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Abstract

The goal of this thesis is to develop new competitive online algorithms for making

predictions. In online learning, as in real life, signals arrive sequentially, and decisions

should be adjusted in regard to new information. In the competitive prediction frame-

work, predictions are made by experts and a learner. The goal of the learner is to make

predictions which are not too much worse than the best expert. The quality of the

prediction is measured by the cumulative loss.

Our starting point is the Aggregating Algorithm (AA) which optimally merges

experts’ predictions and provides a theoretical guarantee on its performance in com-

parison with the best expert. An important feature of the AA is that it works under

any circumstances and it does not require any statistical assumptions. For a lot of loss

functions, the strategy of the AA predicts as well as the best expert. In other cases, it

is possible to apply the Weak Aggregating Algorithm (WAA), which provides a weaker

theoretical guarantee but still resolves the problem of competitive prediction.

In this thesis, we provide algorithms with strong theoretical guarantees for many

loss functions and different sets of experts. We start with the generalisation of the

AA with finitely many experts for prediction of vector-valued outcomes. We propose

a number of merging algorithms for prediction of vector-valued outcomes with tight

worst-case loss upper bounds similar to those for the AA. Another approach of applying

the framework of prediction with expert advice with finitely many models is proposed

for estimation of Value at Risk.

It is possible to achieve good theoretical guarantees even if the set of experts is

infinite. In the second part of the dissertation, we provide competitive algorithms for

making probabilistic predictions. The first proposed algorithm, which combines the

class of quantile regression experts, can be used for making interval predictions. The

second approach merges the class of linear regressions and output forecasts in the form

of the cumulative distribution functions.

In this dissertation, an important problem of probabilistic multi-class classification

is considered. The approach which combines the class of multinomial logistic regressions

is proposed to solve this problem. The strategy is competitive in terms of the Kullback-

Leibler cumulative loss.

The theoretical guarantees of the proposed algorithms are proven and experiments

on artificial datasets and real-world datasets are conducted. Empirical results empha-

sise the properties of new algorithms and demonstrate that they have a good perfor-

mance in practice.
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Notations

R the space of real numbers
Rn the n-dimentional space of real numbers
X ′ transpose of matrix X
‖x‖1 L1-norm of x ∈ Rn
‖x‖2 the Eucledian norm (L2-norm) of x ∈ Rn
‖x‖∞ the maximum norm of x ∈ Rn
S strategy of the learner
Sθ strategy of the expert θ
LT loss of the learner at time T
LθT loss of the expert θ at time T
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Acronyms

AA Aggregating Algorithm
AAD Aggregating Algorithm with Discounting
AAP Aggregating Algorithm for Prediction of Packs
AAR Aggregating Algorithm for Regression
APA Aggregating Pseudo-Algorithm
CRPS Continuous Ranked Probability Score
EWMA Exponential Weighted Moving Average
GARCH Generalised Autoregressive Conditional Heteroskedasticity
GBDT Gradient Boosting Decision Trees
MCMC Markov Chain Monte Carlo
MLR Multinomial Logistic Regression
QR Quantile Regression
QRF Quantile Random Forests
RF Random Forests
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WAA Weak Aggregating Algorithm
WAAQR Weak Aggregating Algorithm for Quantile Regression
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Chapter 1

Introduction

An expert is a man who has made all

the mistakes which can be made, in a

narrow field

Niels Bohr

In everyday life people make their decisions based on predictions. For example, we

make plans for a weekend based on a weather forecast or buy stocks of some company

based on financial experts’ predictions of their prices. Usually predictions are made by

an algorithm which learns from past experience. The goal of this thesis is to develop

online competitive algorithms for making predictions with theoretical bounds on their

performance. These bounds should hold for any future time point and without any

stochastic assumptions.

In the real world we usually receive new information sequentially. Hence, we study

the online setting in which predictions and outcomes are given step-by-step. Contrary

to batch mode, where the algorithm is trained on a training set and gives predictions

on a test set, we learn as soon as new observations become available. For example,

suppose that our aim is to predict outcomes of football matches of a new season based

on data available from a previous season. A batch algorithm builds a model on previous

season’s data and this model is used to make predictions for all matches of the current

season. In the online setting we add data sequentially and adjust parameters of the

model after each match. More formally, we consider an online protocol where at each

trial a learner observes a signal given by nature and attempts to predict an outcome,

which is shown to the learner later. The leaner’s performance is measured by means of

the cumulative loss.

In this thesis, we consider the framework of online prediction with expert advice.

At each trial we have access to predictions of experts and need to make a prediction
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1. Introduction

based on their past performance. In statistical learning, usually some assumptions

are made about the mechanism that generates the data, and guarantees are given for

the method working under these assumptions. For example, one may assume a linear

dependence between electricity consumption and temperature and try to fit the best

parameters for linear regression. Instead, we work in the adversarial setting where no

assumptions are made about the data generating process.

In this thesis, we consider an approach called competitive prediction, where one

provides guarantees compared to other predictive models that are called experts. Ex-

perts could be human experts, complex machine learning algorithms or even classes of

functions. We treat an expert as a black box, i.e., we are not interested in its internal

work. Our goal is to develop a merging strategy that will perform not much worse

than the best expert. As a result, we do not try to build a model that works under

certain assumptions but try to combine predictions that are given to us by experts.

One may wonder why we do not just use predictions of only one best expert from the

beginning and ignore predictions of others. First, sometimes we cannot have enough

data to identify the best expert from the start. Second, good performance in the past

does not necessary lead to good performance in the future.

The learner in the game of prediction plays against nature and experts from some

pool. The aim of the learner is to keep its total loss small compared to the total losses

of any expert. One of the approaches which provides a theoretical guarantee on the

learner’s performance is the Aggregating Algorithm (AA), which was first introduced

in Vovk (1990). AA works as follows: we assign initial weights to experts and at each

step the weights of experts are updated according to their current performance. The

approach is similar to the Bayesian method, where the prediction is the average over

all models based on the likelihood of the available data and model’s prior distribution.

For the case of finitely many experts, AA gives a guarantee ensuring that the learner’s

loss is as small as the best expert’s loss plus a constant.

Even if the decision pool is infinite it is possible to achieve good theoretical guaran-

tees. The history of algorithms competitive with large parametric classes of strategies

can be traced back to universal portfolios by Cover and Ordentlich (1996) (a survey is

provided by Cesa-Bianchi and Lugosi (2006)), which apply in the context of investment

decisions and compete against portfolio selection techniques. In that framework one is

interested in maximising wealth, but the problem can be restated in terms of losses.

One can consider outcomes and predictions from the one-dimensional interval [0, 1]

and signals xt ∈ Rn. A natural choice of competitor strategies are then linear functions

on xt. Vovk (2001) and Azoury and Warmuth (2001) propose an algorithm for this

framework (Vovk-Azoury-Warmuth predictor, also known as the Aggregating Algo-

10



1. Introduction

rithm for Regression) targeted at square loss. The resulting algorithm asymptotically

performs as good as any linear regression in terms of the cumulative square loss up to a

logarithmic term in the number of steps. Gammerman et al. (2004) obtain a kernelized

version of the predictor. Zhdanov and Kalnishkan (2013) study similar competitive

bounds for standard ridge regression. In this thesis, we primarily consider the prob-

lem of combining different classes of experts. These algorithms are called universal

algorithms because they are competitive with any expert from the chosen class.

1.1 Original contributions

1. The generalisation of the Aggregating Algorithm is developed for prediction of

vector-valued outcomes called packs. Three algorithms for this new setting are

proposed (Algorithm 6, Algorithm 7 and Algorithm 8) and guarantees on their

performances are proven (Theorem 3.4.1 and Theorem 3.4.2). Experimental re-

sults on sport and house price datasets are performed to compare algorithms.

2. A new approach to applying the method of prediction with expert advice is pro-

posed for calculating Value at Risk. Experiments and comparisons with existing

methods are performed with stocks of three companies.

3. Universal algorithms for probabilistic predictions are developed and performance

guarantees are proven for the following settings: quantile regression under pin-

ball loss function (Section 5.4 and Theorem 5.3.1) and linear regression under

Continuous Ranked Probability Score (Section 6.4 and Theorem 6.3.1). Practical

experiments show the performance of algorithms for renewable energy forecasting.

4. Universal algorithm for probabilistic multi-class classification under Kullback-

Leibler game (Section 7.4 and Theorem 7.3.1) and its generalisation for Hilbert

spaces (Section 7.6 and Theorem 7.6.4) are developed and their performance

guarantees are proven for the class of multinomial logistic regressions.

1.2 Publications

The results described in this thesis are published either as conference proceedings or

journal papers. The paper ‘Competitive Online Regression under Continuous Ranked

Probability Score’ received the best student paper award.

1. Raisa Dzhamtyrova and Yuri Kalnishkan. Competitive Online Generalised Linear

Regression with Multidimensional Outputs. In Proceedings of the International

Joint Conference on Neural Networks, IEEE, 2019, pages 1–8.
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1. Introduction

2. Raisa Dzhamtyrova and Yuri Kalnishkan. Competitive Online Regression un-

der Continuous Ranked Probability Score. In Proceedings of Machine Learning

Research, the 8th Symposium on Conformal and Probabilistic Prediction with Ap-

plications, 2019, pages 105: 178–195

3. Raisa Dzhamtyrova and Yuri Kalnishkan. Universal algorithms for multinomial

logistic regression under Kullback-Leibler game. Neurocomputing, 2019.

4. Dmitry Adamskiy, Tony Bellotti, Raisa Dzhamtyrova, and Yuri Kalnishkan. Ag-

gregating algorithm for prediction of packs. Machine Learning, 2019, pages 108:

1231–1260.

1.3 Structure of the thesis

Chapter 2 gives an overview of prediction with expert advice and the main algorithms

which are used to derive the new proposed algorithms. Chapter 3 is devoted to the

problem of generalisation of the Aggregating Algorithms for prediction of packs. Chap-

ter 4 describes a new approach to applying prediction with expert advice to calculate

Value at Risk. In Chapter 5 the new universal algorithm for quantile regression under

pinball loss is developed. Chapter 6 describes the competitive strategy for online linear

regression under Continuous Ranked Probability Score. Chapter 7 gives new ways of

approaching the problem of probabilistic multi-class classification.
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Chapter 2

Main algorithms

In this chapter, we describe the main algorithms that are used in this work. This is

the only chapter in the thesis where materials are not original, except for the proof of

Lemma 2.4.2.

2.1 Framework

In the framework of prediction with expert advice we need to specify a game G which

contains three components: a space of outcomes Ω, a decision space Γ, and a loss

function λ : Ω × Γ → R. The learner or prediction strategy in the game of prediction

plays against experts θ from some pool Θ and nature. At each step t experts output

their predictions ξt(θ) ∈ Γ. After seeing all experts’ predictions, the learner outputs

prediction γt ∈ Γ. After nature announces an outcome yt ∈ Ω, the experts and the

learner suffer losses λ(yt, ξt(θ)) and λ(yt, γt) respectively. The aim of the learner is

to keep its total loss Lt small compared to the total losses Lθt of all experts θ ∈ Θ.

Sometimes we refer to the prediction strategy of the learner as S and the prediction

strategy of the expert θ as Sθ. We define regret to be the difference between the

cumulative losses of the best expert and the learner Rt = Lt −minθ∈Θ L
θ
t .

Experts could be human experts, complex machine learning algorithms or even

classes of functions. In Chapters 3 and 4, we consider a finite number of experts and

treat an expert as a black box, i.e., we are not interested in its internal work. In the rest

of the thesis we consider parametrised classes of experts, such as the class of quantile

regressions (Chapter 5), the class of linear regressions (Chapter 6) and the class of

multinomial logistic regressions (Chapter 7).

Below is the protocol of competitive online prediction:

Protocol 1.

13



2. Main algorithms

L0 := 0

Lθ0 := 0

for t = 1, 2, . . .

Experts output ξt(θ) ∈ Γ, θ ∈ Θ

Learner outputs γt ∈ Γ

Nature announces yt ∈ Ω

Lt := Lt−1 + λ(yt, γt)

Lθt := Lθt−1 + λ(yt, ξt(θ)), θ ∈ Θ

end for

2.2 Aggregating Algorithm

2.2.1 Description of Aggregating Algorithm

One of the algorithms that can be used to solve the problem of prediction with expert

advice is the Aggregating Algorithm (AA). We formulate the Aggregating Algorithm

following Vovk (1990, 1998, 2001). The algorithm is based on the notion of mixability.

Consider a game G = 〈Ω,Γ, λ〉. A constant C > 0 is admissible for a learning rate

η > 0 if for every θ ∈ Θ, every set of predictions ξ(θ) ∈ Γ, and every distribution

P (dθ) (such that
∫
θ∈Θ P (dθ) = 1) there is γ ∈ Γ ensuring for all outcomes y ∈ Ω the

inequality

λ(y, γ) ≤ −C
η

ln

∫
θ∈Θ

e−ηλ(y,ξ(θ))P (dθ) . (2.1)

The mixability constant Cη is the infimum of all C > 0 admissible for η. This

infimum is usually achieved. For example, it is achieved for all η > 0 whenever Γ is

compact and e−λ(γ,y) is continuous in γ.

An example of games G = 〈Ω,Γ, λ〉 include simple prediction game:

Ω = Γ = {0, 1}, λ(y, γ) =

0, if y = γ,

1, otherwise .

Therefore, the learner tries to predict a binary sequence, 0 or 1; it suffers loss 1 if it

makes a mistake. The logarithmic loss game:

Ω = {0, 1}, Γ = [0, 1], λ(y, γ) =

− ln γ if y = 1,

− ln(1− γ) if y = 0,

14



2. Main algorithms

and the square-loss game:

Ω = [A,B], |A|, |B| <∞, Γ = R, λ(y, γ) = (y − γ)2

will be described in Section 2.2.2. More examples of games can be found in Section 2

of Vovk (2001).

The Aggregating Algorithm takes a learning rate η > 0, a constant C admissible

for G with η, and a prior distribution on experts P0(dθ). After each step t it updates

the experts’ weights according to their losses:

Pt(dθ) = e−ηλ(yt,ξt(θ))Pt−1(dθ). (2.2)

The weights of experts which suffer large loss at some step will have a smaller impor-

tance for making further predictions. The prior distribution P0(dθ), which specifies

the initial weights of experts, is an arbitrary distribution. Thus, any distribution can

appear as Pt−1(dθ), and inequality (2.1) holds for any P (dθ).

First, we introduce the Aggregating Pseudo-Algorithm (APA). A generalised pre-

diction is defined to be any function of the type Ω → [0,∞]. The APA suffers loss

gt(yt) after choosing generalised prediction gt at time t when the actual outcome is yt.

The APA outputs at time t the generalised prediction which is the weighted average of

experts’ predictions:

gt(y) = −1

η
ln

∫
Θ
e−ηλ(y,ξt(θ))P ∗t−1(dθ), (2.3)

where P ∗t−1(dθ) are normalized weights:

P ∗t−1(dθ) =
Pt−1(dθ)

Pt−1(Θ)
,

where Θ is a parameter space, i.e. experts θ ∈ Θ can output prediction ξt(θ) ∈ Γ at

time t.

The AA is obtained from the APA by replacing each generalised prediction gt by a

permitted prediction Σ(gt), where the substitution function Σ maps every generalised

prediction g into a permitted prediction Σ(g) ∈ Γ satisfying

∀y : λ(y,Σ(g)) ≤ Cg(y). (2.4)

By putting (2.3) in (2.4), we get (2.1). We also need to define a superprediction, which is

a generalised prediction minorised by the loss of some prediction, i.e., a superprediction
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2. Main algorithms

is a function f : Ω → [0,+∞] such that for some γ ∈ Γ we have f(y) ≥ λ(y, γ) for all

y ∈ Ω.

We will assume that the substitution function, which attains inequality (2.4), exists.

The AA requires that a ‘minimax’ substitution function should be chosen (Vovk (1990))

Σ(g) ∈ arg min
γ∈Γ

sup
y∈Ω

λ(y, γ)

g(y)
. (2.5)

However, in some cases it is more computationally efficient to require that the

substitution function follows

Σ(g) ∈ arg min
γ∈Γ

sup
y∈Ω

(λ(y, γ)− Cηg(y)) (2.6)

and

(g1(y)− g2(y) does not depend on y)→ (Σ(g1) = Σ(g2)), (2.7)

where g1, g2 are the generalised predictions calculated with different weights distribu-

tions. Assumption (2.7) is always compatible with (2.6) but is typically incompatible

with (2.5). A great advantage of (2.7) is that we do not need to normalise experts’

weights at each step, and can calculate the pseudo-prediction from the unnormalised

weights, since it will differ from (2.3) only by an additive constant.

The pseudo-code for the Aggregating Algorithm is given below.

The Aggregating Algorithm

Initialize prior distribution on experts P0(dθ) = P ∗0 (dθ), θ ∈ Θ,

a learning rate η > 0, an admissible constant C

for t = 1, 2, . . . do

Get experts’ predictions ξt(θ), θ ∈ Θ.

Calculate generalised prediction g : Ω→ R,

defined by gt(y) = − 1
η ln

∫
Θ e
−ηλ(y,ξt(θ))P ∗t−1(dθ), for all y ∈ Ω.

Output prediction γt := Σ(gt) ∈ Γ using a substitution function

Σ : RΩ → Γ, such that ∀y : λ(y,Σ(gt)) ≤ Cgt(y).

Read the outcome yt ∈ Ω.

Update the weights Pt(dθ) = e−ηλ(yt,ξt(θ))Pt−1(dθ), θ ∈ Θ.

Normalize the weights P ∗t (dθ) = Pt(dθ)∫
θ∈Θ Pt(dθ)

.

end for

Lemma 2.2.1. (Lemma 1 in Vovk (2001)) For any learning rate η > 0, prior P0,
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2. Main algorithms

and T = 1, 2, . . . , the cumulative loss LT of the APA with parameters η and P0 follows

LT (APA(η, P0)) = −1

η
ln

∫
θ∈Θ

e−ηL
θ
TP0(dθ). (2.8)

Proof. The lemma is proven by induction. It is obvious from (2.3) that (2.8) holds for

T = 1. Notice, that

gT (yT ) = −1

η
ln

∫
Θ e
−ηλ(yT ,ξT (θ))PT−1(dθ)

PT−1(Θ)
= −1

η
ln

∫
Θ e
−ηλ(yT ,ξT (θ))e−ηL

θ
T−1P0(dθ)∫

Θ e
−ηLθT−1P0(dθ)

.

Assume that (2.8) holds for T − 1. Then

LT (APA) = LT−1(APA) + gT (yT )

= −1

η
ln

∫
Θ
e−ηL

θ
T−1P0(dθ)− 1

η
ln

∫
Θ e
−ηLθTP0(dθ)∫

Θ e
−ηLθT−1P0(dθ)

= −1

η
ln

∫
Θ
e−ηL

θ
TP0(dθ).

The following lemma, which follows from Lemma 2.2.1 and (2.4), gives an upper

bound on the cumulative loss of the Aggregating Algorithm.

Lemma 2.2.2. For a game G with an admissible constant C, a learning rate η, and any

prior P0, the following upper bound on the cumulative loss of the Aggregating Algorithm

holds for T = 1, 2, . . . ,

LT (AA) ≤ −C
η

ln

∫
θ∈Θ

e−ηL
θ
TP0(dθ). (2.9)

In case when the number of experts is finite we replace expert’s index θ with index

i ∈ Θ = {1, 2, . . . , N}. For the AA with a finite number of experts N we get the

following lemma.

Lemma 2.2.3. For a game G with an admissible constant C, a learning rate η, and

the initial distribution on experts p(i) (such that
∑N

i=1 = 1), the following upper bound

on the cumulative loss of the Aggregating Algorithm holds for T = 1, 2, . . . ,

LT (AA) ≤ −C
η

ln

(
N∑
i=1

p(i)e−ηL
i
T

)
≤ −C

η
ln
(
p(i)e−ηL

i
T

)
= CLiT +

C

η
ln

1

p(i)
. (2.10)

An important class of the games are mixable games with C achieving 1. The natural

choice of η is then the maximum value such that the mixability constant Cη = 1, which
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is the infimum of all C admissible for η; it minimises the second term on the right-hand

side of (2.10). In particular, for mixable games with finite number of experts N and

the uniform initial distribution on experts, the loss of the AA satisfies

LT (AA) ≤ LiT +
1

η
lnN, (2.11)

for i = 1, . . . , N . For non-mixable games (such as the absolute loss game with λ(y, γ) =

|γ−y|), bound (2.9) provides a trade-off. Optimising the bound is a more difficult task

and may require assumptions on the behaviour of experts or the time horizon T .

2.2.2 Some examples of mixable games

In this section, we describe two important mixable games: the logarithmic loss game

and the square-loss game. We show how to apply the AA for these games.

The logarithmic loss game

In this section, we discuss the logarithmic loss game G, where the outcome space

Ω = {0, 1}, the prediction space Γ = [0, 1], and the loss function is defined as

λ(y, γ) =

− ln γ if y = 1,

− ln(1− γ) if y = 0,
(2.12)

where y ∈ Ω, γ ∈ Γ. We will show that the Aggregating Algorithm for the logarithmic

loss function with η = 1 is the same as the Bayesian mixture.

The weight updates (2.2) becomes

Pt(dθ) = ξt(θ)Pt−1(dθ) = P0(dθ)
t∏
i=1

ξi(θ). (2.13)

Therefore, the normalized weights: P ∗t (dθ) = Pt(dθ)∫
Θ Pt(dθ)

are identical to the posterior

distribution of θ after observing y1, y2, . . . , yt.

The generalised prediction (2.3) becomes the loss of the Bayesian mixture

gt(y) = −1

η
ln

∫
ξyt (θ)P ∗t−1(dθ), (2.14)

where ξyt (θ) is the prediction of the expert θ for the outcome y at the time t.

The log-loss game is mixable for η ≤ 1 and the substitution function Σ : RΩ → Γ is
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simply e−(.). The function xη is concave for η < 1, and thus∫
Θ

(ξyt (θ))ηQ(θ) ≤
(∫

Θ
ξyt (θ)Q(θ)

)η
for any y and Q ∈ P (Θ).

After taking negative logarithms of both parts and multiplying by 1
η , we obtain

−1

η
ln
(∫

Θ
ξyt (θ)Q(θ)

)η
≤ −1

η
ln

∫
Θ

(ξyt (θ))ηQ(θ).

In other words, the loss of the prediction corresponding to η = 1 is less than the

generalised prediction calculated with any other η < 1.

The pseudo-code for the Bayesian Algorithm is shown below.

The Bayesian Algorithm

Initialize prior distribution on experts P0(dθ) = P ∗0 (dθ), θ ∈ Θ,

for t = 1, 2, . . . do

Get experts’ predictions ξt(θ), θ ∈ Θ.

Output prediction γt =
∫
θ∈Θ ξt(θ)P

∗
t−1(dθ).

Read the outcome yt ∈ Ω.

Update the weights Pt(dθ) = ξt(θ)Pt−1(dθ), θ ∈ Θ.

Normalize the weights P ∗t (dθ) = Pt(dθ)∫
θ∈Θ Pt(dθ)

.

end for

The square-loss game

In this section, we consider the square-loss game, where the outcome space Ω = [A,B],

|A|, |B| < ∞, the prediction space Γ = R and the loss function λ(y, γ) = (y − γ)2.

The following lemma proves the mixability of the square-loss game with the restricted

outcome space. The mixability for the outcome space Ω = [−Y, Y ] is first proven in

Vovk (2001), the case of the outcome space Ω = [A,B] with an arbitrary interval is

first described in Zhdanov (2011).

Lemma 2.2.4. (Lemma 2.5 from Zhdanov (2011)). The square-loss game is

η-mixable if and only if η ≤ 2
(B−A)2 .

Proof. Consider the parametric curve {(λ(A, γ), λ(B, γ))|γ ∈ Γ}. Each point on this

curve corresponds to a prediction γ and the point’s coordinates are the losses when

y = A or y = B occur. Let Λ = {(x, y)| there is γ ∈ Γ : x ≥ λ(A, γ) and y ≥ λ(B, γ)}
be the set of superpredictions.
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The game is η-mixable if Cη = 1 for some η > 0, i.e., according to (2.4), we can

find γ ∈ Γ such that λ(A, γ) ≤ gt(A)

λ(B, γ) ≤ gt(B)
. (2.15)

The system has a solution if (gt(A), gt(B)) falls into the set of superpredictions. We

apply the transformation Bη : [0,+∞]2 → [0, 1]2 given by(
x

y

)
→

(
e−ηx

e−ηy

)
.

Under the transformation Bη for the finite number of experts N , we need to solve the

system: e−ηλ(A,γ) ≥ e−ηgt(A) =
∑N

i=1 pt−1(i)e−ηλ(A,ξt(i))

e−ηλ(B,γ) ≥ e−ηgt(B) =
∑N

i=1 pt−1(i)e−ηλ(B,ξt(i))
.

The game is mixable if the system is solvable for all experts’ predictions and all nor-

malised weights. This means that the convex combination should always fall in the set

Bη(Λ), which is possible if and only if the set Bη(Λ) is convex. It is equivalent to find

the values of η for which the second derivative of the parametric curve

{(u, v) = (e−η(γ−A)2
, e−η(γ−B)2

)| γ ∈ Γ} (2.16)

is less or equal to zero.

The first derivative of the curve (2.16) is

dv

du
=
dv/dγ

du/dγ
=

2η(B − γ)e−η(γ−B)2

2η(A− γ)e−η(γ−A)2 =
γ −B
γ −A

e2ηγ(B−A)−η(B2−A2).

And the second derivative of the curve is

d2v

du2
=

d2v
dudγ

du
dγ

=

(
B−A

(γ−A)2 + 2η(B −A)γ−Bγ−A

)
e2ηγ(B−A)−η(B2−A2)

2η(A− γ)e−η(γ−A)2 ≤ 0.

This is equivalent to B−A
(γ−A)2

(
1

2η(A−γ) + (B − γ)
)
≤ 0. Thus, we have

η ≤ 1

2(γ −A)(B − γ)
,

where γ ∈ R. Since maxγ∈R(γ − A)(B − γ) = 1
4(B − A)2, the curve is concave if and

only if η ≤ 2
(B−A)2 .
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Figure 2.1: The parametric loss curve ((−1− γ)2, (1− γ)2), γ ∈ [−1, 1].

The Figure 2.1 illustrates an example of the parametric loss curve for the re-

stricted square-loss game with the outcome space Ω = {−1, 1}. Under the trans-

formation Bη, the set of permitted predictions is represented by the parametric curve(
e−η(−1−γ)2

, e−η(1−γ)2
)
, γ ∈ [−1, 1], which is shown in Figure 2.2. The curve is convex

for η ≤ 1
2 . The grey area in the Figure 2.2 represents the set of superpredictions.

Now we find a substitution function for the square-loss game with the outcome

space Ω = [A,B]. Since we require the substitution function to follow (2.6), we have

(γ −B)2 − g(B) = (γ −A)2 − g(A).

Therefore, we find the formula for the substitution function of the square-loss game

γ =
A+B

2
− g(B)− g(A)

2(B −A)
. (2.17)
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Figure 2.2: The parametric curve
(
e−

1
2

(−1−γ)2
, e−

1
2

(1−γ)2
)
, γ ∈ [−1, 1]. The grey area

represents the set of superpredictions.

2.3 Aggregating Algorithm for Regression

In this section, we describe an application of the Aggregating Algorithm to the problem

of regression, where outcomes are continuous real numbers. In the framework of online

regression, at each step nature announces a signal from a set X. Then the experts and

the learner make their decisions based on the observed signal. The following protocol

is the protocol of online regression:

Protocol 2.

for t = 1, 2, . . .

Nature outputs signal xt ∈ X
Experts output ξt(θ), θ ∈ Θ

Learner outputs γt ∈ Γ

Nature announces yt ∈ Ω

end for
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We consider the square-loss game with bounded outcome space Ω = [−Y, Y ], pre-

diction space Γ = R and loss function λ(y, γ) = (y−γ)2. Our experts θ ∈ Rn are linear

regressions, which at the step t predict

ξt(θ) = θ′xt, (2.18)

where xt ∈ X, and X ⊆ Rn is a set of input vectors.

Let a > 0 be an arbitrary constant. We set the prior distribution P0 on parameters

θ ∈ Θ = Rn to have the Gaussian distribution

P0(dθ) =
(aη
π

)n/2
e−aη‖θ‖

2
dθ. (2.19)

After the step T the weight of the expert θ is updated according to (2.2)

PT (dθ) = e−η(yT−θ′xT )2
PT−1(dθ) =

(aη
π

)n/2
e−η(

∑T
t=1(yt−θ′xt)2+a‖θ‖2)dθ.

The generalised prediction (2.3) can be represented as follows

gT (y) = −1

η
ln

(
1

PT−1(Θ)

∫
θ∈Rn

e−η((y−θ′xT )2+
∑T−1
t=1 (yt−θ′xt)2+a‖θ‖2)dθ

)
=

− 1

η
ln

(
1

PT−1(Θ)

∫
θ∈Rn

e−ηθ
′(aI+

∑T
t=1 xtx

′
t)θ+2η(

∑T−1
t=1 ytx′t+yx

′
T )θ−η(

∑T−1
t=1 y2

t+y2)dθ

)
,

where PT (Θ) =
∫
θ∈Rn e

−η(
∑T
t=1(yt−θ′xt)2+a‖θ‖2)dθ is the normalising constant for the

experts’ weights at the step T .

The formula for the prediction for the square-loss game is according to (2.17)

γ =
g(−Y )− g(Y )

4Y

= − 1

4ηY
ln

∫
θ∈Rn e

−ηθ′(aI+
∑T
t=1 xtx

′
t)θ+2η(

∑T−1
t=1 ytx′t−Y x′T )θ−η(

∑T−1
t=1 y2

t+Y 2)dθ∫
θ∈Rn e

−ηθ′(aI+
∑T
t=1 xtx

′
t)θ+2η(

∑T−1
t=1 ytx′t+Y x

′
T )θ−η(

∑T−1
t=1 y2

t+Y 2)dθ

= − 1

4ηY
ln

∫
θ∈Rn e

−ηθ′(aI+
∑T
t=1 xtx

′
t)θ+2η(

∑T−1
t=1 ytx′t−Y x′T )θdθ∫

θ∈Rn e
−ηθ′(aI+

∑T
t=1 xtx

′
t)θ+2η(

∑T−1
t=1 ytx′t+Y x

′
T )θdθ

= − 1

4ηY
ln e−ηF (aI+

∑T
t=1 xtx

′
t,−2

∑T−1
t=1 ytx′t,2Y x

′
T )

=
1

4Y
F (aI +

T∑
t=1

xtx
′
t,−2

T−1∑
t=1

ytx
′
t, 2Y x

′
T ) =

(
T−1∑
t=1

ytx
′
t

)(
aI +

T∑
t=1

xtx
′
t

)−1

xT .

The fourth equality follows from Lemma A.1, the last equality follows from Lemma
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A.2.

It is easy to check that the Aggregating Algorithm for Regression minimizes

a‖θ‖2 + (θ′xT )2 +

T−1∑
t=1

(yt − θ′xt)2

in θ ∈ Rn by taking the derivative of the quadratic form in θ.

We obtain the following algorithm

The Aggregating Algorithm for Regression

Initialize A = aI, b = 0.

for t = 1, 2, . . . do

Read new signal xt ∈ X.

A = A+ xtx
′
t

Output prediction γt = b′A−1xt

Read new outcome yt ∈ Ω

b = b+ ytxt

end for

Theorem 2.3.1. (Theorem 1 in Vovk (2001)) For any positive integer n and any

a > 0,

LT (AAR) ≤ inf
θ

(LθT + a‖θ‖2) + Y 2 ln det

(
I +

1

a

T∑
t=1

xtx
′
t

)
.

If, in addition, ‖xt‖∞ ≤ B, ∀t,

LT (AAR) ≤ inf
θ

(LθT + a‖θ‖2) + nY 2 ln

(
TB2

a
+ 1

)
.

2.4 Aggregating Algorithm with Discounting

In this section, we formulate the Aggregating Algorithm for the case of discounted

loss. It is essentially equivalent to the method in Chernov and Zhdanov (2010). The

Aggregating Algorithm with Discounting (AAD) differs from the AA only by the use

of the weights in the computation of generalised prediction gt and the weights update.

In the standard framework of online learning the performance of learners is evalu-

ated by means of cumulative loss. In this section, we consider the generalisation where

we discount the previous losses with the discount factor which is announced at each

time step.
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The cumulative losses of the learner are discounted with a factor αt ∈ (0, 1] at each

step. If LT−1 is the discounted cumulative loss of the learner at step T − 1, then the

discounted cumulative loss of the learner at step T is defined by

LT := αT−1LT−1 + λT (yT , γT ) =
T−1∑
t=1

T−1∏
j=t

αj

λt(yt, γt) + λT (yT , γT ). (2.20)

If LθT−1 is the discounted cumulative loss of the prediction strategy θ at the step

T − 1, then the discounted cumulative loss of the prediction strategy θ at the step T is

defined by

LθT := αT−1L
θ
T−1 +λT (yT , ξT (θ)) =

T−1∑
t=1

T−1∏
j=t

αj

λt(yt, ξt(θ))+λT (yT , ξT (θ)). (2.21)

In the beginning, the losses L0, Lθ0 are initialized to zero. If all the discount factors

are the same, i.e. α1 = · · · = αT = α, then we have a case of exponential smoothing.

At each step the dependence on the loss at the previous steps exponentially decreases:

the initial loss is discounted by αT−1 at the step T . Note that if αt = 1 at each time

step t then we have the standard framework of undiscounted loss.

Learner and experts work according to the following protocol:

Protocol 3.

L0 := 0

Lθ0 := 0

for t = 1, 2, . . .

Accountant announces αt−1 ∈ (0, 1]

Nature announces xt ∈ X ⊆ Rn

Experts output ξt(θ), θ ∈ Θ

Learner outputs γt ∈ Γ

Nature announces yt ∈ Ω

Lθt := αt−1L
θ
t−1 + λ(yt, ξt(θ)), θ ∈ Θ

Lt := αt−1Lt−1 + λ(yt, γt)

end for

For the AAD we denote the discounted weight of expert θ as P̃ (θ). We initialize

a prior distribution on experts P0(dθ), θ ∈ Θ and initial discounted weights of experts

P̃0(θ) = 1.
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Instead of (2.2) the AAD updates weights according to

P̃t(θ) =
(
P̃t−1(θ)

)αt−1

e−ηλ(yt,ξt(θ)). (2.22)

The generalised prediction of the AAD is

gt(y) = −1

η
ln

∫
θ∈Θ

P0(dθ)
(
P̃ ∗t−1(θ)

)αt−1

e−ηλ(y,ξt(θ)), (2.23)

where

P̃ ∗t−1(θ) =
P̃t−1(θ)∫

θ∈Θ P0(dθ)P̃t−1(θ)
. (2.24)

First, we show that Lemma 2.2.1 holds for the discounted cumulative loss of the

APA.

Lemma 2.4.1. For any learning rate η > 0, prior P0, any sequence αT ∈ (0, 1], and

T = 1, 2, . . . , the discounted cumulative loss LT of the APA with parameters η and P0

follows

LT (APA(η, P0)) = −1

η
ln

∫
θ∈Θ

e−ηL
θ
TP0(dθ). (2.25)

Proof. The lemma is proven by induction. It is obvious from (2.23) that (2.25) holds

for T = 1. Notice, that

gt(y) = −1

η
ln

∫
θ∈Θ

P0(dθ)
(
P̃ ∗t−1(θ)

)αt−1

e−ηλ(y,ξt(θ))

= −1

η
ln

∫
θ∈Θ P0(dθ)

(
P̃t−1(θ)

)αt−1

e−ηλ(y,ξt(θ))(∫
θ∈Θ P0(dθ)P̃t−1(θ)

)αT−1

= −1

η
ln

∫
θ∈Θ P0(dθ)e−ηL

θ
T(∫

θ∈Θ P0(dθ)e−ηL
θ
T−1

)αT−1
.

Assume that (2.25) holds for T − 1. According to (2.20) the discounted cumulative

loss of the APA at time T

LT (APA) = αT−1LT−1(APA) + gT (yT ) = −1

η
ln

(∫
θ∈Θ

P0(dθ)e−ηL
θ
T−1

)αT−1

− 1

η
ln

∫
θ∈Θ P0(dθ)e−ηL

θ
T(∫

θ∈Θ P0(dθ)e−ηL
θ
T−1

)αT−1
= −1

η
ln

∫
θ∈Θ

P0(dθ)e−ηL
θ
T .
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Now we prove the analogue of Lemma 2.2.2 for mixable games in the discounted

case.

Lemma 2.4.2. For any learning rate η > 0, initial prior P0, every sequence αT ∈ (0, 1],

and T = 1, 2, . . . , the discounted cumulative loss LT of the AAD with parameters η and

P0 follows

LT (AAD(η, P0)) ≤ −1

η
ln

∫
Θ
e−ηL

θ
TP0(dθ). (2.26)

Proof. The weights update for AAD is

P̃t(θ) =
(
P̃t−1(θ)

)αt−1

e−ηλ(yt,ξt(θ)) = e−ηL
θ
t . (2.27)

We will prove (2.26) by induction. At step t+ 1 we can re-write inequality (2.4) as

follows

e−ηλ(yt+1,γt+1) ≥
∫

Θ
P0(dθ)

(
P̃ ∗t (θ)

)αt
e−ηλ(yt+1,ξt+1(θ))

=

∫
Θ
P0(dθ)

e−ηαtL
θ
t(∫

Θ P0(dθ)e−ηL
θ
t

)αt e−ηλ(yt+1,ξt+1(θ)). (2.28)

Suppose that (2.26) is true for the step t. By putting the inequality (2.26) for step

t in the power 0 < αt ≤ 1 we obtain

e−ηαtLt ≥
(∫

Θ
P0(dθ)e−ηL

θ
t

)αt
.

By putting the last inequality in the denominator of (2.28) we obtain

e−ηλ(yt+1,γt+1) ≥
∫

Θ e
−ηλ(yt+1,ξt+1(θ))−ηαtLθtP0(dθ)

e−ηLtαt
.

By multiplying by the denominator we have

e−ηLt+1 ≥
∫

Θ
e−ηL

θ
t+1P0(dθ).

By taking a natural logarithm of both parts and multiplying by − 1
η we obtain

(2.26).

The pseudo-code for AAD is given below

The Aggregating Algorithm with Discounting
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Initialize prior distribution on experts P0(dθ), θ ∈ Θ.

Initialize discounted weights of experts P̃ ∗0 (θ) = P̃0(θ) = 1,

a learning rate η > 0.

for t = 1, 2, . . . do

Get discount αt−1 ∈ (0, 1].

Get experts’ predictions ξt(θ), θ ∈ Θ.

Calculate generalised prediction g : Ω→ R, defined by

gt(y) = − 1
η ln

∫
θ∈Θ P0(dθ)

(
P̃ ∗t−1(θ)

)αt−1

e−ηλ(y,ξt(θ)), for all y ∈ Ω.

Output prediction γt := Σ(gt) ∈ Γ.

Update the weights P̃t(θ) =
(
P̃t−1(θ)

)αt−1

e−ηλ(yt,ξt(θ)), θ ∈ Θ.

Normalize the weights P̃ ∗t−1(θ) = P̃t−1(θ)∫
θ∈Θ P0(dθ)P̃t−1(θ)

.

end for

2.5 Weak Aggregating Algorithm

There are interesting games that are not mixable, for example, the absolute loss game

G, where the outcome space Ω = {0, 1}, the prediction space Γ = [0, 1] and the loss

function λ(y, γ) = |y − γ|. The Aggregating Algorithm still works for some of such

games, but it allows us to achieve only values of Cη > 1. In this section, we describe a

different approach to non-mixable games. We fix Cη = 1 but consider the additive term

that can grow when the time T increases. The approach is called the Weak Aggregating

Algorithm (WAA) which solves the problem of predicting as well as the best expert up

to an additive regret term of the order
√
T .

As in the standard framework of prediction with expert advice, the learner has an

access to experts’ predictions ξt(θ), θ ∈ Θ at each time step t. The WAA maintains

experts’ weights Pt(dθ), t = 1, . . . , T . After each step t the WAA updates the weights

of the experts according to their losses:

Pt(dθ) = exp

(
−
cLθt−1√

t

)
P0(dθ), (2.29)

where P0(dθ) is the initial weights of experts and c is a positive parameter.

The prediction of WAA is a weighted average of the experts’ predictions:

γt =

∫
Θ
ξt(θ)P

∗
t−1(dθ), (2.30)
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where P ∗t−1(dθ) are normalized weights:

P ∗t−1(dθ) =
Pt−1(dθ)

Pt−1(Θ)
.

In the finite case, an integral in (2.30) is replaced by a weighted sum of experts’

predictions ξt(i), i = 1, . . . , N .

In particular, when there are finitely many experts i ∈ Θ = {1, . . . , N} for bounded

games the following lemma holds.

Lemma 2.5.1. (Lemma 11 in Kalnishkan and Vyugin (2008)) For every L > 0,

every game 〈Ω,Γ, λ〉 such that |Ω| < +∞ with λ(y, γ) ≤ L for all y ∈ Ω and γ ∈ Γ and

every N = 1, 2, . . . for every merging strategy for N experts that follows the WAA with

initial weights p(1), p(2), . . . , p(N) ∈ [0, 1] such that
∑N

i=1 p(i) = 1 and c > 0 the bound

LT ≤ LiT +
√
T

(
1

c
ln

1

p(i)
+ cL2

)
,

is guaranteed for every T = 1, 2, . . . and every i = 1, 2, . . . , N.

After taking equal initial weights p(1) = p(2) = · · · = p(N) = 1/N in the WAA,

the additive term reduces to (cL2 + (lnN)/c)
√
T . When c =

√
lnN/L, this expression

reaches its minimum. The following corollary shows that the WAA allows us to obtain

additive regret of the order
√
T .

Corollary 1. (Corollary 14 in Kalnishkan and Vyugin (2008)) Under the con-

ditions of Lemma 2.5.1, there is a merging strategy such that the bound

LT ≤ LiT + 2L
√
T lnN

is guaranteed.

Applying Lemma 2.5.1 for an infinite number of experts and taking a positive

constant c = 1, we get the following Lemma.

Lemma 2.5.2. (Lemma 2 in Levina et al. (2010)) Let λ(y, γ) ≤ L for all y ∈ Ω

and γ ∈ Γ. The WAA guarantees that, for all T

LT ≤
√
T

(
− ln

∫
Θ

exp

(
−
LθT√
T

)
P0(dθ) + L2

)
.
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Chapter 3

Aggregating Algorithm for

prediction of packs

In this chapter, we formulate a protocol for prediction of vector-valued outcomes which

we call ‘packs’. It naturally applies to the situations when we need to provide the

predictions of several outcomes beforehand. Under the prediction of packs protocol,

the learner must make a few predictions without seeing the respective outcomes and

then the outcomes are revealed in one go. We consider this protocol to be a special

case of online prediction under delayed feedback. We develop the theory of prediction

with expert advice for packs by generalising the concept of mixability for vector-valued

outcomes. We propose a number of merging algorithms for prediction of packs with

tight worst-case loss upper bounds similar to those for the Aggregating Algorithm.

Unlike existing algorithms for delayed feedback settings, our algorithms do not depend

on the order of outcomes in a pack. Empirical experiments on sports and house price

datasets are carried out to study the performance of the new algorithms and compare

them against an existing method.

3.1 Introduction

In the basic online prediction protocol, at step t the learner outputs a prediction γt and

then immediately sees the true outcome yt, which is the feedback. The quality of the

prediction is assessed by a loss function λ(y, γ) measuring the discrepancy between the

prediction and outcome or, generally speaking, quantifying the (adverse) effect when

a prediction γ confronts the outcome y. The performance of the learner is assessed by

the cumulative loss over T trials
∑T

t=1 λ(yt, γt).

In this chapter, we are concerned with the problem of prediction with expert advice
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3. Aggregating Algorithm for prediction of packs

with delayed feedback. In a protocol with delayed feedback, there may be a delay

getting true outcomes yt. The learner may need to make a few predictions before

actually seeing the outcomes of past trials. We will consider a special case of that

protocol when outcomes come in packs: the learner needs to make a few predictions,

then all outcomes are revealed, and again a few predictions need to be made.

The similar framework was considered in bandit problem applied to clinical trials

which are run in batches: groups of patients have to be treated simultaneously (Perchet

et al. (2016)). It is shown that a very small number of batches gives close to minimax

optimal regret bounds of the order C
√
T . On the contrary, in our task, the size of

batches does not have to be small, and it can vary with time. Second, we show that

by applying the framework of prediction with expert advice to the considered problem,

we can achieve the constant regret term in the case of a finite number of experts.

A problem naturally fitting this framework is provided by aggregation of bookmak-

ers’ predictions. Vovk and Zhdanov (2009) predict the outcomes of sports matches on

the basis of probabilities calculated from the odds quoted by bookmakers. If matches

occur one by one, the problem naturally fits the basic prediction with expert advice

framework. However, it is common, e.g., in the English Premier League, that a few

matches occur on the same day. It would be natural to try and predict all the outcomes

beforehand. All matches from the same day can be treated as a pack in our framework.

We develop a theory of prediction with expert advice for packs by extending the

Aggregating Algorithm described in Section 2.2.1. In Section 3.3, we develop the

theory of mixability for games with packs of outcomes. Theorem 3.3.3 shows that

a game involving packs of K outcomes has the same profile of mixability constants

as the original game with single outcomes, but the learning rate divides by K. This

observation allows us to handle packs of constant size. However, as discussed above,

in really interesting cases the size of the pack varies with time and thus the mixability

of the environment varies from step to step. This problem can be approached in

different ways resulting in different algorithms with different performance bounds. In

Section 3.4, we introduce three Aggregating Algorithms for Prediction of Packs, AAP-

max, AAP-incremental, and AAP-current and obtain worst-case upper bounds for their

cumulative loss.

The general theory of the AA (Vovk, 1998) allows us to show in Section 3.5 that in

some sense our bounds are optimal. In Section 3.5.1, we provide a standalone derivation

of a lower bound for the mix-loss framework of Adamskiy et al. (2016). However, the

question of optimality for packs is far from being fully resolved and requires further

investigation.

As mentioned before, the problem of prediction of packs can be considered as a
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3. Aggregating Algorithm for prediction of packs

special case of the delayed feedback problem. This problem has been studied mostly

within the framework of online convex optimisation (Zinkevich, 2003; Joulani et al.,

2013; Quanrud and Khashabi, 2015). The terminology and approach of online convex

optimisation is different from ours, which go back to Littlestone and Warmuth (1994)

and were surveyed by Cesa-Bianchi and Lugosi (2006).

The problem of prediction with expert advice for delayed feedback can be solved

by running parallel copies of algorithms predicting single outcomes. In Section 3.2.2,

we describe the algorithm Parallel Copies, which is essentially BOLD of Joulani et al.

(2013) using the Aggregating Algorithm as a base algorithm for single outcomes. The

theory of the Aggregating Algorithm implies a worst-case upper bound on the loss of

Parallel Copies. We see that the regret term multiplies by the maximum delay or pack

size as in the existing literature (Joulani et al., 2013; Weinberger and Ordentlich, 2002).

The bounds we obtain for our new algorithms are the same (AAP-max and AAP-

incremental) or incompatible (AAP-current) with the bound for Parallel Copies. We

discuss the bounds in Section 3.5 and then in Section 3.6 carry out an empirical com-

parison of the performance of the algorithms.

For experiments we predict outcomes of sports matches based on bookmakers’ odds

and work out house prices based on descriptions of houses. The sports datasets in-

clude football matches, which naturally contain packs, and tennis matches, where we

introduce packs artificially in two different ways. The house price datasets contain

records of property transactions in Ames in the US and the London area. The datasets

only record the month of a transaction, so they are naturally organised in packs. The

house price experiments follow the approach of Kalnishkan et al. (2015): prediction

with expert advice can be used to find relevant past information. Predictors trained

on different sections of past data can be combined in the online mode so that relevant

past data is used for prediction.

The performance of the Parallel Copies algorithm depends on the order of outcomes

in the packs, while our algorithms are order-independent. We compare the cumulative

loss of our algorithms against the loss of Parallel Copies averaged over random permu-

tations within packs. We conclude that while Parallel Copies can perform very well,

especially if the order of outcomes in the packs carries useful information, the loss of our

algorithms is always close to the average loss of Parallel Copies and some algorithms

beat the average.

We then compare our algorithms to each other concluding that AAP-max is the

worst and AAP-current outperforms AAP-incremental if the ratio of the maximum to

the minimum pack size is small.
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3.2 Preliminaries and Background

In this section, we introduce the framework of prediction of packs and review connec-

tions with the literature.

3.2.1 Protocols for Prediction of Packs

A game G = 〈Ω,Γ, λ〉 contains an outcome space Ω, prediction space Γ, and loss

function λ : Γ× Ω→ [0,+∞].

In the classical protocol, the learner makes a prediction (possibly upon using a

signal) and then the outcome is immediately revealed. In this chapter, we consider an

extension of this protocol and allow the outcomes to come in packs of possibly varying

size. The learner must produce a pack of predictions before seeing the true outcomes.

The following protocol summarises the framework.

Protocol 4 (Prediction of packs).

FOR t = 1, 2, . . .

nature announces xt,k ∈ X, k = 1, 2, . . . ,Kt

learner outputs γt,k ∈ Γ, k = 1, 2, . . . ,Kt

nature announces yt,k ∈ Ω, k = 1, 2, . . . ,Kt

learner suffers losses λ(yt,k, γt,k), k = 1, 2, . . . ,Kt

ENDFOR

At every trial t the learner needs to make Kt predictions rather than one. We will

be speaking of a pack of the learner’s predictions γt,k ∈ Γ, k = 1, 2, . . . ,Kt, a pack of

outcomes yt,k ∈ Ω, k = 1, 2, . . . ,Kt etc.

In this chapter, we assume a full information environment. The learner knows Ω,

Γ, and λ. It sees all yt,k as they become available. On the other hand, we make

no assumptions on the mechanism generating yt,k and will be interested in worst-case

guarantees for the loss. The outcomes do not have to satisfy probabilistic assumptions

such as i.i.d., and can behave maliciously.

Now let E1, E2, . . . , EN be experts working according to Protocol 4. Suppose that

on each turn, their predictions are made available to a learner S as a special kind of

side information. The learner then works according to the following protocol.

Protocol 5 (Prediction of packs with expert advice).

FOR t = 1, 2, . . .

each expert Ei, i = 1, 2, . . . , N, announces

predictions ξt,k(i) ∈ Γ, k = 1, 2, . . . ,Kt
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3. Aggregating Algorithm for prediction of packs

learner outputs predictions γt,k ∈ Γ, k = 1, 2, . . . ,Kt

nature announces yt,k ∈ Ω, k = 1, 2, . . . ,Kt

each expert Ei, i = 1, 2, . . . , N, suffers

losses λ(yt,k, ξt,k(i)), k = 1, 2, . . . ,Kt

learner suffers losses λ(yt,k, γt,k), k = 1, 2, . . . ,Kt

ENDFOR

The goal of the learner in this setup is to suffer loss close to the best expert in

retrospect (in whatever formal sense that can be achieved). We look for merging

strategies for the learner making sure that the learner achieves low cumulative loss as

compared to the experts; we will see that one can quantify cumulative loss in different

ways.

The merging strategies we are interested in are computable in some natural sense;

we will not make exact statements about computability though. We do not impose any

restrictions on experts. In what follows, the reader may substitute the clause ‘for all

predictions ξt,k(i)’ appearing in Protocol 5 for the more intuitive clause ‘for all experts’.

There can be subtle variations of this protocol. Instead of getting all Kt predictions

from each expert at once, the learner may be getting predictions for each outcome one

by one and making its own before seeing the next set of experts’ predictions. For most

of our analysis this does not matter, as we will see later. The only thing that matters

is that the outcomes come in one go after the learner has finished predicting the pack.

3.2.2 Delayed Feedback Approach

The protocol of prediction with packs can be considered as a special case of the delayed

feedback settings surveyed by Joulani et al. (2013).

In the delayed feedback prediction with expert advice protocol, on every step the

learner gets just one round of predictions from each expert and must produce its own.

However, the outcome corresponding to these predictions may become available later.

If it is revealed on the same trial as in Section 2.2.1, we say that the delay is one. If it

is revealed on the next trial, the delay equals two, etc. Prediction of packs of size not

exceeding K can be considered as prediction with delays not exceeding K.

The algorithm BOLD (Joulani et al., 2013) for this protocol works as follows. Take

an algorithm working with delays of 1 (or packs of size 1); we will call it the base

algorithm. In order to merge experts’ predictions, we will run several copies of the

base algorithm. They are independent in the sense that they do not share information.

Each copy will repeatedly receive experts’ predictions for merging, output a prediction,

and then wait for the outcome corresponding to the prediction. At every moment a
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copy of the base algorithm either knows all outcomes for the predictions it has made or

is expecting the outcome corresponding to the last prediction. In the former case we

say that the copy is ready (to merge more experts’ predictions) and in the later case

we say that the copy is blocked (and cannot merge).

At each trial, when a new round of experts’ predictions arrives, we pick a ready

algorithm (say, one with the lowest number) and give the experts’ predictions to it. It

produces a prediction, which we pass on, and the algorithm becomes blocked until the

outcome for that trial arrives. If all algorithms are currently blocked, we start a new

copy of the base algorithm.

Suppose that we are playing a game G and C is admissible for G with a learning rate

η. For the base algorithm take AA with C, η and initial weights p(1), p(2), . . . , p(N).

If the delay never exceeds D, we never need more than D algorithms in the array and

each of them suffers loss satisfying inequality (2.10). Summing the bounds up, we get

that the loss of S using this strategy satisfies

LT ≤ CLiT +
CD

η
ln

1

p(i)
(3.1)

for every expert Ei, where the sum in LT is taken over all outcomes revealed before step

T + 1. The value of D does not need to be known in advance; we can always expand

the array as the delay increases. We will refer to the combination of BOLD and AA in

the above fashion as the Parallel Copies algorithm.

For Protocol 5 described in Section 3.2.1 we can define plain cumulative loss

LT =
T∑
t=1

Kt∑
k=1

λ(yt,k, γt,k) , (3.2)

LiT =
T∑
t=1

Kt∑
k=1

λ(yt,k, ξt,k(i)) , i = 1, 2, . . . , N. (3.3)

Then (3.1) implies

LT ≤ CLiT +
CK

η
ln

1

p(i)
, (3.4)

where K = maxt=1,2,...,T Kt, for S following Parallel Copies.

However, the Parallel Copies algorithm has two disadvantages. First, it requires

us to maintain D arrays of experts’ weights. Each copy of AA needs to maintain N

weights, one for each expert. If packs of size D come up, we will need D such arrays.

Secondly, and more importantly, the algorithm depends on the order of predictions

in the pack. It matters what copy of the AA will pick a particular round of experts’

predictions and the result is not invariant w.r.t. the order within the packs.
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Below we will build algorithms that are order-independent and have loss bounds

both similar (Section 3.4.1) and essentially different (Section 3.4.2) from (3.4). Our

method is based on a generalisation of the concept of mixability and a direct application

of AA to packs. The resulting algorithms will maintain one array of N weights (or

losses).

3.3 Mixability

In this section, we extend the concept of mixability defined in Section 2.2.1 to packs of

outcomes. This will be a key tool for the analysis of the algorithms we will construct.

We need upper bound on admissible constants in order to get upper loss bounds and

lower bounds in order to establish some form of optimality. As we cannot restrict

ourselves to packs of constant size, we need to consider suboptimal constants too.

For a game G = 〈Ω,Γ, λ〉 and a positive integer K consider the game GK with the

outcome and prediction space given by the Cartesian products ΩK and ΓK and the

loss function λ(K)((y1, y2, . . . , yK), (γ1, γ2, . . . , γK)) =
∑K

k=1 λ(yk, γk). What are the

mixability constants for this game? Let Cη be the constants for G and C
(K)
η be the

constants for GK .

The following lemma provides an upper bound for C
(K)
η .

Lemma 3.3.1. If C > 0 is admissible for a game G with a learning rate η > 0, then

C is admissible for the game GK with the learning rate η/K.

Proof. Take N predictions in the game GK , ξ(1) = (ξ1
1 , ξ

1
2 , . . . , ξ

1
K), . . . , ξ(N) =

(ξN1 , ξ
N
2 , . . . , ξ

N
K ) and weights p(1), p(2), . . . , p(N). Since C is admissible for G, there

are predictions γ1, γ2, . . . , γK ∈ Γ such that

e−ηλ(yk,γk)/C ≥
N∑
i=1

p(i)e−ηλ(yk,ξ
i
k)

for every yk ∈ Ω. We will use (γ1, γ2, . . . , γK) ∈ ΓK to show that C is admissible for

GK . Multiplying the inequalities we get

e−η
∑K
k=1 λ(yk,γk)/C ≥

K∏
k=1

N∑
i=1

p(i)e−ηλ(yk,ξ
i
k) .

We will now apply the generalised Hölder inequality. On measure spaces (S,Σ, µ)

formed by the space S, the σ-field Σ of measurable sets in this space, and the mea-

sure µ defined on this σ-field, the inequality states that for all measurable real- or

36



3. Aggregating Algorithm for prediction of packs

complex-valued functions f1, . . . , fK defined on S: ‖
∏K
k=1 fk‖r ≤

∏K
k=1 ‖fk‖rk , where∑K

k=1 1/rk = 1/r. This follows by induction from the version of the inequality given by

(Loève, 1977, Section 9.3). Interpreting a vector xk = (xk(1), xk(2), . . . , xk(N)) ∈ RN

as a function on a discrete space {1, 2, . . . , N} and introducing on this space a measure

p(i), i = 1, 2, . . . , N , we obtain

(
N∑
i=1

p(i)

∣∣∣∣∣
K∏
k=1

xk(i)

∣∣∣∣∣
r)1/r

≤
K∏
k=1

(
N∑
i=1

p(i) |xk(i)|rk
)1/rk

.

Letting rk = 1 and r = 1/K we get

e−η
∑K
k=1 λ(yk,γk)/C ≥

K∏
k=1

N∑
i=1

p(i)e−ηλ(yk,ξ
i
k)

≥

(
N∑
i=1

p(i)e−
∑K
k=1 ηλ(yk,ξ

i
k)/K

)K
.

Raising the resulting inequality to the power 1/K completes the proof.

Remark 1. Note that the proof of the lemma offers a constructive way of solving (2.1)

for GK provided we know how to solve (2.1) for G. Namely, to solve (2.1) for GK with

the learning rate η/K, we solve K systems for G with the learning rate η.

We will now show that the admissible constants given by Lemma 3.3.1 cannot be

decreased for a wide class of games.

Lemma 3.3.2. Let a game G have a convex set of superpredictions. If C > 0 is

admissible for GK with a learning rate η/K > 0, then C is admissible for G with the

learning rate η.

The requirement of convexity is not too restrictive. For a wide class of games the

following implication holds. If the game is mixable (i.e., Cη = 1 for some η > 0), then

its set of superpredictions is convex. (Kalnishkan et al., 2004, Lemma 7) essentially

prove this for games with finite sets of outcomes.

Proof. Since C > 0 is admissible for GK with the learning rate η/K > 0, for every N

arrays of predictions ξ(1) = (ξ1
1 , ξ

1
2 , . . . , ξ

1
K), . . . , ξ(N) = (ξN1 , ξ

N
2 , . . . , ξ

N
K ) and weights

p(1), p(2), . . . , p(N) there are γ1, γ2, . . . , γK ∈ Γ such that

K∑
k=1

λ(yk, γk) ≤ −
C

η/K
ln

N∑
i=1

p(i)e−η
∑K
k=1 λ(yk,ξ

i
k)/K
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for all y1, y2, . . . , yK ∈ Ω.

Given N predictions ξ1, ξ2, . . . , ξN ∈ Γ, we can turn them into predictions from ΓK

by considering N arrays ξ(i) = (ξi, . . . , ξi) ∈ ΓK , i = 1, 2, . . . , N . By the above there

are predictions γ∗1 , γ
∗
2 , . . . , γ

∗
K ∈ Γ satisfying

1

K

K∑
k=1

λ(y, γ∗k) ≤ −C
η

ln

N∑
i=1

p(i)e−ηλ(y,ξi)

for all y ∈ Ω (we let y1 = y2 = . . . = yK = y).

We have found a prediction from ΓK , but we need one from Γ. The problem is

that γ∗k do not have to be equal. However,
∑K

k=1 λ(y, γ∗k)/K is a convex combination of

superpredictions w.r.t. G. Since the set of superpredictions is convex, this expression

is a superprediction and there is γ ∈ Γ such that λ(y, γ) ≤
∑K

k=1 λ(y, γ∗k)/K for all

y ∈ Ω.

Since Cη and C
(K)
η/K are the infimums of admissible values, Lemma 3.3.1 and Lemma

3.3.2 can be combined into the following theorem.

Theorem 3.3.3. For a game G with a convex set of superprediction, any positive

integer K and learning rate η > 0, we have C
(K)
η/K = Cη.

This theorem allows us to merge experts’ predictions in an optimal way for the case

when all packs are of the same size. In this case, we simply apply Proposition 2.10 and

all the existing theory of the AA to the game GK .

In order to analyse the case when pack sizes vary, we need to make a simple obser-

vation on the behaviour of C
(K1)
η/K2

for K1 ≤ K2.

Lemma 3.3.4. For every game G, if C > 0 is admissible with a learning rate η1 > 0,

it is also admissible with every η2 ≤ η1. Hence the value of Cη is non-decreasing in η.

Proof. Raising the inequality

e−η1λ(y,γ)/C ≥
N∑
i=1

p(i)e−η1λ(y,ξ(i))

to the power η2/η1 ≤ 1 and using Jensen’s inequality we get

e−η2λ(y,γ)/C ≥

(
N∑
i=1

p(i)e−η1λ(y,ξ(i))

)η2/η1

≥
N∑
i=1

p(i)e−η2λ(y,ξ(i)) .

Thus as we decrease η, the infimum of admissible C can only go down.
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Corollary 2. For every game G and positive integers K1 ≤ K2, we have C
(K1)
η/K2

≤

C
(K1)
η/K1

.

Proof. The proof is by applying Lemma 3.3.4 to GK1 .

Remark 2. The proofs of the lemma and corollary are again constructive in the fol-

lowing sense. If we know how to solve (2.1) for G with a learning rate η1 and an

admissible C, we can solve (2.1) for η2 ≤ η1 and the same C.

Suppose we play the game GK1 but have to use the learning rate η/K2, where K2 ≥
K1, with C admissible for G with η. To solve (2.1), we can take K1 solutions for (2.1)

for G with the learning rate η.

3.4 Algorithms for Prediction of Packs

In this section, we apply the theory we have developed to obtain prediction algorithms.

This can be done in two essentially different ways leading to different types of bounds.

In Section 3.4.1 we introduce AAP-max and AAP-incremental, and in Section 3.4.2 we

introduce AAP-current.

3.4.1 Prediction with Plain Bounds

Consider a game G = {Ω,Γ, λ}. The Aggregating Algorithm for Packs with the Known

Maximum (AAP-max) and the Aggregating Algorithm for Packs with an Unknown Max-

imum (AAP-incremental) take as parameters a prior distribution p(1), p(2), . . . , p(N)

(such that p(i) ≥ 0 and
∑N

i=1 p(i) = 1), a learning rate η > 0 and a constant C admis-

sible for η. AAP-max also takes a constant K > 0. The intuitive meaning is that K is

an upper bound on pack sizes, Kt ≤ K.

The algorithms follow very similar protocols and we will describe them in parallel.

The algorithm AAP-max works as follows.

Protocol 6 (AAP-max).

1 initialise losses Li0 = 0, i = 1, 2, . . . , N

2 this step is skipped

3 set weights to w0(i) = p(i), i = 1, 2, . . . , N

4 FOR t = 1, 2, . . .

5 normalise the weights pt−1(i) = wt−1(i)/
∑N

i=1wt−1(i)

6 FOR k = 1, 2, . . . ,Kt

7 read the experts’ predictions ξt,k(i), i = 1, 2, . . . , N

8 output γt,k ∈ Γ satisfying for all y ∈ Ω the
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inequality λ(y, γt,k) ≤ −C
η ln

∑N
i=1 pt−1(i)e−ηλ(y,ξt,k(i))

9 ENDFOR

10 observe the outcomes yt,k, k = 1, 2, . . . ,Kt

11 update the losses Lit = Lit−1 +
∑Kt

k=1 λ(yt,k, ξt,k(i)),

i = 1, 2, . . . , N

12 let Kt
max = K

13 update the experts’ weights wt(i) = p(i)e−ηL
i
t/K

t+1
max,

i = 1, 2, . . . , N

14 END FOR

The algorithm AAP-incremental follows a protocol that is the same except for the

following lines:

Protocol 7 (AAP-incremental).

2 initialise K0
max = 1

12 update Kt
max = max(Kt−1

max,Kt)

As AAP-max always uses the same K for calculating the weights, line 13 can be

replaced with an equivalent

wt(i) = wt−1(i)e−η
∑Kt
k=1 λ(yt,k,ξt,k(i))/K

and losses do not need to be maintained explicitly.

If C is admissible for G with the learning rate η and pt−1(i), i = 1, 2, . . . , N , the

step on line 8 can always be performed and the (plain) cumulative losses (3.2) and (3.3)

satisfy the following inequalities.

Theorem 3.4.1. Let C be admissible for G with the learning rate η. Then

1. The learner following AAP-max suffers loss satisfying

LT ≤ CLiT +
KC

η
ln

1

p(i)

for all outcomes and experts’ predictions as long as the pack size does not exceed

K, i.e., Kt ≤ K, t = 1, 2, . . . , T .

2. The learner following AAP-incremental suffers loss satisfying

LT ≤ CLiT +
KC

η
ln

1

p(i)
,
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where K is the maximum pack size over T trials, K = maxt=1,2,...,T+1Kt, for all

outcomes and experts’ predictions.

The theorem provides an alternative of Lemma 2.2.3 for the prediction of packs. The

bounds are similar to the bound for the AA except that the regret term is multiplied

by the maximum pack size K. For mixable games the theorem states that for a finite

number of experts the AAP-max and AAP-incremental predict as well as the best

expert up to an additive constant.

Proof. The proof essentially repeats that of Proposition 2.10. By induction one can

show that

e−ηLT /(CK
T
max) ≥

N∑
i=1

p(i)e−ηL
i
T /K

T
max . (3.5)

Line 8 of Protocols 6 and 7 ensure that inequality (3.5) holds for T = 1.

Assume that (3.5) holds. We first raise inequality (3.5) to the power KT
max/K

T+1
max ≤

1 and apply Jensen’s inequality:

e−ηLT /(CK
T+1
max ) ≥

(
N∑
i=1

p(i)e−ηL
i
T /K

T
max

)KT
max/K

T+1
max

≥
N∑
i=1

p(i)e−ηL
i
T /K

T+1
max . (3.6)

According to line 8 of Protocols 6 and 7 we have that

e
− η

KT+1
max

∑KT+1
k=1 λ(yT+1,k,γT+1,k)/C

≥
N∑
i=1

pT (i)e
− η

KT+1
max

∑KT+1
k=1 λ(yT+1,k,ξT+1,k(i))

=

∑N
i=1 p(i)e

−ηLiT+1/K
T+1
max∑N

i=1 p(i)e
−ηLiT /K

T+1
max

. (3.7)

By multiplying inequalities (3.6) and (3.7), we get (3.5).

To complete the proof, it remains to drop all terms from the sum in inequality (3.5)

except for one.

3.4.2 Prediction with Bounds on Pack Averages

The Aggregating Algorithm for Pack Averages (AAP-current) takes as parameters a

prior distribution p(1), p(2), . . . , p(N) (such that p(i) ≥ 0 and
∑N

i=1 p(i) = 1), a learning

rate η > 0 and a constant C admissible for η.

Protocol 8 (AAP-current).

1 initialise weights w0(i) = p(i), i = 1, 2, . . . , N
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2 FOR t = 1, 2, . . .

3 normalise the weights pt−1(i) = wt−1(i)/
∑N

i=1wt−1(i)

4 FOR k = 1, 2, . . . ,Kt

5 read the experts’ predictions ξt,k(i), i = 1, 2, . . . , N

6 output γt,k ∈ Γ satisfying for all y ∈ Ω the

inequality λ(y, γt,k) ≤ −C
η ln

∑N
i=1 pt−1(i)e−ηλ(y,ξt,k(i))

7 ENDFOR

8 observe the outcomes yt,k, k = 1, 2, . . . ,Kt

9 update the experts’ weights wt(i) = wt−1(i)e−η
∑Kt
k=1 λ(yt,k,ξt,k(i))/Kt,

i = 1, 2, . . . , N

10 END FOR

In line 9 we divide by the size of the current pack.

Defining cumulative average loss of a strategy S and experts Ei working in the

environment specified by Protocol 4 as

Laverage,T =
T∑
t=1

∑Kt
k=1 λ(yt,k, γt,k)

Kt
,

Liaverage,T =
T∑
t=1

∑Kt
k=1 λ(yt,k, ξt,k(i))

Kt
, i = 1, 2, . . . , N,

we get the following theorem.

Theorem 3.4.2. If C is admissible for G with the learning rate η, then the learner

following AAP-current suffers loss satisfying

Laverage,T ≤ CLiaverage,T +
C

η
ln

1

p(i)
(3.8)

for all outcomes and experts’ predictions.

The bound (3.8) coincides with the bound for the AA in Lemma 2.2.3. However,

note that the bound for the AAP-current is provided on the cumulative average loss

instead of the cumulative loss. For mixable games the theorem states that for a finite

number of experts the AAP-current predicts as well as the best expert up to an additive

constant in terms of the cumulative average loss.

Proof. We again prove by induction that

e−ηLaverage,T /C ≥
N∑
i=1

p(i)e−ηL
i
average,T . (3.9)
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The step on line 6 of Protocol 8 ensures that inequality (3.9) holds for T = 1. For time

T + 1 we have that

e
− η
KT+1

∑KT+1
k=1 λ(yT+1,k,γT+1,k)/C ≥

N∑
i=1

pT (i)e
− η
KT+1

∑KT+1
k=1 λ(yT+1,k,ξT+1,k(i))

=

∑N
i=1 p(i)e

−ηLiaverage,T+1∑N
i=1 p(i)e

−ηLiaverage,T

. (3.10)

Assume that (3.9) holds. The induction step is by multiplying inequalities (3.9) and

(3.10).

3.5 Discussion and Optimality

The loss bounds from Theorem 3.4.1 do not improve on inequality (3.4), which holds for

Parallel Copies (see Section 3.2.2 for details). However, the performance of AAP-max

and AAP-incremental does not depend on the order of outcomes in packs. In Sec-

tion 3.6.2 we describe numerical experiments comparing AAP-max, AAP-incremental,

and AAP-current against the loss of Parallel Copies averaged over permutations within

packs.

If all Kt are equal, K1 = K2 = . . . = KT = K, the algorithms AAP-max and

AAP-incremental are identical and equivalent to applying the Aggregating Algorithm

with the learning rate η/K to the game GK . Under the conditions of Theorem 3.3.3,

the optimality property of the Aggregating Algorithm proven by Vovk (1998). Thus

the constants in the bounds of Theorem 3.4.1 cannot be improved without the loss of

generality. However, if the pack size varies, AAP-max clearly uses a suboptimal learning

rate η/K where η/Kt is needed. AAP-incremental does that if the pack size decreases.

We compare AAP-incremental and AAP-max experimentally in Section 3.6.2.

The bound of Theorem 3.4.2 is, to our knowledge, novel and cannot be straightfor-

wardly obtained using a parallel copies-type merging strategy. If the pack size is the

same, the bound is optimal (and identical to those from Theorem 3.4.1). If the pack

size varies, AAP-current always uses the optimal learning rate. However, technically it

is not covered by the optimality results of Vovk (1998) as the game changes from step

to step. We leave this as an open problem.

The bound of Theorem 3.4.2 involves cumulative average loss and does not imply

good bounds for plain cumulative loss straightforwardly. If Kmin ≤ K1,K2, . . . ,KT ≤
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Kmax, then Laverage,T ≥ LT /Kmax and Liaverage,T ≤ LiT /Kmin. We get the bound

LT ≤
Kmax

Kmin
CLiT +

CKmax

η
ln

1

p(i)
(3.11)

for the cumulative loss of AAP-current, which appears inferior to those from Theo-

rem 3.4.1. However, in experiments AAP-current shows good performance even in

terms of the plain cumulative loss; see Section 3.6.2. Bound (3.11), loose it may be,

provides an explanation to some phenomena we observe in Section 3.6.2.

3.5.1 A Mix Loss Lower Bound

In this section, we present a self-contained lower bound formulated for the mix loss

protocol of Adamskiy et al. (2016). The proof sheds some further light on the extra

term in the bound.

The mix loss protocol covers a number of learning settings including prediction

with a mixable loss function (Adamskiy et al., 2016, Section 2). Consider the following

protocol porting mix loss Protocol 1 of Adamskiy et al. (2016) to prediction of packs.

Protocol 9 (Mix loss).

FOR t = 1, 2, . . .

nature announces Kt

learner outputs Kt arrays of N probabilities

pt,k(1), pt,k(2), . . . , pt,k(N), k = 1, 2, . . . ,Kt, such that

pt,k(i) ∈ [0, 1] for all i and k and
∑N

i=1 pt,k(i) = 1 for all k

nature announces losses `t,1(i), `t,2(i), . . . , `t,Kt(i) ∈ (−∞,+∞]

learner suffers loss `t = −
∑Kt

k=1 ln
∑N

i=1 pt,k(i)e
−`t,k(i)

ENDFOR

The total loss of the learner over T steps is LT =
∑T

t=1 `t. It should compare

well against LiT =
∑T

t=1 `t(i), where `t(i) =
∑Kt

k=1 `t,k(i). The values of LiT are the

counterparts of experts’ total losses. We shall propose a course of action for the nature

leading to a high value of the regret LT −mini=1,2,...,N L
i
T .

Lemma 3.5.1. For any K arrays of N probabilities pk(1), pk(2), . . . , pk(N), k =

1, 2, . . . ,K (where pk(i) ∈ [0, 1] for all i = 1, 2, . . . , N and k = 1, 2, . . . ,K, and∑N
i=1 pk(i) = 1 for all k), there is i0 such that

K∏
k=1

pk(i0) ≤ 1

NK
.
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Proof. Assume this is not the case. Let
∏K
k=1 pk(i) > 1/NK for all i. By the inequality

of arithmetic and geometric means

K∑
k=1

pk(i)

K
≥

(
K∏
k=1

pk(i)

) 1
K

for all i = 1, 2, . . . , N . Summing the left-hand side over i we get

N∑
i=1

K∑
k=1

pk(i)

K
=

1

K

K∑
k=1

N∑
i=1

pk(i) = 1 .

Summing the right-hand side over i and using the assumption on the products of pk(i),

we get
N∑
i=1

(
K∏
k=1

pk(i)

) 1
K

>
N∑
i=1

(
1

NK

) 1
K

=
N∑
i=1

1

N
= 1 .

The contradiction proves the lemma.

Theorem 3.5.2. Over a single pack of size K the regret R of the strategy with a mix

loss should be lower-bounded by K lnN .

Proof. Here is the strategy for the nature. Upon getting the probability distribu-

tions from the learner, it finds i0 such that
∏Kt
k=1 pt,k(i0) ≤ 1/NKt and sets `t,1(i0) =

`t,2(i0) = . . . = `t,Kt(i0) = 0 and `t,k(i) = +∞ for all other i and k = 1, 2, . . . ,Kt. The

learner suffers loss

`t = −
Kt∑
k=1

ln pt,k(i0) = − ln

Kt∏
k=1

pt,k(i0) ≥ − ln
1

NKt
= Kt lnN

while `t(i0) = 0. We see that over a single pack of size K we can achieve the regret of

Kt lnN . Thus every upper bound of the form Lt ≤ Lit +Rt should have Rt ≥ Kt lnN ,

where Kt is the size of the t-th pack.

3.6 Experiments

In this section, we present some empirical results1. We want to compare the behaviour

of the AAP family algorithms against each other and against the Parallel Copies algo-

rithm of Section 3.2.2. Sections 3.6.3 and 3.6.4 investigate related questions concerned

with the power of online learning.

1The code written in R is available at https://github.com/RaisaDZ/AAP-.
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3.6.1 Datasets and Experts

In our experiments we use two sports datasets and two datasets of house prices.

The idea of using odds output by bookmakers for testing prediction with expert

advice algorithms goes back to Vovk and Zhdanov (2009). The bookmakers are treated

as black boxes; we take the odds they quote from publicly available sources and do

not look into techniques they use to work out the odds. This fits perfectly with the

methodology of prediction with expert advice.

There is a tradition of using house prices as a benchmark for machine learning

algorithms going back to the Boston housing dataset. However, batch learning protocols

have hitherto been used in most studies. Recently extensive datasets with timestamps

have become available. They call for online learning protocols. Property prices are

prone to strong movements over time and the pattern of change may be complicated.

Online algorithms should capture these patterns.

We train learning algorithms (regression and trees) on housing data and then use

methods of prediction with expert advice to merge their predictions.

Sports datasets

In order to establish continuity with the existing empirical work, we use the tennis

dataset2 studied by Vovk and Zhdanov (2009). It contains historical information about

tennis tournaments from 2004, 2005, 2006, and 2007, including Australian Open, French

Open, US Open, and Wimbledon. The outcomes in the dataset are results of tennis

matches coded as 0 or 1 according to which side wins (there can be no draws). The total

number of outcomes is 10087. A prediction is γ ∈ [0, 1], which can be understood as

the probability of the outcome 1. We use the quadratic loss function λ(y, γ) = (γ−y)2.

This falls under the definition of the general square-loss game described in Section 2.2.2.

Note that the loss function used in this chapter equals one half of the one used by Vovk

and Zhdanov (2009); we make this choice for consistency with regression experiments.

Four bookmakers are taken as experts, Bet365, Centrebet, Expekt, and Pinnacle

Sports. What bookmakers output is odds and we need probabilities for the experiments.

Vovk and Zhdanov (2009) give two methods for calculating the probabilities. For this

dataset Khutsishvili’s method (Vovk and Zhdanov, 2009, Section 3) was used.

The dataset does not contain packs, so we introduced them artificially. We did this

in two ways. First, we grouped adjacent matches into packs of random size from 1 to

12. We refer to the resulting dataset as tennis with small packs. Secondly, we grouped

adjacent matched into packs of random size from 5 to 16 and thus constructed the

2Available at http://vovk.net/ICML2008/.
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tennis with large packs dataset. (The sizes were independently drawn from respective

uniform distributions.)

The second sports dataset was compiled by us from historical information3 on

football matches and bookmakers’ odds. The dataset covers four seasons, 2013/2014,

2014/2015, 2015/2016, and 2016/2017 of the English Premier League and totals 1520

matches. Each match can have three outcomes, ‘home win’, ‘draw’, or ‘away win’,

interpreted as three unit vectors (1, 0, 0), (0, 1, 0), and (0, 0, 1). A prediction is a vector

γ = (p1, p2, p3) from the simplex, i.e., pi ≥ 0 and p1 + p2 + p3 = 1 and the loss is the

quadratic norm of the difference, λ(y, γ) = ‖γ − y‖22. This is a case of the multidimen-

sional Brier game (Vovk and Zhdanov, 2009). The game is mixable and the maximum

learning rate such that Cη = 1 is η0 = 1; the substitution function is provided by (Vovk

and Zhdanov, 2009, Proposition 2).

We recalculated experts’ prediction probabilities from bookmakers’ odds using the

simpler method described by (Vovk and Zhdanov, 2009, Appendix B) for speed. We

took Bet365, Bet&Win, Interwetten, Ladbrokes, Sportingbet, Will Hill, Stan James,

VC Bet, and BetBrain.

The dataset is naturally organised in packs: from 1 to 10 matches occur on one

day. We treat matches from the same day as a pack.

Ames House Prices

The Ames dataset describes the property sales that occurred in Ames, Iowa between

2006 and 2010. The dataset contains records of 2930 house sales transactions with 80

attributes, which are a mixture of nominal, ordinal, continuous, and discrete parameters

(including physical property measurements) affecting the property value. The dataset

was compiled by De Cock (2011) for use in statistics education as a modern substitute

for the Boston Housing dataset. For the outcome we take the raw sales prices or

their logarithms; these make two sets of experiments. We try to predict the outcomes

measuring the deviation by the squared difference. This again falls under the definition

of the general square-loss game of Section 2.2.2. The bounds A and B are taken from

the first year of data, which is used for training.

There are timestamps in the dataset, but they contain only the month and the year

of the purchase. The date is not available. We treat one month of transactions as a

pack and interpret the problem as an online one falling under Protocol 4.

We create two pools of experts for experiments. In the first pool, our experts are

linear regression models based on only two attributes: the neighbourhood and the

total square footage of the dwelling. These simple models explain around 80% of the

3Available at http://football-Data.co.uk
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variation in sales prices and they are very easy to train. Each expert has been trained

on one month from the first year of the data. Hence there are 12 ‘monthly’ experts.

For the second pool we use random forests (RF) models after Bellotti (2017). ‘Random

forests are a combination of tree predictors such that each tree depends on the values

of a random vector sampled independently and with the same distribution for all trees

in the forest’ (Breiman (2001)). A model was built for each quarter of the first year.

Hence there are four ‘quarterly’ experts. They take longer to train but produce better

results. Note that ‘monthly’ RF experts were not practical; training a tree requires a

lot of data and ‘monthly’ experts returned very poor results. We apply the experts to

predict the prices starting from year two.

London House Prices

Another dataset we used contains house prices in and around London over the period

2009 to 2014. This dataset was made publicly available by the Land Registry4 in the

UK and was originally sourced as part of a Kaggle competition. The Property Price

data consists of details for property sales and contains around 1.38 million observations.

This dataset was studied by Bellotti (2017) to provide reliable region predictions for

Automated Valuation Models of house prices. Again, we try to predict sales prices and

their logarithms.

As with the Ames dataset, we use linear regression models that were built for each

month of the first year of the data as experts of AAP. The features that were used

in regression models contain information about the property: property type, whether

new build, whether free- or leasehold. Along with the information about the proximity

to tube and railway stations, our models use the English indices of deprivation from

20105, which measures relative levels of deprivation. The following deprivation scores

were used in models: income, employment, health and disability, education for children

and skills for adults, barriers to housing and services with sub-domains wider barriers

and geographical barriers, crime, living environment score with sub-domains for indoor

and outdoor living (i.e., quality of housing and external environment, respectively). In

addition to the general income score, separate scores for income deprivation affecting

children and the older population were used.

In the second set of experiments on London house price dataset, we use RF models

built for each month of the first year as experts. Unlike the Ames dataset, London

4See HM Land Registry Monthly Property Transaction Data on http://data.gov.uk,
https://data.gov.uk/dataset/7d866093-2af5-4076-896a-2d19ca2708bb/hm-land-registry-

monthly-property-transaction-data
5See https://www.gov.uk/government/statistics/english-indices-of-deprivation- 2010
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dataset contains enough observations to train RF models on one month of data. Hence

we get 12 ‘monthly’ experts.

3.6.2 Comparison of Merging Algorithms

Comparison of AAP with Parallel Copies of AA

We start by comparing the family of AAP merging algorithms against parallel copies of

AA. While for AAP algorithms the order of examples in the pack makes no difference,

for Parallel Copies it is important. To analyse the dependency on the order we ran

Parallel Copies 500 times randomly shuffling each pack each time. The experiments

were only carried out on sports and Ames data, as on London data they would take

too long to complete. Figures 3.1 and 3.2 show histograms of total losses of Parallel

Copies, total losses of AAP family algorithms, and the total loss of Parallel Copies with

one particular order, as in the database.

We see that while the performance of Parallel Copies can be better for particular

orderings, order-independent performance loss of AAP family algorithms is always close

to the average loss of Parallel Copies and some algorithms from the family beat it.

AAP-current is always better than the average. In experiments with Ames data and

tennis data with large packs AAP-current is the best while AAP-incremental is the

best on tennis data with small packs and football data.

There is one remarkable ordering where Parallel Copies show greatly superior per-

formance on Ames data. If packs are ordered by PID (i.e., as in the database), Parallel

Copies suffer substantially lower loss. PID (Parcel identification ID) is assigned to each

property by the tax assessor. It is related to the geographical location. When the packs

are ordered by PID, Parallel Copies benefit from geographical proximity of the houses;

each copy happens to get similar houses.

This effect is not observed on sports datasets as the order in the dataset does not

convey any particular information.

Comparison of AAP-incremental and AAP-max

As one can see from Figures 3.1 and 3.2, AAP-max is usually the worst among the

AAP bunch. In this section, we check this by comparing AAP-max against AAP-

incremental. Here AAP-max receives the maximum pack size calculated retrospectively

from the start and AAP-incremental uses the current maximum.

For a detailed comparison of two online learning algorithms, S1 and S2, it is not

enough to consider the two values of their total losses. We need to see how these

losses were accumulated. So, following Vovk and Zhdanov (2009) and Kalnishkan et al.
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(a) Tennis data, small packs
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(b) Tennis data, large packs
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(c) Football data

Figure 3.1: Histogram of total losses of Parallel Copies with total losses of AAP algo-
rithms on sports datasets

(2015), we plot the difference of their cumulative losses vs time. If the difference steadily

decreases, then S1 consistently outperforms S2.

Figures 3.3, 3.4, and 3.5 plot the differences in total losses of AAP-incremental and

AAP-max on sports datasets, house prices, and logarithms of house prices, respectively.

Over the graphs of the difference of losses, the values of Kt
max = maxs=1,2,...,tK

s
max, the

current maximum pack size, are superimposed.
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Histogram of Losses: Ames
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(a) Regression on Ames house prices
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(b) RF on Ames house prices
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(c) Regression on Ames house log-prices

Histogram of Losses: Ames
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(d) RF on of Ames house log-prices

Figure 3.2: Histogram of total losses of Parallel Copies with total losses of AAP algo-
rithms on house price datasets

We see that AAP-incremental generally performs better at the beginning of the

period when the current maximum size of the pack is much lower than the maximum

pack of the whole period. The difference of the losses then goes down in the figure. As

the current maximum reaches the overall maximum, the difference of losses may level

out or even go up sometimes. This means that the performance of AAP-incremental is

no longer superior to the performance of AAP-max.
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Figure 3.3: Difference of cumulative losses of AAP-incremental and AAP-max vs time
on sports data with cumulative maximum pack sizes superimposed

These observations are consistent with the discussion in Section 3.5: AAP-max uses

a suboptimal learning rate before the maximum pack size is achieved.

On London house prices (and their logarithms), where the maximum pack size is

achieved very late, AAP-incremental outperforms AAP-max in a steady fashion. After

the maximum pack size has been reached, the effect lingers. A possible explanation is

that AAP-incremental was learning from its feedback in a more effective way through-
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(c) Regression on London house prices
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(d) RF on London house prices

Figure 3.4: Difference of cumulative losses of AAP-incremental and AAP-max vs time
on house price datasets with cumulative maximum pack sizes superimposed

out the most of the dataset.

Comparison of AAP-current and AAP-incremental

The comparison of AAP-current and AAP-incremental provides a more challenging

problem: sometimes one performs better and sometimes the other. Recall that we

assess AAP-current by the plain cumulative loss (3.2) for comparison purposes.
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(a) Regression on Ames house prices
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(b) RF on Ames house prices
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(c) Regression on London house prices
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(d) RF on London house prices

Figure 3.5: Difference of cumulative losses of AAP-incremental and AAP-max vs time
on logarithms of house prices with cumulative maximum pack sizes superimposed

Figures 3.6, 3.7, and 3.8 show the difference in plain cumulative losses of AAP-

current and AAP-incremental for sports dataset, house prices and logarithms of house

prices, respectively.

We see that AAP-current outperforms AAP-incremental on house prices and tennis

data with large packs. The performance of AAP-current is remarkable because by

design it is not optimised to minimise the total loss; see the discussion in Section 3.5.
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In a way, here we assess AAP-current with a measure it is not good at. Still, optimal

decisions of AAP-current produce superior performance.

Poor performance of AAP-current on tennis data with small packs and football

data calls for an explanation. We attempt to explain this using upper bound (3.11).

By design, the two tennis datasets differ in the ratio of the maximum and the minimum

pack size: for the dataset with small packs it is 12/1 = 12 and for the dataset with

large packs it is 16/5 = 3.2 (note that the differences are the same).

For the football and housing datasets we do not control the ratio of the maximum

and minimum pack sizes. For the football dataset, where AAP-current performs poorly,

the ratio is 10/1 = 10 and for the London house prices, where it performs well, the

ratio is much less and equals 29431/8900 = 3.3.

The Ames dataset apparently does not fit the pattern with a large ratio of 112/8 =

14. However, one can see from the histogram shown on Figure 3.9 that packs of small

size are relatively rare; if we ignore them, the ratio immediately goes down. The same

argument does not apply to the football dataset with plenty of small packs.

3.6.3 Comparison of AAP with Batch Models

In this section, we compare AAP-current with two straightforward ways of prediction,

which are essentially batch. One goal we have here is to do a sanity check and verify

whether we are not studying properties of very bad algorithms. Secondly, we want to

show that prediction with expert advice may yield better ways of handling the available

historical information as suggested by Kalnishkan et al. (2015).

In AAP we use linear regression models that have been trained on each month of

the first year of data. Is the performance of these models affected by straightforward

seasonality? What if we always predict January with the January model, February

with the February model etc.?

The first batch model we compare our online algorithm to is the seasonal model

that predicts January with the linear regression model trained on January of the first

year, February with the linear model trained on February of the first year, etc.

In the case of ‘quarterly’ RF experts, we compete with a seasonal model that

predicts the first quarter with the RF model trained on the first quarter, second quarter

with the RF model trained on the second quarter, etc.

Secondly, what if we train a model on the whole of the first year? This may be

more expensive than training smaller models, but what do we gain in performance?

The second batch model is the linear model trained on the whole first year of data. In

case of RF experts, we compete with RF model trained on the first year of data.

Figures 3.10, and 3.11 show the comparison of total losses of AAP-current and
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(a) Tennis data, small packs
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(b) Tennis data, large packs
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(c) Football data

Figure 3.6: Difference of cumulative losses of AAP-current and AAP-incremental vs
time on sports data

batch linear regression models for Ames house dataset for prices and logarithmic prices

respectively. AAP-current consistently performs better than the seasonal batch model.

Thus the straightforward utilisation of seasonality does not help.

When compared to the linear regression model of the first year, AAP-current ini-

tially has higher losses but it becomes better towards the end. It could be explained as

follows. AAP-current needs time to train until it becomes good in prediction. These
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(a) Regression on Ames house prices
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(b) RF on Ames house prices
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(c) Regression on London house prices
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(d) RF on London house prices

Figure 3.7: Difference of cumulative losses of AAP-current and AAP-incremental vs
time on house price data with current pack sizes superimposed

results show that we can make a better use of the past data with prediction with expert

advice than with models trained in the batch mode. However, these results do not hold

for logarithmic prices where the linear regression model of the first year outperforms

AAP-current almost on the whole period of the dataset.
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(a) Regression on Ames house prices
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(b) RF on Ames house prices
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(c) Regression on London house prices
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(d) RF on London house prices

Figure 3.8: Difference of cumulative losses of AAP-current and AAP-incremental vs
time on logarithms of house price datasets with current pack sizes superimposed

3.6.4 Improving Predictions with Inflation Data

In the evolution of house prices a significant role is played by inflation. While on Ames

data the overall trend is hardly visible, London house prices show a clear upward trend.

One may wonder to what extent taking inflation information into account improves

the quality of predictions and whether the effects we observed still stand if inflation is

considered.
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Figure 3.9: Histograms of pack sizes

We used Acadata House Price Index (HPI) data6 to improve the quality of our

prediction. Every expert was adjusted on the basis of inflation data. For every month

passed since the expert had been trained, we added to the log price it predicted the

value of ln(1 + r), where r is the monthly index calculated by Acadata. (The index for

the month when transactions occurred was not used; we assumed this information is

only available afterwards.)

Figure 3.12 shows the comparison of cumulative losses of AAP-current with and

without inflation. It is clear from the graph that taking inflation into account improves

both linear regression and random forests experts. As original experts were built on

the first year of the dataset, they consistently under-estimate house prices for more

recent data.

Figure 3.13 illustrates the comparison of total losses of AAP-incremental and AAP-

max on log prices with experts adjusted for inflation. Figure 3.14 illustrates the compar-

ison of total losses of AAP-current and AAP-incremental. The patterns are similar to

what we previously observed: AAP-current consistently outperforms AAP-incremental,

whereas AAP-incremental is better than AAP-max on the whole period of data.

6Available at http://www.acadata.co.uk/acadataHousePrices.php.
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Figure 3.10: Difference of cumulative losses of AAP and batch models vs time on house
price data
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Figure 3.11: Difference of cumulative losses of AAP and batch models vs time on log
prices

3.6.5 Conclusions

This section summarises the conclusions from empirical experiments.
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Figure 3.12: Cumulative losses of AAP-current with experts adjusted and not adjusted
for inflation

We have found that the average performance of Parallel Copies of AA is close to

the performance of the AAP family. Some members of the family (especially AAP-

incremental and AAP-current) often perform better than the average. However, Par-

allel Copies may be able to benefit from extra information contained in the order.

We have also found that AAP-incremental typically outperforms AAP-max, espe-

cially before the pack size has reached the maximum.

AAP-current may outperform AAP-incremental in terms of the plain loss, especially

if the ratio of maximum and minimum pack sizes is small.
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(a) Regression on London house prices

0 10 20 30 40 50

−
25

−
20

−
15

−
10

−
5

0
Time

Lo
ss

 A
A

P
−

in
cr

em
en

ta
l −

 L
os

s 
A

A
P

−
m

ax

15
00

0
20

00
0

25
00

0
30

00
0

Loss difference
current max pack

(b) RF on London house prices

Figure 3.13: Difference of cumulative losses of AAP-incremental and AAP-max vs time
on log prices with inflation
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(a) Regression on London house prices
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(b) RF on London house prices

Figure 3.14: Difference of cumulative losses of AAP-current and AAP-incremental vs
time on log prices with inflation
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Chapter 4

Weak Aggregating Algorithm for

Value at Risk

In this chapter, we propose to apply the method of online prediction with expert advice

for estimation of Value at Risk. We show that in some cases the combination of different

methods can produce better results compared to a single model.

4.1 Introduction

In the history of finance, there have been a lot of crises that deeply influenced the

global economy. Examples of these crises are the Wall Street crash in 1987, the Japan

financial crisis in 1989, the Asian financial crisis in 1997, the sub-prime mortgage crisis

of 2007-2008 and the European debt crisis in 2010. Financial crises and the rise of

uncertainty in the financial market emphasize the need of effective risk calculation.

Value at Risk (VaR) measure is one of the most important methods of risk manage-

ment. The VaR method was introduced in 1994 by J. P. Morgan and became widely

used by most financial institutions (Guldimann (1995)). J. P. Morgan (Morgan (1996))

defines VaR as ‘a measure of the maximum possible change in the value of a portfolio

of financial instruments over a pre-set horizon’.

There are several conventional methods that are widely used for measuring VaR.

Historical Simulation is one of the non-parametric methods for measuring VaR, which

assumes that all possible future variations have been experienced in the past and

will be repeated in the future (Butler and Schachter (1996)). Another approach,

known as parametric, is when one estimates volatility of assets’ returns in turn to

obtain their VaR. Across parametric approaches the conventional methods include

Variance–Covariance, Exponential Weighted Moving Average (EWMA) (Chapter 22 in
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Hull (2006)) and Generalized Autoregressive Conditional Heteroskedasticity (GARCH)

(Bollerslev (1986)).

Some of the procedures to estimate VaR propose the use of quantile regression.

The quantile regression approach suggested by Koenker and Basset (Koenker and Bas-

sett (1978)) is one of the methods which models a quantile of the response variable

conditional on the explanatory variables. ‘It is natural to evaluate a VaR model by a

quantile regression method due to its capability of conditional distribution exploration

with distribution-free assumption, also allowing for serial correlation and conditional

heteroskedasticity’ (Gaglianone et al. (2008)). In Taylor (1999) a procedure to estimate

a conditional quantile model to calculate VaRs for portfolios is presented; this method

is found to be comparable with conventional methods in forecasting VaR.

In this chapter, we use the same pinball loss function as is used in optimising

parameters of the quantile regression model. However, we do not try to optimize

parameters of some model. Instead our approach combines predictions of different

models based on the method of online prediction with expert advice. Contrary to

batch mode, where the algorithm is trained on a training set and gives predictions on

a test set, in online setting we learn as soon as new observations become available.

In addition, previous research shows that combining predictions of multiple regressors

often produces better results compared to a single model (Rokach (2010)).

In this chapter, we propose to apply the method of prediction with expert advice

to estimate VaR. Our approach is based on the Weak Aggregating Algorithm (WAA),

described in Section 2.5. The first approach is to apply WAA to combine predictions of

normal distribution experts, where each expert has particular parameters of standard

deviation. We choose to evaluate performance of proposed strategies using stocks’

adjusted closing prices of Walmart, WPP inc. and Apple. The experiments show that

loss of the WAA is close to or better than the loss of the retrospectively best normal

distribution expert. We compare WAA with the model of quantile regression, and

experimental results show that in most cases WAA outperforms quantile regression.

The second approach is to combine predictions of several conventional methods

for estimating VaR, such as Historical Simulation, Variance–Covariance, EWMA and

GARCH. The experiments illustrate that combining predictions of different experts

sometimes could provide better results compared to the single retrospectively best

model.

We run backtesting of all methods by using the Kupiec unconditional coverage test

(Kupiec (1995)) and the Christoffersen conditional coverage test (Christoffersen (1998))

to do the Backtesting on VaR. WAA with normal distribution experts is the only

method that fails to reject the null hypothesis for both unconditional and conditional
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coverage tests.

4.2 Framework

We consider a game G, where space of outcomes Ω = R and decision space Γ = R,

where for any y ∈ Ω and γ ∈ Γ we define the pinball loss for α ∈ (0, 1)

λ(y, γ) =

α(y − γ), if y ≥ γ

(1− α)(γ − y), if y < γ
. (4.1)

When N days is the time horizon and 1− α is the confidence level, VaR1−α is the

loss corresponding to the α-quantile of the distribution of the gain in the value of the

portfolio over the next N days (Chapter 21.1 in Hull (2006)). We consider outcomes to

be returns of some stocks or portfolios. Let outcomes have a cumulative distribution

function FY (z) = Pr(Y ≤ z). Because VaR is conventionally reported as a positive

number, we define

VaR1−α = − inf{z : FY (z) ≥ α} (4.2)

as the negative α-quantile of Y . Then the problem of VaR estimation is equivalent

to the problem of prediction of α-quantile of returns. This problem can be solved by

applying the quantile regression.

Letting xt denote a sequence of signals, suppose yt is a random sample on the

regression process ut = yt− xtβ. The α-th quantile regression, 0 < α < 1, is defined as

any solution to the minimization problem:

min
b∈Rn

∑
t:yt>xtb

α|yt − xtb|+
∑

t:yt<xtb

(1− α)|yt − xtb|.

The least absolute error estimator is the regression median, i.e., the quantile regression

for α = 1/2 (Koenker and Bassett (1978)). The loss function (4.2) is appropriate for

quantile regression because on average it is minimized by the α-th quantile. Namely,

if Y is a real-valued random variable with a cumulative distribution function FY (z) =

Pr(Y ≤ z), then the expectation Eλ(Y, γ) is minimized by γ = inf{z : FY (z) ≥ α} (see

Section 1.3 in Koenker (2005) for a discussion).

In the framework of prediction with expert advice the learner has access to predic-

tions ξt(1), ξt(2), . . . , ξt(N) at time t generated by experts E1, E2, . . . , EN that try to

predict elements of the same sequence.

Learner works according to the Protocol 1.

The performance of a learner is measured by the cumulative loss.

65



4. Weak Aggregating Algorithm for Value at Risk

Let us denote LiT the cumulative loss of expert Ei at step T :

LiT :=
T∑
t=1

λ(yt, ξt(i)) =
∑

t=1,...,T :
yt>ξt(i)

α|yt − ξt(i)|+
∑

t=1,...,T :
yt<ξt(i)

(1− α)|yt − ξt(i)|. (4.3)

The cumulative loss of the learner at step T is:

LT :=

T∑
t=1

λ(yt, γt) =
∑

t=1,...,T :
yt>γt

α|yt − γt|+
∑

t=1,...,T :
yt<γt

(1− α)|yt − γt|. (4.4)

4.3 Experiments

In this section, we apply WAA to the problem of prediction of VaR using three stocks

of Walmart, Apple and WPP inc. We use daily adjusted closing prices from January

2011 to December 2018 that are downloaded from Yahoo Finance.1

4.3.1 WAA for normal distributions

First, as a proof of concept, we apply WAA to normal distribution experts. We as-

sume that stock investment’s returns are normally distributed around the mean of a

normal probability distribution. The volatility σ of a stock is a measure of our un-

certainty about the returns provided by the stock. Each expert Ei predicts according

to N (0, σ2
i ), i = 1, . . . , N . We pick σi to be in a range from 0 to 0.03 with a step

0.0025. We take the constant of WAA c = 200 using the historical information about

maximum losses on the first 500 observations. We test the performance of WAA using

dataset without the first 500 observations. Figure 4.1 shows the weights update for

experts Ei, i = 1, . . . , N for Walmart. We can see from the graph that, for significance

level α = 0.05, expert with σ = 0.01 has the largest weights at the end of the period.

It corresponds with Figure 4.4, where the same expert has the lowest total pinball loss.

It shows that WAA converges to the best expert by updating weights of experts online

based on their performance. For significance level α = 0.01 expert with σ = 0.0125

has the largest weight at the end of the period and the lowest total loss. However, for

α = 0.01 losses of several experts are close to the loss of best expert, and as a result,

their weights are also close to each other. A similar picture can be seen for WPP inc. at

Figures 4.2, 4.5, and for Apple at Figures 4.3, 4.6. Tables 4.1, 4.2 summarise losses

of normal distribution experts and WAA for α = 0.05 and α = 0.01 respectively. We

1The code written in R is available at https://github.com/RaisaDZ/VaR.

66



4. Weak Aggregating Algorithm for Value at Risk

can see from the table that losses of WAA are very close to the loss of best normal

distribution expert. For example, for WPP inc. losses of WAA are lower than losses of

best experts.

We also compare the performance of WAA with quantile regression model (QR).

QR was trained in online mode using sliding window of the length 500. We can see from

Tables 4.1, 4.2 that in most cases losses of WAA are lower than losses of QR. Tables

4.3, 4.4 show the actual exceptions of VaR, i.e., the number of times when stock’s losses

exceed VaR, for each method for α = 0.05 and α = 0.01 respectively. It seems that

WAA tends to underestimate VaR a little, while QR overestimates VaR.

This approach shows that it is reasonable to apply WAA in the considered setting.

WAA converges to the best expert by updating experts’ weights online. In addition,

best experts might be different for different significance levels. It shows that the single

retrospectively best model might not perform well in the future, and it is reasonable

to apply the mixture of models instead. The performance of WAA is close to or better

than the best normal distribution expert, and in most cases it outperforms the model

of QR.
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Figure 4.1: Weights update for Walmart

4.3.2 WAA for conventional models

In this section, we use WAA with four conventional models that are widely used to

calculate VaR: Historical Simulation, Variance–Covariance, EWMA and GARCH. ‘His-

torical simulation is one popular way of estimating VaR. It involves using past data as
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Figure 4.2: Weights update for WPP inc.
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Figure 4.3: Weights update for Apple

a guide to what will happen in the future’ (Section 21.2 in Hull (2006)). Suppose that

we want to calculate VaR1−α for a stock, and data are collected on movements in the

market variables over the most recent N days. This provides N − 1 alternative scenar-

ios for what can happen between today and tomorrow. The estimate of VaR1−α is the

negative α-quantile (4.2) of returns based on N − 1 historical scenarios. The Variance-

Covariance method is one of the parametric methods which estimates the volatility of

returns based on the normal distribution assumption. Then VaR is calculated as the
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Figure 4.5: Losses of normal distribution experts for WPP inc.

α-quantile of the normal distribution with zero mean and the estimated volatility. The

exponentially weighted moving average (EWMA) is another parametric method, where

the estimate of the volatility σt for day t is given by the formula

σ2
t = λσ2

t−1 + (1− λ)u2
t−1,
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Figure 4.6: Losses of normal distribution experts for Apple

Table 4.1: Total losses of normal distribution experts for α = 0.05.

sigma WMT WPP AAPL

0 5.545 7.974 7.834
0.0025 3.515 5.775 5.655
0.005 2.478 4.329 4.337
0.0075 2.083 3.427 3.561
0.01 2.007 2.975 3.113

0.0125 2.088 2.811 2.876
0.015 2.252 2.828 2.788
0.0175 2.450 2.948 2.865
0.02 2.700 3.130 3.023

0.0225 2.975 3.346 3.228
0.025 3.262 3.587 3.453
0.0275 3.556 3.838 3.702
0.03 3.857 4.094 3.968

WAA 2.013 2.806 2.834
QR 2.089 2.851 2.761

where 0 < λ < 1 is a constant, σt−1 is the volatility estimate at the end of day t− 2 of

the volatility for day t−1 and ut−1 is the most recent daily percentage change in returns

(Section 22.2 in Hull (2006)). Finally, the GARCH(p, q) estimates the volatility σt for

day t as

σ2
t = α0 +

q∑
i=1

αiu
2
t−i +

p∑
i=1

βiσ
2
t−i.
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Table 4.2: Total losses of normal distribution experts for α = 0.01.

sigma WMT WPP AAPL

0 5.523 7.970 7.782
0.0025 2.604 4.745 4.619
0.005 1.397 2.838 2.910
0.0075 0.939 1.854 1.935
0.01 0.763 1.397 1.344

0.0125 0.688 1.199 1.066
0.015 0.702 1.117 0.959
0.0175 0.751 1.099 0.919
0.02 0.817 1.103 0.923

0.0225 0.894 1.128 0.953
0.025 0.970 1.177 1.001
0.0275 1.046 1.230 1.059
0.03 1.122 1.283 1.131

WAA 0.705 1.085 0.930
QR 0.796 1.181 1.080

Table 4.3: Actual exceptions of normal distribution experts for α = 0.05.

expected = 75.5

sigma WMT WPP AAPL

0 711 720 721
0.0025 439 501 492
0.005 227 360 320
0.0075 123 234 219
0.01 74 143 155

0.0125 43 90 115
0.015 31 58 79
0.0175 20 37 42
0.02 10 28 29

0.0225 7 19 23
0.025 5 15 18
0.0275 3 14 12
0.03 2 11 10

WAA 72 73 63
QR 92 86 85

In our experiments we use GARCH(1, 1) which is based on the most recent volatility

estimates and the most recent returns’ changes.

We train these models using a sliding window of length 500, and then apply WAA us-

ing forecasts of these models to predict a one-step ahead forecast. We re-train all models

except GARCH(1, 1) after each new observation becomes available, for GARCH(1, 1)
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Table 4.4: Actual exceptions of normal distribution experts for α = 0.01.

expected = 15.1

sigma WMT WPP AAPL

0 711 720 721
0.0025 339 434 407
0.005 140 251 226
0.0075 63 129 144
0.01 33 64 91

0.0125 20 36 42
0.015 9 23 26
0.0175 5 15 19
0.02 2 14 11

0.0225 2 8 8
0.025 2 6 6
0.0275 2 6 4
0.03 2 6 2

WAA 9 14 12
QR 22 32 28

we do it after each 50 steps due to computational complexity of this method. We start

with equal initial weights of each model and then update their weights according to

their current performance.

Figures 4.7, 4.8, 4.9 illustrate weights of each model depending on the current time

step. Figure 4.10 with the corresponding Tables 4.5, 4.6 show total losses of each

model and WAA for α = 0.05 and α = 0.01 respectively. We can see from the graphs

that in most cases GARCH(1, 1) obtains the largest weights which indicates that it

suffers smaller losses compared to other models. However, it changes for α = 0.01 for

WPP inc., where the largest weights are acquired by Historical Simulation model. It

shows that sometimes we cannot use the past information to evaluate the best model.

The retrospectively best model can perform worse in the future as an underlying nature

of data generating can change. In addition, different models can perform better for

different significance levels of VaR.

Similar to the previous experiments, losses of WAA are very close to the loss of

the best performing expert. In most of the cases the best expert is GARCH(1, 1),

and WAA follows its predictions. However, for α = 0.01 for WPP inc. the best expert

changes. It again illustrates that the retrospectively best model could change with

time, and one should be cautious about choosing the single retrospectively best model

for future forecasts.
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Figure 4.8: Weights update for WPP inc.

4.3.3 Backtesting

First, we introduce the Kupiec unconditional coverage test, which is also known as the

proportion of failures test. The most common way to test the performance of VaR

models is to count the number of exceptions (failures), i.e., the number of times when

stock’s losses exceed VaR. Denoting m to be the number of exceptions, we define the

failure rate during the time horizon T as m/T . The Kupiec unconditional coverage

test measures whether the number of exceptions is consistent with the confidence level.
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Figure 4.9: Weights update for Apple
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Figure 4.10: Total losses of methods

The null hypothesis H0 is

H0 : α = α̂ = m/T,

where α̂ is the observed failure rate and α is the significance level of VaR1−α. According

to Kupiec (1995) the test statistics takes the form of a likelihood ratio test:

LRUC = −2 ln

(
(1− p)T−mpm

(1−m/T )T−m(m/T )m

)
.
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Table 4.5: Total losses of methods for α = 0.05.

Method WMT WPP AAPL

Historical 2.031 2.829 2.867
Var-Cov 2.012 2.827 2.880
EWMA 2.077 2.845 2.734

GARCH(1, 1) 1.978 2.781 2.695
WAAm 1.983 2.782 2.733

Table 4.6: Total losses of methods for α = 0.01.

Method WMT WPP AAPL

Historical 0.711 1.076 0.956
Var-Cov 0.731 1.129 0.986
EWMA 0.786 1.130 0.948

GARCH(1, 1) 0.706 1.081 0.896
WAAm 0.713 1.075 0.917

This statistic is asymptotically distributed as a chi-square variable with 1 degree of

freedom. The VaR model fails the test if this likelihood ratio exceeds a critical value.

The critical value depends on the test confidence level.

The Kupiec unconditional coverage test focuses only on the number of exceptions.

However, we would like to test whether these exceptions were evenly spread over time.

The null hypothesis H0 for Christoffersen conditional coverage test is that the prob-

ability of observing an exception on a particular day does not depend on whether an

exception occurred. The test statistic for independence is given by

LRCCI = −2 ln

(
(1− π)n00+n10πn01+n11

(1− π0)n00πn01
0 (1− π1)n10πn11

1

)
,

where n00 is the number of periods with no failures followed by a period with no failures,

n10 is the number of periods with failures followed by a period with no failures,

n01 is the number of periods with no failures followed by a period with failures,

n11 is the number of periods with failures followed by a period with failures,

and πi is the probability of having a failure conditional on the previous period:

π0 =
n01

n00 + n01
, π1 =

n11

n10 + n11
and π =

n01 + n11

n00 + n01 + n10 + n11
.

This statistic is asymptotically distributed as a chi-square with 1 degree of freedom.

The Christoffersen conditional coverage test is a combination of this statistic with the
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frequency unconditional coverage test:

LRCC = LRCCI + LRUC.

This test is asymptotically distributed as a chi-square variable with 2 degrees of free-

dom.

In this section, we perform backtesting of all considered methods by running Kupiec

unconditional coverage test and Christoffersen conditional coverage test. Tables 4.7, 4.8

and 4.9 show results for α = 0.05 for Walmart, WPP inc. and Apple respectively. Tables

4.10, 4.11 and 4.12 illustrate results for α = 0.01. UCD and CCD denotes decisions

for unconditional and conditional coverage tests respectively. We denote WAAn the

method considered in Section 4.3.1, and WAAm is the method from Section 4.3.2. We

can see from the tables that WAA for normal distribution experts (WAAn) is the only

method that fails to reject the null hypothesis H0. The second best performing model

seems to be GARCH(1, 1) as it rejects the only test case for WPP inc. with significance

level α = 0.01. In Table 4.10 we can see that all methods reject the null hypothesis

except WAAn. WAA for conventional model experts (WAAm) sometimes rejects the

null hypothesis. It happens in situations when most of models that are used in WAAm

reject the null hypothesis

Figures 4.11, 4.12 and 4.13 illustrate returns of each company and VaR for WAAn

and WAAm. The behavior of VaR for WAAn is smooth because WAAn uses predictions

of constant normal distribution experts. VaR of WAAm has more spikes because it uses

predictions of methods such as Historical Simulation, Variance-Covariance, EWMA and

GARCH(1, 1) which have more fluctuations in their predictions.

Table 4.7: Walmart, α = 0.05, expected = 75.5.

Method Actual Luc Lcc UCD CCD

Historical 95 0.0266 0.0398 Reject H0 Reject H0
Var-Cov 58 0.0315 0.0869 Reject H0 Fail to Reject H0
EWMA 69 0.4364 0.4433 Fail to Reject H0 Fail to Reject H0

GARCH(1, 1) 69 0.4364 0.6582 Fail to Reject H0 Fail to Reject H0
QR 92 0.0592 0.0618 Fail to Reject H0 Fail to Reject H0

WAAn 72 0.6772 0.8733 Fail to Reject H0 Fail to Reject H0
WAAm 64 0.1637 0.1609 Fail to Reject H0 Fail to Reject H0
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Table 4.8: WPP inc., α = 0.05, expected = 75.5.

Method Actual Luc Lcc UCD CCD

Historical 84 0.3238 0.0056 Fail to Reject H0 Reject H0
Var-Cov 60 0.0580 0.0192 Fail to Reject H0 Reject H0
EWMA 74 0.8590 0.0387 Fail to Reject H0 Reject H0

GARCH(1, 1) 78 0.7690 0.3462 Fail to Reject H0 Fail to Reject H0
QR 86 0.2247 0.0978 Fail to Reject H0 Fail to Reject H0

WAAn 73 0.7667 0.0891 Fail to Reject H0 Fail to Reject H0
WAAm 67 0.3066 0.0218 Fail to Reject H0 Reject H0

Table 4.9: Apple, α = 0.05, expected = 75.5.

Method Actual Luc Lcc UCD CCD

Historical 85 0.2711 0.0005 Fail to Reject H0 Reject H0
Var-Cov 72 0.6772 0.0020 Fail to Reject H0 Reject H0
EWMA 66 0.2521 0.0160 Fail to Reject H0 Reject H0

GARCH(1, 1) 82 0.4488 0.3711 Fail to Reject H0 Fail to Reject H0
QR 85 0.2711 0.3277 Fail to Reject H0 Fail to Reject H0

WAAn 63 0.1291 0.0536 Fail to Reject H0 Fail to Reject H0
WAAm 72 0.6772 0.1831 Fail to Reject H0 Fail to Reject H0

Table 4.10: Walmart, α = 0.01, expected = 15.1.

Method Actual Luc Lcc UCD CCD

Historical 17 0.6300 0.7336 Fail to Reject H0 Fail to Reject H0
Var-Cov 30 0.0007 0.0028 Reject H0 Reject H0
EWMA 35 0.0000 0.0001 Reject H0 Reject H0

GARCH(1, 1) 20 0.2273 0.2594 Fail to Reject H0 Fail to Reject H0
QR 22 0.0948 0.1789 Fail to Reject H0 Fail to Reject H0

WAAn 9 0.0880 0.2211 Fail to Reject H0 Fail to Reject H0
WAAm 24 0.0340 0.0737 Reject H0 Fail to Reject H0

Table 4.11: WPP inc., α = 0.01, expected = 15.1.

Method Actual Luc Lcc UCD CCD

Historical 18 0.4666 0.0437 Fail to Reject H0 Reject H0
Var-Cov 26 0.0106 0.0082 Reject H0 Reject H0
EWMA 30 0.0007 0.0028 Reject H0 Reject H0

GARCH(1, 1) 26 0.0106 0.0241 Reject H0 Reject H0
QR 32 0.0001 0.0001 Reject H0 Reject H0

WAAn 14 0.7733 0.2813 Fail to Reject H0 Fail to Reject H0
WAAm 24 0.0340 0.0737 Reject H0 Fail to Reject H0
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Table 4.12: Apple, α = 0.01, expected = 15.1.

Method Actual Luc Lcc UCD CCD

Historical 21 0.1496 0.2049 Fail to Reject H0 Fail to Reject H0
Var-Cov 24 0.0340 0.0737 Reject H0 Fail to Reject H0
EWMA 22 0.0948 0.1789 Fail to Reject H0 Fail to Reject H0

GARCH(1, 1) 15 0.9793 0.8599 Fail to Reject H0 Fail to Reject H0
QR 28 0.0029 0.0032 Reject H0 Reject H0

WAAn 12 0.4057 0.6428 Fail to Reject H0 Fail to Reject H0
WAAm 19 0.3322 0.4904 Fail to Reject H0 Fail to Reject H0
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Figure 4.11: VaR for Walmart

4.4 Conclusions

We proposed two ways of applying the framework of prediction with expert advice for

calculating VaR. The first approach is to apply WAA with normal distribution experts.

The experiments show that WAA converges to the best expert by updating weights of

experts online based on their current performance, and its loss is close to or better than

the loss of the best expert. WAA also outperforms the quantile regression model that

is built using sliding window.

The second approach is to combine predictions of different methods: Historical

Simulation, Variance–Covariance, EWMA and GARCH(1, 1). Similar to the previous

experiments, losses of WAA are very close to the loss of best performing model, and

sometimes WAA shows a better performance. The experiments illustrate that the ret-

rospectively best model could change with time, and combining predictions of different
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Figure 4.12: VaR for WPP inc.
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Figure 4.13: VaR for Apple

experts could provide better results.

We compare performances of all different methods of prediction of VaR by run-

ning Kupiec unconditional coverage test and Christoffersen conditional coverage test.

WAA for normal distribution experts is the only method which fails to reject the null

hypothesis for both unconditional and conditional coverage tests.
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Chapter 5

Universal algorithms for quantile

regression

In this chapter, we construct universal algorithms for quantile regression. First, we

propose to apply the framework of prediction with expert advice for the prediction of

quantiles. Second, we propose a new universal algorithm Weak Aggregating Algorithm

for Quantile Regression (WAAQR) and prove a theoretical bound on the cumulative loss

of the proposed strategy. The theoretical bound ensures that WAAQR is asymptotically

as good as any quantile regression.

5.1 Introduction

Probabilistic forecasting attracts an increasing attention in sports, finance, weather

and energy fields. While an initial focus has been on deterministic forecasting, prob-

abilistic prediction provides a more useful information which is essential for optimal

planning and management in these fields. Probabilistic forecasts serve to quantify the

uncertainty in a prediction, and they are an essential ingredient of optimal decision

making (Gneiting and Katzfuss (2014)). An overview of the state of the art methods

and scoring rules in probabilistic forecasting can be found in Gneiting and Katzfuss

(2014). Quantile regression is one of the methods which models a quantile of the

response variable conditional on the explanatory variables (Koenker (2005)).

Due to its ability to provide interval predictions, quantile regression found its niche

in the renewable energy forecasting area. Wind power is one of the fastest growing

renewable energy sources (Barton and Infield (2004)). As there is no efficient way to

store wind power, producing accurate wind power forecasts are essential for reliable

operation of wind turbines. Due to the uncertainty in wind power generation, there
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5. Universal algorithms for quantile regression

have been studies for improving the reliability of power forecasts to ensure the balance

between supply and demand at electricity market. Quantile regression has been exten-

sively used to produce wind power quantile forecasts, using a variety of explanatory

variables such as wind speed, temperature and atmospheric pressure (Koenker and

Bassett (1978)).

The Global Energy Forecasting Competition 2014 showed that combining predic-

tions of several regressors can produce better results compared to a single model. It is

shown in Nagya et al. (2016) that a voted ensemble of several quantile predictors could

produce good results in probabilistic solar and wind power forecasting. In Alessandrini

et al. (2015) the analogue ensemble technique is applied for prediction of solar power

which slightly outperforms the quantile regression model.

In this chapter, we apply a different approach to combine predictions of several

models based on the Weak Aggregating Algorithm. It is possible to apply the WAA to

combine predictions of an infinite pool of experts. In Levina et al. (2010) the WAA was

applied to the multi-period, distribution-free perishable inventory problem, and it was

shown that the asymptotic average performance of the proposed method was as good

as any time-dependent stocking rule up to an additive term of the form C
√
T lnT .

We propose two methods to solve the problem of prediction of quantiles. First,

as a proof of concept, we apply the WAA to a finite pool of experts to show that

this method is applicable for this problem. As our experts we pick several models

that provide quantile forecasts and then combine their predictions using the WAA.

To the best of our knowledge, prediction with expert advice was not applied before

for the prediction of quantiles. Second, we propose a new universal algorithm Weak

Aggregating Algorithm for Quantile Regression (WAAQR), which is as good as any

quantile regression up to an additive term of the form C
√
T lnT . For this purpose, we

apply the WAA to an infinite pool of quantile regressions. While the bound for the finite

case can be straightforwardly applied to finite or countable sets of experts, every case

of a continuous pool needs to be dealt with separately as there is no generic procedure

for deriving a theoretical bound for the cumulative loss of the algorithm. WAAQR can

be implemented by using Markov chain Monte Carlo (MCMC) method in a way which

is similar to the algorithm introduced in Zhdanov and Vovk (2010), where the AAR

was applied to generalised linear regression class of function for making a prediction in

a fixed interval. We derive a theoretical bound on the cumulative loss of our algorithm

which is approximate (in the number of MCMC steps). MCMC is only a method

for evaluating the integral and it can be replaced by a different numerical method.

Theoretical convergence of the Metropolis-Hastings method in this case follows from

Theorems 1 and 3 in Roberts and Smith (1993). Estimating the convergence speed
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is more difficult. With the experiments provided we show that by tuning parameters

online, our algorithm moves fast to the area of high values of the probability function

and gives a good approximation of the prediction.

We apply both methods to the problem of probabilistic forecasting of wind and solar

power. Experimental results show a good performance of both methods. WAA applied

to a finite set of models performs close or better than the retrospectively best model,

whereas WAAQR outperforms the best quantile regression model that was trained on

the historical data.

5.2 Framework

We consider a game G with the space of outcomes Ω = [A,B] and decision space Γ = R,

and as a loss function we take the pinball loss, defined in (4.1): for α ∈ (0, 1)

λ(y, γ) =

α(y − γ), if y ≥ γ

(1− α)(γ − y), if y < γ
.

The game G is the same as defined in Section 4.2, except that the outcome space is

bounded. In many tasks predicted outcomes are bounded. For example, wind and solar

power cannot reach infinity. Therefore, it is possible to have a sensible estimate for the

outcome space Ω based on the historical information.

Learner works according to the Protocol 1 defined in Section 2.1.

The cumulative loss of the learner at the step T is defined in (4.4):

LT :=

T∑
t=1

λ(yt, γt) =
∑

t=1,...,T :
yt>γt

α|yt − γt|+
∑

t=1,...,T :
yt<γt

(1− α)|yt − γt|.

Let us denote LθT the cumulative loss of expert Eθ at the step T , defined in (4.3):

LθT :=

T∑
t=1

λ(yt, ξt(θ)) =
∑

t=1,...,T :
yt>ξt(θ)

α|yt − ξt(θ)|+
∑

t=1,...,T :
yt<ξt(θ)

(1− α)|yt − ξt(θ)|.

In this chapter, we use expert’s index θ as we deal with an infinite pool of prediction

strategies Θ = Rn.

We want to find a strategy which is capable of competing in terms of cumulative
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loss with all prediction strategies Eθ, θ ∈ Rn which at step t outputs

ξt(θ) = x′tθ, (5.1)

where xt is a signal at time t. In other terms, we want to combine a class of quantile

regressions in a way that allows us to be asymptotically the same as the best quantile

regression. As discussed in Section 4.2, the α-th quantile regression, 0 < α < 1, is

defined as any solution to the minimization problem:

min
b∈Rn

∑
t:yt>xtb

α|yt − xtb|+
∑

t:yt<xtb

(1− α)|yt − xtb|.

5.3 Theoretical Bounds for WAAQR

In this section, we formulate and prove the theoretical bounds of our algorithm.

Theorem 5.3.1. Let a > 0, y ∈ Ω = [A,B] and γ ∈ Γ. There exists a prediction

strategy for Learner such that for every positive integer T , every sequence of outcomes

of length T , and every θ ∈ Rn the cumulative loss LT of Learner satisfies

LT ≤ LθT +
√
Ta‖θ‖1 +

√
T

(
n ln

(
1 +

√
T

a
max

t=1,...,T
‖xt‖∞

)
+ (B −A)2

)
.

The theorem states that the algorithm predicts as well as the best quantile regres-

sion, defined in (5.1), up to an additive regret of the order
√
T lnT . The choice of the

regularisation parameter a is important as it affects the behaviour of the theoretical

bound of our algorithm. Large parameters of regularisation increase the bound by an

additive term
√
Ta‖θ‖1, however the regret term has a smaller growth rate as time

increases. As the maximum time T is usually not known in advance, the regularisation

parameter a cannot be optimised, and its choice depends on the particular task.

Proof. We choose an initial distribution of parameters

P0(dθ) =
(a

2

)n
e−a‖θ‖1dθ, (5.2)

for some a > 0.

We consider that outcomes come from the interval [A,B], and it is known in ad-
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vance. Let us define the truncated expert Ẽθ which at step t outputs:

ξ̃t(θ) =


A, if x′tθ < A

x′tθ, if A ≤ x′tθ ≤ B

B, if x′tθ > B

. (5.3)

Let us denote L̃θT the cumulative loss of expert Ẽθ at the step T :

L̃θT :=

T∑
t=1

λ(yt, ξ̃t(θ)). (5.4)

We apply WAA for truncated experts Ẽθ. As experts Ẽθ output predictions inside the

interval [A,B], and predictions of WAA is a weighted average of experts’ predictions

(2.30), then γ lies in the interval [A,B].

We can bound the maximum loss at each time step:

L := max
y∈[A,B], γ∈[A,B]

λ(y, γ) ≤ (B −A) max(α, 1− α) ≤ B −A. (5.5)

Applying Lemma 2.5.2 for initial distribution (5.2) and putting the maximum loss

(5.5) we obtain:

LT ≤
√
T

(
− ln

((a
2

)n ∫
Rn
e−J̃(θ)dθ

)
+ (B −A)2

)
, (5.6)

where

J̃(θ) :=
L̃θT√
T

+ a‖θ‖1. (5.7)

For all θ, θ0 ∈ Rn we have:

∑
t=1,...,T :
yt<x′tθ

|x′tθ − yt| ≤
∑

t=1,...,T :
yt<x′tθ

|x′tθ0 − yt|+
∑

t=1,...,T :
yt<x′tθ

|x′tθ − x′tθ0|

≤
∑

t=1,...,T :
yt<x′tθ

|x′tθ0 − yt|+
∑

t=1,...,T :
yt<x′tθ

max
t=1,...,T

‖xt‖∞‖θ − θ0‖1

≤
∑

t=1,...,T :
yt<x′tθ

|x′tθ0 − yt|+ T max
t=1,...,T

‖xt‖∞‖θ − θ0‖1. (5.8)
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Analogously, we have:∑
t=1,...,T :
yt>x′tθ

|x′tθ − yt| ≤
∑

t=1,...,T :
yt>x′tθ

|x′tθ0 − yt|+ T max
t=1,...,T

‖xt‖∞‖θ − θ0‖1. (5.9)

By multiplying inequality (5.8) by (1−α), inequality (5.9) by α and summing them,

we have:

LθT ≤ L
θ0
T + T max

t=1,...,T
‖xt‖∞‖θ − θ0‖1. (5.10)

The cumulative loss of truncated expert Ẽθ cannot exceed the cumulative loss of

non-truncated expert Eθ for all θ ∈ Rn:

L̃θT ≤ LθT . (5.11)

By dividing (5.10) by
√
T and adding a‖θ‖1 to both parts, we have:

J̃(θ) ≤ J(θ) ≤ J(θ0) +
√
T max
t=1,...,T

‖xt‖∞‖θ − θ0‖1 + a(‖θ‖1 − ‖θ0‖1)

≤ J(θ0) + (
√
T max
t=1,...,T

‖xt‖∞ + a)‖θ − θ0‖1, (5.12)

where

J(θ) :=
LθT√
T

+ a‖θ‖1. (5.13)

Let us denote bT =
√
T maxt=1,...,T ‖xt‖∞ + a. We evaluate the integral:

∫
Rn
e−J̃(θ)dθ ≥

∫
Rn
e−(J(θ0)+bT ‖θ−θ0‖1)dθ

= e−J(θ0)

∫
R
. . .

∫
R
e−bT

∑n
i=1 |θi−θi,0|dθi

= e−J(θ0)

∫
R
. . .

∫
R

n∏
i=1

e−bT |θi−θi,0|dθi

= e−J(θ0)
n∏
i=1

∫
R
e−bT |θi−θi,0|dθi = e−J(θ0)

(
2

bT

)n
.

By putting this expression in (5.6) we obtain the theoretical bound.

Note that even though we apply WAA for truncated experts (5.3), we achieve the

theoretical bound for prediction strategy that competes with a class of experts (5.1).
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5.4 Prediction Strategy

A prediction of the WAA (2.30) can be re-written as follows:

γT =

∫
Θ
ξ̃T (θ)q∗T−1(θ)dθ, (5.14)

where

q∗T (θ) = ZqT (θ) = Z exp
(
− 1√

T

( ∑
t=1,...,T :

yt<ξ̃t(θ)

(1− α)|yt − ξ̃t(θ)|

+
∑

t=1,...,T :

yt>ξ̃t(θ)

α|yt − ξ̃t(θ)|
)
− a‖θ‖1

)
. (5.15)

and Z is the normalising constant ensuring that
∫

Θ q
∗
T (θ)dθ = 1.

Integral (5.14) is a Bayesian mixture, where function ξT (θ) needs to be integrated

with respect to the normalized distribution q∗T (θ). In order to calculate the integral

(5.14), it is possible to use MCMC algorithms. A good introduction of MCMC for

Machine Learning is in Andrieu et al. (2003).

We use Metropolis-Hastings algorithm for sampling parameters θ from the posterior

distribution P. As a proposal distribution we choose Gaussian distribution N (0, σ2)

with some parameter σ. We start with some initial parameter θ0 and at each step m

we update:

θm = θm−1 +N (0, σ2), m = 1, . . . ,M,

where M is a maximum number of iterations in MCMC method.

The update parameter θm at step m is accepted with probability min
(

1, fP (θm)
fP (θm−1)

)
,

where fP(θ) is the density function for the distribution P at point θ. At each step we try

to maximize the density function by either accepting or rejecting the new parameters

θ. It is common not to calculate the integral until high values of density function fP

are reached. It is known as ‘burn-in’ stage of the algorithm. Some values of θ are

accepted even when the calculated probability is less than 1, it allows the algorithm to

move away from local minimum of the density function. Because Metropolis-Hastings

algorithm uses only the ratio of density functions of sampling parameters, it is possible

to avoid the calculation of normalising constant Z. We can generate new parameters θ

from the unnormalized posterior distribution qT (θ) and skip the weights normalization

at each step which is more computationally efficient.

At time t = 0 the algorithm starts with the initial estimate of the parameters θ0 = 0.
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At each iteration t > 0 we start with parameter θMt−1 calculated at the previous step

t − 1. It allows the algorithm to converge faster to the correct location of the main

mass of the distribution.

WAAQR

Parameters: number M > 0 of MCMC iterations,

standard deviation σ > 0,

regularization coefficient a > 0

initialize θM0 := 0 ∈ Θ

define q0(θ) := exp(−a‖θ‖1)

for t = 1, 2, . . . do

γt := 0

define qt−1(θ) by (5.15) if t > 1

read xt ∈ Rn

initialize θ0
t = θMt−1

for m = 1, 2, . . . ,M do

θ∗ := θm−1
t +N (0, σ2I)

flip a coin with success probability

min
(
1, qt−1(θ∗)/qt−1(θm−1

t )
)

if success then

θmt := θ∗

else

θmt := θmt−1

end if

γt := γt + ξ̃t(θ
m
t )

end for

output predictions γt = γt/M

end for

5.5 Experiments

In this section, we apply the WAA and the WAAQR for prediction of wind and so-

lar power and compare their performance with other predictive models. The dataset

is downloaded from Open Power System Data, which provides free and open data

platform for power system modelling. The platform contains hourly measurements of

geographically aggregated weather data across Europe and time-series of wind and so-
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lar power. Our training data are measurements in Austria from January to December

2015, test set contains data from January to July 2016. 1

5.5.1 WAA

We apply the WAA for three models: Quantile Regression (QR), Quantile Random

Forests (QRF), Gradient Boosting Decision Trees (GBDT). QRF gives a non-parametric

and accurate way of estimating conditional quantiles instead of the conditional mean for

high-dimensional predictor variables (Meinshausen (2006)). Similar to random forests,

QRF grows a large number of trees, but takes into account all observations for each

leaf of each tree, not just the average. GBDT uses a combination of weak decision

trees, which were built iteratively using the negative gradient of a loss function. The

final predictor is the weighted combination of these predictors. These models were

used in GEFCom 2014 energy forecasting competition on the final leaderboard (Nagya

et al. (2016)). The authors of the paper argue that using multiple regressors is often

better than using only one, and therefore combine multiple model outputs. They noted

that voting was found to be particularly useful for averaging the quantile forecasts of

different models.

We propose an alternative approach to combine different models’ predictions by

using the WAA. We work according to Protocol 1: at each step t before seeing outcome

yt, we output our prediction γt according to (2.30). After observing outcome yt, we

update experts’ weights according to (2.29).

To build models for wind power forecasting we use wind speed and temperature

as explanatory variables. These variables have been extensively used to produce wind

power quantile forecasts (Koenker and Bassett (1978)). We train three models QR,

QRF and GBDT on training dataset, and then apply the WAA using forecasts of these

models on test dataset. We start with equal initial weights of each model and then

update their weights according to their current performance. We estimate the constant

of the WAA c = 0.01 using information about maximum losses on training set.

Figure 5.1 shows weights of each model for different quantiles depending on the

current time step. We can see from the graph that for most of quantiles GBDT obtains

the largest weights which indicates that it suffers smaller losses compared to other

models. However, it changes for q = 0.95, where the largest weights are acquired by

QR. It shows that sometimes we cannot use the past information to evaluate the best

model. The retrospectively best model can perform worse in the future as an underlying

nature of data generating can change. In addition, different models can perform better

on different quantiles.

1The code written in R is available at https://github.com/RaisaDZ/Quantile-Regression.
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Tables 5.1, 5.2, 5.3, 5.4 show monthly losses of QR, QRF, GBDT, WAA and Aver-

age methods, where Average is a simple average of QR, QRF and GBDT. Figure 5.2

illustrates total losses of these methods. We can see from the tables that performance

of models might vary for different months, however the performance of WAA is always

close to the performance of the best model. For q = 0.25 and q = 0.5 the total loss

of the WAA is slightly higher than the total loss of GBDT, whereas for q = 0.75 and

q = 0.95 the WAA has the smallest loss. In most cases, the WAA outperforms Average

method.

We perform similar experiments for prediction of solar power. We choose measure-

ments of direct and diffuse radiations to be our explanatory variables. In a similar

way, QR, QRF and GBDT are trained on training set, and the WAA is applied on test

data. Figure 5.3 illustrates weights of models depending on the current step. Opposite

to the previous experiments, GBDT has smaller weights compared to other models for

q = 0.25 and q = 0.5. However, for q = 0.75 and q = 0.95 weights of experts become

very close to each other. Therefore, predictions of the WAA should become close to Av-

erage method. Figure 5.4 shows total losses of the methods. For q = 0.25 and q = 0.5

both QR and QRF have small losses compared to GBDT, and the WAA follows their

predictions. However, for q = 0.75 and q = 0.95 it is not clear which model performs

better, and predictions of the WAA almost coincide with Average method. It again

illustrates that the retrospectively best model could change with time, and one should

be cautious about choosing the single retrospectively best model for future forecasts.

Table 5.1: Monthly losses (×103) for wind power,
q = 0.25.

QRF GBDT QR Average WAA

1 87.4 64.9 69.3 70.7 65.8
2 92.4 85.8 85.7 84.8 85.4
3 90.3 83.7 86.3 84.6 84.0
4 81.7 81.2 83.7 80.7 81.4
5 88.1 83.1 84.7 83.5 83.3
6 41.6 36.4 43.9 38.7 36.9
7 57.0 56.1 63.0 57.3 56.3

538.5 491.2 516.6 500.3 493.0

5.5.2 WAAQR

In this section, we demonstrate the performance of our algorithm and compare it with

quantile regression model. We train QR on training dataset, and apply WAAQR on

test set. First, we use training set to choose the parameters of our algorithm. Table
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Figure 5.1: Weights update for wind power

5.6 illustrates the acceptance ratio of new sampling parameters of our algorithm for

q = 0.5. Increasing values of σ results in decreasing acceptance ratios of new sampling

parameters θ. With large values of σ we move faster to the area of high values of

density function while smaller values of σ can lead to more expensive computations as

our algorithm would require more iterations to find the optimal parameters. Figure

5.5 illustrates logarithm of parameters likelihood w(θ) defined in (5.15) for a = 0.1

and σ = 0.5 and 3.0. We can see from the graphs that for σ = 3.0 the algorithm

reaches maximum value of log-likelihood after around 800 iterations while for σ = 0.5

it still tries to find maximum value after 1500 iterations. Table 5.7 shows the total

losses of WAAQR for different parameters a and σ. We can see that choosing the right

parameters is very important as it notably affects the performance of WAAQR. It is
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Figure 5.2: Total losses of methods for wind power

important to keep track of acceptance ratio of the algorithm, as high acceptance ratio

means that we move too slowly and need more iterations and larger ‘burn-in’ period

to find the optimal parameters.

Now we compare performances of our WAAQR and quantile regression. The param-

eters of our algorithm are number of iterations M = 1500, ‘burn-in’ stage M0 = 300,

regularization parameter a = 0.1, and standard deviation σ = 3. Note that even though

we use the prior knowledge to choose the parameters of WAAQR, we start with initial

θ0 = 0 and train our algorithm only on the test set. Figure 5.6 illustrates a difference

between cumulative losses of QR and WAAQR. If the difference is greater than zero,

our algorithm shows better results compared to QR. For q = 0.25 WAAQR shows

better performance at the beginning, but after around 1000 iterations its performance

becomes worse, and by the end of the period cumulative losses of QR and WAAQR are

almost the same. We observe a different picture for q = 0.5 and q = 0.75: most of the

time a difference between cumulative losses is positive, which indicates that WAAQR
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Table 5.2: Monthly losses (×103) for wind power,
q = 0.50.

QRF GBDT QR Average WAA

1 113.1 97.1 100.3 101.2 98.0
2 123.3 119.1 119.5 117.8 118.9
3 121.7 114.0 115.9 114.0 114.1
4 119.7 116.4 121.6 116.9 117.0
5 127.0 121.2 121.4 121.2 121.0
6 65.6 56.2 62.5 58.9 56.3
7 86.6 83.5 89.7 84.0 83.7

757.0 707.5 730.7 714.0 709.0

Table 5.3: Monthly losses (×103) for wind power,
q = 0.75.

QRF GBDT QR Average WAA

1 95.8 83.2 83.1 84.8 82.5
2 103.8 98.8 102.2 97.8 98.6
3 101.8 93.7 94.8 92.8 93.0
4 108.6 99.7 108.6 103.1 100.8
5 109.4 103.0 104.0 102.0 102.9
6 60.1 54.4 57.9 55.6 54.4
7 88.9 77.9 83.2 80.5 78.0

668.3 610.7 633.9 616.6 610.1

performs better than QR.

Figure 5.7 shows predictions of WAAQR and QR with [25%, 75%] confidence inter-

val for the first and last 100 steps. We can see from the graph, that initially predictions

of WAAQR are very different from predictions of QR. However, by the end of period,

predictions of both methods become very close to each other.

One of the disadvantages of WAAQR is that it might perform much worse with

non-optimal input parameters of regularization a and standard deviation σ. If no prior

knowledge is available, one can start with some reasonable values of input parameters

and keep track of the acceptance ratio of new generated θ. If the acceptance ratio is too

high it might indicate that the algorithm moves too slowly to the area of high values of

the probability function of θ, and standard deviation σ should be increased. Another

option is to take very large number of steps and larger ‘burn-in’ period.
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Table 5.4: Monthly losses (×103) for wind power,
q = 0.95.

QRF GBDT QR Average WAA

1 36.5 28.9 30.0 29.7 28.5
2 40.7 35.8 32.5 33.1 32.2
3 38.3 32.8 28.6 29.3 28.2
4 48.3 40.1 40.4 39.0 38.8
5 41.2 34.3 33.2 33.5 32.6
6 24.5 20.2 20.5 20.3 20.2
7 41.0 29.9 32.4 31.0 30.6

270.5 222.1 217.5 216.0 211.0

Table 5.5: Total losses (×103) for solar power

q QRF GBDT QR Average WAA

0.25 48.6 98.3 53.1 63.8 50.1
0.5 70.5 110.7 68.8 79.1 69.2
0.75 63.5 67.6 59.3 58.7 58.0
0.95 29.2 26.1 23.2 21.0 20.8

5.6 Conclusions

We proposed two ways of applying the framework of prediction with expert advice to

the problem of probabilistic forecasting of renewable energy. The first approach is to

apply WAA with a finite number of models and combine their predictions by updating

weights of each model online based on their performance. Experimental results show

that WAA performs close or better than the best model in terms of cumulative pinball

loss function. It also outperforms the simple average of predictions of models. With this

approach we show that it is reasonable to apply WAA for the prediction of quantiles.

Second, we propose a new universal algorithm WAAQR which combines predictions

of an infinite pool of quantile regressions. We derive the theoretical bound which

guarantees that WAAQR asymptotically performs as well as any quantile regression

up to an additive term of the form C
√
T lnT . Experimental results show that WAAQR

can outperform the best quantile regression model that was trained on the historical

data.
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Figure 5.3: Weights update for solar power

Table 5.6: Acceptance ratio of WAAQR on training set

a \ σ 0.5 1.0 2.0 3.0

0.1 0.533 0.550 0.482 0.375
0.3 0.554 0.545 0.516 0.371
0.5 0.549 0.542 0.510 0.352
1.0 0.548 0.538 0.502 0.343

Table 5.7: Total loss of WAAQR (×103) on training set

a \ σ 0.5 1.0 2.0 3.0

0.1 1821.8 823.5 216.3 28.8
0.3 1806.2 844.9 265.3 62.7
0.5 1815.7 878.5 272.7 92.1
1.0 1810.4 877.5 379.3 116.9
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Figure 5.7: Predictions with [25%, 75%] confidence interval for WAAQR and QR
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Chapter 6

Competitive online regression

under Continuous Ranked

Probability Score

In this chapter, we propose the algorithm that combines point predictions of an infi-

nite pool of linear experts and outputs probability forecasts in the form of cumulative

distribution functions. We evaluate the quality of probabilistic prediction by the con-

tinuous ranked probability score (CRPS), which is a widely used proper scoring rule.

We provide a strategy that allows us to ‘track the best expert’ and derive the theoretical

bound on the discounted loss of the strategy.

6.1 Introduction

One of the frequently used proper scoring rules that evaluates the quality of probabilis-

tic predictions is the continuous ranked probability score (CRPS). The CRPS provides

a direct way of comparing point forecasts and probabilistic forecasts. Weighted versions

of the CRPS were introduced in Matheson and Winkler (1976).

In this chapter, we look for performance guarantees relative to other predictive

models. We propose an algorithm that combines point forecasts of an infinite pool

of linear regressions and provides probabilistic predictions in the form of cumulative

distribution functions. The proposed strategy allows us to ‘track the best expert’, and

the theoretical bound on the discounted loss of the strategy is derived.

Our approach uses the Aggregating Algorithm, which gives a guarantee ensuring

that the learner’s loss is as small as best expert’s loss plus a constant in a case of mixable

loss functions and a finitely many experts. In a recent paper V’yugin and Trunov (2019)
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6. Competitive online regression under Continuous Ranked Probability Score

it is shown that the CRPS is a mixable loss function, and the theoretical bound for

the case of a finite number of experts is derived. In this chapter, we consider the same

problem setting, but we choose a pool of linear regressions to be our experts. We

consider the case of discounted loss along the lines of Chernov and Zhdanov (2010).

Discounting allows us to give less importance to older losses, which is an important

property for practical applications. In Freund and Hsu (2008) the authors noticed

that in the context of prediction with expert advice, the discounted loss provides an

alternative to ‘tracking the best expert’ framework of Herbster and Warmuth (1998).

Indeed, if the best expert changes after some steps, an algorithm that competes under

discounted loss will not take into account small losses of the old best expert because

they are strongly discounted, and will switch to track the new best expert.

Our prediction strategy mixes an infinite pool of linear experts in a way which is

similar to Aggregating Algorithm for Regression for the case of linear experts under

the square loss. The generalisation for the case of discounted square loss for linear

regression was proposed in Chernov and Zhdanov (2010).

We perform experiments on a synthetic dataset and apply our algorithm for the

prediction of solar power. We compare the performance of our algorithm with linear

regression and quantile regression. Quantile regression has been extensively used to

produce renewable energy power quantile forecasts (Koenker and Bassett (1978)) and

in probabilistic energy forecasting competitions (Nagya et al. (2016)). Our prediction

algorithm uses Markov chain Monte Carlo (MCMC) method in a way which is similar to

the algorithm WAAQR introduced in Section 5.4. Experiments show that our algorithm

requires some time for training, however by the end of the period the performance of

our algorithm becomes close to the performance of the retrospectively best quantile

regression.

6.2 Framework

Suppose that F is the distribution function F = FX of some random variable X. Then

(a) F : R→ [0, 1], F is non-decreasing (that is x ≤ y ⇒ F (x) ≤ F (y)),

(b) limx→+∞ F (x) = 1, limx→−∞ F (x) = 0,

(c) F is right-continuous.

(See Section II.6 in Loève (1977) or Section 3.10 in Williams (1991)).

We take this class of functions to be our decision space Γ and take the space of
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6. Competitive online regression under Continuous Ranked Probability Score

outcomes Ω = [A,B] ⊂ R. We measure loss by the CRPS loss function:

λ(y, F ) =

∫ B

A
(F (u)− 1u≥y)

2 du. (6.1)

CRPS loss function generalizes the absolute error; it reduces to the absolute error if F

is a point forecast. Indeed, if Fz(u) = 1u≥z, then λ(y, Fz) = |y − z|.
Learner works according to the Protocol 3 defined in Section 2.4.

We want to find a strategy which is capable of competing with all prediction strate-

gies θ ∈ Rn that at step t outputs:

ξt(θ) = F θt , (6.2)

where

F θt (u) = 1u≥x′tθ, u ∈ R (6.3)

and the loss of the strategy θ is:

λ(y, ξt(θ)) = |y − x′tθ|. (6.4)

The space of prediction strategies is the whole R, not the interval [A,B]. Note that

in the case of the absolute loss the capabilities of prediction with expert advice are

restricted. The absolute loss is not mixable and the regret term should have the order

of
√
T (see Kalnishkan and Vyugin (2008)).

The cumulative losses of the learner are discounted with a factor αt ∈ (0, 1] at each

step. If LT−1 is the discounted cumulative loss of the learner at step T − 1, then the

discounted cumulative loss of the learner at step T is defined in (2.20):

LT := αT−1LT−1 + λT (yT , γT ) =

T−1∑
t=1

T−1∏
j=t

αj

λt(yt, γt) + λT (yT , γT ).

If LθT−1 is the discounted cumulative loss of the prediction strategy θ at the step

T − 1, then the discounted cumulative loss of the prediction strategy θ at the step T is

defined in (2.21):

LθT := αT−1L
θ
T−1 + λT (yT , ξT (θ)) =

T−1∑
t=1

T−1∏
j=t

αj

λt(yt, ξt(θ)) + λT (yT , ξT (θ)).
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6. Competitive online regression under Continuous Ranked Probability Score

6.3 Theoretical Bounds

Theorem 6.3.1. Let a > 0, y ∈ Ω = [A,B], γ ∈ Γ. There exists a prediction strategy

for Learner such that for every positive integer T , every sequence of outcomes of length

T , every sequence αt ∈ (0, 1], t = 1, . . . , T , and every θ ∈ Rn the discounted cumulative

losses LT of Learner and LθT of expert θ satisfy

LT ≤ LθT + a‖θ‖1 +
n(B −A)

2
ln

(
1 +

∑T
t=1wt,T
a

max
t=1,...,T

‖xt‖∞

)
, (6.5)

where wt,T =
∏T−1
j=t αj.

The theorem states that the algorithm predicts as well as the best ‘switching’ pre-

diction strategy, defined in (6.2), up to an additive regret of the form C lnT in terms

of the discounted cumulative loss.

It is easier to see that the regret term is of the form C lnT for the undiscounted

case, when we have:

Corollary 3. Let a > 0, y ∈ Ω = [A,B] and γ ∈ Γ. There exists a prediction strategy

for Learner such that for every positive integer T , every sequence of outcomes of length

T , and every θ ∈ Rn the cumulative losses LT of Learner and LθT of expert θ satisfy

LT ≤ LθT + a‖θ‖1 +
n(B −A)

2
ln

(
1 +

T

a
max

t=1,...,T
‖xt‖∞

)
. (6.6)

6.4 Prediction Strategy

Let G̃ be the square-loss game with the outcome space Ω̃ = {0, 1}, prediction space

Γ̃ = [0, 1], and the square loss function λ̃(y, γ) = (y − γ)2. We consider the game G
as the ‘limit’ of a sequence of games G̃ with the vector-valued forecasts. For K ∈ N
we take points zk = A + kB−AK , k = 0, 1, . . . ,K and approximate any function F ∈ Γ

by a piecewise-constant function FK defined by FK(u) = F (zk) for any u ∈ [zk, zk+1),

k = 0, 1, . . . ,K − 1. For the game G̃ the learner’s prediction is defined by (2.17):

γt =
1

2
− gt(1)− gt(0)

2
, t = 1, . . . , T. (6.7)

Let F θt ∈ Γ be a set of predictions parameterised by θ ∈ Θ at time t. Since the

game G̃ is 2-mixable (Lemma 2.2.4), we obtain the learner’s prediction in the game G̃
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6. Competitive online regression under Continuous Ranked Probability Score

by putting the expression for generalised prediction of AAD (2.23) in (6.7):

Ft(zk) =
1

2
− 1

4
ln

∫
θ∈Θ P0(dθ)

(
P̃t−1(θ)

)αt−1

e−2(F θt (zk))2

∫
θ∈Θ P0(dθ)

(
P̃t−1(θ)

)αt−1

e−2(1−F θt (zk))2
, k = 0, 1, . . . ,K − 1. (6.8)

By letting K → +∞ in (6.8), we obtain the expression for computing the learner’s

forecast:

γt = Ft, (6.9)

where

Ft(u) =
1

2
− 1

4
ln

∫
θ∈Θ P0(dθ)

(
P̃t−1(θ)

)αt−1

e−2(F θt (u))2

∫
θ∈Θ P0(dθ)

(
P̃t−1(θ)

)αt−1

e−2(1−F θt (u))2
, u ∈ [A,B]. (6.10)

We choose the initial distribution of the parameters for some a > 0:

P0(dθ) =
(aη

2

)n
e−aη‖θ‖1dθ, (6.11)

where θ ∈ Rn.

Then the learner’s prediction (6.10) can be re-written as follows:

Ft(u) =
1

2
− 1

4
ln

∫
θ∈Θ q

∗
t (θ)e

−2(F θt (u))2
dθ∫

θ∈Θ q
∗
t (θ)e

−2(1−F θt (u))2
dθ
, (6.12)

where

q∗T (θ) = ZqT (θ) = Z exp

−η T−1∑
t=1

T−1∏
j=t

αj

 |yt − x′tθ| − aη‖θ‖1
 , (6.13)

and Z is the normalising constant ensuring that
∫

Θ q
∗
T (θ)dθ = 1.

Since

e−2 ≤
∫
θ∈Θ

e−2(F θ(u))2
q∗(θ)dθ,

∫
θ∈Θ

e−2(1−F θ(u))2
q∗(θ)dθ ≤ 1 (6.14)

we get 0 ≤ F (u) ≤ 1. Since F θ(u) is non-decreasing in u, our F (u) is non-decreasing

too. By the Monotone Convergence Theorem (Theorem 5.3 in Williams (1991)) if
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6. Competitive online regression under Continuous Ranked Probability Score

u ↓ u0 then ∫
θ∈Θ

e−2(F θ(u))2
q∗(θ)dθ ↓

∫
θ∈Θ

e−2(F θ(u0))2
q∗(θ)dθ∫

θ∈Θ
e−2(1−F θ(u))2

q∗(θ)dθ ↑
∫
θ∈Θ

e−2(1−F θt (u0))2
q∗(θ)dθ.

Therefore, F is right-continuous. We have shown that F ∈ Γ.

For completeness, we include the following lemma from V’yugin and Trunov (2019)

and go through the details of the proof.

Lemma 6.4.1. Game G where the space of outcomes Ω = [A,B] and decision space Γ

contains probability distribution functions F : [A,B] → [0, 1], and CRPS loss function

(6.1) is 2
B−A -mixable.

Proof. We need to show that prediction (6.12) satisfies (2.4) for C = 1, that is

λ(y, F ) ≤ −1

η
ln

∫
Θ
e−ηλ(y,F θ)P (dθ) (6.15)

for all y ∈ [A,B].

The CRPS loss function can be represented as:

λ(y, FK) =

j−1∑
k=0

∫ zk+1

zk

F 2
K(u)du+

∫ y

zj

F 2
K(u)du+

∫ zj+1

y
(1− FK(u))2 du

+
K−1∑
k=j+1

∫ zk+1

zk

(1− FK(u))2 du =
B −A
K

j−1∑
k=0

F 2(zk) + (y − zj)F 2(zj)

+ (zj+1 − y) (1− F (zj))
2 +

B −A
K

K−1∑
k=j+1

(1− F (zk))
2 , (6.16)

where y ∈ [zj , zj+1).

An outcome y can be identified with a vector ω = (ωy0 , ω
y
1 , . . . , ω

y
K−1), where ωyk =

1zk+1≥y ∈ {0, 1} for k = 0, 1, . . . ,K − 1. Let us define the loss function λ̂(y, FK) by

λ̂(y, FK) =
B −A
K

K−1∑
i=0

(
ωyk − F (zk)

)2
=
B −A
K

j−1∑
k=0

F 2(zk) +

K−1∑
k=j

(1− F (zk))
2

 ,

(6.17)
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where y ∈ [zj , zj+1). We get:

|λ(y, FK)− λ̂(y, FK)| = (y − zj)|F 2(zj)− (1− F (zj))
2|

= (y − zj)|2F (zj)− 1| ≤ B −A
K

, (6.18)

where y ∈ [zj , zj+1), j = 0, 1, . . . ,K − 1.

Consider the game G̃K with the outcome and prediction spaces given by the Carte-

sian products Ω̃K and Γ̃K and the loss function
∑K

k=1 λ̃(ωk, γk). By Theorem 3.3.3,

the game G̃K is 2
K -mixable. For the experts’ predictions (γθ0 , . . . , γ

θ
K−1)

= (F θ(z0), . . . , F θ(zK−1)), θ ∈ Θ, the learner’s predictions (F (z0), . . . , F (zK−1)) satisfy

1

K

K−1∑
k=0

(ωk − F (zk))
2 ≤ −1

2
ln

∫
Θ
e
− 2
K

(∑K−1
k=0 (ωk−F θ(zk))

2
)
P (dθ)

for all ωk ∈ [0, 1], k = 0, 1, . . . ,K − 1 including ωyk , y ∈ [A,B]. In other terms, we get

1

B −A
λ̂(y, FK) ≤ −1

2
ln

∫
Θ
e−

2
B−A λ̂(y,F θK)P (dθ).

By using inequality (6.18), we have:

λ(y, FK) ≤ −B −A
2

ln

∫
Θ
e−

2
B−Aλ(y,F θK)P (dθ) + 2

B −A
K

. (6.19)

Now it remains to show that losses λ(y, FK) and λ(y, F ) do not differ much. Since,

by construction, F (u) ≥ FK(u), we get

|λ(y, F )− λ(y, FK)| ≤
∫ y

A

(
F 2(u)− F 2

K(u)
)
du+

∫ B

y

(
(1− FK(u))2 − (1− F (u))2

)
du.

The first integral can be upper bounded as

∫ y

A

(
F 2(u)− F 2

K(u)
)
du =

j−1∑
k=0

∫ zk+1

zk

(
F 2(u)− F 2

K(u)
)
du+

∫ y

zj

(
F 2(u)− F 2

K(u)
)
du

≤ B −A
K

j∑
k=0

(
F 2(zk+1)− F 2(zk)

)
=
B −A
K

(
F 2(zj+1)− F 2(A)

)
≤ B −A

K

(
F 2(B)− F 2(A)

)
≤ B −A

K
.
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6. Competitive online regression under Continuous Ranked Probability Score

By doing the same for the second integral, we get

|λ(y, F )− λ(y, FK)| ≤ 2
B −A
K

. (6.20)

Now inequality (6.15) follows from (6.19) by letting K → +∞.

We use Metropolis-Hastings algorithm to calculate integrals in (6.12) in the same

way as it is described in Section 5.4 for WAAQR. We generate parameters θ from the

unnormalized posterior distribution qT (θ) (6.13) and avoid the weights normalization

at each step which is more computationally efficient. The pseudo-code of the algorithm

is given below:

Algorithm

Parameters: number M > 0 of MCMC iterations,

standard deviation σ > 0,

regularization coefficient a > 0,

prediction interval [A,B].

η := 2
B−A

initialize θM0 := 0 ∈ Θ

define q0(θ) := exp(−aη‖θ‖1)

for t = 1, 2, . . . do

γ0
t := 0, γ1

t := 0

define qt−1(θ) by (6.13) if t > 1

read xt ∈ Rn

initialize θ0
t = θMt−1

for m = 1, 2, . . . ,M do

θ∗ := θm−1
t +N (0, σ2I)

flip a coin with success probability

min
(
1, qt−1(θ∗)/qt−1(θm−1

t )
)

if success then

θmt := θ∗

else

θmt := θmt−1

end if

γ0
t := γ0

t + exp

(
−2
(
F
θmt
t (u)

)2
)

γ1
t := γ1

t + exp

(
−2
(

1− F θ
m
t
t (u)

)2
)

end for
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6. Competitive online regression under Continuous Ranked Probability Score

output predictions γt = 1
2 −

1
4 ln

γ0
t

γ1
t

end for

6.5 Proof of Theoretical Bounds

In this section, we provide the proof of Theorem 6.3.1. Applying Lemma 2.4.2 for

initial distribution (6.11) we obtain

LT ≤ −
1

η
ln

((aη
2

)n ∫
Θ
e−ηJ(θ)dθ

)
, (6.21)

where

J(θ) :=

T∑
t=1

wt,T |x′tθ − yt|+ a‖θ‖1

and

wt,T =
T−1∏
j=t

αj , wT,T = 1.

For all θ, θ0 ∈ Rn we have:

T∑
t=1

wt,T |x′tθ − yt| ≤
T∑
t=1

wt,T |x′tθ0 − yt|+
T∑
t=1

wt,T |x′tθ − x′tθ0|

≤
T∑
t=1

wt,T |x′tθ0 − yt|+
T∑
t=1

wt,T max
t=1,...,T

‖xt‖∞‖θ − θ0‖1.

Then, we have:

J(θ) ≤ J(θ0) +

T∑
t=1

wt,T max
t=1,...,T

‖xt‖∞|θ − θ0|+ a(‖θ‖1 − ‖θ0‖1)

≤ J(θ0) + max
t=1,...,T

‖xt‖∞
T∑
t=1

wt,T ‖θ − θ0‖1 + a‖θ − θ0‖1

= J(θ0) +

(
max

t=1,...,T
‖xt‖∞

T∑
t=1

wt,T + a

)
‖θ − θ0‖1. (6.22)
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6. Competitive online regression under Continuous Ranked Probability Score

Let us denote bT = max
t=1,...,T

‖xt‖∞
∑T

t=1wt,T + a. We evaluate the integral

∫
Θ
e−ηJ(θ)dθ ≥

∫
Rn
e−η(J(θ0)+bT ‖θ−θ0‖1)dθ

= e−ηJ(θ0)

∫
R
. . .

∫
R
e−ηbT

∑n
i=1 |θi−θi,0|dθi = e−ηJ(θ0)

∫
R
. . .

∫
R

n∏
i=1

e−ηbT |θi−θi,0|dθi

= e−ηJ(θ0)
n∏
i=1

∫
R
e−ηbT |θi−θi,0|dθi = e−ηJ(θ0)

(
2

ηbT

)n
.

By putting this expression in (6.21) we have

LT ≤ J(θ0)− 1

η
ln

((aη
2

)n( 2

ηbT

)n)
= Lθ0T + a‖θ0‖1 +

n

η
ln

(
1 +

∑T
t=1wt,T
a

max
t
‖xt‖∞

)
.

By putting η = 2
B−A from Lemma 6.4.1 we obtain the theoretical bound (6.5).

6.6 Experiments

In this section, we apply our proposed algorithm on synthetic data and solar power

data, and compare its performance with other predictive models. The solar power

dataset is downloaded from Open Power System Data which provides free and open

data platform for power system modelling. The platform contains hourly measurements

of geographically aggregated weather data across Europe and time-series of solar power.

Our training data are measurements in Austria from January to December 2015, test

set contains data from January to April 2016. 1

6.6.1 Synthetic Dataset

We apply our algorithm on synthetic datasets. The first dataset is generated from

the linear model y = 2x − 1 + ε, where ε ∈ N (0, 0.001) and feature x is generated

from normal distribution N (0.75, 0.05). Figure 6.1 illustrates the generated dataset

which contains 1000 observations. We divide our data in a way that it has half of its

observations in training and test datasets. First, we will run our algorithm and train the

linear regression on training dataset and compare their performance. From Figure 6.1

we can see that the dataset is almost perfectly linear; and the linear regression model,

trained on training dataset, has R2 = 0.9999 on the test data. We run our algorithm for

1The code written in R is available at https://github.com/RaisaDZ/CRPS.
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6. Competitive online regression under Continuous Ranked Probability Score

the number of MCMC iterations M = 1500 and ‘burn-in’ period M0 = 300 for different

parameters of regularization a and standard deviation σ. For this example, we pick

our parameters of regularization a = 0.5, standard deviation σ = 0.1, and we do not

discount our losses αt = 1 for t = 1, . . . , T . Figure 6.3 shows the difference between

cumulative losses of the linear regression and our algorithm Lθ
∗
T − LT on test dataset,

where θ∗ was obtained by linear regression model on training dataset. We also plot

the theoretical bound for our algorithm. The initial large gap corresponds to the value

−a‖θ∗‖1, which gives the initial start to Learner on expert θ∗. As time increases, we

add an additional value −n(B−A)
2 ln

(
1 + T

a max‖xt‖∞
)

to the bound. We can see from

the graph that initially the loss difference is decreasing fast which means that loss of our

algorithm becomes larger compared to the loss of linear regression model. The initial

start −a‖θ∗‖1 gives us some time for training. After the initial training time passes, the

difference between cumulative losses becomes smoother and behaves in a similar way

with the theoretical bound of our algorithm which is decreasing logarithmically with

the number of steps. Figure 6.4 illustrates the difference between cumulative losses

of the quantile regression and our algorithm which behaves in a similar way with the

previous graph. Total loss of our algorithm on the test dataset is 3.05. It is much larger

than the loss of the best linear regression model which is equal to 0.42, and the loss

of the quantile regression which is equal to 0.30. It is not surprising as the dataset is

almost perfectly linear, and our algorithm makes a large loss during the initial training.

However, the theoretical bound of our algorithm is not violated.

The second synthetic dataset is similar with the previous one, but the slope of the

model slowly changes with time yt = (2 + 0.00005t)xt − 1 + ε, t = 1, . . . , T . Figure 6.2

illustrates the generated dataset. We use the same parameters of our algorithm as in

the previous example, but we add exponential discounting αt = 0.999, t = 1, . . . , T .

The dataset still looks linear; and the linear regression model, trained on training

dataset, has R2 = 0.9681 on the test data. Figure 6.5 shows the difference between

different competitors and our algorithm. We can see from the graph that after around

50 iterations the loss difference starts to increase which means that our algorithm starts

to perform better than other models. At the end of the period total loss of the best

linear regression (LM) is 9.32, loss of the quantile regression trained on training set

(QR) is 7.75, loss of the quantile regression trained online (QR online) is 4.66. Total

loss of our algorithm is equal 4.55, which is slightly lower than the total loss of the

quantile regression trained online.
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Figure 6.1: First dataset
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Figure 6.2: Second dataset

6.6.2 Solar Power Dataset

We perform similar experiments for prediction of solar power. We choose measurements

of direct and diffuse radiations to be our explanatory variables. Figures 6.6, 6.7 show

the dependence of solar power on explanatory variables on the training set. We can

see that there is a linear dependence between predicted and explanatory variables.

The correlation between solar power and direct radiation is equal to 0.88, whereas the

correlation between solar power and diffuse radiation is equal to 0.74. First, similar

to the previous experiments, we fit linear regression on the training set. The linear

regression seems to perform well on this dataset; it has R2 = 0.8929 on the test set.

Now we run our algorithm for the number of MCMC iterations M = 1500 and

‘burn-in’ period M0 = 300 for different parameters of regularization a and standard

deviation σ. Table 6.1 shows the acceptance ratio of new generated parameters θ for

different parameters a and σ. We can notice from the table that standard deviation

σ affects the acceptance ratio quite a lot, whereas regularization parameter a has a

little affect. Figure 6.8 shows the difference between cumulative losses of the best

linear regression trained on the training set and our algorithm, and Figure 6.9 shows

the difference between cumulative losses of the best quantile regression trained on the

training set and our algorithm. We can see from the graphs that we need a little time to

outperform the linear regression model, but our algorithm performs much worse than

the quantile regression as the difference of cumulative losses decreases fast. However,

after around 2000 steps the difference of cumulative losses stabilizes and becomes more
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Figure 6.3: Loss difference between the
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Figure 6.4: Loss difference between the
best quantile regression and our algorithm

‘flattened’ which indicates that the performance of our algorithm becomes close to the

performance of the quantile regression.

Figure 6.10 shows predictions of our algorithm and quantile regression (QR) with

[25%, 75%] confidence interval for the first 100 steps and after 1000 steps. We can

see from the graph, that initially predictions of our algorithm are very different from

predictions of QR. However, after the initial training of our algorithm, predictions of

both methods become very close to each other.

Table 6.1: Acceptance ratio of new generated parameters

a \ σ 0.01 0.02 0.03 0.05 0.10

0.1 0.858 0.602 0.410 0.214 0.070
0.5 0.857 0.602 0.410 0.214 0.069
1.0 0.858 0.601 0.409 0.215 0.069

6.7 Conclusions

We propose an algorithm that combines deterministic predictions of an infinite pool

of linear regressions and outputs probability forecasts in the form of cumulative dis-

tribution functions. The proposed strategy allows us to ’track the best expert’. The

theoretical bound on the discounted cumulative CRPS loss function of the algorithm

is derived.
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Figure 6.5: Loss difference between competitors and our algorithm

We perform experiments to evaluate the performance of our algorithm on synthetic

and solar power datasets. The first experiment shows that the theoretical bound of our

algorithm is not violated. The second experiment on the synthetic dataset show that

the loss discounting helps in situations when the underlying nature of data changes

with time; and our algorithm can outperform the best online quantile regression. The

experiment with prediction of solar power shows that our algorithm needs some time

for training, however after an initial time passes, the performance of our algorithm

becomes close to the performance of the quantile regression.
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Figure 6.6: Dependence of solar power on
direct radiation
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Figure 6.7: Dependence of solar power on
diffuse radiation
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6. Competitive online regression under Continuous Ranked Probability Score
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Figure 6.10: Predictions with [25%, 75%] confidence interval of our Algorithm and QR
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Chapter 7

Universal algorithms for

probabilistic multi-class

classification

In this chapter, we propose a universal algorithm predicting finite-dimensional distri-

butions, i.e. points from a simplex, under Kullback-Leibler game. A natural choice of

predictors for the probability games is a class of multinomial logistic regression func-

tions as they output a distribution that lies inside a probability simplex. We consider

the class of multinomial logistic regressions to be our experts. We provide a strategy

that allows us to ‘track the best expert’ of this type and derive the theoretical bound on

the discounted loss of the strategy. We provide the kernelized version of our algorithm,

which competes with a wider set of experts from Reproducing Kernel Hilbert Space

(RKHS) and prove a theoretical guarantee for the kernelized strategy.

7.1 Introduction

An important class of games of prediction are probability forecasting games, where

the predictions and outcomes are probability distributions on some finite set. In this

chapter, we consider the Kullback-Leibler game, which is one of the most important

probability games. Our experts are a wide class of multinomial logistic regression

functions. Each expert follows a particular strategy, which means that it uses some

particular parameters of a logistic regression function. Our goal is to develop a merging

strategy that suffers loss comparable to the retrospectively best expert. If we use

weights decreasing for old data, we get a strategy that performs as well as the best

expert on recent trials; this can be thought of as a way of tracking the best expert
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7. Universal algorithms for probabilistic multi-class classification

alternative to fixed share techniques.

In this chapter, we develop a universal algorithm for predicting finite-dimensional

distributions, i.e., points from a simplex, under Kullback-Leibler loss. Related problems

have been considered in the literature. Online convex optimization is a similar area

where a decision-maker makes a sequence of decisions from a fixed feasible set. After

each point is chosen, it encounters a convex cost function. In Hazan (2016) a logarithmic

regret bound was obtained for α-convex cost functions, which have a lower bound

on the second derivative; these bounds are not applicable here for the lack of such

bound. A similar problem was considered in Kivinen and Warmuth (2001), where the

authors proposed a general additive algorithm based on gradient descent and derived

loss bounds that compare the loss of the resulting online algorithm to the best offline

predictor from the relevant model class. They considered a softmax transfer function

(Example 4 in Kivinen and Warmuth (2001)) and achieved a theoretical bound with

a multiplicative coefficient of two in front of the loss of the best expert; whereas we

achieved a multiplicative coefficient of one, which indicates that our theoretical bound

is better for large losses.

The multidimensional prediction problem was considered in Zhdanov and Kalnishkan

(2010), where the authors introduced an algorithm competitive with linear functions un-

der the squared loss. One of the drawbacks of introducing linear experts for probability

games is that predictions of linear experts could lie outside a probability simplex. The

case of generalised linear regression experts under log-loss was introduced in Kakade

and Ng (2005), and the case of the square loss was considered in Zhdanov and Vovk

(2010). In all the above cases the authors achieved the theoretical bounds which were

logarithmic in the number of steps. In a recent paper Foster et al. (2018) an algo-

rithm was constructed for the case where outcomes and predictions are distributions

on a finite set, the loss function is logarithmic, and competitors are linear functions

with softmax applied on top of them. The paper contains an excellent survey of ap-

plication domains. We propose an algorithm for the similar setting, but improve the

regret term in the upper bound on the loss. Our regret bound has a lower growth rate

w.r.t. the number of dimensions and does not contain the linear term on the number of

steps. Asymptotically in T the regret is still of the order C lnT , but our multiplicative

constant C is lower.

In this chapter, we provide an explicit universal algorithm for predicting probabil-

ity distributions, which can ‘track the best expert’ in terms of discounted cumulative

Kullback-Leibler loss function. Kullback-Leibler game is one of the most important

probability games (Vovk (2001)). Kullback-Leibler divergence is a measure of discrep-

ancy between two probability distributions (Cover and Thomas (2006)), and it is widely
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used in different areas such as applied statistics, econometrics, risk management and

machine learning. An excellent survey of application of entropy and divergence mea-

sures in econometrics can be found in Ullah (1996). Useful applications of the entropy

and Kullback-Leibler divergence for studying income inequality and welfare economics

are described in Theil (1967) and Maasoumi (1986). The Kullback-Leibler loss function

is also used in optimal portfolio selection and solving portfolio diversification problem

(Bera and Park (2008)).

We apply AA with Discounting to multinomial logistic regression experts. Multi-

nomial logistic regression predictors are a natural choice for probability games as they

output predictions that lie inside a probability simplex. We provide a strategy that

‘tracks the best expert’ of this type and derive the theoretical bound on the discounted

loss of the strategy. We generalise our algorithm to allow it to compete with wider set

of experts from Reproducing Kernel Hilbert Space (RKHS) and prove the theoretical

guarantee for the kernelized strategy.

Theoretical bounds obtained for Kullback-Leibler game are valid for logarithmic

loss game. Indeed, Kullback-Leibler loss function is a generalisation of log-loss function

where outcome space is the whole simplex instead of only vertices of the simplex as in

the case of log-loss game. Therefore, theoretical bounds obtained for Kullback-Leibler

game can be applied to the important problem of probabilistic multi-class classification

under logarithmic loss function.

We conduct experiments to compare the performance of our algorithm with multi-

nomial logistic regression. In our experiments we check that the theoretical bound for

our algorithm is not violated. Our prediction algorithm is using Markov chain Monte

Carlo (MCMC) method in a way which is similar to the algorithm introduced in Section

5.4. With the experiments provided we show that by tuning parameters online, our

algorithm moves fast to the area of high values of the probability function and gives a

good approximation of the prediction, and theoretical bounds are not violated.

7.2 Framework

We consider a probability game G on some finite set Ξ = {1, . . . , d}, where space

of outcomes Ω = P(Ξ) = {(y(1), . . . , y(d)) :
∑d

i=1 y
(i) = 1, 0 ≤ y(i) ≤ 1}, decision

space Γ = P(Ξ) = {(γ(1), . . . , γ(d)) :
∑d

i=1 γ
(i) = 1, 0 ≤ γ(i) ≤ 1} are simplices in

d-dimensional space, and for any y ∈ Ω and γ ∈ Γ we define the Kullback-Leibler loss

λ(y, γ) =

d∑
i=1

y(i) ln
y(i)

γ(i)
, (7.1)
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where y(i) and γ(i) are the i-th coordinate of the respective vectors. As in (Cover

and Thomas (2006), Section 2.3) we assume that for p, q > 0 we have 0 ln 0
q = 0,

p ln p
0 = +∞, and 0 ln 0

0 = 0. The loss function λ defined in this way is continuous in

γ and satisfies Assumptions 1–4 from Vovk (1998).

Learner and experts work according to the Protocol 3 defined in Section 2.4.

The cumulative losses of the learner are discounted with a factor αt ∈ (0, 1] at each

step. If LT−1 is the discounted cumulative loss of the learner at step T − 1, then the

discounted cumulative loss of the learner at step T is defined by (2.20):

LT := αT−1LT−1 + λT (yT , γT ) =

T−1∑
t=1

T−1∏
j=t

αj

λt(yt, γt) + λT (yT , γT ).

If LθT−1 is the discounted cumulative loss of the prediction strategy θ at the step T −1,

then the discounted cumulative loss of the prediction strategy θ at the step T is defined

by (2.21).

LθT := αT−1L
θ
T−1 + λT (yT , ξT (θ)) =

T−1∑
t=1

T−1∏
j=t

αj

λt(yt, ξt(θ)) + λT (yT , ξT (θ)).

We want to find a strategy which is capable of competing in terms of cumulative

losses with all prediction strategies which at step t output ξt(θ) = (ξ1
t (θ), . . . , ξdt (θ)):

ξit(θ) = σi(θ, xt), i = 1, . . . , d, (7.2)

where σi(θ, xt) is multinomial logistic regression function:

σi(θ, xt) =
eθ
′
ixt∑d−1

j=1 e
θ′jxt + 1

, i = 1, . . . , d− 1, (7.3)

σd(θ, xt) =
1∑d−1

j=1 e
θ′jxt + 1

, (7.4)

and θ = (θ′1, . . . , θ
′
d−1)′ ∈ Rn(d−1), θi = (θi,1, . . . , θi,n)′ ∈ Rn.

Another possible choice of prediction strategies for multi-class classification problem

is the class of softmax functions, which also output a distribution that lies inside a

probability simplex. We consider this class of experts in Dzhamtyrova and Kalnishkan

(2019). However, the class of multinomial logistic regressions achieves a slightly better

regret term, which is proportional to d − 1; whereas the regret term for the class of

softmax functions is proportional to d.
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7.3 Theoretical Bounds

We introduce a novel theoretical bound for our algorithm for the multi-class classi-

fication problem where d ≥ 3. The case of d = 2 is considered in Kakade and Ng

(2005).

Theorem 7.3.1. Let a > 0. There exists a prediction strategy for Learner such that

for every positive integer T , every sequence of outcomes of length T and every sequence

αt ∈ (0, 1], t = 1, . . . , T , and every θ ∈ Rn(d−1) the cumulative loss LT of the Learner

satisfies

LT ≤ LθT + a‖θ‖22 +
d− 1

2
ln det

(
I +

d− 1

8a
X ′WTX

)
, (7.5)

where I is n × n unit matrix and X is the matrix with rows x′1, . . . , x
′
T , and WT =

diag(w1,T , . . . , wT,T ), where wt,T =
∏T−1
j=t αj. If in addition ‖xt‖∞ ≤ B for all t then

LT ≤ LθT + a‖θ‖22 +
n(d− 1)

2
ln

(
1 +

d− 1

8a
B2

T∑
t=1

wt,T

)
. (7.6)

The theorem states that the algorithm predicts as well as the best ‘switching’ multi-

nomial logistic regression, defined in (7.3) and (7.4), up to an additive regret of the

form C lnT in terms of the discounted cumulative loss. Large parameters of regular-

isation increase the bound by an additive term a‖θ‖22, however the regret term has a

smaller growth rate as time increases. As the maximum time T is usually not known

in advance, the regularisation parameter a cannot be optimised, and its choice depends

on the particular task.

It is easier to see that the regret term is of the form C lnT for the undiscounted

case, when we have:

Corollary 4. Let a > 0. There exists a prediction strategy for Learner such that for

every positive integer T , every sequence of outcomes of length T , and every θ ∈ Rn(d−1)

the cumulative loss LT of Learner satisfies

LT ≤ LθT + a‖θ‖22 +
d− 1

2
ln det

(
I +

d− 1

8a

T∑
t=1

xtx
′
t

)
. (7.7)

If in addition ‖xt‖∞ ≤ B for all t then

LT ≤ LθT + a‖θ‖22 +
n(d− 1)

2
ln

(
1 +

d− 1

8a
B2T

)
. (7.8)
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7.4 Prediction Strategy

In this section, we will provide a strategy for calculating predictions for the Kullback-

Leibler game. First, we show the mixability of the Kullback-Leibler game.

Lemma 7.4.1. (Lemma 4 in Vovk (2001)). The Kullback–Leibler game is 1-

mixable. The AA for the Kullback–Leibler game with learning rate 1 coincides with

the Bayesian mixture.

The lemma states that the maximum η = 1 for the Kullback-Leibler game.

Now we will show that the Kullback-Leibler game is a generalisation of the loga-

rithmic loss game, described in Section 2.2.2, where outcome space is the whole simplex

instead of only vertices of the simplex as in the case of the log-loss game. Therefore,

theoretical bounds obtained in Theorem 7.3.1 and Corollary 4 are valid for the problem

of multi-class classification under logarithmic loss game.

Lemma 7.4.2. Let γ ∈ Γ is a permitted prediction for the logarithmic loss game, i.e.

λ(ei, γ) ≤ gT (ei), for i = 1, . . . , d. Then γ is a permitted prediction for Kullback-Leibler

game, i.e. λ(y, γ) ≤ gT (y) for all y ∈ P(Ξ).

Proof. Let γ ∈ Γ be a permitted prediction for log-loss game. From (7.1) Kullback-

Leibler loss function is

λ(y, γ) =
d∑
i=1

y(i) ln
y(i)

γ(i)
=

d∑
i=1

y(i) ln y(i) −
d∑
i=1

y(i) ln γ(i)

=

d∑
i=1

y(i) ln y(i) +

d∑
i=1

y(i)λ(ei, γ).
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Generalised prediction (2.3) for Kullback-Leibler game is

gT (y) = −1

η
ln

∫
Θ
e−ηλ(y,γ)P ∗T−1(dθ)

=
d∑
i=1

y(i) ln y(i) − 1

η
ln

∫
Θ
e−η

∑d
i=1 y

(i)λ(ei,γ)P ∗T−1(dθ)

=
d∑
i=1

y(i) ln y(i) − 1

η
ln

∫
Θ

d∏
i=1

e−ηy
(i)λ(ei,γ)P ∗T−1(dθ)

≥
d∑
i=1

y(i) ln y(i) − 1

η
ln

d∏
i=1

∫
Θ

(
e−ηλ(ei,γ)P ∗T−1(dθ)

)y(i)

=

d∑
i=1

y(i) ln y(i) +

d∑
i=1

y(i)

(
−1

η
ln

∫
Θ
e−ηλ(ei,γ)P ∗T−1(dθ)

)

=
d∑
i=1

y(i) ln y(i) +
d∑
i=1

y(i)gT (ei)

≥
d∑
i=1

y(i) ln y(i) +
d∑
i=1

y(i)λ(ei, γ) = λ(y, γ).

The first inequality follows from the generalised Hölder inequality (this follows from

the version of the inequality in Section 9.3 of Loève (1977) by induction). The second

inequality follows from the fact that γ is a permitted prediction for log-loss game. We

showed that prediction γ satisfies the inequality (2.4) for any y ∈ P(Ξ). Therefore, γ

is a permitted prediction for Kullback-Leibler game.

We choose the normal initial distribution of parameters

P0(dθ) = (a/π)n(d−1)/2 exp(−a‖θ‖22)dθ (7.9)

for some a > 0.

We calculate generalised prediction for AAD from unnormalised weights (2.27) and
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taking initial parameter distribution (7.9)

GT (ek) = −1

η
ln

∫
Θ
P0(dθ)

(
P̃T−1(θ)

)αT−1

e−ηλ(ek,ξT (θ))

= −1

η
ln

∫
Θ
P0(dθ)e−η

∑T−1
t=1 Lt(yt,ξt(θ))−ηλT (ek,ξT (θ))

= −1

η
ln (a/π)n(d−1)/2

∫
Θ

(ξkT (θ))ηe
−η
∑T−1
t=1 (

∏T−1
j=t αj)

∑d
i=1 y

i
j ln

yij

ξi
j
(θ)
−a‖θ‖22

dθ,

k = 1, . . . , d. (7.10)

Generalised prediction (7.10) calculated from unnormalized weights will differ from

the generalised prediction (2.3) calculated from normalized weights by only an additive

constant.

By putting η = 1 from Lemma 7.4.1 and applying substitution function e−(.) pre-

diction at step T predicts is expressed as follows

γkT =

∫
Θ
ξkT (θ)q∗T−1(θ)dθ, k = 1, . . . , d, (7.11)

where

q∗T (θ) = ZqT (θ) = Z exp
(
−
T−1∑
t=1

T−1∏
j=t

αj

 d∑
i=1

yit ln
yit
ξit(θ)

− a‖θ‖22
)
, (7.12)

and Z is the normalising constant ensuring that
∫

Θ q
∗
T (θ)dθ = 1.

Because integral (7.11) cannot be calculated analytically, we use the same technique,

described in Sections 5.4, 6.4, to approximate predictions of the proposed strategy.

We use Metropolis-Hastings sample parameters θ from the unnormalized posterior

distribution qT (θ) (7.12). The pseudo-code of the algorithm is given below:

Algorithm

Parameters: number M > 0 of MCMC iterations,

standard deviation σ > 0,

regularization coefficient a > 0

η := 1

initialize θM0 := 0 ∈ Θ

define q0(θ) := exp(−aη‖θ‖22)

for t = 1, 2, . . . do

γit := 0, i = 1, . . . , d
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define qt−1(θ) by (7.12) if t > 1

read xt ∈ Rn

initialize θ0
t = θMt−1

for m = 1, 2, . . . ,M do

θ∗ := θm−1
t +N (0, σ2I)

flip a coin with success probability

min
(
1, qt−1(θ∗)/qt−1(θm−1

t )
)

if success then

θmt := θ∗

else

θmt := θmt−1

end if

γit := γit + ηξit(θ
m
t ), i = 1, . . . , d

end for

output predictions γit = γit/M, i = 1, . . . , d

end for

7.5 Proof of Theoretical Bounds

In this section, we provide the proof of Theorem 7.3.1.

Applying Lemma 2.4.2 for initial distribution (7.9) and putting η = 1 from Lemma

7.4.1 for Kullback-Leibler loss function we obtain

T∑
t=1

wt,T

d∑
i=1

yit ln
yit
γit
≤ − ln

(
(a/π)n(d−1)/2

∫
Θ
e−J(θ)dθ

)
, (7.13)

where

wt,T =

T−1∏
j=t

αj , wT,T = 1

and

J(θ) :=
T∑
t=1

wt,T

d∑
i=1

yit ln
yit

σi(θ, xt)
+ a‖θ‖22.

We use Taylor expansion (Section 1.7c in Courant and John (1989)) of J(θ) at the

point θ0 where min J(θ) is obtained:

J(θ) = J(θ0) +
1

2
(θ − θ0)′H(φ)(θ − θ0),
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where φ is a convex combination of θ0 and θ, and H is the Hessian matrix of J(θ).

The second partial derivative of J(θ) by the l-th, j-th components of θk and θm

respectively is expressed as follows:

∂2J(θ)

∂θk,l∂θm,j
= 2aδjl δ

m
k +

T∑
t=1

wt,T

d∑
i=1

(
yit

1

σ2
i (θ, xt)

∂σi(θ, xt)

∂θk,l

∂σi(θ, xt)

∂θm,j

− yit
1

σi(θ, xt)

∂2σi(θ, xt)

∂θk,l∂θm,j

)
, (7.14)

where

δmk =

1, if k = m

0, if k 6= m

is Kronecker delta.

The first and second partial derivatives of the function σi(θ, xt) are as follows:

∂σi(θ, xt)

∂θk,l
= xt,lσi(θ, xt)(δ

k
i − σk(θ, xt)),

∂2σi(θ, xt)

∂θk,l∂θm,j
= xt,lxt,jσi(θ, xt)

(
δmk − δmk σk(θ, xt)− δki σm(θ, xt)− δmi σk(θ, xt)

+ 2σk(θ, xt)σm(θ, xt)
)
.

Expression (7.14) can be re-written as follows:

∂2J(θ)

∂θk,l∂θm,j
= 2aδjl δ

m
k +

T∑
t=1

wt,Txt,lxt,jfk,m(θ, xt), (7.15)

where

fk,m(θ, xt) = σk(θ, xt)(δ
m
k − σm(θ, xt)).

We denote WT = diag(w1,T , w2,T , . . . , wT,T ) the diagonal matrix T by T . Let X be

the T × n matrix with the rows x′1, . . . , x
′
T and Γk,m(φ) be the diagonal T × T matrix

that has fk,m(φ, x1, y1), . . . , fk,m(φ, xT , yT ) on the diagonal. Let Z be the block matrix

as follows:

Z =


X1,1 . . . X1,d−1

...
. . .

...

Xd−1,1 . . . Xd−1,d−1

 ,
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where

Xk,m =


√
WTX, if k = m

O, if k 6= m

Let Γ(φ) to be a block matrix as follows:

Γ(φ) =


Γ1,1(φ) . . . Γ1,d−1(φ)

...
. . .

...

Γd−1,1(φ) . . . Γd−1,d−1(φ)

 .

Then Hessian matrix of J(θ) can be written in the matrix form:

H(φ) = 2aI + Z ′Γ(φ)Z. (7.16)

Since Γ(φ) is a symmetric matrix, we can see (Theorem 21.5.6 in Harville (1997)) that:

ψ′Γ(φ)ψ ≤ ψ′λmax(Γ(φ))ψ,

for any ψ ∈ RT (d−1) where λmax(Γ(φ)) is the supremum over maximum eigenvalues of

Γ(φ).

We will now show that matrix Γ(φ) is positive definite. The absolute value of the

diagonal element of Γ(φ) is

|fk,k(θ, xt)| = σk(θ, xt)(1− σk(θ, xt)),

the sum of the absolute values of non-diagonal elements on the row is

∑
m 6=k
|fk,m(θ, xt)| =

∑
m 6=k
| − σk(θ, xt)σm(θ, xt)|

= σk(θ, xt)
∑
m6=k

σm(θ, xt) = σk(θ, xt)(1− σk(θ, xt)− σd(θ, xt)).

As |fk,k(θ, xt)| >
∑

m 6=k |fk,m(θ, xt)|, for all k = 1, . . . , d − 1, t = 1, . . . , T , then by

Diagonal Dominance Theorem 6.1.10 in (Horn and Johnson (1985)) Γ(φ) is positive

definite.

By Theorem A.3 (see Appendix), we can upper bound λmax(Γ(φ)), the maximum

eigenvalue of Γ(φ), by the sum of maximum eigenvalues of diagonal blocks Γi,i(φ):

λmax(Γ(φ)) ≤
d−1∑
i=1

λmax(Γi,i(φ)).
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Since Γi,i(φ) is diagonal then:

λmax(Γi,i(φ)) = sup
θ∈Rn(d−1), xt∈Rn

fi,i(θ, xt)

= sup
θ∈Rn(d−1), xt∈Rn

σi(θ, xt)(1− σi(θ, xt)) =
1

4
.

By taking ψ = Z(θ − θ0) and using (7.16):

J(θ) ≤ J(θ0) + (θ − θ0)′(aI +
d− 1

8
Z ′Z)(θ − θ0).

We can obtain the lower bound on the integral in (7.13):∫
Θ
e−J(θ)dθ ≥ e−J(θ0)

∫
Θ
e−(θ−θ0)′(aI+ d−1

8
Z′Z)(θ−θ0)dθ.

The integral in the right-hand side can be calculated analytically (see Theorem A.1

in Appendix):

∫
Θ
e−(θ−θ0)′(aI+ d−1

8
Z′Z)(θ−θ0)dθ =

π
n(d−1)

2√
det(aI + d−1

8 Z ′Z)
.

After putting this expression in (7.13) we obtain the upper bound:

LT ≤ − ln

e−J(θ0)
(a
π

)n(d−1)
2

π
n(d−1)

2
1√

det(aI + d−1
8 Z ′Z)


= J(θ0) +

1

2
ln det

(
I +

d− 1

8a
Z ′Z

)
= Lθ0T + a‖θ0‖22

+
d− 1

2
ln det

(
I +

d− 1

8a
X ′WTX

)
.

If ‖xt‖∞ ≤ B the determinant of a symmetric positive definite matrix is upper

bounded by the product of its diagonal elements (see Chapter 2, Theorem 7 in Beck-

enbach and Bellman (1961)):

det

(
I +

d− 1

8a
X ′WTX

)
≤

(
1 +

d− 1

8a
B2

T∑
t=1

wt,T

)n
.
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7.6 Kernelized Algorithm

In this section, we kernelize the algorithm and prove upper bounds on the Kullback-

Leibler loss of the algorithm competing with wider class of experts.

We start with the definition of a kernel. A kernel on a domain X, which is an

arbitrary set with no structure assumed, is a symmetric positive-semidefinite function

of two arguments, i. e., k : X×X→ R such that

1. for all x1, x2 ∈ X we have k(x1, x2) = k(x2, x1),

2. for any positive integer T , any x1, x2, . . . , xT ∈ X and any real numbers a1, a2,

. . . , aT ∈ R we have
∑T

i,j=1 aiajk(xi, xj) ≥ 0.

An equivalent definition can be given as follows. A function k : X ×X → R is a

kernel if there is a Hilbert space F of functions on X such that

1. for every x ∈ X the function k(x, ·), i. e., k considered as a function of the second

argument with the first argument fixed, belongs to F ,

2. for every x ∈ X and every f ∈ F the value of f at x equals the scalar product of

f by k(x, ·), i. e., f(x) = 〈f, k(x, ·)〉F ; this property is often called the reproducing

property.

The second definition is sometimes said to specify a reproducing kernel. A space F
admitting a reproducing kernel is called a reproducing kernel Hilbert space (RKHS).

Finally, we give a definition of a kernel as the scalar product in a feature space.

Given a feature mapping Φ : X→ F , where F is a Hilbert space, a kernel is defined as

k(x1, x2) = 〈Φ(x1),Φ(x2)〉.

These three definitions are equivalent since a function k(x1, x2) : X ×X → R can

be represented in the form 〈Φ(x1),Φ(x2)〉 iff k is the reproducing kernel of an RKHS

iff k is symmetric and positive semi-definite.

In order to kernelize our algorithm, we formulate it in a dual form, where all in-

put vectors appear only in dot products. These dot products are then replaced by

kernels. This procedure is known as the kernel trick. The following lemma restating

Theorem 7.3.1 in the dual form.

Lemma 7.6.1. Under the conditions of Theorem 7.3.1, the cumulative loss LT of the

Learner satisfies

LT ≤ LθT + a‖θ‖22 +
d− 1

2
ln det

(
I +

d− 1

8a

√
WTX

′
TXT

√
WT

)
, (7.17)
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where
√
WT = diag(

√
w1,T ,

√
w2,T , . . . ,

√
wT,T ).

Proof. The lemma follows from (7.5) and the Sylvester identity (Lemma A.4).

The lemma opens the way for the kernelization of the loss bound along the usual

lines, but one should be careful. We do not have an explicit formula for the universal

algorithm and cannot state it in the dual form straightforwardly.

We will now define the kernel form of the algorithm. Our starting point is the

representation given by (7.11).

Lemma 7.6.2. Let J be an orthogonal (n × n)-matrix. If all vectors xt are replaced

by Jxt, t = 1, 2, . . . , T , the value of γkt given by (7.11) will not change.

Proof. Vectors xt appear in the integral of (7.11) only in scalar products x′tθi. Let us

replace all xt by Jxt. We have (Jxt)
′θi = x′t(J

′θi). The substitution θ̃i = J ′θi reduces

the integral to the same form as before because ‖θ̃‖22 =
∑d−1

i=1 θ
′
iJ
′Jθi =

∑d−1
i=1 ‖θi‖22 =

‖θ‖22 and |det(diag(J, J, . . . , J))| = 1.

Lemma 7.6.3. Let all xt, t = 1, 2, . . . , T , belong to an m-dimensional subspace Sm of

Rn, m < n. Then the integral in (7.11) can be taken over Θm = (Sm)d−1, so that

γkT =

∫
Θm

ξkT (θ)q̃∗T−1(θ)dθ,

with

q̃∗T−1(θ) = Z̃ exp

− T−1∑
t=1

T−1∏
j=t

αj

 d∑
i=1

yit ln
yit
ξit(θ)

− a‖θ‖22

 , (7.18)

where Z̃ is such that
∫

Θm
q̃∗T (θ) = 1.

Proof. Lemma 7.6.2 implies that without restricting the generality we can assume that

vectors in Sm have their last n − m coordinates equal to 0. We can then split θi as

θ′i = (θ̃′i, θ̂
′
i), where θ̃i has m and θ̂i has n − m coordinates (i = 1, 2, . . . , d − 1), and

take θ̃ = (θ̃′1, . . . , θ̃
′
d−1)′ and θ̂ = (θ̂′1, . . . , θ̂

′
d−1)′. Since xt ∈ Sm, one can split them

as x′t = (x̃′t, 0), where 0 is of dimension n − m. We have x′tθi = x̃′tθ̃i, and therefore

ξkT ((θ̃′1, θ̂
′
1, . . . , θ̃

′
d−1, θ̂

′
d−1)′) = ξkT ((θ̃′1, 0, . . . , θ̃

′
d−1, 0)′).

128



7. Universal algorithms for probabilistic multi-class classification

We have

γkT =

∫
Θ
ξkT (θ)q∗T−1(θ)dθ =

=

∫
Rm(d−1)

∫
R(n−m)(d−1)

ξkT ((θ̃′1, 0, . . . , θ̃
′
d−1, 0)′)

× Zq̃∗T−1(θ̃) exp

(
−a

d−1∑
i=1

‖θ̂i‖22

)
dθ̃dθ̂, (7.19)

where Z is such that

Z

∫
Θ
q̃∗T−1(θ̃) exp

(
−a

d−1∑
i=1

‖θ̂i‖22

)
dθ = 1.

Notice, that an integral
∫
R(n−m)(d−1) exp

(
−a
∑d−1

i=1 ‖θ̂i‖22
)
dθ̂ evaluates to a constant.

Then an application of Fubini’s theorem to (7.19) completes the proof.

Let k : X×X→ R, where X is some domain, be a kernel and let F with the scalar

product 〈·, ·〉F and norm ‖ · ‖F be the corresponding RKHS. Let Φ : X → F be the

feature mapping given by Φ(x) = k(x, ·).
Consider the kernelized modification of Protocol 1 with nature outputting xt ∈

X. We want to compete with predictors of the following kind. Take an array of

d − 1 functions f = (f1, f2, . . . , fd−1) ∈ Fd−1. At step t array f outputs ξt(f) =

(ξ1
t (f), . . . , ξdt (f)) such that

ξit(f) = σi(f , xt), i = 1, . . . , d, (7.20)

where σi(f , xt) are multinomial logistic regression functions:

σi(f , xt) =
efi(xt)∑d−1

j=1 e
fj(xt) + 1

, i = 1, . . . , d− 1, (7.21)

σd(f , xt) =
1∑d−1

j=1 e
fj(xt) + 1

. (7.22)

The discounted cumulative loss Lf
t is defined similar to (2.21).

We will now construct a universal algorithm working according to the kernelized

Protocol 1. The algorithm works as follows.

On step T let FT ⊆ F be the span of Φ(x1),Φ(x2), . . . ,Φ(xT ). It is a space of

finite dimension T ′ ≤ T and it is isomorphic to RT ′ . We define γkT by (7.11) with

Θ = RT ′(d−1) and x′t ∈ RT ′ being the values corresponding to Φ(xt), t = 1, 2, . . . , T .
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7. Universal algorithms for probabilistic multi-class classification

Lemma 7.6.2 implies that the algorithm is well-defined and independent of the choice

of a linear isomorphism.

The values of γkT can be computed by evaluating the integral in (7.11) as fol-

lows. Each θ ∈ Θ corresponds to a predictor (σ1(h, x), . . . , σd(h, x)), where h =

(h1, h2, . . . , hd−1) ∈ Fd−1 is defined by hi(x) =
∑T

t=1 a
i
tk(xt, x), where ai1, a

i
2, . . . , a

i
T ∈

R are some constants. The density

q∗T (θ) ∝ exp

− T−1∑
t=1

T−1∏
j=t

αj

 d∑
i=1

yit ln
yit

ξit(h)
− a

d−1∑
i=1

‖hi‖2F

 , (7.23)

where ‖hi‖2F =
∑T

t1,t2=1 a
i
t1a

i
t2k(xt1 , xt2), may be evaluated (up to a multiplicative

constant) once we know ai1, a
i
2, . . . , a

i
T . Therefore we can use MCMC doing a random

walk over the space of coefficients ait, i.e., RT (d−1).

Theorem 7.6.4. Let a > 0. There exists a prediction strategy S for the learner such

that for every positive integer T , for every sequence of outcomes of the length T , and

every sequence αt ∈ (0, 1], t = 1, . . . , T , and any f = (f1, . . . , fd−1) ∈ Fd−1 , the loss

LT of the learner satisfies

LT ≤ Lf
T + a

d−1∑
i=1

‖fi‖2F +
d− 1

2
ln det

(
I +

d− 1

8a

√
WTKT

√
WT

)
, (7.24)

where

KT =


k(x1, x2) . . . k(x1, xT )

...
. . .

...

k(xT , x1) . . . k(xT , xT )

 ,

and WT = diag(w1,T , w2,T , . . . , wT,T ), where wt,T =
∏T−1
j=t αj.

Proof. Fix a positive integer T . The distribution γt output by our algorithm is con-

structed using FT of dimension T ′ isomorphic to some RT ′ . For t < T the construction

relies on a different Ft isomorphic to Rt′ . However, Ft ⊆ FT and Ft is isomorphic

to a subspace of RT ′ . Lemmas 7.6.2 and 7.6.3 imply that γt could be calculated by

integration over the same RT ′(d−1) with the same x′1, . . . , x
′
t.

Let f1, f2, . . . , fd−1 ∈ FT . Then each is isomorphic to a θi with the same norm and

the theorem follows from Lemma 7.6.1.

Let f1, f2, . . . , fd−1 ∈ F be arbitrary functions from the RKHS. Using the Repre-

senter Theorem argument (Lemma A.5 in Appendix), we can project each fi on FT and

write fi = f
‖
i +f⊥i , where f

‖
i ∈ FT and f⊥i is orthogonal to FT . By the construction of

FT , we have fi(xt) = f
‖
i (xt) i = 1, 2, . . . , d− 1 and t = 1, 2, . . . , T , but ‖f‖i ‖F ≤ ‖fi‖F .
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Thus the orthogonal component does not affect predictions but increases the norm.

The theorem follows.

Note that for the undiscounted losses we have:

Corollary 5. Let a > 0. There exists a prediction strategy S for the learner such that

for every positive integer T , for every sequence of outcomes of the length T , and any

f = (f1, . . . , fd−1) ∈ Fd−1 , the loss LT of the learner satisfies

LT ≤ Lf
T + a

d−1∑
i=1

‖fi‖2F +
d− 1

2
ln det

(
I +

d− 1

8a
KT

)
, (7.25)

where

KT =


k(x1, x2) . . . k(x1, xT )

...
. . .

...

k(xT , x1) . . . k(xT , xT )

 .

The order of the regret term in (7.25) may vary. However, we show that it has the

order O(
√
T ) in many cases. We will use the notation c2

F = supz∈X k(z, z) and assume

c2
F <∞.

Corollary 6. Under the conditions of Corollary 5 and if the number of steps T is

known in advance, the kernelized algorithm with a = cF
√
T achieves loss satisfying

LT ≤ Lf
T +

(
d−1∑
i=1

‖fi‖2F +
(d− 1)2

16

)
cF
√
T . (7.26)

Proof. The determinant of a symmetric positive definite matrix is upper bounded by

the product of its diagonal elements (see Chapter 2, Theorem 7 in Beckenbach and

Bellman (1961)) and thus

ln det

(
I +

d− 1

8a
KT

)
≤ T ln

(
1 +

(d− 1)c2
F

8a

)
≤ T

(d− 1)c2
F

8a
.

If we know the number of steps T in advance, then we can choose a specific value

a = cF
√
T .

In a case when the number of trials is not known in advance, it is still possible

to use a suitable initial weights distribution over the parameter a to achieve a similar

bound using the AA (see Vovk (2005)).
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7.7 Experiments

In this section, we apply our algorithm on three datasets and compare its performance

with the multinomial logistic regression. For simplicity we apply our algorithm for

multi-class classification problems and put αt = 1 for all t = 1, . . . , T . We obtained the

best parameters of multinomial logistic regression by using function ‘multinom’ from

library ‘nnet’ in R. 1

7.7.1 Synthetic Dataset

We generated the synthetic ‘Smiley’ dataset that consists of two Gaussian eyes, a

trapezoid nose and a parabola mouth. The function for generating this dataset was

taken from R library ‘mlbench’. Figure 7.1 shows the dataset which contains 1000

observations with two features and four classes: left eye, right eye, nose, and mouth.

We divide our data in a way that each class will have half of its observations in training

and test datasets. Figure 7.2 illustrates the generated training dataset. The split of the

training and test dataset is not random to show that sometimes the training dataset

does not describe the ‘underlying nature’ of the data. The training dataset is obtained

so that there are infinite number of linear classifiers that could classify the training

dataset correctly.

First, we will run our algorithm and train the multinomial logistic regression on

training dataset and compare their performance. We run our algorithm for the number

of MCMC iterations M = 3000 and ‘burn-in’ period M0 = 1000 for different parameters

of regularization a and standard deviation σ.

Table 7.1 shows the total loss of our algorithm on training dataset. Low values of

losses are achieved with small regularization parameters a and large standard deviation

σ. Very small values of σ lead to big losses as the algorithm is not able to reach the

area of high values of density function fP .

Table 7.2 illustrates the acceptance ratio of new sampling parameters of our algo-

rithm. Large values of σ and large values of regularization parameter a result in low

acceptance ratios. With large values of σ we move faster to the area of high values of

density function while smaller values of σ can lead to more expensive computations as

our algorithm would require more iterations to find the optimal parameters. Figure

7.3 illustrates logarithm of parameters likelihood q(θ) defined in (7.12) for a = 0.001

and σ = 0.1 and 1.5. We can see from the graphs that for σ = 1.5 the algorithm

reaches maximum value of log-likelihood quite fast while for σ = 0.1 it still tries to find

maximum value after 3000 iterations. It is important to keep track on the acceptance

1The code written in R is available at https://github.com/RaisaDZ/LogisticRegression.
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ratio of the algorithm, as high acceptance ratio means that we move too slowly and

need more iterations and larger ‘burn-in’ period to find the optimal parameters.

Now we want to demonstrate the ‘power’ of online learning compared to batch

learning. We train the multinomial logistic regression on training dataset and will

compare its performance with our algorithm applied to test dataset. We choose pa-

rameters of algorithm to be M = 3000, ‘burn-in’ period M0 = 1000, regularization

parameter a = 0.001 and standard deviation σ = 1.5. Note, that even though we

use the prior knowledge about optimal parameters of our algorithm using results on

training dataset, we do not actually train our algorithm, and start with initial value

θ0 = 0. Figure 7.4 shows the difference between cumulative losses of the multinomial

logistic regression and our algorithm Lθ
∗
T −LT on test dataset, where θ∗ was obtained by

multinomial logistic regression model on training dataset. We can see from the graph

that our algorithm needs a little time to train and after a few steps it becomes better

than multinomial logistic regression trained on training dataset. It is obvious from

Figure 7.2 that there are infinite number of linear classifiers that could classify data

correctly as training dataset contains linearly separable classes. Training dataset does

not describe the ‘underlying nature’ of the generated data. As a result, retrospectively

best model that was trained on training dataset does not perform good on test dataset.

Now we will train multinomial logistic regression on test dataset to find retrospec-

tively the best model with parameters θ∗. Figure 7.5 shows the difference between

cumulative losses of retrospectively best expert θ∗ on test dataset and the cumulative

loss of our algorithm. We also plot the theoretical bound for our algorithm. The initial

large gap corresponds to the value −a‖θ∗‖22, which gives the initial start to Learner on

expert θ∗. As time increases, we add an additional value −n(d−1)
2 ln(1 + d−1

8a X
2T ) to

the bound. We can see from the graph that initially the loss difference is decreasing

fast which means that loss of our algorithm becomes larger compared to the loss of

multinomial logistic regression model. The initial start −a‖θ∗‖22 gives us some time

for training. After the initial training time passes, the difference between cumulative

losses becomes smoother and behaves in a similar way with the theoretical bound of

our algorithm which is decreasing logarithmically with the number of steps.

7.7.2 Glass Identification Dataset

We conduct similar experiments on Glass Identification dataset which is the part of the

library ‘mlbench’ in R or could be downloaded from UCI Machine Learning Repository.

The goal is to classify the six type of glasses. The study of classification of types of

glass was motivated by criminological investigation. At the scene of the crime, the

glass left can be used as evidence. The dataset contains nine features and total 214
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Figure 7.1: Smiley dataset
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Figure 7.2: Training dataset

Table 7.1: Total Losses of our algorithm on training set

a \ σ 0.1 0.5 1.0 1.5 3.0

0.001 218.52 2.11 0.82 0.68 1.10
0.005 220.23 2.31 2.24 2.05 1.44
0.010 219.93 2.93 2.95 3.18 3.89
0.050 207.49 9.99 10.06 10.21 7.65
0.100 226.51 16.72 16.50 22.15 7.30
0.500 214.10 54.74 54.05 71.29 307.79
0.700 207.18 69.12 73.36 65.90 312.76
1.000 222.63 86.55 99.73 79.63 278.83

observations. As there were no timestamps in the dataset, observations were randomly

shuffled, and this order was used as a time. We normalise all the features between -1

and 1 and add addition bias 1 to all observations.

Similar to the previous experiment, we find retrospectively the best multinomial

logistic regression with parameters θ∗ using the whole dataset. We want to compare the

performance of retrospectively best expert θ∗ with the performance of our algorithm.

Now we will show how the performance of our algorithm and the behaviour of the

loss bound depend on different parameters of regularization a. We choose number

of steps M = 3000, ‘burn-in’ period M0 = 1000 and σ = 0.1. First, we run our

algorithm for small regularization a = 0.001. Figure 7.6 shows the difference between

cumulative losses of multinomial logistic regression and our algorithm. Small values

of regularization gives small start on the initial parameters −a‖θ∗‖22 at time t = 0.
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Table 7.2: Acceptance ratio of our algorithm on training set

a \ σ 0.1 0.5 1.0 1.5 3.0

0.001 0.82 0.74 0.58 0.38 0.03
0.005 0.81 0.75 0.39 0.10 0.01
0.010 0.81 0.70 0.29 0.05 0.00
0.050 0.82 0.56 0.08 0.01 0.00
0.100 0.80 0.46 0.05 0.01 0.00
0.500 0.80 0.24 0.01 0.01 0.00
0.700 0.82 0.21 0.01 0.01 0.00
1.000 0.82 0.16 0.01 0.00 0.00

However, the theoretical bound will grow faster with time −n(d−1)
2 ln(1 + d−1

8a X
2T ) as

it is inversely proportional to the logarithm of the regularization parameter a.

We will conduct the second experiment for larger regularization a = 0.01. Figure 7.7

shows the difference between cumulative losses of logistic regression and our algorithm

Lθ
∗
T − LT . For larger regularization we allow larger initial start on the parameters

−a‖θ∗‖22. However, the theoretical bound decreases slower with time compared to the

previous experiment.

The choice of the regularization parameter a is important as it affects the behaviour

of the theoretical bound of our algorithm. Larger parameters of regularization gives

larger start on the parameters of the best model, however the theoretical bound will

have smaller growth rate as time increases.

7.7.3 Football Dataset

The third dataset was compiled from historical information on football matches and

bookmakers odds 2. The dataset covers three seasons, 2014/ 2015, 2015/2016 and

2016/2017 of the English Premier League and total 1140 matches. Each match can have

three outcomes: ‘home win’, ‘draw’, or ‘away win’. The data contains the historical

information such as total number of goals, shots, corners, yellow and red cards after

half-time and full-time and bookmakers’ odds from different providers. For each team

we generated features such as average number of games won / lost, average number of

goals scored / conceded, average number of shots during the first-half, etc. In addition,

we combined the odds of different bookmakers provided for the current match. There

were total 46 generated features. The first two seasons were used for the training

of multinomial logistic regression and the last season was left for test. We want to

check if our algorithm could perform close to the model of logistic regression that will

2Available at http://football-Data.co.uk
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Figure 7.3: Log-likelihood of parameters depending on iteration step

be trained in online mode. We choose the parameters of our algorithm M = 2000,

‘burn-in’ period M0 = 500, regularization parameter a = 0.05 and standard deviation

σ = 0.2. At the initial step multinomial logistic regression uses the parameters of the

model that was trained on the first two seasons. After that, we add data sequentially

and re-train the model after each match. Figure 7.8 illustrates the difference between

cumulative losses of multinomial logistic regression trained online and our algorithm

Lθ
∗
T −LT . Initially our algorithm performs much worse than logistic regression in online

mode as the difference of cumulative losses decreases fast. However, after around 200

steps the difference of cumulative losses stabilizes and becoming more ‘flattened’ which

indicates that the performance of our algorithm becomes close to the performance of

logistic regression.
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Figure 7.4: Comparison with logistic re-
gression trained on training set
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Figure 7.5: Comparison with retrospec-
tively best logistic regression

7.7.4 Conclusions

We carry out the experiments on three datasets to evaluate the performance of our

algorithm. Results show that our algorithm could perform close to the best multinomial

logistic regression trained in online mode. We also compare the difference between

the cumulative losses of retrospectively best multinomial logistic regression and our

algorithm, and we check that the theoretical bound of our algorithm is not violated.

The choice of the regularization parameter a is important as it affects the behaviour

of the theoretical bound of our algorithm. Larger parameters of regularization gives

larger start on the parameters θ∗ of the best model, however the theoretical bound will

have smaller growth rate as time increases. The choice of the regularization parameter

depends on the particular task and goals that desired to be achieved.

137



7. Universal algorithms for probabilistic multi-class classification

0 50 100 150 200

−
40

0
−

30
0

−
20

0
−

10
0

0
Loss difference

Time

Figure 7.6: Glass dataset, a = 0.001
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Figure 7.7: Glass dataset, a = 0.01
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Figure 7.8: Comparison with multinomial logistic regression trained in online mode
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Chapter 8

Conclusions

In this thesis, we have considered the problem of competitive online prediction. At

each time step, we have an access to experts’ predictions, and our task is to make

a prediction before seeing the actual outcome. One of the methods which optimally

merges pools of experts is the Aggregating Algorithm (AA). It resolves the problem of

predicting as well as the best expert up to an additive constant for the case of mixable

loss functions. For non-mixable losses, it is possible to use the Weak Aggregating

Algorithm (WAA) which provides a weaker theoretical guarantee compared to the AA.

However, the WAA still provides a strategy to predict asymptotically not much worse

than the best expert in the pool. In this dissertation, we applied both algorithms to

different sets of experts depending on the mixability of the considered loss function. In

some tasks we considered the generalisation of the standard framework of prediction

with expert advice by adding the discounting. The discounted loss is considered to be

an alternative to the ‘tracking the best expert’ framework.

We start with the application of the AA to the prediction of vector-valued outcomes.

We develop the theory of prediction with expert advice for packs and generalise the

concept of mixability for the special case of delayed feedback. We propose three merging

strategies for the prediction of packs and prove the tight worst case upper bounds on

the cumulative losses. Experiments on house price and sports datasets discover the

properties of the proposed algorithms and compare them with Parallel Copies of the

AA. There are two main advantages of the new algorithms compared to Parallel Copies

of the AA. First, these algorithms are order-independent, i.e., they do not depend on

the order of predictions in the pack. Second, they require less memory to compute as

only one array of experts’ weights has to be maintained at each time step.

Another application of the framework of prediction with expert advice was consid-

ered in the problem of forecasting of Value at Risk (VaR). We consider the game with
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pinball loss. The same loss function is used to optimize the parameters of quantile

regression. As the pinball loss function is not mixable we apply the WAA to a finite

number of models which are used for estimation of VaR. The experimental results on

three stocks show that combining predictions of different models can provide better

results compared to a single model. The Kupiec unconditional coverage test and the

Christoffersen conditional coverage test show that the proposed method is the only one

which fails to reject the null hypothesis for all test cases.

The second part of the dissertation is devoted to the development of probabilis-

tic forecasting algorithms, which are competitive with a large class of functions. It

is possible to provide good theoretical guarantees even if the decision pool is infinite.

While the bound for the finite case can be straightforwardly applied to finite or count-

able sets of experts, every case of a continuous pool needs to be dealt with separately.

The first competitive probabilistic forecasting algorithm provides prediction intervals

so that outcomes lie in the interval with a given probability. The algorithm merges

the class of quantile regressions and competes in terms of the cumulative pinball loss

function. The second proposed algorithm outputs probabilistic predictions in terms of

the cumulative distribution functions and allows us to ‘track the best linear regression’.

The theoretical bound on the discounted cumulative Continuously Ranked Probability

Score loss function of the algorithm is derived. Both algorithms were applied to the

tasks of renewable energy forecasting. Empirical evaluation suggests that, in general,

the new methods perform close to or better than the best quantile regression model in

terms of the respective loss functions.

An important class of games of prediction are probability forecasting games, where

the predictions and outcomes are probability distributions on some finite set. We

propose a competitive prediction strategy for the Kullback-Leibler game, which is one

of the most important probability games. We choose experts to be a wide class of

multinomial logistic regression functions. We provide a strategy that allows us to ‘track

the best expert’ of this type and derive the theoretical bound on the discounted loss of

the strategy. We provide the kernelized version of our algorithm, which competes with

a wider set of experts from Reproducing Kernel Hilbert Space (RKHS) and prove a

theoretical guarantee for the kernelized strategy. Experimental results on three datasets

show that our algorithm could outperform the retrospectively best model of multinomial

logistic regression trained on training dataset. We also compare the difference between

the cumulative losses of retrospectively best multinomial logistic regression trained on

the test dataset and our algorithm, and we check that the theoretical bound of our

algorithm is not violated.
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Appendix A

Appendix

Lemma A.1. Let Q(θ) = θ′Aθ+b′θ+c, where θ, b ∈ Rn, c is a scalar, A is a symmetric

positive definite n× n matrix. Then∫
Rn
e−Q(θ)dθ = e−Q0

πn/2√
detA

,

where Q0 = minθ∈Rn Q(θ).

The lemma is proven in (Theorem 15.12.1, Harville (1997)).

Lemma A.2. Let

F (a, b, z) = min
θ∈Rn

(θ′Aθ + b′θ + z′θ)− min
θ∈Rn

(θ′Aθ + b′θ − z′θ),

where b, z ∈ Rn and A is a symmetric positive definite n×n matrix. Then F (A, b, z) =

−b′A−1z.

Proof. The first minimum is achieved at θ1 = −1
2A
−1(b+x), and the second minimum

is achieved at θ2 = −1
2A
−1(b− x). The substitution proves the lemma.

Theorem A.3. Let A is positive symmetric semidefinite block matrix such as

A =


A1,1 A1,2 . . . A1,d

A2,1 A2,2 . . . A2,d

...
...

. . .
...

Ad,1 Ad,2 . . . Ad,d

 ,

where Ai,i, i = 1, . . . , d are square matrices. Then Ai,i, i = 1, . . . , d are positive

semidefinite and λmax(A) ≤
∑d

i=1 λmax(Ai,i).
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Proof. Let A be an n×n-matrix and Ai,i be an ni×ni-matrix, i = 1, . . . , d. Every vector

x ∈ Rn, ‖x‖ = 1 can be partitioned as x = (x′1, . . . , x
′
d)
′, where xi ∈ Rni , i = 1, . . . , d.

Define ci and ui by xi = ‖xi‖ · xi
‖xi‖ = ciui, where

∑d
i=1 c

2
i =

∑d
i=1 ‖xi‖2 = 1, and

‖ui‖ = xi
‖xi‖ = 1 for i = 1, . . . , d. If xi = 0 we put ci = 0 and ui be any vector such that

‖ui‖ = 1 for i = 1, . . . , d.

We have

λmax(A) = max
‖x‖=1

x′Ax

and

x′Ax =
∑

i,j:xi,xj 6=0

x′iAi,jxj =
∑
i,j

c′iu
′
iAi,jujcj =

∑
i,j

c′iãi,jcj , (A.1)

where ãi,j = u′iAi,juj and

Ã =


ã1,1 . . . ã1,d

...
. . .

...

ãd,1 . . . ãd,d

 .

Matrices Ai,i, i = 1, . . . , d are positive semidefinite (by Observation 7.1.2 in Horn

and Johnson (1985)) and Ã is positive semidefinite by (A.1). Then

∑
i,j

c′iãi,jcj ≤ λmax(Ã) ≤ tr Ã =
d∑
i=1

ãi,i =
d∑
i=1

u′iAi,iui ≤
d∑
i=1

λmax(Ai,i).

Lemma A.4. (Sylvester Identity) For any n×m matrix B, any m× n matrix C,

and any number a

det(aIn +BC) = det(aIm + CB),

where In, Im are unit matrices n× n and m×m, respectively.

Proof. It follows from matrix multiplication rules that(
In B

O Im

)(
aIn +BC O

−C aIm

)
=

(
aIn aB

−C aIm

)

=

(
aIn O

−C aIm + CB

)(
In B

O Im

)
.

Taking the determinant of both sides and using rules of taking the determinant of block

matrices we get the statement of the lemma.
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Lemma A.5. (Representer Theorem) Let Φ : X→ H be a mapping into a Hilbert

space H and α : H → R be given by

α(h) = δ(〈h,Φ(x1)〉, 〈h,Φ(x2)〉, . . . , 〈h,Φ(xT )〉, ‖h‖),

where δ is a function from RT+1 to R non-decreasing in the last argument and

x1, x2, . . . , xT ∈ X are some fixed elements. Then for every h ∈ H there is a linear

combination h′ =
∑T

t=1 atΦ(xt), where at ∈ R are constants, such that α(h′) ≤ α(h).

If δ is strictly increasing in the last argument and h does not itself have the form∑T
t=1 atΦ(xt), there is a linear combination h′ such that α(h′) < α(h).

Proof. The proof is by observing that the projection h′ of h on the subspace

span({Φ(x1),Φ(x2), . . . ,Φ(xT )}) has the same scalar products 〈h′,Φ(xt)〉 = 〈h,Φ(xt)〉
with elements Φ(xt), t = 1, 2, . . . , T and a smaller norm ‖h′‖ ≤ ‖h‖.
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