsitpro.com,windso

rcircle.com,wired.com,wistia.com,wizzair.com,wkyc.com,wmagazine.com,wmg

.com,wnba.com,woopra.com,worldcat.org,wowhead.com,wp.com,wp.pl,wral.com,

wrating.com,wraug5vv72b28fch.pro,wsod.com,wsws.org,wt-eu02.net,wtsp.com,

wunderground.com,wusa9.com,wvgazettemail.com,www.com,wyborcza.pl,wyndha

mhotels.com,xara.com,xcar.com.cn,xdf.cn,xerox.com,xing.com,xinmin.cn,xi

ti.com,xpanama.net,xplosion.de,xs4all.net,yabidos.com,yadro.ru,yadvashe

m.org,yahoo.co.jp,yahoo.com,yandex.com,yandex.ru,yandex.ua,yccdn.com,ye

ll.com,yellowpages.com,yelp.ca,yelp.co.uk,yelp.com,yesky.com,yieldify.c

XI

om,yieldmo.com,yieldoptimisers.net,yldbt.com,ymetrica.com,yoka.com,yotp

o.com,yottaa.com,yottaa.net,youboy.com,youdao.com,youravon.com,yourdoma

in.com,youtube.com,yum.de,yumenetworks.com,zarget.com,zbj.com,zcominc.c

om,zcool.com.cn,zeit.de,zero.kz,zhaopin.com,zhcw.com,zhubajie.la,zocdoc.

com,zol.com.cn,zoosnet.net,zt51la.net,zz123.com

XII

B Crawler Script

Below is the Python script used to control the crawling process discussed in Chapter 3.

import argparse

from urllib.parse import urlparse

import logging

import os

import time

from selenium import webdriver

from selenium.webdriver.chrome.options import Options

from selenium.common.exceptions import TimeoutException

import coloredlogs

logger = logging.getLogger()

coloredlogs.install(level=’DEBUG’)

def crawl_websites(start, end):

chrome_options = Options()

prefs = {"download.default_directory": "/Crawling/crawldata/"}

chrome_options.add_experimental_option("prefs", prefs)

chrome_options.add_extension(’/Users/nasser/Desktop/Crawling/

↪→ FingerprintPost.crx’)

driver = webdriver.Chrome(chrome_options=chrome_options)

driver.set_page_load_timeout(60)

timeout_list = []

for i, line in enumerate(open("top_10000_websites.txt", "r")):

url = line.strip()

if i < start:

continue

if i > end:

logger.debug("Stopped at {0} website".format(i))

os.system(

"say ’For hes a jolly good fellow for hes a jolly good fellow! For hes

↪→ a jolly good fellow which nobody can deny!’")

getConsent = input("Done!")

if getConsent.lower() == "go":

stop = True

elif getConsent.lower() == "no":

stop = False

XIII

if stop:

driver.quit()

try:

driver.get(url)

except TimeoutException as e:

logger.debug(e)

timeout_list.append(url)

with open("timeout_websites.txt", "a") as f:

for website in timeout_list:

f.write(website + "\n")

logger.debug("Stopped at {0} website".format(i))

os.system(

"say ’Its me the crawler! Please restart at {0}’".format(i))

os.system("say ’you know what to do’")

getConsent = input("Do you want to stop the crawler, Yes or no? ")

if getConsent.lower() == "yes":

stop = True

elif getConsent.lower() == "no":

stop = False

if stop:

driver.quit()

finally:

time.sleep(3)

def crawl(url):

chrome_options = Options()

chrome_options.add_extension(’/Users/nasser/Desktop/Crawling/

↪→ FingerprintPost.crx’)

driver = webdriver.Chrome(chrome_options=chrome_options)

driver.set_page_load_timeout(5)

try:

driver.get(url)

except Exception as e:

logger.debug(e)

driver.set_script_timeout(3)

driver.execute_script("window.stop();")

try:

driver.set_page_load_timeout(30)

XIV

driver.post("http://google.com")

except Exception as e:

logger.debug(e)

else:

driver.close()

logger.debug("Process completes!")

def main():

parser = argparse.ArgumentParser(usage="python3 auto.py -s <number of

↪→ websites to start> -e <number of websites to end>",

description=’Extract main contents from a video file!!’)

parser.add_argument("-s", "--start", type=int, dest="start",

help="the n websites to start!")

parser.add_argument("-e", "--end", type=int, dest="end",

help="the n websites to end!")

args = parser.parse_args()

s = args.start

e = args.end

crawl_websites(s, e)

if __name__ == ’__main__’:

main()

XV

C Attributes Collected by Fingerprinters

This appendix lists all the fingerprintable browser attributes (divided into six categories)

we were able to detect in the experiment described in Chapter 3.

C.1 WebGL

The following attributes are related to the WebGL API.

aliasedlinewidthrange,aliasedpointsizerange,alphabits,angleinstanced

arrays,antialiasing,bluebits,depthbits,experimental-webgl,extblendminma

x,extdisjointtimerquery,extfragdepth,extshadertexturelod,extsrgb,exttex

turefilteranisotropic,fragmentshaderhighfloatprecision,fragmentshaderhi

ghfloatprecisionrangemax,fragmentshaderhighfloatprecisionrangemin,fragm

entshaderhighintprecision,fragmentshaderhighintprecisionrangemax,fragme

ntshaderhighintprecisionrangemin,fragmentshaderlowfloatprecision,fragme

ntshaderlowfloatprecisionrangemax,fragmentshaderlowfloatprecisionrangem

in,fragmentshaderlowintprecision,fragmentshaderlowintprecisionrangemax,

fragmentshaderlowintprecisionrangemin,fragmentshadermediumfloatprecisio

n,fragmentshadermediumfloatprecisionrangemax,fragmentshadermediumfloatp

recisionrangemin,fragmentshadermediumintprecision,fragmentshadermediumi

ntprecisionrangemax,fragmentshadermediumintprecisionrangemin,greenbits,

max3dtexturesize,maxanisotropy,maxarraytexturelayers,maxcolorattachment

s,maxcombinedfragmentuniformcomponents,maxcombinedtextureimageunits,max

combinedvertexuniformcomponents,maxcubemaptexturesize,maxdrawbuffers,ma

xfragmentinputcomponents,maxfragmentuniformblocks,maxfragmentuniformcom

ponents,maxfragmentuniformvectors,maxprogramtexeloffset,maxrenderbuffer

size,maxsamples,maxtextureimageunits,maxtexturelodbias,maxtexturesize,m

axtransformfeedbackinterleavedcomponents,maxtransformfeedbackseparateat

tribs,maxtransformfeedbackseparatecomponents,maxuniformblocksize,maxuni

formbufferbindings,maxvaryingcomponents,maxvaryingvectors,maxvertexattr

ibs,maxvertexoutputcomponents,maxvertextextureimageunits,maxvertexunifo

rmblocks,maxvertexuniformcomponents,maxvertexuniformvectors,maxviewport

dims,minprogramtexeloffset,oeselementindexuint,oesstandardderivatives,o

estexturefloat,oestexturefloatlinear,oestexturehalffloat,oestexturehalf

floatlinear,oesvertexarrayobject,performancecaveat,redbits,renderer,sha

dinglanguageversion,stencilbits,unmaskedrendererwebgl,unmaskedvendorweb

gl,vendor,version,vertexshaderhighfloatprecision,vertexshaderhighfloatp

recisionrangemax,vertexshaderhighfloatprecisionrangemin,vertexshaderhig

XVI

hintprecision,vertexshaderhighintprecisionrangemax,vertexshaderhighintp

recisionrangemin,vertexshaderlowfloatprecision,vertexshaderlowfloatprec

isionrangemax,vertexshaderlowfloatprecisionrangemin,vertexshaderlowintp

recision,vertexshaderlowintprecisionrangemax,vertexshaderlowintprecisio

nrangemin,vertexshadermediumfloatprecision,vertexshadermediumfloatpreci

sionrangemax,vertexshadermediumfloatprecisionrangemin,vertexshadermediu

mintprecision,vertexshadermediumintprecisionrangemax,vertexshadermedium

intprecisionrangemin,webgl,webglcompressedtextures3tc,webglcompressedte

xtures3tcsrgb,webgldebugrendererinfo,webgldebugshaders,webgldepthtextur

e,webgldrawbuffers,webgllosecontext,webgl2,webkitexttexturefilteranisot

ropic,webkitwebglcompressedtextures3tc,webkitwebgldepthtexture,webkitwe

bgllosecontext.

C.2 Features

The following attributes are related to the overall features of browser.

adblock,applicationcache,backgroundsize,blending,bluetooth,borderima

ge,borderradius,boxshadow,canvas,canvaswebp,canvasblending,canvaswindin

g,credentials,cssanimations,csscolumns,cssgradients,cssreflections,csst

ransforms,csstransforms3dc,csstransitions,draganddrop,flexbox,flexboxle

gacy,fontface,generatedcontent,getbattery,getgamepads,getusermedia,hash

change,history,hsla,imghash,inlinesvg,installedfonts,installedplugins,j

avaenabled,js,mediadecvices,mimetypes,multiplebgs,opacity,permissions,p

ostmessage,presentation,registerprotocolhandler,requestmediakeysystemac

cess,requestmidiaccess,rgba,sendbeacon,serviceworker,shockwaveflash,smi

l,svg,svgclippaths,textshadow,towebp,unregisterprotocolhandler,usb,vibr

ate,websqldatabase,webworkers,webkitgetusermedia,webkitpersistentstorag

e,webkittemporarystorage,webrtc,websockets.

C.3 Media

The following attributes are related to the audio and video features of a browser.

ac-baselatency,ac-channelcount,ac-channelcountmode,ac-channelinterpr

etation,ac-maxchannelcount,ac-numberofinputs,ac-numberofoutputs,ac-samp

lerate,ac-state,an-channelcount,an-channelcountmode,an-channelinterpret

ation,an-fftsize,an-frequencybincount,an-maxdecibels,an-mindecibels,an-

numberofinputs,an-numberofoutputs,an-smoothingtimeconstant,audioogg,avc

1.42c00d,avc1.42e01e(mp4a.40.2),codecs1,dynamiccompressor,h264,hybridos

XVII

cillator,mp3,mp4a.40.2,mpeg,opus,oscillator,theora,videomp4,videoogg,vo

rbis(ogg),vorbis(vp8),vorbis(vp9),vorbis(wav),wav,webm,wm4a.

C.4 Input/Output

The attributes below are related to the input and output.

windowstate,outerheight,outerwidth,innerheight,innerwidth,width,heig

ht,availablewidth,availableheight,colordepth,keytimes,mouse,orientation,

scrolls,maxtouchpoints,touchevent,touchstart,speakersinstalled,webcamsi

nstalled,microphonesinstalled.

C.5 Network

The attributes below are related to the network interface and protocols.

downlink,effectivetype,isproxied,istor,isusingtorexitnode,localip,on

change,publicipv4,publicipv6,rtt.

C.6 Miscellaneous

The attributes listed here are of various types and do not belong to any of the categories

described in the thesis.

appcodename,batterylevel,charging,chargingtime,charset,collecttime,c

ookieenabled,cpucores,dischargingtime,donottrack,geolocation,graphicsca

rdvendor,hardwareconcurrency,hastimezonemismatch,incognito,indexeddb,js

heapsizelimit,languages,localstorage,navigator,online,opendatabase,plat

form,product,productsub,referrer,renderer,sessionstorage,timestamp,time

zone,totaljsheapsize,usedjsheapsize,useragent,vendor,vendorsub.

XVIII

D Fingerprinting Test Code

The scripts executed by our fingerprintable website and used to perform the experiments

described in Chapter 4 were gathered from the following websites.

• Most scripts were obtained from https://clientjs.org

• The script used to detect WebGL features was obtained from https://github.

com/spleennooname/GLeye

• The script used to detect WebRTC features was obtained from https://github.

com/muaz-khan/DetectRTC

Some scripts were modified to suit our testing. All the code we used for testing

is available at our website https://fingerprintable.org. The source code of the

fingerprintable test page is listed below.

<html>

<head>

<script src="https://ajax.googleapis.com/ajax/libs/jquery/3.1.1/jquery.

↪→ min.js"></script>

</head>

<script type="text/javascript" src="client.js"></script>

<script type="text/javascript" src="RTC.js"></script>

<script type="text/javascript" src="GL.js"></script>

<body>

<div align="center">

<table id ="myTable" class = "fingerprint">

<link rel="stylesheet" type="text/css" href="fingerprint.css" />

<script type="text/javascript" src="fingerprint.js"></script>

</table>

</div>

</body>

</html>

XIX

https://clientjs.org
https://github.com/spleennooname/GLeye
https://github.com/spleennooname/GLeye
https://github.com/muaz-khan/DetectRTC
https://github.com/muaz-khan/DetectRTC
https://fingerprintable.org

E Browser Versions, OS Versions and Device Specifica-

tions

E.1 Browser and OS Versions

Table 2 lists operating systems and browsers that were tested in the experiments

described in Chapter 4.

Table 2: Browser and OS Details
Browser OS

Desktop
Chrome 56.0.2924.87 (64-bit) Windows 10.0.15063 Build 15063

Microsoft Internet Explorer 11.576.14393.0 Windows 10.0.15063 Build 15063
Firefox 51.2 (32-bit) Windows 10.0.15063 Build 15063

Microsoft Edge 38.14393.0.0 Windows 10.0.15063 Build 15063
Safari 10.0.3 (12602.4.8) macOS Sierra 10.12.3

Mobile
Chrome 56.0.2924.87 Android 7.0 (Build 39.2.A.0.374)

Safari 602.1 iOS 10.2.1(14d27)
Opera Mini 22.0.2254.113472 Android 7.0 (Build 39.2.A.0.374)

Firefox 51.0.3 Android 7.0 (Build 39.2.A.0.374)
Microsoft Edge 38.14393.693.0 Windows 10 Mobile (Build: 10.0.14393.693)

E.2 Summary

Table 3 provides a summary of the specifications of the four desktop and five mobile

devices used in the experiments described in Chapter 4.

Table 3: Specifications of devices used for experiments
Device CPU GPU

Desktop
Asus (Windows) Intel Core i7-4720HQ 2.6GHz NVIDIA GeForce GTX 960M
HP (Windows) Intel Core i5-5200U 2.2GHz Intel HD Graphics 5500

Macbook (macOS) Intel Core i5 2.7GHz Intel Iris Graphics 6100
Macbook (macOS) Intel Core i7 2.7GHz Intel HD Graphics 530

Mobile
Sony (Android) Qualcomm Snapdragon 820 64-bit Adreno 530

Samsung (Android) Qualcomm Snapdragon 801 2.5GHz Adreno 330
iPhone(iOS) A8 chip 64-bit PowerVR GX6450
iPhone (iOS) A10 chip 64-bit PowerVR Series7XT Plus

Microsoft (Windows) Qualcomm Snapdragon 400 1.2GHz Adreno 305
Microsoft (Windows) Qualcomm Snapdragon 200 1.2GHz Adreno 302

XX

E.3 Details

Detailed specifications of the four desktop and five mobile devices used in the experiments

described in Chapter 4 are given below.

Desktop

Windows computer 1

OS: Microsoft Windows 10.0.15063 Build 15063

System Manufacturer: ASUSTeK COMPUTER INC.

System Model: G551JW

CPU: Intel(R) Core(TM) i7-4720HQ CPU @ 2.60GHz, 2594 Mhz, 4 Core(s)

GPU: NVIDIA GeForce GTX 960M

RAM: 16.0 GB

Storage: HDD 1.0 TB

Windows computer 2

OS: Microsoft Windows 10.0.15063 Build 15063

System Manufacturer: HP

System Model: HP Pavilion Notebook

CPU: Intel(R) Core(TM) i5-5200U CPU @ 2.20GHz, 2195 Mhz, 2 Core(s)

GPU: Intel(R) HD Graphics 5500

RAM: 12.0 GB

Storage: HDD 1.0 TB

Mac computer 1

OS: macOS Sierra (version 10.12.3)

System Manufacturer: Apple Inc.

System Model: MacBookPro12,1

CPU: Intel Core i5 2.7GHz

GPU: Intel Iris Graphics 6100 1536 MB

RAM: 8.0 GB

Storage: SSD 256 GB

Mac computer 2

OS: macOS Sierra (version 10.12.3)

System Manufacturer: Apple Inc.

System Model: MacBookPro13,3

CPU: Intel Core i7 2.7GHz

XXI

GPU: Intel HD Graphics 530

RAM: 16.0 GB

Storage: SSD 256 GB

Mobile

Android phone 1

OS: Android 7.0 (build 39.2.A.0.374)

System Manufacturer: Sony Mobile Communications Inc.

System Model: Sony Xperia XZ (F8332)

CPU: Qualcomm R© SnapdragonTM 820, 64-bit processor

GPU: Adreno 530

RAM: 3.0 GB

Storage: SD 64.0 GB

Android phone 2

OS: Android 6.0.1 (build 23.5.A.1.291)

System Manufacturer: Sony Mobile Communications Inc.

System Model: Sony Xperia Z3 (D6633)

CPU: Qualcomm Snapdragon 801 2.5 GHz Quad-core

GPU: Adreno 330 (component of CPU)

RAM: 3.0 GB

Storage: SD 16.0 GB

iPhone 1

OS: iOS 10.2.1 (14d27)

System Manufacturer: Apple Inc.

System Model: iPhone 6 Plus (A1524)

CPU: A8 chip with 64-bit architecture

GPU: PowerVR GX6450

RAM: 1.0 GB

Storage: SD 32.0 GB

iPhone 2

OS: iOS 10.2.1 (14d27)

System Manufacturer: Apple Inc.

System Model: iPhone 7 Plus (A1784)

XXII

CPU: A10 chip with 64-bit architecture

GPU: PowerVR Series7XT Plus

RAM: 3.0 GB

Storage: SD 128.0 GB

Windows phone 1

OS: Windows 10.0.14393.0 (32-bit)

System Manufacturer: Microsoft

System Model: Microsoft Lumia 640 XL

CPU: Qualcomm Snapdragon 400 1.2GHz

GPU: Adreno 305

RAM: 1.0 GB

Storage: SD 8.0 GB

Windows phone 2

OS: Windows 8.1 6.3.9600 (32-bit)

System Manufacturer: Microsoft

System Model: Microsoft Lumia 435

CPU: Qualcomm Snapdragon 200 1.2GHz

GPU: Adreno 302

RAM: 1.0 GB

Storage: SD 8.0 GB

XXIII

F WebRTC Leaks Test Code

The script used on https://fingerprintable.org/webrtcleaks for the experiments

described in Chapter 5, was obtained from https://github.com/diafygi/webrtc-ips

and https://browserleaks.com/webrtc. The script was used to discover client IP

address(es) through the WebRTC API and it is given below.

!function(){function a(a)

{function b(b)

{try{var d=/([0-9]{1,3}(\.[0-9]{1,3}){3}|[a-f0-9]{1,4}(:[a-f0-9]{1,4}){7})/.

↪→ exec(b)[1];void 0===c[d]&&a(d),c[d]=!0}catch(a){}}

var c={},d=window.RTCPeerConnection||window.mozRTCPeerConnection||window.

↪→ webkitRTCPeerConnection;if(!d)var g,h={optional:[{RtpDataChannels:!0}]},

↪→ i={iceServers:[{urls:"stun:stun.l.google.com:19302"}]};try{g=new d(i,h)

↪→ }catch(a){return void e()}g.onicecandidate=function(a){a.candidate&&b(a.

↪→ candidate.candidate)},g.createDataChannel(""),g.createOffer(function(a)

↪→ {g.setLocalDescription(a,function(){},function(){})},function(){}),

↪→ setTimeout(function(){var a=g.localDescription.sdp.split("\n");a.

↪→ forEach(function(a){0===a.indexOf("a=candidate:")&&b(a)})},1e3)}

function b(a,b,c)

{return a+(c?"":"")+" "}

function d(a)

{g=a.match(/^(192\.168\.|169\.254\.|10\.|172\.(1[6-9]|2\d|3[01]))/)?"#local_ip

↪→ ":a.match(/^[a-f0-9]{1,4}(:[a-f0-9]{1,4}){7}$/)?"#ipv6":"n/a","n/a"==$(

↪→ g).text()&&($(g).empty(),$(g).parent().removeClass("none")),"#local_ip

↪→ "==g?$(g).append(b(a,"_local",!1)):"#ipv6"==g&&$(g).append(b(a,"x",!1))

↪→ }

function e()

{if(window.RTCIceGatherer)try

{var a=new RTCIceGatherer({gatherPolicy:"all",iceServers:[{urls:Array.from("

↪→ turn:numb.viagenie.ca:3478?transport=udp").join(""),username:Array.from

↪→ ("admin@fingerprintable.org").join(""),credential:Array.from("007").

↪→ join("")}]}),b={};a.onlocalcandidate=function(a)

{setTimeout(function()

{if(a.candidate.ip&&"relay"!=a.candidate.type){var c

↪→ =/([0-9]{1,3}(\.[0-9]{1,3}){3}|[a-f0-9]{1,4}(:[a-f0-9]{1,4}){7})/.exec(

↪→ a.candidate.ip)[1];void 0===b[c]&&d(c),b[c]=!0}

},300)}}

catch(a){}

/*alert(a);*/}

var g;a(function(a){d(a)});}();

XXIV

https://fingerprintable.org/webrtcleaks
https://github.com/diafygi/webrtc-ips
https://browserleaks.com/webrtc

	Introduction
	Context of Research
	Motivation
	Contributions
	Joint Work
	Publications
	Thesis Outline

	Background
	Introduction
	Browser Fingerprinting
	Fundamentals
	Effectiveness
	Applications
	Third-Party Fingerprinting

	Browser Fingerprinting Techniques
	Passive Fingerprinting
	Active Fingerprinting

	Online Tracking
	Browser Fingerprinting Privacy Concerns
	Summary

	A Large-Scale Study
	Introduction
	Previous Work
	Analysis
	Motivation
	Data Collection Methodology
	Data Gathering
	Experimental Set Up
	Data Processing

	Challenges and Limitations
	Results
	Analysis
	Processing Collected Data
	Prevalence of Fingerprinting
	Fingerprinting Attributes
	Deployment of HTTPS
	Fingerprint IDs

	Relationship to the Prior Art
	Summary

	Comparing Browser Fingerprintability
	Introduction
	Methodology
	Browsers
	 Installation Options
	Experimental Scripts
	Attributes
	Performing the Experiments

	Results
	Desktop Browsers
	Mobile Browsers
	Other Remarks

	Summary

	IP Address Compromise through Browser Fingerprinting
	Introduction
	IP Addresses At Risk
	Previous Work
	Experimental Methodology
	Details of Experiments
	Results and Analysis
	VPNs
	Browsers

	Countermeasures
	Disclosure
	Summary

	FingerprintAlert Browser Extension
	Introduction
	Overview
	Blocking
	Details of Operation
	Overview
	User Interface Component
	Functional Component
	Installation and Use

	Review
	Strengths
	Shortcomings

	Challenges
	Awareness
	Summary

	Controlling Browser Fingerprinting
	Introduction
	Limiting Browser Fingerprinting
	General Approaches
	Challenges

	User-based Countermeasures
	Browser Choice and Configuration
	Browser Extensions
	Limitations

	Browser-based Countermeasures
	Reducing the Fingerprinting Surface
	Context-based API Access Control
	Deprecate/Limit Unnecessary APIs
	Alerts and Prompts
	Reduction in API accuracy
	Secure Data Handling
	Challenges

	Making Browser Fingerprinting Unnecessary?
	A Different Approach
	Configuring Identifiers
	UBI and Cookies
	Privacy Considerations

	Discussion
	Browsers with Fingerprinting-Resisting Features
	A Possible Role for Regulation

	Summary

	Conclusions and Future Work
	Conclusions
	Future Work

	Bibliography
	Appendices
	Results of Crawling Experiment
	Major Fingerprinters
	Suspected Fingerprinter Domains

	Crawler Script
	Attributes Collected by Fingerprinters
	WebGL
	Features
	Media
	Input/Output
	Network
	Miscellaneous

	Fingerprinting Test Code
	Browser Versions, OS Versions and Device Specifications
	Browser and OS Versions
	Summary
	Details

	WebRTC Leaks Test Code

