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Abstract

The provable security paradigm constructs rigorous, reductionist proofs that a crypto-
graphic scheme achieves a security goal. In this thesis, we illustrate the power and ver-
satility of this approach by presenting a practice-oriented provable security treatment of
three real world problems. We use these as a jumping-off point to construct novel security
models, uncover new attacks, analyse deployed solutions, and develop improved ones.

First we consider message franking, a technique to enable verifiable abuse reporting in
encrypted messaging applications. We demonstrate an attack breaking Facebook’s attach-
ment franking protocol. The attack is facilitated by the lack of fast and secure franking
schemes. We address this gap by building the most efficient franking scheme to date,
while also showing that secure franking schemes cannot match the efficiency of the fastest
authenticated encryption schemes.

Our next two problems take root in the NIST SP 800-90A standard, notorious for its prior
inclusion of the backdoored Dual-EC-DRBG. First, we investigate the security of the three
pseudorandom number generators (PRNGs) with input that remain in the standard. We
prove (with a caveat) the robustness [60] of HASH-DRBG and HMAC-DRBG in the ROM.
Regarding the caveat, we show that if an optional input is omitted then HMAC-DRBG is
not forward secure. We conclude with a more informal and practice-oriented exploration
of flexibility in permitted implementation choices.

Finally, inspired by Dual-EC-DRBG, we present the first provable security treatment of
backdoored PRNGs (BPRNGs). We resolve an open problem from [57] by demonstrating
that forward secure PRGs succumb to stronger forms of backdooring than previously
envisioned. Building on this, we modify a robust PRNG from [60] to embed a weak form
of backdoor. We present a new security model for BPRNGs which targets a significantly
stronger backdooring notion, and construct and analyse a robust BPRNG that provably
achieves it.
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Chapter 1

Introduction

Contents

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.2.1 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3 Associated Publications . . . . . . . . . . . . . . . . . . . . . . . . 18

1.1 Motivation

For as long as there has been communication, there has been a need to communicate in

secret. Cryptography — the art of crafting schemes for secret communication (and as we

shall see, much more) — has existed since antiquity. For much of that time, its use was

largely confined to military, government, and intelligence applications. However, with the

advent of the internet, cryptography has become part of the fabric of our everyday lives.

Each time we make an online purchase, use a messaging application, or connect to the

near 80% of the internet now encrypted with TLS [2], we participate in a cryptographic

protocol. Even more remarkably, the integration of cryptography into these applications

is so seamless that the average user may never be aware of the complex cryptographic

machinery underpinning the security of the task at hand. The ‘invisibility’ of cryptography

in applications is highly desirable: it not only improves user experience but crucially

removes the human factor — notoriously the weakest link in the information security

chain. This does however place a great deal of trust in the ‘real world cryptography’ that

touches our lives every day. With such high stakes, cryptographers have a responsibility

to ensure that deployed cryptographic schemes are as secure as possible.

Provable security. The increased interest in cryptography that has accompanied its

widespread adoption has rapidly accelerated the development of the field, transforming
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1.2 Contributions

it from an art into a science. While once the security of a scheme was inferred from the

absence of known attacks, we now expect a far higher level of assurance that a scheme

should be trusted.

A particularly powerful lens through which to scrutinise the security of a cryptographic

scheme is the provable security paradigm. Beginning with the ground breaking work

of Goldwasser and Micali [72], a provable security analysis defines precisely what secu-

rity means in a given context and then rigorously proves (or disproves) that a scheme

achieves it.

The beauty of this approach is that, in a single stroke, we can rule out the possibility of

any attack strategy permitted by the security definition succeeding. Of course, such a

security proof should not be construed as an absolute guarantee that the scheme cannot

be broken — the proof will typically be conditioned on certain assumptions, and moreover

says nothing about attacks that lie outside the security model. Nonetheless, provable

security has revolutionised cryptography, elevating security arguments from intuition to

formal reasoning and providing a rigorous framework within which to unpick why a scheme

withstands or succumbs to a certain class of attack.

Practice-oriented provable security [13, 132], a branch of cryptographic research that ap-

plies the precise analysis of provable security to real world problems, has had a resounding

real work impact. Particular success stories originating from this line of work include the

now ubiquitous HMAC [15] and HKDF [96] schemes, the formalism of authenticated en-

cryption (in a long line of work, beginning with [19,24, 87]), and key contributions to the

development of TLS 1.3 [82,98,120]. In this thesis, we take inspiration from this legacy of

influencing cryptographic standards, developing widely deployed protocols, and informing

best practice, and present a practice-oriented provable security treatment of a variety of

novel real world problems.

1.2 Contributions

In this thesis, we contribute to the body of work on practice-oriented provable security by

analysing a number of real world problems within the provable security paradigm. The

starting points for our chapters are, respectively, a protocol available to a billion users each

12



1.2 Contributions

day (Facebook’s encrypted messenger, Chapter 3), and a widely used — but controversial

— cryptographic standard (NIST SP 800-90A, Chapters 4 and 5). We use these real world

applications as a springboard to define new security models, analyse deployed schemes,

and propose new solutions. We will consider both high-level protocols and fundamental

primitives, and in each setting pay particular attention to uncovering and modelling new

attacks. We discuss our contributions in more detail below.

1.2.1 Thesis Structure

In this section we highlight our main contributions, and give an overview of the chapters

in this thesis and the real world problems by which they are motivated.

Background and preliminaries. In Chapter 2, we provide the necessary preliminaries

for the work to follow. We begin with an overview of the provable security paradigm.

We describe the evolution of this line of work, introduce key techniques, and discuss a

number of limitations and common criticisms of the approach. We then define a number

of cryptographic primitives and concepts that will be called on throughout the subsequent

chapters.

With this groundwork in place, we proceed to analyse a number of real world problems

within the framework of practice-oriented provable security.

End-to-end encryption in Facebook messenger. For our first technical chapter,

we take as inspiration a real world protocol available to billions of users each day: end-

to-end encrypted messaging in Facebook Messenger. Messages exchanged in end-to-end

encrypted applications are readable only by the sender and receiver: no intermediaries —

including the service provider — can learn anything about the message contents. While

end-to-end encrypted messaging is certainly desirable in terms of privacy, it would appear

to be at odds with the verifiable reporting of abuse, since the service provider has no way of

determining if a reported message was actually sent. In 2016, Facebook suggested a way to

navigate this tension in the form of message franking, which aims to provide cryptograph-

ically verifiable abuse reporting in Facebook Messenger. In their system, the ciphertext

is accompanied by a cryptographic proof of the message contents. In 2017, Grubbs, Lu,

and Ristenpart [73] (GLR) captured the goals of message franking via a new primitive
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1.2 Contributions

called compactly committing authenticated encryption with associated data (ccAEAD),

and proved that Facebook’s approach to message franking for short messages is secure.

However, all known secure ccAEAD schemes are slow compared to regular authenticated

encryption with associated data (AEAD) schemes. Because of this, Facebook handles

large files such as attachments differently.

In Chapter 3, we investigate how to build ccAEAD schemes that are secure and fast. To

motivate the need for fast message franking, in the first part of the chapter we present

an attack on Facebook’s attachment franking scheme which allows an attacker to prevent

messages from being reported as abusive. In essence, this vulnerability stems from a lack

of secure ccAEAD schemes which are fast enough to be used with long messages. Because

of this, Facebook use an ad hoc scheme which includes the AEAD scheme GCM [107] as a

component. As we shall see, the attack is facilitated by the fact that GCM lacks a security

property called robustness [67] which requires that it is infeasible to construct ciphertexts

that decrypt correctly under different keys, coupled with a server side bug. As far as we

are aware, this is the first real world attack exploiting the non-robustness of an encryption

scheme. As such, the attack serves as an interesting cautionary tale of how a security

property that may seem to be more of theoretical interest than practical concern can lead

to a real world vulnerability when in interaction with other components in a complex

protocol.

Since the use of fast but non-committing encryption underlies the attack, a natural ques-

tion — which we explore in the second part of the chapter — is whether it is possible to

build secure ccAEAD schemes which match the efficiency of the fastest AEAD schemes

such as GCM or OCB [99, 134, 137]. Such schemes are single-pass, and require only one

block cipher application per block of message data processed. To answer this question, we

first show that one can isolate the core technical challenge of building secure ccAEAD in

a new primitive called encryptment. We demonstrate a connection between encryptment

and collision resistant hash functions, which inspires both our negative and positive results

on fast ccAEAD. This ability to exploit connections between areas of cryptography that

might not immediately appear linked is a useful benefit of the provable security technique

of formalising precisely what we would like a cryptographic primitive to achieve.

For the negative result, we first show that a broad class of encryptment schemes are also

collision resistant (CR) hash functions. This allows us to use known impossibility results on
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1.2 Contributions

high-rate collision resistant hashing [37,140] to rule out secure high-rate ccAEAD schemes.

For a positive result, we use the classic Merkle-Damg̊ard [52,109,110] construction of a CR

hash function as a basis to build a secure encryptment scheme. Our construction is single-

pass, and for certain instantiations incurs no additional overhead over simply hashing the

message data. We then show how to lift encryptment to fully-fledged ccAEAD via simple

and efficient transforms. Put together, this yields the first single-pass ccAEAD scheme.

Pseudorandom number generators with input. Having analysed a higher level cryp-

tographic application, we devote the next two chapters to a vital lower-level cryptographic

primitive. Pseudorandom number generators with input (PRNGs) convert a short high

entropy seed into much larger quantities of pseudorandom bits, and offer strong security

guarantees when given continual access to an entropy source. (The ‘with input’ here refers

to a PRNG’s ability to draw entropy samples from the source to update its state.) A se-

cure PRNG is critically relied on by the vast majority of cryptographic applications, and

so these primitives represent a natural subject for any analysis of real-world cryptography.

Indeed, with much currently deployed cryptography being effectively ‘unbreakable’ when

correctly implemented, exploiting a weakness in the underlying PRNG emerges as a highly

attractive target for an attacker.

NIST SP 800-90A. Motivated by this, Chapters 4 and 5 present a provable security

treatment of two distinct flavours of PRNG attack. The inspiration for both chapters

ultimately lies in the NIST Special Publication 800-90A Recommendation for Random

Number Generation Using Deterministic Random Bit Generators (NIST SP 800-90A) [10].

The standard has had a troubled history due to the inclusion of the infamously backdoored

Dual-EC-DRBG. Perhaps because of the focus on the Dual-EC, the other algorithms stan-

dardised in the document — HASH-DRBG, HMAC-DRBG, and CTR-DRBG — have re-

ceived surprisingly little attention and analysis. Indeed, prior to our work, the procedures

by which these PRNGs generate their initial state and subsequently refresh that state with

entropy have never been analysed.

In Chapter 4, we address this gap in analysis by providing an in-depth investigation into

the security of the remaining NIST SP 800-90A DRBGs, with a focus on HASH-DRBG

and HMAC-DRBG. We pay particular attention to flexibilities in the specification of these

algorithms, which are frequently abstracted away in previous analysis, and uncover a
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mixed bag of positive and less positive results.

The first part of the chapter presents a formal provable security analysis of the robustness

(for PRNGs)1 of HASH-DRBG and HMAC-DRBG. Introduced by Dodis et al. [60], robust-

ness is the ‘gold-standard’ for PRNG security and encapsulates the security properties of

backtracking and prediction resistance which the standard claims are achieved by each of

the NIST DRBGs. As a (somewhat surprising) negative result, we demonstrate an attack

showing that implementations of HMAC-DRBG which omit optional strings of additional

input in output generation requests are not backtracking resistant, directly contradicting

claims in the standard. We first discovered this attack while attempting to prove the back-

tracking resistance of HMAC-DRBG, which highlights the power of the provable security

paradigm to uncover subtle flaws in cryptographic specifications. As positive results, we

prove that HASH-DRBG and HMAC-DRBG (called with additional input) are robust in

the random oracle model (ROM). The first result is fully general, while the latter is with

respect to a class of entropy sources which includes those approved by the standard.

In the second part of the chapter, we counter these formal and (largely) positive results

with a more informal discussion of flexibilities in the standard. We argue that when the

NIST DRBGs are used to produce many blocks of output per request — a desirable im-

plementation choice in terms of efficiency, and permitted by the standard — then the

usual security models may overlook important attack vectors against these algorithms.

We propose an informal security model in which we suppose an attacker compromises

part of the state of the DRBG — for example through a side-channel attack — during

an output generation request. Reconsidered within this framework, we find that each of

the constructions admits vulnerabilities which allow an attacker to recover unseen output.

These potential attacks do not contradict the positive robustness results given earlier in

the chapter. Rather, they serve as a reminder that a security proof is only a guarantee

with respect to the security model in question, and re-analysing security in the face of an

attacker who lies outside the scope of that model may yield strikingly different results.

We find a further flaw in a certain variant of CTR-DRBG which allows an attacker who

compromises the state to also recover strings of additional input — which may contain

secrets — previously fed to the DRBG. While our attacks are theoretical in nature, we

follow this up with an analysis of the open-source OpenSSL and mbed TLS CTR-DRBG im-

1Robustness for PRNGs is a distinct notion from that of robustness for AEAD schemes, although both
capture a scheme’s ability to withstand certain kinds of misuse.
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plementations, which shows that the implementation decisions we highlight as potentially

problematic are taken by implementers in the real world.

Chapter 4 considers the type of attacker that was traditionally the focus in cryptographic

literature prior to 2013. This attacker, presented with a cryptographic application, tries

his best to break it. In contrast, Chapter 5 considers a more powerful and insidious

adversary than had been previously envisaged, who instead tries to compromise the process

by which a cryptographic application is designed. Such an adversary — who we call ‘Big

Brother’ — was thrust into the cryptographic consciousness in 2013 when the Snowden

leaks confirmed long-held suspicions [153] that the Dual-EC-DRBG contained a backdoor

inserted by the NSA [122]. It immediately became apparent that an entirely new class of

attack models was urgently required in order to understand the potential damage incurred

by this new threat and what can be done to protect against it.

Backdoored PRNGs. In Chapter 5 we present a provable security treatment of

backdoored pseudorandom number generators, thereby investigating a threat which the

Dual-EC debacle demonstrated to be all too ‘real world’. Given the aforementioned ubiq-

uity of PRNGs in cryptographic implementations these constitute the ideal target for

maximising the spread and impact of a backdoor — indeed, this was likely why NIST SP

800-90A was targeted for subversion — and so are a natural primitive to study in the

context of such attacks. The question at the heart of our study is — to what extent can

a PRNG be backdoored and provably secure?

In 2015, Dodis et al. [57] presented the first formal treatment of backdoored deterministic

PRGs (i.e., a PRNG which, once seeded, evolves deterministically). An open problem

from [57] is whether a PRG which is forward secure (a property which requires the PRG

to preserve security of past output in the event of a state compromise) can be backdoored

in a way that allows Big Brother to recover past output values. The apparent tension

between the two notions, coupled with the prior lack of constructions, raises the question

of whether forward secure PRGs have inherent resistance to this form of backdooring. In

the first part of the chapter we resolve this problem in the negative by presenting two

constructions of forward secure backdoored PRGs (BPRGs) which allow Big Brother to

recover the initial PRG state (and hence all subsequent output) given an arbitrary public

output.
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In the second part of the chapter, we expand the scope of our analysis to present the first

investigation of backdoored PRNGs with input (BPRNGs). We require that BPRNGs

are robust in the face of a non-backdoor attacker, and — unsurprisingly — treating these

more complex primitives requires definitions and constructions which are substantially

more involved. Recall that, unlike a deterministic PRG, a PRNG may refresh its state

with fresh entropy. As such, a particular challenge is ensuring that the exploitability

of a backdoor can persist through a high entropy refresh. We navigate this tension by

constructing a robust BPRNG which allows Big Brother to recover past output values with

probability roughly 1
4 up to a bounded number of high entropy refreshes. The number

of refreshes is proportional to the size of the BPRNG state, raising as an open problem

the question of whether the large state of our construction is inherent. We conclude the

chapter with a discussion of the intuition and challenges behind proving such a result, and

point out a critical flaw in an argument to this effect made in [54], the published version

of this chapter.

Conclusion. We close this thesis in Chapter 6 with some conclusions and reflections on

the results of the preceding chapters.

1.3 Associated Publications

This work is based on a number of co-authored publications. All authors contributed to

discussions about these works, and many contributed to the write-up of the corresponding

paper. As such, it is at times challenging to attribute an idea or contribution to a particular

author. I contributed to the production of all sections of these works unless indicated

otherwise, and shall attempt to highlight my key technical contributions here. However, I

emphasise that these frequently evolved in conjunction with valuable guidance and input

from other co-authors.

• Yevgeniy Dodis, Paul Grubbs, Thomas Ristenpart, and Joanne Woodage. Fast mes-

sage franking: From invisible salamanders to encryptment. In Advances in Cryptol-

ogy - CRYPTO 2018 - 38th Annual International Cryptology Conference, Santa Bar-

bara, CA, USA, August 19-23, 2018, Proceedings, Part I, pages 155–186, 2018 [59].

This work is presented in Chapter 3. I was involved in the development of all
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sections of the paper and the definitions and results contained, except for the section

detailing the Facebook attack. In particular I wrote all proofs, except those for the

compression function-based encryptment-to-ccAEAD transform (although I made a

significant contribution to their development). I wrote the version of these proofs

which appear here (Section 3.7.4), correcting a number of errors that appeared in

the version of these in [59] and adding more precise analysis of certain bad events to

tighten the bound. I developed the sections on the relations and separations between

robust encryption and sr-BIND secure ccAEAD (Section 3.7.6), and between r-BIND

and sr-BIND secure ccAEAD (Theorem 3.6). I additionally contributed the section

analysing the otCTXT security of the HFC encryptment scheme (Theorem 3.5 and

surrounding text) and the result showing how to build encryptment from ccAEAD

(Theorem 3.7.5).

• Joanne Woodage, Daniel Shumow. An analysis of NIST SP 800-90A. In Advances

in Cryptology - EUROCRYPT 2019 - 38th Annual International Conference on the

Theory and Applications of Cryptographic Techniques, Darmstadt, Germany, May

19-23, 2019, Proceedings, Part II, pages 151–180, 2019 [167].

This work is presented in Chapter 4. Much of this project was completed while

interning with Dan Shumow at Microsoft Research Redmond. Dan had the idea to

analyse the NIST SP 800-90A standard, and highlighted the weakness of CTR-DRBG

in the event of a side channel attack as an area to look into. I extracted a specification

of the DRBGs from the standard (Sections 4.2-4.4), devised the robustness in the

ROM security model (Section 4.5) and wrote all the security analyses and proofs

(Section 4.6 and Section 4.7). In conjunction with Dan, I worked on the side channel

attack security model and corresponding analysis (Section 4.8). I contributed the

additional attack against CTR-DRBG implemented without a derivation function

(Section 4.8.6), and Dan added the section on real world implementation analysis

(Section 4.9).

• Jean Paul Degabriele, Kenny Paterson, Jacob Schuldt, and Joanne Woodage. Back-

doors in pseudorandom number generators: Possibility and impossibility results. In

Advances in Cryptology - CRYPTO 2016 - 36th Annual International Cryptology

Conference, Santa Barbara, CA, USA, August 14-18, 2016, Proceedings, Part I,

pages 403–432, 2016 [54].

This work is presented in Chapter 5. I worked on definitions and security models
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in collaboration with the other authors, and contributed to the development of con-

structions proposed during this process. In particular, I worked on the proofs for the

various BPRG and BPRNG constructions and wrote the final version of all of these

except that for Lemma 5.4. I also contributed the relations and separations between

PRG backdooring models (Section 5.3.4), and the proof that our modified preserving

and recovering security notions imply robustness (Theorem 2.2, the proof of which

appears in [54] and is omitted here since it is easily derived from the more involved

proof of Theorem 4.1 which extends the result for the NIST DRBGs). This chapter

is a significant re-write of the original [54], both to bring the presentation in line

with the other thesis chapters and to fill in sketched or missing details and rectify

small errors in the original paper. In particular, the sketched security argument for

the simple backdoored PRNG (shown here in Section 5.4) which was given in [54]

overlooked a number of important subtleties; I contributed the proof that appears

here, the definitions of enhanced PRG security used therein, and showed that the

backdoored PRGs of Sections 5.3.5 and 5.3.6 are suitable to instantiate it. During

the production of this thesis, I discovered a significant error in an impossibility re-

sult stated in [54]; I developed a counterexample to the claimed result and wrote

Section 5.4.6 describing the problem.

Also published during this PhD, but not included in this thesis:

• Joanne Woodage, Rahul Chatterjee, Yevgeniy Dodis, Ari Juels, and Thomas Risten-

part. A new distribution-sensitive secure sketch and popularity-proportional hashing.

In Advances in Cryptology - CRYPTO 2017 - 37th Annual International Cryptology

Conference, Santa Barbara, CA, USA, August 20-24, 2017, Proceedings, Part III,

pages 682–710, 2017 [166].

• Rahul Chatterjee, Joanne Woodage, Yuval Pnueli, Anusha Chowdhury, and Thomas

Ristenpart. The TypTop system: Personalized typo-tolerant password checking. In

Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communica-

tions Security, CCS 2017, Dallas, TX, USA, October 30 - November 03, 2017, pages

329–346, 2017 [45].
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2.1 Preliminaries

This chapter introduces a number of fundamental concepts that we will call on throughout

this thesis. We first introduce notation. We then give an overview of the provable security
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paradigm. Finally, we recall a number of useful definitions relating to computational

primitives, statistical notions, and pseudorandom number generators.

2.1.1 Notation

Strings and numbers. For an alphabet Σ, we let Σ∗ denote the set of all strings of

symbols from that alphabet, and let Σn denote the set of all such strings of length n. For

a string x ∈ Σ∗, we write |x| to denote the length of x. The set of binary strings of length

n is denoted by {0, 1}n. We let {0, 1}∗ denote the set of all binary strings, and let {0, 1}≤α

for α ∈ N denote the set of all binary strings of length at most α. We include the empty

string ε in both sets. We write {0, 1}n≤i≤n to denote the set of binary strings of length

between n and n-bits inclusive. We use ⊥ to represent the null symbol.

We write x ⊕ y to denote the exclusive-or (XOR) of bit strings x, y ∈ {0, 1}∗. If |x| 6=

|y|, then we define XOR to return the XOR of the shorter string and the truncation

of the longer string to the length of the shorter string. We write x ‖ y to denote the

concatenation of two binary strings x and y. For notational ease, we sometimes write

(x, y) ∈ {0, 1}m × {0, 1}n to denote the string x ‖ y ∈ {0, 1}m+n. We let len(x) denote the

length of a finite length binary string x ∈ {0, 1}∗ in bits. The algorithm Parsed is used to

partition a binary string x ∈ {0, 1}∗ into d-bit blocks. Formally, we define Parsed to be

the algorithm which on input x outputs (x1, . . . , x`) such that |xi| = d for 1 ≤ i ≤ ` − 1

and |x`| = |x| mod d. For correctness, we require that x = x1 ‖ . . . ‖x`. Similarly, we

define Truncβ to be the algorithm which on input x outputs the β leftmost bits of x. We

sometimes write left(x, β) to denote the leftmost β bits of string x, and select(x, α, β) to

denote the substring of x consisting of bits α to β inclusive, where we index from 1 unless

otherwise stated1.

We convert binary strings to integers, and vice versa, in the standard way. For an integer

j ∈ N, we write (j)c to represent j encoded as a c-bit binary string. For j ∈ N, we let [j]

denote the set of integers from 1 to j inclusive, and [j1, j2] the set of integers between j1

and j2 inclusive. We let N≤α denote the set of natural numbers up to and including α,

N≤α = [1, . . . , α].

1While left() and select() can be defined in terms of Trunc(), we include them here as explicit functions
to maintain consistency with the presentation of algorithms in NIST SP 800-90A (Chapter 4).
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Distributions. The notation x←$X denotes sampling an element uniformly at random

from the set X , and we let x← X denote sampling a point according to the distribution X.

For a pair of distributions X,Z, we write X|Z = z to denote X conditioned on Z = z.

We write Un to denote the uniform distribution over {0, 1}n.

Algorithms. For a deterministic algorithm A, we write y ← A(x1, . . . ) to denote

running A on inputs x1, . . . to produce output y. For a probabilistic algorithm A with

coin space C, we write y ←$ A(x1, . . . ) to denote choosing coins c ←$ C and returning

y ← A(x1, . . . ; c), where y ← A(x1, . . . ; c) denotes running A on the given inputs with

coins c fixed to deterministically produce output y. We assume that an algorithm returns

the error symbol ⊥ if called on an input that lies outside its defined input space. Our

proofs assume a RAM model of computation where most operations are unit cost. We

sometimes use big-O notation O(·) to hide small constants. When referring to run times

in theorem statements and proofs, we sometimes write T ′ ≈ T to indicate that T ′ is equal

to T plus a minor overhead (e.g., to simulate oracle queries) which can be derived from

the proof. All logs are to base 2.

2.2 Provable Security

In this section, we give an overview of the provable security paradigm. Much of the

discussion on provable security and its evolution is drawn from Katz and Lindell [86] and

essays on practice-oriented provable security by Bellare [13] and Rogaway [132], to which

the reader is referred for a more detailed discussion of the points raised.

Analysis by cryptanalysis. ‘Security’ is a concept that we all intuitively understand,

and yet it can be surprisingly difficult to write down a sentence stating what security

actually is. We have secure prisons and secure relationships, financial security and national

security, secure foundations and a false sense of security, each of these representing a

different variation on the same theme. What constitutes security in a given setting is

highly context-dependent, and it is clear that security in one context does not necessarily

imply security in another.

With these subtleties surrounding security in mind, imagine now that we have designed a
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cryptographic scheme and would like to know if it is ‘secure’. Prior to the introduction

of provable security in the 1980s, the approach to this would be to try and break, or

cryptanalyse, the scheme. If a successful attack was discovered, the scheme would be

tweaked to prevent it. Finally, when no more attacks could be found, the scheme would

be declared secure.

There are a number of disadvantages to this approach. Firstly, any assurance derived

from it may be dangerously misplaced, as it is precisely the set of attacks which had not

been anticipated by the designer that we should be most concerned about. History bears

out the fact that it can take a long time for an insecure scheme to be successfully crypt-

analysed; for example, the Chor-Rivest knapsack-based encryption scheme [49] resisted

cryptanalysis for a decade despite all other knapsack schemes being broken, before finally

being demonstrated insecure by Vaudenay [162]. Moreover, this approach fails to pin down

what security actually means in our context, and so we get no clear characterisation of the

security properties our scheme is aiming for (let alone achieving). Rather than ruling out

individual attacks, it would be far more satisfying to have a guarantee that our scheme

withstands any attack in a given class. Such a guarantee is precisely what the provable

security paradigm aims to provide.

Provable security. The provable security paradigm, beginning with the ground breaking

1982 paper of Goldwasser and Micali [72], represented a radical shift in assessing the

security of a cryptosystem. Instead of relying on intuition to argue that a scheme is

secure by dint of resisting all the attacks we can come up with, provable security draws on

proof techniques from theoretical computer science to construct a rigorous argument that a

scheme achieves a well-defined security property. As we shall see, calling such an argument

a ‘proof’ can be seen as a misnomer since our argument will typically rely on unproven

assumptions. However, by basing our analyses on a fairly small set of assumptions we

can focus our cryptanalytic efforts on these rather than attempting to cryptanalyse each

scheme individually. Each advance in analysing an assumption can then be extrapolated

to increase our understanding of all the schemes that base their security upon it.

Principles of provable security. The three key principles upon which provable security

is built are: (1) formal definitions; (2) precise assumptions; and (3) security proofs. We

elaborate on each of these principles below, and lay out the steps by which a provable
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security analysis of a scheme is constructed.

(1) Formal definitions. Before we can possibly hope to prove anything about the security

of our scheme, we must specify what we would like our scheme to achieve. As such, formal

security definitions are at the heart of any provable security analysis. We express security

models in the form of a game between a challenger and an attacker A which dictates the

rules by which the attacker may interact with and / or compromise the scheme. The

attacker is modelled as a randomised algorithm with a specified amount of resources,

such as run time or oracle queries. In particular, if the attacker has no upper limit on

their run time they are said to be unbounded and the security analysis is information

theoretic; otherwise, the attacker is said to be computationally bounded and the analysis

is computational.

(2) Precise assumptions. Our analysis will typically be with respect to a number of

assumptions; that is to say, unproven statements — such as that a block cipher is com-

putationally indistinguishable from a random permutation, or that finding a solution to a

certain mathematical problem is hard. These assumptions are likely to remain unproven

for the foreseeable future, since resolving them lies well beyond our current understanding

of complexity theory. Basing our analysis on unproven statements is clearly not ideal,

and may seem at odds with the rigour we hope to achieve. However by choosing assump-

tions that are well-studied and widely believed, we can, via a proof, relate our scheme

(about which nothing is currently known) directly to problems that have been extensively

researched and analysed. As such, we derive assurance in the security of our scheme from

our assurance in the soundness of the assumptions.

(3) Security proofs. With definitions and assumptions in place, we will construct a formal

proof that a scheme satisfies the given definition with respect to the assumptions. For

computational results in particular, security proofs are characterised by cryptographic

reductions; arguments that ‘reduce’ the security of a scheme to that of an assumption by

demonstrating that any attacker A who can win the security game specified in (1) can

be used to construct an attacker A′ that violates one of the assumptions X specified in

step (2). Provided that no algorithm with A′’s resources is believed to be able to violate

assumption X, this implies, by contradiction, that no attacker A can reliably win the

security game against the scheme.
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Impact. The power of this approach is that in one fell swoop our argument excludes the

possibility of any attack strategy within the scope of the security model succeeding —

including those the designer of the scheme may never have anticipated. This remarkable

shift from empirically arguing that specific attacks won’t work to formally excluding well-

defined classes of attack is the defining feature of the provable security paradigm. To get

the most analytical bang for our buck, we will choose security models carefully so that

the class of attacks covered is very broad. For a classic example of this, imagine a public

key encryption (PKE) scheme for which an attacker who sees a ciphertext produced by

the scheme learns nothing about the underlying message that they didn’t know a priori.

If we can prove a PKE scheme meets such a property, we no longer have to repeatedly

cryptanalyse it to see if it prevents e.g., full plaintext recovery, learning the least significant

bit of the message, or whether that message is equal to ‘sell’ or ‘buy’, since all these

security goals (and millions more) are encapsulated by our definition. This incredibly

strong security property — that at first sight might seem an impossibly high bar to meet

— is called semantic security, and is exactly that targeted by Goldwasser and Micali [72].

By demonstrating a scheme that provably achieves it, they gave the first glimpse of the

breakthroughs that this new formulation of cryptography would produce.

2.2.1 Practice-Oriented Provable Security

Theory and practice. While the advent of provable security transformed cryptography

from an art into a science, at first few of the advances being made in conference papers

seemed to be impacting real world systems. In fact, the way problems were treated in

the provable security literature was somewhat at odds with how cryptographic schemes

were being constructed in the real world. Cryptographers dreamed up fantastic problems

that were of great theoretical interest but far removed from the nuts and bolts of real

systems. Similarly, schemes were designed with the aim of proving their security under

the most minimal assumptions possible, such as merely assuming the existence of one-way

functions. While this produced remarkable feasibility results, the resulting schemes were

often far too inefficient and convoluted for practical use. Valued for their versatility and

efficiency, block ciphers formed the basis of most real world schemes and yet no assumption

for modelling block cipher security existed; indeed, symmetric cryptography as a whole

was generally overlooked.
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Asymptotic vs. concrete security. There were also issues with how security results

were framed. Drawing on complexity theory, early provable security took an asymptotic

approach in which both scheme and attacker are parameterised by λ taken to be e.g., the

size of an RSA modulus. A scheme is declared secure with respect to a definition if no

attacker running in time polynomial in λ can achieve an advantage that is non-negligible

in λ. The problem was that for many real world (and in particular symmetric) schemes

all parameters are fixed by the object’s specification, and there is no security parameter

to play with to increase or decrease the level of security achieved. For example, while

key size is the natural security parameter for a block cipher, AES can only take 128-bit,

192-bit, or 256-bit keys. More problematic still is that the block size for all these variants

is 128-bits and so cannot be scaled with key size. This precludes security bounds that

contain a term capturing e.g., the probability of blocks colliding from being negligible in

the security parameter for larger key sizes. More generally, it can be tricky to work out

what level of security is actually achieved for a particular instantiation of a scheme from

an asymptotic bound. In practice, we would often like a concrete statement that says that

an attacker running in time T will be unable to break a given instantiation of the scheme

with probability greater than ε.

Bridging the gap. Out of a desire to bridge the gap between theory and practice,

a new strand of provable security emerged that would come to be known as practice-

oriented provable security [13, 132]. Spearheaded by Bellare and Rogaway, this line of

work is characterised by an emphasis on analysing cryptography as it is used in the real

world, with the intention of yielding practically useful results and influencing best practice.

This line of research is best defined by contrasting it with the first wave of provable

security as described in the previous paragraph. Practice-oriented provable security takes

cryptography as used in the real world as inspiration for problems to study. Schemes

are designed with the aim of being practical and efficient, as opposed to being based on

minimal assumptions, and impact is measured not only in conference publications, but

also adoption and standardisation of schemes. Symmetric cryptography, in line with its

abundance in real world systems, is a key target of analysis, and there is a willingness to

accept well-defined heuristics — such as the random oracle model (see Section 2.3.3) —

when this enables the analysis of highly practical schemes. Results are stated concretely,

and cryptanalysis to find the best possible attack goes hand in hand with security proofs
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to establish how closely security bounds match the success of a concrete attack. (The gap

between a bound and the best known attack is called the tightness of the bound. Ideally,

we would like a matching attack for each bound, although this can be difficult to achieve.)

Practice-oriented provable security has had a resounding real-world impact, from pro-

ducing the now-ubiquitous HMAC [15] to influencing the design of TLS 1.3 [82, 98, 120].

In keeping with our focus on real world problems, we take a practice-oriented approach

throughout this thesis.

2.2.2 Provable Security in Perspective

While the introduction of provable security has been revolutionary, firmly cementing cryp-

tography as a rigorous branch of science and producing spectacular theoretical and practi-

cal results, it is not a panacea. In particular, a positive provable security analysis certainly

does not imply that every implementation of the scheme in question will be secure.

Limitations. It is important to keep in mind that a proof of security is only a guarantee

with respect to the model and assumptions against which the scheme was analysed. The

proof offers no protection if the assumption is later found to be unsound, or the scheme

is subjected to attacks outside the model. When a formal security analysis is a factor in

selecting a scheme for use in a real world application, care must be taken to ensure that the

security analysis is sufficient to capture the threats the scheme may be subjected to, and

that the assumptions are ones we trust. Moreover, threats such as side channel and fault

injection attacks, and of course implementation errors, can result in an implementation of

a provably secure scheme being completely insecure in practice. This does not contradict

the security proof; rather, the model was not intended (and does not claim) to cover such

threats. It is important to interpret a provable security analysis as just one thread in the

design and implementation of a secure system, and there are many further steps that must

be taken to translate a scheme that is secure on paper into a secure implementation.

Criticism and counterarguments. Provable security has come in for particular criti-

cism from Koblitz and Menezes in their “Another Look at . . . ” series of papers (see [92]),

who argue that the scientific rigour provable security has brought to cryptography is a

façade. They highlight examples of non-tight reductions that are useless in practice be-
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cause they lead to wildly inflated and impractical parameter settings, and schemes falling

victim to attacks outside the security model within which they were analysed. They also

question its utility, arguing that the paradigm has lead to schemes being designed to

facilitate a proof, leading to unnatural constructions [93].

These are certainly valid criticisms, and would be echoed to some extent by many whose

work falls under the umbrella of provable security. However, using these as a basis to

dismiss security proofs altogether is rather throwing the baby out with the bathwater. As

discussed in the paragraph above, a provable security analysis does not claim anything with

respect to attacks outside the model, but is very useful to give a precise formulation of the

attacks that are covered. Practice-oriented provable security in particular has yielded a lot

of practical and intuitive schemes that have enjoyed widespread adoption, and moreover,

one can never be sure if a seemingly unnecessary design feature required to construct a

proof might actually enable a subtle attack if removed. It is universally agreed that tight

reductions are preferable to non-tight, as evidenced by the considerable amount of work

that sets out to improve the tightness of previous bounds. However even when a proof is

not tight enough to be useful in setting parameters, it is still of value to give assurance

that the design is sound and to build understanding of why the construction works (and

indeed, why the non-tight bound is hard to avoid).

Koblitz and Menezes also criticise security proofs as having a “credibility problem” [93]

due to a lack of careful validation of proofs, giving as a high profile example an analysis

of OAEP by Bellare and Rogaway [23] that was public for many years before Shoup [148]

found a mistake in the proof that was significant enough to require either modifying the

design or restricting the result in order to recover the claim. Koblitz and Menezes contrast

this state of affairs to that in mathematics, in which proofs — including 200-page epics

such as Andrew Wiles’ proof of Fermat’s Last Theorem [165] — are closely scrutinised

and results only cautiously accepted until the proof has been validated by the community.

(A small and easy-to-miss flaw was indeed found in Wiles’ result, and a corrected proof

was subsequently published by Taylor and Wiles the following year [156].)

It is certainly alarming how frequently errors are uncovered in publications (including

those at the most prestigious conferences). Fortunately, most errors are small and easily

fixed, but there are examples — such as the recent spate of attacks [81] that devastated

OCB2 [134] — in which a well known (and in this case, standardised) scheme was much
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later found to be totally broken following a bug in the original security proof. It seems

likely that the conference model of publication in cryptography — in which deadlines are

rushed for, page limits too small to contain proofs, and reviewers highly overstretched —

is a major contributory factor to this problem, inducing a tendency towards proofs that

may be badly written or merely sketched, and papers accepted for publication without

the proofs ever being closely reviewed.

We do not wish to denigrate the many fastidiously analysed results published every year, or

the monumental efforts of reviewers faced with a stack of submissions. However, security

proofs can be difficult and delicate (indeed, the flaw in the OCB2 proof is highly subtle),

and if the field is to uphold its claimed rigour then a shift is needed to place greater value

on the proofs after which it is named. On the author side, proofs should be treated as

an integral part of a paper and a way to illuminate the ingenuity of a design, rather than

an inconvenience to be endured or rushed off. We should endeavour to write proofs with

care and sufficient detail to make verification as pain free as possible. That said, even

best efforts are not infallible and so on the other side of the coin it would be beneficial

to reduce the burden on reviewers to allow them more time to check the technical details

of results. It is reassuring to see conferences moving to a journal model of publication

in which submissions can be staggered throughout the year and submitted when they are

ready. Looking forward, we hope that in the future machine checked proofs can relieve

some of the human effort and error in writing and checking proofs.

Summary. While provable security has its shortcomings, to disregard it because of these

is to overlook the many breakthroughs and innovations it has produced, and any return to

assessing security solely in terms of resistance to cryptanalysis is a clear backwards step.

By imposing order on the previously ad hoc nature of cryptographic design, provable

security has given us a language with which to reason about what level of security a

scheme achieves, and the richness of the field, spanning highly theoretical results to real

world success stories, is a testament to its impact. Keeping its shortcomings in mind,

constantly questioning and evolving our approaches to analyses, and working in tandem

with cryptanalysis, can only make the field stronger.
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2.2.3 Security Models and Proofs

Security models and formal proofs are defining features of the provable security paradigm,

and we will present many throughout this thesis. This section provides an overview of

these and introduces the game-playing methodology; the reader is referred to e.g., [25] for

a fully detailed treatment of the subject.

Security games. We express security notions in the form of a security game G between

a challenger and a randomised algorithm A that we call the attacker. The specification

of the game dictates precisely what they attacker may learn, how they may interact with

the scheme, what restrictions are in place, and so on. The challenger, typically implicit

in games rather than written explicitly, sets up the experiment by e.g., generating keys,

and then executes the game with the attacker according to the specification. During a

game, an attacker A may be given access to one or more oracles O1, . . . ,Ok; that is to

say, black boxes to which A may submit inputs and receive back responses, and which we

use to model different ways in which A may interact with the scheme. We indicate that A

has access to such oracles by writing AO1,...,Ok . We carefully quantify the resources, e.g.,

run time or number of oracle queries, available to A. At some point the game terminates

and returns a value; typically a bit b′ ∈ {0, 1}. We write G ⇒ x and A ⇒ x to indicate

that, respectively, the game G and attacker A returned x. The game G may use flags to

indicate whether an event has occurred, or maintain sets or look-up tables to keep track

of attacker queries. We assume that all flags are initialised to false, all sets are initialised

to the empty set ∅, and that look-up tables have all entries initialised to ⊥.

Advantage terms. To each game, we associate an advantage term, which quantifies how

well A has performed in that game. This is typically framed as a comparison to some naive

strategy such as simply guessing or not trying at all. Security games fall broadly into two

classes called unpredictability and indistinguishability games. In an unpredictability game,

the attacker is challenged to solve some problem instance for a scheme P , for example,

successfully inverting a trapdoor permutation applied to a uniform domain point (see

Section 5.2.2). The game returns true if the attacker returns the correct answer. For an

unpredictability game G against a primitive P , we define the advantage of an attacker A

to be

AdvP (A) = Pr
[
GAP ⇒ 1

]
,
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where GAP denotes attacker A playing game G against primitive P . The probability is over

the coins of A and the game.

An indistinguishability game challenges an attacker to distinguish a scheme P from its

idealised functionality, for example, distinguishing ciphertexts produced by an AEAD

scheme from random bit strings of appropriate length (see Section 3.2.2). We begin by

defining an experiment capturing the attacker’s interaction with the scheme P . The game

G then tosses a coin b←$ {0, 1} to decide whether to run the attacker against this ‘real’

experiment, or an idealised version in which P is replaced with its idealised counterpart.

The attacker’s goal is to work out whether they are interacting with the real or ideal

scheme; the game returns true if they guess correctly, and the attacker’s advantage is

defined to be how much better in this task they perform than simply guessing. More

formally, for such a game G against a primitive P we define the advantage of an attacker

A to be

AdvP (A) = 2 ·
∣∣∣∣Pr
[
GAP ⇒ 1

]
− 1

2

∣∣∣∣ ,
where again GAP denotes A playing game G against primitive P , and the probability is

over the coins of A and the coins used by the game. We sometimes rewrite this advantage

term in the form:

AdvP (A) =
∣∣Pr [A ⇒ 1 in G | b = 0 ]− Pr [A ⇒ 1 in G | b = 1 ]

∣∣ .
It is straightforward to verify that the two formulations are equivalent and we use them

interchangeably.

2.2.4 Game Hopping Proofs

Our security proofs use a technique called game hopping. To analyse a game G against

an attacker A and primitive P , a game hopping proof defines a finite series of games,

G0, . . . , Gn for some n ≥ 1, where all games are implicitly parameterised by P and A.

Game G0 is typically identical to GAP , and for each i ∈ [1, n], game Gi is a modification

of Gi−1, where the modifications are chosen carefully so as to not alter the probability of

A winning the game by too much. We will make a formal argument to bound the ‘gap’

between each pairs of games; more formally, to establish an upper bound on the term

|Pr [Gi ⇒ 1 ]− Pr [Gi−1 ⇒ 1 ]| .
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For example, this argument may take the form of a computational reduction to the security

of an underlying primitive, a statistical argument bounding e.g., a collision probability, or

a justification that the second game is simply a rewriting of the first (in which case the

gap between the games is zero). We may then use the triangle inequality to combine the

bounds on each game hop into a single expression:

|Pr [G0 ⇒ 1 ]− Pr [Gn ⇒ 1 ]| ≤
n−1∑
i=0

|Pr [Gi ⇒ 1 ]− Pr [Gi+1 ⇒ 1 ]| .

For a game hopping argument to be useful we must relate the series of games to the

probability that we wish to bound. For an unpredictability game, we typically use game

hops to move to a game in which the probability that A succeeds is easy to analyse,

and preferably small. For an indistinguishability game, we will use our series of game

hops to transition from the experiment against the real scheme to that against its ideal

functionality, thereby bounding the gap between them via the series of transitions.

The Fundamental Lemma of Game Playing. We will frequently invoke a useful

result called The Fundamental Lemma of Game Playing [25, 149]. Consider a pair of

games GA and HA with associated adversary A, the pseudocode for which includes a flag

bad that will be set to true only if some event E occurs in either game. For example,

the event E might be that A queries a certain point to an oracle, or that when randomly

sampling keys we accidentally choose the same key twice. Suppose that GA and HA are

identical except they differ in a conditional that is only executed if the flag bad is set. In

this we case, we say that GA and HA are identical-until-bad. (A more rigorous definition

of identical-until-bad games is given in [25]; however, as the authors note, when written in

pseudocode it is usually obvious which games are identical-until-bad, and so the additional

formalism is not really necessary.) We write ‘bad = 1 in game GA’ (resp. HA) to denote

that the flag bad is set to true at the conclusion of game GA (resp. HA).

The Fundamental Lemma of Game Playing [25, 149] says that an adversary’s maximum

advantage in distinguishing a pair of identical-until-bad games is upper bounded by the

probability that bad is set in either game. This is formalised in the following lemma, which

we recall here following [25]. Since distinguishing advantage can be defined in terms of

both game output and adversary output, the lemma contains a statement for each case.

Note that setting I = G or I = H in the lemma allows the probability of bad being set in

either game to be used for the upper bound.
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Lemma 2.1 (The Fundamental Lemma of Game Playing). Let GA, HA, and IA be

identical-until-bad games against an attacker A. Then∣∣∣∣Pr
[
GA ⇒ 1

]
− Pr

[
HA ⇒ 1

]∣∣∣∣ ≤ Pr
[

bad = 1 in IA
]

; and

∣∣∣∣Pr
[
A ⇒ 1 in GA

]
− Pr

[
A ⇒ 1 in HA

]∣∣∣∣ ≤ Pr
[

bad = 1 in IA
]
.

The H-coefficient technique. Patarin’s H-coefficient technique [119] has proved to be

a highly useful tool for analysing indistinguishability games. We recall the formulation of

this method from [48] below, and refer the reader to that work for a full discussion of the

approach.

The proof technique consider two experiments, which we denote Real and Ideal, and a

deterministic and computationally unbounded adversary A who tries to distinguish the

two. We define a transcript which captures A’s view of the experiments and say that a

transcript is valid if it could be produced by an execution of one of the experiments. We

let T0 and T1 denote the distributions of valid transcripts corresponding to the real and

ideal experiments respectively. We additionally define a set of Bad transcripts, and view

all other valid transcripts as being Good. The following theorem then allows us to bound

the advantage of A in distinguishing the real and ideal experiments:

Theorem 2.1. Suppose that there exist δ, ε ∈ [0, 1] such that for all transcripts τ ∈ Good

it holds that

Pr [ T0 = τ ]/Pr [ T1 = τ ] ≥ 1− ε ,

and moreover it holds that Pr [ T1 ∈ bad ] ≤ δ. Then:∣∣∣∣Pr [A ⇒ 1 in Real ]− Pr [A ⇒ 1 in Ideal ]

∣∣∣∣ ≤ ε+ δ .

Looking ahead, we will call on Patarin’s H-coefficient technique when analysing

HASH-DRBG in Section 4.6.

This concludes our overview of provable security and the game playing technique. In the

next section, we introduce a number of key cryptographic primitives.
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2.3 Computational Building Blocks

Cryptographic primitives are low-level cryptographic objects that do not in themselves

have a direct practical application but are the building blocks from which higher level

schemes are built. Indeed in [13], Bellare memorably describes a cryptographer as “an

engine for turning atomic primitives into protocols”. In this section, we define a number

of the primitives that will be used in constructions throughout this thesis.

2.3.1 Pseudorandom Functions and Block Ciphers

A pseudorandom function is a keyed function that, to an attacker who is given oracle access

to the function keyed with a secret random key, is indistinguishable from a truly random

function with the same domain and range. More formally, let Func(Dom,Rng) denote the

set of all functions F : Dom → Rng. The pseudorandom function (PRF) distinguishing

advantage of an adversary A against a keyed function F : K×Dom→ Rng, given q oracle

queries, is defined as

Advprf
F (A, q) =

∣∣∣∣Pr
[
AF(K,·) ⇒ 1 : K

$← K
]
− Pr

[
AF (·) ⇒ 1 : F

$← Func(Dom,Rng)
]∣∣∣∣ ,

where recall that the superscript denotes a functionality that A is given oracle access to.

We call K the key space of the scheme, and typically take K = {0, 1}κ for some κ ∈ N.

In Chapter 3, we require a PRF variant in which the key constitutes the second input to

the function (as opposed to its first input, as in the definition above). In this case, we

define the PRF to be a function F : Dom×K → Rng. Security for PRFs which are keyed

on their second input is defined entirely analogously to that for regular PRFs.

Lazy sampling. A useful proof technique that we frequently employ is lazy sampling

a random function. Intuitively, this means that instead of choosing a random function

F ←$ Func(Dom,Rng) and thereby fixing its specification at the start of an experiment,

we instead fill in the function table gradually, setting the images of points under F as

they are needed. In more detail, we initialise the function table of F by setting F [X] = ⊥

for all X ∈ Dom. When we require the value of F on some domain point X, we check if

F [X] 6= ⊥ and return the stored value if so. If not, we choose Y ←$ Rng, set F [X] = Y ,
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and return Y . (In a proof, it may be more convenient to rewrite these steps to e.g., sample

Y ←$ Rng upfront and revert to the stored value if F [X] has already been set. At such

points, it is easy to check that the steps taken are equivalent to those described here.)

It is straightforward to verify that replacing a random function with a lazy sampled random

function does not alter the distribution of the game in which the function is being used.

Lazy sampling a function can be useful in proofs since it allows us to subsequently define

games in which the function is modified such that e.g., outputs are sampled without

replacement, or repeat queries are no longer answered consistently.

Block ciphers. A block cipher is a PRF which is additionally a permutation for each

K ∈ K. Block ciphers are often described as the ‘work horse’ of modern cryptography,

since these simple primitives are a remarkably versatile building block in constructions

of more complex cryptographic primitives. In later chapters we will see how collision-

resistant hash functions, authenticated encryption, and pseudorandom number generators

can be constructed from block ciphers.

Formally, a block cipher is a function E : K × {0, 1}` → {0, 1}` such that E(K, ·)

is a permutation over {0, 1}` for each K ∈ K. We let D(K, ·) denote the inverse of

E(K, ·), and so D(K,E(K,X)) = X for all K ∈ K and X ∈ {0, 1}`. We sometimes write

EK(·) to denote computing E(K, ·). We require that block ciphers are good pseudorandom

permutations (PRPs). PRP security is defined analogously to PRF security, except we now

challenge the attacker to distinguish the primitive in question from a random permutation

π ←$ Perm({0, 1}`), where Perm(Dom) denotes the set of all permutations over domain

Dom. Formally, the PRP distinguishing advantage of an adversary A against a block

cipher E : K × {0, 1}` → {0, 1}`, given q oracle queries, is defined

Advprp
E (A, q) =

∣∣∣∣Pr
[
AE(K,·) ⇒ 1 : K

$← K
]
− Pr

[
Aπ(·) ⇒ 1 : π

$← Perm({0, 1}`)
]∣∣∣∣ .

Tweakable block ciphers. Since a block cipher is deterministic, there are limits on

how much data can be processed using a block cipher with a fixed key. At the same

time, frequently re-keying a block cipher typically has a negative impact on efficiency. In

order to increase the mileage we can get out of each block cipher key, Liskov et al. [102]

introduced the notion of a tweakable block cipher (TBC). A TBC extends the syntax of a
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block cipher to have E take an extra non-secret input called a tweak. For a key K ∈ K,

we would like E(K,T, ·) to behave like an independent random permutation under each

tweak T ∈ T . Moreover, it should be less costly to change the tweak than it is the key.

Formally, a TBC is a function Ẽ : K × T × {0, 1}` → {0, 1}` such that Ẽ is a permu-

tation for all (K,T ) ∈ K × T . We let D̃(K,T, ·) denote the inverse of Ẽ(K,T, ·), and so

D̃(K,T, Ẽ(K,T,X)) = X for all (K,T ) ∈ K × T and X ∈ {0, 1}`. We sometimes write

ẼTK(·) to denote computing Ẽ(K,T, ·). The TBC distinguishing advantage of an adversary

A against a TBC Ẽ : K × T × {0, 1}` → {0, 1}`, given q oracle queries, is defined

Advtbc-prp

Ẽ
(A, q) =

∣∣∣∣Pr
[
AẼ(K,·,·) ⇒ 1 : K←$K

]
− Pr

[
A$(·,·) ⇒ 1

]∣∣∣∣ ,
where the oracle $(·, ·) chooses a random permutation πT←$Perm({0, 1}`) for each T ∈ T ,

and on input (T,X) returns πT (X). We note that this definition allows the adversary A

to control the choice of tweaks.

2.3.2 Hash Functions

A hash function H : Dom → {0, 1}` is a deterministic function mapping inputs from

a domain Dom (typically containing inputs of varying lengths) to strings of some fixed

length `. When a hash function satisfies certain security properties, they are highly useful

cryptographic building blocks. In this section, we recall the notion of collision-resistant

hash functions.

Collision-resistance. Let H : Dom→ {0, 1}` be a function on domain Dom ⊆ {0, 1}∗.

H is said to be collision-resistant (CR) if it is infeasible for an attacker to find distinct

domain points X 6= X ′ ∈ Dom which map to the same value under H. If analysis is with

respect to an ideal primitive such as an ideal permutation (see Section 2.3.3) then A is

given oracle access to this primitive also. More formally, the CR advantage of an adversary

A against H is defined

Advcr
H (A) = Pr

[
X 6= X ′ ∧ H(X) = H(X ′) : X,X ′←$A

]
,

where we require that A outputs X,X ′ ∈ Dom. We will measure the efficiency of the

attacker in terms of their resources; typically run time (when working in the standard

model) or number of oracle queries (when in an idealised model).
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The contradiction of unkeyed CR. Declaring a function H : Dom → {0, 1}` for

which the domain Dom contains more than 2` points ‘collision-resistant’ in the standard

model is technically incorrect. Indeed, for any candidate hash function H we know by

the pigeonhole principle that there must exist a pair of points X,X ′ ∈ Dom for which

H(X) = H(X ′). Since H is unkeyed and does not utilise an idealised primitive (to be

chosen at random in the CR game), we can immediately define a collision-finding attacker

A to be the algorithm with X,X ′ hard-wired that simply outputs these values and achieves

Advcr
H (A) = 1. However, the existence of such an attacker does not necessarily imply that

the function is insecure in practice, since writing down the code of A requires knowing a

collision for H, and there are many real-world hash functions (e.g., SHA-256) for which it

is widely believed that no one on earth knows such a collision at this point in time.

The way to escape this paradox, as formalised by Rogaway in [135], is to carefully construct

theorem statements and proofs in which we reduce the security of a protocol P based on

an unkeyed hash function H to the collision-resistance of H. We cannot say that for any

efficient attacker A achieving a good advantage in game G against protocol P there exists

a collision finding attacker A′ for which Advcr
H (A′) is large, since as just discussed such an

A′ always exists. However, we may be able to prove that for any such A we can construct

an explicit attacker A′ achieving large Advcr
H (A′). If this is the case, and moreover it

is widely believed that no one currently has the power to specify such a collision-finding

algorithm with the run-time implied by the reduction, then this in turn contradicts the

existence of an adversary A breaking the security of P with respect to game G. We

take this approach to analysing unkeyed CR-hash functions in this thesis and (in line with

common usage) abuse terminology to refer to such functions as CR with the understanding

that the assumption we are making is that no efficient collision algorithm can currently

be constructed, rather than that no such algorithm exists.

Compression functions. If H : Dom → {0, 1}` is such that Dom = {0, 1}m for

m > `, then we call H a compression function. On the other hand, if H has domain Dom

containing points of varying lengths then we call H a hash function. We occasionally relax

this distinction to refer to both types of function as simply hash functions.
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2.3.3 Idealised Models for Hash Functions and Block Ciphers

In this section we give a brief overview of the random oracle model, a heuristic model for

analysing hash functions. For a full discussion of the model and its pros and cons see e.g.,

Katz and Lindell [86]. We also give a brief overview of the ideal permutation model.

The random oracle model. In some applications, we require a hash function to achieve

more than just collision resistance (and other standard properties, such as preimage resis-

tance, that we omit here for brevity). Ideally, we would like a hash function to behave like

a random oracle; that is to say, a black box that returns a random range point in response

to each fresh query on a domain point, and that answers consistently on repeated queries.

Indeed, there are some (often highly practical) schemes based on hash functions for which

it seems infeasible to prove security under any weaker assumption on the hash function.

Rather than leaving these schemes unproven, or abandoning our scheme to look for an

alternative that can be proved under weaker assumptions (often sacrificing efficiency in

the process), we could compromise between the two approaches and replace the concrete

hash function in the construction with a random oracle when we construct our proof.

This approach, first formalised by Bellare and Rogaway in their classic (and controversial)

paper [22], is called the random oracle model (ROM). More formally, in the ROM we model

a hash function H : Dom→ {0, 1}` as a truly random function H←$ Func(Dom, {0, 1}`)

(or its lazy sampled equivalent). All algorithms, and the attacker, are given oracle access

to H, and all probabilities are computed over the random choice of H.

A heuristic. The ROM is of course a heuristic. In the real world, our scheme will be

instantiated with a concrete hash function, which will be entirely fixed by its specification

and can be evaluated by an attacker on any point by simply running its code. More broadly

we know that many hash functions, in particular those based on the Merkle-Darmg̊ard

transform (see e.g., [155]), are not random oracles, since they fall foul of length extension

attacks that are not possible for random oracles. Care must therefore be taken when

choosing a concrete hash function to instantiate a scheme that was analysed in the ROM.

Nonetheless, the ROM has proved incredibly useful for analysing (subject to the heuristic)

the security of real world cryptosystems for which a proof otherwise seems infeasible.
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Controversy. The ROM has been highly controversial. Goldreich compares the ROM

to a “fetish”, worshipped as a “yardstick” while its original purpose as a “sanity check”

has been forgotten [71]. Moreover, it has been demonstrated that there are schemes that

can be proved secure in the ROM but which are insecure when instantiated with any

concrete hash function [44]. That said, these schemes are all highly contrived — so much

so that Koblitz and Menezes [93] interpret these results as support for the ROM, reasoning

that if these artificial schemes are the best counterexamples that can be found then we

should feel even more confident in the soundness of the ROM for practical schemes. Most

compellingly, no real world scheme proved secure in the ROM has ever been successfully

attacked when instantiated with an appropriate hash function.

Conclusion. In line with our focus on practice-oriented provable security, we firmly take

the view that a proof of a practical scheme is better than no proof at all, even if it relies

on heuristics such as the ROM. From such results, we can reduce the set of flaws that

could possibly exist in a scheme to those arising from the concrete hash function, allowing

us to eliminate fundamental flaws in the design and problems due to interactions between

other components. Trying to persuade practitioners to use highly impractical schemes

because they admit standard model proofs is clearly counterproductive, and we can find

assurance in the fact that in three decades of real world schemes being analysed in the

ROM, none of these have subsequently been broken when instantiated with a good choice

of hash function. That said, it is important to keep in mind that results in the ROM

are heuristics and great care must be taken when choosing a concrete hash function to

instantiate the scheme.

The ideal permutation model. We briefly mention another heuristic model, this time

for block cipher based schemes, called the ideal permutation model (IPM). We do not

directly use the IPM in any of our analyses. However, we do invoke a result of Rogaway

and Steinberger [140] on high-rate CR-hashing proved in the IPM in Section 3.5, and so

give a brief overview for completeness. The reader is referred to e.g., [41] for a discussion

of the IPM and its close relation, the ideal cipher model.

Consider a scheme based on a block cipher E : K × {0, 1}` → {0, 1}` with a set of fixed

public keys K1, . . . ,Kt ∈ K. (As we shall discuss in Section 3.5, this is a common way

of building CR compression functions.) To analyse such a scheme in the IPM, we replace
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E(Ki, ·) for each i ∈ [1, t] with a random permutation πi←$ Perm({0, 1}`). The attacker

and all other algorithms are given black-box oracle access to each πi and its inverse π−1
i .

All probabilities are taken over the choice of the random permutations.

Block cipher based CR compression functions are typically analysed in the IPM. A is

assumed to run in unbounded time, and its resources are measured in the number of

oracle queries made.

This concludes our discussion of cryptographic primitives. In the next section, we intro-

duce a number of notions of entropy and define statistical extractors.

2.4 Information Theoretic Notions

In this section, we define a number of information theoretic notions that we will employ

during the subsequent chapters. We begin by defining entropy and statistical indistin-

guishability, and then describe how a high entropy distribution can be converted into

close-to-uniform strings using a statistical extractor. In contrast to the computational

security of the primitives in Section 2.3, all attackers considered in this section are un-

bounded and the corresponding security notions are information theoretic.

2.4.1 Entropy

Entropy is used to measure the degree of unpredictability or uncertainty in a probability

distribution. In this section, we recall a number of definitions for min-entropy that we will

use in later sections.

Min-entropy. Min-entropy measures the unpredictability of a distribution X in terms of

the maximum success probability achievable by an unbounded attacker trying to guess the

value of a point x← X drawn from that distribution. More formally, let X and Z be distri-

butions. We define the min-entropy of X to be H∞(X) = − log(maxx Pr [X = x ]), and the

joint min-entropy of X and Z is defined H∞(X,Z) = − log(maxx,z Pr [X = x ∧ Z = z ]).

For a distribution X over {0, 1}n, it is straightforward to verify that H∞(X) ≤ n where

the equality is strict for all but the uniform distribution over {0, 1}n.
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Let X and Z be (possibly related) distributions. The conditional min-entropy of X con-

ditioned on Z is defined to capture the maximum success probability that an unbounded

attacker trying to guess the value of a point drawn from X can achieve when given a point

from Z as side information. We define two variants of conditional min-entropy, which differ

in how the point from Z is chosen. For distributions X and Z, the worst-case conditional

entropy of X conditioned on Z is defined

H∞(X | Z) = − log(max
x,z

Pr [X = x | Z = z ]) .

Worst-case min-entropy provides a very strong guarantee on the unpredictability of X

conditioned on Z that holds regardless of which point from Z is learned. In some settings,

this measure is too conservative. For example, X may be highly unpredictable conditioned

on all but a handful of values in the support of Z which occur with very small probability.

These ‘bad’ values may force the worst-case min-entropy of X conditioned on Z to be

very low despite the fact that, with high probability over the choice of z ← Z, the value

of a point x← X|Z = z will be unpredictable. In such cases, a notion of conditional min-

entropy that averages over the choice of z ← Z is useful. More formally, the average-case

min-entropy of X conditioned on Z is defined

H̃∞(X|Z) = − log

(∑
z

max
x

Pr [X = x | Z = z ] · Pr [Z = z ]

)
.

For any pair of distributions X and Z, it holds that H̃∞(X|Z) ≥ H∞(X|Z).

2.4.2 Statistical Distance and Randomness Extractors

We now define statistical extractors which convert samples drawn from a distribution

with high min-entropy into close-to-uniform strings. We begin by recalling the notion of

statistical distance.

Statistical distance. Statistical distance is a metric to measure the closeness between

two distributions. More formally, let X0 and X1 be distributions over a finite set Z. Then

the statistical distance of X0 and X1, denoted ∆(X0, X1), is defined:

∆(X0, X1) = max
T⊆Z

(
Pr [X0 ∈ T ]− Pr [X1 ∈ T ]

)
.

It is straightforward to verify that ∆(X0, X1) ∈ [0, 1]. If ∆(X0, X1) = 0, then the distri-

butions X0 and X1 are identical. In contrast, ∆(X0, X1) = 1 implies that the supports

of X0 and X1 are disjoint. If two distributions have small statistical distance (where the
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precise meaning of ‘small’ will depend on the context), then we say they are statistically

close.

Statistical indistinguishability. Statistical indistinguishability measures how well an

unbounded attacker A can distinguish between points drawn from distributions X0 and

X1. More formally, we define the distinguishing advantage of an attacker A to be∣∣Pr [A(x)⇒ 1 : x← X0 ]− Pr [A(x)⇒ 1 : x← X1 ]
∣∣ .

Let T ∗ = argmaxT⊆Z

(
Pr [X0 ∈ T ]− Pr [X1 ∈ T ]

)
. Let A be the attacker who outputs

1 if x ∈ T ∗ and 0 otherwise. It is straightforward to verify that A achieves advantage

∆(X0, X1) and that their strategy is optimal. As such, ∆(X0, X1) is an upper bound

on the distinguishing advantage of any attacker (unbounded or computational) in the

above game.

Extractors. A distribution with high min-entropy will be unpredictable but may still

be far from uniform. For example, consider taking the uniform distribution over the set

of n-bit strings for which the least significant bit is 0. Such a distribution has nearly full

min-entropy n − 1, and yet is trivially distinguishable from Un. A statistical extractor,

which we formalise below, can be used to extract close-to-uniform bit strings from high

min-entropy distributions.

We say that a random variable X is a k-source if H∞(X) ≥ k. An extractor is a function

that maps points drawn from a k-source to a close-to-uniform distribution over bit-strings

of some fixed length w. It is well-known that deterministic extraction is impossible in

general, and so we specify extractors to take as input a uniform seed A←$ {0, 1}v. We

define extractors formally below, and then given an example illustrating the impossibility

of seedless extraction.

Definition 2.1. A function Ext : {0, 1}∗×{0, 1}v → {0, 1}w is said to be a (k, ε)-extractor

if for all distributions X over {0, 1}∗ such that H∞(X) ≥ k, it holds that

∆((Ext(X;A), A), (Uw, A)) ≤ ε ,

where A←$ Uv.

By the classic Leftover Hash Lemma [76], universal hash functions (see e.g., [128] for a

formal definition) are optimal and efficient statistical extractors.
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We will now show that without seeding it is impossible to extract even a single bit from

an imperfect source, even when that source has close to full entropy. The version of this

well-known result we present here is taken from [159]. We claim that for any deterministic

extractor Ext : {0, 1}n → {0, 1}, there exists an (n−1)-source X such that Ext is constant

on X. To see this, we define X0 = {x ∈ {0, 1}n : Ext(x) = 0} and X1 = {0, 1}n \ X0, and

notice that there must exist b ∈ {0, 1} such that |Xb| ≥ 2n−1. We define the (n−1)-source

X to be the uniform distribution over Xb. It is straightforward to see that, despite having

at least (n − 1)-bits of entropy, the output of Ext over this source will be constant on b.

This illustrates the necessity of the seed, which effectively chooses an extractor at random

from a family indexed by the seed value.

Online extractors. In Chapter 5, we will require an online-computable extractor. We

say that an extractor Ext is online-computable with respect to p if it admits an equiv-

alent formulation which correctly computes the value of Ext on each possible input I ∈

∪k∈N{0, 1}k·p when I is incrementally provided to Ext in chunks of p-bits at a time. We

formalise this in the definition below.

Definition 2.2. An extractor Ext : {0, 1}∗ × {0, 1}v → {0, 1}w is said to be online-

computable with respect to p if there exists a pair of efficient algorithms iterate : {0, 1}p ×

{0, 1}p×{0, 1}v → {0, 1}p and finalise : {0, 1}p×{0, 1}v → {0, 1}w such that for all inputs

I = (I1, . . . , Id) where Ij ∈ {0, 1}p for j ∈ [1, d], and all seeds A ∈ {0, 1}v, then after

setting y0 = 0p, and yj = iterate(yj−1, Ij ;A) for j = 1, . . . , d, it holds that

Ext(I;A) = finalise(yd;A).

2.5 Pseudorandom Number Generators

Given that most modern cryptography depends on a good source of random bits, it is

unsurprising that pseudorandom number generators — which expand a small high entropy

seed into much larger quantities of pseudorandom bits — are ubiquitous in cryptographic

protocols and implementations. In this section, we define several varieties of pseudorandom

number generator and present their associated security models.

PRNGs with input. A pseudorandom number generator with input (PRNG) [60] pro-
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duces pseudorandom bits and offers strong security guarantees when given continual access

to an imperfect source of randomness.

Definition 2.3. A pseudorandom number generator with input (PRNG) is a tuple of

algorithms PRNG = (init, setup, refresh, next) with associated parameter set (`, p), defined

as follows:

• init : → Seed is a randomised algorithm which takes no input and outputs a public

seed seed ∈ Seed.

• setup : Seed→ S is a randomised algorithm which takes as input a seed seed ∈ Seed

and returns an initial state S0 ∈ S, where S denotes the state space of the PRNG.

• refresh : Seed× S × {0, 1}p → S takes as input a seed seed ∈ Seed, a state S ∈ S,

and an entropy sample I ∈ {0, 1}p, and returns a state S′ ∈ S.

• next : Seed×S → {0, 1}` ×S takes as input a seed seed ∈ Seed and a state S ∈ S,

and returns an output R ∈ {0, 1}`, and an updated state S′ ∈ S.

Here we have modified the definition of Dodis et al. [60] to: (1) allow states to lie in

a state space S rather than being strings of length n; and (2) generate the initial state

S0 ∈ S via setup rather than choosing S0 uniformly from {0, 1}n. These modifications

better model real world PRNGs, for which the state may consist of various components

and contain non-uniform elements such as counters. Moreover, we will utilise the fact

that PRNG states may contain multiple (and possibly non-uniform) components when we

construct backdoored PRNGs in Chapter 5.

Distribution samplers. We model the gathering of entropy inputs from the entropy

source via a distribution sampler [60]. Formally, a distribution sampler D : {0, 1}∗ →

{0, 1}∗×{0, 1}p×R≥0×{0, 1}∗ is a stateful and probabilistic algorithm which takes as input

its current state σ ∈ {0, 1}∗ and outputs a tuple (σ′, I, γ, z), where σ′ ∈ {0, 1}∗ denotes

the updated state of the sampler, I ∈ {0, 1}p denotes the entropy sample, γ ∈ R≥0 is an

entropy estimate for the sample, and z ∈ {0, 1}∗ denotes a string of side information about

the sample. We say that a sampler D is (qD, γ
∗)-legitimate if for all j ∈ [1, qD]:

H∞(Ij |I1, . . . , Ij−1, Ij+1, . . . , IqD , γ1, . . . , γqD , z1, . . . , zqD) ≥ γj ,

where σ0 = ε and (σj , Ij , γj , zj)←$D(σj−1). Looking ahead, the entropy estimates γ will

be used in security definitions to measure how much entropy has entered the PRNG. The

side information z is included to model the fact that, in practice, entropy will often be
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RobA,DPRNG,γ∗

b←$ {0, 1}
σ ← ε ; seed←$ init

S←$ setup(seed)

c← γ∗

b∗←$ARef,RoR,Get,Set(seed)

Return (b = b∗)

Ref

(σ, I, γ, z)←$D(σ)

S ← refresh(seed, S, I)

c← c+ γ

Return (γ, z)

RoR

(R0, S)← next(seed, S)

If c < γ∗

Return R0

c← 0

Else R1←$ {0, 1}`
Return Rb

Get

Return S

c← 0

Set(S∗)

S ← S∗

c← 0

Figure 2.1: Security game Rob for a PRNG PRNG = (init, setup, refresh, next).

gathered from system events such as disk timings and key strokes and so an attacker may

be able to gain some advantage in predicting the value of the entropy samples by observing

the operating environment.

2.5.1 Security Notions for PRNGs

We now recall a number of security notions for PRNGs, as well as a useful result that

modularises proofs of PRNG security.

Robustness. Consider the game Rob shown in Figure 2.1. The game is parameterised

by an entropy threshold γ∗. We expect security when the entropy in the system is at least

this value. Here we have modified game Rob from [60] to: (1) generate the initial state

via the setup algorithm (as opposed to initialising the PRNG with an ideal random state);

and (2) remove the Next oracle, which was shown in [51] to be without loss of generality.

With this in place, the robustness advantage of a (qD, γ
∗)-legitimate distribution sampler

D and adversary A is

Advrob
PRNG,γ∗(A,D) = 2 ·

∣∣∣∣Pr
[

RobA,DPRNG,γ∗ ⇒ 1
]
− 1

2

∣∣∣∣ .
We say that A is a (qR, qD, qC , qS)-adversary if he makes qR queries to its RoR oracle,

a total of qS queries to its Get and Set oracles, and qD queries to its Ref oracle where

qC ≤ qD denotes the maximum number of consecutive Ref queries. Looking ahead, we

make qC an explicit parameter (rather than upper bounding qC by qD) to yield tighter

bounds in the results of Sections 4.6 and 4.7 in which qC will surface as a parameter.

For results in which qC does not surface in the security analysis (in particular, those in

Chapter 5) we may omit qC for brevity.

Forward and backward security. We define games Fwd and Bwd to be restricted

variants of game Rob. In game Fwd, the attacker A is allowed no Set queries, and makes
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a single Get query after which it may make no further queries. In game Bwd, the attacker

makes a single Set query as his first query, and after that may make no Set or Get queries.

The forward and backward security advantages for an attacker / sampler pair (A,D) are

respectively defined as:

Advfwd
PRNG,γ∗(A,D) = 2 ·

∣∣∣∣Pr
[

FwdA,DPRNG,γ∗ ⇒ 1
]
− 1

2

∣∣∣∣ ; and

Advbwd
PRNG,γ∗(A,D) = 2 ·

∣∣∣∣Pr
[

BwdA,DPRNG,γ∗ ⇒ 1
]
− 1

2

∣∣∣∣ .
Relations and separations. It is straightforward to verify that robustness implies

forward and backward security. However, a PRNG which is both forward and back-

ward secure is not necessarily robust. For a separating example, let PRNG = (init, setup,

refresh, next) be a robust PRNG with state space S = {0, 1}n. We define a modified

PRNG PRNG′ = (init′, setup′, refresh′, next′) with state space S ′ = {0, 1}n×{0, 1}×{0, 1}`

as follows. We define init′ to be identical to init, and define setup′(·) to be the algo-

rithm which computes S ←$ setup(·) and outputs (S, 0, 0`). We define refresh′ to be the

algorithm that on input (seed, (S, θ, Y ), I) for θ ∈ {0, 1}, Y ∈ {0, 1}`, and I ∈ {0, 1}p, com-

putes S′ ← refresh(seed, S, I) and returns (S′, θ, Y ). We define next′ to be the algorithm

that on input (seed, (S, θ, Y )) first computes (R,S′) ← next(seed, S). If θ = 0, it returns

(R, (S, 0, Y )); however if θ = 1, it returns (R, (S, 1, R)).

It is straightforward to check that PRNG′ is still Fwd and Bwd secure. (Since setup′

will only return states of the form (S, 0, 0`), an attacker in game Fwd against PRNG can

perfectly simulate game Fwd for an attacker against PRNG′ by simply querying his own

oracles and adding (0, 0`) to the state returned for the attacker’s final Get query. Similarly

in game Bwd, after the initial Set query the attacker can only make Ref and RoR queries,

the output of which are unchanged for the modified PRNG′. As such, an attacker A in

game Bwd against PRNG can perfectly simulate game Bwd for an attacker A′ against

PRNG′ by querying S to his own Set oracle in response to A′’s initial Set query (S, θ, Y )

and then forwarding all other queries directly to his own oracles.) However, an attacker A

can easily win the robustness game as follows. A queries (S, 1, 0n) to Set and then makes

sufficiently many Ref calls that c ≥ γ∗. A then queries RoR to receive R∗ immediately

followed by Get to receive (S, 1, Y ). By checking if Y = R∗, A can distinguish a real from

random output with overwhelming probability.
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PresAPRNG

b←$ {0, 1}
seed←$ init

S0←$ setup(seed)

(I1, . . . , Id)←$A(seed)

For i = 1, . . . , d

Si ← refresh(seed, Si−1, Ii)

If (b = 0) then (R∗, S∗)← next(seed, Sd)

Else R∗←$ {0, 1}` ;S∗←$ setup(seed)

b∗←$A(seed, R∗, S∗)

Return (b = b∗)

RecA,DPRNG,γ∗,qD

b←$ {0, 1}
σ0 ← ε ; seed←$ init ;µ← 0

For k = 1, . . . , qD
(σk, Ik, γk, zk)←$D(σk−1)

(S0, d)←$ASam(seed, (γk, zk)
qD
k=1)

If µ+ d > qD or
∑µ+d
i=µ+1 γi < γ∗

Return ⊥
For i = 1, . . . , d

Si ← refresh(seed, Si−1, Iµ+i)

If (b = 0) then (R∗, S∗)← next(seed, Sd)

Else R∗←$ {0, 1}` ;S∗←$ setup(seed)

b∗←$A(seed, R∗, S∗, (Ik)k>µ+d)

Return (b = b∗)

Sam()

µ← µ+ 1

Return Iµ

Figure 2.2: Security games Pres and Rec for a PRNG PRNG = (init, setup, refresh, next).

2.5.2 Preserving and Recovering Security

A key insight of [60] is that the complex notion of robustness can be decomposed into two

simpler notions called preserving and recovering security. The former models the PRNG’s

ability to maintain security if the state is secret but the attacker is able to influence the

entropy source. The latter models the PRNG’s ability to recover from state compromise

after sufficient (honestly generated) entropy has entered the system. Consider games Pres

and Rec shown in Figure 2.2. Here we have modified the definitions of [60] to have the

initial state be generated by setup. For Gmx
y ∈ {PresAPRNG,RecA,DPRNG,γ∗,qD

} we define

Advgm
y (x) = 2 ·

∣∣∣∣Pr
[

Gmx
y ⇒ 1

]
− 1

2

∣∣∣∣ .
We say that an attacker A in game Pres or Rec is a qC-adversary if the index d (explicitly

output by A in game Rec, and implicitly defined by the number of inputs output by A in

game Pres) is at most qC . With this in place, the following theorem, which says that Pres

plus Rec security implies Rob security, is a straightforward adaptation of the analogous

result from [60].

Theorem 2.2. Let PRNG = (init, setup, refresh, next) be a PRNG with input. Then for

any (qD, qC , qR, qS)-adversary A and (qD, γ
∗)-legitimate sampler D in game Rob against

PRNG running in time T , there exists qC-adversaries A1 and A2 such that

Advrob
PRNG,γ∗(A,D) ≤ 2qR ·Advpres

PRNG(A1) + 2qR ·Advrec
PRNG,γ∗,qD

(A2,D) ,

and moreover, A1 and A2 run in time T .
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We prove a more involved variant of this theorem in Section 4.5 from which a proof of

Theorem 2.2 may easily be recovered. We note that the original result in [60] erroneously

omits a factor of two from the right-hand side of the equation; we correct this here,

accounting for the additional term in the theorem statement.

PRNG definitions in this thesis. The PRNG model given here shall be used in

Chapter 5. In Chapter 4, we will have to substantially modify it in order to accommodate

the real-world NIST DRBGs, which have a variety of optional inputs and quirks which

do not fit cleanly into this syntax. We shall frequently refer back to this definition in

Chapter 4 to emphasise the changes we have made.

This concludes our chapter on preliminaries. With this groundwork in place, we will now

employ the provable security concepts described in this chapter to analyse a number of

real world problems.
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3.1 Introduction and Motivation

Encrypted messaging. End-to-end (EtE) encrypted messaging applications — such as

Whatsapp, Signal, and Facebook Secret Conversations — are used by billions of people

each day. The integration of end-to-end encryption in these applications is so seamless

that it’s not unreasonable to assume that many users are unaware that the technology is

even implemented. This is a remarkable illustration of how advanced cryptography has,

in the last fifty years, transcended the realms of military and government to become an

ubiquitous part of our everyday lives.

The increased uptake of EtE encryption has been divisive, with the discussion around

it echoing the privacy versus surveillance debate surrounding cryptography as a whole.

EtE encryption is undeniably beneficial for the privacy of users, an especially prescient

concern following recent high profile failures such as the Cambridge Analytica scandal [42]

and Snowden revelations [124]. EtE encryption can facilitate freedom of expression and

censorship avoidance, which as we will reiterate in Chapter 5 is increasingly being viewed

as vital for a well-functioning society [126,136].
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At the same time, the debate as to whether an individual’s right to privacy trumps that of

law enforcement agencies to gather intelligence rages on, exacerbated by atrocities such as

the 2015 San Bernardino terrorist attack and subsequent legal dispute between the FBI and

Apple over whether the latter should assist in unlocking a deceased perpetrator’s iPhone.

EtE encryption has been singled out for criticism by, among others, the FBI [106, 117]

and the UK Government, with then Home Secretary Amber Rudd memorably causing a

backlash in 2017 by claiming that EtE encryption is not for “real people” [141].

3.1.1 Message Franking

While the tension between privacy and surveillance is nothing new in cryptography (and

indeed we will return to the latter in Chapter 5), EtE encryption creates another, less

obvious, tension. Providers, under increasing pressure to prevent abusive behaviour on

their sites, want to support a service for users to report offensive content such as harmful

messages, images, or videos. However, if EtE encryption prevents the service provider

from learning anything about the message contents, how can a provider verify that the

reported message was actually sent and not fabricated by the complainant?

Message franking. The solution to this problem proposed by Facebook — called mes-

sage franking [65,112], where the name comes from ‘speaking frankly’ — shall be the focus

of this chapter. A message franking scheme allows a receiver to cryptographically prove

to the service provider that a reported message underlies an encrypted message. Inspired

by this, Grubbs, Lu, and Ristenpart (GLR) [73] provided the first formal treatment of the

problem, and introduced compactly committing authenticated encryption with associated

data (ccAEAD) as the key primitive. A secure ccAEAD scheme encrypts messages under

a secret key such that a short portion of the ciphertext, called a binding tag, serves as

a cryptographic commitment to the underlying message (and associated data). GLR de-

tailed appropriate security notions, and proved that the main Facebook message franking

approach, called CtE2 here, achieves them. They also introduced a faster custom ccAEAD

scheme called Committing Encrypt-and-PRF (CEP).

Message franking in Facebook. The Facebook scheme CtE2 is a composition of an

HMAC-based commitment and a standard encrypt-then-MAC AEAD scheme. As such,
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the scheme requires three full cryptographic passes over the message to compute1. We

count The CEP construction [73] gets this down to two. However, this still does not

match the fastest standard authenticated encryption (AE) schemes such as GCM [107]

and OCB [137]. These require roughly one block cipher call (on the same key) per block

of message data and, in the case of GCM, some arithmetic operations in GF(2n) that are

faster than a block cipher invocation. However as observed by GLR, GCM is not compactly

committing; one can find two distinct messages and two encryption keys that lead to the

same binding tag. This violates a property called receiver binding, and could in theory

allow a malicious recipient to report a message that was never sent.

Existing ccAEAD schemes are not considered fast enough for all applications of message

franking by practitioners [112]. Because of this, Facebook Messenger does not use the

secure CtE2 ccAEAD scheme mentioned above to directly encrypt attachment files (which

are typically large). Instead they use a hybrid scheme which, at a very high level, encrypts

the attachment file under a one-time key with the regular (and very fast) AEAD scheme

GCM, and then encrypts and commits to the key using the CtE2 ccAEAD scheme. Despite

GCM not being secure when framed as a ccAEAD scheme, its use in Facebook’s attachment

franking does not immediately imply any concrete attack on Facebook’s system. However

as we shall see, the fact that GCM is not robust [4,66,67,115] — meaning that it is possible

to construct ciphertexts which decrypt correctly under different keys — ultimately leads

to an attack.

3.1.2 Contributions

In this chapter, we consider the problem of building highly efficient ccAEAD schemes. To

motivate this, we first present an attack on Facebook’s attachment franking, the ad hoc

design of which was necessitated by the lack of fast and secure ccAEAD schemes. Our

results are an example of theory meeting practice: the Facebook attack represents, to the

best of our knowledge, the first real world attack which exploits the non-robustness of an

encryption scheme, and our results on fast and practical ccAEAD build on the wealth of

literature on collision resistant (CR) hashing. We discuss our contributions in more detail

below.

1Throughout this chapter, a pass over data is understood to be an application of a cryptographic scheme
such as an encryption scheme or hash function to the data in question. We count each application as a
separate pass, regardless of whether the applications can be parallelised.
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Breaking Facebook’s attachment franking. In the first part of the chapter, we

demonstrate an attack against Facebook’s attachment franking scheme that allows a ma-

licious sender to send an abusive attachment for which all attempts to report this to

Facebook will fail. The cryptographic flaw that enables the attack is that a GCM cipher-

text is not a commitment to its underlying plaintext; indeed, due to its non-robustness,

it is possible to construct a single ciphertext that decrypts to different plaintexts under

different keys. The attack exploits the way in which Facebook’s server code deduplicates

attachments in abuse reports by their ciphertext identifiers. We show that if the attacker

sends a GCM ciphertext twice with the same identifier and two different keys, it can ensure

that only one decryption ends up in the abuse report. If the GCM ciphertext decrypts

to an abusive message under one key, and an innocuous message under the other, then

the receiver will receive both the abusive and innocuous messages. However, the human

viewing the abuse report will only see the innocuous one. It is here that we encounter the

invisible salamanders of the title. Following Signal, Facebook calls encrypted messages

‘salamanders’. Since this attack allows a malicious sender to craft a message which cannot

be seen by Facebook, this can be viewed as an invisible salamander.

We responsibly disclosed this vulnerability to Facebook, who helped us understand how

our attack works against their systems (much of the abuse handling code is server-side and

closed source). The severity of the issue led them to patch their (server-side) systems and

to award us a bug bounty. Their fix is ad hoc and involves deduplicating more carefully.

However, the vulnerability would have been avoided in the first place by using a fast

ccAEAD scheme that provided the binding security properties implicitly assumed of —

but not actually provided by — GCM.

Towards faster ccAEAD schemes: encryptment. This message franking failure

motivates the need for faster schemes. As mentioned, the best known secure ccAEAD

scheme from GLR is two pass, requiring computing both HMAC and AES-CTR mode (or

similar) over the message. The fastest standard AE schemes [84,107,137] however require

just a single pass using a block cipher with a single key. This raises the question of whether

we can build ccAEAD schemes that match this performance?

To tackle this question we first abstract out the core technical challenge underlying

ccAEAD via a new primitive called encryptment. At a high level, encryptment is a one-

time secure variant of ccAEAD. The deterministic encryptment algorithm maps a key
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KEC and header / message pair (H,M) to an encryptment (CEC, BEC). Together these

components constitute an encryption of M . Moreover, the binding tag BEC represents

a commitment to (H,M) that can be verified with the key KEC. Being single-use, en-

cryptment is substantially simpler than ccAEAD, making analyses easier and, we think,

design of constructions more intuitive. We will later show how to lift secure encrypt-

ment to fully-fledged multi-use ccAEAD via simple and efficient transforms. In the other

direction, we show that one can also build encryptment from ccAEAD, making the two

primitives equivalent from a theoretical perspective. Encryptment also turns out to be the

‘right’ primitive for a number of other applications: robust authenticated encryption [67],

concealments [56], remotely keyed AE [56], and perhaps even more.

Fast encryptment from fixed-key block ciphers? With our new primitive defined,

we turn to building fast encryptment schemes. First we show a negative result: encrypt-

ment schemes cannot match the efficiency profile of OCB or GCM in terms of rate (where

rate is defined to be the number of blocks of input data processed per block cipher call).

In fact we rule out any rate-1 scheme that uses just a single block cipher invocation for

each block of message with some fixed small set of keys.

This negative result makes use of a connection between encryptment and CR hashing. We

first show that for an encryptment scheme to achieve a certain kind of binding security the

function that is used to compute the binding tag must be CR. We can then exploit known

impossibility results on high-rate fixed-key block cipher-based CR hashing [139, 140, 150]

to rule out similarly high rate encryptment schemes. A simple corollary of [140, Thm. 1]

is that one cannot prove receiver binding security for any rate-1 fixed-key block cipher-

based encryptment scheme. Since OCB and GCM are rate-1, this implies that they cannot

yield binding encryptment. Our negative result also rules out rate-1 ccAEAD due to our

aforementioned result that (fast) ccAEAD implies (fast) encryptment.

One-pass encryptment from hashing. Given the connection just mentioned, it is

natural to turn to CR hashing as a starting point for building fast-as-possible encryptment.

Our scheme, which we call Hash Function Chaining (HFC), is based on the classic Merkle-

Damg̊ard (MD) [52,109,110] construction of a CR hash function. To compute the binding

tag, we simply hash the carefully padded header and message using a keyed version of an

MD-iterated compression function. The trick which allows us to compute both ciphertext
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and binding tag in a single pass is to use the intermediate chaining variables generated

during this process as random pads to encrypt the message blocks. We prove that our

construction is a secure encryptment scheme under the assumption that the underlying

compression function is both CR and, when framed as a keyed function, pseudorandom

under a weak form of related-key attack. This is a stronger property than regular PRF

security, and requires that the function continues to behave like a PRF even if the attacker

can query the function under related keys. Here the class of related keys the attacker may

use consists of the secret PRF key XORed with a string of the attacker’s choosing. We

discuss possible choices with which to instantiate the compression function. We also

describe how to avoid the related-key PRF assumption, in particular giving a variant of

the construction based on the Duplex authenticated-encryption mode [32] using Keccak

(SHA-3) [33] that replaces the iterated compression function with a sponge, although the

resulting construction is not as fast or elegant as HFC.

From encryptment to ccAEAD. With this in place, we present two efficient trans-

forms which construct multi-opening ccAEAD from secure encryptment. The first trans-

form uses a (standard) secure AEAD scheme. To encrypt a message M , our ccAEAD

scheme first generates a one-time encryptment key KEC and then computes an encrypt-

ment (CEC, BEC) for KEC,M . The one-time key KEC is then encrypted under the long-lived

AEAD key K using the binding tag BEC as associated data. The resulting ccAEAD ci-

phertext is the AEAD ciphertext (including its authentication tag) plus CEC, BEC. The

second transform uses just two additional PRF calls to securely convert an encryptment

scheme to a ccAEAD scheme. We give a full analysis of both schemes in Sections 3.7.3

and 3.7.4.

Our approach of hashing-based ccAEAD has a number of attractive features. HFC works

with any hash function that iterates a secure compression function, giving us a wide

variety of options for instantiation. Due to the simplified formalisation via encryptment

the security proofs are modular and conceptually straightforward. As already mentioned,

our scheme is fast in terms of the number of underlying primitive calls. If instantiated

using SHA-256 one can use the SHA hardware instructions [74] now supported on some

AMD and ARM processors and that are likely to be incorporated in future Intel processors.

Finally, HFC-based ccAEAD is simple to implement.
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Other applications. We conclude the chapter by showing that encryptment is a useful

abstraction for a variety of other applications. In Section 3.8, we describe how it suffices

to build concealments [56] (a conceptually similar but distinct primitive) which in turn

can be used to build remotely keyed AE [56]. Previous constructions of these required

two passes over the message. Our new encryptment-based approach gives the first single-

pass concealments and remotely keyed AE. Finally, encryptment schemes give rise to

robust AEAD [67] via the transforms mentioned above (subject to certain conditions on

the underlying primitives). We expect that encryptment will find further applications in

the future.

3.2 Preliminaries

In this section, we introduce a number of definitions for symmetric encryption and com-

mitment schemes that will be used throughout the chapter.

3.2.1 Authenticated Encryption with Associated Data

A good symmetric encryption (SE) scheme allows two parties who share a secret key to

communicate with confidentiality. This ensures that, without knowledge of the secret key,

an attacker who compromises a ciphertext encrypted under that key can learn nothing

useful about the underlying plaintext. In this thesis, we will utilise a class of symmetric

encryption schemes which have the additional property of providing authenticity ; that is to

say, a guarantee that a ciphertext was sent by the intended communication partner. Such

schemes, called authenticated encryption (AE) schemes, have their earliest formalisations

in [19,24,87].

An authenticated encryption scheme with associated data (AEAD scheme), first formalised

by Rogaway in [133], is an AE scheme which additionally provides authenticity for some

metadata (typically referred to as a header) which is sent alongside the encrypted mes-

sage. This is important for many real-world communication protocols in which a header

containing networking information such as an IP address must be sent in the clear along-

side an encrypted payload. We formally define AEAD schemes below, and throughout the

remainder of the section will state definitions in terms of AEAD schemes. The analogous
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definitions for AE schemes can be recovered by removing all references to the header H

from subsequent definitions.

Definition 3.1. An authenticated encryption scheme with associated data (AEAD scheme)

is a tuple of algorithms AEAD = (K,E,D) with associated key space K ⊆ Σ∗, header space

H ⊆ Σ∗, message spaceM⊆ Σ∗, ciphertext space C ⊆ Σ∗, and coin space R ⊆ Σ∗, defined

as follows:

• The randomised key generation algorithm K : → K takes no input, and outputs a

secret key K ∈ K. We typically have K choose K←$K and return K.

• The encryption algorithm E : K × H ×M → C is a randomised algorithm which

takes as input a key K ∈ K, a header H ∈ H, and a message M ∈ M, and outputs

a ciphertext C ∈ C.

• The decryption algorithm D : K ×H× C →M∪ {⊥} is a deterministic algorithm

which takes as input a key K ∈ K, a header H ∈ H, and a ciphertext C ∈ C, and

outputs either a message M ∈M or the error symbol ⊥.

We require that AEAD schemes are perfectly correct, by which we mean that for all

(K,H,M) ∈ K×H×M it holds that Pr [ D(K,H,E(K,H,M)) = M ] = 1. We additionally

require that AEAD schemes are length regular, by which we mean that the length of a

ciphertext depends only on the length of the underlying message. Formally, we require

that there exists a function clenAE : N → N such that for all (K,H,M) ∈ K×H×M it

holds that

Pr [ |C| = clenAE(|M |) : C←$ E(K,H,M) ] = 1 .

In both cases, the probability is over the coins of E. A nonce-based AEAD scheme is defined

identically to a randomised AEAD scheme, except we redefine E to be deterministic and

have E and D take a nonce N ∈ N as an input (where N ⊆ Σ∗ denotes the nonce space of

the scheme) in addition to the inputs specified above. Correctness and length-regularity

for nonce-based AEAD schemes are defined analogously.

3.2.2 Security Notions for AEAD Schemes

An AEAD scheme should provide confidentiality and authenticity for the data being en-

crypted. We formalise these properties via a pair of games ROR and CTXT, which we
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REALAAEAD

K←$ K

b∗←$AChalEnc(·,·)

Return b∗

ChalEnc(H,M)

C←$ E(K,H,M)

Return C

RANDAAEAD

K←$ K

b∗←$A$(·,·)

Return b∗

$(H,M)

C←$ {0, 1}clenAE(|M|)

Return C

CTXTAAEAD

K←$ K ; win← false

AEnc(·,·),ChalDec(·,·)

Return win

Enc(H,M)

C←$ E(K,H,M)

Y ← Y ∪ {(H,C)}
Return C

ChalDec(H,C)

If (H,C) ∈ Y then

Return ⊥
M ← D(K,H,C)

If M 6= ⊥ then

win← true

Return M

Figure 3.1: Confidentiality (left) and ciphertext integrity (right) games for an AEAD
scheme AEAD = (K,E,D).

define below.

Real-or-random security. We target a strong notion of confidentiality, first introduced

in the AE setting in [138] and in the AEAD setting in [133], which requires that cipher-

texts are indistinguishable from random bit strings of appropriate length. Consider the

games REAL and RAND shown in the left hand panel of Figure 3.1 for an AEAD scheme

AEAD = (K,E,D). At the start of both games, the challenger generates a key K←$K, and

the attacker is given access to an oracle to which they may submit header / message pairs

(H,M). In game REAL, the oracle returns the corresponding encryption C←$E(K,H,M).

In game RAND, the oracle returns a random string of length clenAE(|M |). The ROR ad-

vantage of an attacker A, who makes at most q queries to their real-or-random encryption

oracle, is defined

Advror
AEAD(A, q) =

∣∣Pr
[

REALAAEAD ⇒ 1
]
− Pr

[
RANDAAEAD ⇒ 1

]∣∣ .

Ciphertext integrity. For authenticity, we target the ciphertext integrity notion intro-

duced for AE by Bellare and Namprempre in [19], and which we present here extended

to accommodate associated data in the usual way. Intuitively, this notion requires that

without knowledge of the secret key, K, it is infeasible to produce previously unseen ci-

phertexts which decrypt correctly. Consider game CTXT, shown in the right-hand panel

of Figure 3.1 for an AEAD scheme AEAD = (K,E,D). At the start of the game, a secret

key K ←$ K is generated, and attacker A is given access to a pair of oracles Enc and

59



3.2 Preliminaries

ChalDec. The attacker may learn ciphertexts encrypted under K by submitting header /

message pairs (H,M) to oracle Enc, receiving C←$ E(K,H,M) in response. A may also

submit header / ciphertext pairs (H,C) to the challenge decryption oracle ChalDec, which

are then decrypted under D(K, ·, ·). If A queries ChalDec on a pair (H,C) for which C was

not previously returned in response to an ChalEnc query on (H, ·) but which nonetheless

decrypts correctly then the game returns true. We define the advantage of an attacker A

in game CTXT, who makes at most qd queries to oracle ChalDec and qe queries to oracle

Enc, as

Advctxt
AEAD(A, qd, qe) = Pr

[
CTXTAAEAD ⇒ true

]
.

Constructions of AEAD schemes. AEAD schemes are typically constructed from

block ciphers (see Section 2.3.1). We will see examples of two AEAD schemes, OCB [99,

134,137] and GCM [107], later in the chapter.

3.2.3 Commitment Schemes

At a high level, a commitment scheme allows a party to ‘commit’ to a message without

revealing the message contents in a way that can later be independently verified when

the message is revealed. In this work we will make use of commitment schemes with

an explicit verification algorithm, known as commitment schemes with verification. We

formalise these in the following definition.

Definition 3.2. A commitment scheme with verification is a pair of algorithms CS =

(Com,VerC) defined below. Associated to any such scheme is a message space M⊆ Σ∗, a

commitment space CS ⊆ Σ∗, and an opening space V ⊆ Σ∗.

• The randomised commitment algorithm Com : M → CS × V takes as input a

message M ∈M, and outputs a commitment / opening pair (c, vk) ∈ CS × V.

• The deterministic verification algorithm VerC : CS×V×M→ {0, 1} takes as input

a commitment, opening, and message tuple (c, vk,M) ∈ CS ×V ×M, and outputs a

bit b ∈ {0, 1}.

We require that commitments returned by CS are of some fixed length t; that is to say

that Pr [ |Com(M)| = t ] = 1 for all M ∈ M. A commitment scheme is correct if for all
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M ∈M it holds that Pr[VerC(Com(M),M) = 1] = 1. In both cases, the probability is over

the coins of Com.

Binding commitments. We require that commitment schemes satisfy a binding prop-

erty, which says that it is infeasible to find two opening / message pairs (vk,M), (vk′,M ′)

such that M and M ′ are distinct which both successfully verify with the same commit-

ment c. We call this property v-BIND, and define the v-BIND advantage of an attacker

A against a commitment scheme CS to be

AdvvBIND
CS (A) = Pr

[
b = b′ = 1 ∧M 6= M ′ : ((vk,M), (vk′,M ′), c)←$A ;

b← VerC(c, vk,M) ; b′ ← VerC(c, vk′,M ′)

]
,

where the probability is over the coins of A.

Commitment schemes are usually required to satisfy a hiding property, which says that

the commitments of two messages M,M ′ are indistinguishable. Since this will not be

explicitly required in this thesis, we omit the formal definition here.

3.3 Invisible Salamanders: Breaking Facebook’s Message Frank-

ing Scheme

In this section, we demonstrate an attack against Facebook’s attachment franking scheme.

The attack allows a malicious sender to send an abusive attachment to a user such that

all attempts by the user to report this to Facebook will fail.

Attack overview. Facebook uses AES-GCM to encrypt attachments sent via Secret

Conversations [65], the end-to-end encryption feature in Messenger. The attack creates

a ‘colliding’ GCM ciphertext which decrypts to an abusive attachment via one key and

an innocuous attachment via another. This, combined with the behaviour of Facebook’s

server-side abuse report generation code, prevents abusive messages from being reported

to Facebook. Since messages in Secret Conversations are called ‘salamanders’ by Face-

book (perhaps inspired by the Axolotl ratchet used in Signal, named after an endangered
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salamander), ensuring Facebook does not see a message essentially makes it an invisible

salamander. We responsibly disclosed the vulnerability to Facebook. They remediated

the vulnerability and awarded a bug bounty for reporting the issue.

Discussion. As mentioned above, the attack hinges on the fact that it is easy to construct

GCM ciphertexts which decrypt to different valid messages under different keys. A scheme

for which this is infeasible is said to be robust. Robust encryption schemes have been well-

defined and studied in the literature [4,66,67,115]; however, to the best of our knowledge

this is the first real-world attack that has exploited the non-robustness of an encryption

scheme. This is an illustration of how security issues which may seem more of theoretical

interest than of practical concern can induce real-world vulnerabilities when used as a

component in a complex protocol. More generally, the attack is enabled by a subtle

interaction between a number of features of the ad hoc franking scheme employed by

Facebook, and would have been prevented had a secure ccAEAD scheme been used. This

highlights how easily subtle flaws can go unnoticed in protocols, and underscores the

importance of using provably secure schemes wherever possible.

Motivation for faster ccAEAD. The ad hoc attachment franking scheme used by

Facebook seems likely to have been chosen for efficiency reasons, since existing ccAEAD

scheme do not match the performance profile of the fastest AEAD schemes such as GCM

and OCB. In the next sections we address this by exploring the limitations of efficient

ccAEAD, and construct the first single-pass ccAEAD scheme.

3.3.1 Attack Preliminaries

We begin with a brief overview of the nonce-based AEAD scheme Galois / Counter Mode

(GCM) [107,108], which is used as a component in Facebook’s attachment franking scheme.

We begin by recalling CTR-mode encryption.

CTR-mode encryption. Let E : K × {0, 1}n → {0, 1}n be a block cipher. For

a key K ∈ K, nonce N ∈ {0, 1}n, and message M ∈ {0, 1}m·n for some m ∈ N, we

define CTR-mode encryption to be the algorithm CTR.E that on input (K,N,M) outputs

C1 ‖ . . . ‖Cm, where Ci ← E(N+i)⊕Mi for i = 1, . . . ,m and (M1, . . . ,Mm)← Parsen(M).
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Similarly, we define CTR-mode decryption CTR.D to be the algorithm that on input

K ∈ K, N ∈ {0, 1}n, and ciphertext C ∈ {0, 1}m·n outputs M1 ‖ . . . ‖Mm, where Mi ←

E(N + i)⊕ Ci for i = 1, . . . ,m and (C1, . . . , Cm)← Parsen(C). For simplicity we assume

here that the length of both message and ciphertext are multiples of n-bits. This will

suffice for our purposes, however it is straightforward to generalise CTR-mode to handle

messages of arbitrary length.

An Overview of GCM. The AEAD scheme GCM = (GCM.K,GCM.E,GCM.D) is built

from a block cipher E : K× {0, 1}n → {0, 1}n. At a high level, GCM is an encrypt-then-

MAC (EtM) [19] composition of CTR-mode encryption and a Carter-Wegman (CW) [164]

message authentication code (MAC). The key generation algorithm GCM.K simply returns

a key K ←$ K. The encryption and decryption algorithms are shown in Figure 3.2. For

simplicity, we have assumed in our presentation that n = 128 and that H, M , and C are

all multiples of n-bits. On input (K,N,H,M), GCM.E encrypts M in CTR-mode using K

and N . It additionally computes a MAC tag T 2 using the GCM polynomial hash GHASH,

also shown in Figure 3.2. GHASH works by taking the header and ciphertext blocks, plus

a block encoding their lengths, to be the coefficients of a polynomial over GF(2128) which

is then evaluated at EK(0128). The resulting value is masked using the encrypted nonce as

a random pad to produce T . Decryption via GCM.D simply decrypts the input ciphertext

using CTR-mode decryption and recomputes and verifies the tag T .

Nonces. The algorithms in Figure 3.2 are an (insecure) simplification of GCM. Firstly,

the nonces here are taken to be 128-bit strings. In the standardised version of GCM it

is recommended that nonces are 96-bits in length, which are then padded to 128-bits via

N ‖ 031 ‖ 1 prior to being used for encryption / decryption as described. If a nonce is not

96-bits, it is padded to a multiple of 128-bits and hashed to 128-bits using GHASH. A

second difference is that in the CTR-mode encryption step in the standardised version of

GCM only the lower order 32-bits of the nonce are incremented (modulo 232), whereas here

we simply increase the value of the nonce by one (implicitly understood to be modulo 2128).

These discrepancies are due to an error in the definition of GCM used in the paper [59]

upon which the work in this chapter is based, and unfortunately the error regarding nonce

structure renders the version presented here insecure as an AEAD scheme. However, it is

straightforward to verify that the attacks presented in this chapter apply analogously to

2For simplicity, we omit the optional step to truncate the tag T . It is straightforward to verify that all
results presented in this section extend to the case in which the truncation step is included.
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GCM.E(K,N,H,M)

X ← EK(0128)

P ← EK(N)

C ← CTR.E(K,N,M)

T ← P ⊕ GHASH(X,H,C)

Return (C, T )

GCM.D(K,N,H, (C, T ))

X ← EK(0128)

P ← EK(N)

T ′ ← P ⊕ GHASH(X,H,C)

If T ′ 6= T

Return ⊥
M ← CTR.D(K,N,C)

Return M

GHASH(X,H,C)

lens← (|H|)64 ‖ (|C|)64
m← |C|/128 ;h← |H|/128

(H1, . . . , Hh)← Parse128(H)

(C1, . . . , Cm)← Parse128(C)

blen← m+ h

T ← lens×GF X
For i = 1 to h

T ← T ⊕ (Hi ×GF Xblen+2−i)

For i = 1 to m

T ← T ⊕ (Ci ×GF Xblen+2−i−h)

Return T

Figure 3.2: The AEAD scheme GCM = (GCM.K,GCM.E,GCM.D).

the standardised version of GCM, and so the presentation given here is sufficient for our

purposes. Indeed, the difference in counter iteration does not affect any of our results, and

that regarding nonces only slightly alters the search for a nonce for the advanced variant

of the attack (see Section 3.3.4).

GCM is not robust. An encryption scheme is said to be robust if it is infeasible to

construct a ciphertext which decrypts correctly under different keys. As we shall see,

GCM is not robust and it is this lack of robustness that facilitates the attack. We formally

define robustness and analyse its relation to binding ccAEAD in Section 3.7.6.

3.3.2 Facebook’s Attachment Franking

A diagram of Facebook’s franking protocol for attachments (e.g., images and videos) is

shown in Figure 3.3. The protocol uses Facebook’s ccAEAD scheme for chat messages

described in [65, 112] and analysed in [73] (there called CtE2) as a subroutine. (Readers

interested in the specifics of CtE2 should consult GLR [73]; the only salient detail here

is that it is secure as a ccAEAD scheme.) Certain encryption and HMAC keys as well

as details like headers and associated data which are not important to the presentation

of the protocol or our attack have been removed for simplicity in the diagram and prose

below, see [65,73] for additional details. For ease of exposition we divide the protocol into

three phases: the sending phase involving the sender Alice and Facebook, the receiving

phase involving the receiver Bob and Facebook, and the reporting phase between Bob

and Facebook.
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(Report)

Alice Facebook Bob
Ka←$K ;Na←$N
Ca ← GCM.E(Ka, Na,Ma)
Da ← SHA-256(Na ‖Ca)

C,CB ←$ CtE2.Enc(id ‖Ka ‖Da)

id←$ {0, 1}n
Put(id, Na ‖Ca)

Na ‖Ca

id

C,CB
tFB ← FBTag(CB)

C,CB, tFB (1)

id ‖Ka ‖Da ← CtE2.Dec(C,CB)

Na ‖Ca ← Get(id)

id

Na ‖Ca

Verify Da = SHA-256(Na ‖Ca)

Ma ← GCM.D(Ka, Na, Ca) (2)

Open ` attachments{idi,Ki
a, D

i
a}`i=1For i = 1 to ` do:

CtE2.Ver(idi ‖Ki
a ‖Di

a)

N i
a ‖Cia ← Get(idi)

Verify Di
a = SHA-256(N i

a ‖Cia)
M i

a ← GCM.D(Ki
a, N

i
a, C

i
a)

If R[idi] = ⊥ then

R[idi]←M i
a

Figure 3.3: Facebook’s attachment franking protocol [112, 113]. Certain encryption and
HMAC keys have been omitted for simplicity. The sending phase consists of everything
from the upper-left corner to the message marked (1). The receiving phase consists of
everything strictly after (1) and before (2). The reporting phase is below the dashed line.
The descriptions of Facebook’s behaviour during the reporting phase were paraphrased
(with permission) from conversations with Jon Millican, who we thank for his assistance.

Sending phase. Alice begins the sending phase with an attachment Ma to send to Bob.

In the first part of the sending phase, Alice generates a key Ka and nonce Na and encrypts

Ma using AES-GCM to obtain a ciphertext Ca. The sender computes the SHA-256 digest

Da of Na ‖Ca, and sends Facebook Na ‖Ca for storage. Facebook generates a random

identifier id, and puts Na ‖Ca in a key-value data structure with key id. Facebook then

sends id to Alice. In the second part of the sending phase, Alice encrypts the message

id ‖Ka ‖Da using CtE2 to obtain the ccAEAD ciphertext C,CB. Below, we will call such a

message (which contains an identifier, key, and digest) an attachment metadata message.

Alice sends C,CB to Facebook, who in turn compute an authentication tag over CB using

FBTag3 to obtain tFB. Facebook sends C,CB, tFB to the receiver.

Receiving phase. Upon receiving a ciphertext C,CB, tFB from Alice (via Facebook),

Bob runs CtE2.Dec on C,CB to obtain id ‖Ka ‖Da. Bob then sends id to Facebook, who

retrieve the value Na ‖Ca associated with id from their key-value store and send it to

Bob. Bob verifies that Da = SHA-256(Na ‖Ca) and decrypts Ca to obtain the attachment

3FBTag is a MAC algorithm used in Facebook’s standard message franking protocol which applies
HMAC-SHA-256 keyed with an internal Facebook key to the input plus some metadata; see [65,73] for full
details.
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content Ma.

Reporting phase. To report an abusive message, Bob sends all recently received mes-

sages to Facebook along with their tags tFB and the keys with which to verify their

ccAEAD commitments (not pictured in the diagram). For each message, Facebook ver-

ifies the commitment using CtE2.Ver and the authentication tag tFB using its internal

HMAC key. Then, if the commitment verifies correctly and the message contains attach-

ment metadata, Facebook retrieves the attachment ciphertext and nonce Na ‖Ca from its

key-value store using its identifier id. Facebook verifies that Da = SHA-256(Na ‖Ca) and

decrypts Ca with Ka and Na to obtain the attachment content Ma. If no other attachment

metadata message containing identifier id has already been seen, the plaintext Ma is added

to the abuse report R. (Looking ahead, this is the application-level behaviour that enables

the attack which will violate the one-to-one correspondence between id and plaintext that

is assumed here.)

Attack intuition. For our attack threat model, we consider a malicious Alice who wants

to send an abusive attachment to Bob, but prevent Bob from reporting it to Facebook.

The attachment could be an offensive image (e.g., a picture of abusive text or of a gun)

or a video. We focus our discussion below on images.

The attack has two main steps: (1) generating a colliding GCM ciphertext; and (2) sending

it twice to Bob. In step (1), Alice creates two GCM keys and a single GCM ciphertext

which decrypts (correctly) to the innocuous attachment under one key and to an abusive

attachment under the other key. In step (2), Alice sends the ciphertext to Bob twice

using the same identifier, accompanied first by the innocuous key and then by the abusive

key. On receiving the two messages, Bob decrypts the image twice and sees both the

abusive attachment and the innocuous one. However when Bob reports the conversation

to Facebook, its server-side code verifies both decryptions of the image ciphertext but only

inserts the innocuous decryption into the abuse report. As such, the human making the

abusive-or-not judgement will have no idea that Bob saw the abusive attachment.

We will describe two variants of the attack. We begin with the case in which the second

decryption of the colliding ciphertext is junk bytes with no particular structure. This

variant is simple but easily detectable, since the junk bytes will not display correctly. We
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Collide-GCM(K1,K2, Na, C)

X1 ← EK1 (0128) ;X2 ← EK2 (0128)

P1 ← EK1
(Na) ;P2 ← EK2

(Na)

m← |C|/128 + 1

(C1, . . . , Cm−1)← Parse128(C)

lens← (0)64 ‖ (|C|+ 128)64

T1 ← lens×GF X1

T2 ← lens×GF X2

For i = 1 to m− 1

T1 ← T1 ⊕ (Ci ×GF Xm+2−i)

T2 ← T2 ⊕ (Ci ×GF Xm+2−i)

T1 ← P1 ⊕ T1
T2 ← P2 ⊕ T2
Cm ← (T1 ⊕ T2) · (X1 ⊕X2)−1

Ca ← C ‖Cm
T ← P1 ⊕ GHASH(X1, ε, Ca)

Return (Ca, T )

Figure 3.4: The Collide-GCM algorithm, which takes a partial ciphertext C, a nonce Na,
and two keys K1 and K2 and computes a tag T and final ciphertext block such that the
output nonce / ciphertext / tag triple (Na, Ca, T ) decrypts correctly under both keys.
Array indexing is done in terms of 128-bit blocks. We assume all input bit lengths are
multiples of 128 for simplicity, and that the input Ma to Collide-GCM is at least two blocks
in length. We require that K1 and K2 are such that X1 6= X2. Arithmetic (addition and
multiplication) in GF(2128) is denoted ⊕ and ×GF respectively. The function Collide-GCM
can take arbitrary headers, but we omit these here for simplicity.

then give a more advanced variant of the attack, in which the second decryption correctly

displays an innocuous attachment — in our case, a picture of a kitten.

3.3.3 The Simple Attack

Alice begins the attack with an abusive attachment Mab
a . Alice chooses a nonce Na and two

distinct 128-bit GCM keys K1 and K2 such that X1 6= X2 where X1 = EK1(0128) and X2 =

EK2(0128) (looking ahead, this condition is necessary since Collide-GCM requires X1⊕X2 to

be invertible in GF(2128)). Alice then computes a ciphertext C via CTR.E(K1, Na,M
ab
a ),

where recall that CTR.E denotes CTR-mode encryption. In Facebook’s scheme Alice can

choose the keys and the nonce but this is not necessary—any combination of two keys

yielding distinct encryptions of 0128 and a nonce will work

The ciphertext C is almost, but not quite, the ciphertext Alice will use in the attack.

To ensure GCM decryption is correct for both keys, Alice generates a colliding GCM tag

and ciphertext using the algorithm Collide-GCM(K1,K2, Na, C) shown in Figure 3.4. When

called, Collide-GCM treats its input C as a partial ciphertext, and returns a final ciphertext
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block Cm and tag T such that the GCM ciphertext (C ‖Cm, T ) decrypts correctly under

both K1 and K2. In more detail, suppose C is m− 1 blocks in length. Collide-GCM works

by computing tags T1 and T2 for C ‖Cm using keys K1 and K2 respectively, where Cm is

treated as an unknown n-bit block. We then set T1⊕T2 = 0, and solve the resulting linear

equation for Cm. This ensures that the tags computed under K1 and K2 are equal for the

extended ciphertext Ca = C ‖Cm and nonce Na. While we use the final ciphertext block

here, a different ciphertext block or a block of associated data could be used instead. The

tuple (Na, Ca, T ) correctly decrypts to Mab
a under K1 and to another plaintext Mj under

K2. However, the plaintext Mj will be random bytes with no structure. The advanced

variant of our attack in Section 3.3.4 will ensure that Mj is a correctly-formatted plaintext.

Sending the colliding ciphertext. Alice continues the sending phase with Facebook,

obtaining an identifier id for the nonce / ciphertext pair Na ‖Ca. Alice then creates

two attachment metadata messages: MD1 = id ‖K2 ‖Da and MD2 = id ‖K1 ‖Da. Alice

completes the remainder of the sending phase twice, first with MD1 and then with MD2.

(The first message sent is associated to the junk message.) After finishing the receiving

phase for MD1, Bob will decrypt Ca with K2, giving Mj. After finishing the receiving

phase with MD2, Bob will decrypt Ca with K1 and see Mab
a . We emphasise that both

attachment metadata messages are valid, and no security properties of CtE2 are violated.

Reporting failure. When Bob reports the recent messages, Facebook will verify both

MD1 and MD2, and check that the digest Da matches the value Na ‖Ca stored with iden-

tifier id. However Facebook will only insert the first decryption, the plaintext

Mj, into the abuse report. The system sees that the second ciphertext has the same

SHA-256 hash and identifier, and assumes it’s a duplicate; as such, the report contains no

trace of the message Mab
a .

3.3.4 Advanced Attack Variant and Proof of Concept

Next we describe the advanced variant of the attack in which both decryptions correctly

display as attachments, and our proof-of-concept implementation. Ensuring that both

decryptions are valid attachments is important because the simple variant (in which one

decryption consists of random bytes) may not have sufficed for a practical exploit if Face-
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Figure 3.5: Two images with the same GCM ciphertext (Ca, T ) when encrypted using
16-byte key K1 = (03)16 or K2 = (02)16, nonce Na = 1060666537A, and associated data
H = (ad)32 (all given in hex where exponentiation indicates repetition). (Left) The
titular invisible salamander, which is delivered to the recipient but not inserted into the
abuse report. (Right) An image of a kitten that is put in the recipient’s abuse report
instead of the salamander.

book only inserted valid images into their abuse reports. We implemented the advanced

variant, and crafted a colliding ciphertext for which the ‘abusive’ decryption Mab
a is the

image of the axolotl salamander shown in Figure 3.5. The innocuous decryption Mj is the

image of a kitten in that figure. We verified that both attachments display correctly in

Facebook Messenger’s browser client. Code for the proof of concept is available on request.

Generating colliding ciphertexts. The only difference between the advanced attack

variant and the one described in Section 3.3.3 is the way in which Alice generates the

ciphertext Ca which is input to Collide-GCM. Instead of simply encrypting the abusive

attachment Mab
a using CTR.E, Alice first merges Mab

a and another innocuous attachment

Mj using an algorithm Att-Merge(K1,K2,M
ab
a ,Mj) which takes the two keys and attach-

ments as input, and outputs a nonce Na and ciphertext Ca such that CTR.D(K1, Na, Ca)

displays Mab
a and CTR.D(K2, Na, Ca) displays Mj. The exact implementation of Att-Merge

is file-format-specific, but for most formats Att-Merge has two main steps: (1) a nonce

search to find a nonce that preserves certain file structures in the decryptions of Ca un-

der K1 and K2; and (2) a plaintext restructuring step that expands the plaintexts with

random bytes in locations that are ignored by parsers for their respective file formats. We

implemented Att-Merge for JPEG and BMP images (the salamander image and the kitten
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ff d8 ff fe `c1 `c0 Junk bytes JPEG ptxt suffix End comment∗ ff d9

C0 C1 C2 C3 C4 C5 BMP ctxt suffix Padding JPEG ctxt suffix

42 4d `0 `1 00 00 BMP ptxt suffix Junk bytes

`c = 256 · `c1 + `c0 bytes,
JPEG parser ignores

comment header
& comment length

`Mj = 256 · `1 + `0 bytes BMP parser ignores

Decrypt
with K2

Decrypt
with K1

Randomised by Collide-GCM,
JPEG parser ignores

Figure 3.6: Diagram of the JPEG Mab
a (top) and BMP Mj (bottom) plaintexts output

by the plaintext restructuring step, and the corresponding ciphertext (middle). The
leftmost block of each file is the first byte. The ‘BMP ptxt suffix’ is the suffix of the
original BMP starting at byte 6. The ‘JPEG ptxt suffix’ is the bytes of the original JPEG
starting at byte 2 and ending before the final two bytes. The fifth and sixth bytes of the
JPEG (marked `c1 and `c0) are randomised during nonce search. (*) The region marked
‘End comment’ begins with the comment header and comment length bytes (which are
not randomised by Collide-GCM), but we do not depict them for simplicity.

image respectively), so our discussion will focus on these formats.

File formats. Before discussing our implementation of Att-Merge, we will briefly describe

the JPEG and BMP file formats.

JPEG files are of the form ff ‖ d8 ‖ JPEG data ‖ ff ‖ d9. The two-byte sequence ff ‖ d8

must be the first two bytes, and the two-byte sequence ff ‖ d9 must be the final two bytes.

There is no file length block in JPEG files — internal data structures have length fields

but the total size of the file can be determined only after parsing. JPEG files can contain

comments of up to 216 bytes that are ignored by JPEG parsers. Comments are indicated

with the two-byte sequence ff ‖ fe, followed by a big-endian two-byte encoding of the

comment length.

BMP files are of the form 42 ‖ 4d ‖ <length> ‖ BMP data. BMP files must begin with

42 ‖ 4d, and the next four bytes must be the length block. The length block in a BMP

file is a four-byte (little-endian) encoding of the file length. All the BMP parsers we used

only read the number of bytes indicated in the header and ignore trailing bytes.

Some intuition. At a high level, our Att-Merge proof-of-concept will craft the colliding
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ciphertext Ca by putting the encryption of the BMP under K2 and the encryption of the

JPEG under K1 at different byte offsets in Ca. This will, of course, result in some portions

of both plaintexts being randomised, but we use several features of the JPEG and BMP

file formats to ensure that these random-looking bytes do not prevent the image from

being correctly parsed and displayed (see Figure 3.6).

Nonce search. We begin by finding a suitable nonce that will enable ciphertext Ca to

decrypt correctly to the different image formats under their respective keys. Since the

actual image data occurs at different offsets in the two plaintexts, the nonce search need

only find a nonce that preserves certain properties of the file formats for the bytes of

the ciphertext that are semantically meaningful in both plaintext files. Here we will be

concerned with the first four bytes of plaintext.

The structure of the JPEG and BMP files used in the proof-of-concept are shown in

Figure 3.6. Looking ahead to the plaintext restructuring step, we will insert a comment

immediately after the two-byte JPEG header and so the first four bytes of the JPEG

plaintext must be ff ‖ d8 ‖ ff ‖ ee. The BMP file must begin with the four byte sequence

42 ‖ 4d ‖ `0 ‖ `1, where `0 ‖ `1 denote the first two bytes of the BMP’s four byte length field.

(Looking ahead, we will require the remaining two bytes of the BMP length field to be 00,

and so `0 ‖ `1 denotes the BMP image’s length.)

To ensure that the attack ciphertext decrypts correctly under both keys, Att-Merge must

output a nonce Na and ciphertext Ca such that encrypting the first four bytes of the JPEG

(resp. the BMP) under the key stream corresponding to K1 (resp. K2) yields the first four

bytes of Ca (denoted C0 through C3 in Figure 3.6). Modelling the block cipher as an

ideal cipher, each nonce N ∈ {0, 1}128 has roughly a 2−32 chance of meeting the required

property. For the proof of concept, we wrote a simple Python script to search through

nonces until we found 1060666537A, which produces the required collision. Finding that

nonce took roughly three hours on a 3.4 GHz quad-core Intel i7.

While this nonce worked for our proof-of-concept, it is unfortunately not of the correct form

for GCM as standardised due to the previously mentioned error in the published version

of this chapter which incorrectly takes GCM nonces to be 128-bit strings. However, the

same method works for the standardised version of GCM using 96-bit nonces, with the only

difference being that one would restrict the search to N ∈ {0, 1}96 × {031 ‖ 1} as opposed
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to N ∈ {0, 1}128. This does result in a smaller search space, which in turn reduces the

expected number of nonces of the correct form. However, since roughly every one in 232

nonces is expected to satisfy the property, we would still expect there to be a sufficiently

high proportion of suitable nonces that the search is efficient.

Though fast, fixing the keys and searching through nonces as in the proof-of-concept is

not the fastest way to find a collision. Since the keys can be chosen arbitrarily, by fixing

a nonce (of the correct form) and using a birthday attack against keys we would expect

to produce a collision after only about 216 encryptions.

Plaintext restructuring. After the nonce search, we restructure the plaintexts such

that ciphertext Ca decrypts to the correct file format and reveals the correct image under

the different keys. For JPEG and BMP images, Att-Merge proceeds by: (1) inserting the

decryption (under K1) of the BMP ciphertext into a comment region at the beginning

of the JPEG; (2) inserting an additional comment at the end of the JPEG so that the

bytes randomised by Collide-GCM are ignored by the JPEG parser; and (3) appending

the decryption (under K2) of the JPEG ciphertext to the end of the BMP plaintext.

See Figure 3.6 for a diagram of the JPEG and BMP plaintexts after restructuring. We

now describe each of these steps in more detail.

For step (1), we put the decryption of the BMP ciphertext in the JPEG comment (inserted

during the nonce search by placing the two-byte comment sequence ff ‖ fe in bytes three

and four of the JPEG file). Now the fifth and sixth bytes of the modified JPEG correspond

to the comment’s length field `c1 ‖ `c0, where recall that JPEG comments can be at most

216 bytes long. As we shall see, we cannot choose this length field (without additional

brute-forcing during the nonce search). This is because we will place the BMP plaintext

Mj in this JPEG comment, which in turn means that the length of the BMP (minus the

header) cannot exceed the maximum JPEG comment length of 216 bytes. Since BMP

has a four byte length field (bytes three to six of the BMP plaintext), this restriction

means that bytes five and size of the BMP — which correspond to the higher-order bytes

of the BMP length field — must both be equal to 00. For a binary string Z we define

Z[a · · · c] to be the bytes of Z from index a to c inclusive (where we index from zero),

and let PK2 denote the keystream for the BMP key. Then this restriction implies that

Ca[4, · · · , 5] = 00 ‖ 00 ⊕ PK2 [4, . . . , 5]. Now letting PK1 denote the keystream for the

JPEG key and noting that `c1 ‖ `c0 = Ca[4, . . . , 5] ⊕ PK1 [4, . . . , 5], this implies that the

72



3.3 Invisible Salamanders: Breaking Facebook’s Message Franking Scheme

JPEG comment length field `c1 ‖ `co will be equal to PK1 [4, . . . , 5]⊕ PK2 [4, . . . , 5].

This fixes the length of the JPEG comment, and we can now make the next bytes of the

JPEG the ‘decryption’ of the BMP data’s ciphertext under the JPEG key K1. Letting

M suff
j be everything but the first six bytes of the BMP Mj, then (again indexing from 0)

the next bytes of the JPEG will be M suff
j ⊕PK2 [6, · · · , `Mj−1]⊕PK1 [6, · · · , `Mj−1] where

`Mj equals the length of Mj in bytes. If the BMP data is too short, we append `c − `Mj

random bytes to pad the comment up to the length given by the length field. This part

of the JPEG comment will be random-looking bytes, but the JPEG parser will ignore it

and jump to the byte after the comment.

Before discussing step (2), we will make a few observations. Firstly, as mentioned above,

we cannot choose the JPEG comment length `c = 256 · `c1 + `c0 without additional brute-

forcing — rather, it is a random number in the range [0, . . . , 216 − 1] and is fixed by the

choice of the nonce and the two keys. Thus, smaller BMP files are better than large ones: if

the length of the BMP file is `Mj and we model the block cipher as an ideal cipher, then each

nonce with the four-byte collision we need gives Pr
[
`c ≥ `Mj − 6

]
≈ (216− (`Mj − 6))/216

(where the probability is over the coins of the ideal cipher). In words, the probability of

the comment length being greater than or equal to the file length is inversely proportional

to the file length. The byte length of a BMP file is directly related to the number of pixels

in the image, so the chosen BMP files should be fairly small in dimension to reduce the

work required to find a nonce, since a nonce resulting in a too-short comment must be

discarded. For example, the kitten image in Figure 3.5 is about one hundred pixels by

eighty pixels and is in grayscale so that the number of bytes needed to describe each pixel

is minimised. The kitten BMP file is `Mj = 9502 bytes, and one of the two nonces we

found during our search did not result in `c ≥ `Mj − 6.

Moreover, we emphasise that nothing in step (1) has depended on the contents of either

image, only on the length of the BMP. Thus the nonce output by the nonce search phase

can be reused to create a colliding ciphertext for any valid JPEG and any BMP of the

same length as Mj using K1 and K2.

We now return to the plaintext restructuring. In step (2), we again expand the JPEG

with an additional comment region. This comment region is placed immediately before

the end-of-file indicator ff ‖ d9. The comment region’s length is 44 bytes, so combined
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with the comment header we add 48 total bytes to the end of the JPEG. This ensures that

the second-to-last sixteen-byte block of the JPEG is always ignored by the parser. This

is the block of ciphertext we will use to induce a tag collision in Collide-GCM. We could

alternatively have used a block of associated data to induce the collision, and dispense

with the second JPEG comment entirely. Using a block of ciphertext makes our proof-of-

concept more realistic, since Facebook’s GCM ciphertexts all have fixed associated data

that cannot be modified. We define the modified JPEG file resulting from steps (1) and

(2) to be M ′a.

Finally in step (3), we append the ‘decryption’ underK2 of the suffix of CTR.E(K1, Na,M
′
a)

beginning at byte `c + 6 to the BMP plaintext Mj. This step is straightforward — BMP

parsers ignore trailing bytes, so our BMP image will still display correctly even when

random-looking bytes are appended.

Implementing Collide-GCM. We implemented Collide-GCM in Python 2.7, and verified

that colliding ciphertexts can be generated in roughly 45 seconds using an unoptimised

implementation of GF(2128) arithmetic. We checked decryption correctness using cryp-

tography.io, a Python cryptography library which uses OpenSSL’s GCM implementation.

This sufficed as a proof-of-concept exploit for Facebook’s engineering team.

3.3.5 Discussion And Mitigation

We chose JPEG and BMP files for our Att-Merge proof of concept because their formats

can tolerate random bytes in different regions of the file (the beginning and the end,

respectively). We did not try to extend Att-Merge to other common image formats (like

PNG, TIFF or GIF), but file format tricks similar to the ones described above can be

used to craft ciphertexts that decrypt to images in those formats. As an example, we will

sketch a variant of the attack for which the colliding plaintexts are both JPEG files. It is

similar to the JPEG / BMP collision described above, except for two differences. First, the

JPEG taking the place of the BMP (i.e., the one placed in the beginning comment of the

other JPEG) must end in another comment instead of ff ‖ d9, which ensures the JPEG

parser will ignore the trailing random bytes. Second, a two-byte collision must be found

in the final two bytes of the keystream so that both JPEGs end in ff ‖ d9. A birthday

attack on keys should find keystreams with the correct structure (i.e., the first four and

74



3.3 Invisible Salamanders: Breaking Facebook’s Message Franking Scheme

last two bytes are the same) in roughly 224 encryptions. We did not try to implement

Att-Merge for video file formats. Such formats are more complex than image formats, but

we conjecture it is possible to extend the attack to video files.

Relation to GLR. In [73], GLR proved that CtE2 is a secure ccAEAD scheme. Their

proof only applies to CtE2 itself, not to the composition of CtE2 and GCM. Concretely,

GLR analysed CtE2 as it is used for text chat messages in Messenger, but did not analyse

how it is used for attachments. The Collide-GCM algorithm in Figure 3.4 is related to

the r-BIND attack against GCM given by GLR [73]. However, their attack is insufficient

to exploit Facebook’s attachment franking — it only creates ciphertexts with colliding

tags, but not the same ciphertext. Therefore using it against Facebook wouldn’t work,

because the SHA-256 hashes of the ciphertexts for the two images would not collide. The

Collide-GCM algorithm works even if the entire ciphertext, including any headers and the

nonce, act as the commitment, and the only opening data is the encryption key.

If Facebook’s attachment franking protocol is viewed as a ccAEAD scheme by taking the

CtE2 binding tag (i.e., the value CB output by running CtE2.Enc(id ‖Ka ‖Da) during the

sending phase) to be the compact commitment to the attachment plaintext, the resulting

scheme is not vulnerable to GLR’s r-BIND attack. This is because CB commits to both

the hash Da of the nonce / ciphertext pair and to the GCM key Ka.

Mitigating the attack. There are two main ways this attack can be mitigated. The

first is a server-software-only patch that ensures abuse reports containing attachments are

not deduplicated by attachment identifier. The second is changing the Messenger clients

to use a ccAEAD scheme instead of GCM to encrypt attachments. In response to our

bug report, Facebook deployed the first mitigation for two main reasons: (1) it did not

require patching the Messenger clients (an expensive and time-consuming process); and (2)

changing the client-side crypto while maintaining backwards compatibility with old clients

is difficult. Despite requiring less engineering effort, we believe this mitigation has some

important drawbacks. Most notably, it leaves the underlying cryptographic issue intact:

attachments are still encrypted using GCM. This means that future changes to either the

Messenger client or Facebook’s server-side code could re-expose the vulnerability. Using

a secure ccAEAD scheme in place of GCM for attachment encryption would immediately

prevent any deduplication behaviour from being exploited, since the binding security of

75



3.4 A New Primitive: Encryptment

ccAEAD implies that attachment identifiers uniquely identify the attachment plaintexts.

Fast ccAEAD from encryptment. The fact that use of a ccAEAD scheme would

have prevented the above attack begs the question of whether a secure ccAEAD scheme

can match the efficiency of the fastest AEAD schemes such as GCM. We shall explore

this question in the following sections. We begin by introducing a new primitive called

encryptment, which serves as a stepping stone to our results on fast ccAEAD.

3.4 A New Primitive: Encryptment

In this section, we introduce a new primitive called an encryptment scheme. Encryptment

schemes allow both encryption of, and commitment to, a message (see Section 3.2). More-

over, the schemes which we target and ultimately build achieve both security goals with

only a single pass over the underlying data.

3.4.1 Encryptment Syntax

While the syntax of encryptment schemes is similar to that of the ccAEAD schemes

we ultimately look to build, the crucial difference is that we expect far more minimal

security notions from encryptment schemes (see Section 3.7 for a more detailed discussion).

Looking ahead, we shall see that a secure encryptment scheme is the key building block

for more complex primitives such as ccAEAD schemes, robust AE [67], cryptographic

concealments [56], and domain extension for authenticated encryption and remotely keyed

AE [56], facilitating the construction of very efficient instantiations of these primitives. In

Sections 3.7.3 and 3.7.4 we show how to build ccAEAD from encryptment, and discuss

the other primitives in Section 3.8.

Encryptment syntax. We define an encryptment scheme to be a tuple of algorithms

EC = (EKg,EEnc,EDec,EVer). Applying the encryptment algorithm EEnc to a given key,

header, and message tuple (KEC, H,M) returns a pair (CEC, BEC) which we call an en-

cryptment. We refer to encryptment component CEC as the ciphertext, and to BEC as the

binding tag. Together the ciphertext / binding tag pair (CEC, BEC) function as an encryp-
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tion of M under key KEC, so that given (KEC, H,CEC, BEC), the decryptment algorithm

EDec can recover the underlying message M . The binding tag BEC simultaneously acts

as a commitment to the underlying header and message, with opening KEC; the validity

of this commitment to a given pair (H,M) is checked by the verification algorithm EVer.

Looking ahead, we will actually require that BEC acts as a commitment to the opening

key KEC also, in that it should be infeasible to find KEC 6= K ′EC which verify the same

BEC. We formalise this in the following definition.

Definition 3.3. An encryptment scheme is a tuple of algorithms EC =

(EKg,EEnc,EDec,EVer) defined as follows. Associated to the scheme is a key space KEC ⊆

Σ∗, header space HEC ⊆ Σ∗, message space MEC ⊆ Σ∗, ciphertext space CEC ⊆ Σ∗, and

binding tag space TEC ⊆ Σ∗.

• The randomised key generation algorithm EKg : → KEC takes no input, and outputs

a key KEC ∈ KEC.

• The encryptment algorithm EEnc : KEC×HEC×MEC → CEC×TEC is a deterministic

algorithm which takes as input a key KEC ∈ KEC, a header H ∈ HEC, and a message

M ∈MEC, and outputs an encryptment (CEC, BEC) ∈ CEC × TEC.

• The decryptment algorithm EDec : KEC × HEC × CEC × TEC → MEC ∪ {⊥} is a

deterministic algorithm which takes as input a key KEC ∈ KEC, a header H ∈ HEC,

and an encryptment (CEC, BEC) ∈ CEC × TEC, and outputs a message M ∈ MEC or

the error symbol ⊥.

• The verification algorithm EVer : HEC×MEC×KEC×TEC → {0, 1} is a deterministic

algorithm which takes as input a header H ∈ HEC, a message M ∈ MEC, a key

KEC ∈ KEC, and a binding tag BEC ∈ TEC, and returns a bit b.

Length regularity and compactness. We impose two requirements on the lengths

of encryptments. Firstly, we require compactness, by which we mean that the binding

tags BEC output by an encryptment scheme are of constant length btlen regardless of

the length of the underlying message. Secondly, we require length regularity, defined

analogously to the equivalent notion for AEAD schemes. Formally, we require that there

exists a function clenEC : N → N such that for all (KEC, H,M) ∈ KEC ×HEC ×MEC it

holds that |CEC| = clenEC(|M |), where (CEC, BEC)← EEnc(KEC, H,M).

Correctness. We define two correctness notions for encryptment schemes, which we
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COREC(H,M)

KEC←$ EKg

(CEC, BEC)← EEnc(KEC, H,M)

M ′ ← EDec(KEC, H,CEC, BEC)

b← EVer(H,M ′,KEC, BEC)

Return (M = M ′ ∧ b = 1)

S-COREC(KEC, H,CEC, BEC)

M ← EDec(KEC, H,CEC, BEC)

(C′EC, B
′
EC)← EEnc(KEC, H,M)

Return ((CEC, BEC) = (C′EC, B
′
EC))

Figure 3.7: Correctness games for an encryptment scheme EC = (EKg,EEnc,EDec,EVer).

formalise via the games COR and S-COR shown in Figure 3.7. We require that all

encryptment schemes satisfy our all-in-one correctness notion, which requires that hon-

estly generated encryptments decrypt to the correct underlying message and success-

fully verify with probability one. Formally, we say that an encryptment scheme EC =

(EKg,EEnc,EDec,EVer) is correct if for all header / message pairs (H,M) ∈ HEC ×MEC,

it holds that

Pr [ COREC(H,M)⇒ 1 ] = 1 ,

where the probability is over the coins of EKg. We additionally define strong correctness,

which requires that for each tuple (KEC, H,M) ∈ KEC×HEC×MEC there is a unique en-

cryptment (CEC, BEC) ∈ CEC×TEC such that M ← EDec(KEC, H,CEC, BEC). We formalise

this in game S-COR, and say that an encryptment scheme EC = (EKg,EEnc,EDec,EVer)

is strongly correct if for all tuples (KEC, H,CEC, BEC) ∈ KEC ×HEC × CEC × TEC, it holds

that

Pr [ S-COREC(KEC, H,CEC, BEC)⇒ 1 ] = 1 .

While we only require that encryptment schemes satisfy correctness, natural schemes

typically possess the stronger property and indeed the schemes we build are strongly

correct (which, as we will see, simplifies their security proofs). We note that strong

correctness can be added to any encryptment scheme by making EDec recompute an

encryptment after decrypting and returning ⊥ if the two do not match; however, for

efficiency we target schemes which achieve strong correctness without this.

3.4.2 Security Goals for Encryptment

We require that encryptment schemes achieve both one-time real-or-random (otROR)

security, and a variant of one-time ciphertext integrity (SCU) which requires forging a

ciphertext for a given binding tag with a known key; we motivate this variant below.
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otROR0AEC

KEC←$ EKg

query-made← false

b←$AEnc(·,·)

Return b

Enc(H,M)

If query-made = true then

Return ⊥
query-made← true

(CEC, BEC)← EEnc(KEC, H,M)

Return (CEC, BEC)

otROR1AEC

query-made← false

b←$A$(·,·)

Return b

$(H,M)

If query-made = true then

Return ⊥
query-made← true

CEC←$ {0, 1}clenEC(|M|)

BEC←$ {0, 1}btlen

Return (CEC, BEC)

Figure 3.8: One-time real-or-random (otROR) games for an encryptment scheme EC =
(EKg,EEnc,EDec,EVer).

Confidentiality. We define otROR security for an encryptment scheme

EC = (EKg,EEnc,EDec,EVer) in terms of games otROR0 and otROR1 shown in Fig-

ure 3.8. Each game allows an attacker A to make one query of the form (H,M) to his

real-or-random encryption oracle; in game otROR0 he receives back the encryptment of

the input under a secret key, and in game otROR1 he receives back random bit strings.

For an encryptment scheme EC and adversary A, we define the otROR advantage of A

against EC as

Advot-ror
EC (A) =

∣∣∣∣Pr
[

otROR0AEC ⇒ 1
]
− Pr

[
otROR1AEC ⇒ 1

]∣∣∣∣ ,
where the probability is over the coins of EKg and A.

Second-ciphertext unforgeability. We also ask that encryptment schemes meet an un-

forgeability goal that we call second-ciphertext unforgeability (SCU). In this game, the at-

tacker first learns an encryptment (CEC, BEC) corresponding to a chosen header / message

pair (H,M) under key KEC. We then require that the attacker shouldn’t be able to find a

distinct header and ciphertext pair (H ′, C ′EC) 6= (H,CEC) such that

EDec(KEC, H
′, C ′EC, BEC) does not return an error. This should hold even if the attacker

knows KEC. Looking ahead, this is a necessary and sufficient condition needed from

encryptment when using it to build ccAEAD schemes from fixed domain authenticated

encryption.

Formally, the game SCU is shown in Figure 3.9. For an encryptment scheme EC and

adversary A, who makes at most qc queries to their ChalDec oracle, we define the SCU

advantage to be

Advscu
EC (A, qc) = Pr

[
SCUAEC ⇒ true

]
,
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SCUAEC

KEC←$ EKg

win← false

query-made← false

ε←$AEnc(·,·),ChalDec(·,·)

Return win

Enc(H,M)

If query-made = true then

Return ⊥
query-made← true

(CEC, BEC)← EEnc(KEC, H,M)

K∗EC ← KEC ; C∗EC ← CEC

B∗EC ← BEC ;H∗ ← H

Return ((CEC, BEC),KEC)

ChalDec(H′, C′EC)

If query-made = false then

Return ⊥
If (H′, C′EC) = (H∗, C∗EC) then

Return ⊥
M ′ ← EDec(K∗EC, H

′, C′EC, B
∗
EC)

If M ′ 6= ⊥ then win← true

Return M ′

otCTXTAEC

KEC←$ EKg

win← false

query-made← false

ε←$AEnc(·,·),ChalDec(·,·,·)

Return win

Enc(H,M)

If query-made = true then

Return ⊥
query-made← true

(CEC, BEC)← EEnc(KEC, H,M)

K∗EC ← KEC ; C∗EC ← CEC

B∗EC ← BEC ;H∗ ← H

Return (CEC, BEC)

ChalDec(H′, C′EC, B
′
EC)

If query-made = false then

Return ⊥
If (H′, C′EC, B

′
EC) = (H∗, CEC

∗, BEC
∗)

Return ⊥
M ′ ← EDec(K∗EC, H

′, C′EC, B
′
EC)

If M ′ 6= ⊥ then win← true

Return M ′

Figure 3.9: Second-ciphertext unforgeability (SCU) and one-time ciphertext integrity
(otCTXT) games for an encryptment scheme EC = (EKg,EEnc,EDec,EVer).

where the probability is again over the coins of EKg and A.

We note that the challenge decryption oracle ChalDec in game SCU is not strictly neces-

sary, since before A can query ChalDec he must previously have made an Enc query. As

such, A knows the secret encryptment key and so can simulate the ChalDec oracle himself.

Nonetheless, we opted to include ChalDec in the definition for ease of comparison with

the similar otCTXT definition which we present now.

Integrity. We may also define a one-time notion of ciphertext integrity (see Section 3.2)

for encryptment schemes. Here, the attacker is challenged to output a fresh encryptment

which decrypts correctly given a single query to an encryptment oracle. We formalise this

via the game otCTXT shown in the right hand panel of Figure 3.9. For an encryptment

scheme EC and adversary A, who makes at most qc queries to oracle ChalDec, we define

the otCTXT advantage to be

Advot-ctxt
EC (A, qc) = Pr

[
otCTXTAEC ⇒ true

]
.

While we do not require that encryptment schemes satisfy the notion of otCTXT security,

looking ahead to Section 3.7, those that do (when reframed in the ccAEAD syntax) con-

stitute a secure one-time ccAEAD scheme. By this, we mean a ccAEAD scheme for which
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sr-BINDAEC

((H,M,KEC), (H′,M ′,K′EC), BEC)←$A
b← EVer(H,M,KEC, BEC)

b′ ← EVer(H′,M ′,K′EC, BEC)

If (H,M,KEC) = (H′,M ′,K′EC) then

Return false

Return (b = b′ = 1)

s-BINDAEC

(KEC, H,CEC, BEC)←$A
M ′ ← EDec(KEC, H,CEC, BEC)

If M ′ = ⊥ then return false

b← EVer(H,M ′,KEC, BEC)

If b = 0 then

Return true

Return false

Figure 3.10: Binding notions for an encryptment scheme EC = (EKg,EEnc,EDec,EVer).

a fresh secret key is chosen for each encryption. A one-time ccAEAD scheme is suitable

for use in applications such as Signal, where ratcheting ensures that each encryption is

essentially under a fresh key.

Binding security. We finally require that encryptment schemes satisfy certain binding

notions. We start by generalising the receiver binding notion r-BIND for ccAEAD schemes

from [73], and adapting the syntax to the encryptment setting. r-BIND security requires

that no computationally efficient adversary can find two key, header, and message triples

(H,M,KEC), (H ′,M ′,K ′EC) and a binding tag BEC such that (H,M) 6= (H ′,M ′) and

EVer(H,M,KEC, BEC) = EVer(H ′,M ′,K ′EC, BEC) = 1 .

A simple strengthening of this notion — which we denote sr-BIND (for strong receiver

binding) — allows the adversary to instead win if (H,M,KEC) 6= (H ′,M ′,K ′EC). The

pseudocode game sr-BIND is shown in Figure 3.10, where we define the sr-BIND advantage

of an adversary A against EC as

Advsr-bind
EC (A) = Pr

[
sr-BINDAEC ⇒ true

]
.

The corresponding game and advantage term for r-BIND security are defined analogously.

It is not hard to see that the stronger sr-BIND notion implies the prior r-BIND notion,

and indeed is strictly stronger; we will formally prove an analogous result for ccAEAD

schemes in Section 3.7. For our purposes, it will simplify our negative results about rate-1

block cipher-based encryptment.

We additionally define the notion of sender binding. This ensures that a sender commits

to the message underlying an encryptment by requiring that it is infeasible to find an

encryptment which decrypts correctly but for which verification fails. Without this re-

quirement, a malicious sender may be able to send an abusive message to a receiver with

a faulty commitment such that a receiver is unable to report it. We define sender binding

security formally via the game s-BIND in Figure 3.10. We define the s-BIND advantage
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of an adversary A against an encryptment scheme EC as

Advs-bind
EC (A) = Pr

[
s-BINDAEC ⇒ true

]
.

Relation to ccAEAD. Given the simpler security properties expected of them, building

highly efficient secure encryptment schemes is a more straightforward task than construct-

ing ccAEAD directly. However, as we shall see, encryptment isolates the core complexity of

building secure ccAEAD. In Section 3.6, we show how to construct a secure and single-pass

encryptment scheme from cryptographic hash functions. In Section 3.7.3 and Section 3.7.4,

we give efficient transforms which lift secure encryptment to secure ccAEAD. Together,

our results will yield the first single-pass, single-primitive construction of ccAEAD.

Proving SCU security. One reason we have introduced encryptment as a standalone

primitive (instead of directly working with the ccAEAD formulation from [73]) is that it

simplifies security analyses. A useful tool for these analyses is the following lemma, which

states that for any encryptment scheme EC that enjoys strong correctness, the combination

of r-BIND and s-BIND security suffice to prove SCU security.

Lemma 3.1. Let EC = (EKg, EEnc, EDec, EVer) be a strongly correct encryptment scheme,

and consider an attacker A in the SCU game against EC. Then there exist attackers B

and C such that

Advscu
EC (A, qc) ≤ Advs-bind

EC (B) + Advr-bind
EC (C) ,

and moreover B and C both run in the same time as A plus an O(qc) overhead.

At a high level, the proof of Lemma 3.1 proceeds as follows. Let ((CEC, BEC),KEC) be

the tuple corresponding to A’s single encryption query (H,M) in the SCU game, and

suppose that A wins the game with decryption oracle query (H ′, C ′EC), meaning that

EDec(KEC, H
′, C ′EC, BEC) = M ′ 6= ⊥ and (H ′, C ′EC) 6= (H,CEC). The proof first argues

that if the scheme is s-BIND-secure, then any ciphertext which decrypts correctly must

also verify correctly. As such, it follows that if (H,M) 6= (H ′,M ′) then this can be used

to construct a winning tuple for an attacker in the r-BIND game against EC; we bound

the probability that this occurs with a reduction to r-BIND security. On the other hand,

if (H,M) = (H ′,M ′) then it must be the case that CEC 6= C ′EC — but this in turn implies

that we have found distinct encryptments which decrypt to the same header and message

under KEC, violating strong correctness. We formalise this below.
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Proof. We argue by a series of game hops, shown in Figure 3.11. We first define game G0,

which is identical to game SCU against EC except we change the specification of oracle

ChalDec to perform a number of additional checks, and set flags depending on the results.

These additional steps do not affect the outcome of the game, and so it follows that

Advscu
EC (A, qc) = Pr [G0 ⇒ 1 ] .

Next we define game G1, which is identical to game G0 except now if A makes a query

to ChalDec which decrypts correctly to M ′ 6= ⊥, but for which verification fails, then the

game sets M ′ = ⊥ and so the win flag will not be set. These games run identically until

the flag bad1 is set, and so the Fundamental Lemma of Game Playing implies that

|Pr [G0 ⇒ 1 ]− Pr [G1 ⇒ 1 ]| ≤ Pr [ bad1 = true in G0 ] .

We bound the probability of this event occurring with a reduction to the s-BIND security

of EC. Let B be an adversary in game s-BIND against EC. B runs A as a subroutine as

follows. He generates a key K∗EC←$ EKg, and simulates A’s Enc query by computing the

required encryptment (C∗EC, B
∗
EC) and returning this, along with K∗EC, to A. He simulates

the ChalDec oracle by applying EDec(K∗EC, ·, ·, B∗EC) to the queried header / ciphertext

pairs (H ′, C ′EC) and returning the result to A. For queries which decrypt to M ′ 6= ⊥,

he computes b′ ← EVer(H ′,M ′,K∗EC, B
∗
EC). If he ever finds a tuple (H ′, C ′EC, B

∗
EC) which

decrypts correctly under K∗EC but which does not verify correctly, B halts and outputs

(K∗EC, H
′, C ′EC, B

∗
EC) to his challenger. Notice that such a tuple constitutes a winning

query for B, and that the flag bad1 gets set if and only if such a tuple is found. It follows

that

Pr [ bad1 = true in G0 ] = Pr
[

s-BINDBEC ⇒ 1
]

= Advs-bind
EC (B) . (3.1)

Next we define game G2, which is identical to G1 except now if A submits a ChalDec query

(H ′, C ′EC) which decrypts correctly to some message M ′ 6= ⊥ and for which verification

succeeds, then if (H ′,M ′) does not equal the challenge header / message pair (H∗,M∗)

then ChalDec sets M ′ = ⊥ and win does not get set to true. These games run identically

until flag bad2 gets set, and so the Fundamental Lemma of Game Playing implies that

Pr [G1 ⇒ 1 ]− Pr [G2 ⇒ 1 ]| ≤ Pr [ bad2 = true in G1 ] .

We bound the probability that this event occurs with a reduction to the r-BIND security

of EC. Let C be an adversary in game r-BIND against EC. C runs A as a subroutine by

choosing a key K∗EC←$ EKg and simulating oracles Enc and ChalDec as described previ-

ously (except he now rejects any ChalDec queries which fail verification as per G1). Let
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(C∗EC, B
∗
EC) denote the encryptment generated by the Enc query on input (H∗,M∗) with

key K∗EC, and notice that the correctness of EC implies that 1← EVer(H∗,M∗,K∗EC, B
∗
EC).

If at any point the attacker submits a query (H ′, C ′EC) to ChalDec such that M ′ ←

EDec(K∗EC, H
′, C ′EC, B

∗
EC) and 1 ← EVer(H ′,M ′,K∗EC, B

∗
EC) but for which (H ′,M ′) 6=

(H∗,M∗), then C halts and outputs ((H∗,M∗,K∗EC), (H ′,M ′,K∗EC), B∗EC). Such a tuple

constitutes a win for C in his game, and notice that the flag bad2 is set if and only if such

a tuple is found. It follows that

Pr [ bad2 = true in G1 ] = Pr
[

r-BINDCEC ⇒ 1
]

= Advr-bind
EC (C) . (3.2)

Finally we define game G3, which is identical to G2 except that now if the attacker submits

a query (H ′, C ′EC) to oracle ChalDec which decrypts correctly to message M ′, verifies

correctly, and for which (H ′,M ′) = (H∗,M∗), then if it is the case that C ′EC 6= C∗EC where

C∗EC is the ciphertext derived in the challenge query to Enc, the game sets M ′ ← ⊥ and the

win flag remains false. Notice that this game is impossible to win, since the only queries

which will not be rejected by the added checks must be such that (H ′, C ′EC) = (H∗, C∗EC),

but then these themselves are rejected by the first line of pseudocode in ChalDec. It

follows that

Pr [G3 ⇒ 1 ] = 0 . (3.3)

Notice that these games run identically unless the flag bad3 is set, and so it holds that

|Pr [G2 ⇒ 1 ]− Pr [G3 ⇒ 1 ]| ≤ Pr [ bad3 = true in G2 ] .

We claim that Pr [ bad3 = true in G2 ] = 0. To see this, notice that bad3 being set implies

the existence of a tuple (K∗EC, H
∗, C ′EC, B

∗
EC) such thatM∗ ← EDec(K∗EC, H

∗, C ′EC, B
∗
EC) but

for which C ′EC 6= C∗EC where we know that (C∗EC, B
∗
EC)← EEnc(K∗EC, H

∗,M∗) from the chal-

lenge query to Enc. Moreover, notice that it must be the case that (K∗EC, H
∗, C ′EC, B

∗
EC) ∈

KEC × HEC × CEC × TEC, otherwise EDec would return ⊥. However since EEnc is deter-

ministic, this then violates the assumed strong correctness of the scheme, proving the

claim.

Putting together equations (3.1), (3.2), and (3.3) we find that

Advscu
EC (A) ≤ Advs-bind

EC (B) + Advr-bind
EC (C) ,

thereby concluding the proof.
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proc. main // G0, G1

KEC←$ EKg

win← false

query-made← false

ε←$AEnc(·,·),Dec(·,·)

Return win

proc. Enc(H,M) // G0, G1

If query-made = true then return ⊥
query-made← true

(CEC, BEC)← EEnc(KEC, H,M)

K∗EC ← KEC ; C∗EC ← CEC

B∗EC ← BEC ;H∗ ← H ;M∗ ←M

Return ((CEC, BEC),KEC)

proc. ChalDec(H′, C′EC) // G0, G1

If query-made = false then return ⊥
If (H′, C′EC) = (H∗, C∗EC)

Return ⊥
M ′ ← EDec(K∗EC, H

′, C′EC, B
∗
EC)

If M ′ = ⊥ return ⊥
b′ ← EVer(H′,M ′,K∗EC, B

∗
EC)

If b′ = 0 then

bad1 ← true ; M ′ ← ⊥
If (H′,M ′) 6= (H∗,M∗) then

bad2 ← true

If (C′EC 6= C∗EC) then

bad3 ← true

If M ′ 6= ⊥ then win← true

Return M ′

proc. main // G2, G3

KEC←$ EKg

win← false

query-made← false

ε←$AEnc(·,·),Dec(·,·)

Return win

proc. Enc(H,M) // G2, G3

If query-made = true then return ⊥
query-made← true

(CEC, BEC)← EEnc(KEC, H,M)

K∗EC ← KEC ; C∗EC ← CEC

B∗EC ← BEC ;H∗ ← H ;M∗ ←M

Return ((CEC, BEC),KEC)

ChalDec(H′, C′EC) // G2, G3

If query-made = false then return ⊥
If (H′, C′EC) = (H∗, C∗EC)

Return ⊥
M ′ ← EDec(K∗EC, H

′, C′EC, B
∗
EC)

If M ′ = ⊥ return ⊥
b′ ← EVer(H′,M ′,K∗EC, B

∗
EC)

If b′ = 0 then

bad1 ← true ;M ′ ← ⊥
If (H′,M ′) 6= (H∗,M∗) then

bad2 ← true ;M ′ ← ⊥
If (C′EC 6= C∗EC) then

bad3 ← true ; M ′ ← ⊥
If M ′ 6= ⊥ then win← true

Return M ′

Figure 3.11: Games for proof of Lemma 3.1.

3.4.3 A Simple Encryptment Construction

Given an SE scheme SE = (K,E,D) (defined below) and a commitment scheme with

verification CS = (Com,VerC), it is straightforward to construct an encryptment scheme

EC = (EKg,EEnc,EDec,EVer) by composing the two. The resulting scheme is similar to

the CtE2 ccAEAD scheme from [73]; however we make a number of adaptations to the

encryptment setting, where in particular the encryption algorithm must be deterministic.

The scheme also requires weaker one-time security properties of the underlying primitives

than CtE2.

Symmetric encryption. We define the syntax of a symmetric encryption (SE) scheme

to be identical to that of an AE scheme. In terms of security, we ask less of SE than AE

by only requiring that SE achieves ROR security (as opposed to ROR and CTXT security
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EKg

K←$ K

rc←$RCE

re←$RSE

KEC ← (K, rc, re)

Return KEC

EEnc(KEC, H,M)

(K, rc, re)← KEC

(c, vk)← Com(H ‖M ; rc)

BEC ← c

CEC ← E(K, vk ‖M ; re)

Return (CEC, BEC)

EDec(KEC, H,CEC, BEC)

(K, rc, re)← KEC

vk ‖M ← D(K,CEC)

If vk ‖M = ⊥ return ⊥
(c′, vk′)← Com(H ‖M ; rc)

If (c′, vk′) 6= (BEC, vk)

Return ⊥
C′EC ← E(K, vk ‖M ; re)

If C′EC 6= CEC or C′EC = ⊥
Return ⊥

Return M

EVer(H,M,KEC, BEC)

KEC ← (K, rc, re)

(c, vk)← Com(H ‖M ; rc)

If c 6= BEC or c = ⊥
Return ⊥

Return 1

Figure 3.12: Construction of a simple encryptment scheme EC = (EKg,EEnc,EDec,EVer)
from a symmetric encryption scheme SE = (K,E,D) and a commitment scheme with
verification CS = (Com,VerC).

for AE).

Construction. Consider the encryptment scheme EC = (EKg,EEnc,EDec,EVer) shown

in Figure 3.12. We define key generation EKg to output keys of the form KEC = (K, rc, re)

where K ←$ K is a key for the underlying SE scheme, and rc, re are drawn randomly

from the coin spaces RCS,RSE of the commitment and SE scheme respectively. (Looking

ahead, these are coins for the randomised algorithms that will be called by the determin-

istic EEnc). On input ((K, rc, re), H,M), encryptment algorithm EEnc first computes a

commitment / opening pair for H ‖M via (c, vk) ← Com(H ‖M ; rc) and sets BEC = c.

It then encrypts the opening along with the message to give CEC ← Enc(K, vk ‖M ; re),

and outputs encryptment (CEC, BEC). For verification, on input (H,M,KEC, BEC) where

KEC = (K, rc, re), EVer works by recomputing (c, vk) ← Com(H ‖M ; rc) and returns 1 if

c = BEC and 0 otherwise. (Notice that the correctness of CS = (Com,VerC) and the fact

that (c, vk)← Com(H ‖M ; rc) implies that 1← VerC(c, vk,H ‖M), and so we do not need

to explicitly verify the binding tag commitment BEC = c during decryption.) Decryption

EDec works by decrypting CEC under key K to recover message M and opening vk. EDec

then uses the coin components of KEC = (K, rc, re) to recompute the commitment and

ciphertext, returning M only if both checks pass.

Security. It is straightforward to see that if SE and CS satisfy one-time notions of real-

or-random security then EC satisfies our notion of otROR security. If the commitment

scheme is v-BIND secure, this in turn implies that EC is r-BIND secure since any win-

ning tuple in the r-BIND game also breaks the binding of the commitment scheme. (Our

scheme is not sr-BIND secure, since neither the SE key, K, nor the encryption coin com-
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ponent, re, of KEC = (K, rc, re) are used by EVer. As such for any tuple (c, vk,H ‖M)

such that (c, vk) ← Com(H ‖M ; rc) an attacker can win game sr-BIND by outputting

((H,M, (K, rc, re), (H,M, (K ′, rc, r
′
e)), c) for (K ′, r′e) 6= (K, re)). s-BIND security and

strong correctness follow, respectively, from the fact that the commitment is verified,

and the encryptment recomputed, during decryption. Together these properties imply the

scheme is SCU secure by Lemma 3.1. However, such generic compositions are inherently

two pass and we seek faster schemes.

3.5 On Efficient Fixed-Key Block Cipher-Based Encryptment

We are interested in building encryptment schemes — and ultimately, more complex prim-

itives such as ccAEAD schemes — from just a block cipher used on a small number of

keys and other primitive arithmetic operations (XOR, finite field arithmetic, etc.). Be-

yond being an interesting theoretical question, there is the practical motivation that the

current fastest AEAD schemes, such as OCB, fall into this category. As a simple motivat-

ing example illustrating the challenging nature of this task, we will demonstrate that the

nonce-based AEAD scheme OCB does not satisfy r-BIND security when reframed as an

encryptment scheme in the natural way.

3.5.1 Motivating Example: OCB

The offset codebook mode (OCB) was first introduced by Rogaway, Bellare, Black, and

Krovetz [137] and later refined by Rogaway [134] and Rogaway and Krovetz [99]. Here we

use the formulation given in [134], known as OCB2. Following the publication of the work

upon which this chapter is based [59], OCB2 has been demonstrated to be insecure as an

AEAD scheme [81]. However, the attack against the r-BIND security of OCB2 that we

describe here extends naturally to the other versions of OCB which are still understood to

be secure.

Overview. OCB is built from a tweakable block cipher Ẽ : K × T × {0, 1}n → {0, 1}n

with tweak space T = {0, 1} × {0, 1}n × [1 .. 2n/2] × {0, 1}. Figure 3.13 shows OCB =

(OCB.Kg,OCB.Enc,OCB.Dec,OCB.Ver) conceptualised as an encryptment scheme in the
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OCB.Enc(KEC,M)

(K,N)← KEC

(M1, . . . ,Mm)← Parsen(M)

For i = 1 to m− 1 do Ci ← Ẽ1,N,i,0
K (Mi)

Pad← Ẽ0,N,m,0((len(Mm))n)

Cm ←Mm ⊕ Pad
CEC ← C1 ‖ · · · ‖Cm
Σ←M1 ⊕ · · · ⊕Mm−1 ⊕ Cm0∗ ⊕ Pad
BEC ← Ẽ0,N,m,1

K (Σ)

Return (CEC, BEC)

OCB.Dec(KEC, CEC, BEC)

(K,N)← KEC

(C1, . . . , Cm)← Parsen(CEC)

For i = 1 to m− 1 do Mi ← D̃1,N,i,0
K (Ci)

Pad← Ẽ0,N,m,0((len(Cm))n)

Mm ← Cm ⊕ Pad
M ←M1 ‖ · · · ‖Mm

Σ←M1 ⊕ · · · ⊕Mm−1 ⊕ Cm0∗ ⊕ Pad
B′EC ← Ẽ0,N,m,1

K (Σ)

If (BEC = B′EC) then return M

Return ⊥

OCB.Ver(M,KEC, BEC)

(K,N)← KEC

(M1, . . . ,Mm)← Parsen(M)

Pad← Ẽ0,N,m,0
K ((len(Mm))n)

Cm ←Mm ⊕ Pad
Σ←M1 ⊕ · · · ⊕Mm−1 ⊕ Cm0∗ ⊕ Pad
B′EC ← Ẽ0,N,m,1

K (Σ)

If B′EC 6= BEC then return 0

Return 1

Figure 3.13: OCB reframed as an encryptment scheme. We write Cm0∗ to denote Cm
padded with zeroes up to n-bits in length.

natural way; for simplicity we omit associated data from both the construction and the

discussion below. Key generation simply picks a key K ←$ K for the underlying TBC

and a nonce N←$ {0, 1}n and returns KEC = (K,N). The encryptment and decryptment

algorithms are identical to encryption and decryption with OCB, with the exception that

the nonce is framed as part of the encryptment key (rather than as an explicit input

to the algorithms). Additionally, we interpret the OCB ciphertext (which includes an

authentication tag) as a ciphertext and binding tag pair by setting the latter equal to

the tag.

During encryptment, ciphertext blocks are computed by partitioning the message into n-

bit blocks, encrypting all but the last block using the TBC (with an incrementing counter

to ensure that a distinct tweak is used for each block), and encrypting the final message

block by using the string Pad (set equal to the encryption of the message length under

the TBC) as a random pad. The crucial part of encryptment for our purposes is that

the binding tag BEC is computed by XORing together the message blocks and Pad, and

encrypting the result using the TBC. Looking ahead, our binding attack will exploit the

fact that it is typically straightforward to construct distinct sequences of message blocks

which XOR to the same value. Verification simply recomputes and verifies the binding tag;

decryptment does the same, having already decrypted each ciphertext block to recover the

underlying message.
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The attack. OCB has excellent performance properties, with rate-1 encryption and de-

cryption (roughly, one block cipher call per block of message / ciphertext; see Section 3.5.2

for a formal definition) and even faster verification. However, unfortunately OCB is

not receiver binding as, intuitively, verification does not provide CR. In more detail,

consider the following r-BIND adversary A against OCB. It computes (CEC, BEC) ←

OCB.Enc((K,N),M) for arbitrary (K,N) ∈ K × {0, 1}n and M = M1 ‖M2 ‖ . . . ‖Mm ∈

{0, 1}∗ such that m ≥ 3. Attacker A then sets M ′ = M1 ‖M2 ‖M3 ‖ . . . ‖Mm, where Mi

denotes message block Mi with its least significant bit flipped. Attacker A then returns

(((K,N),M), ((K,N),M ′), BEC) to its challenger.

Since the first two message blocks in M,M ′ have different least significant bits, it is clearly

the case that ((K,N),M) 6= ((K,N),M ′). However, since Mm = M ′m, and M1 ⊕M2 ⊕

· · · ⊕Mm−1 = M ′1 ⊕M ′2 ⊕ · · · ⊕M ′m−1, it is straightforward to verify that both messages

will result in the same tag BEC when encrypted under (K,N), thereby allowing A to win

game r-BIND with probability one.

3.5.2 Binding Encryptment and Collision Resistant Hashing

In the remainder of this section, we will formally define high-rate encryptment and show

how prior results on the impossibility of high-rate CR compression functions can be used

to rule out a broad class of high-rate encryptment schemes as well. To this end, we

begin by defining the rate of a compression function and an encryptment scheme. We

then demonstrate a (mostly syntactic) transform from an encryptment scheme EC to a

compression function of the same rate, and show that if EC is r-BIND-secure then the

resulting compression function must be CR. We then recall a result from [140] which says

that no high-rate compression function with the given parameters can be CR, thereby

ruling out the r-BIND-security of EC also.

A connection between hashing and encryptment. Towards showing negative re-

sults, we must first define more carefully what we mean by the rate of encryptment

schemes. We are inspired by (and will later exploit connections to) the definitions of

rate from the block cipher-based hash function literature [37,139,140].

Consider a compression function H : {0, 1}mn → {0, 1}rn for m > r ≥ 1 and n ≥ 1,
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H(V )

For i = 1 to ψ do

Xi ← fi(V, Y1, . . . , Yi−1)

Yi ← EKi
(Xi)

W ← g(V, Y1, . . . , Yψ)

Return W

Figure 3.14: A block cipher-based compression function.

which uses ψ ≥ 1 calls of a block cipher E : {0, 1}κ×{0, 1}n → {0, 1}n (m, r, n, ψ, κ ∈ N).

Following [140] we may writeH as shown in Figure 3.14, where we let K1, . . . ,Kψ ∈ {0, 1}κ

be any fixed strings. Further, we let fi : {0, 1}(m+(i−1))n → {0, 1}n for i ∈ [1, . . . , ψ] and

g : {0, 1}(m+ψ)n → {0, 1}rn be functions.

The rate of H is defined to be m/ψ, and so a rate- 1
β function H makes β block cipher calls

per n-bits of input. For example, a rate-1 H would achieve a single block cipher call per

n-bit block of input. A consequence of the more general results of [140] (see below) is that

they rule out rate-1 functions achieving CR security (in the IPM) if an attacker can make

2n/4 or more ideal permutation queries. We would like to exploit their negative results to

similarly rule out rate-1 encryptment schemes.

Rate of encryptment. Consider an encryptment scheme EC = (EKg,EEnc,EDec,EVer).

Because EEnc is deterministic, we can define a function F which on input (KEC, H,M)

computes (CEC, BEC) ← EEnc(KEC, H,M) and returns BEC. We now focus attention on

encryptment schemes of a certain (natural) form; namely those for which verification on

input EVer(H,M,KEC, BEC) checks that F (KEC, H,M) = BEC. (One can generalise this

definition by allowing EEnc and EVer to use different functions F , F ′ to compute the

binding tag; the lower bounds given in this section readily extend to this case also.)

With this in place, we can define the rate of verification for encryptment analogously to

defining the rate of a hash function H, by saying that EVer has rate- 1
β if the associated

function F makes β block cipher calls per n-bits of header and message data (or equiv-

alently, can process (H,M) of combined length mn-bits using βm block cipher calls).

Since the encryptment algorithm EEnc also computes the binding tag via F (in addition

to producing the ciphertext), this represents a lower bound on the rate of EEnc also.

Encryptment to hash transform. We can now give a generic, essentially syntactic,

transform from an encryptment scheme to a compression function. Fix m,n ∈ N, and
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let EC = (EKg,EEnc,EDec,EVer) be an encryptment scheme such that {0, 1}mn ⊆ MEC

and TEC = {0, 1}rn. Let F be the associated binding tag computation function as per

above. We define the compression function HEC : {0, 1}mn → {0, 1}rn to be HEC(X) =

F (KEC, ε,X) for KEC ∈ KEC an arbitrary fixed bit string. Here we take H = ε so that the

number of block cipher calls required to compute F is solely determined by the length of

the input X. With this in place, the following theorem, which says that HEC is CR if EC

is r-BIND-secure, is straightforward to prove.

Theorem 3.1. Let EC be an encryptment scheme, and let HEC : {0, 1}mn → {0, 1}rn

be defined as above. Then for any collision-resistance adversary A, we give an explicit

r-BIND adversary B such that

Advcr
HEC

(A) ≤ Advr-bind
EC (B) .

The adversary B runs in the same amount of time as A.

Proof. We define B to be the attacker who proceeds as follows. B runs A, and when

A outputs a pair X,X ′ ∈ {0, 1}mn, B checks if HEC(X) = HEC(X ′). Note that by the

definition of HEC, such an event implies that computing (·, BEC) ← EEnc(KEC, ε,X) and

(·, B′EC) ← EEnc(KEC, ε,X
′) yields colliding binding tags BEC = B′EC. If such a collision

is found, B outputs ((KEC, ε,X), (KEC, ε,X
′), BEC) to his own challenger; otherwise B

outputs ((KEC, ε,X), (KEC, ε,X
′′), BEC) for X ′′←$ {0, 1}mn. By the correctness of EC, it

must be the case that if (·, BEC) ← EEnc(KEC, H,M), then 1 ← EVer(H,M,KEC, BEC).

As such, it is straightforward to verify that if A finds a winning pair in game CR then

B will win game r-BIND with probability one. Moreover B runs in the same time as A,

thereby implying the claim.

Theorem 3.1 allows us to lift known negative results about efficient CR-hashing to the

encryptment setting. For example, Rogaway and Steinberger [140] analyse the security of

fixed-key block cipher based compression functions H : {0, 1}mn → {0, 1}rn (constructed

as in Figure 3.14) in the IPM. They demonstrate, via an attack, an upper bound on

the number of ideal permutation queries an attacker must make to find a collision. We

recall [140, Th. 1] below.

Theorem 3.2. Fix m > r ≥ 1 and n > 0 (m, r, n ∈ N). Let N = 2n. Let H : {0, 1}mn →
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{0, 1}rn be a ψ-call compression function constructed as in Figure 3.14, in which we model

EKi as an ideal permutation πi ←$ Perm({0, 1}n) for each i ∈ [1, ψ]. Then there exists

an explicit adversary A making q = ψ · (N1−(m−r
ψ

)
+ 1) ideal permutation queries and

achieving

Advcr
H(A) = 1 .

The proof of the result utilises the pigeonhole principle, which says that if you place m

balls in n bins for m > n then there must be at least one bin with two balls in it. To see

how the bound is derived in [140], let p = bq/ψc, let N = 2n, and consider the construction

of H given in Figure 3.14. The CR attacker A proceeds as follows. A selects the p points

Y1, . . . , Yp ∈ {0, 1}n which have the largest preimage sets f−1
1 (Y ) = {X ∈ {0, 1}mn :

f1(X) = Y } under the first function f1. Since f1 : {0, 1}mn → {0, 1}n, one can think

of f1 placing the Nm domain points into N bins, labelled with the points in {0, 1}n. It

follows that the p most occupied ‘bins’ (corresponding to labels Y1, . . . , Yp) contain at least

p · Nm−1 points. The attacker A queries Y1, . . . , Yp to π1 (recall we are working in the

IPM). Letting V1 = ∪pi=1f
−1
1 (Yi), the above argument implies that |V1| > p · Nm−1 and

that A now knows the value that each of these points maps to during the computation of

H following the application of π1. A then chooses the p points Y ′1 , . . . , Y
′
p ∈ {0, 1}n which

have the most pre-images under f2 in V1. This set of pre-images must contain at least

p2 ·Nm−2 points. A now queries π2 on each of these points, and learns how to compute the

value of these p2 ·Nm−2 points under H at the point of applying π2. Repeating this process

for each of the ψ permutations, it follows that A will finish having made ψ · p < q queries

and will be able to compute the value of all points in a set of size at least pψ ·Nm−ψ > N

under H. The pigeonhole principle then implies that the desired collision will be amongst

these points.

The above result is striking for certain parameter settings. For example, consider a com-

pression function H : {0, 1}2n → {0, 1}n making a single permutation call (ψ = 1). Then

an attacker can find a collision in H with just two ideal permutation queries. Invoking the

relation between CR compression functions and encryptment in Theorem 3.1 immediately

yields the following corollary.

Corollary 3.1. Fix m > r ≥ 1 and n > 0 (m, r, n ∈ N). Let N = 2n. Let EC be an

encryptment scheme of the structure given in Theorem 3.1. Suppose that: (1) {0, 1}mn ⊆

M; (2) TEC = {0, 1}rn; and (3) the function F used by EEnc and EVer to compute the
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binding tag on messages of length mn is of the form shown in Figure 3.14. Then there

exists an explicit adversary A making q = ψ · (N1−(m−r
ψ

)
+ 1) ideal permutation queries

and achieving

Advr-bind
EC (A) = 1 .

This immediately rules out r-BIND security for rate-1 encryptment schemes that achieve

the efficiency of OCB, i.e., having ψ = m, m arbitrarily large, and r = 1. In the minimal

case that m = 2 (two block messages), then A only requires q = 2 queries to succeed.

Stronger results ruling out rate-1
2 verification and encryptment can be similarly lifted

from [140, Th. 2] under some technical conditions about the verification function and the

adversary.

Extensions. One can modify our definitions so the key Ki for the ith cipher call can be

picked from the set {K1, . . . ,Kψ} as a function of the current round and messages instead

of being used in a fixed order; Rogaway and Steinberger refer to this as the no-fixed order

model (though it first appeared in [37]). A negative result based on [37, Th. 5] would rule

out encryptment using any rate-1 no-fixed order verification algorithm.

The results above were cast in terms of r-BIND security, but extend to sr-BIND secu-

rity because the latter implies the former. We conjecture that these lower bounds can

be extended to block cipher-based robust encryption schemes (in the sense of [67], see

Section 3.7.6); we leave this as an open problem for future work.

Ultimately these negative results indicate that for an r-BIND-secure encryptment scheme,

the best we can hope for is either a rate-1
3 construction based on a block cipher with a

small set of fixed keys, or to allow rekeying with each block of message. We therefore turn

to building as efficient-as-possible constructions.

Relation to ccAEAD. In Section 3.7.5, we will describe how the existence of an r-BIND-

secure ccAEAD scheme for which encryption achieves a given rate implies the existence

of an r-BIND-secure encryptment scheme EC = (EKg,EEnc,EDec,EVer) such that EEnc

achieves the same rate, and so the results of this section exclude the existence of rate-1 or

rate-1
2 ccAEAD encryption also.
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...f
<latexit sha1_base64="pHWc9bjTpHFTpd1cpehINtMaEoo=">AAAB8nicbZDLSsNAFIZP6q3GW9Wlm2ARXJXEjboQi25cVjC22IYymU7aoZNJmDkRSyj4EO5EQdz6Hr6AG9/G6WWhrT8MfPz/Ocw5J0wF1+i631ZhYXFpeaW4aq+tb2xulbZ3bnWSKcp8mohENUKimeCS+chRsEaqGIlDweph/3KU1++Z0jyRNzhIWRCTruQRpwSNdddC9oA6yqNhu1R2K+5Yzjx4Uyiff9pnjwBQa5e+Wp2EZjGTSAXRuum5KQY5UcipYEO7lWmWEtonXdY0KEnMdJCPJx46B8bpOFGizJPojN3fHTmJtR7EoamMCfb0bDYy/8uaGUYnQc5lmiGTdPJRlAkHE2e0vtPhilEUAwOEKm5mdWiPKELRHMm2bXMGb3bpefCPKqcV99otVy9goiLswT4cggfHUIUrqIEPFCQ8wQu8Wpn1bL1Z75PSgjXt2YU/sj5+AA0VkvI=</latexit><latexit sha1_base64="1NDgoNakEdnkt3h4BM1NP8gzrvA=">AAAB8nicbZDLSsNAFIYnXmu8VV26CRbBVUncqAux6MZlBWOLbSiT6Uk7dDIJMydiCX0Ld6Ig3foevoAgvo3Ty0Jbfxj4+P9zmHNOmAqu0XW/rYXFpeWV1cKavb6xubVd3Nm900mmGPgsEYmqh1SD4BJ85CigniqgcSigFvauRnntAZTmibzFfgpBTDuSR5xRNNZ9E+ERdZRHg1ax5JbdsZx58KZQuviwz9Phl11tFT+b7YRlMUhkgmrd8NwUg5wq5EzAwG5mGlLKerQDDYOSxqCDfDzxwDk0TtuJEmWeRGfs/u7Iaax1Pw5NZUyxq2ezkflf1sgwOg1yLtMMQbLJR1EmHEyc0fpOmytgKPoGKFPczOqwLlWUoTmSbdvmDN7s0vPgH5fPyu6NW6pckokKZJ8ckCPikRNSIdekSnzCiCRP5IW8Wpn1bL1Zw0npgjXt2SN/ZL3/AAAYlGY=</latexit><latexit sha1_base64="1NDgoNakEdnkt3h4BM1NP8gzrvA=">AAAB8nicbZDLSsNAFIYnXmu8VV26CRbBVUncqAux6MZlBWOLbSiT6Uk7dDIJMydiCX0Ld6Ig3foevoAgvo3Ty0Jbfxj4+P9zmHNOmAqu0XW/rYXFpeWV1cKavb6xubVd3Nm900mmGPgsEYmqh1SD4BJ85CigniqgcSigFvauRnntAZTmibzFfgpBTDuSR5xRNNZ9E+ERdZRHg1ax5JbdsZx58KZQuviwz9Phl11tFT+b7YRlMUhkgmrd8NwUg5wq5EzAwG5mGlLKerQDDYOSxqCDfDzxwDk0TtuJEmWeRGfs/u7Iaax1Pw5NZUyxq2ezkflf1sgwOg1yLtMMQbLJR1EmHEyc0fpOmytgKPoGKFPczOqwLlWUoTmSbdvmDN7s0vPgH5fPyu6NW6pckokKZJ8ckCPikRNSIdekSnzCiCRP5IW8Wpn1bL1Zw0npgjXt2SN/ZL3/AAAYlGY=</latexit>

f
<latexit sha1_base64="pHWc9bjTpHFTpd1cpehINtMaEoo=">AAAB8nicbZDLSsNAFIZP6q3GW9Wlm2ARXJXEjboQi25cVjC22IYymU7aoZNJmDkRSyj4EO5EQdz6Hr6AG9/G6WWhrT8MfPz/Ocw5J0wF1+i631ZhYXFpeaW4aq+tb2xulbZ3bnWSKcp8mohENUKimeCS+chRsEaqGIlDweph/3KU1++Z0jyRNzhIWRCTruQRpwSNdddC9oA6yqNhu1R2K+5Yzjx4Uyiff9pnjwBQa5e+Wp2EZjGTSAXRuum5KQY5UcipYEO7lWmWEtonXdY0KEnMdJCPJx46B8bpOFGizJPojN3fHTmJtR7EoamMCfb0bDYy/8uaGUYnQc5lmiGTdPJRlAkHE2e0vtPhilEUAwOEKm5mdWiPKELRHMm2bXMGb3bpefCPKqcV99otVy9goiLswT4cggfHUIUrqIEPFCQ8wQu8Wpn1bL1Z75PSgjXt2YU/sj5+AA0VkvI=</latexit><latexit sha1_base64="1NDgoNakEdnkt3h4BM1NP8gzrvA=">AAAB8nicbZDLSsNAFIYnXmu8VV26CRbBVUncqAux6MZlBWOLbSiT6Uk7dDIJMydiCX0Ld6Ig3foevoAgvo3Ty0Jbfxj4+P9zmHNOmAqu0XW/rYXFpeWV1cKavb6xubVd3Nm900mmGPgsEYmqh1SD4BJ85CigniqgcSigFvauRnntAZTmibzFfgpBTDuSR5xRNNZ9E+ERdZRHg1ax5JbdsZx58KZQuviwz9Phl11tFT+b7YRlMUhkgmrd8NwUg5wq5EzAwG5mGlLKerQDDYOSxqCDfDzxwDk0TtuJEmWeRGfs/u7Iaax1Pw5NZUyxq2ezkflf1sgwOg1yLtMMQbLJR1EmHEyc0fpOmytgKPoGKFPczOqwLlWUoTmSbdvmDN7s0vPgH5fPyu6NW6pckokKZJ8ckCPikRNSIdekSnzCiCRP5IW8Wpn1bL1Zw0npgjXt2SN/ZL3/AAAYlGY=</latexit><latexit sha1_base64="1NDgoNakEdnkt3h4BM1NP8gzrvA=">AAAB8nicbZDLSsNAFIYnXmu8VV26CRbBVUncqAux6MZlBWOLbSiT6Uk7dDIJMydiCX0Ld6Ig3foevoAgvo3Ty0Jbfxj4+P9zmHNOmAqu0XW/rYXFpeWV1cKavb6xubVd3Nm900mmGPgsEYmqh1SD4BJ85CigniqgcSigFvauRnntAZTmibzFfgpBTDuSR5xRNNZ9E+ERdZRHg1ax5JbdsZx58KZQuviwz9Phl11tFT+b7YRlMUhkgmrd8NwUg5wq5EzAwG5mGlLKerQDDYOSxqCDfDzxwDk0TtuJEmWeRGfs/u7Iaax1Pw5NZUyxq2ezkflf1sgwOg1yLtMMQbLJR1EmHEyc0fpOmytgKPoGKFPczOqwLlWUoTmSbdvmDN7s0vPgH5fPyu6NW6pckokKZJ8ckCPikRNSIdekSnzCiCRP5IW8Wpn1bL1Zw0npgjXt2SN/ZL3/AAAYlGY=</latexit>

f
<latexit sha1_base64="pHWc9bjTpHFTpd1cpehINtMaEoo=">AAAB8nicbZDLSsNAFIZP6q3GW9Wlm2ARXJXEjboQi25cVjC22IYymU7aoZNJmDkRSyj4EO5EQdz6Hr6AG9/G6WWhrT8MfPz/Ocw5J0wF1+i631ZhYXFpeaW4aq+tb2xulbZ3bnWSKcp8mohENUKimeCS+chRsEaqGIlDweph/3KU1++Z0jyRNzhIWRCTruQRpwSNdddC9oA6yqNhu1R2K+5Yzjx4Uyiff9pnjwBQa5e+Wp2EZjGTSAXRuum5KQY5UcipYEO7lWmWEtonXdY0KEnMdJCPJx46B8bpOFGizJPojN3fHTmJtR7EoamMCfb0bDYy/8uaGUYnQc5lmiGTdPJRlAkHE2e0vtPhilEUAwOEKm5mdWiPKELRHMm2bXMGb3bpefCPKqcV99otVy9goiLswT4cggfHUIUrqIEPFCQ8wQu8Wpn1bL1Z75PSgjXt2YU/sj5+AA0VkvI=</latexit><latexit sha1_base64="1NDgoNakEdnkt3h4BM1NP8gzrvA=">AAAB8nicbZDLSsNAFIYnXmu8VV26CRbBVUncqAux6MZlBWOLbSiT6Uk7dDIJMydiCX0Ld6Ig3foevoAgvo3Ty0Jbfxj4+P9zmHNOmAqu0XW/rYXFpeWV1cKavb6xubVd3Nm900mmGPgsEYmqh1SD4BJ85CigniqgcSigFvauRnntAZTmibzFfgpBTDuSR5xRNNZ9E+ERdZRHg1ax5JbdsZx58KZQuviwz9Phl11tFT+b7YRlMUhkgmrd8NwUg5wq5EzAwG5mGlLKerQDDYOSxqCDfDzxwDk0TtuJEmWeRGfs/u7Iaax1Pw5NZUyxq2ezkflf1sgwOg1yLtMMQbLJR1EmHEyc0fpOmytgKPoGKFPczOqwLlWUoTmSbdvmDN7s0vPgH5fPyu6NW6pckokKZJ8ckCPikRNSIdekSnzCiCRP5IW8Wpn1bL1Zw0npgjXt2SN/ZL3/AAAYlGY=</latexit><latexit sha1_base64="1NDgoNakEdnkt3h4BM1NP8gzrvA=">AAAB8nicbZDLSsNAFIYnXmu8VV26CRbBVUncqAux6MZlBWOLbSiT6Uk7dDIJMydiCX0Ld6Ig3foevoAgvo3Ty0Jbfxj4+P9zmHNOmAqu0XW/rYXFpeWV1cKavb6xubVd3Nm900mmGPgsEYmqh1SD4BJ85CigniqgcSigFvauRnntAZTmibzFfgpBTDuSR5xRNNZ9E+ERdZRHg1ax5JbdsZx58KZQuviwz9Phl11tFT+b7YRlMUhkgmrd8NwUg5wq5EzAwG5mGlLKerQDDYOSxqCDfDzxwDk0TtuJEmWeRGfs/u7Iaax1Pw5NZUyxq2ezkflf1sgwOg1yLtMMQbLJR1EmHEyc0fpOmytgKPoGKFPczOqwLlWUoTmSbdvmDN7s0vPgH5fPyu6NW6pckokKZJ8ckCPikRNSIdekSnzCiCRP5IW8Wpn1bL1Zw0npgjXt2SN/ZL3/AAAYlGY=</latexit>

f
<latexit sha1_base64="pHWc9bjTpHFTpd1cpehINtMaEoo=">AAAB8nicbZDLSsNAFIZP6q3GW9Wlm2ARXJXEjboQi25cVjC22IYymU7aoZNJmDkRSyj4EO5EQdz6Hr6AG9/G6WWhrT8MfPz/Ocw5J0wF1+i631ZhYXFpeaW4aq+tb2xulbZ3bnWSKcp8mohENUKimeCS+chRsEaqGIlDweph/3KU1++Z0jyRNzhIWRCTruQRpwSNdddC9oA6yqNhu1R2K+5Yzjx4Uyiff9pnjwBQa5e+Wp2EZjGTSAXRuum5KQY5UcipYEO7lWmWEtonXdY0KEnMdJCPJx46B8bpOFGizJPojN3fHTmJtR7EoamMCfb0bDYy/8uaGUYnQc5lmiGTdPJRlAkHE2e0vtPhilEUAwOEKm5mdWiPKELRHMm2bXMGb3bpefCPKqcV99otVy9goiLswT4cggfHUIUrqIEPFCQ8wQu8Wpn1bL1Z75PSgjXt2YU/sj5+AA0VkvI=</latexit><latexit sha1_base64="1NDgoNakEdnkt3h4BM1NP8gzrvA=">AAAB8nicbZDLSsNAFIYnXmu8VV26CRbBVUncqAux6MZlBWOLbSiT6Uk7dDIJMydiCX0Ld6Ig3foevoAgvo3Ty0Jbfxj4+P9zmHNOmAqu0XW/rYXFpeWV1cKavb6xubVd3Nm900mmGPgsEYmqh1SD4BJ85CigniqgcSigFvauRnntAZTmibzFfgpBTDuSR5xRNNZ9E+ERdZRHg1ax5JbdsZx58KZQuviwz9Phl11tFT+b7YRlMUhkgmrd8NwUg5wq5EzAwG5mGlLKerQDDYOSxqCDfDzxwDk0TtuJEmWeRGfs/u7Iaax1Pw5NZUyxq2ezkflf1sgwOg1yLtMMQbLJR1EmHEyc0fpOmytgKPoGKFPczOqwLlWUoTmSbdvmDN7s0vPgH5fPyu6NW6pckokKZJ8ckCPikRNSIdekSnzCiCRP5IW8Wpn1bL1Zw0npgjXt2SN/ZL3/AAAYlGY=</latexit><latexit sha1_base64="1NDgoNakEdnkt3h4BM1NP8gzrvA=">AAAB8nicbZDLSsNAFIYnXmu8VV26CRbBVUncqAux6MZlBWOLbSiT6Uk7dDIJMydiCX0Ld6Ig3foevoAgvo3Ty0Jbfxj4+P9zmHNOmAqu0XW/rYXFpeWV1cKavb6xubVd3Nm900mmGPgsEYmqh1SD4BJ85CigniqgcSigFvauRnntAZTmibzFfgpBTDuSR5xRNNZ9E+ERdZRHg1ax5JbdsZx58KZQuviwz9Phl11tFT+b7YRlMUhkgmrd8NwUg5wq5EzAwG5mGlLKerQDDYOSxqCDfDzxwDk0TtuJEmWeRGfs/u7Iaax1Pw5NZUyxq2ezkflf1sgwOg1yLtMMQbLJR1EmHEyc0fpOmytgKPoGKFPczOqwLlWUoTmSbdvmDN7s0vPgH5fPyu6NW6pckokKZJ8ckCPikRNSIdekSnzCiCRP5IW8Wpn1bL1Zw0npgjXt2SN/ZL3/AAAYlGY=</latexit>

M1
<latexit sha1_base64="O1rSbfiUbNKWIeIk1gIUjLPlrSQ=">AAAB63icbVDLSgNBEOyNr7i+oh69DAbBU9gVQb0FvHgRIromkCxhdtKbDJmdXWZmhRDyCd5EQbz6Gf6BRy/+jZPHQRMLGoqqbrq7okxwbTzv2yksLa+srhXX3Y3Nre2d0u7evU5zxTBgqUhVI6IaBZcYGG4ENjKFNIkE1qP+5divP6DSPJV3ZpBhmNCu5DFn1Fjp9rrtt0tlr+JNQBaJPyPlavHzAyxq7dJXq5OyPEFpmKBaN30vM+GQKsOZwJHbyjVmlPVpF5uWSpqgDoeTU0fkyCodEqfKljRkov6eGNJE60ES2c6Emp6e98bif14zN/F5OOQyyw1KNl0U54KYlIz/Jh2ukBkxsIQyxe2thPWooszYdFzXtTH4808vkuCkclHxbmwcpzBFEQ7gEI7BhzOowhXUIAAGXXiEZ3hxpPPkvDpv09aCM5vZhz9w3n8AryGPJw==</latexit><latexit sha1_base64="aho+MbxO/ddKiTJ5HgU8rnYiXiE=">AAAB63icbVDLSsNAFL2prxhftS7dDC2Cq5KIoO4KunAjVDS20IYymU7aoZNJmJkIJfQT3ImCuNW/8A9cuvFvnD4W2nrgwuGce7n3njDlTGnX/bYKS8srq2v2urOxubW9U9wt3akkk4T6JOGJbIZYUc4E9TXTnDZTSXEcctoIB+djv3FPpWKJuNXDlAYx7gkWMYK1kW6uOl6nWHGr7gRokXgzUqnZnx+li/dyvVP8ancTksVUaMKxUi3PTXWQY6kZ4XTktDNFU0wGuEdbhgocUxXkk1NH6MAoXRQl0pTQaKL+nshxrNQwDk1njHVfzXtj8T+vlenoNMiZSDNNBZkuijKOdILGf6Muk5RoPjQEE8nMrYj0scREm3QcxzExePNPLxL/qHpWda9NHMcwhQ37UIZD8OAEanAJdfCBQA8e4AmeLWE9Wi/W67S1YM1m9uAPrLcfLreQRQ==</latexit><latexit sha1_base64="aho+MbxO/ddKiTJ5HgU8rnYiXiE=">AAAB63icbVDLSsNAFL2prxhftS7dDC2Cq5KIoO4KunAjVDS20IYymU7aoZNJmJkIJfQT3ImCuNW/8A9cuvFvnD4W2nrgwuGce7n3njDlTGnX/bYKS8srq2v2urOxubW9U9wt3akkk4T6JOGJbIZYUc4E9TXTnDZTSXEcctoIB+djv3FPpWKJuNXDlAYx7gkWMYK1kW6uOl6nWHGr7gRokXgzUqnZnx+li/dyvVP8ancTksVUaMKxUi3PTXWQY6kZ4XTktDNFU0wGuEdbhgocUxXkk1NH6MAoXRQl0pTQaKL+nshxrNQwDk1njHVfzXtj8T+vlenoNMiZSDNNBZkuijKOdILGf6Muk5RoPjQEE8nMrYj0scREm3QcxzExePNPLxL/qHpWda9NHMcwhQ37UIZD8OAEanAJdfCBQA8e4AmeLWE9Wi/W67S1YM1m9uAPrLcfLreQRQ==</latexit>

KEC
<latexit sha1_base64="8T2ZPgmzPt4c/3MO1fJrbAriPVM=">AAAB+XicbVBNS8NAEJ34WeNHox71ECyCp5KKoN4KRRC8VDC20Jay2W7apZtN2J2IJeaXeBMF8epf8eK/cftx0NYHA4/3ZpiZFySCa/S8b2tpeWV1bb2wYW9ube8Und29ex2nijKfxiJWzYBoJrhkPnIUrJkoRqJAsEYwrI39xgNTmsfyDkcJ60SkL3nIKUEjdZ3iTTdrI3tEHWZXtTzvOiWv7E3gLpLKjJSqh6GsAkC963y1ezFNIyaRCqJ1q+Il2MmIQk4Fy+12qllC6JD0WctQSSKmO9nk8Nw9NkrPDWNlSqI7UX9PZCTSehQFpjMiONDz3lj8z2ulGF50Mi6TFJmk00VhKlyM3XEKbo8rRlGMDCFUcXOrSwdEEYomK9u2TQyV+acXiX9avix7tyaOM5iiAAdwBCdQgXOowjXUwQcKKTzDK7xZT9aL9W59TFuXrNnMPvyB9fkDgTmUrg==</latexit><latexit sha1_base64="nXuu1Sg2JihlkMaOSAlwwCcHVvE=">AAAB+XicbVBNS8NAEN34WeNHox71ECyCp5KKoN4KRRC8VDC20Iaw2W7apZtN2J2IIeaXeBMF6dWrP8OL/8btx0FbHww83pthZl6QcKbAcb6NpeWV1bX10oa5ubW9U7Z29+5VnEpCXRLzWLYDrChngrrAgNN2IimOAk5bwbAx9lsPVCoWizvIEupFuC9YyAgGLflW+cbPu0AfQYX5VaMofKviVJ0J7EVSm5FK/TAUjVH22fStr24vJmlEBRCOlerUnAS8HEtghNPC7KaKJpgMcZ92NBU4osrLJ4cX9rFWenYYS10C7In6eyLHkVJZFOjOCMNAzXtj8T+vk0J44eVMJClQQaaLwpTbENvjFOwek5QAzzTBRDJ9q00GWGICOivTNHUMtfmnF4l7Wr2sOrc6jjM0RQkdoCN0gmroHNXRNWoiFxGUomf0it6MJ+PFeDdG09YlYzazj/7A+PgBByiWkA==</latexit><latexit sha1_base64="nXuu1Sg2JihlkMaOSAlwwCcHVvE=">AAAB+XicbVBNS8NAEN34WeNHox71ECyCp5KKoN4KRRC8VDC20Iaw2W7apZtN2J2IIeaXeBMF6dWrP8OL/8btx0FbHww83pthZl6QcKbAcb6NpeWV1bX10oa5ubW9U7Z29+5VnEpCXRLzWLYDrChngrrAgNN2IimOAk5bwbAx9lsPVCoWizvIEupFuC9YyAgGLflW+cbPu0AfQYX5VaMofKviVJ0J7EVSm5FK/TAUjVH22fStr24vJmlEBRCOlerUnAS8HEtghNPC7KaKJpgMcZ92NBU4osrLJ4cX9rFWenYYS10C7In6eyLHkVJZFOjOCMNAzXtj8T+vk0J44eVMJClQQaaLwpTbENvjFOwek5QAzzTBRDJ9q00GWGICOivTNHUMtfmnF4l7Wr2sOrc6jjM0RQkdoCN0gmroHNXRNWoiFxGUomf0it6MJ+PFeDdG09YlYzazj/7A+PgBByiWkA==</latexit>

KEC
<latexit sha1_base64="8T2ZPgmzPt4c/3MO1fJrbAriPVM=">AAAB+XicbVBNS8NAEJ34WeNHox71ECyCp5KKoN4KRRC8VDC20Jay2W7apZtN2J2IJeaXeBMF8epf8eK/cftx0NYHA4/3ZpiZFySCa/S8b2tpeWV1bb2wYW9ube8Und29ex2nijKfxiJWzYBoJrhkPnIUrJkoRqJAsEYwrI39xgNTmsfyDkcJ60SkL3nIKUEjdZ3iTTdrI3tEHWZXtTzvOiWv7E3gLpLKjJSqh6GsAkC963y1ezFNIyaRCqJ1q+Il2MmIQk4Fy+12qllC6JD0WctQSSKmO9nk8Nw9NkrPDWNlSqI7UX9PZCTSehQFpjMiONDz3lj8z2ulGF50Mi6TFJmk00VhKlyM3XEKbo8rRlGMDCFUcXOrSwdEEYomK9u2TQyV+acXiX9avix7tyaOM5iiAAdwBCdQgXOowjXUwQcKKTzDK7xZT9aL9W59TFuXrNnMPvyB9fkDgTmUrg==</latexit><latexit sha1_base64="nXuu1Sg2JihlkMaOSAlwwCcHVvE=">AAAB+XicbVBNS8NAEN34WeNHox71ECyCp5KKoN4KRRC8VDC20Iaw2W7apZtN2J2IIeaXeBMF6dWrP8OL/8btx0FbHww83pthZl6QcKbAcb6NpeWV1bX10oa5ubW9U7Z29+5VnEpCXRLzWLYDrChngrrAgNN2IimOAk5bwbAx9lsPVCoWizvIEupFuC9YyAgGLflW+cbPu0AfQYX5VaMofKviVJ0J7EVSm5FK/TAUjVH22fStr24vJmlEBRCOlerUnAS8HEtghNPC7KaKJpgMcZ92NBU4osrLJ4cX9rFWenYYS10C7In6eyLHkVJZFOjOCMNAzXtj8T+vk0J44eVMJClQQaaLwpTbENvjFOwek5QAzzTBRDJ9q00GWGICOivTNHUMtfmnF4l7Wr2sOrc6jjM0RQkdoCN0gmroHNXRNWoiFxGUomf0it6MJ+PFeDdG09YlYzazj/7A+PgBByiWkA==</latexit><latexit sha1_base64="nXuu1Sg2JihlkMaOSAlwwCcHVvE=">AAAB+XicbVBNS8NAEN34WeNHox71ECyCp5KKoN4KRRC8VDC20Iaw2W7apZtN2J2IIeaXeBMF6dWrP8OL/8btx0FbHww83pthZl6QcKbAcb6NpeWV1bX10oa5ubW9U7Z29+5VnEpCXRLzWLYDrChngrrAgNN2IimOAk5bwbAx9lsPVCoWizvIEupFuC9YyAgGLflW+cbPu0AfQYX5VaMofKviVJ0J7EVSm5FK/TAUjVH22fStr24vJmlEBRCOlerUnAS8HEtghNPC7KaKJpgMcZ92NBU4osrLJ4cX9rFWenYYS10C7In6eyLHkVJZFOjOCMNAzXtj8T+vk0J44eVMJClQQaaLwpTbENvjFOwek5QAzzTBRDJ9q00GWGICOivTNHUMtfmnF4l7Wr2sOrc6jjM0RQkdoCN0gmroHNXRNWoiFxGUomf0it6MJ+PFeDdG09YlYzazj/7A+PgBByiWkA==</latexit>

KEC
<latexit sha1_base64="8T2ZPgmzPt4c/3MO1fJrbAriPVM=">AAAB+XicbVBNS8NAEJ34WeNHox71ECyCp5KKoN4KRRC8VDC20Jay2W7apZtN2J2IJeaXeBMF8epf8eK/cftx0NYHA4/3ZpiZFySCa/S8b2tpeWV1bb2wYW9ube8Und29ex2nijKfxiJWzYBoJrhkPnIUrJkoRqJAsEYwrI39xgNTmsfyDkcJ60SkL3nIKUEjdZ3iTTdrI3tEHWZXtTzvOiWv7E3gLpLKjJSqh6GsAkC963y1ezFNIyaRCqJ1q+Il2MmIQk4Fy+12qllC6JD0WctQSSKmO9nk8Nw9NkrPDWNlSqI7UX9PZCTSehQFpjMiONDz3lj8z2ulGF50Mi6TFJmk00VhKlyM3XEKbo8rRlGMDCFUcXOrSwdEEYomK9u2TQyV+acXiX9avix7tyaOM5iiAAdwBCdQgXOowjXUwQcKKTzDK7xZT9aL9W59TFuXrNnMPvyB9fkDgTmUrg==</latexit><latexit sha1_base64="nXuu1Sg2JihlkMaOSAlwwCcHVvE=">AAAB+XicbVBNS8NAEN34WeNHox71ECyCp5KKoN4KRRC8VDC20Iaw2W7apZtN2J2IIeaXeBMF6dWrP8OL/8btx0FbHww83pthZl6QcKbAcb6NpeWV1bX10oa5ubW9U7Z29+5VnEpCXRLzWLYDrChngrrAgNN2IimOAk5bwbAx9lsPVCoWizvIEupFuC9YyAgGLflW+cbPu0AfQYX5VaMofKviVJ0J7EVSm5FK/TAUjVH22fStr24vJmlEBRCOlerUnAS8HEtghNPC7KaKJpgMcZ92NBU4osrLJ4cX9rFWenYYS10C7In6eyLHkVJZFOjOCMNAzXtj8T+vk0J44eVMJClQQaaLwpTbENvjFOwek5QAzzTBRDJ9q00GWGICOivTNHUMtfmnF4l7Wr2sOrc6jjM0RQkdoCN0gmroHNXRNWoiFxGUomf0it6MJ+PFeDdG09YlYzazj/7A+PgBByiWkA==</latexit><latexit sha1_base64="nXuu1Sg2JihlkMaOSAlwwCcHVvE=">AAAB+XicbVBNS8NAEN34WeNHox71ECyCp5KKoN4KRRC8VDC20Iaw2W7apZtN2J2IIeaXeBMF6dWrP8OL/8btx0FbHww83pthZl6QcKbAcb6NpeWV1bX10oa5ubW9U7Z29+5VnEpCXRLzWLYDrChngrrAgNN2IimOAk5bwbAx9lsPVCoWizvIEupFuC9YyAgGLflW+cbPu0AfQYX5VaMofKviVJ0J7EVSm5FK/TAUjVH22fStr24vJmlEBRCOlerUnAS8HEtghNPC7KaKJpgMcZ92NBU4osrLJ4cX9rFWenYYS10C7In6eyLHkVJZFOjOCMNAzXtj8T+vk0J44eVMJClQQaaLwpTbENvjFOwek5QAzzTBRDJ9q00GWGICOivTNHUMtfmnF4l7Wr2sOrc6jjM0RQkdoCN0gmroHNXRNWoiFxGUomf0it6MJ+PFeDdG09YlYzazj/7A+PgBByiWkA==</latexit>

H1
<latexit sha1_base64="weD8i7oe4pRKwE739CFfhTXzNPI=">AAAB63icbVDLSgNBEOyNr7i+oh69DAbBU9gVQb0FvOQY0TWBZAmzk0kyZHZ2mekVwpJP8CYK4tXP8A88evFvnDwOmljQUFR1090VpVIY9Lxvp7Cyura+Udx0t7Z3dvdK+wf3Jsk04wFLZKKbETVcCsUDFCh5M9WcxpHkjWh4PfEbD1wbkag7HKU8jGlfiZ5gFK10W+v4nVLZq3hTkGXiz0m5Wvz8AIt6p/TV7iYsi7lCJqkxLd9LMcypRsEkH7vtzPCUsiHt85alisbchPn01DE5sUqX9BJtSyGZqr8nchobM4oj2xlTHJhFbyL+57Uy7F2GuVBphlyx2aJeJgkmZPI36QrNGcqRJZRpYW8lbEA1ZWjTcV3XxuAvPr1MgrPKVcW7sXGcwwxFOIJjOAUfLqAKNahDAAz68AjP8OIo58l5dd5mrQVnPnMIf+C8/wCnfo8i</latexit><latexit sha1_base64="WoyJ5tWcNrGnf4seCndaQhiqv0I=">AAAB63icbVDLSsNAFL2prxpftS7dDC2Cq5KIoO4KuuiyorGFNpTJdNIOnUzCzEQIoZ/gThTErf6Ff+DSjX/j9LHQ1gMXDufcy733BAlnSjvOt1VYWV1b3yhu2lvbO7t7pf3ynYpTSahHYh7LdoAV5UxQTzPNaTuRFEcBp61gdDnxW/dUKhaLW50l1I/wQLCQEayNdNPoub1S1ak5U6Bl4s5JtV78/ChfvVeavdJXtx+TNKJCE46V6rhOov0cS80Ip2O7myqaYDLCA9oxVOCIKj+fnjpGR0bpozCWpoRGU/X3RI4jpbIoMJ0R1kO16E3E/7xOqsNzP2ciSTUVZLYoTDnSMZr8jfpMUqJ5ZggmkplbERliiYk26di2bWJwF59eJt5J7aLmXJs4TmGGIhxCBY7BhTOoQwOa4AGBATzAEzxbwnq0XqzXWWvBms8cwB9Ybz8nFJBA</latexit><latexit sha1_base64="WoyJ5tWcNrGnf4seCndaQhiqv0I=">AAAB63icbVDLSsNAFL2prxpftS7dDC2Cq5KIoO4KuuiyorGFNpTJdNIOnUzCzEQIoZ/gThTErf6Ff+DSjX/j9LHQ1gMXDufcy733BAlnSjvOt1VYWV1b3yhu2lvbO7t7pf3ynYpTSahHYh7LdoAV5UxQTzPNaTuRFEcBp61gdDnxW/dUKhaLW50l1I/wQLCQEayNdNPoub1S1ak5U6Bl4s5JtV78/ChfvVeavdJXtx+TNKJCE46V6rhOov0cS80Ip2O7myqaYDLCA9oxVOCIKj+fnjpGR0bpozCWpoRGU/X3RI4jpbIoMJ0R1kO16E3E/7xOqsNzP2ciSTUVZLYoTDnSMZr8jfpMUqJ5ZggmkplbERliiYk26di2bWJwF59eJt5J7aLmXJs4TmGGIhxCBY7BhTOoQwOa4AGBATzAEzxbwnq0XqzXWWvBms8cwB9Ybz8nFJBA</latexit>

KEC
<latexit sha1_base64="8T2ZPgmzPt4c/3MO1fJrbAriPVM=">AAAB+XicbVBNS8NAEJ34WeNHox71ECyCp5KKoN4KRRC8VDC20Jay2W7apZtN2J2IJeaXeBMF8epf8eK/cftx0NYHA4/3ZpiZFySCa/S8b2tpeWV1bb2wYW9ube8Und29ex2nijKfxiJWzYBoJrhkPnIUrJkoRqJAsEYwrI39xgNTmsfyDkcJ60SkL3nIKUEjdZ3iTTdrI3tEHWZXtTzvOiWv7E3gLpLKjJSqh6GsAkC963y1ezFNIyaRCqJ1q+Il2MmIQk4Fy+12qllC6JD0WctQSSKmO9nk8Nw9NkrPDWNlSqI7UX9PZCTSehQFpjMiONDz3lj8z2ulGF50Mi6TFJmk00VhKlyM3XEKbo8rRlGMDCFUcXOrSwdEEYomK9u2TQyV+acXiX9avix7tyaOM5iiAAdwBCdQgXOowjXUwQcKKTzDK7xZT9aL9W59TFuXrNnMPvyB9fkDgTmUrg==</latexit><latexit sha1_base64="nXuu1Sg2JihlkMaOSAlwwCcHVvE=">AAAB+XicbVBNS8NAEN34WeNHox71ECyCp5KKoN4KRRC8VDC20Iaw2W7apZtN2J2IIeaXeBMF6dWrP8OL/8btx0FbHww83pthZl6QcKbAcb6NpeWV1bX10oa5ubW9U7Z29+5VnEpCXRLzWLYDrChngrrAgNN2IimOAk5bwbAx9lsPVCoWizvIEupFuC9YyAgGLflW+cbPu0AfQYX5VaMofKviVJ0J7EVSm5FK/TAUjVH22fStr24vJmlEBRCOlerUnAS8HEtghNPC7KaKJpgMcZ92NBU4osrLJ4cX9rFWenYYS10C7In6eyLHkVJZFOjOCMNAzXtj8T+vk0J44eVMJClQQaaLwpTbENvjFOwek5QAzzTBRDJ9q00GWGICOivTNHUMtfmnF4l7Wr2sOrc6jjM0RQkdoCN0gmroHNXRNWoiFxGUomf0it6MJ+PFeDdG09YlYzazj/7A+PgBByiWkA==</latexit><latexit sha1_base64="nXuu1Sg2JihlkMaOSAlwwCcHVvE=">AAAB+XicbVBNS8NAEN34WeNHox71ECyCp5KKoN4KRRC8VDC20Iaw2W7apZtN2J2IIeaXeBMF6dWrP8OL/8btx0FbHww83pthZl6QcKbAcb6NpeWV1bX10oa5ubW9U7Z29+5VnEpCXRLzWLYDrChngrrAgNN2IimOAk5bwbAx9lsPVCoWizvIEupFuC9YyAgGLflW+cbPu0AfQYX5VaMofKviVJ0J7EVSm5FK/TAUjVH22fStr24vJmlEBRCOlerUnAS8HEtghNPC7KaKJpgMcZ92NBU4osrLJ4cX9rFWenYYS10C7In6eyLHkVJZFOjOCMNAzXtj8T+vk0J44eVMJClQQaaLwpTbENvjFOwek5QAzzTBRDJ9q00GWGICOivTNHUMtfmnF4l7Wr2sOrc6jjM0RQkdoCN0gmroHNXRNWoiFxGUomf0it6MJ+PFeDdG09YlYzazj/7A+PgBByiWkA==</latexit>

IV
<latexit sha1_base64="DjrMWdTmjr++mBXHJLhI+kSG5bA=">AAAB6nicbZDLSgMxFIbP1Fsdb1WXboJFcFVmRFBXFtzororTFtqhZNJMG5pkhiQjlKFv4E4UihsXvoTv4ca3Mb0stPpD4OP/zyHnnCjlTBvP+3IKS8srq2vFdXdjc2t7p7S7V9dJpggNSMIT1YywppxJGhhmOG2mimIRcdqIBleTvPFAlWaJvDfDlIYC9ySLGcHGWnc39U6p7FW8qdBf8OdQvvwYj98AoNYpfba7CckElYZwrHXL91IT5lgZRjgdue1M0xSTAe7RlkWJBdVhPp10hI6s00VxouyTBk3dnx05FloPRWQrBTZ9vZhNzP+yVmbi8zBnMs0MlWT2UZxxZBI0WRt1maLE8KEFTBSzsyLSxwoTY4/juq49g7+49F8ITioXFe/WK1dPYaYiHMAhHIMPZ1CFa6hBAARieIRneHGE8+SMnddZacGZ9+zDLznv33x5j9g=</latexit><latexit sha1_base64="gO8rVst+hJnrh+E8S3w4EAP/1/s=">AAAB6nicbZDNSgMxFIXv1L86/lVdugkWwVWZiqCuLLjRXRWnLbRDyaSZNjTJDElGKEPfwJ0oVLe+hO/hxrcx03ah1QOBj3PuJffeMOFMG8/7cgpLyyura8V1d2Nza3untLvX0HGqCPVJzGPVCrGmnEnqG2Y4bSWKYhFy2gyHV3nefKBKs1jem1FCA4H7kkWMYGOtu5tGt1T2Kt5U6C9U51C+/Jjkeq13S5+dXkxSQaUhHGvdrnqJCTKsDCOcjt1OqmmCyRD3aduixILqIJtOOkZH1umhKFb2SYOm7s+ODAutRyK0lQKbgV7McvO/rJ2a6DzImExSQyWZfRSlHJkY5WujHlOUGD6ygIlidlZEBlhhYuxxXNe1Z6guLv0X/JPKRcW79cq1U5ipCAdwCMdQhTOowTXUwQcCETzCM7w4wnlyJs7brLTgzHv24Zec92/be5Gd</latexit><latexit sha1_base64="gO8rVst+hJnrh+E8S3w4EAP/1/s=">AAAB6nicbZDNSgMxFIXv1L86/lVdugkWwVWZiqCuLLjRXRWnLbRDyaSZNjTJDElGKEPfwJ0oVLe+hO/hxrcx03ah1QOBj3PuJffeMOFMG8/7cgpLyyura8V1d2Nza3untLvX0HGqCPVJzGPVCrGmnEnqG2Y4bSWKYhFy2gyHV3nefKBKs1jem1FCA4H7kkWMYGOtu5tGt1T2Kt5U6C9U51C+/Jjkeq13S5+dXkxSQaUhHGvdrnqJCTKsDCOcjt1OqmmCyRD3aduixILqIJtOOkZH1umhKFb2SYOm7s+ODAutRyK0lQKbgV7McvO/rJ2a6DzImExSQyWZfRSlHJkY5WujHlOUGD6ygIlidlZEBlhhYuxxXNe1Z6guLv0X/JPKRcW79cq1U5ipCAdwCMdQhTOowTXUwQcCETzCM7w4wnlyJs7brLTgzHv24Zec92/be5Gd</latexit>

M1
<latexit sha1_base64="O1rSbfiUbNKWIeIk1gIUjLPlrSQ=">AAAB63icbVDLSgNBEOyNr7i+oh69DAbBU9gVQb0FvHgRIromkCxhdtKbDJmdXWZmhRDyCd5EQbz6Gf6BRy/+jZPHQRMLGoqqbrq7okxwbTzv2yksLa+srhXX3Y3Nre2d0u7evU5zxTBgqUhVI6IaBZcYGG4ENjKFNIkE1qP+5divP6DSPJV3ZpBhmNCu5DFn1Fjp9rrtt0tlr+JNQBaJPyPlavHzAyxq7dJXq5OyPEFpmKBaN30vM+GQKsOZwJHbyjVmlPVpF5uWSpqgDoeTU0fkyCodEqfKljRkov6eGNJE60ES2c6Emp6e98bif14zN/F5OOQyyw1KNl0U54KYlIz/Jh2ukBkxsIQyxe2thPWooszYdFzXtTH4808vkuCkclHxbmwcpzBFEQ7gEI7BhzOowhXUIAAGXXiEZ3hxpPPkvDpv09aCM5vZhz9w3n8AryGPJw==</latexit><latexit sha1_base64="aho+MbxO/ddKiTJ5HgU8rnYiXiE=">AAAB63icbVDLSsNAFL2prxhftS7dDC2Cq5KIoO4KunAjVDS20IYymU7aoZNJmJkIJfQT3ImCuNW/8A9cuvFvnD4W2nrgwuGce7n3njDlTGnX/bYKS8srq2v2urOxubW9U9wt3akkk4T6JOGJbIZYUc4E9TXTnDZTSXEcctoIB+djv3FPpWKJuNXDlAYx7gkWMYK1kW6uOl6nWHGr7gRokXgzUqnZnx+li/dyvVP8ancTksVUaMKxUi3PTXWQY6kZ4XTktDNFU0wGuEdbhgocUxXkk1NH6MAoXRQl0pTQaKL+nshxrNQwDk1njHVfzXtj8T+vlenoNMiZSDNNBZkuijKOdILGf6Muk5RoPjQEE8nMrYj0scREm3QcxzExePNPLxL/qHpWda9NHMcwhQ37UIZD8OAEanAJdfCBQA8e4AmeLWE9Wi/W67S1YM1m9uAPrLcfLreQRQ==</latexit><latexit sha1_base64="aho+MbxO/ddKiTJ5HgU8rnYiXiE=">AAAB63icbVDLSsNAFL2prxhftS7dDC2Cq5KIoO4KunAjVDS20IYymU7aoZNJmJkIJfQT3ImCuNW/8A9cuvFvnD4W2nrgwuGce7n3njDlTGnX/bYKS8srq2v2urOxubW9U9wt3akkk4T6JOGJbIZYUc4E9TXTnDZTSXEcctoIB+djv3FPpWKJuNXDlAYx7gkWMYK1kW6uOl6nWHGr7gRokXgzUqnZnx+li/dyvVP8ancTksVUaMKxUi3PTXWQY6kZ4XTktDNFU0wGuEdbhgocUxXkk1NH6MAoXRQl0pTQaKL+nshxrNQwDk1njHVfzXtj8T+vlenoNMiZSDNNBZkuijKOdILGf6Muk5RoPjQEE8nMrYj0scREm3QcxzExePNPLxL/qHpWda9NHMcwhQ37UIZD8OAEanAJdfCBQA8e4AmeLWE9Wi/W67S1YM1m9uAPrLcfLreQRQ==</latexit>

C1
<latexit sha1_base64="I5ImODF6w67/KMEcsq+Z3LGLgbA=">AAAB63icbVDLSgNBEOyNr7i+oh69DAbBU9gVQb0FcvEY0TWBZAmzk04yZHZ2mZkVwpJP8CYK4tXP8A88evFvnDwOmljQUFR1090VpYJr43nfTmFldW19o7jpbm3v7O6V9g/udZIphgFLRKKaEdUouMTAcCOwmSqkcSSwEQ1rE7/xgErzRN6ZUYphTPuS9zijxkq3tY7fKZW9ijcFWSb+nJSrxc8PsKh3Sl/tbsKyGKVhgmrd8r3UhDlVhjOBY7edaUwpG9I+tiyVNEYd5tNTx+TEKl3SS5QtachU/T2R01jrURzZzpiagV70JuJ/Xiszvcsw5zLNDEo2W9TLBDEJmfxNulwhM2JkCWWK21sJG1BFmbHpuK5rY/AXn14mwVnlquLd2DjOYYYiHMExnIIPF1CFa6hDAAz68AjP8OJI58l5dd5mrQVnPnMIf+C8/wCf248d</latexit><latexit sha1_base64="tFVRkguKhl+bmG2dWOYXdfmpxL4=">AAAB63icbVDLSsNAFL2prxhftS7dDC2Cq5KIoO4KdeGyorGFNpTJdNIOnUzCzEQooZ/gThTErf6Ff+DSjX/j9LHQ1gMXDufcy733hClnSrvut1VYWV1b37A3na3tnd294n7pTiWZJNQnCU9kK8SKciaor5nmtJVKiuOQ02Y4rE/85j2ViiXiVo9SGsS4L1jECNZGuql3vW6x4lbdKdAy8eakUrM/P0qX7+VGt/jV6SUki6nQhGOl2p6b6iDHUjPC6djpZIqmmAxxn7YNFTimKsinp47RkVF6KEqkKaHRVP09keNYqVEcms4Y64Fa9Cbif14709F5kDORZpoKMlsUZRzpBE3+Rj0mKdF8ZAgmkplbERlgiYk26TiOY2LwFp9eJv5J9aLqXps4TmEGGw6hDMfgwRnU4Aoa4AOBPjzAEzxbwnq0XqzXWWvBms8cwB9Ybz8fcZA7</latexit><latexit sha1_base64="tFVRkguKhl+bmG2dWOYXdfmpxL4=">AAAB63icbVDLSsNAFL2prxhftS7dDC2Cq5KIoO4KdeGyorGFNpTJdNIOnUzCzEQooZ/gThTErf6Ff+DSjX/j9LHQ1gMXDufcy733hClnSrvut1VYWV1b37A3na3tnd294n7pTiWZJNQnCU9kK8SKciaor5nmtJVKiuOQ02Y4rE/85j2ViiXiVo9SGsS4L1jECNZGuql3vW6x4lbdKdAy8eakUrM/P0qX7+VGt/jV6SUki6nQhGOl2p6b6iDHUjPC6djpZIqmmAxxn7YNFTimKsinp47RkVF6KEqkKaHRVP09keNYqVEcms4Y64Fa9Cbif14709F5kDORZpoKMlsUZRzpBE3+Rj0mKdF8ZAgmkplbERlgiYk26TiOY2LwFp9eJv5J9aLqXps4TmEGGw6hDMfgwRnU4Aoa4AOBPjzAEzxbwnq0XqzXWWvBms8cwB9Ybz8fcZA7</latexit>

Mm
<latexit sha1_base64="hpLSLdwqmFuZR5rI0nRCD1Wnqm4=">AAAB63icbVDLSsNAFL2prxpfVZduBovgqiQiqLuCGzdCRWMLbSiT6aQdOjMJMxMhhH6CO1EQt36Gf+DSjX/j9LHQ1gMXDufcy733RCln2njet1NaWl5ZXSuvuxubW9s7ld29e51kitCAJDxRrQhrypmkgWGG01aqKBYRp81oeDn2mw9UaZbIO5OnNBS4L1nMCDZWur3uim6l6tW8CdAi8WekWi9/foBFo1v56vQSkgkqDeFY67bvpSYssDKMcDpyO5mmKSZD3KdtSyUWVIfF5NQROrJKD8WJsiUNmqi/JwostM5FZDsFNgM9743F/7x2ZuLzsGAyzQyVZLoozjgyCRr/jXpMUWJ4bgkmitlbERlghYmx6biua2Pw559eJMFJ7aLm3dg4TmGKMhzAIRyDD2dQhytoQAAE+vAIz/DiSOfJeXXepq0lZzazD3/gvP8AClyPYw==</latexit><latexit sha1_base64="XWTGW5oZP94U4lUs4yxaaT99gr8=">AAAB63icbVDLSgNBEOyNr7i+Yjx6GRIET2EjgnoL6MGLENE1gWQJs5PZZMjM7DIzK4Qln+BNFMSr/oV/4NGLf+PkcdDEgoaiqpvurjDhTBvP+3ZyS8srq2v5dXdjc2t7p7BbvNNxqgj1Scxj1QyxppxJ6htmOG0mimIRctoIB+djv3FPlWaxvDXDhAYC9ySLGMHGSjdXHdEplL2KNwFaJNUZKdfynx/Fi/dSvVP4andjkgoqDeFY61bVS0yQYWUY4XTktlNNE0wGuEdblkosqA6yyakjdGCVLopiZUsaNFF/T2RYaD0Uoe0U2PT1vDcW//NaqYlOg4zJJDVUkumiKOXIxGj8N+oyRYnhQ0swUczeikgfK0yMTcd1XRtDdf7pReIfVc4q3rWN4ximyMM+lOAQqnACNbiEOvhAoAcP8ATPjnQenRfnddqac2Yze/AHztsPieOQgQ==</latexit><latexit sha1_base64="XWTGW5oZP94U4lUs4yxaaT99gr8=">AAAB63icbVDLSgNBEOyNr7i+Yjx6GRIET2EjgnoL6MGLENE1gWQJs5PZZMjM7DIzK4Qln+BNFMSr/oV/4NGLf+PkcdDEgoaiqpvurjDhTBvP+3ZyS8srq2v5dXdjc2t7p7BbvNNxqgj1Scxj1QyxppxJ6htmOG0mimIRctoIB+djv3FPlWaxvDXDhAYC9ySLGMHGSjdXHdEplL2KNwFaJNUZKdfynx/Fi/dSvVP4andjkgoqDeFY61bVS0yQYWUY4XTktlNNE0wGuEdblkosqA6yyakjdGCVLopiZUsaNFF/T2RYaD0Uoe0U2PT1vDcW//NaqYlOg4zJJDVUkumiKOXIxGj8N+oyRYnhQ0swUczeikgfK0yMTcd1XRtDdf7pReIfVc4q3rWN4ximyMM+lOAQqnACNbiEOvhAoAcP8ATPjnQenRfnddqac2Yze/AHztsPieOQgQ==</latexit>

Mm
<latexit sha1_base64="hpLSLdwqmFuZR5rI0nRCD1Wnqm4=">AAAB63icbVDLSsNAFL2prxpfVZduBovgqiQiqLuCGzdCRWMLbSiT6aQdOjMJMxMhhH6CO1EQt36Gf+DSjX/j9LHQ1gMXDufcy733RCln2njet1NaWl5ZXSuvuxubW9s7ld29e51kitCAJDxRrQhrypmkgWGG01aqKBYRp81oeDn2mw9UaZbIO5OnNBS4L1nMCDZWur3uim6l6tW8CdAi8WekWi9/foBFo1v56vQSkgkqDeFY67bvpSYssDKMcDpyO5mmKSZD3KdtSyUWVIfF5NQROrJKD8WJsiUNmqi/JwostM5FZDsFNgM9743F/7x2ZuLzsGAyzQyVZLoozjgyCRr/jXpMUWJ4bgkmitlbERlghYmx6biua2Pw559eJMFJ7aLm3dg4TmGKMhzAIRyDD2dQhytoQAAE+vAIz/DiSOfJeXXepq0lZzazD3/gvP8AClyPYw==</latexit><latexit sha1_base64="XWTGW5oZP94U4lUs4yxaaT99gr8=">AAAB63icbVDLSgNBEOyNr7i+Yjx6GRIET2EjgnoL6MGLENE1gWQJs5PZZMjM7DIzK4Qln+BNFMSr/oV/4NGLf+PkcdDEgoaiqpvurjDhTBvP+3ZyS8srq2v5dXdjc2t7p7BbvNNxqgj1Scxj1QyxppxJ6htmOG0mimIRctoIB+djv3FPlWaxvDXDhAYC9ySLGMHGSjdXHdEplL2KNwFaJNUZKdfynx/Fi/dSvVP4andjkgoqDeFY61bVS0yQYWUY4XTktlNNE0wGuEdblkosqA6yyakjdGCVLopiZUsaNFF/T2RYaD0Uoe0U2PT1vDcW//NaqYlOg4zJJDVUkumiKOXIxGj8N+oyRYnhQ0swUczeikgfK0yMTcd1XRtDdf7pReIfVc4q3rWN4ximyMM+lOAQqnACNbiEOvhAoAcP8ATPjnQenRfnddqac2Yze/AHztsPieOQgQ==</latexit><latexit sha1_base64="XWTGW5oZP94U4lUs4yxaaT99gr8=">AAAB63icbVDLSgNBEOyNr7i+Yjx6GRIET2EjgnoL6MGLENE1gWQJs5PZZMjM7DIzK4Qln+BNFMSr/oV/4NGLf+PkcdDEgoaiqpvurjDhTBvP+3ZyS8srq2v5dXdjc2t7p7BbvNNxqgj1Scxj1QyxppxJ6htmOG0mimIRctoIB+djv3FPlWaxvDXDhAYC9ySLGMHGSjdXHdEplL2KNwFaJNUZKdfynx/Fi/dSvVP4andjkgoqDeFY61bVS0yQYWUY4XTktlNNE0wGuEdblkosqA6yyakjdGCVLopiZUsaNFF/T2RYaD0Uoe0U2PT1vDcW//NaqYlOg4zJJDVUkumiKOXIxGj8N+oyRYnhQ0swUczeikgfK0yMTcd1XRtDdf7pReIfVc4q3rWN4ximyMM+lOAQqnACNbiEOvhAoAcP8ATPjnQenRfnddqac2Yze/AHztsPieOQgQ==</latexit>

Cm
<latexit sha1_base64="sYO7WzhZGcJWXPjhdsSFtH2bh/g=">AAAB63icbVDLSsNAFL2prxhfVZduBovgqiQiqLtCNy4rGltoQ5lMJ+3QmUmYmQgl9BPciYK49TP8A5du/Bunj4W2HrhwOOde7r0nzjjTxve/ndLK6tr6hrvpbW3v7O6V9w/udZorQkOS8lS1YqwpZ5KGhhlOW5miWMScNuNhfeI3H6jSLJV3ZpTRSOC+ZAkj2Fjptt4V3XLFr/pToGUSzEml5n5+gEWjW/7q9FKSCyoN4VjrduBnJiqwMoxwOvY6uaYZJkPcp21LJRZUR8X01DE6sUoPJamyJQ2aqr8nCiy0HonYdgpsBnrRm4j/ee3cJJdRwWSWGyrJbFGSc2RSNPkb9ZiixPCRJZgoZm9FZIAVJsam43mejSFYfHqZhGfVq6p/Y+M4hxlcOIJjOIUALqAG19CAEAj04RGe4cWRzpPz6rzNWkvOfOYQ/sB5/wH7B49Z</latexit><latexit sha1_base64="77TjYVGI5Che5iLUZkrAzJJzigQ=">AAAB63icbVDLSgNBEOyNr7i+Yjx6GRIET2FXBPUWiAePEV0TSJYwO5lNhszMLjOzQgj5BG+iIF71L/wDj178GyePgyYWNBRV3XR3RSln2njet5NbWV1b38hvulvbO7t7hf3inU4yRWhAEp6oZoQ15UzSwDDDaTNVFIuI00Y0qE38xj1VmiXy1gxTGgrckyxmBBsr3dQ6olMoexVvCrRM/DkpV/OfH8XL91K9U/hqdxOSCSoN4Vjrlu+lJhxhZRjhdOy2M01TTAa4R1uWSiyoDkfTU8foyCpdFCfKljRoqv6eGGGh9VBEtlNg09eL3kT8z2tlJj4PR0ymmaGSzBbFGUcmQZO/UZcpSgwfWoKJYvZWRPpYYWJsOq7r2hj8xaeXSXBSuah41zaOU5ghD4dQgmPw4QyqcAV1CIBADx7gCZ4d6Tw6L87rrDXnzGcO4A+ctx96nZB3</latexit><latexit sha1_base64="77TjYVGI5Che5iLUZkrAzJJzigQ=">AAAB63icbVDLSgNBEOyNr7i+Yjx6GRIET2FXBPUWiAePEV0TSJYwO5lNhszMLjOzQgj5BG+iIF71L/wDj178GyePgyYWNBRV3XR3RSln2njet5NbWV1b38hvulvbO7t7hf3inU4yRWhAEp6oZoQ15UzSwDDDaTNVFIuI00Y0qE38xj1VmiXy1gxTGgrckyxmBBsr3dQ6olMoexVvCrRM/DkpV/OfH8XL91K9U/hqdxOSCSoN4Vjrlu+lJhxhZRjhdOy2M01TTAa4R1uWSiyoDkfTU8foyCpdFCfKljRoqv6eGGGh9VBEtlNg09eL3kT8z2tlJj4PR0ymmaGSzBbFGUcmQZO/UZcpSgwfWoKJYvZWRPpYYWJsOq7r2hj8xaeXSXBSuah41zaOU5ghD4dQgmPw4QyqcAV1CIBADx7gCZ4d6Tw6L87rrDXnzGcO4A+ctx96nZB3</latexit>

BEC
<latexit sha1_base64="Vu9Ja5Hpth19+k/yDX2P/SuMvGM=">AAAB+XicbVBNS8NAEJ34WeNHox71ECyCp5KKoN6KRfBYwdhCW8pmu2mXbjZhdyKWmF/iTRTEq3/Fi//G7cdBWx8MPN6bYWZekAiu0fO+raXlldW19cKGvbm1vVN0dvfudZwqynwai1g1A6KZ4JL5yFGwZqIYiQLBGsGwNvYbD0xpHss7HCWsE5G+5CGnBI3UdYpX3ayN7BF1mF3X8rzrlLyyN4G7SCozUqoehrIKAPWu89XuxTSNmEQqiNatipdgJyMKORUst9upZgmhQ9JnLUMliZjuZJPDc/fYKD03jJUpie5E/T2RkUjrURSYzojgQM97Y/E/r5VieNHJuExSZJJOF4WpcDF2xym4Pa4YRTEyhFDFza0uHRBFKJqsbNs2MVTmn14k/mn5suzdmjjOYIoCHMARnEAFzqEKN1AHHyik8Ayv8GY9WS/Wu/UxbV2yZjP78AfW5w9zDpSl</latexit><latexit sha1_base64="elYsNF/0j66XsMw/NSivHSypcVc=">AAAB+XicbVBNS8NAEN34WeNHox71ECyCp5KKoN6KRfBYwdhCG8Jmu2mXbjZhdyKGmF/iTRSkV6/+DC/+G7cfB219MPB4b4aZeUHCmQLH+TaWlldW19ZLG+bm1vZO2drdu1dxKgl1Scxj2Q6wopwJ6gIDTtuJpDgKOG0Fw8bYbz1QqVgs7iBLqBfhvmAhIxi05FvlKz/vAn0EFebXjaLwrYpTdSawF0ltRir1w1A0Rtln07e+ur2YpBEVQDhWqlNzEvByLIERTguzmyqaYDLEfdrRVOCIKi+fHF7Yx1rp2WEsdQmwJ+rviRxHSmVRoDsjDAM1743F/7xOCuGFlzORpEAFmS4KU25DbI9TsHtMUgI80wQTyfStNhlgiQnorEzT1DHU5p9eJO5p9bLq3Oo4ztAUJXSAjtAJqqFzVEc3qIlcRFCKntErejOejBfj3RhNW5eM2cw++gPj4wf47paH</latexit><latexit sha1_base64="elYsNF/0j66XsMw/NSivHSypcVc=">AAAB+XicbVBNS8NAEN34WeNHox71ECyCp5KKoN6KRfBYwdhCG8Jmu2mXbjZhdyKGmF/iTRSkV6/+DC/+G7cfB219MPB4b4aZeUHCmQLH+TaWlldW19ZLG+bm1vZO2drdu1dxKgl1Scxj2Q6wopwJ6gIDTtuJpDgKOG0Fw8bYbz1QqVgs7iBLqBfhvmAhIxi05FvlKz/vAn0EFebXjaLwrYpTdSawF0ltRir1w1A0Rtln07e+ur2YpBEVQDhWqlNzEvByLIERTguzmyqaYDLEfdrRVOCIKi+fHF7Yx1rp2WEsdQmwJ+rviRxHSmVRoDsjDAM1743F/7xOCuGFlzORpEAFmS4KU25DbI9TsHtMUgI80wQTyfStNhlgiQnorEzT1DHU5p9eJO5p9bLq3Oo4ztAUJXSAjtAJqqFzVEc3qIlcRFCKntErejOejBfj3RhNW5eM2cw++gPj4wf47paH</latexit>

Figure 3.15: Encryptment in the HFC scheme for a 1-block header and m-block message.
For simplicity the diagram does not show the details of padding.

3.6 Building Encryptment from Hashing

In this section, we turn our attention to building secure and efficient encryptment schemes.

While the results of the previous section imply that we cannot achieve binding encryptment

matching the rate of OCB and GCM, we will build an encryptment scheme which does

match their efficiency in the metric of being single-pass. As we shall see in Section 3.7, our

scheme — called hash function chaining (HFC) — can be lifted to single-pass, many-time

secure ccAEAD via simple and efficient transforms. Our construction requires stronger

than usual security of the underlying compression function f (regarded as a PRF keyed

on its second input) — namely a form of related-key attack (RKA) security. Later in the

section we describe variants of the HFC scheme that avoid the RKA requirement, although

these are not as fast or elegant as the original scheme.

Construction overview. As one might expect given the close relationship between

binding encryptment and CR hashing, we take the latter as our starting point. A slightly

simplified version of our construction — called hash function chaining (HFC) — is shown in

Figure 3.15 (padding details are omitted), where f is a compression function. In summary,

the scheme hashes the key, associated data and message data (the latter two of which

are repeatedly XORed with the key). Intermediate chaining variables from the hash

computation are used as pads to encrypt the message data, while the final chaining variable

constitutes the binding tag.

Intuitively, (strong) receiver binding derives from the collision resistance of the underlying

hash function. We XOR the key into all the associated data and message blocks to

ensure that every application of the compression function is keyed. This is critical; just

prepending (or both prepending and appending) the key to the data leads to a scheme
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whose confidentiality is easily broken. Likewise, one cannot dispense with the additional

initial block that simply processes the key, otherwise the encoding of the key, associated

data, and message would not be injective and binding attacks result.

3.6.1 Notation, Padding Schemes, and Iterated Functions

Before defining the full scheme, we first give some additional definitions that will simplify

the presentation.

Padding schemes. Our scheme utilises a padding scheme PadS = (PadH,PadM,PadM,

PadSuf,Pad), which we now formalise. The padding scheme is parameterised by positive

integers d, n ∈ N; however, we omit these in the notation for simplicity. We assume

d ≥ n ≥ 128.

The header and message padding functions PadH, PadM take as input a pair (H,M), and

return tuples (H1, . . . ,Hh) and (M ′1, . . . ,M
′
m−1) respectively. We require that Hi,M

′
j ∈

{0, 1}d for i = 1, . . . , h, and j = 1, . . . ,m − 1. We abuse notation to let PadH(H,M)

(resp. PadM(H,M)) denote the concatenation of the blocks returned by these algorithms.

The online padding algorithm PadM takes as input a tuple (H,Mi, i) where Mi ∈ {0, 1}n,

and outputs M ′i ∈ {0, 1}d. We require that for any pair (H,M), it holds that

PadM(H,Mi, i) = M ′i for i = 1, . . . ,m − 1, where (M ′1, . . . ,M
′
m−1) ← PadM(H,M).

This allows PadM to be computed in an online manner, with the message data being

delivered in n-bit blocks. Finally, we define PadSuf to be the algorithm which takes

as input `H , `M ∈ N2 and a string X ∈ {0, 1}≤d, and outputs a string Y such that

Trunc|X|(Y ) = X and Y is a multiple of d-bits. The full padding function is then defined to

be Pad(H,M) = PadH(H,M) ‖PadM(H,M) ‖PadSuf(|H|, |M |,Mm) where Mm denotes

the final message block in the output of Parsen(M). Note that d divides |Pad(H,M)|.

Padding scheme properties. To prove the security of HFC as an encryptment scheme

we will require the padding scheme Pad to be injective; that is to say that if Pad(H,M) =

Pad(H ′,M ′) then it must be the case that (H,M) = (H ′,M ′). An example of such a

padding scheme is shown in Figure 3.16, and we shall assume that HFC is instantiated with

this scheme unless stated otherwise. Our padding scheme is a variant of MD-strengthening.

The header padding algorithm PadH simply pads the header H to a multiple of d-bits with
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PadH(H,M)

(H1, . . . , Hh)← Parsed(H ‖ 0d−|H| mod d)

Return (H1, . . . , Hh)

PadSuf(`H , `M ,Mm)

p← min{i ∈ N ∪ {0} : d | ((`M mod n) + i+ 128)}
Return Mm ‖ 0p ‖ (`H)64 ‖ (`M )64

PadM(H,M)

(M1, . . . ,Mm)← Parsen(M)

For i = 1, . . . ,m− 1

M ′i ←Mi ‖ 0d−n

Return (M ′1, . . . ,M
′
m−1)

PadM(H,Mi, i)

M ′i ←Mi ‖ 0d−n

Return M ′i

Figure 3.16: Padding scheme PadS = (PadH,PadM,PadM,PadSuf,Pad). We require that
`H , `M ∈ N.

zeroes, and parses the result as a sequence of d-bit blocks. The message padding algorithm

parses the message M into a series of n-bit blocks, pads all but the last of these to d-bits

with zeroes (as we will see, this is required for decryptability), and returns the result. The

suffix padding algorithm pads the final message block to a multiple of d-bits having, in

the MD-strengthening step, appended the length of the header and message both encoded

as 64-bit strings. Looking ahead, we will not rely on the strengthening for its traditional

purpose of forming a suffix-free padding scheme in our HFC construction. Instead, we use

strengthening only for injectivity and will assume more of the compression function f from

which HFC is built.

Extending to otCTXT-security. If we would additionally like to prove the otCTXT-

security of HFC, we require that the padding scheme satisfies the stronger property of

prefix-freeness, meaning that if (H,M) 6= (H ′,M ′) then Pad(H,M) is not a prefix of

Pad(H ′,M ′). This can be achieved by, for example, adding frame-bits to distinguish the

final block from the rest of the header and message data.

Iterated functions. Finally, we introduce notation for iterated compression functions.

Let f : {0, 1}n × {0, 1}d → {0, 1}n be a function for some d ≥ n ≥ 128, let D+ =

∪i≥1{0, 1}i·d, and let V0 ∈ {0, 1}n. Then f+ : {0, 1}n × D+ → {0, 1}n denotes the

iteration of f, where f+(V0, X1 ‖ · · · ‖Xm) = Vm is computed via Vi = f(Vi−1, Xi) for

1 ≤ i ≤ m.

With this in place, we are ready to present our encryptment scheme.
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3.6.2 The HFC Encryptment Scheme

The HFC encryptment scheme HFC = (HFC.Kg,HFC.Enc,HFC.Dec,HFC.Ver) is based on a

compression function f : {0, 1}n × {0, 1}d → {0, 1}n. The encryptment and decryptment

algorithms are presented in Figure 3.17.

HFC.Enc(KEC, H,M)

(H1, . . . , Hh)← PadH(H,M)

(M1, . . . ,Mm)← Parsen(M)

(M ′1, . . . ,M
′
m−1)← PadM(H,M)

V0 ← f(IV,KEC)

Vh ← f+
(
V0, (KEC ⊕H1) ‖ · · · ‖ (KEC ⊕Hh)

)
CEC ← ε

For i = 1, . . . ,m− 1 do

CEC ← CEC ‖ (Vh+i−1 ⊕Mi)

Vh+i ← f(Vh+i−1, (KEC ⊕M ′i))
CEC ← CEC ‖ (Vh+m−1 ⊕Mm)

M ′m,M
′
m+1 ← Parsed(PadSuf(|H|, |M |,Mm))

BEC ← f+(Vh+m−1, (KEC ⊕M ′m) ‖ (KEC ⊕M ′m+1))

Return (CEC, BEC)

HFC.Dec(KEC, H,CEC, BEC)

(H1, . . . , Hh)← PadH(H,CEC)

(C1, . . . , Cm)← Parsen(CEC)

V0 ← f(IV,KEC)

Vh ← f+
(
V0, (KEC ⊕H1) ‖ · · · ‖ (KEC ⊕Hh)

)
For i = 1, . . . ,m− 1 do

Mi ← Vh+i−1 ⊕ Ci ;M ′i ← PadM(H,Mi, i)

Vh+i ← f(Vh+i−1, (KEC ⊕M ′i))
Mm ← Vh+m−1 ⊕ Cm
M ′m,M

′
m+1 ← Parsed(PadSuf(|H|, |CEC|,Mm))

B′EC ← f+(Vh+m−1, (KEC ⊕M ′m) ‖ (KEC ⊕M ′m+1))

If B′EC 6= BEC then

Return ⊥
Return M1 ‖ · · · ‖Mm

Figure 3.17: The HFC encryptment scheme built from a compression function f : {0, 1}n×
{0, 1}d → {0, 1}n and padding scheme PadS = (PadH,PadM,PadM,PadSuf,Pad). Here
KEC ∈ {0, 1}d and IV ∈ {0, 1}n is a fixed public constant.

The key generation algorithm HFC.Kg chooses KEC ←$ {0, 1}d. Encryptment first pads

the header and message using the padding functions PadH and PadM respectively. We let

IV ∈ {0, 1}n be a fixed constant value (also called an initialisation vector). The scheme

computes an initial chaining variable as V0 = f(IV,KEC). It then hashes

Pad(H,M) = PadH(H,M) ‖PadM(H,M) ‖PadSuf(|H|, |M |,Mm)

(where Mm denotes the final block returned by Parsen(M)) with f+ (i.e., the iteration of

the compression function f), where the secret encryptment key KEC is XORed into each

d-bit block prior to hashing. The final chaining variable produced by this process forms

the binding tag BEC. Notice that while the compression function takes d-bit inputs, the

way in which the message data is padded means we only process n-bits of message in each

compression function call; looking ahead, this is to ensure decryptability. We will see that

the collision resistance of the iterated hash function when instantiated with a collision

resistant compression function for which it is hard to invert the IV implies the sr-BIND

security of the construction.

Rather than running a separate encryption algorithm alongside this process to encrypt the

message, we instead generate ciphertext blocks by XORing the message blocks Mi with
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intermediate chaining variables, yielding Ci = Vh+i−1⊕Mi for 1 ≤ i ≤ m where h denotes

the number of header blocks. Recall that in our notation X ⊕ Y silently truncates the

longer string to the length of the shorter string, and so only the n-bits of message data in

each d-bit padded message block is XORed with the n-bit chaining variable. Similarly, if

message M is such that |M | mod n = r, then the final ciphertext block produced by this

process is truncated to the leftmost r-bits. The properties of the compression function

ensure that the chaining variables are pseudorandom, thus yielding the required otROR

security. By ‘reusing’ chaining variables as random pads we can achieve encryptment with

no additional overhead over just computing the binding tag, yielding better efficiency (see

further discussion below).

Decryptment via HFC.Dec(KEC, H,CEC, BEC) begins by padding H into d-bit blocks via

PadH(H,M) and parsing CEC into n-bit blocks. The algorithm computes the initial chain-

ing variable as V0 = f(IV,KEC), then hashes the padded header as in encryptment. The

scheme then recovers the first message block M1 by XORing the resulting chaining vari-

able into the first ciphertext block C1. This is padded via the online padding function

PadM(H,M1, 1) and then used to compute the next chaining variable via application of f,

and so on. Notice how at most n-bits of message data is recovered in each such step; this

is why we must process only n-bits of message data in each compression function call, else

the decryptor would be unable to compute the next chaining variable. Finally HFC.Dec

recomputes and verifies the binding tag, returning the message only if this check passes.

On input (H,M,KEC, BEC), the verification algorithm (not shown) pads the header and

message to PadH(H,M) ‖PadM(H,M) ‖PadSuf(|H|, |M |,Mm), XORs KEC into every

block, and hashes the resulting string with f+ with initial chaining variable V0 = f(IV,KEC),

checking that the output matches the binding tag BEC.

Efficiency. The efficiency of the scheme (in terms of throughput) depends on the pa-

rameters d, n, where recall that f : {0, 1}n × {0, 1}d → {0, 1}n. As discussed previously

at most n-bits of message data can be processed in each compression function call. As

such, HFC achieves optimal throughput when d = n. In this case, no padding is applied

to the message blocks (beyond padding the last block to d-bits), and so computing the

full encryptment incurs no overhead over simply hashing the header and message with the

iteration of f.
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AltPadH(H,M)

(H1, . . . , Hh)← Parsed−n(H)

(M1, . . . ,Mm)← Parsen(M)

β ← min(m,h)

If β = h then

Return ε

Else (Hβ+1, . . . , Hh)← Parsed(Hβ+1 ‖ . . . ‖Hh)

Hh ← Hh ‖ 0d−|H| mod d

Return (Hβ+1, . . . , Hh)

AltPadM(H,M)

(H1, . . . , Hh)← Parsed−n(H)

(M1, . . . ,Mm)← Parsen(M)

β ← min(m,h)

For i = 1, . . . , β do

Xi ←Mi ‖Hi
If β = h then for i = β + 1, . . . ,m− 1

M ′i ←Mi ‖ 0d−n

Return (X1, . . . , Xβ ,M
′
β+1, . . . ,M

′
m−1)

AltPadM(H,Mi, i)

(H1, . . . , Hh)← Parsed−n(H)

If i ≤ h then

M ′i ←Mi ‖Hi
Else M ′i ←Mi ‖ 0d−n

Return M ′i

Figure 3.18: Alternative padding scheme AltPadS.

If d > n then some throughput is lost due to padding. We present an alternative padding

scheme for this case which recovers some throughput by padding message blocks with

header data. In more detail, consider the padding scheme AltPadS = (AltPadH,AltPadM,

AltPadM,AltPadSuf,AltPad) shown in Figure 3.18, where AltPadSuf is defined identi-

cally to PadSuf in Figure 3.16. The scheme parses the message data into n-bit blocks and

the header data into (d−n)-bits blocks. It then constructs d-bit blocks by padding the mes-

sage blocks with header blocks. Any header / message data remaining after this process

is padded unambiguously similarly to the previous scheme (Figure 3.16). It is straight-

forward to verify that the resulting padding function AltPad(H,M) = AltPadH(H,M) ‖

AltPadM(H,M) ‖AltPadSuf(|H|, |M |,Mm) is injective.

3.6.3 Analysing the HFC Encryptment Scheme

We now analyse the security of HFC relative to the security goals detailed in Section 3.4.

Strong receiver binding. We begin by proving that HFC satisfies strong receiver bind-

ing provided the underlying padding function is injective. Observe that the binding tag

computation performed by the encryptment algorithm HFC.Enc is equivalent to hashing

an encoding of the input tuple (KEC, H,M) with f+. The encoding — which consists of

padding the header and message, XORing the key KEC into each block, and then prepend-

ing KEC — is injective provided the padding function Pad is injective. As such, any tuple

breaking the sr-BIND security of HFC corresponds to a collision against f+.

99



3.6 Building Encryptment from Hashing

A well-known result [52] gives that f+ is CR provided the underlying compression function

is both CR and such that it is hard to find an input which hashes to the initialisation

vector IV . Standard compression functions satisfy both properties. The conditions on

d, n in the theorem can be relaxed; the conditions arise from our choice of padding.

Theorem 3.3. Let HFC be as shown in Figure 3.17, built from a compression function

f : {0, 1}n×{0, 1}d → {0, 1}n for d ≥ n ≥ 128 and instantiated with an injective padding

scheme PadS. Then for any adversary A in game sr-BIND against HFC, we can construct

an adversary B such that

Advsr-bind
HFC (A) ≤ Advcr

f+(B) ,

where adversary B runs in the same time as A.

Proof. We first introduce some notation. Recall that Pad(H,M) = PadH(H,M) ‖

PadM(H,M) ‖PadSuf(|H|, |M |,Mm). For a header / message pair (H,M) such that

(X1, . . . , X`)← Parsed(Pad(H,M)), we define

P(KEC, H,M) = KEC||(X1 ⊕KEC)|| . . . ||(X` ⊕KEC) .

Notice that HFC computes the binding tag of a triple (KEC, H,M) as

BEC = f+(IV,P(KEC, H,M)).

Consider an attacker B in the CR game against f+. B runs the sr-BIND attacker A

as a subroutine. Now suppose that A wins game sr-BIND against HFC with tuple

((KEC, H,M), (K ′EC, H
′,M ′), BEC). Since verification HFC.Ver works by recomputing the

binding tag and checking for equality, a win for A corresponds to finding (KEC, H,M) 6=

(K ′EC, H
′,M ′) such that f+(IV,P(KEC, H,M)) = f+(IV,P(K ′EC, H

′,M ′)) = BEC. We

claim that such a win forA allows B to construct a winning collision in the CR game against

f+. To see this notice that P is injective, meaning that for all (KEC, H,M), (K ′EC, H
′,M ′),

P(KEC, H,M) = P(K ′EC, H
′,M ′) implies that (KEC, H,M) = (K ′EC, H

′,M ′). To justify

this, notice that since KEC is prepended to the output of P the padded strings are clearly

different if KEC 6= K ′EC. On the other hand if KEC = K ′EC, then P(KEC, H,M) =

P(K ′EC, H
′,M ′) implies that Pad(H,M) = Pad(H ′,M ′). This in turns implies that

(H,M) = (H ′,M ′) by the injectivity of Pad(H,M).

As such, any winning tuple ((KEC, H,M), (K ′EC, H
′,M ′), BEC) for A breaking the sr-BIND

security of HFC corresponds to a winning pair (P(KEC, H,M),P(K ′EC, H
′,M ′)) for B in
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the CR game against f+. It follows that

Advsr-bind
HFC (A) ≤ Advcr

f+(B) ,

where B runs in the same time as A, as required.

Sender binding and correctness. Since the binding tag is recomputed and verified

during decryption with HFC.Dec, it is clear that an attacker can never construct a cipher-

text which decrypts correctly but for which verification fails. As such, for all attackers C

it holds that

Advs-bind
HFC (C) = 0 .

Similarly, it is straightforward to verify that the scheme is strongly correct. Moreover,

since sr-BIND security implies r-BIND security, we know that for any attacker A in game

r-BIND against HFC there exists an attacker A′ running in the same time as A such that

Advr-bind
HFC (A) ≤ Advsr-bind

HFC (A′). With these three conditions in place, applying Lemma 3.1

and Theorem 3.3 implies that for any attacker A in the SCU game against HFC, there

exists an attacker B such that

Advscu
HFC(A) ≤ Advcr

f+(B) .

One-time confidentiality. All that remains to prove that HFC is a secure encryptment

scheme is to bound its otROR security. We analyse this in the next theorem, by reducing

the otROR security of HFC to the RKA-PRF security [17] of f for a specific class of

related-key deriving functions.

RKA-PRF security. Our variant of RKA-PRF security allows an attacker to query a

keyed function F under linearly related keys; we require that F behaves like an independent

random function for each related key. Let F : {0, 1}n × {0, 1}d → {0, 1}n be a function,

and consider the games RKA-PRF0 and RKA-PRF1 defined as follows. In both games

the attacker is given access to an oracle to which he may submit queries of the form

(X,Y ) ∈ {0, 1}n×{0, 1}d. In game RKA-PRF0, the oracle returns F (X,Y ⊕Kprf) where

Kprf ∈ {0, 1}d is a PRF key. In game RKA-PRF1, the oracle returns a random value for

each fresh query and answers consistently for repeated queries. The linear-only RKA-PRF

advantage of an adversary A who makes at most q queries to their real-or-random oracle
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is defined

Adv⊕-prf
F (A, q) =

∣∣Pr
[

RKA-PRF0AF ⇒ 1
]
− Pr

[
RKA-PRF1AF ⇒ 1

]∣∣ .
We bound the otROR security of HFC by a game hopping argument, first arguing that we

can replace the compression function with lazily sampled random functions (one for each

related key) by a reduction to the RKA-PRF security of f, and then replacing the random

function outputs with random bit strings using a birthday bound argument. We formalise

this in the following theorem.

Theorem 3.4. Let HFC be as shown in Figure 3.17, built from a compression function

f : {0, 1}n×{0, 1}d → {0, 1}n for d ≥ n ≥ 128 and instantiated with an injective padding

scheme PadS. Let A be an otROR adversary whose encryption query totals at most `

blocks of d bits after padding. Then there exists an adversary B such that

Advot-ror
HFC (A) ≤ Adv⊕-prf

f (B, `+ 1) +
(`+ 1)2

2n+1
.

B runs in the same time as A plus an O(`) overhead.

Proof. We argue by a series of game hops, shown in Figure 3.19. We begin by defining

G0, which is equivalent to game otROR0 against HFC; it follows that

Pr
[

otROR0AHFC ⇒ 1
]

= Pr [G0 ⇒ 1 ] .

Next we define game G1, which is identical to G0 except for each Y ∈ {0, 1}d we replace

f(·,KEC⊕Y ) with a lazily sampled random function. We claim that there exists an attacker

B in game RKA-PRF against f with the claimed run time, such that

|Pr [G0 ⇒ 1 ]− Pr [G1 ⇒ 1 ]| ≤ Adv⊕-prf
f (B, `+ 1) .

To see this, let B proceed as follow. B simulates A’s encryption oracle using its own RoR

oracle as follows. On input (H,M), B pads and partitions the message as per the scheme.

B then computes the encryptment following the pseudocode description of encryptment

algorithm HFC.Enc, submitting a query (V, Y ) to his RoR oracle every time HFC.Enc would

compute f(V, (KEC ⊕ Y )). Notice that B makes precisely ` + 1 queries; one for each of

the ` blocks of padded header and message data, plus an additional query to compute

the initial chaining variable V0 ← f(IV,KEC). B then returns the resulting ciphertext and

binding tag (CEC, BEC) to A and at the end of the game outputs whatever bit A does.

Notice that if B’s oracle is returning real compression function outputs then this perfectly

simulates game G0, otherwise it perfectly simulates game G1; a straightforward argument

then implies the claim.
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Next we define game G2 (not shown), which is identical to G1 except the lazily sampled

random functions no longer maintain consistency in repeated queries, instead returning

a random string in response to each query. Games G1 and G2 run identically unless the

random function is queried on the same input twice. Notice that this may only occur if one

of the randomly sampled n-bit chaining variables collides with either another randomly

sampled n-bit chaining variable or with the initialisation vector IV ∈ {0, 1}n. Supposing

A’s query is such that the message / header have a combined length of ` d-bit blocks after

padding, then a standard argument using a birthday bound implies that

|Pr [G1 ⇒ 1 ]− Pr [G2 ⇒ 1 ]| ≤ (`+ 1)2

2n+1
,

where the plus one in the numerator again follows from the extra compression function

call required to compute V0. Moreover notice that in game G2 both CEC and BEC are

identically distributed to random bit strings, and so

Pr [G2 ⇒ 1 ] = Pr
[

otROR1AHFC ⇒ 1
]
.

Combining the above via a standard argument then completes the proof.

One-time integrity and ccAEAD security. In the following theorem, we bound the

otCTXT security of HFC under the additional assumption that the padding scheme used is

prefix-free. As discussed in Section 3.4, this result, combined with those above, implies that

HFC (reframed in the ccAEAD syntax) is a one-time secure ccAEAD scheme. Afterwards,

we will discuss why prefix-freeness is necessary.

The following theorem bounds the advantage of an attacker A in game otCTXT against

HFC. The proof first argues that we can replace compression function calls with ran-

dom function outputs, via a reduction to the RKA-PRF security of f. It then uses the

prefix-freeness of the padding scheme to argue that (barring accidental collisions amongst

intermediate chaining variables, accounting for the birthday bound term in the security

bound), each binding tag is computed as the result of a fresh query to the random func-

tion and so the probability that A can guess the value of an unseen binding tag is small.

Formally arguing this point is surprisingly subtle, and constitutes the main technical chal-

lenge in the proof. With this in place we then bound A’s guessing probability, accounting
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proc. main // G0

KEC←$ {0, 1}d

query-made← false

b←$AEnc(·,·)

Return b

proc. Enc(H,M) // G0

If query-made = true then return ⊥
query-made← true

H1, . . . , Hh ← PadH(H,M)

M1, . . . ,Mm ← Parsen(M)

M ′1, . . . ,M
′
m−1 ← PadM(H,M)

V0 ← f(IV,KEC)

For i = 1, . . . , h

Vi ← f(Vi−1, (KEC ⊕Hi))
CEC ← ε

For i = 1, . . . ,m− 1 do

CEC ← CEC ‖ (Vh+i−1 ⊕Mi)

Vh+i ← f(Vh+i−1, (KEC ⊕M ′i))
CEC ← CEC ‖ (Vh+m−1 ⊕Mm)

M ′m,M
′
m+1 ← Parsed(PadSuf(|H|, |M |,Mm))

α← max{i : |M ′m+i| > 0}
For i = 0, α

Vh+m+i ← f(Vh+m+i−1, (KEC ⊕M ′m+i))

BEC ← Vh+m+α

Return (CEC, BEC)

proc. main // G1

KEC←$ {0, 1}d

query-made← false

b←$AEnc(·,·)

Return b

proc. Enc(H,M) // G1

If query-made = true then return ⊥
query-made← true

H1, . . . , Hh ← PadH(H,M)

M1, . . . ,Mm ← Parsen(M)

M ′1, . . . ,M
′
m−1 ← PadM(H,M)

F [IV,KEC]←$ {0, 1}n ;V0 ← F [IV,KEC]

For i = 1, . . . , h

If F [Vi−1, (KEC ⊕Hi)] = ⊥ then

F [Vi−1, (KEC ⊕Hi)]←$ {0, 1}n

Vi ← F [Vi−1, (KEC ⊕Hi)]
CEC ← ε

For i = 1, . . . ,m− 1 do

CEC ← CEC ‖ (Vh+i−1 ⊕Mi)

If F [Vh+i−1, (KEC ⊕M ′i)] = ⊥ then

F [Vh+i−1, (KEC ⊕M ′i)]←$ {0, 1}n

Vh+i ← F [Vh+i−1, (KEC ⊕M ′i)]
CEC ← CEC ‖ (Vh+m−1 ⊕Mm)

M ′m,M
′
m+1 ← Parse(PadSuf(|H|, |M |,Mm))

α← max{i : |M ′m+i| > 0}
For i = 0, α

If F [Vh+m+i−1, (KEC ⊕M ′m+i)] = ⊥ then

F [Vh+m+i−1, (KEC ⊕M ′m+i)]←$ {0, 1}n

Vh+m+i ← F [Vh+m+i−1, (KEC ⊕M ′m+i)]

BEC ← Vh+m+α

Return (CEC, BEC)

Figure 3.19: Games for proof of Theorem 3.4.

for the final term in the bound.

Theorem 3.5. Let HFC be as shown in Figure 3.17, built from a compression function

f : {0, 1}n×{0, 1}d → {0, 1}n for d ≥ n ≥ 128 and instantiated with a prefix-free padding

scheme PadS. Let A be an otCTXT adversary who makes qc ChalDec queries among

which there are q1 distinct header / ciphertext pairs (H,CEC). Suppose that the header

/ message (from the single query to oracle Enc) and the q1 distinct header / ciphertexts

(from the queries to oracle ChalDec) have a combined length of ` blocks of d bits after

padding. Then there exists an adversary B such that

Advot-ctxt
HFC (A, qc) ≤ Adv⊕-prf

f (B, `+ 1) +
(`+ 1)2

2n+1
+

qc
2n − `− 1

.

The adversary B runs in the same time as A plus an O(`) overhead.

Proof. We argue by a series of game hops. We begin by defining game G0 to be equivalent

to game otCTXT against HFC. We may assume without loss of generality that A never

repeats a query to ChalDec nor queries the tuple (H∗, C∗EC, B
∗
EC) where (C∗EC, B

∗
EC) is the
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encryptment returned in response to A’s Enc query (H∗,M∗), since such a query will

always result in ⊥ being returned. More generally, we may assume that A never makes

a ChalDec query of the form (H∗, C∗EC, BEC) for some BEC 6= B∗EC, where again starred

values correspond to the challenge Enc query, since due to the strong correctness of the

scheme the binding tag must be incorrect and so decryptment will return an error. Finally,

we may assume that A never makes a ChalDec query containing e.g., a malformed block

or a point outside the header / ciphertext space of the scheme which would lead the ‘first

phase’ of decryptment (by which we mean the steps which recover the message underlying

the ciphertext) to return an error, since this cannot possibly correspond to a winning

query. As such, to each ChalDec query (H,CEC, BEC) made by A we may associate a

pair (H,M) which will be recovered in the first decryptment phase from (H,CEC) (even

if HFC.Dec ultimately returns an error due to the incorrect binding tag). Moreover, due

to the strong correctness of the scheme it follows that if (H,CEC) 6= (H ′, C ′EC) then the

associated header / message pairs (H,M), (H,M ′) will be distinct also.

With this in place we now define game G1, which is identical to G0 except each fresh query

to the compression function f is answered with an n-bit random bit string as opposed to

the output of the function. A lookup table is maintained to ensure that responses to

repeated queries are consistent. An analogous argument to that made in the proof of

Theorem 3.4 implies that there exists an attacker B in the RKA-PRF game against f with

the claimed query budget such that

|Pr [G0 ⇒ 1 ]− Pr [G1 ⇒ 1 ]| ≤ Adv⊕-prf
f (B, `+ 1) .

Next we define game G2, which is identical to G1 except we modify oracle ChalDec to de-

crypt queries for which the header / ciphertext pair (H,CEC) have previously been queried

to ChalDec by table look-up. In more detail, table D is initialised to ⊥. Each time ChalDec

is queried on a tuple (H,CEC, B
′
EC) such that D[H,CEC] = ⊥, ChalDec runs HFC.Dec and

sets D[H,CEC] = (M,BEC) where M is the message recovered during decryption and BEC

is the (correct) binding tag for this pair which is computed during decryption. Subse-

quently if ChalDec is queried on a tuple (H,CEC, B
′
EC) such that D[H,CEC] 6= ⊥ it simply

checks if BEC = B′EC, returning M if so and ⊥ otherwise. This is a purely syntactic change

which does not affect the outcome of the game, and so it follows that

Pr [G1 ⇒ 1 ] = Pr [G2 ⇒ 1 ] .

Next we define game G3, which is identical to game G2 except if one of the random strings

sampled to respond to a fresh query to f collides with a previously sampled string or the
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initialisation vector IV then we sample again such that this is not the case. Notice that

these games run identically unless such a collision occurs, an event we denote coll. The

Fundamental Lemma of Game Playing therefore implies that

|Pr [G2 ⇒ 1 ]− Pr [G3 ⇒ 1 ]| ≤ Pr [ coll in G2 ] .

We now bound this probability. Let (H0,M0) denote the query made by A to Enc. Sup-

pose that, extracting the header and ciphertext components of A’s qc ChalDec queries,

these contain q1 distinct and chronologically ordered pairs (H1, C1
EC), . . . , (Hq1 , Cq1EC), and

let (H1,M1), . . . , (Hq1 ,M q1) denote the pairs of headers and underlying messages corre-

sponding to these queries. Moreover, following from the discussion at the beginning of the

proof, it must be the case that (H i,M i) 6= (Hj ,M j) for 0 ≤ i < j ≤ q1. Recall that the

total padded length of these messages in d-bit blocks is equal to `. Notice that at most

(` + 1) strings will be sampled while processing these queries (the plus one term arising

from the initial query of (IV,KEC) required to compute the initial chaining variable V0),

and so a birthday bound implies that

Pr [ coll in G2 ] ≤ (`+ 1)2

2n+1
.

We now argue that in game G3 each binding tag B0
EC, . . . , B

q1
EC is computed as the result

of a fresh query to f, and is chosen randomly from a set of size at least 2n − `− 1. To see

this, consider computing the binding tag for each of the padded strings Pad(H0,M0), . . . ,

Pad(Hq1 ,M q1) in G3, which are of length `0, . . . , `q1 in d-bit blocks respectively. To

Pad(H i,M i), we let (V i
0 , . . . , V

i
`i

) denote the set of chaining variables passed through

during the binding tag computation, where V i
0 = f(IV,KEC) = V j

0 for all 0 ≤ i <

j ≤ q1, and Bi
EC = V i

`i
. We let |LCP(i, j)| denote the length of the longest com-

mon prefix in d-bit blocks of Pad(H i,M i) and Pad(Hj ,M j). More formally, we let

|LCP(i, j)| = max{k : Trunck·d(Pad(H i,M i)) = Trunck·d(Pad(Hj ,M j))}. We let

|LCP(j)| = max0≤i<j |LCP(i, j)|; that is to say, the length of the longest prefix in d-

bit blocks that Pad(Hj ,M j) shares with any previously processed padded message. We

abuse notation to let M j
k denote the kth d-bit block of Pad(Hj ,M j).

We claim that the following two statements hold: (1) Let 1 ≤ j ≤ q1, and p = |LCP(j)|.

Then for all 0 ≤ i < j such that LCP(i, j) = p, it holds that p < min(`i, `j); and (2)

consider the binding tag computation for padded messages Pad(H i,M i) and Pad(Hj ,M j)

where 0 ≤ i < j ≤ q1, and suppose that of the associated series of chaining variables it

holds that V i
k = V j

k′ for some 0 ≤ k ≤ `i, 0 ≤ k′ ≤ `j . Then it must be the case that k = k′

and the first k blocks of Pad(H i,M i) and Pad(Hj ,M j) are equal.
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To see that (1) holds, first recall that the padding scheme Pad is prefix-free. Since

by assumption (H i,M i) 6= (Hj ,M j) for all 0 ≤ i < j ≤ q1, it must be the case that

Pad(H i,M i) is not a prefix of Pad(Hj ,M j) or vice versa. As such they must differ in at

least one d-bit block, and so it follows that |LCP(i, j)| < min(`i, `j).

For (2), note that if k = k′ = 0 then the statement is vacuously true, and so we sup-

pose for the remainder of the proof that at least one of k, k′ is non-zero. Suppose for

a contradiction there exist Pad(H i,M i),Pad(Hj ,M j) which share a common chaining

variable V i
k = V j

k′ , but for which the claim does not hold. Since the strings returned

in response to compression function calls are sampled without replacement in G3, dis-

tinct queries will always return distinct responses. Suppose that k, k′ > 0 (the case in

which one of k, k′ equals 0 is entirely analogous). Then V i
k , V

j
k′ are computed by querying

(V i
k−1, (KEC ⊕M i

k)) and (V j
k′−1, (KEC ⊕M j

k′)) to f respectively. As such, it must be the

case that V i
k−1 = V j

k′−1 and M i
k = M j

k . Repeatedly applying this argument yields that

V i
k−α = V j

k′−α and M i
k−α+1 = M j

k′−α+1 for all α = 1, . . . ,min(k, k′). Suppose first that

k 6= k′, and suppose without loss of generality that k < k′. This implies that V i
0 = V j

k′−k

where k′ − k ≥ 1. Moveover, since V i
0 = f(IV,KEC) this implies that V j

k′−k−1 = IV .

However, this is impossible since V j
k′−k−1 must have been computed by via a call to f and

in the hop to G3 we effectively removed IV from the range of f. Therefore it must be the

case that k = k′, and so by the previous argument (M i
1, . . . ,M

i
k) = (M j

1 , . . . ,M
j
k) also,

proving the claim.

With this in place, consider computing the binding tag for a message Pad(Hj ,M j), where

p = |LCP(j)|. Let Prevj = {Pad(Hk,Mk)}0≤k<j be the set of padded header / message

pairs resulting from the first j − 1 queries to ChalDec and the single query to Enc. Let

Xj = {Pad(H i,M i) ∈ Prevj : LCP(i, j) = p}; in other words, the set of previously

processed padded header / message pairs which share a prefix of length p blocks with

Pad(Hj ,M j). Due to the consistency in responses to repeated queries to the compression

function, it is clearly the case that for all Pad(H i,M i) ∈ Xj it holds that (V i
0 , . . . , V

i
p ) =

(V j
0 , . . . , V

j
p ). Since by (1) it must be the case that p < `i, `j , it follows that M i

p+1,M
j
p+1 6=

ε, and moreover the next chaining variable for Pad(Hj ,M j) will be computed via querying

(V j
p , (KEC ⊕M j

p+1)) to f.

We claim that this will be a fresh query to f and so will be answered with a string chosen

uniformly from the set of at least 2n − ` − 1 unused points. To see this, notice that for
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all Pad(H i,M i) ∈ Xj it holds that M i
p+1 6= M j

p+1, since otherwise this would contradict

the maximality of p. Now (2) implies that V j
p cannot equal V i

k for any Pad(H i,M i),

0 ≤ i < j and 0 ≤ k ≤ `i unless Pad(H i,M i) ∈ Xj and k = p. This implies that V j
p has

not been queried to f at any point during the computation of the first j binding tags other

than during the computation of the (p + 1)st chaining variable for strings in Xj . Since

we have already argued that all such queries have a distinct message block and so do not

collide, it follows that (V j
p , (KEC ⊕M j

p+1)) represents a fresh query to f, and so V j
p+1 is

chosen uniformly from the set of available points. This in turn forces the query made to

compute the next chaining variable to be distinct from all points previously queried, and

so repeatedly applying the same argument implies the binding tag Bj
EC = V j

`j
is the result

of a fresh query also. Finally, since at most (` + 1) chaining variables are sampled while

processing the padded queries of combined length ` d-bit blocks, and the random strings

returned in response to fresh f queries are sampled without replacement (and from a set

excluding IV ∈ {0, 1}n), it follows that each binding tag is chosen from a set of size at

least (2n − `− 1), proving the claim.

We conclude by bounding the probability that A makes a winning query to ChalDec,

an event we denote win. For 1 ≤ i ≤ q1, we mark the event that A makes a query

(H i, CiEC, B
′
EC) to ChalDec such that B′EC = Bi

EC by setting a flag wini. Suppose that A

makes ai queries with header / ciphertext (H i, CiEC), and notice that
∑q1

i=1 ai = qc. It

follows that

Pr [ win = true ] = Pr [∨q1i=1wini = true ]

≤
q1∑
i=1

ai∑
j=1

Pr
[

wini set by jth query of form (H i, CiEC, ·)
]

≤
q1∑
i=1

ai∑
j=1

1

2n − `− 1

≤ qc
2n − `− 1

.

The first inequality follows from a union bound. The second inequality follows since each

binding tag is chosen uniformly from a set of size at least 2n − `− 1. The final inequality

follows since
∑q1

i=1 ai = qc.

Necessity of prefix-free padding. We note that without a prefix-free padding scheme,
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HFC is not otCTXT secure in general. Indeed for the padding scheme of Figure 3.16, an

attacker can construct a pair (H,M) for his Enc query such that a prefix of Pad(H,M) is

equal to Pad(H,M ′) for some (H,M) 6= (H,M ′). By choosing (H,M) such that the bind-

ing tag for (H,M ′) is among the random pads used to encrypt M , A can then recover the

correct binding tag and random pads for (H,M ′) from the ciphertext CEC corresponding

to (H,M). This in turn enables A to construct a valid forgery for (H,M ′).

The attack. For an example of this attack, suppose that HFC is instantiated with a

compression function f : {0, 1}128 × {0, 1}128 → {0, 1}128 and the padding scheme PadS

shown in Figure 3.16. We will demonstrate an efficient adversary A such that

Advot-ctxt
HFC (A, 1) = 1 .

Let A be the attacker in game otCTXT who proceeds as follows. A picks an arbitrary

message M∗ ∈ {0, 1}128. It is straightforward to verify that Pad(ε,M∗) = M ′1 ‖M ′2 where

M ′1 = M∗ and M ′2 = (0)64 ‖ (128)64. As such, letting V0 = f(IV,KEC), it holds that the

encryptment under KEC of (ε,M∗) will be

(CEC, BEC) = (V0 ⊕M ′1, f+(V0, (KEC ⊕M ′1) ‖ (KEC ⊕M ′2)) . (3.4)

A uses his single Enc query to submit (H,M) = (ε,M∗ ‖ (0)64 ‖ (128)64 ‖ M̂) for some

arbitrary M̂ ∈ {0, 1}128 to his Enc oracle. It is straightforward to verify that for the

padding scheme in Figure 3.16 it holds that Pad(H,M) = M ′1 ‖M ′2 ‖M ′3 ‖M ′4, where M ′1 =

M∗, M ′2 = (0)64 ‖ (128)64, M ′3 = M̂ , and M ′4 = (0)64 ‖ (384)64. As such, the encryptment

received by A in response to their Enc query will be of the form (C1 ‖C2 ‖C3, B
′
EC) where

C1 = V0⊕M ′1, C2 = f+(V0, (KEC⊕M ′1))⊕M ′2, C3 = f+(V0, (KEC⊕M ′1) ‖ (KEC⊕M ′2))⊕M ′3,

and B′EC = f+(V0, (KEC⊕M ′1) ‖ . . . ‖ (KEC⊕M ′4)). In particular, notice that C1 is identical

to CEC in Equation 3.4, and that moreover the random pad used to produce C3 is identical

to the binding tag in Equation 3.4. As such, (C1, C3 ⊕ M̂) is the correct encryptment of

(ε,M∗) under KEC, and so by submitting (ε, (C1, C3 ⊕ M̂)) to his ChalDec oracle A will

win game otCTXT with probability one having made a single ChalDec query.

The attack may still be executed for compression functions with d > n, subject to it

being possible to encode the length of M in a manner consistent with the zero padding

performed by the scheme. Moreover, A will have to brute-force the (d − n)-bits of the

binding tag which are truncated when encrypting the n-bit message block.
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otCTXT without prefix-free padding. It seems likely that small modifications to

the HFC construction would achieve otCTXT security while only requiring an injective

padding scheme. For example, consider a modified scheme HFC′ which takes as in-

put a key (KEC,K
′
EC) ←$ {0, 1}d × {0, 1}d. Modified encryptment HFC.Enc′ on input

((KEC,K
′
EC), H,M) computes HFC.Enc(KEC, H,M) = (CEC, BEC) and outputs

(CEC, (BEC, f(BEC,K
′
EC))), where we call the latter value in the tuple the authentication

tag. To decrypt (H,CEC, (BEC, B
′
EC)), HFC.Dec′ computes HFC.Dec(KEC, H,CEC, BEC)

and checks that B′EC = f(BEC,K
′
EC), returning ⊥ if either of these steps fails. Let

(H∗, C∗EC, (B
∗
EC, B

∗′
EC)) denote the encryptment arising from the attacker’s Enc query in

game otCTXT against HFC′. Now the attacker will be required to guess a pseudo-

random authentication tag in order to create a successful forgery unless they can find

(H,CEC) 6= (H∗, C∗EC) such that HFC.Dec(KEC, H,CEC, B
∗
EC) 6= ⊥, which in turn breaks

the SCU security of HFC. We leave formalising this intuition, and proving the properties

of such a modified scheme, to future work.

3.6.4 Instantiating the HFC Scheme

We conclude this section with a discussion of the different compression functions that may

be used to instantiate the HFC encryptment scheme.

The obvious (and probably best) choice to instantiate f is the SHA-256 or SHA-512 com-

pression function. These provide good software performance, and there is a shift towards

widespread hardware support in the form of the Intel SHA instructions [5, 74, 160]. Ex-

tensive cryptanalysis for the CR (e.g., [100, 145]), preimage resistance (e.g., [75, 89]), and

RKA-PRP security of the associated SHACAL block cipher (e.g., [79, 90, 91, 103]) gives

confidence in its security.

Other options, although in some cases less well-studied cryptanalytically, include SHA-3

finalists. In particular a variant of the HFC construction using a sponge-based mode such

as Keccak, in which the key is fed to the sponge prior to hashing the message blocks,

would allow us to avoid the RKA assumption; we discuss this in more detail below. We

could also remove the RKA assumption by using a compression function with a dedicated

key input such as LP231 [139]. BLAKE2b [7] is a variant of the BLAKE hash function and

was also a SHA-3 finalist. Its compression function is not explicitly block cipher-based; it
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is built from a variant of the quarter-round function of the ChaCha20 stream cipher [27].

It is believed to have security comparable to SHA-256, but is notable for efficiency — on

some platforms it outperforms even MD5 in software.

Another approach would be to use AES via a PGV compression function [125]. We focus

our discussion further on Davies-Meyer (DM), one of the secure PGV constructions [38].

Letting E : {0, 1}d × {0, 1}n → {0, 1}n be a block cipher, DM is defined as DM(V,M) =

E(M,V ) ⊕ V . For HFC, an important advantage of DM over other PGV compression

functions (e.g., Matyas-Meyer-Oseas) is that the block cipher keys do not depend on

intermediate chaining values and so key scheduling for the entire (encoded) message can

be done up front. It is straightforward to verify that the linear-only RKA-PRF security

of DM is inherited from the linear-only RKA-PRF security of the underlying cipher. An

obvious choice for E would be AES-128. On systems with AES-NI, HFC instantiated with

AES-DM will have very good performance, although not quite as fast as AES-GCM or AES-

OCB given the need to rekey for every block. The RKA security of AES has been studied

extensively, and known attacks do not falsify the assumptions we need [35, 36]. However,

analysed in the ICM, a birthday attack implies that an attacker can find a collision in

DM in roughly 2n/2 queries to the ideal cipher. By Theorem 3.3, this implies that HFC

instantiated with AES-DM cannot achieve sr-BIND security of more than 264-bits, which

is in general insufficient in practice.

Encryptment from sponges. Our HFC construction has a number of similarities to the

AE scheme SpongeWrap built using the SHA-3 winner Keccak [32, 33]. The SpongeWrap

scheme uses a large permutation π : {0, 1}rs+cs → {0, 1}rs+cs for some rs, cs ∈ N. This

permutation is used to iteratively hash the message, with the resulting output forming

the binding tag. Portions of the intermediate chaining variables are simultaneously used

as pads to mask the message. The key difference between this scheme and HFC is that

the large state size offered by Keccak means that there is no need to key each call to π —

this is done indirectly via the extra cs bits of state that are not used for outputs.

We now describe our SpongeWrap-like encryptment scheme SPE. It works as follows. En-

cryptment of a sequence of padded message blocks M1, . . . ,Mm each of length rs-bits with

a key KEC ∈ {0, 1}rs first sets Y0 = π(KEC ‖ 0cs). The scheme then iteratively computes

Ci = Yi−1 ⊕Mi where Yi = π(Yi−1 ⊕ (Mi ‖ 0cs)) for 1 ≤ i ≤ m. The binding tag BEC

is then set to be the leftmost rs bits of π(Ym), and the scheme outputs encryptment
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(C1 ‖ · · · ‖Cm, BEC). Decryption and verification work in the natural way. With a suit-

able padding scheme, SPE easily extends to handle associated data and arbitrary length

messages.

The security analyses from [32] imply that SPE as an encryptment scheme achieves otROR

and SCU security. Tighter bounds can likely be obtained using techniques from [83].

r-BIND security follows from the collision resistance of Keccak, and it is straightforward

to verify that the scheme is also sender binding and strongly correct. As such, SPE may

be a good choice should SHA-3 be implemented widely.

From encryptment to ccAEAD. This concludes our analysis of the HFC encryptment

scheme. In the next section we will show how to build fully-fledged multi-use ccAEAD from

encryptment, and thereby use HFC as the basis for the first single-pass secure ccAEAD

scheme.

3.7 Compactly Committing AEAD from Encryptment

In this section, we consider the main topic of the chapter: building efficient and secure

compactly committing AEAD (ccAEAD). First, we recall the formal notions for ccAEAD

following the treatment given by GLR [73] and compare these to encryptment. With this

in place, we show in Sections 3.7.3 and 3.7.4 how to build ccAEAD from encryptment

with very efficient transforms. Moreover, in Section 3.7.5 we show how to construct secure

encryptment from ccAEAD in a way that transfers our negative results from Section 3.5

to ccAEAD, and in Section 3.7.6 we investigate the relationship between robust AEAD

and encryptment.

3.7.1 ccAEAD Syntax and Correctness

We begin by defining a syntax for ccAEAD schemes. As we shall see, encryptment can

be viewed as a one-time secure, deterministic variant of ccAEAD. We further discuss the

differences between the two primitives later in the section.

Definition 3.4. A ccAEAD scheme is a tuple of algorithms CE = (CKg,CEnc,CDec,CVer)
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with associated key space K ⊆ Σ∗, header space H ⊆ Σ∗, message space M⊆ Σ∗, cipher-

text space C ⊆ Σ∗, opening space Kf ⊆ Σ∗, and binding tag space T ⊆ Σ∗, defined as

follows.

• The randomised key generation algorithm CKg : → K takes no input, and outputs

a secret key K ∈ K.

• The randomised encryption algorithm CEnc : K × H × M → C × T takes as

input a tuple (K,H,M) ∈ K ×H ×M, and outputs a ciphertext / binding tag pair

(C,CB) ∈ C × T .

• The deterministic decryption algorithm CDec : K×H×C × T → (M×Kf )∪ {⊥}

takes as input a tuple (K,H,C,CB) ∈ K × H × C × T , and outputs a message /

opening pair (M,Kf ) ∈M×Kf or the error symbol ⊥.

• The deterministic verification algorithm CVer : H×M×Kf ×T → {0, 1} takes as

input a tuple (H,M,Kf , CB) ∈ H ×M×Kf × T , and outputs a bit b ∈ {0, 1}.

Correctness and compactness. Correctness for ccAEAD schemes is defined identi-

cally to the COR correctness notion for encryptment schemes (Figure 3.7), except in the

ccAEAD case the probability is now over the coins of CEnc also. We additionally require

length regularity; that is to say that the length of ccAEAD ciphertexts C depends only

on the length of the underlying message. Formally, we require that there exists a function

clenCE : N → N such that for all (K,H,M) ∈ K ×H×M it holds that

Pr [ |C| = clenCE(|M |) : (C,CB)←$ CEnc(K,H,M) ] = 1 ,

where the probability is over the coins of CEnc. Finally we require that binding tags CB

are compact, by which we mean that all CB returned by a ccAEAD scheme are of constant

length blen.

Comparison with encryptment. With this in place, we highlight the key differ-

ences between encryptment and ccAEAD. The overarching difference is that encryptment

schemes are single-use (i.e., a key is only ever used to encrypt a single message), whereas

ccAEAD schemes are multi-use. To support this the encryption algorithm for a ccAEAD

scheme is randomised, whereas for encryptment this algorithm is deterministic. This al-

lows us to construct schemes that enjoy security in the face of attackers that can obtain

multiple encryptions. We note that nonce-based ccAEAD [73] can also achieve multi-use

security. We focus on randomised ccAEAD here, and leave the problem of building fast
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MO-REALACE:

K←$ CKg

b′←$AEnc,Dec,ChalEnc

Return b′

Enc(H,M)

(C,CB)←$ CEnc(K,H,M)

Y ← Y ∪ {(H,C,CB)}
Return (C,CB)

Dec(H,C,CB)

If (H,C,CB) /∈ Y then

Return ⊥
(M,Kf )← CDec(K,H,C,CB)

Return (M,Kf )

ChalEnc(H,M)

(C,CB)←$ CEnc(K,H,M)

Return (C,CB)

MO-RANDACE:

K←$ CKg

b′←$AEnc,Dec,ChalEnc

Return b′

Enc(H,M)

(C,CB)←$ CEnc(K,H,M)

Y ← Y ∪ {(H,C,CB)}
Return (C,CB)

Dec(H,C,CB)

If (H,C,CB) /∈ Y then

Return ⊥
(M,Kf )← CDec(K,H,C,CB)

Return (M,Kf )

ChalEnc(H,M)

(C,CB)←${0, 1}clenCE(|M|)×{0, 1}blen

Return (C,CB)

MO-CTXTACE:

K←$ CKg ; win← false

AEnc,Dec,ChalDec

Return win

Enc(H,M)

(C,CB)←$ CEnc(K,H,M)

Y ← Y ∪ {(H,C,CB)}
Return (C,CB)

Dec(H,C,CB)

Return CDec(K,H,C,CB)

ChalDec(H,C,CB)

If (H,C,CB) ∈ Y then

Return ⊥
(M,Kf )← CDec(K,H,C,CB)

If M 6= ⊥ then

win← true

Return (M,Kf )

Figure 3.20: Confidentiality (left and middle) and ciphertext integrity (right) games for
ccAEAD.

nonce-based ccAEAD to future work.

Another difference is that encryptment schemes are restricted to use the same key for

verification as they use for encryptment, whereas ccAEAD schemes output an explicit

opening key Kf during decryption. There is no requirement that this equals the secret

key used for encryption. Again, outputting an opening key distinct from the encryption

key allows for ccAEAD schemes that maintain confidentiality and integrity even after some

ciphertexts produced under a given encryption key have been opened.

Comparison with AEAD. The definition of an AEAD scheme AEAD = (K,E,D) can

be recovered from the above definition of ccAEAD by noticing that each algorithm can

be defined identically to their ccAEAD variants, except in the AEAD case we view the

ciphertext / binding tag pair as a single ciphertext and modify decryption to no longer

output the opening.

3.7.2 Security Notions for ccAEAD Schemes

We now define security notions for ccAEAD schemes following GLR. They adapt the

familiar security notions of real-or-random (ROR) ciphertext indistinguishability [138] and

ciphertext integrity (SCU) [19] to the ccAEAD setting. We focus on GLR’s multi-opening

(MO) security notions. MO-ROR (resp. MO-CTXT) requires that if multiple messages
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are encrypted under the same key, then learning the message / opening pair (M,Kf ) for

some of the resulting ciphertexts does not compromise the ROR (resp. CTXT) security of

the remaining unopened ciphertexts. This precludes schemes which e.g., have the opening

key Kf equal to the secret encryption key K.

Confidentiality. Games MO-REAL and MO-RAND are shown in Figure 3.20. In both

variants, the attacker is given access to an oracle ChalEnc to which he may submit message

/ header pairs. This oracle returns real (resp. random) ciphertext / binding tag pairs

in game MO-REAL (resp. MO-RAND). The attacker is then challenged to distinguish

between the two games. To model multi-opening security the attacker is also given a pair

of encryption / decryption oracles, Enc and Dec, and may submit the (real) ciphertexts

generated via a query to the former to the latter, learning the openings of these ciphertexts

in the process. The challenge decryption oracle will return ⊥ for any ciphertext not

generated via the encryption oracle. This is because the definition targets a CPA-style

notion which requires ROR security to hold even when an attacker may learn openings,

as opposed to a chosen ciphertext-style definition in which the attacker may decrypt any

ciphertext that does not imply a trivial win. We define the advantage of an attacker A

in game MO-ROR against a ccAEAD scheme CE who makes qc queries to ChalEnc, qe

queries to Enc, and qd queries to Dec, as

Advmo-ror
CE (A, qc, qe, qd) =

∣∣Pr
[

MO-REALACE ⇒ 1
]
− Pr

[
MO-RANDACE ⇒ 1

]∣∣ .
Ciphertext integrity. Ciphertext integrity guarantees that an attacker cannot produce

a fresh ciphertext which will decrypt correctly. The multi-opening adaptation to the

ccAEAD setting MO-CTXT is shown in Figure 3.20. The attacker A is given access to an

encryption oracle Enc and a challenge decryption oracle ChalDec. The attacker wins if he

submits a ciphertext to ChalDec which decrypts correctly and which was not the result of

a previous query to the encryption oracle. To model multi-opening security, the attacker

is given access to a further oracle Dec via which he may decrypt ciphertexts and learn the

corresponding openings. The advantage of an attacker A in game MO-CTXT against a

ccAEAD scheme CE, who makes qc ChalDec queries, qe Enc queries, and qd Dec queries,

is defined

Advmo-ctxt
CE (A, qc, qe, qd) = Pr

[
MO-CTXTACE ⇒ true

]
.

115



3.7 Compactly Committing AEAD from Encryptment

sr-BINDACE

((H,M,Kf ), (H′,M ′,K′f ), CB)←$A
b← CVer(H,M,Kf , CB)

b′ ← CVer(H′,M ′,K′f , CB)

If (H,M,Kf ) = (H′,M ′,K′f )

Return false

Return (b = b′ = 1)

s-BINDACE

(K,H,C,CB)←$A
(M ′,K′f )← CDec(K,H,C,CB)

If (M ′,K′f ) = ⊥ then return false

b← CVer(H,M ′,K′f , CB)

If b = 0

Return true

Return false

Figure 3.21: Binding notions for a ccAEAD scheme CE = (CKg,CEnc,CDec,CVer).

Relation to AEAD security notions. We note that the familiar ROR and CTXT

notions for AEAD schemes can be recovered from the corresponding ccAEAD games in

Figure 3.20 by reframing the ccAEAD scheme as an AEAD scheme as described previ-

ously, removing access to oracle Dec in all games, and removing Enc in MO-REAL and

MO-RAND. Advantage functions are defined analogously. Since here we are removing

attacker capabilities, it follows that MO-ROR and MO-CTXT security for a ccAEAD

scheme implies ROR and CTXT security for the derived AEAD scheme also.

Receiver and sender binding. Binding games for ccAEAD schemes are shown in Fig-

ure 3.21. Strong receiver binding for ccAEAD schemes is the same as for encryptment (see

Figure 3.10) except the attacker outputs openings Kf ,K
′
f rather than encryptment keys

KEC,K
′
EC as part of his guess. The sender binding game for a ccAEAD scheme challenges

an attacker A to output a tuple (K,H,C,CB) such that (M,Kf ) ← CDec(K,H,C,CB)

does not equal ⊥ but CVer(H,M,Kf , CB) = 0. This is the same as the associated game

for encryptment, except that the opening Kf recovered during decryption is used for

verification rather than the key output by A. For Gm ∈ {sr-BIND, s-BIND}, we define

Advgm
CE (A) = Pr

[
GmACE ⇒ true

]
.

Given the similarities, we abuse notation by using the same names for ccAEAD binding

notions as in the encryptment case; which version will be clear from the context.

Relation between r-BIND and sr-BIND. In the following theorem we prove that

sr-BIND security implies r-BIND security for ccAEAD schemes; our results readily ex-

tend to encryptment also. We then show that the converse does not hold by constructing

a scheme which is receiver binding but for which strong receiver binding can be triv-

ially broken.

Theorem 3.6. Let CE = (CKg, CEnc, CDec, CVer) be a ccAEAD scheme. Then for any

attacker A in game r-BIND against CE, there exists an attacker B in game sr-BIND
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against CE such that

Advr-bind
CE (A) ≤ Advsr-bind

CE (B) ,

and moreover B runs in the same time A. On the other hand, there exists a CE scheme

CE′ = (CKg′,CEnc′,CDec′,CVer’) which is r-BIND secure but for which there exists an

efficient attacker C such that

Advsr-bind
CE (C) = 1 .

Proof. To prove the first claim, let A be an attacker in game r-BIND against CE. We then

define B to be the attacker in game sr-BIND against CE who simply runs A; eventually

A halts and outputs ((H,M,Kf ), (H ′,M ′,K ′f ), CB) and B returns the same tuple to his

challenger. Then

Advr-bind
CE (A) = Pr

[
r-BINDACE ⇒ true

]
= Pr

[
CVer(H,M,Kf , CB) = CVer(H ′,M ′,K ′f , CB) = 1 ∧ (H,M) 6= (H ′,M ′)

]
≤ Pr

[
CVer(H,M,Kf , CB) = CVer(H ′,M ′,K ′f , CB) = 1 ∧ (H,M,Kf ) 6= (H ′,M ′,K ′f )

]
= Pr

[
sr-BINDBCE ⇒ true

]
= Advsr-bind

CE (B) ,

where all probabilities are over the coins of A (recall that CVer is deterministic), thereby

proving the claim.

To prove that the converse does not hold, we now define a CE scheme which is r-BIND

secure but not sr-BIND secure. Take any CE scheme CE = (CKg,CEnc,CDec,CVer) which

is r-BIND secure and for which opening space Kf = {0, 1}n (for example, one may take the

CEP scheme from [73]). We define a modified scheme CE′ = (CKg′,CEnc′,CDec′,CVer′) as

follows. We let CKg′,CEnc′,CDec′ be identical to CKg,CEnc,CDec. We define the opening

space of the modified scheme to be K′f = {0, 1}n+1, so that Kf ⊂ K′f . Moreover, we define

CVer′ to be the algorithm which on input (H,M,Kf , CB) computes Kf = Truncn(Kf )

and returns the output of CVer(H,M,Kf , CB).

It is straightforward to see that the modified scheme CE′ is r-BIND secure. Indeed for any

attacker E in game r-BIND against CE′, we may define an attacker F in game r-BIND

against CE who simply runs E and outputs (H,M,Truncn(Kf )), (H ′,M ′,Truncn(K ′f )), CB)
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CKg

K←$ K

Return K

CEnc(K,H,M)

KEC←$ EKg

(CEC, BEC)← EEnc(KEC, H,M)

CAE←$ E(K,BEC,KEC)

Return ((CEC, CAE), BEC)

CDec(K,H, (C,CB))

(CEC, CAE)← C ;BEC ← CB
KEC ← D(K,BEC, CAE)

If KEC = ⊥ then return ⊥
M ← EDec(KEC, H,CEC, BEC)

If M = ⊥ then return ⊥
Return (M,KEC)

CVer(H,M,Kf , CB)

b← EVer(H,M,Kf , CB)

Return b

Figure 3.22: A generic transform from an encryptment scheme EC =
(EKg,EEnc,EDec,EVer) and a standard AEAD scheme AEAD = (K,E,D) to a multi-
opening ccAEAD scheme CE[EC,AEAD] = (CKg,CEnc,CDec,CVer).

where ((H,M,Kf ), (H ′,M ′,K ′f ), CB) is the tuple output by E . It is easy to see that

any winning output for E implies a winning output for F also, and so Advr-bind
CE′ (E) ≤

Advr-bind
CE (F).

However, an adversary C may win game sr-BIND with probability 1 by taking any tu-

ple (H,M,Kf , CB) for which 1 ← CVer(H,M,Kf , CB), and submitting ((H,M,Kf ‖ 0),

(H,M,Kf ‖ 1), CB) to his challenger. Now (H,M,Kf ‖ 0) 6= (H,M,Kf ‖ 1), but since

CVer′(H,M,Kf ‖ 0) = CVer(H,M,Kf ‖ 1) = 1 it holds that Advsr-bind
CE′ (C) = 1, implying

the result.

Relation to robust AEAD. Given that both target certain binding notions, a natural

question is whether an sr-BIND secure ccAEAD scheme is robust [67] when reframed as an

AEAD scheme (see Section 3.7.1) and vice versa. In Section 3.7.6, we show that neither

notion implies the other in generality. We also discuss the conditions under which the

ccAEAD schemes we build from secure encryptment are robust.

3.7.3 A Transform From Encryptment to ccAEAD via AEAD

We now turn to building ccAEAD from encryptment. Fix an encryptment scheme

EC = (EKg,EEnc,EDec,EVer) and a standard AEAD scheme AEAD = (K,E,D). Let

CE[EC,AEAD] = (CKg,CEnc,CDec,CVer) be the ccAEAD scheme shown in Figure 3.22.

Overview. Key generation CKg for CE[EC,AEAD] simply runs K←$ K and outputs K.

To encrypt a header / message (H,M), CEnc uses the key generation algorithm of the

encryptment scheme to generate a one-time encryptment key KEC←$ EKg and computes

118



3.7 Compactly Committing AEAD from Encryptment

the encryptment of the header and message via (CEC, BEC) ← EEnc(KEC, H,M). The

scheme then uses the encryption algorithm of the AEAD scheme to encrypt the one-time key

KEC with header BEC, producing CAE←$ E(K,BEC,KEC), and outputs ((CEC, CAE), BEC).

On input (K,H,C,CB) where C = (CEC, CAE) and CB = BEC, CDec computes KEC ←

D(K,BEC, CAE) and if KEC = ⊥ returns ⊥, since this clearly indicates that CAE is invalid.

The recovered encryptment key KEC is in turn used to recover the message via M ←

EDec(KEC, H,CEC, BEC). If M = ⊥, the scheme returns ⊥; otherwise, it returns (M,KEC)

as the message / opening pair. CVer simply applies the verification algorithm EVer of the

underlying encryptment scheme to the input tuple and returns the result.

Notice that by including the binding tagBEC as the header in the authenticated encryption,

this ensures the integrity of BEC. If we did not authenticate BEC, then an attacker could

trivially break the MO-CTXT-security of the scheme by using an Enc query to obtain

ciphertext ((CEC, CAE), BEC) for a pair (H,M) and submitting that ciphertext to Dec to

recover the opening key KEC. With this, A can easily create a valid forgery by computing

(C ′EC, B
′
EC)← EEnc(KEC, H

′,M ′) for some distinct header / message pair and outputting

((C ′EC, CAE), B′EC). Including the binding tag as the header in the AEAD ciphertext means

that an attacker trying to replicate the above mix-and-match attack must create a forgery

for an encryptment binding tag and key already returned as the result of an Enc query,

thus violating the SCU security of the underlying encryptment scheme.

Security of the transform. We now analyse the security of the ccAEAD scheme

CE[EC,AEAD]. We note that the ciphertext length regularity function clenCE : N → N

for CE[EC,AEAD] is defined to be that which on input |M | ∈ N outputs clenEC(|M |) +

clenAE(κ), where clenEC and clenAE are the length functions associated to EC and AEAD

respectively and κ denotes the length of encryptment keys returned by EKg. Binding tags

produced by CE[EC,AEAD] are of the same length btlen as the tags produced by EC.

MO-ROR security. We begin by analysing the confidentiality of CE[EC,AEAD]. The

proof of the following theorem first uses a reduction to the ROR security of AEAD to argue

that we can replace the encryptions CAE generated in Enc and ChalEnc in MO-REAL with

random bit strings of length clenAE(κ). We then use a hybrid argument and reductions

to the otROR security of EC to argue that the encryptments generated in ChalEnc can

be replaced with random strings also. A final reduction to the ROR security of AEAD

119



3.7 Compactly Committing AEAD from Encryptment

proc. main // G0

K←$ Kg

b′←$AEnc,Dec,ChalEnc

Return b′

proc. Enc(H,M) // G0

KEC←$ EKg

(CEC, BEC)← EEnc(KEC, H,M)

CAE←$ E(K,BEC,KEC)

Y ← Y ∪ {(H,CEC, CAE, BEC)}
Return ((CEC, CAE), BEC)

proc. Dec(H,C,CB)// G0

If (H,C,CB) /∈ Y then

Return ⊥
(CEC, CAE)← C ;BEC ← CB
KEC ← Dec(K,BEC, CAE)

If KEC = ⊥ then return ⊥
(M,KEC)← EDec(KEC, H,CEC, BEC)

If (M,KEC) = ⊥ then return ⊥
Return (M,KEC)

proc. ChalEnc(H,M)// G0

KEC←$ EKg

(CEC, BEC)← EEnc(KEC, H,M)

CAE←$ E(K,BEC,KEC)

Return ((CEC, CAE), BEC)

proc. main // G1, G2

K←$ Kg

b′←$AEnc,Dec,ChalEnc

Return b′

proc. Enc(H,M)// G1, G2

KEC←$ EKg

(CEC, BEC)← EEnc(KEC, H,M)

CAE←$ E(K,BEC,KEC)

CAE←$ {0, 1}clenAE(κ)

Y ← Y ∪ {(H,CEC, CAE, BEC)}
D[H,CEC, CAE, BEC]← (M,KEC)

Return ((CEC, CAE), BEC)

proc. Dec(H,C,CB) // G1, G2

If (H,C,CB) /∈ Y then

Return ⊥
(CEC, CAE)← C ;BEC ← CB
(M,KEC)← D[H,CEC, CAE, BEC]

Return (M,KEC)

proc. ChalEnc(H,M) // G1, G2

KEC←$ EKg

(CEC, BEC)← EEnc(KEC, H,M)

CAE←$ E(K,BEC,KEC)

CAE←$ {0, 1}clenAE(κ)

Return ((CEC, CAE), BEC)

proc. main // G3, G4

K←$ Kg

b′←$AEnc,Dec,ChalEnc

Return b′

proc. Enc(H,M)// G3, G4

KEC←$ EKg

(CEC, BEC)← EEnc(KEC, H,M)

CAE←$ {0, 1}clenAE(κ)

CAE←$ E(K,BEC,KEC)

Y ← Y ∪ {(H,CEC, CAE, BEC)}
D[H,CEC, CAE, BEC]← (M,KEC)

Return ((CEC, CAE), BEC)

proc. Dec(H,C,CB)// G3, G4

If (H,C,CB) /∈ Y then

Return ⊥
(CEC, CAE)← C ;BEC ← CB
(M,KEC)← D[H,CEC, CAE, BEC]

Return (M,KEC)

proc. ChalEnc(H,M) // G3, G4

KEC←$ EKg

CEC←$ {0, 1}clenEC(|M|)

BEC←$ {0, 1}btlen

CAE←$ {0, 1}clenAE(κ)

Return ((CEC, CAE), BEC)

Figure 3.23: Games for proof of Theorem 3.7.

allows us to revert Enc to producing real AEAD ciphertexts and reach a game equivalent

to MO-RAND.

Theorem 3.7. Let EC = (EKg,EEnc,EDec,EVer) be an encryptment scheme with key

space KEC = {0, 1}κ and binding tag space TEC. Let AEAD = (K,E,D) be an AEAD

scheme scheme such that KEC ⊆M and TEC ⊆ H, where H and M denote the header and

message space of AEAD respectively. Let CE[EC,AEAD] be the ccAEAD scheme presented

in Figure 3.22. Then for any adversary A in the MO-ROR game against CE, there exists

adversaries B and C such that

Advmo-ror
CE (A, qc, qe, qd) ≤ Advror

AEAD(B1, qc + qe) + Advror
AEAD(B2, qe) + qc ·Advot-ror

EC (C) .

Adversaries B and C run in the same time as A with an O(qc + qe + qd) overhead.

Proof. Let A be an attacker in game MO-ROR against CE[EC,AEAD]. We argue by a

series of game hops, shown in Figure 3.23. We begin by defining game G0, which is

identical to game MO-REAL against CE[EC,AEAD].

Next we define game G1, which is identical to G0 except decryption by oracle Dec is

performed via table look-up. In more detail, we begin with an array D initially set to ⊥.
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When Enc computes a ciphertext ((CEC, CAE), BEC) under key KEC in response to some

query (H,M), it sets D[H,CEC, CAE, BEC] = (M,KEC). For subsequent decryption queries

of the form (H, ((CEC, CAE), BEC)), Dec now returns the pair (M,KEC) stored at entry

D[H,CEC, CAE, BEC]. We need not maintain a look up table for ciphertexts generated by

oracle ChalEnc since Dec only returns decryptions of ciphertexts generated via oracle Enc.

It is easy to see that this is a purely syntactic change and the two games are functionally

equivalent, and so

Pr [G0 ⇒ 1 ] = Pr [G1 ⇒ 1 ] .

Next we define game G2, which is identical to game G1 except all ciphertexts encrypted

under the AEAD scheme AEAD = (K,E,D) are replaced with random ciphertexts of

appropriate length. We claim that there exists an adversary B1 in the ROR-security game

against AEAD such that

|Pr [G1 ⇒ 1 ]− Pr [G2 ⇒ 1 ]| ≤ Advror
AEAD(B1, qc + qe) .

Adversary B1 proceeds as follows. B1 runs A as a subroutine. In response to Enc and

ChalEnc queries on input (H,M), B1 generates KEC ←$ EKg, computes (CEC, BEC) ←

EEnc(KEC, H,M) and then queries (BEC,KEC) to his challenge encryption oracle, receiv-

ing CAE in return. B1 returns ciphertext ((CEC, CAE), BEC) to A, and for Enc queries

additionally sets D[H,CEC, CAE, BEC] = (M,KEC). To simulate the Dec oracle, B1 returns

⊥ if the header / ciphertext pair queried was not the result of a previous query to Enc

and returns the pair (M,KEC) stored at D[H,CEC, CAE, BEC] otherwise. At the end of the

game B1 outputs whatever bit A does. Notice that if B1’s encryption oracle is returning

real ciphertexts as in game REAL against AEAD then this perfectly simulates game G1,

and if the oracle is returning random bit strings as in game RAND then this perfectly

simulates game G2. It follows that

|Pr [G1 ⇒ 1 ]− Pr [G2 ⇒ 1 ]| =
∣∣∣∣Pr
[

REALB1AEAD ⇒ 1
]
− Pr

[
RANDB1AEAD ⇒ 1

]∣∣∣∣
= Advror

AEAD(B1, qc + qe) ,

where B1’s query budget follows from noting that B1 makes one query to his RoR oracle

for each of A’s qc + qe Enc and ChalEnc queries.

Next we define game G3, which is identical to G2 except that during ChalEnc queries the

ciphertext / binding tag pairs produced by the encryptment scheme EC are replaced with

random bit strings of appropriate length. We claim that there exists an adversary C in
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the otROR game against EC such that

|Pr [G2 ⇒ 1 ]− Pr [G3 ⇒ 1 ]| ≤ qc ·Advot-ror
EC (C) .

To see this, we define a series of hybrid games H0, . . . ,Hqc where H0 is identical to game

G2, Hqc is identical to game G3, and Hi is identical to game Hi−1 except during the ith

ChalEnc query the output of EEnc is replaced with random bit strings. A standard hybrid

argument implies that

|Pr [G2 ⇒ 1 ]− Pr [G3 ⇒ 1 ]| ≤
qc−1∑
i=0

|Pr [Hi ⇒ 1 ]− Pr [Hi+1 ⇒ 1 ] . (3.5)

We now bound the gap between these game. Fix an index i ∈ [0, qc − 1] and let Ci be an

attacker in the otROR game against EC. Ci runs A as a subroutine, simulating his oracles

as follows. For Enc / Dec queries, A simulates the oracles by executing the pseudocode

descriptions in game G2 (or equivalently G3). In response to ChalEnc queries, attacker

Ci responds to the first i queries by choosing random CEC, BEC, CAE of appropriate length

and returning ((CEC, CAE), BEC). For the (i + 1)th query, Ci queries his own encryption

oracle on the query pair (H,M) to receive back (CEC, BEC) and returns ((CEC, CAE), BEC)

for random CAE. For the remaining ChalEnc queries, Ci generates ciphertexts as per the

pseudocode description of the oracle in game G2. At the end of the game, adversary Ci

outputs whatever bit A does.

Notice that if Ci’s encryption oracle returns real ciphertexts as in game otROR0 this

perfectly simulates game Hi, otherwise it perfectly simulates game Hi+1. It follows that

|Pr [Hi ⇒ 1 ]− Pr [Hi+1 ⇒ 1 ]| =
∣∣∣∣Pr
[

otROR0CiEC ⇒ 1
]
− Pr

[
otROR1CiEC ⇒ 1

]∣∣∣∣
= Advot-ror

EC (Ci) .

Substituting this into equation (3.5), and defining C to be the attacker who chooses

i←$ [0, qc − 1] and runs attacker Ci, proves the claim.

Notice that in game G3, oracle ChalEnc always returns a random ciphertext / binding tag

pair of appropriate length in response to queries. Next we define game G4 to be the same

as G3, except we revert oracle Enc to generate ciphertexts CAE by running E rather than

by choosing random ciphertexts. A reduction to the ROR-security of AEAD analogous to

that described above, and noting that A makes qe Enc queries, implies that there exists
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an adversary B2 in game ROR against AEAD such that

|Pr [G3 ⇒ 1 ]− Pr [G4 ⇒ 1 ]| ≤ Advror
AEAD(B2, qe) .

In particular, notice that oracle Enc always returns real ciphertexts in game G4. We define

a final transition to game G5 (not shown) which does away with the look-up table and

instead runs CDec on the relevant queries to Dec; again this is a purely syntactic change,

and so

Pr [G4 ⇒ 1 ] = Pr [G5 ⇒ 1 ] .

Moreover, it is straightforward to verify that game G5 is identical to game MO-RAND.

Putting this all together via a standard argument, it follows that there exists adversaries

B1,B2, C with the claimed run times and query budgets, such that

Advmo-ror
CE (A, qc, qe, qd) ≤ Advror

AEAD(B1, qc + qe) + Advror
AEAD(B2, qe) + qc ·Advot-ror

EC (C) .

concluding the proof.

MO-CTXT security. We now analyse the integrity of CE[EC,AEAD]. The proof of the

following theorem first argues that if A submits a fresh query (H, ((CEC, CAE), BEC)) to

ChalDec which decrypts correctly but for which no prior Enc query with headerH returned

((CEC, CAE), BEC), then this violates the CTXT security of AEAD. This implies that any

other fresh query which decrypts correctly must share an underlying encryptment key KEC

with a response to an Enc query. We then construct a reduction showing that any such

query decrypting successfully breaks the SCU security of EC. Combining these arguments

using a hybrid argument over the qe Enc queries then completes the proof.

Theorem 3.8. Let EC = (EKg,EEnc,EDec,EVer) be an encryptment scheme with key

space KEC = {0, 1}κ and binding tag space TEC. Let AEAD = (K,E,D) be an AEAD

scheme scheme such that KEC ⊆M and TEC ⊆ H, where H and M denote the header and

message space of AEAD respectively. Let CE[EC,AEAD] be the ccAEAD scheme built from

EC according to Figure 3.22. Then for any adversary A in the MO-CTXT game against

CE, there exists adversaries B and C such that

Advmo-ctxt
CE[EC,AEAD](A, qc, qe, qd) ≤ Advctxt

AEAD(B, qc + qd, qe) + qe ·Advscu
EC (C, 1) .

Adversaries B and C run in the same time as A with an O(qc + qe + qd) overhead.

Proof. We argue by a series of game hops, shown in Figure 3.24. We begin by defining
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proc. main // G0:

K←$ Kg ; win← false

AEnc,Dec,ChalDec

Return win

proc. Enc(H,M) // G0

KEC←$ Kg

(CEC, BEC)← EEnc(KEC, H,M)

CAE←$ E(K,BEC,KEC)

Y ← Y ∪ {(H,CEC, CAE, BEC)}
Return ((CEC, CAE), BEC)

proc. Dec(H,C,CB) // G0

(CEC, CAE)← C ;BEC ← CB
KEC ← Dec(K,BEC, CAE)

If KEC = ⊥ then return ⊥
M ← EDec(KEC, H,CEC, BEC)

If M = ⊥ then return ⊥
Return (M,KEC)

proc. ChalDec(H,C,CB) // G0

(CEC, CAE)← C ;BEC ← CB
If (H,CEC, CAE, BEC) ∈ Y then

Return ⊥
KEC ← Dec(K,BEC, CAE)

If KEC = ⊥ then return ⊥
M ← EDec(KEC, H,CEC, BEC)

If M = ⊥ then return ⊥
win← true

Return (M,KEC)

proc. main // G1, G2 :

K←$ CKg ; win← false

AEnc,Dec,ChalDec

Return win

proc. Enc(H,M) // G1, G2

KEC←$ Kg

(CEC, BEC)← EEnc(KEC, H,M)

CAE←$ E(K,BEC,KEC)

Y ← Y ∪ {(H,CEC, CAE, BEC)}
D[H,CEC, BEC, CAE]← (M,KEC)

Return ((CEC, CAE), BEC)

proc. Dec(H,C,CB) // G1, G2

(CEC, CAE)← C ;BEC ← CB
If D[H,CEC, BEC, CAE] 6= ⊥

Return D[H,CEC, BEC, CAE]

KEC ← Dec(K,BEC, CAE)

If KEC = ⊥ then return ⊥
If D[·, ·, BEC, CAE] = {⊥}

bad1 ← 1

Return ⊥
M ← EDec(KEC, H,CEC, BEC)

If M = ⊥ then return ⊥
If D[H,CEC, BEC, CAE] = ⊥

bad2 ← 1

win← true

Return (M,KEC)

proc. ChalDec(H,C,CB) // G1, G2

(CEC, CAE)← C ;BEC ← CB
If (H,CEC, CAE, BEC) ∈ Y then

Return ⊥
KEC ← Dec(K,BEC, CAE)

If KEC = ⊥ then return ⊥
If D[·, ·, BEC, CAE] = {⊥}

bad1 ← 1

Return ⊥
M ← EDec(KEC, H,CEC, BEC)

If M = ⊥ then return ⊥
If D[H,CEC, BEC, CAE] = ⊥

bad2 ← 1

win← true

Return (M,KEC)

proc. main // G3:

K←$ CKg ; win← false

AEnc,Dec,ChalDec

Return win

proc. Enc(H,M) // G3

KEC←$ EKg

(CEC, BEC)← EEnc(KEC, H,M)

CAE←$ E(K,BEC,KEC)

Y ← Y ∪ {(H,CEC, CAE, BEC)}
D[H,CEC, BEC, CAE]← (M,KEC)

Return ((CEC, CAE), BEC)

proc. Dec(H,C,CB) // G3

(CEC, CAE)← C ;BEC ← CB
If D[H,CEC, BEC, CAE] 6= ⊥

Return D[H,CEC, BEC, CAE]

KEC ← Dec(K,BEC, CAE)

If KEC = ⊥ then return ⊥
If D[·, ·, BEC, CAE] = {⊥}

bad1 ← 1

Return ⊥
M ← EDec(KEC, H,CEC, BEC)

If M = ⊥ then return ⊥
If D[H,CEC, BEC, CAE] = ⊥

bad2 ← 1

Return ⊥
win← true

Return (M,KEC)

proc. ChalDec(H,C,CB) // G3

(CEC, CAE)← C ;BEC ← CB
If (H,CEC, CAE, BEC) ∈ Y then

Return ⊥
KEC ← Dec(K,BEC, CAE)

If KEC = ⊥ then return ⊥
If D[·, ·, BEC, CAE] = {⊥}

bad1 ← 1

Return ⊥
M ← EDec(KEC, H,CEC, BEC)

If M = ⊥ then return ⊥
If D[H,CEC, BEC, CAE] = ⊥

bad2 ← 1

Return ⊥
win← true

Return (M,KEC)

Figure 3.24: Games for proof of Theorem 3.8.
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game G0, which is equivalent to MO-CTXT against CE[EC,AEAD]. It follows that

Advmo-ctxt
CE (A, qc, qe, qd) = Pr [G0 ⇒ 1 ] .

Next we define game G1, which is identical to G0 except we maintain a look-up table

D of header / ciphertext pairs which were returned by oracle Enc; subsequently, the

decryption of such ciphertexts in oracles Dec and ChalDec is performed via table look-up.

Entries in the table are of the form D[H,CEC, BEC, CAE] = (M,KEC), and we write e.g.,

D[·, ·, BEC, CAE] to denote the set

{(M,KEC) : D[H,CEC, BEC, CAE] = (M,KEC) for H ∈ H, CEC ∈ C} .

This is a purely syntactic change. We also set a number of bad flags, but these too do not

affect the outcome of the game. Moreover, we modify oracle Dec so that if the attacker

A submits a query which decrypts correctly but which does not correspond to a previous

query to Enc (and is thus not stored in the look-up table), the win flag is set to true. This

change can only increase the attacker’s chance of success, and so it follows that

Pr [G0 ⇒ 1 ] ≤ Pr [G1 ⇒ 1 ] .

Next we define game G2, which is identical to G1 except we change the way in which oracles

Dec and ChalDec respond to queries. Namely now if the attacker submits a query to Dec

or ChalDec of the form (H, ((CEC, CAE), BEC)) such that D[H,CEC, BEC, CAE] = ⊥ and

Dec(K,BEC, CAE) 6= ⊥, it checks if D[·, ·, BEC, CAE] = {⊥} and if so returns ⊥. These

games run identically unless the bad1 flag is set, and so the Fundamental Lemma of Game

Playing implies that

|Pr [G1 ⇒ 1 ]− Pr [G2 ⇒ 1 ]| ≤ Pr [ bad1 = 1 in G1 ] .

We bound this probability with a reduction to the CTXT security of AEAD. Let B be

an attacker in the CTXT game against AEAD who runs A as a subroutine as follows. To

simulate oracle Enc on query (H,M), B generates an encryptment key KEC←$ EKg, com-

putes (CEC, BEC) ← EEnc(KEC, H,M), queries (BEC,KEC) to his own encryption oracle

receiving CAE in return, and returns ((CEC, CAE), BEC). B maintains a look-up table of

queries to Enc. To simulate Dec and ChalDec queries for (H, ((CEC, CAE), BEC)), B checks

if D[H,CEC, BEC, CAE] 6= ⊥; if so he returns the stored (M,KEC) if the query was to the

Dec oracle and ⊥ if the query was to ChalDec. If no such entry is stored, B submits the

pair (BEC, CAE) to his own challenge decryption oracle. If ⊥ is returned, he returns ⊥ to A;

otherwise he simulates the rest of the query as per the pseudocode description. Notice that

flag bad1 being set corresponds to A making a decryption query (H, ((CEC, CAE), BEC))

for which (BEC, CAE) does not correspond to an encryption query made by B in his game,
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but nonetheless D(K,BEC, CAE) does not return an error. As such, this corresponds to a

winning query for B. It follows that

Pr [ bad1 = 1 in G1 ] = Pr
[

CTXTBAEAD ⇒ 1
]

≤ Advctxt
AEAD(B, qc + qd, qe) ,

where B’s query budget follows since he makes at most one decryption oracle query for

each of A’s Dec and ChalDec queries, and one encryption oracle query for each of A’s Enc

queries. Notice that in game G2, all encryptment keys KEC recovered and input to EDec

during Dec and ChalDec queries correspond to keys generated in response to Enc queries.

As such, for each query (H, ((CEC, BEC), CAE)) which may successfully decrypt in game

G2 there must be an entry of the form D[·, ·, BEC, CAE] = (·,KEC). By the correctness of

the encryption scheme, all table entries of that form must share the same key KEC and

this will be the key which is recovered during decryption.

Next we define game G3, which is identical to G2 except we again change the way in

which Dec, ChalDec respond to queries. Now if the attacker makes a query of the form

(H, ((CEC, CAE), BEC)) such that D[·, ·, BEC, CAE] 6= {⊥}, and EDec(KEC, H,CEC, BEC)

does not return an error (where KEC is the key underlying (BEC, CAE)) but for which

D[H,CEC, BEC, CEC] = ⊥, we return ⊥. Notice that this restriction makes the game im-

possible to win, since Dec and ChalDec will reject any ciphertext not previously returned

by Enc. As such it follows that

Pr [G3 ⇒ 1 ] = 0 .

These two games run identically unless the flag bad2 is set, and so the Fundamental Lemma

of Game Playing implies that

|Pr [G2 ⇒ 1 ]− Pr [G3 ⇒ 1 ]| ≤ Pr [ bad2 = 1 in G2 ] .

We now bound this probability with a reduction to the SCU security of EC.

Suppose that attacker A makes qe Enc queries, and let C be an attacker in the SCU game

against EC who proceeds as follows. C chooses a key K ←$ CKg, an index i←$ [1, qe],

and runs A as a subroutine. C simulates all apart from the ith Enc query by choosing a

key KEC←$ EKg, computing (CEC, BEC) ← EEnc(KEC, H,M) on the given input, setting

CAE ←$ E(K,BEC,KEC), and returning ciphertext ((CEC, CAE), BEC). For the ith query,

C submits A’s query (H∗,M∗) to his encryptment oracle, receiving ((C∗EC, B
∗
EC),K∗EC)

126



3.7 Compactly Committing AEAD from Encryptment

in return. C computes C∗AE ←$ E(K,B∗EC,K
∗
EC) and returns ((C∗EC, C

∗
AE), B∗EC) to A. C

maintains a look-up table of the ciphertexts generated in response to Enc queries as

described previously.

C simulates oracles Dec and ChalDec for queries (H, ((CEC, CAE), BEC)) by checking if

there is an entry in the look-up table of the form D[·, ·, BEC, CAE] = (M,KEC). If not he

returns ⊥, but if so he computes M∪ {⊥} 3 X ← EDec(KEC, H,CEC, BEC) and returns

the output to A. If A ever makes a decryption query (H, ((CEC, CAE), BEC)) such that

D[·, ·, BEC, CAE] 6= {⊥} and which decrypts correctly, but for which

D[H,CEC, BEC, CAE] = ⊥, the bad2 flag will be set. If additionally such a query has

(BEC, CAE) = (B∗EC, C
∗
AE) and so corresponds to the ith Enc query in which C inserted his

challenge, then C submits the tuple (H,CEC) to his challenge decryption oracle.

If such an event occurs, then by definition EDec(K∗EC, H,CEC, B
∗
EC) does not return ⊥,

where K∗EC is the key associated to (B∗EC, C
∗
AE) and that which was used in C’s challenge.

At the same time, we know that D[H,CEC, B
∗
EC, C

∗
AE] = ⊥, so (H,CEC) 6= (H∗, C∗EC).

Therefore, this constitutes a winning query for C in the SCU game.

Let (B1
EC, C

1
AE), . . . , (Bqe

EC, C
qe
AE) denote the set of ciphertexts returned in response to the

qe Enc queries made by A, and bad(BEC, CAE) denote the ciphertext in the query which

resulted in bad2 being set (by a previous transition, the only ciphertexts which could cause

bad2 to be set must correspond to an Enc query). We write Cj for the attacker who inserts

his challenge at the jth Enc query. Then taking a union bound, it follows that

Pr [ bad2 = 1 in G2 ] ≤
qe∑
j=1

Pr
[

bad2 = 1 in G2 ∧ bad(BEC, CAE) = (Bj
EC, C

j
AE)

]
≤

qe∑
j=1

Pr
[

SCUC
j

EC ⇒ 1
]

= qe ·Advscu
EC (C, 1) ,

where C’s query budget follows since he makes at most one ChalDec query. Putting this

altogether, it follows that

Advmo-ctxt
CE[EC,AEAD](A, qc, qe, qd) ≤ Advctxt

AEAD(B, qc + qd, qe) + qe ·Advscu
EC (C, 1) ,

which concludes the proof.
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Binding security. It is straightforward to verify that CE[EC,AEAD] inherits s-BIND and

sr-BIND security directly from EC, and so we have shown that the transform yields a secure

ccAEAD scheme. Moreover, by reframing CE as a regular AEAD scheme as described in

Section 3.7.1, our transform yields a ROR and CTXT secure single-pass AEAD scheme.

To implement the transform the underlying AEAD scheme must be instantiated. One can

use, for example, OCB.

3.7.4 A Transform From Encryptment to ccAEAD via a Compression Function

In this section, we present an alternative approach for building ccAEAD from encryptment,

which lifts an encryptment scheme to fully-fledged ccAEAD at the cost of just two extra

compression function calls. The scheme uses an RKA-PRF, most simply re-using the

compression function f used in HFC. This transform is also conceptually elegant as it may

be built from a single cryptographic primitive.

Overview. Consider the scheme CE[EC, f] = (CKg,CEnc,CDec,CVer) shown in Fig-

ure 3.25, built from an encryptment scheme EC = (EKg,EEnc,EDec,EVer) and a com-

pression function f : {0, 1}n × {0, 1}d → {0, 1}n. Key generation simply returns a

random d-bit key K ←$ {0, 1}d. On input (K,H,M), the encryption algorithm CEnc

chooses a random nonce N ←$ {0, 1}n and uses this to derive a one-time encryptment

key via KEC ← f(N,K ⊕ fpad). This key is then used to encrypt the header and mes-

sage via (CEC, BEC) ← EEnc(KEC, H,M). The algorithm then uses the long-lived key to

compute an authentication tag over the binding tag, TB ← f(BEC,K ⊕ spad), and out-

puts ((CEC, TB), BEC). Notice how the domains of the compression function calls used

to compute the one-time keys and the tags are domain-separated; looking ahead, this

shall be utilised in the proof of MO-CTXT security. Decryption with CDec first verifies

the authentication tag, returning an error if this step fails. The algorithm then uses N

to re-derive KEC and decrypts (CEC, BEC) to return M , finally returning (KEC,M) if all

steps succeed. Verification with CVer simply verifies the binding tag using the verification

algorithm of the underlying encryptment scheme.

We now analyse the security of the ccAEAD scheme CE[EC, f] resulting from the compres-

sion function transform.
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CKg

K←$ {0, 1}d
Return K

CEnc(K,H,M)

N ←$ {0, 1}n
KEC ← f(N,K ⊕ fpad)

(CEC, BEC)← EEnc(KEC, H,M)

TB ← f(BEC,K ⊕ spad)

Return ((N,CEC, TB), BEC)

CDec(K,H, (C,CB))

(N,CEC, TB)← C ;BEC ← CB
T ′B ← f(BEC,K ⊕ spad)

If TB 6= T ′B then return ⊥
KEC ← f(N,K ⊕ fpad)

M ← EDec(KEC, H,CEC, BEC)

If M = ⊥ then return ⊥
Return (M,KEC)

CVer(H,M,Kf , CB)

b← EVer(H,M,Kf , CB)

Return b

Figure 3.25: A transform CE[EC, f] for building a ccAEAD scheme from an encryptment
scheme EC and a compression function f : {0, 1}n × {0, 1}d → {0, 1}n. The strings fpad
and spad are fixed and distinct.

MO-ROR security. We will begin by analysing the confidentiality of CE[EC, f]. The

proof of the following theorem first uses a reduction to the RKA-PRF security of f to

argue that we can replace compression function calls in game MO-REAL with random

function queries. With this in place, we remove collisions in the nonces sampled in Enc and

ChalEnc which then allows us to replace all encryptment keys generated by these oracles

with independent random strings. This then allows a reduction to the otROR security

of EC via which we can replace all encryptments generated in ChalEnc with random

strings; modulo accidental collisions amongst the binding tags (which are accounted for in

the bound), we may then replace the corresponding authentication tags TB with random

strings also. After a final few games hops to revert to sampling binding tags and nonces

at random, and to return to using f in Enc, we reach a game equivalent to MO-RAND.

We note that for game MO-RAND, it is straightforward to verify that the associated

ciphertext length function clenCE for CE[EC, f] is that which, on input |M | ∈ N, outputs

clenEC(|M |) + 2n. Binding tags produced by CE[EC, f] are of the same length as the tags

produced by EC, blen = btlen.

Theorem 3.9. Let EC = (EKg,EEnc,EDec,EVer) be an encryptment scheme with binding

tag space TEC ⊆ {0, 1}n and such that key generation via EKg is equivalent to choosing

KEC ←$ {0, 1}n. Let f : {0, 1}n × {0, 1}d → {0, 1}n be a compression function, and let

fpad and spad be fixed and distinct d-bit strings. Let CE[EC, f] be the ccAEAD scheme built

from EC and f according to Figure 3.25. Then for any adversary A in game MO-ROR

against CE, there exists adversaries B1,B2, and C such that

Advmo-ror
CE (A, qc, qe, qd) ≤ Adv⊕-prf

f (B1, 2 · (qe + qc)) + Adv⊕-prf
f (B2, 2qe)

+ qc ·Advot-ror
EC (C) +

(qc + qe)
2

2n
+

8qe · qc + 3qc · (qc − 1)

2blen+1
.

Adversaries B1,B2, and C run in the same time as A plus an O(qc + qe + qd) overhead.
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Proof. We argue by a series of game hops, shown in Figures 3.26 and 3.27. For brevity,

when transitioning between games we occasionally add flags and / or remove redundant

code without stating this in the following proof; it is straightforward to verify that all such

modifications do not alter the distribution of the game in question. We begin by defining

game G0 (not shown), which is equivalent to game MO-REAL against CE[EC, f] with the

exception that decryption in oracle Dec is performed by table look-up. As discussed in

the analogous argument of Theorem 3.7, performing decryption by table look-up does not

affect the distribution of the game and so this game is equivalent to game MO-REAL.

Next we define game G1, which is identical to G0 except: (1) we add a flag in Enc and

ChalEnc; and (2) replace f(·,K ⊕ Y ) with a lazily sampled random function F for each

Y ∈ {fpad, spad}. It is straightforward to verify that (1) does not affect the outcome of

the game. For (2), we claim that there exists an attacker B1 in game RKA-PRF against

f, running in the same time as A plus an O(qc + qe + qd) overhead, such that

|Pr [G1 ⇒ 1 ]− Pr [G0 ⇒ 1 ]| ≤ Adv⊕-prf
f (B1, 2 · (qe + qc)) .

B1 runs A as a subroutine, simulating A’s oracle following the pseudocode description in

G0. In particular for each function call f(X,K ⊕ Y ), B1 queries (X,Y ) to his real-or-

random function oracle, and uses the response to run the remainder of the game. At the

end of the game, B1 outputs whatever bit A does. It is straightforward to verify that

if B1 receives real outputs in his challenge then this perfectly simulates G0; otherwise it

perfectly simulates G1. Noting that each query to Enc and ChalEnc induces two f calls

then implies the claim.

Next we define game G2, which is identical to G1 except we modify Enc and ChalEnc to

sample nonces without replacement. These games run identically until the flag bad1 is set.

Since (qc + qe) nonces are sampled in both games, invoking the Fundamental Lemma of

Game Playing and a birthday bound implies that

|Pr [G2 ⇒ 1 ]− Pr [G1 ⇒ 1 ]| ≤ Pr [ bad1 = true in G2 ] ≤ (qc + qe)
2

2n+1
.

Next we define game G3, which is identical to G2 except instead of deriving encryptment

keys via KEC ← F (N, fpad) in Enc and ChalEnc, we instead sample these uniformly

at random KEC ←$ {0, 1}n. Since in G2 these keys are derived by applying a random

function to a point which is queried nowhere else in the game, these games are identically

distributed and so

Pr [G3 ⇒ 1 ] = Pr [G2 ⇒ 1 ] .
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Next we define game G4, which is identical to G3 except in ChalEnc we replace each

encryptment output (CEC, BEC) ← EEnc(KEC, H,M) with random bits strings of appro-

priate length. A straightforward reduction to the otROR security of EC, using a hybrid

argument over the qc ChalEnc queries and a series of attackers Ci for i ∈ [1, qc], each of

whom simulates ChalEnc for A by choosing random (CEC, BEC) for the first i− 1 queries,

and inserting their challenge in the ith query, implies that there exists an adversary C in

game otROR against EC with the claimed run time, such that

|Pr [G4 ⇒ 1 ]− Pr [G3 ⇒ 1 ]| ≤ qc ·Advot-ror
EC (C) .

Next we define game G5, which is identical to G4 except we modify ChalEnc such that

if one of the (now randomly sampled) binding tags collides with a binding tag previously

generated in Enc or randomly sampled in ChalEnc (indicated by the sets QE and QC

respectively), then the binding tag is resampled such that this is not the case. These

games run identically until the flag bad2 is set. Since qc binding tags are sampled in

ChalEnc, and at the point of sampling the ith such tag there are at most qe+(i−1) points

in the set QE ∪QC with which the binding tag may collide, it follows that

|Pr [G5 ⇒ 1 ]− Pr [G4 ⇒ 1 ]| ≤ Pr [ bad2 = true in G5 ] ≤ 2qe · qc + qc · (qc − 1)

2blen+1
.

Next we define game G6, which is identical to G5 except we modify ChalEnc to sample

authentication tags uniformly at random TB ←$ {0, 1}n rather than computing these via

TB ← F (BEC, spad). Consider the set of all authentication tags computed in Enc and

ChalEnc during the course of G5. Due to the previous transition, the binding tags sampled

in ChalEnc cannot collide with any previously sampled binding tag. As such, each query

f(BEC, spad) will be on a previously unqueried point. Moreover, that point will be queried

nowhere else in the game (and so the distribution of these tags is precisely that of G6)

unless a subsequent Enc query also produces binding tag BEC, an event we indicate with

the flag bad3. Both games run identically until the flag bad3 is set; as such, invoking the

Fundamental Lemma of Game Playing implies that

|Pr [G6 ⇒ 1 ]− Pr [G5 ⇒ 1 ]| ≤ Pr [ bad3 = true in G5 ]

≤ Pr [ bad3 = true in G4 ] +
2qe · qc + qc · (qc − 1)

2blen+1

≤ 4qe · qc + qc · (qc − 1)

2blen+1
.

The second inequality follows from a previous bound on the gap between G4 and G5.

The final inequality follows since for each Enc query in G4 there are at most qc randomly
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sampled points in the set Qc, and so the probability of bad3 being set in this game is upper

bounded by qe·qc
2blen

Next we define game G7 to be identical to G6, except we revert to sampling binding tags

uniformly at random in ChalEnc. These games run identically until the flag bad2 is set,

and so an entirely analogous argument to that made previously implies that

|Pr [G7 ⇒ 1 ]− Pr [G6 ⇒ 1 ]| ≤ 2qe · qc + qc · (qc − 1)

2blen+1
.

In game G8, we revert to generating encryptment keys via the random function in Enc;

by an analogous argument to that made previously, this is a purely syntactic change, and

Pr [G8 ⇒ 1 ] = Pr [G7 ⇒ 1 ] .

In game G9, we revert to sampling nonces with replacement. Again these games run

identically until the flag bad1 is set; it follows that

|Pr [G9 ⇒ 1 ]− Pr [G8 ⇒ 1 ]| ≤ (qc + qe)
2

2n+1
.

Finally, we define game G10 to be identical to G9, except we replace the random function F

with the compression function f. An analogous argument to that made previously, noting

that in these games no function queries are made in ChalEnc and 2qe function queries are

made in Enc, implies that there exists an attacker B2 in game RKA-PRF against f such

that

|Pr [G9 ⇒ 1 ]− Pr [G8 ⇒ 1 ]| ≤ Adv⊕-prf
f (B1, 2qe) .

Moreover, G10 is identical to game MO-RAND against CE[EC, f] (modulo decryption per-

formed by table look-up, which as mentioned above does not alter the distribution of the

game). As such, combining the above via a standard argument implies that there exists

attacker’s B1,B2, and C with the claimed run times, such that

Advmo-ror
CE (A, qc, qe, qd) ≤ Adv⊕-prf

f (B1, 2 · (qe + qc)) + Adv⊕-prf
f (B2, 2qe)

+ qc ·Advot-ror
EC (C) +

(qc + qe)
2

2n
+

8qe · qc + 3qc · (qc − 1)

2blen+1
.

MO-CTXT security. Next, we analyse the MO-CTXT security of CE[EC, f]. As in the

proof of Theorem 3.9, we first argue that we can replace compression function calls with
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proc. main // G0

K←$ {0, 1}d
b′←$AEnc,Dec,ChalDec

Return b′

proc. Enc(H,M) // G0

N ←$ {0, 1}n
KEC ← f(N,K ⊕ fpad)

(CEC, BEC)← EEnc(KEC, H,M)

TB ← f(BEC,K ⊕ spad)

C ← (N,CEC, TB)

Y ← Y ∪ {(H,C,BEC)}
D[H,C,BEC]← (M,KEC)

Return (C,BEC)

proc. Dec(H,C,CB) // G0

If (H,C,CB) 6∈ Y
Return ⊥

Return D[H,C,BEC]

proc. ChalEnc(H,M) // G0

N ←$ {0, 1}n
KEC ← f(N,K ⊕ fpad)

(CEC, BEC)← EEnc(KEC, H,M)

TB ← f(BEC,K ⊕ spad)

C ← (N,CEC, TB)

Return (C,BEC)

proc. main // G1, G2

K←$ {0, 1}d
b′←$AEnc,Dec,ChalDec

Return b′

proc. Enc(H,M) // G1, G2

N ←$ {0, 1}n
If N ∈ Q1

bad1 ← 1

N ←$ {0, 1}n \ Q1

Q1 ← Q1 ∪ {N}
KEC ← F (N, fpad)

(CEC, BEC)← EEnc(KEC, H,M)

TB ← F (BEC, spad)

C ← (N,CEC, TB)

Y ← Y ∪ {(H,C,BEC)}
D[H,C,BEC]← (M,KEC)

Return (C,BEC)

proc. Dec(H,C,CB) // G1, G2

If (H,C,CB) 6∈ Y
Return ⊥

Return D[H,C,BEC]

proc. ChalEnc(H,M) // G1, G2

N ←$ {0, 1}n
If N ∈ Q1

bad1 ← 1

N ←$ {0, 1}n \ Q1

Q1 ← Q1 ∪ {N}
(CEC, BEC)← EEnc(KEC, H,M)

TB ← F (BEC, spad)

C ← (N,CEC, TB)

Return (C,BEC)

proc. F (X,Y ) // G1, G2

If F [X,Y ] 6= ⊥
F [X,Y ]←$ {0, 1}n

Return F [X,Y ]

proc. main // G3, G4

K←$ {0, 1}d
b′←$AEnc,Dec,ChalDec

Return b′

proc. Enc(H,M) // G3, G4

N ←$ {0, 1}n
If N ∈ Q1

bad1 ← 1

N ←$ {0, 1}n \ Q1

Q1 ← Q1 ∪ {N}
KEC←$ {0, 1}n
(CEC, BEC)← EEnc(KEC, H,M)

If BEC ∈ QC then bad3 ← true

QE ← QE ∪ {BEC}
TB ← F (BEC, spad)

C ← (N,CEC, TB)

Y ← Y ∪ {(H,C,BEC)}
D[H,C,BEC]← (M,KEC)

Return (C,BEC)

proc. Dec(H,C,CB) // G3, G4

If (H,C,CB) 6∈ Y
Return ⊥

Return D[H,C,BEC]

proc. ChalEnc(H,M) // G3, G4

N ←$ {0, 1}n
If N ∈ Q1 then

bad1 ← 1

N ←$ {0, 1}n \ Q1

Q1 ← Q1 ∪ {N}
KEC←$ {0, 1}n
(CEC, BEC)← EEnc(KEC, H,M)

(CEC, BEC)←$ {0, 1}clenEC(|M|)×{0,1}btlen

If BEC ∈ QE ∪QC
bad2 ← true

QC ← QC ∪ {BEC}
TB ← F (BEC, spad)

C ← (N,CEC, TB)

Return (C,BEC)

proc. F (X,Y ) // G3, G4

If F [X,Y ] 6= ⊥ then

F [X,Y ]←$ {0, 1}n
Return F [X,Y ]

Figure 3.26: Games for the proof of Theorem 3.9.

random function queries via a reduction to the RKA-PRF security of f. We then modify

the sampling of nonces so that each encryptment key corresponding to an Enc query or

a decryption oracle query with a previously unseen nonce can be replaced with a random

string. This then allows a reduction to the SCU security of EC to argue that the attacker

is unlikely to win with a decryption query for which the encryptment key and binding tag

correspond to a previous Enc query. The proof then argues that to win, the attacker must

either correctly guess the value of a previously unseen authentication tag (which, since

uniformly distributed over {0, 1}n in the modified game, accounts for the (qc+qd)
2n term in

the bound), or break the s-BIND or sr-BIND security of EC.

Theorem 3.10. Let EC = (EKg,EEnc,EDec,EVer) be an encryptment scheme with binding

tag space TEC ⊆ {0, 1}n and such that key generation via EKg is equivalent to choosing
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proc. main // G5, G6

K←$ {0, 1}d
b′←$AEnc,Dec,ChalDec

Return b′

proc. Enc(H,M) // G5, G6

N ←$ {0, 1}n
If N ∈ Q1

bad1 ← 1

N ←$ {0, 1}n \ Q1

Q1 ← Q1 ∪ {N}
KEC←$ {0, 1}n
(CEC, BEC)← EEnc(KEC, H,M)

If BEC ∈ QC then bad3 ← true

QE ← QE ∪ {BEC}
TB ← F (BEC, spad)

C ← (N,CEC, TB)

Y ← Y ∪ {(H,C,BEC)}
D[H,C,BEC]← (M,KEC)

Return (C,BEC)

proc. Dec(H,C,CB) // G5, G6

If (H,C,CB) 6∈ Y
Return ⊥

Return D[H,C,BEC]

proc. ChalEnc(H,M) // G5, G6

N ←$ {0, 1}n
If N ∈ Q1

bad1 ← 1

N ←$ {0, 1}n \ Q1

Q1 ← Q1 ∪ {N}
KEC←$ {0, 1}n

(CEC, BEC)←${0, 1}clenEC(|M|)×{0,1}btlen

If BEC ∈ QE ∪QC
bad2 ← true

BEC←$ {0, 1}btlen \ QE ∪QC
QC ← QC ∪ {BEC}
TB ← F (BEC, spad)

TB ←$ {0, 1}n

C ← (N,CEC, TB)

Return (C,BEC)

proc. F (X,Y ) // G5, G6

If F [X,Y ] 6= ⊥ then

F [X,Y ]←$ {0, 1}n
Return F [X,Y ]

proc. main // G7, G8

K←$ {0, 1}d
b′←$AEnc,Dec,ChalDec

Return b′

proc. Enc(H,M) // G7, G8

N ←$ {0, 1}n
If N ∈ Q1

bad1 ← 1

N ←$ {0, 1}n \ Q1

Q1 ← Q1 ∪ {N}
KEC←$ {0, 1}n

KEC ← F (N, fpad)

(CEC, BEC)← EEnc(KEC, H,M)

QE ← QE ∪ {BEC}
If BEC ∈ QC then bad3 ← true

TB ← F (BEC, spad)

C ← (N,CEC, TB)

Y ← Y ∪ {(H,C,BEC)}
D[H,C,BEC]← (M,KEC)

Return (C,BEC)

proc. Dec(H,C,CB) // G7, G8

If (H,C,CB) 6∈ Y
Return ⊥

Return D[H,C,BEC]

proc. ChalEnc(H,M) // G7, G8

N ←$ {0, 1}n
If N ∈ Q1

bad1 ← 1

N ←$ {0, 1}n \ Q1

Q1 ← Q1 ∪ {N}
KEC←$ {0, 1}n

(CEC, BEC)←$ {0, 1}clenEC(|M|)×{0,1}btlen

If BEC ∈ QE ∪QC
bad2 ← true

QC ← QC ∪ {BEC}
TB ←$ {0, 1}n
C ← (N,CEC, TB)

Return (C,BEC)

proc. F (X,Y ) // G7, G8

If F [X,Y ] 6= ⊥ then

F [X,Y ]←$ {0, 1}n
Return F [X,Y ]

proc. main // G9, G10

K←$ {0, 1}d
b′←$AEnc,Dec,ChalDec

Return b′

proc. Enc(H,M) // G9, G10

N ←$ {0, 1}n
If N ∈ Q1

bad1 ← 1

Q1 ← Q1 ∪ {N}
KEC ← F (N, fpad)

KEC ← f(N,K ⊕ fpad)

(CEC, BEC)← EEnc(KEC, H,M)

TB ← f(BEC,K ⊕ spad)

C ← (N,CEC, TB)

Y ← Y ∪ {(H,C,BEC)}
D[H,C,BEC]← (M,KEC)

Return (C,BEC)

proc. Dec(H,C,CB) // G9, G10

If (H,C,CB) 6∈ Y
Return ⊥

Return D[H,C,BEC]

proc. ChalEnc(H,M) // G9, G10

N ←$ {0, 1}n
If N ∈ Q1

bad1 ← 1

Q1 ← Q1 ∪ {N}
(CEC, BEC)←$ {0, 1}clenEC(|M|)×{0,1}btlen

TB ←$ {0, 1}n
C ← (N,CEC, TB)

Return (C,BEC)

proc. F (X,Y ) // G9, G10

If F [X,Y ] 6= ⊥ then

F [X,Y ]←$ {0, 1}n
Return F [X,Y ]

Figure 3.27: Further games for the proof of Theorem 3.9.
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KEC←${0, 1}n. Let f : {0, 1}n×{0, 1}d → {0, 1}n be a compression function, and let fpad

and spad be fixed and distinct d-bit strings. Let CE[EC, f] be the ccAEAD scheme built

from EC and f according to Figure 3.25. Then for any adversary A in the MO-CTXT

game against CE, there exists adversaries B, C, E, and F , such that

Advmo-ctxt
CE[EC,f](A, qc, qe, qd) ≤ Adv⊕-prf

f (B, 2 · q) + qe ·Advscu
EC (C, 1) + Advs-bind

EC (E)

+ Advsr-bind
EC (F) +

q2 + 2(qe + 1) · (qc + qd) + qe · (qe − 1)

2n+1
,

where q = qc + qe + qd. All attackers run in the same amount of time as A, plus an O(q)

overhead.

Proof. We argue by a series of game hops, shown in Figures 3.28 and 3.29. We begin by

defining game G0, which is equivalent to MO-CTXT against CE[EC, f]. Next we define

game G1, which is identical to G0 except: (1) we maintain a table D of header / ciphertext

pairs which were returned by oracle Enc; subsequently, the decryption of such ciphertexts

in oracle Dec is performed via table look-up; and (2) we allow A to win if they submit

a previously unseen ciphertext to Dec that decrypts correctly. (1) is clearly a syntactic

change and (2) can only increase A’s success probability; it follows that

Pr [G0 ⇒ 1 ]| ≤ Pr [G1 ⇒ 1 ] .

Next we define G2, which is identical to G1 except we replace compression function calls

with lazily sampled random function queries; an analogous argument to that made in the

proof of Theorem 3.9, and noting that each oracle makes two f calls per query, implies

that there exists an attacker B with the claimed run time, such that

|Pr [G2 ⇒ 1 ]− Pr [G1 ⇒ 1 ]| ≤ Adv⊕-prf
f (B, 2 · q) ,

where q = (qc + qe + qd).

Next we define game G3, which is identical to G2 except we modify nonce sampling in Enc.

In more detail, if a sampled nonce N←$ {0, 1}n collides with a nonce sampled to respond

to a previous Enc query or submitted as part of a Dec or ChalDec query (indicated by the

set Q1) in G3, then we resample the nonce such that this is not the case. These games

run identically until the flag bad1 is set. For each of the i ∈ [1, qe] Enc queries, there are

at most (qc + qd + (i− 1)) points with which the nonce sampled to respond to that query

could collide; summing over each query and invoking the Fundamental Lemma of Game
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Playing implies that

|Pr [G3 ⇒ 1 ]− Pr [G2 ⇒ 1 ]| ≤ 2qe · (qc + qd) + qe · (qe − 1)

2n+1
.

Next we define game G4, which is identical to G3 except we modify the way in which

encryptment keys are generated in all oracles. Namely, in each Enc query and each Dec /

ChalDec query on a previously unseen nonce, the oracle chooses KEC←${0, 1}n as opposed

to deriving the key via KEC ← F (N, fpad) where F denotes the lazily sampled random

function. In oracles Dec and ChalDec the correct encryptment key for previously seen

nonces are recovered by table look-up. Since in G3 nonces in Enc are sampled without

replacement, and by definition the modified decryption oracle queries are on a previously

unseen nonce, it follows that all such keys are derived as the result of a fresh query to the

random function and so both games are identically distributed. We obtain:

Pr [G4 ⇒ 1 ] = Pr [G3 ⇒ 1 ] .

Next we define game G5, which is identical to G4 except now Dec and ChalDec return ⊥ in

response to any query (H, ((N,CEC, TB), BEC)) for which D[·, N, ·, BEC, ·] 6= {⊥} regardless

of whether the query decrypts correctly. These games run identically until the flag bad2

is set, so

|Pr [G5 ⇒ 1 ]− Pr [G4 ⇒ 1 ]| ≤ Pr [ bad2 = 1 in G5 ] .

We bound this probability via a reduction to the SCU security of EC. Let C be an attacker

in the SCU game against EC who proceeds as follows. C chooses a key K←$CKg, an index

i←$ [1, qe], and runs A as a subroutine. C simulates all apart from the ith Enc query

by first choosing a random nonce N ←$ {0, 1}n \ Q1, a random key KEC←$ {0, 1}n, and

computing (CEC, BEC) ← EEnc(KEC, H,M) on the given input. C simulates the lazily

sampled random function F by choosing random strings in response to each fresh query,

and sets TB ← F (BEC, spad), finally returning ciphertext ((N,CEC, TB), BEC) to A. For

the ith query, C chooses N∗←${0, 1}n\Q1, submits A’s query (H∗,M∗) to his encryptment

oracle, receiving ((C∗EC, B
∗
EC),K∗EC) in return. C computes T ∗B ← F (B∗EC, spad) and returns

((N∗, C∗EC, T
∗
B), B∗EC) to A. C maintains look-up tables of the ciphertexts generated in

response to Enc queries, and the encryptment keys sampled in all oracles, as per the

pseudocode description of the game.

C simulates oracles Dec and ChalDec for queries (H, ((N,CEC, TB), BEC)) by first checking

if there is an entry in the decryption look-up table of the form D[H,N,CEC, BEC, TB] =

(M,KEC), returning (M,KEC) if this is an Dec query and ⊥ otherwise. If not, C verifies TB

136



3.7 Compactly Committing AEAD from Encryptment

and returns an error if the check fails. If the nonce N corresponds to a previous query, C

retrieves the corresponding encrytpment key KEC from the key look-up table. If not, they

sample a fresh encryptment key KEC←$ {0, 1}n and update the look-up table accordingly.

Either way, C decrypts M ← EDec(KEC, H,CEC, BEC), again returning an error if this

step fails. If the query is such that D[·, N, ·, BEC, ·] 6= {⊥} then A returns ⊥; otherwise

they return (M,KEC). Notice that if the query is such that ⊥ is returned despite the

ciphertext decrypting correctly, then the flag bad2 will be set. If additionally such a query

has (N,BEC) = (N∗, B∗EC), then this query corresponds to the key K∗EC and binding tag

B∗EC produced in the ith Enc query in which C inserted his challenge. In this case, C submits

the tuple (H,CEC) to his challenge decryption oracle. It is straightforward to verify that

C perfectly simulates G5 for A, and that moreover if the above event occurs then C has

found a new tuple (H,CEC, B
∗
EC) which decrypts correctly under K∗EC, constituting a win

for C. Since there are at most qe Enc queries in which C may insert their challenge, and C

makes at most one ChalDec query, a standard argument implies that

Pr [ bad2 = 1 in G5 ] ≤ qe ·Advscu
EC (C, 1) .

Next we define game G6, which is identical to G5 except we modify oracles Dec and

ChalDec such that if the attacker submits a fresh query (H, ((N,CEC, TB), BEC) A) for

which D[·, N, ·, BEC, ·] = {⊥} and which decrypts correctly with the modified checks, but

for which D[·, ·, ·, BEC, ·] = {⊥} (indicating that the binding tag BEC was not previously

returned in response to an Enc query), then the oracle returns ⊥. These games run

identically until the flag bad3 is set. We now bound the probability of this event occurring.

Suppose A makes q1 ≤ (qc+ qd) Dec and ChalDec queries for which D[·, ·, ·, BEC, ·] = {⊥},

among which there are q2 ≤ q1 distinct binding tags B1
EC, . . . , B

q2
EC. To each such binding

tag Bi
EC, there is precisely one correct authentication tag T iB = F (Bi

EC, spad). Since by

assumption D[·, ·, ·, Bi
EC, ·] = {⊥}, it follows that at the point of the first decryption query

on Bi
EC the random function has not been queried on this binding tag. As such at the

point of A making this query the value of T iB is uniformly distributed over {0, 1}n, and so

is guessed in a single decryption query with probability 1
2n . Suppose A makes ai queries

on binding tag Bi
EC; then a union bound implies that bad3 is set with one of these queries

with probability ai
2n . Taking a union bound over each binding tag Bi

EC ∈ [1, q2], and since∑q2
i=1 ai = q1 ≤ (qc + qd), it follows that

|Pr [G6 ⇒ 1 ]− Pr [G5 ⇒ 1 ] ≤ Pr [ bad3 = 1 in G6 ] ≤
q2∑
i=1

ai
2n
≤ (qc + qd)

2n
.

Next we define game G7, which is identical to G6 now encryptment keys generated in all
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oracles are sampled without replacement. In particular, notice that if two oracle queries

contain distinct nonces in G7 then their associated encryptment keys will be distinct also.

These games run identically until the flag bad4 is set. Since at most q = qc + qe + qd

encryptment keys are sampled, it is straightforward to verify that

|Pr [G7 ⇒ 1 ]− Pr [G8 ⇒ 1 ]| ≤ Pr [ bad4 = 1 in G7 ] ≤ q2

2n+1
.

Next we define game G8 to be identical to G7, except that now if a query is made to Dec

or ChalDec which decrypts correctly with the added checks, but for which the binding tag

fails to verify, then the oracle returns ⊥. It is straightforward to verify that both games

can be perfectly simulated by an attacker E in game s-BIND against EC, and that any

such query corresponds to a win in that game; it follows that

|Pr [G8 ⇒ 1 ]− Pr [G7 ⇒ 1 ]| ≤ Advs-bind
EC (E) .

Now in game G8, any previously unseen query (H∗, ((N∗, C∗EC, T
∗
B), B∗EC)) which causes

win to be set in Dec or ChalDec must: (1) decrypt correctly; (2) verify correctly under

the associated key K∗EC; and (3) be such that B∗EC was returned in response to a previous

Enc query, but N∗ was not returned by any Enc query. We claim that there exists an

attacker F in game sr-BIND against EC such that

Pr [G8 ⇒ 1 ] = Advsr-bind
EC (F) .

To see this, notice that game G8 can be perfectly simulated by an attacker F in game

sr-BIND against EC with the claimed run time. Suppose that A submits a winning query

(H∗, ((N∗, C∗EC, T
∗
B), B∗EC)) in the simulated game. Since in G8 encryptment keys are

sampled without replacement, queries with distinct nonces have different associated keys.

Since by (3) N∗ is distinct from all nonces generated to respond to Enc queries, it must

hold that the encryptment key K∗EC derived when decrypting this query will be distinct

from all those generated during Enc queries also. Also by (3), there must have been

an Enc query which returned a tuple (H, ((N,CEC, TB), B∗EC)) where N 6= N∗. By the

correctness of EC, this binding tag must verify correctly under its associated key KEC. If

this event occurs, then A has found a winning tuple ((H,M,KEC), (H∗,M∗,K∗EC), B∗EC),

where KEC 6= K∗EC by the discussion above and M,M∗ denote the messages underlying the

respective ciphertexts (and which are well-defined, since by assumption both ciphertexts

decrypt correctly). This implies the claim.
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Putting this altogether via a standard argument implies that

Advmo-ctxt
CE[EC,f](A, qc, qe, qd) ≤ Adv⊕-prf

f (B, 2 · q) + qe ·Advscu
EC (C, 1) + Advs-bind

EC (E)

+ Advsr-bind
EC (F) +

q2 + 2(qe + 1) · (qc + qd) + qe · (qe − 1)

2n+1
,

thereby concluding the proof.

Binding security. We omit proofs for the sr-BIND and s-BIND security of CE[EC, f];

the transform inherits these properties directly from EC.

This concludes our analysis of transforms from encryptment to ccAEAD. Next, we will

establish an equivalence between the two by showing how to construct encryptment

from ccAEAD.

3.7.5 A Transform From ccAEAD to Encryptment

We now describe a transform which builds a secure encryptment scheme from any secure

ccAEAD scheme, thereby establishing an equivalence between the two. Moreover, the rate

of encryptment in the transformed construction is exactly that of ccAEAD encryption; as

such, the negative results on rate-1 encryptment from Section 3.5 extend to the ccAEAD

case also.

Let CE = (CKg,CEnc,CDec,CVer) be a ccAEAD scheme, with associated coin space R.

Then we may construct an encryptment scheme EC[CE] = (EKg,EEnc,EDec,EVer) from CE

as follows. We define EKg to be the algorithm which generates a ccAEAD key K←$ CKg,

chooses random coins R←$R where R denotes the coin space of the ccAEAD scheme, and

outputs KEC = K ‖R. The deterministic encryptment algorithm on input (K ‖R,H,M)

uses the encryption algorithm of the ccAEAD scheme with coins fixed to R to compute

(C,CB)← CEnc(K,H,M ;R), returning (CEC, BEC) = (C,CB). In particular, notice that

the rate of EEnc is exactly that of CEnc.

We define EDec to be the algorithm which on input (K ‖R,H,CEC, BEC) first uses the de-
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proc. main // G0

K←$ {0, 1}d ; win← false

AEnc,Dec,ChalDec

Return win

proc. Enc(H,M) // G0

N ←$ {0, 1}n
KEC ← f(N,K ⊕ fpad)

(CEC, BEC)← EEnc(KEC, H,M)

TB ← f(BEC,K ⊕ spad)

C ← (N,CEC, TB)

Y ← Y ∪ {(H,C,BEC)}
Return (C,BEC)

proc. Dec(H,C,CB) // G0

(N,CEC, TB)← C ;BEC ← CB
T ′B ← f(BEC,K ⊕ spad)

If T ′B 6= TB then return ⊥
KEC ← f(N,K ⊕ fpad)

M ← EDec(KEC, H,CEC, BEC)

If M = ⊥ then return ⊥
Return (M,KEC)

proc. ChalDec(H,C,CB) // G0

(N,CEC, TB)← C ;BEC ← CB
If (H,C,BEC) ∈ Y then

Return ⊥
T ′B ← f(BEC,K ⊕ spad)

If T ′B 6= TB then return ⊥
KEC ← f(N,K ⊕ fpad)

M ← EDec(KEC, H,CEC, BEC)

If M = ⊥ then return ⊥
win← true

Return (M,KEC)

proc. main // G1, G2

K←$ {0, 1}d ; win← false

AEnc,Dec,ChalDec

Return win

proc. Enc(H,M) // G1, G2

N ←$ {0, 1}n
KEC ← f(N,K ⊕ fpad)

KEC ← F (N, fpad)

(CEC, BEC)← EEnc(KEC, H,M)

TB ← f(BEC,K ⊕ spad)

TB ← F (BEC, spad)

C ← (N,CEC, TB)

Y ← Y ∪ {(H,C,BEC)}
D[H,N,CEC, BEC, TB ]← (M,KEC)

Return (C,BEC)

proc. Dec(H,C,CB) // G1, G2

(N,CEC, TB)← C ;BEC ← CB
If D[H,N,CEC, BEC, TB ] 6= ⊥

Return (M,KEC)

T ′B ← f(BEC,K ⊕ spad)

T ′B ← F (BEC, spad)

If T ′B 6= TB then return ⊥
KEC ← f(N,K ⊕ fpad)

KEC ← F (N, fpad)

M ← EDec(KEC, H,CEC, BEC)

If M = ⊥ then return ⊥
win← true

Return (M,KEC)

proc. ChalDec(H,C,CB) // G1, G2

(N,CEC, TB)← C ;BEC ← CB
If (H,C,BEC) ∈ Y then

Return ⊥
T ′B ← f(BEC,K ⊕ spad)

T ′B ← F (BEC, spad)

If T ′B 6= TB then return ⊥
KEC ← f(N,K ⊕ fpad)

KEC ← F (N, fpad)

M ← EDec(KEC, H,CEC, BEC)

If M = ⊥ then return ⊥
win← true

Return (M,KEC)

proc. F (X,Y ) // G2

If F [X,Y ] = ⊥ then

F [X,Y ]←$ {0, 1}n
Return F [X,Y ]

proc. main // G3, G4

K←$ {0, 1}d ; win← false

AEnc,Dec,ChalDec

Return win

proc. Enc(H,M) // G3, G4

N ←$ {0, 1}n
If N ∈ Q1

bad1 ← 1

N ←$ {0, 1}n \ {Q1}
Q1 ← Q1 ∪ {N}
KEC ← F (N, fpad)

K[N ]←$ {0, 1}n

KEC ← K[N ]

(CEC, BEC)← EEnc(KEC, H,M)

TB ← F (BEC, spad)

C ← (N,CEC, TB)

Y ← Y ∪ {(H,C,BEC)}
D[H,N,CEC, BEC, TB ]← (M,KEC)

Return (C,BEC)

proc. Dec(H,C,CB) // G3, G4

(N,CEC, TB)← C ;BEC ← CB
Q1 ← Q1 ∪ {N}
If D[H,N,CEC, BEC, TB ] 6= ⊥

Return (M,KEC)

T ′B ← F (BEC, spad)

If T ′B 6= TB then return ⊥
KEC ← F (N, fpad)

If K[N ] = ⊥

K[N ]←$ {0, 1}n

KEC ← K[N ]

If M = ⊥ then return ⊥
win← true

Return (M,KEC)

proc. ChalDec(H,C,CB) // G3, G4

(N,CEC, TB)← C ;BEC ← CB
Q1 ← Q1 ∪ {N}
If (H,C,BEC) ∈ Y then

Return ⊥
T ′B ← F (BEC, spad)

If T ′B 6= TB then return ⊥
KEC ← F (N, fpad)

If K[N ] = ⊥

K[N ]←$ {0, 1}n

KEC ← K[N ]

M ← EDec(KEC, H,CEC, BEC)

If M = ⊥ then return ⊥
win← true

Return (M,KEC)

proc. F (X,Y ) // G3, G4

If F [X,Y ] = ⊥ then

F [X,Y ]←$ {0, 1}n
Return F [X,Y ]

Figure 3.28: Games for proof of Theorem 3.10.
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proc. main // G5, G6, G7, G8

K←$ {0, 1}d ; win← false

AEnc,Dec,ChalDec

Return win

proc. Enc(H,M) // G5, G6

N ←$ {0, 1}n

If N ∈ Q1

N ←$ {0, 1}n \ {Q1}
Q1 ← Q1 ∪ {N}
K[N ]←$ {0, 1}n

KEC ← K[N ]

(CEC, BEC)← EEnc(KEC, H,M)

TB ← F (BEC, spad)

C ← (N,CEC, TB)

Y ← Y ∪ {(H,C,BEC)}
D[H,N,CEC, BEC, TB ]← (M,KEC)

Return (C,BEC)

proc. Dec(H,C,CB) // G5, G6

(N,CEC, TB)← C ;BEC ← CB

Q1 ← Q1 ∪ {N}
If D[H,N,CEC, BEC, TB ] 6= ⊥

Return (M,KEC)

T ′B ← F (BEC, spad)

If T ′B 6= TB then return ⊥
If K[N ] = ⊥
K[N ]←$ {0, 1}n

KEC ← K[N ]

M ← EDec(KEC, H,CEC, BEC)

If M = ⊥ then return ⊥
If D[·, N, ·BEC, ·] 6= {⊥}

bad2 ← true ; return ⊥
If D[·, ·, ·, BEC, ·] = {⊥}

bad3 ← true ; return ⊥
win← true

Return (M,KEC)

proc. ChalDec(H,C,CB) // G5, G6

(N,CEC, TB)← C ;BEC ← CB

Q1 ← Q1 ∪ {N}
If (H,C,BEC) ∈ Y then

Return ⊥
T ′B ← F (BEC, spad)

If T ′B 6= TB then return ⊥
If K[N ] = ⊥
K[N ]←$ {0, 1}n

KEC ← K[N ]

M ← EDec(KEC, H,CEC, BEC)

If M = ⊥ then return ⊥
If D[·, N, ·BEC, ·] 6= {⊥}

Return ⊥
If D[·, ·, ·, BEC, ·] = {⊥}

bad3 ← true ; return ⊥
win← true

Return (M,KEC)

proc. F (X,Y ) // G5, G6, G7, G8

If F [X,Y ] 6= ⊥ then

F [X,Y ]←$ {0, 1}n

Return F [X,Y ]

proc. Enc(H,M) // G7, G8

N ←$ {0, 1}n

If N ∈ Q1

N ←$ {0, 1}n \ {Q1}
Q1 ← Q1 ∪ {N}
K[N ]←$ {0, 1}n

If K[N ] ∈ Q2

bad4 ← true ;K[N ]←$ {0, 1}n/{Q2}
KEC ← K[N ]

Q2 ← Q2 ∪ {KEC}
(CEC, BEC)← EEnc(KEC, H,M)

TB ← F (BEC, spad)

C ← (N,CEC, TB)

Y ← Y ∪ {(H,C,BEC)}
D[H,N,CEC, BEC, TB ]← (M,KEC)

Return (C,BEC)

proc. Dec(H,C,CB) // G7, G8

(N,CEC, TB)← C ;BEC ← CB

Q1 ← Q1 ∪ {N}
If D[H,N,CEC, BEC, TB ] 6= ⊥

Return (M,KEC)

T ′B ← F (BEC, spad)

If T ′B 6= TB then return ⊥
If K[N ] = ⊥
K[N ]←$ {0, 1}n

If K[N ] ∈ Q2

bad4 ← true ;K[N ]←$ {0, 1}n \ {Q2}
KEC ← K[N ]

Q2 ← Q2 ∪ {KEC}
M ← EDec(KEC, H,CEC, BEC)

If M = ⊥ then return ⊥
If D[·, N, ·BEC, ·] 6= {⊥}

Return ⊥
If D[·, ·, ·, BEC, ·] = {⊥}

Return ⊥
b← EVer(H,M,KEC, BEC)

If b = 0 return ⊥
win← true

Return (M,KEC)

proc. ChalDec(H,C,CB) // G7, G8

(N,CEC, TB)← C ;BEC ← CB

Q1 ← Q1 ∪ {N}
If (H,C,BEC) ∈ Y then

Return ⊥
T ′B ← F (BEC, spad)

If T ′B 6= TB then return ⊥
If K[N ] = ⊥
K[N ]←$ {0, 1}n

If K[N ] ∈ Q2

bad4 ← true ;K[N ]←$ {0, 1}n \ {Q2}
KEC ← K[N ]

Q2 ← Q2 ∪ {KEC}
M ← EDec(KEC, H,CEC, BEC)

If M = ⊥ then return ⊥
If D[·, N, ·BEC, ·] 6= {⊥}

Return ⊥
If D[·, ·, ·, BEC, ·] = {⊥}

Return ⊥
b← EVer(H,M,KEC, BEC)

If b = 0 return ⊥
win← true

Return (M,KEC)

Figure 3.29: Further games for proof of Theorem 3.10.
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cryption algorithm of the ccAEAD scheme to compute (M,Kf )← CDec(K,H,CEC, BEC).

It then checks if CEnc(K,H,M ;R) = (CEC, BEC) and if so returns M ; otherwise it returns

⊥. Notice that re-encrypting and comparing the encryptment in this way ensures that the

encryptment scheme has strong correctness.

For EVer there are two cases. If CE is such that it outputs its key as the opening (i.e.,

Kf = K) then we define EVer to be the algorithm which on input (H,M,K ‖R,BEC)

simply computes b ← CVer(H,M,K,BEC) and returns the result. If CE does not fall in

this class then EVer needs to recover the opening key before verifying the binding tag.

EVer can always do this (for both classes of ccAEAD scheme) given (H,M,K ‖R,BEC) by

re-computing (C ′, C ′B)← CEnc(K,H,M ;R) followed by (M ′,K ′f )← CDec(K,H,C ′, C ′B),

finally returning b← CVer(H,M,K ′f , BEC) (or 0 if any of these intermediate steps return

an error). The security of the derived scheme EC[CE] is described in the following theorem.

Theorem 3.11. Let CE= (CKg, CEnc, CDec, CVer) be a ccAEAD scheme. Then there

exists a strongly correct encryptment scheme EC[CE]= (EKg, EEnc, EDec, EVer) such that

for all adversaries A1,A2,A3, we give adversaries B, C, E such that

Advot-ror
EC[CE](A1) ≤ Advmo-ror

CE (B, 1, 0, 0) ;

Advr-bind
EC[CE](A2) ≤ Advr-bind

CE (C) ; and

Advs-bind
EC[CE](A3) ≤ Advs-bind

CE (E) .

Moreover, adversaries B, C, E run in the time of A1,A2,A3 respectively, and the rate of

EEnc is precisely that of CEnc.

Since the encryptment is recomputed during decryption with EDec, it is straightforward

to see that the scheme is strongly correct. We sketch the proof of the remainder of the

three-part theorem below, where we consider the more complex case in which CE does not

output its key as the opening; the proof of the alternative case is entirely analogous.

(Part 1) It is easy to see that an attacker B in game MO-ROR against the ccAEAD

scheme CE can perfectly simulate game otROR for an attacker A1 against the derived

encryptment scheme EC[CE] by submitting B’s encryption query to his own encryption

oracle and returning the result; therefore a reduction to the MO-ROR security of CE

implies the first result.
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(Part 2) To see that EC[CE] is receiver binding, notice that to win game r-BIND against

EC[CE] attacker A2 must output a tuple

((K ‖R,H,M), (K ′ ‖R′, H ′,M ′), CB)

such that (H,M) 6= (H ′,M ′) but for which

CVer(H,M,Kf , CB) = CVer(H ′,M ′,K ′f , CB) = 1

where

(M,Kf ) = CDec(K,H,CEnc(K,H,M ;R)), and

(M ′,K ′f ) = CDec(K ′, H ′,CEnc(K ′, H ′,M ′;R′)) .

Consider an adversary C in game r-BIND against CE who runs A2 as a subroutine. When

A2 outputs ((K ‖R,H,M), (K ′ ‖R′, H ′,M ′), CB), C runs CEnc then CDec on both tu-

ples to obtain each of the openings, and returns ((Kf , H,M), (K ′f , H
′,M ′), CB) to his

own challenger. This will be a winning tuple for C if A2’s output is a winning tuple in

their game.

(Part 3) Let F be an attacker who runs A3 as a subroutine. When A3 outputs

(K ‖R,H,C,CB), adversary F outputs (K,H,C,CB) to their own challenger. Suppose

that (K ‖R,H,C,CB) is a winning tuple in game s-BIND against EC[CE]. From the

description of EDec, this implies that CDec(K,H,C,CB) = (M ′,K ′f ) 6= ⊥, and so the

tuple output by F to their challenger in game s-BIND against CE decrypts correctly also.

Moreover, by the description of EVer, it must hold that CVer(H,M,K ′f , CB) = 0 where

(M ′,K ′f ) ← CDec(K,H,CEnc(K,H,M ;R)). Since the ciphertext is recomputed during

decryption with EDec, it must be the case that CEnc(K,H,M ;R) = (C,CB), which by

assumption decrypts correctly. As such, the key K ′f with which verification is performed

by EVer is exactly that which will be recovered and used to perform verification in game

s-BIND against CE. Therefore any winning tuple against EC[CE] corresponds to a winning

tuple for F against CE, implying the claim.

Finally, combining Lemma 3.1, Theorem 3.11, and that EC[CE] is strongly correct implies

that EC[CE] is SCU secure.
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FROBACE

((K,H), (K′, H′), (C,CB))←$A
If K = K′ then return 0

M1 ← CDec(K,H, (C,CB))

M2 ← CDec(K′, H′, (C,CB))

Return (M1 6= ⊥ ∧M2 6= ⊥)

Figure 3.30: The full robustness (FROB) security game for a ccAEAD scheme CE =
(CKg,CEnc,CDec,CVer).

3.7.6 Relationship to Robust Encryption: Relations and Separations

We conclude this section by discussing the relationship between ccAEAD and robust en-

cryption. An encryption scheme is said to be robust if it is infeasible to find two distinct

keys which decrypt the same ciphertext to a valid message. Robust encryption was first

formalised in the public-key setting by Abdalla et al. in [4] and later extended in [66,115].

Farshim et al. provide the first treatment of robust AE in [67]. Given the similar goals

of robust encryption and binding ccAEAD, it is natural to wonder whether there is some

kind of equivalence between the two.

Full robustness. In Figure 3.30 we adapt the definition of full robustness (FROB) for

AE of Farshim et al. to the ccAEAD setting. The original FROB definition of [67] can

be recovered from that shown in Figure 3.30 by replacing the ciphertext / binding tag

pair (C,CB) with a single ciphertext C and removing all references to headers. The

attacker A is challenged to output a tuple ((K,H), (K ′, H ′), (C,CB)) such that K 6= K ′,

but the ciphertext / binding tag pair (C,CB) decrypts correctly under both keys and the

corresponding headers. The FROB advantage for an attacker A against a ccAEAD scheme

CE is defined

Advfrob
CE (A) = Pr

[
FROBACE ⇒ 1

]
,

where the probability is over the coins of CEnc and A.

Separations between FROB and sr-BIND security. Intuitively, both robust encryp-

tion and ccAEAD target some notion of binding security. Thus a natural question is

whether an sr-BIND secure ccAEAD scheme is also FROB secure, and vice versa. It turns

out that the two notions are orthogonal and neither implies the other in generality.

The intuition for this is that breaking robustness requires finding distinct keys which both
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decrypt the same ciphertext correctly, whereas breaking sr-BIND security requires find-

ing distinct tuples (H,M,Kf ) 6= (H ′,M ′,K ′f ) which both verify the same binding tag

correctly. Since there is no requirement that decrypting with distinct keys will result in

distinct openings being recovered during decryption, breaking robustness does not neces-

sarily translate into a win for an attacker in game sr-BIND. However, we note that an

attacker can only break FROB security without breaking sr-BIND security if the winning

tuple uses the same headers for both decryptions and both keys decrypt the ciphertext

to the same underlying message. Such an attack would seem to be of little concern in

verifiable abuse reporting (and perhaps other settings as well).

Likewise, since any verification performed during decryption uses the opening output by

CDec as opposed to one specified by an attacker, one may modify the verification algorithm

of a robust ccAEAD scheme in such a way that it becomes easy to produce two distinct

openings which verify the same binding tag (thereby breaking the sr-BIND security of

the scheme), but in such a way that these ‘bad’ openings will never be recovered during

normal decryption, leaving the robustness of the scheme unaffected.

The case is different if the ccAEAD scheme is such that it always outputs its key as the

opening (as is the case for many single-opening ccAEAD schemes). If such a scheme is

sender binding — so ciphertexts which decrypt correctly must also verify correctly —

then sr-BIND security implies FROB security. It is straightforward to verify that FROB

security does not imply sr-BIND security for such schemes in general (for a separating

example, we can modify an FROB secure ccAEAD scheme which outputs its encryption

key as the opening such that it becomes easy to find distinct headers which verify with the

same key / message / binding tag tuple, but decryption is left unchanged). We formalise

this intuition and provide separating examples in the following theorem.

Theorem 3.12. (1) There exists a ccAEAD scheme CE1 = (CKg1,CEnc1,CDec1,CVer1)

which is FROB-secure, but for which there exists an efficient attacker B such that

Advsr-bind
CE1

(B) = 1 .

(2) There exists a ccAEAD scheme CE2 = (CKg2,CEnc2,CDec2,CVer2) which is sr-BIND-

secure, but for which there exists an efficient attacker C such that

Advfrob
CE2

(C) = 1 .

(3) Let CE = (CKg,CEnc,CDec,CVer) be a ccAEAD scheme which outputs its encryption

key as the opening. Then for any attacker A in game FROB against CE, there exists
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adversaries E ,F such that

Advfrob
CE (A) ≤ Advs-bind

CE (E) + Advsr-bind
CE (F) ,

and moreover E ,F run in the same time as A.

Proof. We start with (1). Let CE = (CKg,CEnc,CDec,CVer) be an FROB-secure ccAEAD

scheme for which all valid openings Kf are of a fixed length of n-bits. We then construct

a modified scheme CE1 = (CKg1,CEnc1,CDec1,CVer1) which is identical to CE except we

define CVer1 to be the algorithm which on input (H,M,Kf , CB) sets K ′f = Truncn(Kf )

and returns the result of CVer(H,M,K ′f , CB). Notice that decryption is identical in both

schemes; therefore any winning tuple in game FROB against CE1 is a winning tuple for CE

also, violating the assumed robustness of CE. However, an attacker B can win the sr-BIND

security game with probability one by outputting ((H,M,Kf ‖ 0), (H,M,Kf ‖ 1), CB) where

(H,M,Kf , CB) is any tuple such that CVer(H,M,Kf , CB) = 1, thereby proving the first

claim.

To prove (2), let CE = (CKg,CEnc,CDec,CVer) be an sr-BIND-secure ccAEAD scheme

for which all keys output by CKg are bit-strings of length κ. We define a modified scheme

CE2 = (CKg2,CEnc2,CDec2,CVer2) which is identical to CE except we define CDec2 to be

the algorithm which on input a tuple (K,H,C,CB) computes K ′ = Truncκ(K) and returns

the output of CDec(K ′, H,C,CB). Since verification in CE2 is unchanged, the modified

scheme CE2 inherits the sr-BIND security of CE. However, an attacker C can win the FROB

game against CE2 with probability one by choosing a key K and message M , computing

(C,CB)←$ CEnc(H,K,M), and outputting the tuple ((K ‖ 0, H), (K ‖ 1, H), (C,CB)).

For (3), consider an attacker A in game FROB against CE. Then any winning tuple

((K,H), (K ′, H ′), (C,CB)) for A must be such that K 6= K ′ and CDec(K,H, (C,CB)) =

(M,Kf ) 6= ⊥ and CDec(K ′, H ′, (C,CB)) = (M ′,K ′f ) 6= ⊥. Since by definition CDec

outputs its key as the opening, it follows that Kf 6= K ′f also. If A has found a tuple

(K,H, (C,CB)) which decrypts successfully to (M,K) but for which CVer(H,M,K,CB) =

0, then he has broken the s-BIND security of CE. If this is not the case, then A has found

(K,H,M) 6= (K ′, H ′,M ′) which both verify correctly with binding tag CB, breaking

the sr-BIND security of CE. Reductions to the appropriate adversaries then imply the

claim.
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Robustness of ccAEAD transforms. In Sections 3.7.3 and 3.7.4 we presented two

transforms which allow the construction of secure ccAEAD from encryptment. It is

straightforward to verify that the ccAEAD scheme CE[EC,AEAD] = (CKg,CEnc,CDec,

CVer) built from the first transform using a secure AEAD scheme (Section 3.7.3) is robust

provided the underlying AEAD scheme is itself robust. In fact, provided the underlying en-

cryptment scheme is sr-BIND and s-BIND secure then the AEAD scheme need only satisfy

a weaker property that it is infeasible for an attacker to find a tuple ((K,H), (K ′, H ′), CAE)

such that K 6= K ′ and D(K,H,CAE) = D(K ′, H ′, CAE) where D is the decryption algo-

rithm of the AEAD scheme. The second transform CE[EC, f] (Section 3.7.4) which uses

a compression function f results in a robust ccAEAD scheme provided that f is collision-

resistant and the underlying encryptment scheme is both sr-BIND and s-BIND-secure. We

formalise this and provide a proof sketch in the following lemma.

Lemma 3.2. Let CE[EC, f] = (CKg,CEnc,CDec,CVer) be the ccAEAD scheme in Sec-

tion 3.7.4, built from a compression function f and encryptment scheme

EC = (EKg,EEnc,EDec,EVer). Then for any attacker A in game FROB against CE,

there exist attackers B, C, and E such that

Advfrob
CE (A) ≤ Advcr

f (B) + Advs-bind
EC (C) + Advsr-bind

EC (E) ,

and moreover, all adversaries run in the same time as A.

Proof. (Sketch) Recall that for CE[EC, f], encryption on input (K,H,M) computes KEC ←

f(N,K⊕fpad) for randomN and a fixed constant fpad, then (CEC, BEC)← EEnc(KEC, H,M),

finally outputting ciphertext / binding tag pair

(C,CB) = ((N,CEC, f(BEC,K ⊕ spad)), BEC) .

Let A be an attacker in the FROB game against the resulting ccAEAD scheme, and

suppose A outputs a winning tuple

((K,H), (K ′, H ′), ((N,CEC, f(BEC,K ⊕ spad)), BEC)) .

This implies that K 6= K ′, and that the ciphertext decrypts correctly under both keys.

Let KEC = f(N,K ⊕ fpad) and f(N,K ′ ⊕ fpad). Suppose further that KEC = K ′EC; then

this translates into a winning pair for an attacker B in the CR-game against f. On the

other hand, suppose that KEC 6= K ′EC but nonetheless EDec(KEC, H,CEC, BEC) = M 6= ⊥

and EDec(K ′EC, H
′, CEC, BEC) = M ′ 6= ⊥. Suppose that one (or both) of the input tuples

does not verify despite decrypting correctly; then A has found a tuple which allows an

attacker C to win the s-BIND game against EC. If such an event does not occur, then A
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has found tuples (KEC, H,M) 6= (K ′EC, H
′,M ′) which both verify correctly with binding

tag BEC. This corresponds to a winning tuple for an attacker E in game sr-BIND against

CE. Putting this together proves the claim.

Applications of encryptment. We have just seen how to build single-pass ccAEAD

from encryptment. We will now conclude this chapter by showing that encryptment is a

useful building block to enable single-pass constructions of other primitives.

3.8 Extensions

The applications of encryptment extend beyond ccAEAD, with our single-pass HFC en-

cryptment scheme offering new and efficient instantiations of a variety of primitives. In

this section we describe several of these primitives and their applications.

Concealment schemes. In [56], Dodis et al. introduce the notion of concealment schemes,

a primitive which has a number of applications in the context of authenticated encryp-

tion. In particular, we will discuss its use in domain extension of AE and remotely keyed

AE later in the section. A concealment scheme is defined to be a pair of algorithms

ConS = (conceal, open). The randomised concealment algorithm conceal takes as input a

message M and outputs a pair hider and binder, (h, b)←$ conceal(M). The deterministic

opening algorithm open takes as input a pair (h, b) and outputs either the underlying

message M or ⊥ depending on whether (h, b) is in the range of conceal(M).

Security for concealment schemes requires that no efficient attacker can distinguish be-

tween the hiders of two chosen messages, where we define an attacker A’s distinguishing

advantage as

Pr
[
b = b′ : (M0,M1)←$A ; b←$ {0, 1} ; hb←$ conceal(Mb) ; b′←$A(hb)

]
.

We similarly require that no efficient attacker can find two distinct hiders which open the

same binder; that is to say a tuple (h, h′, b) such that h 6= h′ and open(h, b) 6= ⊥ and

open(h′, b) 6= ⊥. There is additionally a compactness property in that for a concealment

scheme to be considered non-trivial it must be the case that the binder b is much shorter

than the underlying message M , |b| � |M |.
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One-pass concealment. In [56], the authors show how to construct concealment schemes

using a one-time secure symmetric encryption scheme SE = (K,E,D) for which the keys

K←$ K are short and a collision resistant hash function H. On input M , conceal chooses

a random key K and sets h = Enc(K,M) and b = K||H(h). To open (h, b), open returns

D(K,h) if H(h) = b and ⊥ otherwise. However this requires two passes for both the

encryption and the hashing step.

In contrast, given an otROR, r-BIND, and s-BIND secure encryptment scheme EC =

(EKg,EEnc,EDec,EVer) with strong correctness, one can construct a secure concealment

scheme which achieves the desired security goals with just a single pass over the data.

We assume the header H = ε in the subsequent discussion, and so omit this input

from algorithms. The concealment scheme ConSEC = (concealEC, openEC) is defined as

follows. To conceal a message M , concealEC generates a key KEC ←$ EKg and com-

putes (CEC, BEC) ← EEnc(KEC,M). The scheme outputs (h, b) where h = CEC and

b = KEC||BEC. To open (h, b), open returns M ← EDec(KEC, CEC, BEC).

The otROR security of the encryptment scheme immediately implies the hiding secu-

rity of the concealment scheme. Similarly to break the binding of the concealment

scheme, an adversary A must find a tuple (CEC, C
′
EC,KEC||BEC) such that CEC 6= C ′EC,

EDec(KEC, CEC, BEC) = M , EDec(KEC, C
′
EC, BEC) = M ′, and both M,M ′ 6= ⊥. This

translates to a win for an attacker B in game r-BIND against EC who outputs

((KEC, ε,M), (K ′EC, ε,M
′), BEC). To see that this is a winning tuple for B, notice that since

EC is s-BIND secure this implies that it is infeasible to find a tuple (KEC, ε, CEC, BEC) which

decrypts to a valid message M but for which EVer(ε,M,KEC, BEC) = 0. Similarly, the

fact that EC is strongly correct means that it must be the case that M 6= M ′, since there

is a unique encryptment (CEC, BEC) corresponding to each key / message pair. Together,

these facts imply that the tuple output by B breaks the r-BIND security of EC.

Applications of one-pass concealment. With this encryptment-based concealment

scheme we can give one-pass instantiations of domain extension for AE and remotely-

keyed AE (RKAE). Domain extension for AE takes an AE scheme for which the message

space consists of only ‘short’ messages and allows it to encrypt much longer messages. The

modified encryption algorithm on input (K,M) is defined to first compute the concealment

of M via (h, b)←$ conceal(M), and then output ciphertext (h,E(K, b)).
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In remotely-keyed AE, a secure but computationally-limited device holding a long-term AE

key offloads most of the computational work of encrypting and decrypting to an untrusted

but more powerful device. In [56] the authors show a ‘canonical’ RKAE scheme from any

concealment scheme, and so we can apply this result to build RKAE from encryptment

via ConSEC. An interesting question for future work is defining and constructing remotely-

keyed ccAEAD schemes, and establishing whether applying the RKAE transform of [56]

to ConSEC gives a remotely-keyed ccAEAD scheme.

Verifiable outsourced storage from encryptment. In the majority of this work

we have viewed encryptment as a combined encryption and commitment scheme, but an

alternate way to view it is as a kind of three-party secret sharing scheme for the header

and message pair. If EEnc runs EKg internally instead of accepting a key as input, the

(now randomised) EEnc algorithm will output (CEC, BEC,KEC) on input H,M . None of

these three values in isolation reveals any information about the message M . We will

denote as SShare(H,M) the randomised algorithm which on input (H,M) first computes

KEC←$ EKg, and then outputs (EEnc(KEC, H,M),KEC).

This secret-sharing viewpoint of encryptment gives an optimally-efficient and verifiable

way to store large files on untrusted cloud storage. There are three parties: an untrusted

storage provider, a public ledger providing integrity but not confidentiality (such as a

blockchain), and the user. When the user wants to store file M with header H, it runs

SShare(H,M). It stores CEC with the cloud provider, posts BEC on the public ledger,

and retains KEC in its own trusted storage. Since KEC is small, the user can store it in

hardened local storage such as a TPM. Likewise, since BEC is small the cost of storing it

on the public ledger is minimised. In addition to minimising local storage overhead for

the user, storing BEC in a public ledger gives the user the ability to prove misbehaviour

on the part of the cloud provider, such as deleting part of the file or trying to modify it.

3.9 Conclusion

In this chapter we used the problem of verifiable abuse reporting in Facebook’s EtE en-

crypted messenger as a springboard to conduct a multi-layered provable security study of

ccAEAD.
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We began by demonstrating an attack against Facebook’s attachment franking protocol,

which allows a malicious sender to send an abusive message to a user such that all attempts

by the user to report this to Facebook will fail. The attack hinges on the fact that the

component AEAD scheme GCM is not robust, a property that, while well-studied in the

literature, had not previously been abused in a real world attack. This is an interesting

example of how provable security both pre-empted and indeed may have prevented the

vulnerability had there been an attempt at constructing a security proof for the scheme,

or the non-robustness of GCM been considered.

Facebook opted to use an ad hoc (and ultimately flawed) scheme due to a dearth of

sufficiently fast ccAEAD schemes, which raises the question of whether ccAEAD can ever

match the efficiency of the fastest AEAD schemes. We define a new primitive called

encryptment, which is a simple, one-time variant of ccAEAD and a useful stepping stone

via which to construct secure ccAEAD. We take a detour into the literature on collision-

resistant hashing to rule out the existence of secure encryptment (and by implication

ccAEAD schemes) matching the rate of the fastest AEAD schemes such as OCB and

GCM. We then use the classic Merkle-Damg̊ard collision-resistant hash function as the

basis for building a single-pass encryptment scheme, which in turn yields the first single-

pass ccAEAD scheme via simple and efficient transforms. The development of our single-

pass ccAEAD schemes is a nice illustration of the power of the rigorously formulated

security definitions that are integral to the provable security paradigm. By pinning down

precise syntax and security properties for encryptment and ccAEAD, we are able to make

connections between distinct areas of cryptography and develop a simple modular approach

to the complex task of building secure ccAEAD.

We conclude with a brief discussion of open problems and directions for future work.

Further work and open problems. The most efficient instantiations of our HFC

encryptment scheme (and the ccAEAD schemes built from it) require a strong RKA-PRF

assumption on the underlying compression function. Constructing schemes that match

the efficiency of HFC without the RKA assumption is a key direction for future work.

We hope that encryptment will find uses beyond the construction of ccAEAD. Fleshing

out the details of the encryptment applications given in Section 3.8, and finding new uses

for encryptment, is an interesting open problem. Following the initial publication of the

151



3.9 Conclusion

work upon which this chapter is based [59], a number of subsequent works have considered

different problems related to message franking, such as building schemes that enable finer-

grained reporting of abuse [101], message franking channels [80], and public key message

franking [158]. It seems likely that as our understanding of EtE encryption grows, more

desirable properties of message franking schemes will emerge. Developing new models and

ever more efficient constructions seems likely to be a fruitful line of work in the years

to come.
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4.1 Introduction and Motivation

4.1.1 Cryptographic Standards and NIST SP 800-90A

Standardisation. Designing secure cryptographic algorithms is a notoriously challeng-

ing task. As cryptography becomes ever more ubiquitous in applications, implementors

are required to choose and implement primitives suitable for their purposes. With the

dangers of ‘rolling your own crypto’ being widely known, and sifting through the crypto-

graphic literature a time-consuming task even for a full-time cryptographer, standardising

cryptographic algorithms is vital to provide implementors with easy access to secure and

reliable cryptographic tools. Ideally, a standard would only include algorithms which have

been heavily vetted by the research community in an open selection process, giving as-

surance in the soundness of the suggested algorithms. Standardisation also provides a

degree of consistency across implementations, by encouraging practitioners to use a small

set of approved primitives. Standardisation is a key part of the cryptographic ecosystem

which, when it works well (for example, in the case of TLS 1.3, widely considered a suc-

cess story of standardisation) distills the best ideas from both the research community

and practitioners into millions of real-world implementations.

A subverted standard. The result (and intended impact) of standardising an al-

gorithm is to encourage its widespread adoption. This, combined with the ubiquity of

PRNGs in cryptographic applications, perhaps explains why NIST Special Publication

800-90A Recommendation for Random Number Generation Using Deterministic Random

Bit Generators (NIST SP 800-90A) [10] was targeted by the NSA. Following the Snowden

leaks, it was reported how the NSA had designed the Dual-EC and — despite concerns

154



4.1 Introduction and Motivation

raised by members of the cryptographic community, who pointed out its low-speed, out-

put biases, and known capability to be backdoored [70, 147, 153] — assiduously lobbied

for its inclusion in standards as part of a wider program to subvert the standardisation

process [9, 122–124]. In 2014, the Dual-EC was withdrawn from NIST SP 800-90A, and

a number of subsequent works analysed the exploitability of the Dual-EC [46, 47] and the

process by which it came to be standardised [31].

Analysis in this thesis. The next two chapters both take their root in the fall-out of

the Dual-EC controversy. In Chapter 5, we will return to backdoored PRNGs to analyse

the limits of what can and can’t be accomplished by these subverted algorithms. In this

chapter, we focus our attention on the other PRNGs which remain in NIST SP 800-90A.

4.1.2 Background on the Standard

Three PRNGs remain in the current revision of NIST SP 800-90A — HASH-DRBG,

HMAC-DRBG and CTR-DRBG. These PRNGs — which respectively use a hash func-

tion, HMAC, and a block cipher as their basic building blocks — are widely used. Indeed,

these are the only approved PRNGs for cryptographic software or hardware seeking FIPS

certification [1, 161]. However, these algorithms have received surprisingly little formal

analysis to date.

While aspects of these constructions have been analysed [43,78,85,142,152,168] and some

implementation considerations discussed [28], these works tend to make significant simpli-

fying assumptions and / or treat only certain algorithms rather than the constructions as

a whole (see Section 4.1.4 for a full discussion of related work). There has not to date been

a deeper analysis of these standardised DRBGs, either investigating the stronger security

properties claimed in the standard or taking into account the (considerable) flexibility in

their specification.

The constructions provided in NIST SP 800-90A are somewhat nonstandard. Even the

term DRBG is rare, if not absent from the literature, which favours the term PRNG. Simi-

larly the NIST DRBGs — which return variable length (and sizable) outputs upon request

and support a variety of optional inputs and parameters — do not fit cleanly into the usual

PRNG syntax [60] (see Section 2.5). With only a limited amount of formal analysis in the
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literature to date, coupled with the fact that the standardisation of these algorithms did

not follow from a competition or widely publicly vetted process, this leaves pseudorandom

number generation in large parts of software relying on relatively unanalysed algorithms.

Security claims. The standard claims that each of the NIST DRBGs is ‘backtracking

resistant’ and ‘prediction resistant’. The former property guarantees that in the event of a

state compromise, output produced prior to the point of compromise remains secure. The

latter property ensures that if the state is compromised and subsequently reseeded with

sufficient entropy then security will be recovered. Defined informally in the standard, these

can easily be seen to correspond to the Fwd and Bwd security notions given in Section 2.5.

Somewhat surprisingly, to the best of our knowledge neither of these properties have

been formally investigated and proved. In fact, the NIST DRBG algorithms which are

responsible for initial state generation and reseeding do not seem to have been analysed

at all in prior work.

Discussion. A number of factors may have contributed to this lack of analysis. It

seems likely that the attention lavished on the Dual-EC resulted in the other PRNGs in

NIST SP 800-90A being somewhat overlooked by the research community. Secondly, the

understanding of what a PRNG should achieve has moved on significantly since the NIST

DRBGs were standardised in 2006. Indeed, the concept of robustness for PRNGs [60] was

not formalised until 2013, and so perhaps when the standard was introduced ad-hoc PRNG

designs were more palatable. Finally, the NIST DRBGs are based on fairly run-of-the mill

concepts such as running a hash function in counter mode, and yet simultaneously display

design quirks which significantly complicate analysis and defy attempts at a modular

treatment. As such, they perhaps fall between the cracks of not being ‘interesting’ enough

to tackle for an attention-grabbing result, and yet too tricky for a straightforward proof.

4.1.3 Contributions

In this chapter, we conduct a thorough investigation into the security of the NIST SP 800-

90A DRBGs, with a focus on HASH-DRBG and HMAC-DRBG. We pay particular attention

to flexibilities in the specification of these algorithms, which are frequently abstracted away

in previous analysis. We set out to analyse the algorithms as they are specified and used,
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and so sometimes make heuristic assumptions in our modelling (namely, working in the

random oracle model (ROM) and assuming an oracle-independent entropy source). We

felt this to be more constructive than modifying the constructions solely to derive a proof

under weaker assumptions, and explain the rationale behind all such decisions.

Robustness proofs. As discussed in Section 4.1.2, the notion of robustness [60] captures

both backtracking and prediction resistance and is the ‘gold-standard’ for PRNG security.

For our main technical results, we analyse HASH-DRBG and HMAC-DRBG within this

framework. As a (somewhat surprising) negative result, we show that implementations

of HMAC-DRBG for which optional strings of additional input are not always included in

next calls are not in fact forward secure. This is contrary to claims in the standard that

the NIST DRBGs are backtracking resistant. This highlights the power of security proofs

to surface subtle flaws in algorithms which at first sight may seem obviously secure, and

underscores the importance of paying attention to implementation choices.

As positive results, we prove that HASH-DRBG and HMAC-DRBG (called with additional

input) are robust in the ROM. The first result is fully general, while the latter is with

respect to a class of entropy sources which includes those approved by the standard.

Challenges. A key challenge is that the NIST DRBGs do not appear to have been

designed with a security proof in mind. As such, seemingly innocuous design decisions

turn out to significantly complicate matters. The first step is to reformulate robustness

for the ROM. Our modeling is inspired by Gazi and Tessaro’s treatment of robustness in

the ideal permutation model [69]. We must make various adaptations to accommodate the

somewhat unorthodox interface of the NIST DRBGs, and specifying the model requires

some care. It is for this reason that we focus on HASH-DRBG and HMAC-DRBG in this

thesis, since they map naturally into the same framework. Providing a similar treatment

for CTR-DRBG would require different techniques, and is an important direction for future

work. The extent to which we must modify the syntax of existing security notions simply

to be able to express the NIST DRBG interface within it illustrates the challenge of

applying the clean ideas from academic cryptography to the far more messy real world,

and highlights the gap that remains between theory and practice.

At first glance, it may seem obvious that a PRNG built from a random oracle will produce
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random looking bits. However, formally proving that the constructions survive the strong

forms of compromise required to be robust is far from trivial. While the proofs employ

fairly standard techniques, certain design features of the algorithms introduce unexpected

complexities and some surprisingly fiddly analysis. Throughout this process, we highlight

points at which a minor design modification would have allowed for a simpler proof.

Implementation flexibilities. We counter these formal and (largely) positive results

by offering a more informal discussion of flexibilities in the standard. We argue that

when the NIST DRBGs are used to produce many blocks of output per request — a

desirable implementation choice in terms of efficiency, and permitted by the standard

— then the usual security models may overlook important attack vectors against these

algorithms. Taking a closer look, we propose an informal security model in which we

suppose an attacker compromises part of the state of the DRBG — for example, through

a side-channel attack — during an output generation request. Reconsidered within this

framework, we find that each of the constructions admits vulnerabilities which allow an

attacker to recover unseen output. We find a further flaw in a certain variant of CTR-DRBG

which allows an attacker who compromises the state to also recover strings of additional

input — which may contain secrets — previously fed to the DRBG. While our attacks are

theoretical in nature, we follow this up with an analysis of the open-source OpenSSL and

mbed TLS CTR-DRBG implementations which shows that the implementation decisions

we highlight as potentially problematic are taken by implementors in the real world. We

conclude the chapter with a number of reflections and recommendations for the safe use

of these DRBGs.

4.1.4 Related Work

As discussed, the PRNGs in NIST SP 800-90A have received fairly minimal formal analysis

to date; we provide an overview of related work here. A handful of prior works have anal-

ysed the NIST DRBGs as deterministic PRGs with an idealised initialisation procedure.

That is to say, they prove that the next algorithm of the DRBG produces pseudorandom

bits when applied to an ideally random initial state (e.g., S0 = (K0, V0, cnt0) for uniformly

random K0, V0 in the case of CTR-DRBG and HMAC-DRBG). This is a substantial sim-

plification; in the real world these state components must be derived from the entropy

source using the setup algorithm. Campagna [43] and Shrimpton and Terashima [152]
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provide such a treatment of CTR-DRBG, while Hirose [78] and Ye et al. [168] give proofs

for HMAC-DRBG. This latter work also provides a formal verification of the mbedTLS

implementation of HMAC-DRBG. None of these works model initial state generation or

reseeding; as far as we are aware, ours is the first work to analyse these algorithms for

HASH-DRBG and HMAC-DRBG. With the exception of [78], they do not model the use of

additional input. Moreover, pseudorandomness of output is a much weaker security model

than robustness and does not allow any form of state compromise. Kan [85] considers the

assumptions underlying the security claims of the DRBGs (e.g., does the hash function

underlying HASH-DRBG need to be pseudorandom, pre-image resistant, and so on). To

our knowledge, this is the only previous work to consider HASH-DRBG. However, the

work contains little formal analysis; proof attempts are non-standard and consider highly

simplified variants of output production, and there are a number of inaccuracies (such as

concluding CTR-DRBG is inherently flawed and should never be used since a block cipher

in CTR-mode will never produce colliding blocks). This is also the only prior work we

know of that considers forward security (although this is incorrectly assumed to be implied

by the primitives underlying the DRBG in question, e.g., the fact that the hash function

underlying HASH-DRBG cannot be inverted).

In [142], Ruhault claims a potential attack against the robustness of CTR-DRBG. However,

the specification of the BCC function in that work (a CBC-MAC-like function which is

used by the CTR-DRBG df algorithm, see Section 4.3) is different to that provided by the

standard. Namely in [142], BCC is defined to split the input IV ‖S into n 128-bit blocks

ordered from right to left as [Bn, . . . , B1]. However, in the standard these blocks are

ordered left to right [B1, . . . , Bn]. This leads to the blocks being processed in a different

order by BCC. The attack from [142] does not work when the correct BCC function is

used, and it does not seem possible to recover the attack.

4.2 Preliminaries

We begin by introducing the PRNG syntax that shall be used in this chapter. As we

shall see, the NIST DRBGs have a number of optional inputs and flexibilities which are

not accommodated by the usual PRNG syntax of Definition 2.3. We present our PRNG
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definition below, and then discuss our choice of syntax.

Definition 4.1. A PRNG with input is a tuple of deterministic algorithms PRNG =

(setup, refresh, next) with associated parameters (p, p, α, βmax), defined as follows:

• setup : Seed× {0, 1}p≤i≤p ×N → S takes as input a seed seed ∈ Seed, an entropy

sample I ∈ {0, 1}p≤i≤p, and a nonce N ∈ N (where Seed, N , and S denote the seed

space, nonce space, and state space of the PRNG respectively), and returns an initial

state S0 ∈ S.

• refresh : Seed × S × {0, 1}p≤i≤p → S takes as input a seed seed ∈ Seed, a state

S ∈ S, and an entropy sample I ∈ {0, 1}p≤i≤p, and returns a state S′ ∈ S.

• next : Seed × S × N≤βmax × {0, 1}≤α → {0, 1}≤βmax × S takes as input a seed

seed ∈ Seed, a state S ∈ S, a parameter β ∈ N≤βmax, and a string of additional

input addin ∈ {0, 1}≤α, and returns an output R ∈ {0, 1}β and an updated state

S′ ∈ S.

If a PRNG always has seed = ε or addin = ε (indicating that, respectively, a seed or

additional input is never used), then we omit these parameters.

Discussion. Our PRNG definition modifies Definition 2.3 as follows. Firstly, following

Shrimpton and Terashima [151] in their modelling of the Intel RNG, we have removed the

init algorithm from our PRNG specification. We instead assume that the seed is generated

externally and supplied to the PRNG. This modification makes sense when modelling real-

world PRNGs such as the NIST DRBGs for which an explicit seed generation algorithm

(or as we shall see, a seed) is not specified. In this work, we assume that seeds are

sampled uniformly from the seed space of the DRBG. Also following [151], we define

setup to be a deterministic algorithm which constructs the initial state of the PRNG from

samples drawn from the entropy source (as opposed to using truly random coins). This

modification allows us to model real-world PRNGs which must construct their initial state

from an imperfect entropy source. We further modify the syntax of setup from [151] to

have it take an entropy sample and nonce as input, as per the specification of the NIST

DRBGs. In contrast, in [151] setup takes no input but may have access to the entropy

source.

Finally, we extend the definitions of refresh and next from Definition 2.3 to allow: (1)
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entropy samples I to be bit-strings of arbitrary length |I| ∈ [p, p], as opposed to some

fixed length p; (2) variable length outputs up to length βmax to be requested via the

parameter β; and (3) the option to include strings of additional input addin ∈ {0, 1}≤α

in next calls. As we shall see in Section 4.3, this is necessary to capture the interface

of the corresponding algorithms for the NIST DRBGs. NIST SP 800-90A uses the term

deterministic random bit generator (DRBG) instead of the more familiar PRNG. We use

these terms interchangeably.

4.3 Overview of NIST SP 800-90A

NIST SP 800-90A defines three DRBG mechanisms, HASH-DRBG, HMAC-DRBG, and

CTR-DRBG. The former two are based on an approved hash function, and the latter on

an approved block cipher. The full list of approved primitives is given in the standard; as

an example, we provide the parameters for HASH-DRBG and HMAC-DRBG using SHA-256,

and CTR-DRBG based on AES-128, in Table 4.1. We will begin with an overview of the

standard, and then describe the specification of each DRBG in turn.

Algorithms and mapping into Definition 4.1. The standard specifies a tuple of

(Instantiate,Reseed,Generate) algorithms for each of the DRBGs. These algorithms map

directly into the (setup, refresh, next) algorithms in the PRNG model of Definition 4.1.

For consistency with the usual PRNG syntax, we refer to the NIST DRBG algorithms as

(setup, refresh, next) throughout. The NIST DRBGs are not specified to take a seed; as

such when mapping these into the syntax of Definition 4.1 we take seed = ε and omit this

parameter from subsequent definitions. We discuss the lack of a seed further in Section 4.5.

The standard also defines an update algorithm for CTR-DRBG and HMAC-DRBG and

derivation functions for HASH-DRBG and CTR-DRBG. These algorithms are used to derive

new state variables from provided data, and are called as subroutines by the PRNG

algorithms. The component algorithms of HASH-DRBG and HMAC-DRBG are shown in

Figure 4.1 and those for CTR-DRBG are shown in Figure 4.2. We discuss these in more

detail in Section 4.4.

DRBG functions. The setup, refresh, and next algorithms underly (respectively) the

Instantiate, Reseed, and Generate functions of the DRBG. When called, these functions
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Table 4.1: Table showing sample parameter settings for the NIST DRBGs. All quantities
are given in bits.

CTR-DRBG CTR-DRBG HMAC-DRBG HASH-DRBG

with df w/out df

Underlying primitive AES-128 AES-128 HMAC-SHA-256 SHA-256

Highest supported 128 128 256 256

security strength

State component lengths |K| = 128, |K| = 128, |K| = 256, |V | = 440,

|V | = 128 |V | = 128 |V | = 256 |C| = 440

Output block length 128 128 256 256

Min entropy security strength security strength security strength security strength

for setup and refresh

Min entropy input length 128 128 256 256

Max entropy input length 235 256 235 235

Max length of addin 232 256 232 232

Max no. of bits / request 219 219 219 219

Max no. of requests 248 248 248 248

between reseeds

check the validity of the request (e.g., that the number of requested bits does not exceed

βmax) and return an error if these checks fail. If not, the function fetches the internal state

of the DRBG, along with any other inputs required by the algorithms (such as entropy

inputs, a nonce, and so on), and the underlying algorithm is applied to these inputs. The

resulting outputs are returned to the caller and / or used to update the internal state,

and the successful status of the call is indicated to the caller. Here we abstract away this

process to avoid cluttering our exposition. To this end, we assume that all required inputs

are provided to the algorithm in question (without modelling how these are fetched), and

assume that all inputs and requests are valid, omitting the success / error notifications.

The NIST DRBGs are also specified to have an Uninstantiate function which erases

the internal state, and a Health Test function which is used to test whether the other

functions in an implementation are performing correctly. We do not model these functions

in this work.

The DRBG state. The standard defines the working state of a DRBG to be the set

of stored variables which are used to produce pseudorandom output. The internal state

is then defined to be the working state plus administrative information which indicates

the security strength of the instantiation and whether prediction resistance is supported

(see below). We typically omit administrative information as this shall be clear from the

context. By the ‘state’ of the DRBG (denoted S), we mean the working state unless

otherwise specified.
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Entropy sources and instantiation. A DRBG must have access to an approved entropy

source during initial state generation via setup. This may either be a live entropy source

as approved in NIST SP 800-90B [157] or a (truly) random bit generator as per NIST SP

800-90C [11]. The DRBG uses the function Get entropy input() to request an entropy

sample I of length within the range [p, p] (see Definition 4.1) containing a given amount

of entropy (discussed further below). For all DRBG mechanisms except CTR-DRBG im-

plemented without a derivation function, the Instantiate function must also acquire a

nonce. Nonces must either contain γ∗/2-bits of min-entropy or not be expected to repeat

more than such a value would. Examples of suitable nonces given in the standard in-

clude strings drawn from the entropy source, time stamps, and sequence numbers. Once

the initial state has been constructed, the DRBG is said to be instantiated. A DRBG

implementation can support multiple simultaneous instantiations which are differentiated

between using state handles. Here we assume that each DRBG supports a single instan-

tiation, and so omit handles.

Reseeding. If a DRBG implementation has continual access to an entropy source, then

the implementation is said to support prediction resistance. In this case, entropy sam-

ples drawn from the source may be periodically incorporated into the DRBG state via

refresh. We assume that implementations always support prediction resistance, and omit

the parameters indicating this from the state and function calls. Reseeds may be explicitly

requested by the consuming application or triggered by a request in a next call (in which

case, a refresh is performed before the state is passed to next). Additionally, a DRBG im-

plementation specifies a parameter reseed interval, which indicates the maximum number

of output generation requests before a reseed is forced. For all approved DRBG variants,

reseed interval may be at most 248, with the exception of CTR-DRBG instantiated with

3-KeyTDEA for which reseed interval may not exceed 232. The number of next calls since

the last refresh is recorded by a state component called a reseed counter (cnt). The reseed

counter is not a security critical state variable, and throughout this work we assume that

it is publicly known. In keeping with the usual modelling of PRNGs, we assume here that

reseeds are always explicitly requested; this is without loss of generality.

Security strength. An instantiation of a DRBG is parameterised by a security strength

γ∗. A DRBG may be instantiated at any γ∗ ∈ {112, 128, 192, 256} provided this does

not exceed the highest strength supported by the implementation (which in turn depends
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on the underlying primitive, see Table 4.1 for examples). The standard requires that all

entropy samples used in initial state generation and reseeding contain at least γ∗-bits

of entropy. In contrast, robustness for PRNGs [60] requires that a PRNG is secure when

reseeded with sets of entropy samples which collectively contain γ∗-bits of entropy. Looking

ahead to Section 4.6, we analyse HASH-DRBG with respect to this stronger notion.

Output generation. Outputs of varying lengths up to βmax bits may be requested

by the caller via the parameter β which forms part of the input to the next function.

For all approved DRBGs βmax may be as large as 219, with the exception of CTR-DRBG

instantiated with 3-KeyTDEA for which βmax may not exceed 213.

Additional input. The standard gives the option for strings of additional input (denoted

addin) to be provided to the DRBG by the caller during next calls. These inputs may

be public or predictable (e.g., device serial numbers and time stamps), or may contain

secrets. If these inputs do contain entropy, they may provide a buffer in the event of a

system failure or compromise. Here we typically assume that additional input is either

always or never included during next calls.

The standard also allows optional additional input to be included in refresh calls, and

during setup (in the form of a personalisation string). For brevity, we do not model these

inputs in this work, and omit them from our presentation of the algorithms. However,

since these additional inputs are simply appended to the entropy input in refresh calls

and the nonce in setup calls, our analysis immediately extends to the case in which these

inputs are included (and our results are stronger for not relying on any entropy that they

may contain).

4.4 Algorithms

In this section, we describe the component algorithms for each of the NIST DRBGs. When

presenting the algorithms in pseudocode, we write ‘Require :’ and ‘Ensure :’ to denote,

respectively, the input and output of an algorithm; this is both for clarity and to be

consistent with their presentation in NIST SP 800-90A.
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4.4.1 HASH-DRBG.

HASH-DRBG is built from an approved cryptographic hash function

H : {0, 1}≤ω → {0, 1}`. The working state is defined S = (V,C, cnt), where the counter

V ∈ {0, 1}L and constant C ∈ {0, 1}L are the security critical state variables and recall

that cnt denotes the reseed counter. The constant C is added into the counter V during

each state update, but is itself only updated following a reseed. The standard does not

explicitly state the purpose of C; however slides by Kelsey from 2004 [88] mention how

HASH-DRBG will “Hash with constant to avoid duplicating other hash computations”.

As such, it would appear that the purpose of the constant is to ensure that if a previous

counter V is duplicated at some point in a different refresh period then the inclusion of the

(almost certainly distinct) counter in the subsequent state update prevents the previous

sequence of states being repeated.

Algorithms. The component algorithms for HASH-DRBG are shown in Figure 4.1. Both

the setup and refresh algorithms derive a new state by applying the derivation function

HASH-DRBG df to the entropy input and (in the case of refresh) the previous counter.

Output generation via next proceeds as follows. If additional input is used in the call, it

is hashed and added into the counter V (lines 3 - 5). Output blocks are then produced by

hashing the counter in CTR-mode (lines 7 - 10). At the conclusion of the call, the counter

V is hashed with a distinct prefix prepended, and the resulting string — along with the

constant C and reseed counter cnt — are added into V (lines 12 - 13).

4.4.2 HMAC-DRBG

HMAC-DRBG is based on the function HMAC : {0, 1}` × {0, 1}≤ω → {0, 1}`, which is

built from an approved hash function. The working state is of the form S = (K,V, cnt),

where the key K ∈ {0, 1}` and counter V ∈ {0, 1}` are the security critical state variables.

Algorithms. The component algorithms of HMAC-DRBG are shown in Figure 4.1. The

setup and refresh algorithms of HMAC-DRBG both use the update subroutine to incorporate

an entropy sample I into K and V . For setup, these variables are initialised to K =

0x00 . . . 00 and V = 0x01 . . . 01 prior to this process. The next algorithm for HMAC-DRBG
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proceeds as follows. If additional input is used, this is incorporated into K and V via

the update function (lines 3 - 4). Output is then generated by iteratively computing

V ← HMAC(K,V ) and concatenating the resulting strings (lines 6 - 8). At the conclusion

of the call, both key and counter are updated via the update function (line 10).

4.4.3 CTR-DRBG

CTR-DRBG is built from an approved block cipher E : {0, 1}κ × {0, 1}` → {0, 1}`. The

working state is defined S = (K,V, cnt), where the key K ∈ {0, 1}κ and counter V ∈ {0, 1}`

are the security critical state variables.

Algorithms. There are two variants of CTR-DRBG depending on whether a derivation

function is used. Omitting the derivation function improves efficiency (see Section 4.8.6);

however, this option may only be taken if the DRBG has access to a ‘full entropy source’

which returns statistically close to uniform (as opposed to just high entropy) strings. As

such, this represents an implementation trade-off between efficiency and flexibility.

Component algorithms for CTR-DRBG are shown in Figure 4.2. For brevity we omit the

CTR-DRBG refresh algorithm since it is not analysed in this work, and only include the

setup algorithm for the case in which a derivation function is used. The next algorithm for

CTR-DRBG proceeds as follows. First, any additional input is incorporated into the state

via the update function (line 8). If a derivation function is used, the string of additional

input is conditioned into a (κ+ `)-bit string with CTR-DRBG df prior to this process (line

5). If a derivation function is not used, the additional input string is restricted to be at

most (κ+ `)-bits in length. Output blocks are then iteratively generated using the block

cipher in CTR-mode (lines 11 - 13). At the conclusion of the call, both K and V are

updated via an application of the update function (line 15).
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HASH-DRBG df

Require: input string, (num bits)32

Ensure: req bits

temp← ε ;m← dnum bits/`e
For i = 1, . . . ,m

temp← temp ‖H((i)8 ‖ (num bits)32 ‖ input string)
req bits← left(temp, num bits)

Return req bits

HASH-DRBG setup

Require: I,N

Ensure: S0 = (V0, C0, cnt0)

seed material← I ‖N
V0 ← HASH-DRBG df(seed material, L)

C0 ← HASH-DRBG df(0x00 ‖V0, L)

cnt0 ← 1

Return (V0, C0, cnt0)

HASH-DRBG refresh

Require: S = (V,C, cnt), I

Ensure: S′ = (V ′, C′, cnt′)

seed material← 0x01 ‖V ‖ I
V ′ ← HASH-DRBG df(seed material, L)

C′ ← HASH-DRBG df(0x00 ‖V ′, L)

cnt′ ← 1

Return (V ′, C′, cnt′)

HASH-DRBG next

Require: S = (V,C, cnt), β, addin

Ensure: R,S′ = (V ′, C′, cnt′)

1. If cnt > reseed interval

2. Return reseed required

3. If addin 6= ε

4. w ← H(0x02 ‖V ‖ addin)

5. V ← (V + w) mod 2L

6. data← V ; tempR ← ε ;n← dβ/`e
7. For j = 1, . . . , n

8. r ← H(data)

9. data← (data+ 1) mod 2L

10. tempR ← tempR ‖ r
11. R← left(tempR, β)

12. H ← H(0x03 ‖V )

13. V ′ ← (V +H + C + cnt) mod 2L

14. C′ ← C ; cnt′ ← cnt + 1

15. Return R, (V ′, C′, cnt′)

HMAC-DRBG update

Require: provided data,K, V

Ensure: K,V

K ← HMAC(K,V ‖ 0x00 ‖ provided data)

V ← HMAC(K,V )

If provided data 6= ε

K ← HMAC(K,V ‖ 0x01 ‖ provided data)

V ← HMAC(K,V )

Return (K,V )

HMAC-DRBG setup

Require: I, N

Ensure: S0 = (K0, V0, cnt0)

seed material← I ‖N
K ← 0x00 . . . 00

V ← 0x01 . . . 01

(K0, V0)← update(seed material,K, V )

cnt0 ← 1

Return (K0, V0, cnt0)

HMAC-DRBG refresh

Require: S = (K,V, cnt), I

Ensure: S′ = (K′, V ′, cnt′)

seed material← I

(K′, V ′)← update(seed material,K, V )

cnt′ ← 1

Return (K′, V ′, cnt′)

HMAC-DRBG next

Require: S = (K,V, cnt), β, addin

Ensure: R,S′ = (K′, V ′, cnt′)

1. If cnt > reseed interval

2. Return reseed required

3. If addin 6= ε

4. (K,V )← update(addin,K, V )

5. temp← ε ;n← dβ/`e
6. For j = 1, . . . , n

7. V ← HMAC(K,V )

8. temp← temp ‖V
9. R← left(temp, β)

10.(K′, V ′)← update(addin,K, V )

11. cnt′ ← cnt + 1

12. Return R, (K′, V ′, cnt′)

Figure 4.1: Component algorithms for HASH-DRBG and HMAC-DRBG.
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CTR-DRBG df

Require: input string, num bits ≤ 512

Ensure: req bits

L← (len(input string)/8)32 ;N ← (num bits/8)32

Z ← L ‖N ‖ input string ‖ 0x80

While len(Z) mod ` 6= 0

Z ← Z ‖ 0x00

temp← ε ; i← 0

K ← left(0x000102...1D1E1F, κ)

While len(temp) < κ+ `

IV ← (i)32 ‖ 0`−32

temp← temp ‖BCC(K, (IV ‖Z))

i← i+ 1

K ← left(temp, κ)

X ← select(temp, κ+ 1, κ+ `)

temp← ε

While len(temp) < num bits

X ← E(K,X)

temp← temp ‖X
req bits← left(temp, num bits)

Return req bits

BCC

Require: K, data

Ensure: output block

chain← 0`

n← len(data)/`

(B1, . . . , Bn)← Parse`(data)

For i = 1, . . . , n

input block ← chain⊕Bi
chain← E(K, input block)

output block ← chain

Return output block

CTR-DRBG update

Require: provided data,K, V

Ensure: K,V

temp← ε ;m← d(κ+ `)/`e
For j = 1, . . . ,m

V ← (V + 1) mod 2` ;C ← E(K,V )

temp← temp ‖C
temp← left(temp, (κ+ `))

temp← temp⊕ provided data
K ← left(temp, κ)

V ← right(temp, `)

Return K,V

CTR-DRBG setup

Require: I, nonce

Ensure: S0 = (K0, V0, cnt0)

seed material← I ‖nonce
seed material← CTR-DRBG df(seed material, (κ+ `))

K ← 0κ ;V ← 0κ

(K0, V0)← update(seed material,K, V )

cnt0 ← 1

Return (K0, V0, cnt0)

CTR-DRBG next

Require: S = (K,V, cnt), β, addin

Ensure: R,S′ = (K′, V ′, cnt′)

1. If cnt > reseed interval

2. Return reseed required

3. If addin 6= ε

4. If derivation function used then

5. addin← CTR-DRBG df(addin, (κ+ `))

6. Else if len(addin) < (κ+ `) then

7. addin← addin ‖ 0(κ+`−len(addin))

8. (K,V )← update(addin,K, V )

9. Else addin← 0κ+`

10. temp← ε ;n← dβ/`e
11. For j = 1, . . . , n

12. V ← (V + 1) mod 2` ; r ← E(K,V )

13. temp← temp ‖ r
14. R← left(temp, β)

15. (K′, V ′)← update(addin,K, V )

16. cnt′ ← cnt + 1

17. Return R, (K′, V ′, cnt′)

Figure 4.2: Component algorithms for CTR-DRBG. The CTR-DRBG setup algorithm shown
is for the case in which a derivation function is used.
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4.5 Robustness in the Random Oracle Model

As discussed in Section 1.2.1, the stronger security properties of backtracking and predic-

tion resistance claimed in the standard have never been formally investigated. To address

this, we analyse HASH-DRBG and HMAC-DRBG in the robustness framework of [60] (see

Section 2.5). This models a powerful attacker who is able to compromise the state and

influence the entropy source of the PRNG, and encapsulates both backtracking and pre-

diction resistance. In this section, we adapt the robustness model from Section 2.5 to

accommodate the NIST DRBGs, and introduce the notion of robustness in the ROM.

Distribution sampler. We begin by tweaking the definition of a (qD, γ
∗)-legitimate

distribution sampler definition to model the additional entropy sample (which recall must

contain γ∗ bits of entropy) with which the NIST DRBGs are seeded during setup. Formally,

we say that a sampler D is (q+
D , γ

∗)-legitimate if: (1) for all j ∈ [1, qD + 1]:

H∞(Ij |I1, . . . , Ij−1, Ij+1, . . . , IqD+1, γ1, . . . , γqD+1, z1, . . . , zqD+1) ≥ γj ,

where σ0 = ε and (σj , Ij , γj , zj)←$D(σj−1); and (2) it holds that γ1 ≥ γ∗. It is straight-

forward to see that to any sequence of Get entropy input() calls made by the DRBG, we

can define an associated sampler.

We note that NIST SP 800-90B [157] defines the entropy estimate of sample I as simply

H∞(I), as opposed to conditioning on other samples and associated data. However, the

tests specified in NIST SP 800-90B estimate entropy using multiple samples drawn from the

source. As such, it seems reasonable to assume that entropy sources satisfy the conditional

entropy requirement used above.

4.5.1 Defining Robustness in the ROM

Our positive results about HASH-DRBG and HMAC-DRBG will be in the random oracle

model (ROM). As such, the first step in our analysis is to adapt the notion of robustness

to the ROM.

Robustness. Consider the game Rob shown in Figure 4.3, for a PRNG PRNG with

associated parameter set (p, p, α, βmax) and attacker / sampler pair A, D. As with game
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Rob (Section 2.5.1), the game is parameterised by an entropy threshold γ∗. Mapping the

NIST DRBGs into this model, we take γ∗ equal to the security strength of the instantiation.

At the start of the game, we choose a random function H←$H whereH denotes the set of all

functions of a given domain and range. All of the PRNG algorithms have access to H which

we indicate in superscript (e.g., setupH). Unlike the modelling of robustness in the IPM

of Gazi and Tessaro [69], we do not give the sampler D access to H for reasons we discuss

below. To the best of our knowledge this is the first work to consider robustness in the

ROM, and our security model may be useful to analyse other PRNGs beyond HASH-DRBG

and HMAC-DRBG. Game Rob additionally modifies game Rob to accommodate our PRNG

syntax (including the use of additional input, discussed below), and similarly to [151]

generates the initial state using the deterministic setupH algorithm seeded with the first

entropy sample output by the sampler (as opposed to via the randomised setup algorithm).

The game is implicitly parameterised by the nonce distribution N used by PRNG, where

we write N ← N to denote sampling a nonce. Since nonces may be predictable (e.g.,

if a sequence number is used) we assume N is public and that the nonce sampled by

the challenger at the start of an execution of Rob is given to A as part of the input γ1.

Similarly, we assume the attacker can choose the strings of additional input which may

be included in next calls. These are conservative assumptions, since any entropy in these

values can only make the attacker’s job harder. We assume that an attacker either always

or never includes additional input in RoR queries.

With this in place, the Rob advantage of an adversary A and a (q+
D , γ

∗)-legitimate sampler

D is defined

Advrob
PRNG,γ∗(A,D) = 2 ·

∣∣∣∣Pr
[

Rob
A,D
PRNG,γ∗ ⇒ 1

]
− 1

2

∣∣∣∣ .
We say that A is a (qH, qR, qD, qC , qS)-adversary if it makes qH queries to the random

oracle H, qR queries to its RoR oracle, a total of qS queries to its Get and Set oracles, and

qD queries to its Ref oracle of which at most qC are consecutive.

Fixed length variant. While we define the general game Rob here, our robustness

proofs will be in a slightly restricted game Robβ in which the attacker may only request

outputs of some fixed length β ≤ βmax in RoR queries. This simplifying assumption is to

avoid further complicating security bounds with parameters indicating the length of the

output requested in each RoR query. The analogous results for the fully general game
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Rob can be recovered as a straightforward extension of our proofs.

Standard model forward security. Our negative result about the forward security

of HMAC-DRBG shall be in the standard model. We define game Fwd to be a restricted

variant of Rob in which: (1) we no longer sample a random oracle H←$H at the start

of the game and remove oracle access to H from all algorithms; and (2) the attacker A

is allowed no Set queries, and makes a single Get query after which they may make no

further queries. The forward security advantage of (A,D) is defined

Advfwd
PRNG,γ∗(A,D) = 2 ·

∣∣∣∣Pr
[

Fwd
A,D
PRNG,γ∗ ⇒ 1

]
− 1

2

∣∣∣∣ .
The problem of seeding. It is well known that deterministic extraction from imperfect

sources is impossible in general (see Section 2.4), which is why the PRNG in game Rob is

initialised with a public seed seed which crucially is chosen independently of the entropy

source. In the literature on provably robust PRNGs, the seed is typically one or more

uniform bit strings [60,62,69].

Unfortunately (for our analysis), none of the NIST DRBGs are specified to take a seed

(i.e., seed = ε in our modelling). Moreover, HMAC-DRBG and HASH-DRBG have no

state components or inputs which can be reframed as a seed without adding substantial

assumptions. Indeed, any seed derived from the entropy source will not satisfy the required

independence criteria. For example, this rules out reframing the constant C which is a

state component of HASH-DRBG as a seed. Likewise, the standard allows the nonce used

by setup to be sampled from the source, rendering this also unsuitable in general. While

for simplicity we omit the optional personalisation strings and additional input fed to

setup and refresh, respectively, we stress that since these are provided by the caller and

are arbitrary these would not in general be suitable had they been included. For example,

there is nothing to prevent the caller using past PRNG outputs, which clearly depend on

the source, as additional input.

At this point we are faced with two choices. We either: (1) give sampler D access to

H (as in the robustness in the IPM model of [69]), and either modify the NIST DRBGs

to accommodate a random seed or restrict our analysis to implementations for which

additional input is sufficiently independent of the source to suffice as a seed. Or: (2)

do not give D access to H. In this case, the oracle H with respect to which security
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Rob
A,D
PRNG,γ∗

H←$H ; b←$ {0, 1} ;N ← N
σ ← ε ; seed←$ Seed

(σ, I, γ, z)←$D(σ)

S ← setupH(seed, I, N)

c← γ∗ ; γ ← (γ, z,N)

b∗←$ARef,RoR,Get,Set,H(seed, γ)

Return (b = b∗)

proc. H(X)

Return H(X)

Ref

(σ, I, γ, z)←$D(σ)

S ← refreshH(seed, S, I)

c← c+ γ

Return (γ, z)

RoR(β, addin)

(R0, S)← nextH(seed, S, β, addin)

If c < γ∗

Return R0

c← 0

Else R1←$ {0, 1}β
Return Rb

Get

Return S

c← 0

Set(S∗)

S ← S∗

c← 0

Figure 4.3: Security game Rob for a PRNG PRNG = (setup, refresh, next).

analysis is carried out is chosen randomly and independently of the entropy source, and so

serves the same purpose as a seed. We take the latter approach for a number of reasons.

Firstly, we wish to analyse the NIST DRBGs as they are specified and used. As such

either modifying the construction or greatly restricting the number of implementations

we can reason about (as per (1)) solely to facilitate the analysis seems counterproductive.

Secondly, as pointed out in [151], generating a seed is challenging in practice due to

the necessary independence from the entropy source. Moreover, given the litany of tests

which approved entropy sources in NIST SP 800-90B are subjected to, it seems reasonable

to assume that the pathological sources used to illustrate e.g., deterministic extraction

impossibility results are unlikely to pass these tests in practice.

4.5.2 Preserving and Recovering Security in the ROM

Theorem 2.2 describes a convenient result which says that a PRNG is robust if it satisfies

two simpler properties called preserving and recovering security. We will now adapt these

notions to accommodate the NIST DRBGs, and reprove the result.

Recall that Pres and Rec as defined in Section 2.5 require that after a next call the resulting

PRNG state is indistinguishable from a state generated via setup. This is utilised in the

hybrid argument proof of Theorem 2.2, which implicitly assumes that at all points in

game Rob, the ideal distribution of the state is identical to that of states output by setup.

This presents two problems for the NIST DRBGs. Firstly, states for the NIST DRBGs

are often easily distinguishable from those output by setup due to the reseed counter cnt

which is initialised to cnt = 1 and iterates through each successive next call. Worse,

we shall see that the state of HASH-DRBG takes on a completely different distribution

following a next call than it does after setup and refresh. An additional problem is that the
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Init
A,D
PRNG,M,γ∗,qD

H←$H ; b←$ {0, 1} ;N ← N
σ0 ← ε ; seed←$ Seed

For k = 1, . . . , qD + 1

(σk, Ik, γk, zk)←$D(σk−1)

If (b = 0) then S∗0 ← setupH(seed, I1, N)

Else S∗0 ←$ MH(ε)

b∗←$AH(seed, S∗0 , (Ii)
qD+1
i=2 , (γi, zi)

qD+1
i=1 , N)

Return (b = b∗)

Pres
A
PRNG,M,β

H←$H ; b←$ {0, 1}
seed←$ Seed

(S′0, I1, . . . , Id, addin)←$AH(seed)

S0←$ MH(S′0)

For i = 1, . . . , d

Si ← refreshH(seed, Si−1, Ii)

If (b = 0) then (R∗, S∗)← nextH(seed, Sd, β, addin)

Else R∗←$ {0, 1}β ;S∗ ← MH(Sd)

b∗←$AH(seed, R∗, S∗)

Return (b = b∗)

Rec
A,D
PRNG,M,γ∗,qD,β

H←$H ; b←$ {0, 1}
σ0 ← ε ; seed←$ Seed ;µ← 1

For k = 1, . . . , qD + 1

(σk, Ik, γk, zk)←$D(σk−1)

(S0, d, addin)←$AH,Sam(seed, I1, (γk, zk)
qD+1
k=1 )

If µ+ d > (qD + 1) or
∑µ+d
i=µ+1 γi < γ∗

Return ⊥
For i = 1, . . . , d

Si ← refreshH(seed, Si−1, Iµ+i)

If (b = 0) then (R∗, S∗)← nextH(seed, Sd, β, addin)

Else R∗←$ {0, 1}β ;S∗←$ MH(Sd)

b∗←$A(seed, R∗, S∗, (Ik)k>µ+d)

Return (b = b∗)

Sam()

µ← µ+ 1

Return Iµ

H(X)

Return H(X)

Figure 4.4: Security games Init, Pres, and Rec for a PRNG PRNG = (setup, refresh, next)
and masking function M : S ∪ {ε} → S.

NIST DRBGs must construct initial states from an entropy sample (as opposed to using

random coins as in Theorem 2.2), and so will typically output states which themselves are

an approximation of an ideal state distribution.

Having run up against similar problems during their treatment of the Intel RNG, Shrimp-

ton and Terashima [151] made two key adaptations which we shall use here. Firstly, they

introduce the notion of masking functions which take as input a state and output an

ideally distributed variant of that state, thereby preserving predictable elements such as

counters while randomising unpredictable elements such as keys. They also define a new

security notion Init which models how well the states returned by setup emulate an ide-

alised initial state distribution. This allows a bounded transition to an easier-to-analyse

game in which the PRNG is initialised with an ideally random state.

For our modelling, we will adapt the definitions of Shrimpton and Terashima [151] to

accommodate the NIST DRBGs, which as we shall see requires some care. We additionally

extend these definitions to include a random oracle, similarly to the treatment of robustness

in the IPM of [69].

Security games. Consider games Pres, Rec, and Init shown in Figure 4.4. To avoid

further complicating our analysis the notions given here are for Robβ, the variant of Rob
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in which A always requests outputs of β-bits in RoR queries. Here we have adapted

the notions of [151] in the natural way to accommodate: (1) a random oracle; and (2)

our PRNG syntax. It is straightforward to extend our analysis to accommodate variable

length outputs.

All games are defined with respect to a masking function, which we define formally to be

a randomised function M : S ∪ {ε} → S where S denotes the state space of the PRNG.

Here, we have extended the definition of [151] to include ε in the domain of the masking

function (implicitly assuming that ε does not lie in the state space of the PRNG; if this is

not the case then any distinguished symbol may be used instead). We discuss the reasons

for this adaptation in Section 4.6. We give the masking function access to the random

oracle, indicated by MH. We make a number of further modifications. Firstly in Init, we

require S∗0 to be indistinguishable from MH(ε) as opposed to MH(S∗0) as in [151]. Secondly,

during the computation of the challenge in Pres and Rec we apply the masking function

to the state Sd which was input to nextH as opposed to the state S∗ which is output by

nextH. Finally, in Pres we allow A to output S ∈ S ∪ {ε} at the start of his challenge

rather than S ∈ S. In all cases, this is to accommodate the somewhat complicated state

distribution of HASH-DRBG (see Section 4.6).

For all Gmx
y ∈ {Init

A,D
PRNG,M,γ∗,qD ,Pres

A,
PRNG,M,β,Rec

A,D
PRNG,M,γ∗,qD,β}, we define

Advgm
y (x) = 2 ·

∣∣∣∣Pr
[

Gmx
y ⇒ 1

]
− 1

2

∣∣∣∣ .
An adversary in Init is said to be a qH-adversary if it makes qH queries to its H oracle. An

adversary in game Pres or Rec is said to be a (qH, qC)-adversary if it makes qH queries to

its H oracle and always outputs d ≤ qC .

With this in place, the following theorem — which says that Init, Pres, and Rec security

collectively imply Rob security — is an adaptation of the analogous results from [69,151].

As a bonus, employing a slightly different line of argument with two series of hybrid

arguments means our proof holds for arbitrary masking functions, lifting the restriction

from [151] that masking functions possess a property called idempotence.

Theorem 4.1. Let PRNG = (setupH, refreshH, nextH) be a PRNG with input with asso-

ciated parameter set (p, p, α, βmax), built from a hash function H which we model as a

random oracle. Suppose that each invocation of refreshH and nextH makes at most qref and

qnxt queries to H respectively. Let MH : S ∪ {ε} → S be a masking function for which
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each invocation of MH makes at most qM H queries. Then for any (qH, qR, qD, qC , qS)-

adversary A and (q+
D , γ

∗)-legitimate sampler D in game Robβ against PRNG, there exists

a (qH +qD ·qref +qR ·qnxt)-adversary A1 and (qH +qD ·qref +qR · (qnxt +qM), qC)-adversaries

A2,A3, such that

Advrob
PRNG,γ∗,β(A,D) ≤ 2 ·Advinit

PRNG,M,γ∗,qD
(A1,D)

+ 2qR ·Advpres
PRNG,M,β(A2) + 2qR ·Advrec

PRNG,M,γ∗,qD,β
(A3,D) .

Proof. Let (A,D) be an attacker / sampler pair in game Rob
A,D
PRNG,γ∗,β against PRNG.

We shall construct a hybrid argument based upon the attacker’s RoR queries, where

by assumption A makes qR such queries. We say that a RoR query is uncompromised

if c ≥ γ∗ at the point of the query; otherwise we say it is compromised. We further

divide uncompromised RoR queries into those which are preserving and those which are

recovering. We say a RoR query is recovering if c < γ∗ at some point between the previous

RoR query (or if there have been no previous RoR queries, the start of the game) and

the current one inclusive. For a recovering RoR query, we call the most recent query for

which c← 0 the most recent entropy drain (mRED) query. If an uncompromised query is

not recovering, then it is said to be preserving.

Let game G∗0 be equivalent to game Rob
A,D
PRNG,γ∗,β with challenge bit b = 0. Let (A,D)

be an attacker / sampler pair in G∗0. We begin by defining game G0, which is identical

to G∗0 except we replace the line S ← setupH(seed, I,N) with S ←$ MH(ε). We bound

the gap between these games with a reduction to the Init security of PRNG. Let (A1,D)

be an attacker / sampler pair in game Init, where A1 proceeds as follows. When A1

receives his challenge state S∗, the seed seed, and the entropy samples, estimates, side

information, and nonce ((Ii)
qD+1
i=2 , (γi, zi)

qD+1
i=1 , N), he passes (seed, (γ1, z1, N)) to A. A1

begins to simulate game Rob with challenge bit b = 0 for A, using the challenge state S∗

as the initial state for the simulated game. In particular, A1 uses the remaining entropy

samples and estimates to simulate A’s Ref calls, and uses his own H oracle to answer A’s

H queries and to simulate the refreshH and nextH algorithms. At the end of the game, A1

outputs whatever bit A does. Notice that if A received a real state in his challenge then

this perfectly simulates G∗0; otherwise it perfectly simulates G0. Moreover, notice that A1

makes at most (qH + qR · qnxt + qD · qref ) queries to H (this total follows from the qH queries

that A makes to H and which A1 forwards to his own oracle, plus the qref (resp. qnxt) H
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queries which A1 makes to simulate the qD (resp. qR) Ref (resp. RoR) queries. It follows

that

|Pr [A ⇒ 1 in G∗0 ]− Pr [A ⇒ 1 in G0 ]| ≤ Advinit
PRNG,M,γ∗,qD

(A1,D) .

We now define a series of modified games, where for each i ∈ [0, qR − 1], Gi+1 is identical

to game Gi except in the event that the (i + 1)st RoR query is uncompromised. In this

case then instead of computing the output / state via (R,S′) ← nextH(seed, S, β, addin)

where S denotes the current state of the PRNG, the challenger returns R←$ {0, 1}β to A

regardless of the challenge bit and sets the state of the PRNG to MH(S) (i.e., the mask of

the state which was input to next to satisfy the output request). This new state is used

to run the rest of the game. We also introduce an intermediate game G(i+ 1
2

) defined such

that if the (i+ 1)st RoR query is preserving then the challenger acts as in Game (i+ 1),

whereas if the (i + 1)st RoR query is recovering the challenger acts as in Game i. We

bound the gaps between these pairs of games in the following lemma.

Lemma 4.1. For any (qH, qR, qD, qC , qS)-adversary A and sampler D, and for all i ∈

[0, qR − 1], there exist (qH + qD · qref + qR · (qnxt + qM), qC)-adversaries Ai2, Ai3 such that

∣∣∣∣Pr [A ⇒ 1 in Gi ]− Pr
[
A ⇒ 1 in G(i+1)

]∣∣∣∣
≤ Advpres

PRNG,M,β(Ai2) + Advrec
PRNG,M,γ∗,qD,β

(Ai3,D) .

To see this, notice that for each i ∈ [0, qR − 1] the triangle inequality implies that the

left-hand side of the above equation is upper bounded by

∣∣∣∣Pr [A ⇒ 1 in Gi ]− Pr
[
A ⇒ 1 in G(i+ 1

2
)

]∣∣∣∣
+

∣∣∣∣Pr
[
A ⇒ 1 in G(i+ 1

2
)

]
− Pr

[
A ⇒ 1 in G(i+1)

]∣∣∣∣ .
We begin by showing that there exists an adversary Ai2 such that∣∣∣∣Pr [A ⇒ 1 in Gi ]− Pr

[
A ⇒ 1 in G(i+ 1

2
)

]∣∣∣∣ ≤ Advpres
PRNG,M,β(Ai2) .

We may assume without loss of generality that the (i+ 1)st query is preserving, otherwise

games Gi and are G(i+ 1
2

) are identical. Attacker Ai2 proceeds as follows. Ai2 runs A as a

subroutine, using his H oracle as well as the code of the sampler D to simulate game Gi up

to and including the ith RoR query. In more detail: on input seed seed, Ai2 first computes

(σ1, I1, γ1, z1)←$ D(σ0), and passes (seed, (γ1, z1, N)) to A where N ← N . Ai2 simulates
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A’s H oracle by querying his own H oracle and returning the response. For a Ref query, Ai2
uses the code of the sampler to compute (σ′, I, γ, z)←$D(σ) and returns (γ, z) to A, but

does not yet update the state. For Get, Set, and RoR queries, Ai2 takes the state S which

immediately followed the last non-Ref query (or chooses S ←$ MH(ε) if this is the first

non-Ref query and so no such state exists) and uses refreshH to refresh that state with all

entropy samples which would have been incorporated due to Ref queries since the previous

call, ultimately producing state S′. For Get / Set queries, Ai2 returns / overwrites the

state S′ as required. For the first (i− 1) RoR queries, if the query is uncompromised then

Ai2 samples R←$ {0, 1}β and sets the state of the generator to S′′←$ MH(S′). If the query

is compromised then Ai2 simply computes (R,S′′) ← nextH(seed, S′, β, addin). In both

cases, A returns R to A and continues running the game with state S′′. A simulates the

ith RoR query (which must be uncompromised, since we have assumed that the (i + 1)st

query is preserving) as just described, but does not mask the state S′. (Since the (i+ 1)st

RoR query is preserving, we know that A must only make Ref queries between the ith

and (i+ 1)st RoR queries. Looking ahead, Ai2 will insert his challenge in the (i+ 1)st RoR

query, and S′ will be masked as part of the challenge computation.)

To simulate the (i + 1)st RoR query with associated additional input addin, Ai2 passes

the state S′ which immediately followed the ith RoR query (or S′ = ε if i = 0 and so no

such state exists1), as well as addin and all entropy inputs I1, . . . , Id which were output

by the simulated sampler in response to Ref queries made in between the ith and (i+ 1)st

RoR queries, to his challenger. Since by assumption A makes at most qC consecutive Ref

queries, it follows that d ≤ qC . Ai2 receives (R∗, S∗) in response and returns R∗ to A.

Ai2 continues running the game with state S∗ and the simulated algorithms refreshH and

nextH. At the end of the game, Ai2 outputs whatever bit A does.

Notice that if Ai2’s challenge bit is 0 and he receives the real output and state in his

challenge then this perfectly simulates Gi; otherwise he receives a random output and a

masked state, and this perfectly simulates game G(i+ 1
2

). It follows that

∣∣∣∣Pr [A ⇒ 1 in Gi ]− Pr
[
A ⇒ 1 in G(i+ 1

2
)

]∣∣∣∣
=

∣∣∣∣Pr
[
Ai2 ⇒ 1 | b = 0

]
− Pr

[
Ai2 ⇒ 1 | b = 1

] ∣∣∣∣ ≤ Advpres
PRNG,M,β(Ai2) .

1Recall that we modified Pres to allow A to output ε at the start of the challenge. Looking ahead, this
is to allow an attacker in Pres against HASH-DRBG to simulate this case, since for HASH-DRBG states
output by setup are distributed differently to those following next calls (see Section 4.6).

177



4.5 Robustness in the Random Oracle Model

Moreover, notice that Ai2 makes at most (qH +qD ·qref +qR ·(qnxt +qM)) queries to H. Here

the additional qR · qM term arises since Ai2 masks at most (qR − 1) PRNG states (one for

every uncompromised RoR query with index j ∈ [1, i]) plus the initial state S0←$ MH(ε)).

The other terms arise from Ai2 answering A’s H queries and simulating the refreshH and

nextH algorithms.

Next, we show that for all i ∈ [0, qR − 1] there exists an adversary Ai3 such that

∣∣∣∣Pr
[
A ⇒ 1 in G(i+ 1

2
)

]
− Pr

[
A ⇒ 1 in G(i+1)

]∣∣∣∣ ≤ Advrec
PRNG,M,γ∗,qD,β

(Ai3,D) .

We may again assume without loss of generality that the (i+ 1)st RoR query is recovering

otherwise games G(i+ 1
2

) and G(i+1) are identical. Attacker Ai3 proceeds as follows. Ai3 is

given seed seed, I1, and (γi, zi)
qD+1
i=1 , passes (seed, γ1, z1, N) to A where N ← N , and begins

to simulate game Gi. Ai3 simulates A’s oracles for the first i queries as described above

with two differences. Firstly in response to a Ref query, Ai3 returns the relevant entropy

estimate / side information (which were given to Ai3 at the start of his challenge) to A.

Then at the point of the next non-Ref query, Ai3 queries Sam repeatedly to get all entropy

samples which should have been incorporated into the state during that period and uses

these to update the state. (In contrast, in the previous simulation Ai2 ran the code of the

sampler himself.) The second difference is that if the ith RoR query is uncompromised,

A returns R←$ {0, 1}β to A as before but now also sets the state to S′′←$ MH(S′) where

S′ denotes the state of the PRNG as updated with entropy samples at the point of the

query. (In the previous simulation Ai2 left this state unmasked.)

When A makes his (i+ 1)st RoR query with associated additional input addin, Ai3 locates

the mRED query (which must exist somewhere between the ith RoR query inclusive and

the (i + 1)st RoR query exclusive since we have assumed that the (i + 1)st RoR query

is recovering). Moreover, there must only be Ref queries between the mRED query and

(i + 1)st RoR query (since any Get / Set queries would contradict the maximality of the

mRED query). Ai3 submits the state which immediately followed the mRED query to his

challenger, along with d set equal to the number of Ref calls which A made between the

mRED query and the (i + 1)st RoR query, and addin. Again since A makes at most qC

consecutive Ref queries, it must be the case that d ≤ qC also. Ai3 receives (R∗, S∗) in

response, along with the remaining entropy samples. Ai3 returns R∗ to A, and uses the

state S∗ along with the entropy samples to simulate the remainder of the game. At the
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end of the game Ai3 outputs whatever bit A does.

Notice that if Ai3’s challenge bit is 0 and so he receives the real output and state in his

challenge then this perfectly simulates G(i+ 1
2

); otherwise, he receives a random output and

a masked state and this perfectly simulates game G(i+1). It follows that

∣∣∣∣Pr
[
A ⇒ 1 in G(i+ 1

2
)

]
− Pr

[
A ⇒ 1 in G(i+1)

]∣∣∣∣
=

∣∣∣∣Pr
[
Ai3 ⇒ 1 | b = 0

]
− Pr

[
Ai3 ⇒ 1 | b = 1

] ∣∣∣∣ ≤ Advrec
PRNG,M,γ∗qD,β

(Ai3,D) ,

where an analogous argument to that made above verifies the query complexity of Ai3.

Now in game GqR , each of A’s uncompromised RoR queries is answered with a random

bit string and a masked state. To go back to using unmasked states while still returning

random outputs to A, we define a second sequence of hybrid games where game GqR is

identical to game GqR , and for each i ∈ [0, qR − 1] game Gi is identical to game G(i+1)

except if the (i + 1)st query is uncompromised. In this case, for the (i + 1)st query the

challenger computes (R,S′′)← nextH(seed, S′, β, addin) where S′ denotes the state at the

point of the query and returns R←$ {0, 1}β to the attacker, but continues running the

game with the real state S′′ as opposed to using the masked version of that state MH(S′).

We define intermediate games G(i+ 1
2

) analogously to G(i+ 1
2

). An analogous argument to

that used above then implies the following lemma.

Lemma 4.2. For any (qH, qR, qD, qC , qS)-adversary A and sampler D, and for all i ∈

[0, qR − 1], there exist (qH + qD · qref + qR · (qnxt + qM), qC)-adversaries Ai2, Ai3 such that

∣∣∣∣Pr
[
A ⇒ 1 in Gi

]
− Pr

[
A ⇒ 1 in G(i+1)

]∣∣∣∣
≤ Advpres

PRNG,M,β(Ai2) + Advrec
PRNG,M,γ∗,qD,β

(Ai3,D) .

The proof of the above lemma is identical to that in the previous case, except that now Ai2
and Ai3 return random outputs in response to all uncompromised RoR queries made by

A. Similarly, we let G
∗
0 be identical to game G0, except we compute the initial state via

S0 ← setupH(seed, I1, N) rather than as MH(ε). An analogous argument to that used above

again implies that there exists an adversary A1 making at most (qH + qR · qnxt + qD · qref )
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H queries such that∣∣∣∣Pr
[
A ⇒ 1 in G0

]
− Pr

[
A ⇒ 1 in G

∗
0

]∣∣∣∣ ≤ Advinit
PRNG,M,γ∗,qD

(A1,D) .

Moreover, notice that game G∗0 is identical to game Rob with challenge bit b = 1. Putting

this altogether, a standard argument implies that there exists adversaries A1, A2, A3 with

the claimed query budgets such that

Advrob
PRNG,γ∗,β(A,D) ≤ 2 ·Advinit

PRNG,M,γ∗,qD
(A1,D)

+ 2qR ·Advpres
PRNG,M,β(A2) + 2qR ·Advrec

PRNG,M,γ∗,qD,β
(A3,D) .

Tightness. Unfortunately, due to the hybrid argument taken over the qR RoR queries

made by A, Theorem 4.1 is not tight. This is exacerbated in the ROM, since the attacker

in each of the qR hybrid reductions must make enough H queries to simulate the whole of

game Rob for A. This hybrid argument accounts for the qR coefficients in the bound and

in the attacker query budgets. This seems inherent to the proof technique and is present

in the analogous results of [60, 69, 151]. Developing a technique to obtain tighter bounds

is an important open question.

4.6 Analysis of HASH-DRBG

We now present our analysis of the robustness of HASH-DRBG, in which the underlying

hash function H : {0, 1}≤ω → {0, 1}` is modelled as a random oracle. Our proof is with

respect to the masking function MH shown in Figure 4.5. To avoid further complicating

security bounds we assume that HASH-DRBG is never called with additional input; we

expect extending the proof to include additional input to be straightforward.

Challenges. Certain features of HASH-DRBG significantly complicate the proof, and

necessitated adaptations in our security modelling (Section 4.5). For example, notice that

the distributions of states returned by setupH and refreshH are quite different from the

distribution of states S′ where (R,S′) ← nextH(S, β). To model this in games Init,Pres,
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MH(S)

If S = ε

V ′←$ {0, 1}L

C′ ← HASH-DRBG dfH(0x00||V, L)

cnt′ ← 1

Else (V,C, cnt)← S

H←$ {0, 1}`

V ′ ← (V + C + cnt +H) mod 2L

C′ ← C ; cnt′ ← cnt + 1

S′ ← (V ′, C′, cnt′)

Return S′

Figure 4.5: Masking function for proof of Theorem 4.2

and Rec we extended the domain of M to include the empty string ε to indicate that an

idealised state of the first form should be returned (for example, when modelling initial

state generation in Init). We also modified Pres to allow A to output ε at the start of the

challenge. This is because the proof of Theorem 4.1 requires A to be able to insert his

Pres challenge in any RoR query in a simulation of game Rob. To simulate the first RoR

query, A must be able to request a masked state of the form returned by setup at the start

of his challenge; for all other queries, he requires a masked state of the type returned by

next. Since for HASH-DRBG these states are distributed differently, we must distinguish

between the two in Pres. Juggling these different state distributions complicates proofs,

in particular introducing multiple cases into the proof of Pres security.

Moreover, consider the distribution of S′ ←$ MH(S) for S ∈ S, which serves to idealise

the distribution of the state S′ = (V ′, C ′, cnt′) as updated following an output generation

request. It would be convenient to argue that V ′ is uniformly distributed over {0, 1}L.

However, since V ′ is chosen uniformly from the window [V +C + cnt, V +C + cnt + (2`−

1)] where S = (V,C, cnt) and L > ` + 1 (see below), this is clearly not the case. To

accommodate this dependency between the updated state S′ and the previous state S, we

have modifed games Pres and Rec so that it is S which is masked instead of S′. More

minor issues, such as: (1) not properly separating the domain of queries made by setupH

to produce the counter V from those made to produce the constant C; and (2) the way

in which L is not a multiple of ` for the approved hash functions; make certain steps in

the analysis more fiddly than they might have been.

Parameter settings. We provide a general treatment into which any parameter setting

may be slotted, subject to two restrictions which are utilised in the proof. Namely, we

assume that L > ` + 1 and n < 2L, where n = dβ/`e denotes the number of output
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blocks produced by nextH to satisfy a request for β-bits (without this latter restriction

HASH-DRBG is trivially insecure, since it would lead to the same counter being hashed

twice during output production). We additionally require that L < 232 and m < 28 where

|V | = |C| = L and m = dL/`e is the number of blocks hashed by setupH / refreshH to

produce a new counter. This is because these values have to be encoded as a 32-bit and an

8-bit string, respectively, by HASH-DRBG df. All approved hash functions fall well within

these parameters. (Indeed, for all of these L > 2`, n < 3277� 2L, and m ≤ 3.)

Proof of Rob security. With this in place, we present the following theorem bounding

the robustness of HASH-DRBG. The proof follows from a number of lemmas presented

below, combined with Theorem 4.1. (When calculating the query budgets for Theorem 4.1,

it is readily verified that for HASH-DRBG qnxt = n+ 1, qref = 2m, and qM = m.)

Theorem 4.2. Let PRNG be HASH-DRBG with associated parameter set (p, p, α, βmax),

built from a hash function H : {0, 1}≤ω → {0, 1}` which we model as a random oracle.

Let L denote the state length of HASH-DRBG where L > `+1, n = dβ/`e, and m = dL/`e.

Let MH denote the masking function shown in Figure 4.5 and suppose that HASH-DRBG

is never called with additional input. Then for any (qH, qR, qD, qC , qS)-attacker A in game

Robβ against PRNG, and any (q+
D , γ

∗)-legitimate sampler D, it holds that

Advrob
PRNG,M,γ∗,β(A,D) ≤

qR · qH + 2q′H
2γ∗−2

+
qR · qH · (2n+ 1)

2`−2
+
qR · ((qC − 1)(2qH + qC) + q2

H) + 2

2L−2
,

Moreover, q′H = (qH + 2m · qD + (n+ 1) · qR) and qH = q′H +m · qR.

Init security. We begin by bounding the Init security of HASH-DRBG. The qH · 2−γ
∗

term arises following the standard argument that the initial state variable V0 will be

indistinguishable from a truly random bit string unless the attacker queries the random

oracle H on one of the points which was hashed to produce it. This in turn requires A to

guess the value of the entropy sample I1, which contains γ∗-bits of entropy. The additional

2−L term arises since the queries made to compute the counter V0 are not fully domain

separated from those made to compute the constant C0. Indeed, if it so happens that

I1||N = 0x00||V0 where I1 and N denote the entropy input and nonce (an event which

— while very unlikely — is not precluded by the parameter constraints in the standard),

then the derived values of V0 and C0 will be equal; this allows the attacker to distinguish
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proc. main // G0, G1, G2

σ0 ← ε ;N ← N ;Q ← ∅
For i = 1, . . . , qD + 1

(σi, Ii, γi, zi)←$D(σi−1)

tempV ← ε ;m← dL/`e
For i = 1, . . . ,m

Q ← Q∪ ((i)8 ‖ (L)32 ‖ I1 ‖N)

tempV ← tempV ‖H((i)8 ‖ (L)32 ‖ I1 ‖N)

V ∗0 ← left(tempV , L)

V ∗0 ←$ {0, 1}L

tempC ← ε

For i = 1, . . . ,m

tempC ← tempC ‖H((i)8 ‖ (L)32 ‖ 0x00 ‖V ∗0 )

C∗0 ← left(tempC , L)

cnt∗0 ← 1

S∗0 ← (V ∗0 , C
∗
0 , cnt

∗
0)

b∗←$AH(S∗0 , (Ii)
qD+1
i=2 , (γi, zi)

qD+1
i=1 )

Return b∗

proc. main // G3, G4

σ0 ← ε ;N ← N ;Q ← ∅
For i = 1, . . . , qD + 1

(σi, Ii, γi, zi)←$D(σi−1)

S∗0 ←$ MH(ε)

b∗←$AH(S∗0 , (Ii)
qD+1
i=2 , (γi, zi)

qD+1
i=1 )

Return b∗

proc. H(X) // G0 , G1, G2, G3, G4

Y ←$ {0, 1}`

If H[X] 6= ⊥ and X /∈ Q
Y ← H[X]

If H[X] 6= ⊥ and X ∈ Q
bad← 1

Y ← H[X]

H[X]← Y

Return Y

Figure 4.6: Games for proof of Lemma 4.3 (Init security of HASH-DRBG).

the real state from MH(ε) with high probability. A small tweak to the design of setup (e.g.,

prepending 0x01 to I||N before hashing) would have avoided this. For implementations

of HASH-DRBG for which such a collision is impossible (e.g., due to length restrictions on

the input I) this additional term can be removed.

Lemma 4.3. Let PRNG = HASH-DRBG and masking function MH be as specified in

Theorem 4.2. Then for any qH-adversary A in game Init against PRNG, and any (q+
D , γ

∗)-

legitimate sampler D, it holds that

Advinit
PRNG,M,γ∗,qD

(A,D) ≤ qH · 2−γ
∗

+ 2−L .

Proof. We argue by a series of game hops, shown in Figure 4.6. We begin by defining

game G0, which is easily verified to be a rewriting of Init for HASH-DRBG and MH with

challenge bit b = 0 in which we lazily sample the random oracle H. We additionally set a

flag bad, although this does not affect the outcome of the game. It follows that

Pr [G0 ⇒ 1 ] = Pr
[

Init
A,D
PRNG,M,γ∗ ⇒ 1 | b = 0

]
.

Next we define game G1, which is identical to game G0 except we change the way in which

the random oracle H responds to queries. Namely, if H is queried more than once on one

of the inputs (i)8 ‖ (L)32 ‖ I1 ‖N for i ∈ [1,m] upon which it was queried to produce V ∗0

(indicated in the pseudocode by the set Q), then H responds with an independent random

string rather than the value which was previously set. Notice that this event could either

occur during the computation of C∗0 (if it happens that 0x00 ‖V ∗0 = I1 ‖N), or due to a
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query made by A after receiving the challenge state. (Notice that due to the prepended

counter, the queries made during the computation of V ∗0 (resp. C∗0 ) will never collide with

each other.) These games run identically unless the flag bad is set, and so the Fundamental

Lemma of Game Playing implies that

|Pr [G0 ⇒ 1 ]− Pr [G1 ⇒ 1 ]| ≤ Pr [ bad = 1 in G1 ] .

We let Coll denote the event that 0x00 ‖V ∗0 = I1 ‖N . Notice that if Coll occurs, then bad

will be set with probability one during the computation of C∗0 . Moreover, notice that if

Coll does not occur then bad will only be set if A queries H on a point in the set Q, where

any such query requires A to correctly guess the value of the entropy sample I1. It follows

that

Pr [ bad = 1 in G1 ] = Pr [ bad = 1 ∧ Coll in G1 ] + Pr [ bad = 1 ∧ ¬Coll in G1 ]

≤ Pr [ Coll in G1 ] + Pr [A queries H on a point X ∈ Q in G1 ]

≤ Pr [ Coll in G1 ] + Pr
[
AH(S∗0 , (Ii)

qD+1
i=2 , (γi, zi)

qD+1
i=1 ) guesses the value of I1 in G1

]
.

Before bounding this probability we first define game G2, which is identical to G1 except

we overwrite the string V ∗0 computed by querying H with an independent random string

V ∗0 ←$ {0, 1}L. In G1, random oracle H responds to each query made to compute V ∗0 with

an independent random string (which is used at no other point in the game), and so it

is straightforward to verify that these games are identically distributed. It follows that

Pr [G1 ⇒ 1 ] = Pr [G2 ⇒ 1 ], and so:

Pr [ bad = 1 in G1 ]

≤ Pr [ Coll in G1 ] + Pr
[
A(S∗0 , (Ii)

qD+1
i=2 , (γi, zi)

qD+1
i=1 ) guesses the value of I1 in G1

]
= Pr [ Coll in G2 ] + Pr

[
A(S∗0 , (Ii)

qD+1
i=2 , (γi, zi)

qD+1
i=1 ) guesses the value of I1 in G2

]
≤ 2−L + qH · 2−γ

∗
.

All probabilities are over the coins of A, D, M, and H. The first term in the inequality

follows since V ∗0 ←$ {0, 1}L, and so the probability that Coll occurs is upper bounded

by 2−L. The second term follows since in G2 the challenge state S∗0 returned to A is

entirely independent of the input I1. As such, by the (q+
D , γ

∗)-legitimacy of the sampler,

the probability that a single query to H made by A contains the correct value of I1

conditioned on the given information is upper bounded by 2−γ
∗
. Taking a union bound

over A’s qH queries then completes the argument.
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Next we first define game G3, which is the same as G2 except we simply compute the

challenge state S∗0 as S∗0 ←$ MH(ε). It is straightforward to verify that S∗0 is computed

identically in both games, and that the redundant H queries from G2 which are removed

in G3 do not alter the outcome of the game. It follows that this is a syntactic change, and

so Pr [G2 ⇒ 1 ] = Pr [G3 ⇒ 1 ].

Next we define game G4, which is the same as G3 except we revert the random oracle to

answer consistently on all points. However, V ∗0 is chosen independently at random in both

G3 and G4 and so the values upon which the random oracle would ‘lie’ are not set (e.g.,

Q = ∅). As such, this does not alter the distribution of the game and so Pr [G3 ⇒ 1 ] =

Pr [G4 ⇒ 1 ]. Now, G4 is identical to a rewriting of game Init with challenge bit b = 1,

and so

Pr [G4 ⇒ 1 ] = Pr
[

Init
A,D
PRNG,M,γ∗,qD ⇒ 1 | b = 1

]
.

Putting this altogether, we conclude that

Advinit
PRNG,M,γ∗,qD

(A,D) ≤ |Pr [G0 ⇒ 1 ]− Pr [G4 ⇒ 1 ]

≤ qH · 2−γ
∗

+ 2−L .

A useful lemma: Next security of HASH-DRBG. Consider the game NextAPRNG,M,β

shown in the top left panel of Figure 4.7, in which we have assumed that PRNG is not called

with additional input. In Next, the attacker A first chooses a state which is then masked.

Depending on the challenge bit, the game either uses the next algorithm of the PRNG

to generate a real output and state or chooses a random output and updated masked

state; the attacker is challenged to distinguish between these two cases. The advantage of

attacker A in game Next is defined

Advnext
PRNG,M,β(A) =

∣∣∣∣Pr
[

NextAPRNG,M,β ⇒ 1 | b = 0
]
− Pr

[
NextAPRNG,M,β ⇒ 1 | b = 1

] ∣∣∣∣ .
This game isolates the output production portion of games Pres and Rec. We first prove

the Next security of HASH-DRBG with respect to the masking function MH, which in turn

allows us to treat the proofs of Pres and Rec security in a more modular manner.

Lemma 4.4. Let PRNG = HASH-DRBG and masking function MH be as specified in
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NextAPRNG,M,β

H←$H ; b←$ {0, 1}
seed←$ Seed

S′←$AH(seed) ;S←$ MH(S′)

If b = 0

(R∗, S∗)← nextH(seed, S, β)

Else R∗←$ {0, 1}β ;S∗←$ MH(S)

b∗←$AH(seed, R∗, S∗)

Return (b = b∗)

proc. main // G0, G1, G2

S′←$AH ; (V ′, C′, cnt′)← S′

H0←$ {0, 1}` ;V ← V ′ + C′ + cnt′ +H0

C ← C′ ; cnt← cnt′ + 1

S ← (V,C, cnt)

data← V ; tempR ← ε ;n← dβ/`e
For j = 1, . . . , n

r ← H(data)

data← data+ 1

tempR ← tempR ‖ r
R∗ ← left(tempR, β)

R∗←$ {0, 1}β

H1 ← H(0x03 ‖V )

H1←$ {0, 1}`

V ∗ ← V + C + cnt +H1

C∗ ← C ; cnt∗ ← cnt + 1

S∗ ← (V ∗, C∗, cnt∗)

b∗←$AH(R∗, S∗)

Return b∗

proc. main // G3, G4

S′←$AH ; (V ′, C′, cnt′)← S′

H0←$ {0, 1}` ;V ← V ′ + C′ + cnt′ +H0

C ← C′ ; cnt← cnt′ + 1

S ← (V,C, cnt)

R∗←$ {0, 1}β

S∗←$ MH(S)

b∗←$AH(R∗, S∗)

Return b∗

proc. H(X) // G0 , G1, G2, G3, G4

Y ←$ {0, 1}`

If H[X] 6= ⊥
bad← true

Y ← H[X]

H[X]← Y

Return Y

proc. main // G0, G1, G2

ε←$AH

V ←$ {0, 1}L

m← dL/`e ; tempC ← ε

For i = 1, . . . ,m

tempC ← tempC ‖H((i)8 ‖ (L)32 ‖ 0x00 ‖V )

C ← left(tempC , L)

C←$ {0, 1}L

cnt← 1

S ← (V,C, cnt)

data← V ; tempR ← ε ;n← dβ/`e
For j = 1, . . . , n

r ← H(data)

data← data+ 1

tempR ← tempR ‖ r
R∗ ← left(tempR, β)

R∗←$ {0, 1}β

H1 ← H(0x03 ‖V )

H1←$ {0, 1}`

V ∗ ← V + C + cnt +H1

C∗ ← C ; cnt∗ ← cnt + 1

S∗ ← (V ∗, C∗, cnt∗)

b∗←$AH(R∗, S∗)

Return b∗

proc. main // G3 , G4, G5

ε←$AH

V ←$ {0, 1}L

m← dL/`e ; tempC ← ε

For i = 1, . . . ,m

tempC ← tempC ‖H((i)8 ‖ (L)32 ‖ 0x00 ‖V )

C ← left(tempC , L)

C←$ {0, 1}L

cnt← 1

S ← (V,C, cnt)

R∗←$ {0, 1}β

S∗←$ MH(S)

b∗←$AH(R∗, S∗)

Return b∗

proc. H(X) // G0 , G1, G2, G3, G4, G5

Y ←$ {0, 1}`

If H[X] 6= ⊥
bad← true

Y ← H[X]

H[X]← Y

Return Y

Figure 4.7: Game Next for a PRNG PRNG and masking function M (top left panel), and
games for proof of Lemma 4.4 (Next security of HASH-DRBG). All addition is modulo 2L.
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Theorem 4.2. Let H : {0, 1}≤ω → {0, 1}` and n = dβ/`e. Then for any adversary A

in game Next against PRNG making qH queries to the random oracle H, it holds that

Advnext
PRNG,M,β(A) ≤ qH · n

2`−1
.

Proof. We may assume without loss of generality that A never repeats a query to the

random oracle H. Recall that MH(S′) for S′ ∈ S is distributed differently from MH(ε),

and so there are two cases to consider depending on which type of state A outputs at the

start of the challenge.

We begin by proving the case in which A outputs S′ 6= ε. We argue by a series of game

hops, shown in the left-hand panel of Figure 4.7. We begin by defining game G0, which is

a rewriting of game Next for PRNG and MH with challenge bit b = 0 in which the random

oracle is lazily sampled. In particular, notice how the procedure for computing masked

states via application of MH is included in the pseudocode at the appropriate point. We

additionally set a flag bad but this does not affect the outcome of the game. It follows

that

Pr [G0 ⇒ 1 ] = Pr
[

NextAPRNG,M,β ⇒ 1 | b = 0
]
.

Next we define game G1, which is identical to G0 except we change the way in which the

random oracle H responds to queries. Now H responds to all queries with an independent

random string regardless of whether the query is fresh. These games run identically until

the flag bad is set. It follows that

|Pr [G0 ⇒ 1 ]− Pr [G1 ⇒ 1 ]| ≤ Pr [ bad = 1 in G1 ] .

Next we define game G2, which is identical to G1 except we overwrite the values of R∗ and

H1 (which were previously computed by querying H) with independent random bit strings

R∗←$ {0, 1}β and H1←$ {0, 1}`. Since in G1 the random oracle responds to each query

made to compute these values with an independent random string which is used nowhere

else in the game, it follows that these games are identically distributed, and so

Pr [G1 ⇒ 1 ] = Pr [G2 ⇒ 1 ] ; and

Pr [ bad = 1 in G1 ] = Pr [ bad = 1 in G2 ] .

We now bound the probability of bad being set in G2. During the computation of the

challenge, H is queried on : (1) data + j − 1 = V + j − 1 for j ∈ [1, n] during the

computation of R∗; and (2) 0x03 ‖V to generate the value H1 (which is used to produce
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the final state variable V ∗). Notice that since the former is shorter in length than the

latter, no queries of the form (1) can collide with the query of form (2). Moreover, since

n < 2L, none of the queries of form (1) can collide with each other. Since we have assumed

that A never repeats a query, it follows that the only way that bad will be set is if an H

query made by A in either the initial querying phase (i.e., before outputting S′), or after

receipt of the challenge output / state pair, collides with one of the values queried by the

challenger. Moreover, notice that all queries which may cause bad to be set require A to

correctly guess the value of an element in the set V = {V, . . . , V + n− 1}. We now bound

the probability that A submits such a query to H. Since knowledge of the challenge state

S∗ can only increase A’s guessing probability, we may without loss of generality assume

that A makes all of his qH queries to H after receiving his challenge. It follows that

Pr [ bad = 1 in G2 ] = Pr
[
AH(R∗, S∗) queries a point in V to H in G2

]
≤

n∑
j=1

Pr
[
AH(R∗, S∗) guesses the value of V + j − 1 in G2

]
= n · Pr

[
AH(R∗, S∗) guesses the value of V in G2

]
. (4.1)

Here the first inequality follows from taking a union bound over the n elements in V. The

following equality follows since guessing the value of (V +j−1) mod 2L for some j ∈ [1, n]

is equivalent to guessing V mod 2L.

In particular, notice that while R∗ is chosen independently at random in G2 and so offers

A no assistance in guessing the value of the required state variables, S∗ = (V ∗, C∗, cnt∗)

does leak some information to A about the value of V . To see this, notice that V is

computed as V = V ′ +C ′ + cnt′ +H0 where H0←$ {0, 1}`, S′ = (V ′, C ′, cnt′) is the state

output by A at the start of the game, and all addition is modulo 2L. The challenge state

component V ∗ is then computed as V ∗ = V +C + cnt +H1 where C = C ′, cnt = cnt′+ 1,

and H1←$ {0, 1}`. As such, we may rewrite V ∗ in the form

V ∗ = V ′ + 2 · C ′ + (2 · cnt′ + 1) + (H0 +H1) ,

where recall all variables and sums are taken modulo 2L. Now, all the variables on the

right-hand side of the above equality are known to A except H0 and H1; indeed, A selected

V ′, C ′ and cnt′ at the start of the game. As such, learning V ∗ reveals (H0 + H1) ∈

[0, 2 · (2`− 1)] to A. It is then straightforward to verify that guessing the value of V given

R∗, S′ = (V ′, C ′, cnt′), and S∗ = (V ∗, C∗, cnt∗) where recall C∗ = C ′ and cnt∗ = cnt′ + 2
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— that is to say, A’s view of the experiment at this point — is equivalent to guessing the

value of H0 given (H0 +H1), where H0, H1←$ {0, 1}`. More formally, we write e.g., S∗ to

denote the distribution of state S∗, and for brevity let α = V ′ + 2 · C ′ + (2 · cnt′ + 1). It

follows that for each S′ = (V ′, C ′, cnt′) which may be output by A, it holds that

2−H̃∞(V|R∗,S∗,S′=S′)

=
∑
R∗,S∗

max
V

Pr
[

V = V | (R∗, S∗,S′) = (R∗, S∗, S′)
]
× Pr

[
(R∗,S∗, S′) = (R∗, S∗, S′)

]
=
∑
R∗,S∗

max
V

Pr
[

V = V ∧ (R∗, S∗, S′) = (R∗, S∗, S′)
]

=
∑

V ∗∈[α,α+2·(2`−1)]

max
V

Pr
[
V = (V ′ + C ′ + cnt′ + H0) ∧ V ∗ = α+ (H0 + H1)

]
=

∑
z∈[0,2·(2`−1)]

max
H0

Pr [ H0 = H0 ∧ (H0 + H1) = z ]

=
∑

z∈[0,2·(2`−1)]

max
H0

Pr [ (H0 + H1) = z ] · Pr [ H0 = H0 ]

=
∑

z∈[0,2·(2`−1)]

2−` · 2−` < 2−(`−1) .

All probabilities are over the random choice of H0, H1←${0, 1}`. The first equality follows

from the definition of average-case min-entropy. The second equality follows from rearrang-

ing. The third equality follows by: (1) rewriting V and S∗ in terms of S′ = (V ′, C ′, cnt′)

and noticing that V ∗ is the only element of S∗ not determined by S′; and (2) noting that,

since R∗ is chosen randomly in G2, it is independent of the distribution of state variables.

The next equality follows since, with S′ fixed, the values of V and V ∗ are completely deter-

mined by H0 ∈ [1, 2`−1] and (H0 +H1) ∈ [0, 2 · (2`−1)]. The following equality is implied

by rearranging. The last equality follows since for each H0 ∈ {0, 1}` and z ∈ [0, 2 ·(2`−1)],

there is at most one H1 ∈ {0, 1}` such that (H0 + H1) = z. (Here we use the fact that

H0, H1 ∈ [0, 2`−1] and by assumption L > `+1, and so no wraparound modulo 2L occurs

when computing (H0 + H1).) The above entropy argument implies that the probability

that A correctly guesses the value of V given a single guess in G2 is upper bounded by

2−(`−1), and so taking a union bound over A’s qH queries and substituting into equation

(4.1) yields

Pr [ bad in G2 ] ≤ qH · n
2`−1

.

Next we define G3, which is identical to G2 except we compute S∗ as S∗←$ MH(S) and

omit the now redundant random oracle queries. It is straightforward to verify that these
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are syntactic changes, and so Pr [G2 ⇒ 1 ] = Pr [G3 ⇒ 1 ].

Next we define gameG4, which is identical toG3 except we return H to answer truthfully on

all points; by an analogous argument to that used above, these games run identically unless

the flag bad is set. However, since the challenge output / state are generated randomly

in both games (and so no random oracle queries are made during the computation of

the challenge), it follows that bad will never be set and so this change does not alter the

distribution of the game. Now G4 is identical to game Next for PRNG with challenge bit

b = 1, and so it follows that

Pr [G4 ⇒ 1 ] = Pr
[

NextAPRNG,M,β ⇒ 1 | b = 1
]
.

Putting this altogether, we conclude that

Advnext
PRNG,M,β(A) = |Pr [G0 ⇒ 1 ]− Pr [G4 ⇒ 1 ]|

≤ qH · n
2`−1

.

We now consider the case in which A outputs state S′0 = ε at the start of game Next. In

this case, the masking function chooses V ←${0, 1}L, sets C = HASH-DRBG dfH(0x00 ‖V )

and cnt = 1, and returns S = (V,C, cnt). As we will see, the success probability of an

attacker in this case is less than that in the former case, and so the previous bound holds

for both cases.

We argue by a series of game hops, shown on the right-hand side of Figure 4.7. We begin

by defining game G0, which is a rewriting of game Next with challenge bit b = 0 for

HASH-DRBG and MH with a lazily sampled random oracle. Next we define game G1,

which is identical to G0 except we change H to respond to each query with an independent

random string regardless of whether the value has previously been set. These games run

identically until the flag bad is set. An analogous argument to that used above, invoking

the Fundamental Lemma of Game Playing, implies that

|Pr [G0 ⇒ 1 ]− Pr [G1 ⇒ 1 ]| ≤ Pr [ bad = 1 in G1 ] .

Next we define game G2, which is identical to G1 except we now overwrite the values of

C,R∗, and H1 (which were previously computed by querying H) with independent random

bit strings C←$ {0, 1}L, R∗←$ {0, 1}β, and H1←$ {0, 1}`. As in the proof of the previous

case, both games are identically distributed and so

Pr [G1 ⇒ 1 ] = Pr [G2 ⇒ 1 ] and ;
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Pr [ bad = 1 in G1 ] = Pr [ bad = 1 in G2 ] .

We now bound this latter probability. During the computation of the challenge, H is

queried on: (1) (i)8 ‖ (L)32 ‖ 0x00 ‖V for i ∈ [1,m] to compute C; (2) V + j − 1 for

j ∈ [1, n] to compute the output R∗; and (3) 0x03 ‖V to compute H1. Since the queries

of form (1) cannot collide with each other (due to the iterating counter) or with queries of

forms (2) and (3) (since queries of type (1) are of a longer length than those of type (2)

and (3)), an analogous argument to that made above implies that bad will only be set if A

manages to query to H one of the points previously queried by the challenger. Moreover,

all such queries require A to guess the value of a point in the set V = {V, . . . , V + n− 1}.

Since knowledge of the challenge state S∗ = (V ∗, C∗, cnt∗) can only increase A’s guessing

probability, we may without loss of generality assume that A makes all of his qH queries

to H after receiving his challenge. An analogous argument to that used above, taking a

union bound, implies that

Pr [ bad = 1 in G2 ] ≤ n · Pr
[
AH(R∗, S∗) guesses the value of V in G2

]
. (4.2)

In particular, notice that possessing the challenge state S∗ = (V ∗, C∗, cnt∗) leaks infor-

mation to A about the value of the target V . Namely, V ∗ = V + C + cnt + H1 where

H1←$ {0, 1}`, C = C∗, cnt = 1, and addition is modulo 2L — notice how this differs from

the previous case. As such, A knows that V corresponds to a random value in the interval

[V ∗ − C∗ − 1 − (2` − 1), V ∗ − C∗ − 1]. Given A’s view of the experiment at this point,

which consists of R∗ and S∗ = (V ∗, C∗, cnt∗), it is straightforward to verify that guessing

the correct value of V is equivalent to correctly guessing the value of H1←$ {0, 1}`. As

such, the probability that A guesses the correct value of V given a single query is equal to

2−`. Taking a union bound over A’s qH guesses and substituting into equation (4.2) then

implies that

Pr [ bad = 1 in G2 ] ≤ qH · n
2`

.

Next we define game G3, which is identical to G2 except we simply compute S∗ as

S∗←$ MH(S) and omit the redundant random oracle queries which were made to compute

the variables R∗ and H1. As before, it is straightforward to verify that both games are

identically distributed, and so Pr [G2 ⇒ 1 ] = Pr [G3 ⇒ 1 ].

We then define game G4, which is identical to G3 except we no longer overwrite the string
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C with a random bit string. An analogous argument to that used above implies that

Pr [G3 ⇒ 1 ] = Pr [G4 ⇒ 1 ].

Next we define game G5, which is identical to G4 except we return H to answer consistently

on all points. By an analogous argument to that used above, G4 and G5 are identical until

the flag bad is set. Since the only points queried to H during the computation of the

challenge output / state in these games are during the computation of C, it follows that

bad will only be set if A queries H on one of the points used to compute C. In turn, this

may only occur if A correctly guesses the value of V . As such, an analogous argument

to that above, invoking the Fundamental Lemma of Game Playing and the fact that the

probability that A guesses the value of V in a single guess is upper bounded by 2−`, implies

that

|Pr [G4 ⇒ 1 ]− Pr [G5 ⇒ 1 ]| ≤ Pr [ bad = 1 in G5 ]

=Pr [ bad = 1 in G3 ] ≤ qH

2`
.

Now G5 is identical to game Next for PRNG with challenge bit b = 1, and so it follows

that

Pr [G5 ⇒ 1 ] = Pr
[

NextAPRNG,M,β ⇒ 1 | b = 1
]
.

Putting this altogether, we conclude that

Advnext
PRNG,M,β(A) = |Pr [G0 ⇒ 1 ]− Pr [G5 ⇒ 1 ]|

≤ qH · (n+ 1)

2`
≤ qH · n

2`−1
,

where the final inequality follows since qH ≥ 0 and n ≥ 1, thereby proving the bound in

this case also.

Pres security. We now analyse the Pres security of HASH-DRBG, during which we will

invoke Lemma 4.4 proved above. At the start of game Pres, the (qH, qC)-attackerA outputs

(S′0, I1, . . . , Id) where d ≤ qC . The game sets (V0, C0, cnt0)←$ MH(S′0), and iteratively

computes Sd via Si ← refreshH(Si−1, Ii) for i ∈ [1, d]. The proof begins by arguing that

unless the A queries H on the counter V0 or any of the counters V1, . . . , Vd−1 passed

through during reseeding, then (barring certain accidental collisions) the updated state

Sd = (Vd, Cd, cntd) is indistinguishable from a masked state. The proof then shows that,

192



4.6 Analysis of HASH-DRBG

proc. main // G0, G1, G2

(S′0, I1, . . . , Id)←$AH ; (V ′0 , C
′
0, cnt

′
0)← S′0

H0←$ {0, 1}` ;V0 ← V ′0 + C′0 + cnt′0 +H0

C0 ← C′0 ; cnt0 ← cnt′0 + 1

S0 ← (V0, C0, cnt0) ;m← dL/`e ;Q ← ∅
For j = 1, . . . , d

tempVj
← ε

For i = 1, . . . ,m

Q ← Q∪ {(i)8 ‖ (L)32 ‖ 0x01 ‖Vj−1 ‖ Ij}
tempVj

← tempVj
‖H((i)8 ‖ (L)32 ‖ 0x01 ‖Vj−1 ‖ Ij)

Vj ← left(tempVj
, L) ; Vj ←$ {0, 1}L

tempCj
← ε

For i = 1, . . . ,m

tempCj
← tempCj

‖H((i)8 ‖ (L)32 ‖ 0x00 ‖Vj)
Cj ← left(tempCj

, L) ; cntj ← 1

Sd ← (Vd, Cd, cntd)

(R∗, S∗)← nextH(Sd, β)

b∗←$AH(R∗, S∗)

Return b∗

proc. main // G3, G4

(S′0, I1, . . . , Id)←$AH ; (V ′0 , C
′
0, cnt

′
0)← S′0

H0←$ {0, 1}` ;V0 ← V ′0 + C′0 + cnt′0 +H0

C0 ← C′0 ; cnt0 ← cnt′0 + 1

S0 ← (V0, C0, cnt0) ;m← dL/`e ;Q ← ∅
Sd←$ MH(ε)

(R∗, S∗)← nextH(Sd, β) // G3 only

R∗←$ {0, 1}`

S∗←$ MH(Sd)

b∗←$AH(R∗, S∗)

Return b∗

proc. main // G5 , G6, G7

(S′0, I1, . . . , Id)←$AH ; (V ′0 , C
′
0, cnt

′
0)← S′0

H0←$ {0, 1}` ;V0 ← V ′0 + C′0 + cnt′0 +H0

C0 ← C′0 ; cnt0 ← cnt′0 + 1

S0 ← (V0, C0, cnt0) ;m← dL/`e ;Q ← ∅
For j = 1, . . . , d

tempVj
← ε

For i = 1, . . . ,m

Q ← Q∪ {(i)8 ‖ (L)32 ‖ 0x01 ‖Vj−1 ‖ Ij}
tempVj

← tempVj
‖H((i)8 ‖ (L)32 ‖ 0x01 ‖Vj−1 ‖ Ij)

Vj ← left(tempVj
, L) ; Vj ←$ {0, 1}L

tempCj
← ε

For i = 1, . . . ,m

tempCj
← tempCj

‖H((i)8 ‖ (L)32 ‖ 0x00 ‖Vj)
Cj ← left(tempCj

, L) ; cntj ← 1

Sd ← (Vd, Cd, cntd)

R∗←$ {0, 1}`

S∗←$ MH(Sd)

b∗←$AH(R∗, S∗)

Return b∗

proc. H(X) // G0 , G1, G2, G3, G4, G5, G6, G7

Y ←$ {0, 1}`

If H[X] 6= ⊥ and X /∈ Q
Y ← H[X]

If H[X] 6= ⊥ and X ∈ Q
bad← 1

Y ← H[X]

H[X]← Y

Return Y

Figure 4.8: Games for proof of Lemma 4.5 (Pres security of HASH-DRBG).

unless the attacker can guess Vd, the resulting output / state pair are indistinguishable

from their idealised counterparts. We must consider a number of cases depending on

whether the tuple (S′0, I1, . . . , Id) output by A is such that: (1) S′0 ∈ S or S′0 = ε; and (2)

d ≥ 1 or d = 0; since these induce different distributions on S0 and Sd respectively.

Lemma 4.5. Let PRNG = HASH-DRBG and masking function MH be as specified in

Theorem 4.2, and let n = dβ/`e. Then for any (qH, qC)-adversary A in game Pres against

PRNG, it holds that

Advpres
PRNG,M,β(A) ≤ qH · (n+ 1)

2`−1
+

(qC − 1)(2qH + qC)

2L
.

Proof. Recall that in game Pres the attacker A outputs a tuple (S′0, I1, . . . , Id) at the

start of his challenge which is then masked to give S0←$ MH(S′0). Our proof will proceed

by arguing that after iteratively computing Si ← refreshH(Si−1, Ii) for i = 1, . . . , d, the

resulting state Sd is indistinguishable from MH(S) for some state S ∈ S∪{ε} which will be

made explicit during the proof. This then allows us to reduce the Pres security of PRNG
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to the Next security of PRNG. Since the state takes a different distribution after a refresh

than after an output generation request, there are a number of cases to consider.

We may assume without loss of generality that A never repeats a query to H. We begin by

considering the case in which the tuple (S′0, I1, . . . , Id) output by A is such that: (1) d ≥ 1

and so at least one refresh occurs during the challenge computation; and (2) S′0 6= ε. We

argue by a series of game hops, shown in Figure 4.8. We begin by defining game G0, which

is easily verified to be a rewriting of game Pres for HASH-DRBG and MH with challenge

bit b = 0 and a lazily sampled random oracle. We have explicitly written out the code of

the masking function at the point at which the state is masked at the start of the game.

We additionally set a flag bad in G0, but this does not affect the outcome of the game. It

follows that

Pr [G0 ⇒ 1 ] = Pr
[

Pres
A
PRNG,M,β ⇒ 1 | b = 0

]
.

Next we define game G1, which is identical to G0 except that now if the random oracle H

is queried more than once on any of the points (i)8 ‖ (L)32 ‖ 0x01 ‖Vj−1 ‖ Ij for i ∈ [1,m],

j ∈ [1, d] upon which it was queried during the iterative reseeds to compute V1, . . . , Vd

(indicated in the pseudocode by the set Q), then H responds with an independent random

string as opposed to the value previously set. These games run identically until the flag

bad is set, and so the Fundamental Lemma of Game Playing implies that

|Pr [G0 ⇒ 1 ]− Pr [G1 ⇒ 1 ]| ≤ Pr [ bad = 1 in G1 ] .

Next we define game G2, which is identical to G1 except we overwrite each of the interme-

diate state variables Vj for j ∈ [1, d] with an independent random bit string Vj←$ {0, 1}L.

Since in G1, the strings returned in response to the H queries made to compute these

variables are chosen independently at random and are used at no other point in the game,

it follows that these games are identically distributed, and so

Pr [G1 ⇒ 1 ] = Pr [G2 ⇒ 1 ] ;

and

Pr [ bad = 1 in G1 ] = Pr [ bad = 1 in G2 ] .

We now bound this latter probability. Notice that bad will be set if any of the qH H

queries made by A collide with one of the points queried by the challenger when computing

V1, . . . , Vd. The flag bad will also be set if there exist distinct j, j′ ∈ [0, d − 1] such that

Vj ‖ Ij+1 = Vj′ ‖ Ij′+1. (It is straightforward to verify that due to differing lengths and /

or domain separation, none of the queries made to compute the constants Cj for j ∈ [1, d],
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nor the queries made by nextH, will cause the flag bad to be set.)

Now, the challenge output / state pair are computed as (R∗, S∗) ← nextH(Sd, β). More-

over, notice that in G2 the state Sd is computed as a function of the randomly chosen

counter Vd ←$ {0, 1}L as opposed to via iterative reseeding. As such, A’s view of the

experiment is independent of the intermediate state variables Vj , Cj for j ∈ [0, d − 1]

and so we can without loss of generality imagine deferring the computation of these state

variables until after A has finished making all of his queries to H. We now bound the

probability that bad is set during this process.

We first note that bad will be set during the first reseed if A has made a H query of the form

(i)8 ‖ (L)32 ‖ 0x01 ‖V0 ‖ I1 where i ∈ [1,m]. Any such query requires correctly guessing the

value of V0, and since V0 is uniformly distributed over the set [V ′0+C ′0+cnt′0, V
′

0+C ′0+cnt′0+

2`−1] and independent of A’s view of the experiment in G2, it follows that the probability

that A has made such a query is upper bounded by qH

2`
. Assuming that this event does

not occur then bad will be set during the second reseed if either V0 and V1 collide, or A

has already made a query of the correct form containing V1. Since V1←$ {0, 1}L in G2, it

follows that bad is set during this reseed with probability qH+1
2L

(the qH · 2−L arising from

A’s queries and the additional 2−L from the probability that V0 = V1 when V1←${0, 1}L).

Inductively applying the same argument yields that for all j ∈ [2, d], the probability that

bad is set during the jth reseed is upper bounded by qH+j−1
2L

. Finally, summing over these

terms yields

Pr [ bad = 1 in G2 ] ≤ qH

2`
+

(d− 1)(2qH + d)

2L+1
.

Next we define game G3, in which we omit the iterative refresh calls and instead directly set

Sd←$MH(ε). It is straightforward to verify that these games are identically distributed and

so Pr [G2 ⇒ 1 ] = Pr [G3 ⇒ 1 ]. We then define game G4, in which instead of computing

R∗ and S∗ via (R∗, S∗) ← nextH(Sd, β), we instead set R∗←$ {0, 1}β and S∗←$ MH(Sd).

We claim there exists an adversary A′ in game Next against HASH-DRBG such that

|Pr [G3 ⇒ 1 ]− Pr [G4 ⇒ 1 ] ≤ Advnext
PRNG,M,β(A′) ≤ qH · n

2`−1
,

and moreover A′ makes qH queries to his random oracle. To see this, notice that an

attacker A′ in game Next against HASH-DRBG and MH can perfectly simulate A’s view

of the game as follows. For each of A’s initial queries, A′ simulates A’s random oracle by

forwarding all of A’s queries to his own random oracle and returning the response. When

A outputs a state S′0, A′ outputs the state ε as his challenge state, receiving (R∗, S∗) in
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response. A′ passes these to A and continues simulating A’s random oracle by querying

his own oracle as before. At the end of the game, A′ outputs whatever bit A does. If A′’s

challenge bit is equal to 0 then this perfectly simulates game G3, otherwise it perfectly

simulates G4, and so invoking Lemma 4.4 proves the claim. Moreover, since A makes qH

queries it follows that A′ makes qH queries also.

Finally in games G5 and G6 we reverse the earlier transitions to return to computing Sd

via the process of iterative reseeding, and then in G7 return the random oracle to respond

consistently to all queries. By analogous arguments to those used above, G4 − G6 are

identically distributed and G6 and G7 run identically unless bad is set, and so it follows

that

|Pr [G4 ⇒ 1 ]− Pr [G7 ⇒ 1 ]| ≤ Pr [ bad = 1 in G5 ] ≤ qH

2`
+

(d− 1)(2qH + d)

2L+1
.

Moreover, notice that G7 is identical to Pres for PRNG with challenge bit b = 1, and so

Pr [G7 ⇒ 1 ] = Pr
[

Pres
A
PRNG,M,β ⇒ 1 | b = 1

]
.

Putting this all together, we conclude that

Advpres
PRNG,M,β(A) =

∣∣∣∣Pr
[

Pres
A
PRNG,M,β ⇒ 1 | b = 0

]
− Pr

[
Pres

A
PRNG,M,β ⇒ 1 | b = 1

] ∣∣∣∣
≤ |Pr [G0 ⇒ 1 ]− Pr [G7 ⇒ 1 ]|

≤ qH · (n+ 1)

2`−1
+

(d− 1)(2qH + d)

2L
.

This proves the case in which A outputs S′0 6= ε and d ≥ 1. We now explain why this

upper bound holds in all other cases too. Firstly for the case in which A outputs S′0 = ε

at the start of his challenge and d ≥ 1, the proof is identical, except that when computing

S0←$ MH(S′0) we set V0←$ {0, 1}L (and C0 ← HASH-DRBG dfH(0x00 ‖V0), although this

does not affect the proof). The increased entropy in the initial state can only make A’s

job harder and so the bound holds in this case also. Moreover (for both choices of initial

state) if d = 0 and so no refresh calls are made, then in G0 the challenge output / state are

computed by applying nextH to the masked state S0←$MH(S′0) where S′0 is the state output

by A at the start of his challenge. An analogous reduction to an attacker in game Next

against HASH-DRBG and MH, who passes S′0 to his challenger and returns the response

to A, confirms the upper bound in this case also. Substituting in d ≤ qC then concludes

the proof.
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Rec security. Finally, we bound the Rec security of HASH-DRBG. The first stage in

the proof argues that iteratively reseeding an adversarially chosen state S0 with d entropy

samples which collectively have entropy γ∗ yields a state Sd = (Vd, Cd, cntd) which is

indistinguishable from MH(ε). This represents the main technical challenge in the proof,

and uses Patarin’s H-coefficient technique (see Section 2.2.4).

Our proof is closely based on the analogous result for sponge-based PRNGs in the IPM

of Gazi and Tessaro [69], essentially making the same step-by-step argument. However,

making the necessary adaptations to analyse HASH-DRBG is still non-trivial. As well as

working in the ROM as opposed to the IPM, we must adapt the proof to take into account

the constant C which is a state component of HASH-DRBG, as well as the more involved

reseeding process, which concatenates and truncates the responses to multiple H queries to

derive each updated counter V ′. With this in place, an analogous argument to that made

in the proof of Pres security implies that an output / state pair produced by applying

nextH to this masked state are indistinguishable from their idealised counterparts.

Lemma 4.6. Let PRNG = HASH-DRBG and masking function MH be as specified in

Theorem 4.2, and let n = dβ/`e. Then for any (qH, qC)-adversary A in game Rec against

PRNG, and any (q+
D , γ

∗)-legitimate sampler D, it holds that

Advrec
PRNG,M,γ∗,qD,β

(A,D) ≤ qH

2γ∗−1
+

(qC − 1) · (2qH + qC) + 2q2
H

2L
+
qH · n
2`−1

.

Proof. We begin by analysing the iterative refreshing process at the start of game Rec.

Consider the game Extract shown in the left-hand panel of Figure 4.9, in which the

advantage of an attacker and sampler pair (A,D) is defined as:

Advext
PRNG,M,γ∗,qD

(A,D) = 2 ·
∣∣∣∣Pr [ ExtractPRNG,M,γ∗,qD(A,D)⇒ 1 ]− 1

2

∣∣∣∣ .
In this game, the attacker A is challenged to distinguish a state of his choice which is

iteratively reseeded with entropy samples with a collective entropy of at least γ∗-bits from

a masked state MH(ε). As before, we say that A is a (qH, qC)-adversary if it makes qH

queries to H and outputs d ≤ qC . In the following lemma, we upper bound the success

probability of an attacker in such a game against HASH-DRBG. We will then use this

result to bound the Rec security of HASH-DRBG.

Notation. We first introduce some notation. We let J denote the set of all H queries
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ExtractPRNG,M,γ∗,qD (A,D)

H←$H ; b←$ {0, 1}
σ0 ← ε ; seed←$ Seed ;µ← 0

For k = 1, . . . , qD + 1

(σk, Ik, γk, zk)←$D(σk−1)

(S0, d)←$AH,Sam(I1, (γk, zk)
qD+1
k=1 )

If µ+ d > (qD + 1) or
∑µ+d
i=µ+1 γi < γ∗

Return ⊥
If b = 0 then

For j = 1, . . . , d

Sj ← refreshH(seed, Ij , Sj−1)

Else Sd←$ MH(ε)

b∗←$AH(seed, Sd, (Ik)k>µ+d)

Return (b = b∗)

Sam()

µ = µ+ 1

Return Iµ

H(X)

Return H(X)

ExtractPRNG,M,γ∗,qD (A,D)

H←$H ; b←$ {0, 1}
σ0 ← ε ;µ← 1

For k = 1, . . . , qD + 1

(σk, Ik, γk, zk)←$D(σk−1)

(S0, d)←$AH,Sam(seed, I1, (γk, zk)
qD+1
k=1 )

If µ+ d > (qD + 1) or
∑µ+d
i=µ+1 γi < γ∗

Return ⊥
S0 ← (V0, C0, cnt0)

If b = 0 then

For j = 1, . . . , d

tempVj
← ε

For i = 1, . . . ,m

tempVj
← tempVj

‖H((i)8 ‖ (L)32 ‖ 0x01 ‖Vj−1 ‖ Iµ+j)
Vj ← left(tempVj

, L)

tempCj
← ε

For i = 1, . . . ,m

tempCj
← tempCj

‖H((i)8 ‖ (L)32 ‖ 0x00 ‖Vj)
Cj ← left(tempCj

, L) ; cntj ← 1

Sd ← (Vd, Cd, cntd)

Else Sd←$ MH(ε)

b∗←$AH(Sd, (Ik)k>µ+d)

Return (b = b∗)

Figure 4.9: Game Extract for a PRNG PRNG = (setup, refresh, next) (left) and pseudocode
for proof of Lemma 4.7 (right).

made by A of the form

(i)8 ‖ (L)32 ‖ 0x01 ‖Y ‖Z

where i ∈ [1,m], Y ∈ {0, 1}L, and Z ∈ {0, 1}p≤i≤p (e.g., points of the form which are

queried to H to derive the V values during reseeds), and notice that all such strings can

be decomposed unambiguously into these component parts. To each query x ∈ J , we call

x = (i, Y, Z) its associated decomposition; as we will see, these will be the components of

these queries that are important for the proof. With this in place, in the following lemma

we analyse the Extract security of HASH-DRBG.

Lemma 4.7. Let PRNG = HASH-DRBG and masking function MH be as specified in

Theorem 4.2. Then for any (qH, qC)-adversary A in game Extract against HASH-DRBG,

for which qJ of A’s H queries lie in J , and any (q+
D , γ

∗)-legitimate sampler D, it holds

that

Advext
PRNG,M,γ∗,qD

(A,D) ≤ qJ
2γ∗

+
(qC − 1) · (2qJ + qC) + 2q2

J

2L+1
.

Our proof uses the H-coefficient method as defined in Section 2.2.4. We make the usual

simplifying assumption that A is deterministic and that the sampler D, having been

initialised with coins ω ∈ coinsD where coinsD denotes the coin space of the sampler, is
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deterministic also. Without loss of generality, we may assume that A makes precisely

qH queries, and never makes a redundant query. For clarity, we have written out game

Extract for HASH-DRBG in the right-hand panel of Figure 4.9. We begin by introducing

some notation which will simplify our definition of bad transcripts. Within a transcript of

an execution of game Extract, we let (xι, yι) denote that A queried xι to H and received

yι in response. As with the sponge-extraction lemma of [69], we will modify game Extract

so that A is given some additional information before outputting its challenge bit guess.

However, these extra values are provided only after A has finished making all of its H

queries, and so this extra information cannot influence A’s choice of queries. Namely, we

will additionally give to A: (1) the inputs Iµ+1, . . . , Iµ+d which A selected to use in the

challenge computation; and (2) the coins ω ∈ coinsD which the sampler D was initialised

with.

Moreover, we will further modify game Extract to change the way in which the random

oracle H responds to queries. Namely, if H is queried on a point x ∈ J of the form

(∗)8 ‖ (L)32 ‖ 0x01 ‖Y ‖Z, the game computes yi = H((i)8 ‖ (L)32 ‖ 0x01 ‖Y ‖Z) for all

i ∈ [1,m] and returns y = y1 ‖ . . . ‖ ym to A. (Here we use ∗ to denote an arbitrary

i ∈ [1,m].) However, this is still counted as a single query made by A. It is straightforward

to see that such a change can only increase A’s success probability since an attacker

in the modified game can perfectly simulate the original game by returning block yi of

y to A in response to a query prefixed with index i. Our assumption that A never

makes a redundant query now extends to him querying both (i)8 ‖ (L)32 ‖ 0x01 ‖Y ‖Z and

(i′)8 ‖ (L)32 ‖ 0x01 ‖Y ‖Z for i, i′ ∈ [1,m] and i 6= i′, since in the modified game the first

query provides him with the answer to the latter. This modification will simplify the

subsequent proof without increasing the attacker’s success probability by too much for the

parameter settings we are interested in. Indeed, in the worst case it gives the attacker m

times as many queries, where for all approved hash functions m ≤ 3.

Recall that we write (xι, yι) to indicate that A queried xι to H and received yι in response.

It is straightforward to verify from the pseudocode on the right-hand side of Figure 4.9

that each execution of game Extract for a (qH, qC)-adversary A defines a transcript of the

form

τ = ((x1, y1), . . . , (xqH
, yqH

), ω, (V0, C0, cnt0), (Vd, Cd, cntd), (Ik, γk, zk)
qD+1
k=1 , µ, d) ,

where d ≤ qC . We say that a transcript τ is compatible if it may arise from an execution of
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Extract. We let T0 denote the distribution of compatible transcripts produced from game

Extract with challenge bit b = 0, and let T1 denote the distribution of all such transcripts

for Extract with challenge bit b = 1. With this in place, we define bad transcripts below.

Definition 4.2. Let τ be a compatible transcript with associated set of queries

(x1, y1), . . . , (xqH
, yqH

). Then τ is said to be Bad if among those queries there exists a

subset of (not necessarily distinct) queries X = {(u1, v1), . . . , (ud, vd)} such that:

• uι ∈ J for all (ui, vi) ∈ X ; and

• For j ∈ [1, d], it holds that uj has decomposition (∗, Xj−1, Iµ+j) where Xj−1 =

left(vj−1, L). (Here we define V0 = left(v0, L) for notational brevity.)

In words, a compatible transcript τ is Bad if it contains a set of queries which (with respect

to our modification to the random oracle) are equivalent to those made by the challenger

to compute the updated state component Vd. With this in place, our result is derived

from the following two lemmas.

Lemma 4.8. Let τ ∈ Good be a transcript. Then

Pr [ T0 = τ ]

Pr [ T1 = τ ]
≥ 1− (qC − 1) · (2qJ + qC)

2L+1
.

Proof. We begin by noting that when b = 1 the challenge state S∗ is computed as MH(ε),

where recall that MH chooses Vd ←$ {0, 1}L, sets Cd = HASH-DRBG dfH(0x00 ‖Vd) and

cntd = 1, and returns Sd = (Vd, Cd, cntd). Now for a random oracle H to be compatible

with transcript τ , it must hold that: (1) H(xι) = yι for all ι ∈ [1, qH]; and (2) H is

consistent with Cd = HASH-DRBG dfH(0x00 ‖Vd). It follows that

Pr [ T1 = τ ] =Pr [Sd = (Vd, ·, ·) ∧ ω chosen ∧ H satisfies (1) and (2) ]

= 2−L · Pr [ω chosen ∧ H satisfies (1) and (2) ] . (4.3)

Here the probability is over the choice of H←$H, ω←$ coinsD, and Vd←$ {0, 1}L. (Recall

that by assumption A is deterministic.) The final inequality follows since Vd is sampled

uniformly in the ideal world, and so each Vd is selected with probability 2−L.

We now consider the case in which τ ∈ Good and b = 0. We write Sd

← refreshH(S0, Iµ+1, . . . , Iµ+d) to denote the state returned by computing Si

← refreshH(Si−1, Iµ+i) for i = 1, . . . , d. Parsing (Vd, Cd, cntd) ← Sd, we let q(τ) denote
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the probability that Sd ← refreshH(S0, Iµ+1, . . . , Iµ+d) yields the required counter Vd con-

ditioned on ω being the chosen coins and H satisfying properties (1) and (2). It follows

that

Pr [ T0 = τ ] = Pr [Sd = (Vd, ·, ·) ∧ ω chosen ∧ H satisfies (1) and (2) ]

= q(τ)× Pr [ω chosen ∧ H satisfies (1) and (2) ]

= q(τ)× 2L × Pr [ T1 = τ ],

where the final equality follows from substituting in the term from equation (4.3).

It remains to bound q(τ). One may imagine lazily sampling the random oracle H during

the computation of Vd conditioned on it being consistent with the transcript via points

(1) and (2) as defined above. Let l′ be maximal such that τ contains a set of queries

{(u1, v1), . . . , (ul′ , vl′)} such that uj ∈ J for each j ∈ [1, l′] and it holds that uj has

decomposition (∗, Xj−1, Iµ+j) where Xj−1 = left(vj−1, L). Since we have assumed that

τ ∈ Good, it must be the case that l′ ∈ [0, d− 1] (otherwise τ will be Bad).

For j ∈ [l′, d − 1] we let ¬Freshj denote the event that either: (a) there exists a query

ui ∈ τ ∩ J such that ui has decomposition (∗, Vj , Z) for some Z ∈ {0, 1}p≤i≤p; or (b) the

state component Vj collides with a state component computed in a previous reseed call,

Vj ∈ {Vl′ , . . . , Vj−1}. (Note that if Vj collides with a state variable in the set {V0, . . . , Vl′−1},

then this state will have formed part of an earlier query in the set {(u1, v1), . . . , (ul′ , vl′)} ⊂

τ ∩ J and so is already accounted for by (a).) Notice that if Freshj is true for some

j ∈ [l′, d− 1], then the queries made to compute the following state component Vj+1 will

all be on previously unqueried points. (We note that due to the prepended counter, none

of the queries made to compute Vj+1 can collide with each other. Moreover, due to the

separated domains, the queries made to compute the constants Cj for j ∈ [1, d] can never

collide with those made to compute the counters Vj .)

Now, the maximality of l′ implies that the transcript τ contains no queries u ∈ J of

the form (∗)8 ‖ (L)32 ‖ 0x01 ‖Vl′ ‖Z. As such, it follows that the Pr [¬Freshl′ ] = 0. This

implies that the state component Vl′+1 is computed as the result of all fresh H queries,

and is therefore uniformly distributed over {0, 1}L. Now conditioned on Freshl′ , it fol-

lows that the probability that ¬Freshl′+1 occurs is upper bounded by (qJ+1)
2L

. (Here,

the qJ
2L

accounts for the probability that there exists a query in τ ∩ J satisfying (a),
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and the additional 1
2L

accounts for the probability that Vl′+1 collides with Vl′ as per

(b). Inductively applying this argument yields that for each k ∈ [1, d − 1 − l′], it holds

that Pr
[
¬Freshl′+k | ∧l

′+k−1
j=l′ Freshj

]
≤ (qJ+k)

2L
. Using this bound, and the fact that

Pr [¬Freshl′ ] = 0 and d− 1− l′ ≤ d− 1, it follows that

Pr
[
∧d−1
j=l′Freshj

]
≥ 1−

d−1−l′∑
k=0

Pr
[
¬Freshl′+k | ∧l

′+k−1
j=l′ Freshj

]
≥ 1−

d−1∑
k=1

(qJ + k)

2L

= 1− (d− 1) · (2qJ + d)

2L+1
.

Now, notice that if ∧d−1
j=l′Freshj is true then Vd is computed as a result of all fresh queries

to H, and so the resulting state component is uniformly distributed over {0, 1}L. As such,

the probability that the required value of Vd (as dictated by the transcript) is hit is equal

to 2−L. Putting this all together, we conclude that

Pr [ T0 = τ ] ≥
(

1− (d− 1) · (2qJ + d)

2L+1

)
× Pr [ T1 = τ ] .

Rearranging and substituting in d ≤ qC then proves Lemma 4.8.

We now bound the probability that a compatible transcript in the ideal world is Bad.

Lemma 4.9. Letting Bad denote the set of bad transcripts as defined above, it holds that

Pr [ T1 ∈ Bad ] ≤ qJ
2γ∗

+
q2
J

2L
.

Proof. Since we are now in the random world, the challenge state (Vd, Cd, cntd) is computed

by choosing Vd ←$ {0, 1}L, setting Cd = HASH-DRBG dfH(0x00 ‖Vd) and cntd = 1, and

returning Sd = (Vd, Cd, cntd). We let Chain denote the event that a compatible ideal world

transcript τ contains a set of queries such that τ ∈ Bad. We define the notion of a potential

chain as follows:

Definition 4.3. We say that a sequence of (not necessarily distinct) queries

X ′ = {(u1, v1), . . . , (ud, vd)} is a potential chain if

• (uι, vι) ∈ J for all (uι, vι) ∈ X ; and

• For j ∈ [1, d] it holds that uj has decomposition (∗, Xj−1, ∗∗), where ∗∗ denotes an

arbitrary string in {0, 1}p≤i≤p and Xj−1 = left(vj−1, L) where V0 = left(v0, L).
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In words, a set of queries that form a potential chain are the same as those which form a

bad transcript except we drop the condition that uj contains the correct input Iµ+j in its

decomposition. Moreover, notice that each potential chain defines a candidate sequence

of inputs Z = (Z1, . . . , Zd), and a potential chain results in the transcript becoming Bad

if Zj = Iµ+j for j ∈ [1, d].

We may visualise the potential chains in the form of an undirected graph as follows. We

set ω0 = V0 to be the root of the graph. We then use the queries in the transcript to

construct paths of length d from the root by adding an edge between vertices ωj , ωk if

there exists a query (u, v) ∈ τ ∩ J , with decomposition (∗, ωj , ∗∗), and left(v, L) = ωk.

Notice that the potential chains correspond to paths of length d starting at the root V0,

and that, since A makes qJ queries of the required form and d ≥ 1, the graph can contain

at most qJ edges. With this in place, we say that a transcript τ induces the event Coll if:

• There exists a query (ui, vi) ∈ τ ∩ J such left(vi, L) = vk for some query (uk, vk)

where 1 ≤ k < i; or

• There exists a query (ui, vi) ∈ τ∩J such that left(vi, L) = uk for some query (uk, vk)

where 1 ≤ k ≤ i.

Now notice that if Coll does not occur then no newly added edge can loop back to a

previously added vertex, and so the query graph must be a tree. In this case there can

be at most one path to each leaf from the root. Since each node added to the graph

corresponds to a query in τ ∩ J of which A makes qJ such queries, it follows that there

can be at most qJ potential chains.

We now bound the probability that Coll occurs. Notice that conditioned on Coll having

not occurred for the first (k − 1) queries in the set τ ∩ J , then the kth query of this form

will be computed as the result of all fresh queries to H. As such, the resulting counter

/ vertex is uniformly distributed over {0, 1}L. It is then straightforward to verify that

the probability that the kth query sets Coll is upper bounded by (2k−1)
2L

. Summing over

k ∈ [1, qJ ] then yields

Pr [ Coll ] ≤
qJ∑
k=1

(2k − 1)

2L
=
q2
J

2L
.

Now as mentioned above, conditioned on Coll not occurring, a transcript can contain at

most qJ potential chains. We now bound the probability that any of these qJ potential
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chain forms an actual chain. Since we are in the ideal world, A’s view of game Extract

is completely independent of the inputs Iµ+1, . . . , Iµ+d right up until the very end of

the experiment when these values are revealed to A and which crucially is after A has

finished making its queries to H. Therefore we can without loss of generality modify the

experiment so that we only compute the states Si ← refreshH(Si−1, Iµ+i) for i ∈ [1, d]

after A has made all of his qH queries (but before the unseen inputs Iµ+1, . . . , Iµ+d and

sampler coins ω are revealed to A at the end of the game). We let τ ′ denote the transcript

information available to A up to and including the point in game Extract at which he

makes his last guess; namely

τ ′ = ((x1, y1), . . . , (xq, yq), (V0, C0, cnt0), (Vd, Cd, cntd),

I1, . . . , Iµ, Iµ+d+1, . . . , IqD , (γk, zk)
qD+1
k=1 , µ, d) .

Notice in particular that the inputs Iµ+1, . . . , Iµ+d which were used to compute A’s chal-

lenge are not included, since they are still hidden from A at this stage. Moreover, since Vd

and Cd are independent of these entropy inputs in the ideal world, these state components

reveal nothing to A about the hidden inputs. Now letting F denote the set of partial

transcripts τ ′ for which Coll is false, it follows that

Pr [ Chain ] ≤ Pr [ Coll ] + Pr [ Chain ∧ ¬Coll ]

≤
q2
J

2L
+
∑
τ ′∈F

Pr
[

Chain | τ ′
]
· Pr

[
τ ′
]
, (4.4)

where Pr [ τ ′ ] denotes the probability that the execution of Extract produces partial tran-

script τ ′ (that is to say: A makes the required set of queries, Vd←$ {0, 1}L, and so on and

so forth). Fix τ ′ ∈ F , and let Zτ ′ denote the set of potential chains within the partial

transcript τ ′. It follows that

Pr
[

Chain | τ ′
]

= Pr
[

(Iµ+1, . . . , Iµ+d) ∈ Zτ ′ | τ ′
]

=
∑

(Z1,...,Zd)∈Zτ ′

Pr

 µ+d∧
i=µ+1

Zi = Iµ+i | τ ′


≤
∑

(Z1,...,Zd)∈Zτ ′

d∏
i=1

Pr

 Zi = Iµ+i |
µ+i−1∧
i=µ+1

Zi = Iµ+i, τ
′


≤

∑
(Z1,...,Zd)∈Zτ ′

d∏
i=1

2−γµ+i ≤ qJ · 2−γ
∗
.
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proc. main // G0

H←$H ;σ ← ε ;µ← 1

For k = 1, . . . , qD + 1

(σk, Ik, γk, zk)←$D(σk−1)

(S0, d)←$AH,Sam(I1, (γi, zi)
qD+1
i=1 )

If µ+ d > qD + 1 or
∑µ+d
i=µ+1 γi < γ∗

Return ⊥
(V0, C0, cnt0)← S0

For j = 1, . . . , d

tempVj
← ε

For i = 1, . . . ,m

tempVj
← tempVj

‖H((i)8 ‖ (L)32 ‖ 0x01 ‖Vj−1 ‖ Iµ+j)
Vj ← left(tempVj

, L)

tempCj
← ε

For i = 1, . . . ,m

tempCj
← tempCj

‖H((i)8 ‖ (L)32 ‖ 0x00 ‖Vj)
Cj ← left(tempCj

, L) ; cntj ← 1

Sd ← (Vd, Cd, cntd)

(R∗, S∗)← nextH(Sd, β)

b∗←$AH(R∗, S∗, (Ik)k>µ+d)

Return b∗

proc. main // G1, G2

H←$H ;σ ← ε ;µ← 1

For k = 1, . . . , qD + 1

(σk, Ik, γk, zk)←$D(σk−1)

(S0, d)←$AH,Sam(I1, (γi, zi)
qD+1
i=1 )

If µ+ d > qD + 1 or
∑µ+d
i=µ+1 γi < γ∗

Return ⊥
Sd←$ MH(ε)

(R∗, S∗)← nextH(Sd, β) // G1 only

R∗←$ {0, 1}`

S∗←$ MH(Sd)

b∗←$AH(R∗, S∗, (Ik)k>µ+d)

Return b∗

proc. main // G3

H←$H ;σ ← ε ;µ← 1

For k = 1, . . . , qD + 1

(σk, Ik, γk, zk)←$D(σk−1)

(S0, d)←$AH,Sam(I1, (γi, zi)
qD+1
i=1 )

If µ+ d > qD + 1 or
∑µ+d
i=µ+1 γi < γ∗

Return ⊥
(V0, C0, cnt0)← S0

For j = 1, . . . , d

tempVj
← ε

For i = 1, . . . ,m

tempVj
← tempVj

‖H((i)8 ‖ (L)32 ‖ 0x01 ‖Vj−1 ‖ Iµ+j)
Vj ← left(tempVj

, L)

tempCj
← ε

For i = 1, . . . ,m

tempCj
← tempCj

‖H((i)8 ‖ (L)32 ‖ 0x00 ‖Vj)
Cj ← left(tempCj

, L) ; cntj ← 1

Sd ← (Vd, Cd, cntd)

R∗←$ {0, 1}`

S∗←$ MH(Sd)

b∗←$AH(R∗, S∗, (Ik)k>µ+d)

Return b∗

proc. Sam // G0, G1, G2, G3

µ = µ+ 1

Return Iµ

proc. H(X) // G0, G1, G2, G3

Return H(X)

Figure 4.10: Games for proof of Lemma 4.6 (Rec security of HASH-DRBG).

Here the second to last inequality follows since the sampler is (q+
D , γ

∗)-legitimate. The

last inequality follows since τ ′ ∈ F implies that Zτ ′ contains at most qJ potential chains.

Substituting into equation (4.4) then proves Lemma 4.9. Combining Lemmas 4.8 and 4.9

via Theorem 2.1 then concludes the proof of Lemma 4.7 on the extraction properties of

HASH-DRBG’s refresh algorithm.

With this result is place, we return to bounding the Rec security of HASH-DRBG. We

argue by a series of game hops, shown in Figure 4.10. We begin by defining game G0,

which is a rewriting of game Rec for HASH-DRBG with challenge bit b = 0. It follows that

Pr [G0 ⇒ 1 ] = Pr
[

Rec
A,D
PRNG,M,γ∗,qD,β ⇒ 1 | b = 0

]
.

Next we define game G1, which is identical to G0 except that rather than computing Sd

via a sequence of refreshH calls we instead set Sd←$MH(ε). We claim that for any attacker

/ sampler pair (A,D) making qH queries to H, there exists a (qH + n + 1, qC)-adversary
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B in game Extract against HASH-DRBG, for which at most qH of B’s H queries lie in J ,

such that

|Pr [G0 ⇒ 1 ]− Pr [G1 ⇒ 1 ]| ≤ Advext
PRNG,M,γ∗,qD

(B,D)

≤ qH

2γ∗
+

(qC − 1) · (2qH + qC) + 2q2
H

2L+1
.

To see this, let B be the adversary who proceeds as follows. B simulates A’s view of the

game, forwarding A’s Sam and H queries to his own oracles and returning the responses

to A. When A outputs a state / index pair (S0, d), B forwards these to his challenger.

B receives state Sd in response along with the remaining entropy samples. B computes

(R∗, S∗)← nextH(Sd, β) using his own H oracle and returns these along with the entropy

samples to A, again using his oracle to answer all remaining queries. At the end of the

game, B outputs whatever bit A does. Notice that if B’s challenge bit is equal to 0 and

so he receives the real state in his challenge then this perfectly simulates G0; otherwise

it perfectly simulates G1. To verify the query budget, notice that B queries all of A’s qH

queries to his own oracle and makes an additional n+ 1 queries simulating nextH. Noting

that none of the n + 1 queries made while simulating nextH lie in J , and substituting

into the bound on the Extract security of HASH-DRBG from Lemma 4.7, then implies the

claim.

Next we define game G2, which is identical to G1 except we now set R∗ ←$ {0, 1}β and

S∗←$ MH(Sd) rather than computing these values as (R∗, S∗) ← nextH(Sd, β). We claim

that there exists an adversary C in game Next, who makes the same number of H queries

as A, such that

|Pr [G1 ⇒ 1 ]− Pr [G2 ⇒ 1 ] ≤ Advnext
PRNG,M,β(C) ≤ qH · n

2`−1
.

To see this, let C be the adversary who proceeds as follows. C uses the code of the

sampler to generate all entropy samples, and passes the corresponding entropy estimates

/ side information to A. For each of A’s initial queries, C simulates A’s random oracle

by forwarding all of A’s queries to his own random oracle and returning the responses.

C simulates A’s Sam oracle by returning the appropriate entropy sample to A. When A

outputs a state S0, A2 outputs the state ε as his challenge state, receiving (R∗, S∗) in

response. A2 passes these to A along with the remaining entropy samples and continues

simulating A’s random oracle by querying his own oracle as before. At the end of the

game, C outputs whatever bit A does. If C’s challenge bit is equal to 0 then this perfectly
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simulates game G1; otherwise it perfectly simulates G2. As such, invoking Lemma 4.4

then proves the claim.

Next we define game G3, which is identical to G2 except we return to computing Sd via

iterative reseeding as opposed to setting Sd ←$ MH(ε). An analogous argument to that

above implies that there exists a (qH, qC)-adversary B′ such that

|Pr [G2 ⇒ 1 ]− Pr [G3 ⇒ 1 ]| ≤ Advext
PRNG,M,γ∗,qD

(B′,D)

≤ qH

2γ∗
+

(qC − 1) · (2qH + qC) + 2q2
H

2L+1
.

Here the slightly lower query budget is because B′ no longer needs to make the n + 1

queries to H to simulate nextH. Now G3 is identical to game Rec with challenge bit b = 1,

and so

Pr [G3 ⇒ 1 ] = Pr
[

Rec
A,D
PRNG,M,γ∗,qD,β ⇒ 1 | b = 1

]
.

Finally putting this altogether, we conclude that

Advrec
PRNG,M,γ∗,qD,β

(A,D) = |Pr [G0 ⇒ 1 ]− Pr [G3 ⇒ 1 ]|

≤ qH

2γ∗−1
+

(qC − 1) · (2qH + qC) + 2q2
H

2L
+
qH · n
2`−1

.

This concludes the proof of Rec security for HASH-DRBG, en-route to which we anal-

ysed the extraction properties of HASH-DRBG’s refresh procedure. Using Theorem 4.1

to combine Lemmas 4.3, 4.5 and 4.6 — which bound the Init,Pres, and Rec security

of HASH-DRBG respectively — proves Theorem 4.2, and completes our analysis of the

robustness of HASH-DRBG in the ROM.

4.7 Analysis of HMAC-DRBG

In this section we present our analysis of HMAC-DRBG. We give both positive and negative

results, showing that the security guarantees of HMAC-DRBG differ depending on whether

additional input is provided in next calls.

207



4.7 Analysis of HMAC-DRBG

4.7.1 Negative Result: HMAC-DRBG Called without Additional Input is Not

Forward Secure

We present an attack which breaks the forward security of HMAC-DRBG if called without

additional input. This contradicts the claim in the standard that the NIST DRBGs are

backtracking resistant. Since Rob security implies Fwd security, this rules out a proof of

robustness in this case also.

The attack. Consider the application of update at the conclusion of a next call for

HMAC-DRBG (Figure 4.1). Notice that if addin = ε, then the final two lines of update

are not executed. In this case, the updated state S∗ = (K∗, V ∗, cnt∗) is of the form

V ∗ = HMAC(K∗, r∗) where r∗ is the final output block produced in the call. An attacker

A in game Fwd who makes a RoR query with addin = ε to request `-bits of output,

followed immediately by a Get query to learn S∗, can easily test this relation. If it does

not hold, they know the challenge output is truly random. We note that the observation

that V ∗ depends on r∗ is also implicit in the proof of pseudorandomness by Hirose [78];

however, the connection to forward security is not made in that work. To concretely bound

A’s advantage we define game Fwd$, which is identical to game Fwd against HMAC-DRBG

except the PRNG is initialised with an ‘ideally distributed’ state S0 = (K0, V0, cnt0) where

K0, V0 ←$ {0, 1}` and cnt0 ← 1. The attacker’s job can only be harder in Fwd$, since

they cannot exploit any flaws in the setup procedure. We put all this together in the

following theorem.

Theorem 4.3. Let PRNG be HMAC-DRBG built from the function HMAC : {0, 1}` ×

{0, 1}≤ω → {0, 1}`, with associated parameter set (p, p, α, βmax) for which βmax ≥ `. We

give explicit efficient adversaries A and B, such that for any sampler D, it holds that

Advfwd-$
PRNG,γ∗(A,D) ≥ 1− 2 ·Advprf

HMAC(B, 2)− 2−(`−1) .

A makes one RoR query in which additional input is not included, and one Get query. B

runs in the same time as A, and makes two queries to their RoR function oracle.

Discussion. The first negative term on the right-hand side of the above equation corre-

sponds to the advantage of the attacker B who tries to break the PRF-security of HMAC

given two queries to its real-or-random function oracle; since HMAC is widely understood

to be a secure PRF, we expect this term to be small. This term arises from reduc-
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tions to the PRF-security of HMAC used in the proof to argue that the probability that

V ∗ = HMAC(K∗, R∗) for a random output R∗←$ {0, 1}` is very small; since the relation

holds with probability one if R∗ is the real output, this allows the attacker to distinguish

the two cases with high probability. Moreover ` denotes the output length of HMAC and

so the second negative term will be small for all commonly used hash functions. This

implies that A succeeds with probability close to one, making this an effective attack.

The theorem assumes the parameters of PRNG are such that outputs of length ` bits

may be requested (i.e., βmax ≥ `). Since ` is the output length of the underlying HMAC

function this is not much of a restriction; however, the result can be generalised with a

bounded decrease in success probability for implementations for which βmax < `, subject

to A doing more work to brute-force the truncated output bits. We note that since the

sampler D is not invoked during the course of the attack (recall that the initial state is

sampled uniformly at random in game Fwd$) the attack works for any choice of D.

Proof. Let A be the adversary who proceeds as follows. A queries (`, ε) to his RoR oracle,

receiving R∗ is response. A then makes a Get query to receive state S∗ = (K∗, V ∗, cnt∗).

A then checks if

V ∗
?
= HMAC(K∗, R∗) .

If so, A outputs 0; else he returns 1. It is straightforward to verify from the pseudocode

description of next that if b = 0 and A receives a real output in his challenge then this

relation will hold with probability one; as such Pr
[
A ⇒ 1 in Fwd$,A,D

PRNG,γ∗ | b = 0
]

= 0.

To bound Pr
[
A ⇒ 1 in Fwd$,A,D

PRNG,γ∗ | b = 1
]
, we argue by a series of game hops. Let

G0 be identical to game Fwd$ against PRNG for A with challenge bit b = 1. Let S0 =

(K0, V0, cnt0) denote the initial state of PRNG, where recall that K0, V0←$ {0, 1}`. Notice

that the RoR query made by A induces the challenger to update the state via (R,S∗)←

next(S0, `). Since b = 1, A receives a random output R∗←${0, 1}`; however, A’s subsequent

Get query allows him to learn the real state S∗ = (K∗, V ∗, cnt∗). This state is computed

as V ′0 ← HMAC(K0, V0), K∗ ← HMAC(K0, V
′

0 ||0x00), and V ∗ ← HMAC(K∗, V ′0). We now

define game G1, which is identical to G0 except we sample V ′0 , K∗ ←$ {0, 1}` instead of

computing these variables via HMAC(K0, ·). Since K0←$ {0, 1}`, it is straightforward to

verify that both G0 and G1 can be perfectly simulated by an attacker B2 in the PRF game

against HMAC using two RoR queries and who runs in the same time as A. This combined
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with the fact that, due to their disjoint domains, the queries made to compute V ′0 and K∗

can never collide, implies that

|Pr [A ⇒ 1 in G0 ]− Pr [A ⇒ 1 in G1 ] ≤ Advprf
HMAC(B1, 2) .

Now recall that A outputs 1 if the relation V ∗ = HMAC(K∗, V ′0)
?
= HMAC(K∗, R∗) does

not hold. Since K∗, R∗ and V ′0 are all chosen randomly from {0, 1}` in G1, it follows that

Pr [A ⇒ 1 in G1 ] = 1− εcoll where

εcoll = Pr
[
V ∗ = V ′ : V ′0 , R

∗,K∗←$ {0, 1}` ;V ∗ ← HMAC(K∗, V ′0), V ′ ← HMAC(K∗, R∗)
]
.

We claim that there exists an attacker B2 in the PRF security game against HMAC such

that

εcoll ≤ Advprf
HMAC(B2, 2) + 2−(`−1) .

To see this, consider an attacker B2 in the PRF security game against HMAC who proceeds

as follows. B2 chooses V ′0 , R
∗←${0, 1}`, queries these to his RoR oracle receiving V ∗, V ′ in

response, and outputs 1 if V ∗ = V ′ and 0 otherwise. Notice that in the case that B2’s RoR

oracle implements the real HMAC function then this perfectly simulates the experiment

determining εcoll and so Pr [ B2 ⇒ 1 | b = 0 ] = εcoll. Moreover if b = 1 and so B2’s oracle

implements a random function, it follows that

Pr [ B2 ⇒ 1 | b = 1 ] = Pr
[
V ∗ = V ′ ∧ V ′0 = R∗

]
+ Pr

[
V ∗ = V ′ ∧ V ′0 6= R∗

]
≤ 2−` + 2−` = 2−(`−1) .

To see this, notice that if V ′0 = R∗ then V ∗ = V ′ with probability one. Since V ′0 , R
∗←${0, 1}`,

this implies the first term in the bound. Moreover, if V ′0 6= R∗, then V ∗, V ′ are both the re-

sults of fresh queries to the random function and so are uniformly distributed over {0, 1}`,

accounting for the second term in the bound. Combining these observations via a standard

argument then implies the claim.

Putting this altogether, and letting B be the attacker who tosses a coin to decide whether

to run adversary B1 or B2, we conclude that

Advfwd-$
PRNG,γ∗(A,D) ≥ 1− 2 ·Advprf

HMAC(B, 2)− 2−(`−1) .

Discussion. We only became aware of this attack while attempting to write down a

formal proof of the forward security of HMAC-DRBG. This illustrates the importance of
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MHMAC(S)

If S = ε

cnt← 0

Else (K,V, cnt)← S

K′, V ′←$ {0, 1}`

cnt′ ← cnt + 1

S′ ← (K′, V ′, cnt′)

Return S′

Figure 4.11: Masking function for proof of Theorem 4.4.

formally proving security claims, however obvious they may at first appear. This also

highlights the dangers of flexibility in algorithm specifications. The option to include

additional input here appears fairly inconsequential; however, as we have just seen, it

turns out to change the functionality of the next algorithm in a way that impacts security.

Overly flexible specifications increase the burden on designers by introducing multiple

cases to consider, and, as we have just seen, the assumption that similar algorithms will

have equally similar security properties is dangerous.

4.7.2 Positive Result: Robustness of HMAC-DRBG with Additional Input in

the ROM

In this section, we prove that HMAC-DRBG is robust in the ROM when additional input is

used with respect to a restricted (but realistic) class of samplers. We model the function

HMAC : {0, 1}`×{0, 1}≤ω → {0, 1}` as a keyed random oracle, whereby each fresh query

of the form (K,X) ∈ {0, 1}` × {0, 1}≤ω is answered with an independent random `-bit

string.

Rationale. While a standard model proof of the Pres security of HMAC-DRBG is possible

via a reduction to the PRF-security of HMAC, how to achieve the same for Init and Rec

is unclear. These results require showing that HMAC is a good randomness extractor. In

games Init and Rec, the HMAC key is chosen by or known to the attacker, and so we cannot

appeal to PRF-security. Entropy samples are non-uniform, so a dual-PRF assumption does

not suffice either. As such, some idealised assumption on HMAC or the underlying hash /

compression function seems to be inherently required. The extraction properties of HMAC

(under various idealised assumptions) were studied in [58]. However, these consider a

single-use version of extraction which is weaker than what is required here, and typically

require inputs containing much more entropy than is required by the standard, and so are
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not generally applicable to real-world implementations of HMAC-DRBG.

By modelling HMAC as a keyed RO, we can analyse HMAC-DRBG with respect to the

entropy levels of inputs specified in the standard (and at levels which are practical for

real-world applications). This is a fairly standard assumption, having been made in other

works in which HMAC is used with a known key or to extract from lower entropy sources

e.g., [96, 97, 130]. In [61], HMAC was proven to be indifferentiable from a random oracle

for all commonly deployed parameter settings (although since robustness is a multi-stage

game, the indifferentiability result cannot be applied generically here [129]).

Discussion. A standard model proof of Rec security for HMAC-DRBG would be a

stronger and more satisfying result. While idealising HMAC or the underlying hash /

compression function seems inherent, a result under weaker idealised assumptions is an

important open problem. Despite this, we feel our analysis is a significant forward step

from existing works. Ours is the first analysis of the full specification of HMAC-DRBG;

prior works [78,168] omit reseeding and initialisation, assuming HMAC-DRBG is initialised

with a state for which K,V ←$ {0, 1}`, which is far removed from HMAC-DRBG in a real

system. Our work is also the first to consider security properties stronger than pseudo-

randomness. We hope our result is a valuable first step to progress the understanding of

this widely deployed (yet little analysed) PRNG, and a useful starting point for further

work to extend.

Sampler. Our proof is with respect to the class of samplers {D}γ∗ , defined to be the

set of (q+
D , γ

∗)-legitimate samplers for which γi ≥ γ∗ for i ∈ [1, qD + 1] (i.e., each sample

I contains γ∗-bits of entropy). This is a simplifying assumption, making the proof of

Rec security less complex. However, we stress that this is the entropy level per sample

required by the standard, and so this is precisely the restriction imposed on allowed entropy

sources. An H-coefficient analysis, as in the proof of Lemma 4.6, seems likely to yield a

fully general result.

Proof of robustness. With this in place, we present the following theorem bounding

the robustness of HMAC-DRBG. The proof follows from a number of lemmas which we

discuss below, combined with Theorem 4.1 (for which it is straightforward to verify that,

for HMAC-DRBG, qref = 4 and qnxt = n+8 where n = dβ/`e). Our proof is with respect to
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the masking function MHMAC shown in Figure 4.11. We note that MHMAC does not make

any calls to HMAC, and so qM = 0.

Theorem 4.4. Let PRNG be HMAC-DRBG with associated parameter set (p, p, α, βmax),

built from the function HMAC : {0, 1}` × {0, 1}≤ω → {0, 1}` which we model as a keyed

random oracle. Let MHMAC be the masking function shown in Figure 4.11. Then for any

(qH, qR, qD, qC , qS)-attacker A in game Robβ against HMAC-DRBG who always outputs

addin 6= ε, and any (q+
D , γ

∗)-legitimate sampler D ∈ {D}γ∗, it holds that

Advrob
PRNG,M,γ∗,β(A) ≤ qR·(q̄H·ε1+ε2)·2−(2`−1)+q̄H·2−(`−2)+qR · (q̄H · (n+ 3) + ε3)·2−(`−2)

+ (q̄H · (2qR + (1 + 2−2`)) · 2−(γ∗−1) + 2−(2`−1) .

Here ε1 = 12qC+10+(4qC−2)·2−γ∗, ε2 = (qC ·(10qC+4n+18+(qC−1)·2−(γ∗−1))+6n+16),

and ε3 = n(n+ 1). Moreover, n = dβ/`e and q̄H = (qH + 4 · qD + (n+ 8) · qR).

Concrete example. For HMAC-SHA-512, ` = 512 and the bound is dominated by the

O(q̄H ·qR)·2−(γ∗−1) term. Supposing qD ≤ qR (i.e., there are fewer Ref than RoR calls) and

n is small, then q̄H · qR ≤ qR · (qH + c · qR) for some small constant c. Now if HMAC-DRBG

is instantiated at strength γ∗ = 256, it achieves a good security margin up to fairly large

qH, qR. At lower γ∗ the margins are less good; however, this is likely an artefact of the

proof technique.

Init security. The proof of Init security argues that unless attacker A queries HMAC

on certain points which require guessing the value of either the input I1 with which

HMAC-DRBG was seeded, or an intermediate key / counter computed during setup, then

— barring an accidental collision in the inputs to the second and fourth HMAC queries

made by setup, contributing 2−2` to the bound — the resulting state is identically dis-

tributed to MHMAC(ε). A union bound over these guessing and collision probabilities then

yields the lemma.

Lemma 4.10. Let PRNG = HMAC-DRBG and masking function MHMAC be as specified in

Theorem 4.4. Then for any qH-adversary A in game Init against HMAC-DRBG, and any

(q+
D , γ

∗)-legitimate sampler D ∈ {D}γ∗, it holds that

Advinit
PRNG,M,γ∗,qD

(A,D) ≤ qH · ((1 + 2−2`) · 2−γ∗ + 2−(`−1)) + 2−2` .
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proc. main // G0, G1, G2

σ0 ← ε ;N ← N
For i = 1, . . . , qD + 1

(σi, Ii, γi, zi)←$D(σi−1)

K ← 0x00 . . . 00

V ← 0x01 . . . 01

K′ ← HMAC(K,V ‖ 0x00 ‖ I1 ‖N) ; K′←$ {0, 1}`

V ′ ← HMAC(K′, V ) ; V ′←$ {0, 1}`

K∗0 ← HMAC(K′, V ′ ‖ 0x01 ‖ I1 ‖N) ; K∗0 ←$ {0, 1}`

V ∗0 ← HMAC(K∗0 , V
′) ; V ∗0 ←$ {0, 1}`

cnt∗0 ← 1

S∗0 ← (K∗0 , V
∗
0 , cnt

∗
0)

b∗←$AHMAC(S∗0 , (Ii)
qD+1
i=2 , (γi, zi)

qD+1
i=1 )

Return b∗

proc. main // G3, G4

σ0 ← ε ;N ← N
For i = 1, . . . , qD + 1

(σi, Ii, γi, zi)←$D(σi−1)

K ← 0x00 . . . 00

V ← 0x01 . . . 01

S∗0 ←$ MHMAC(ε)

b∗←$AHMAC(S∗0 , (Ii)
qD+1
i=2 , (γi, zi)

qD+1
i=1 )

Return b∗

proc. HMAC(X) // G0 , G1, G2, G3, G4

Y ←$ {0, 1}`

If HMAC[X] 6= ⊥
bad← 1

Y ← HMAC[X]

HMAC[X]← Y

Return Y

Figure 4.12: Games for proof of Lemma 4.10 (Init security of HMAC-DRBG).

Proof. We argue by a series of game hops, shown in Figure 4.12. We assume without

loss of generality that A never repeats a query to the random oracle HMAC. We begin

by defining game G0, which is a rewriting of game Init with b = 0 for HMAC-DRBG and

MHMAC using a lazily sampled random oracle. We also set a flag bad, but this does not

affect the outcome of the game. It holds that

Pr [G0 ⇒ 1 ] = Pr
[

Init
A,D
PRNG,M,γ∗,qD ⇒ 1 | b = 0

]
.

Next we define game G1, which is identical to G0 except we change the way in which the

random oracle HMAC responds to queries. Namely if HMAC is queried on the same value

more than once in G1 then it responds with an independent random string as opposed to

the value previously set. These games run identically until the flag bad is set, and so the

Fundamental Lemma of Game Playing implies that

|Pr [G0 ⇒ 1 ]− Pr [G1 ⇒ 1 ]| ≤ Pr [ bad = 1 in G1 ] .

Next we define game G2, which is identical to G1 except during the challenge computation

we overwrite each string returned in response to a query to HMAC with an independent

random bit string drawn from {0, 1}`. Since in G1 each string returned by the random

oracle HMAC is chosen independently at random and used nowhere else in the game, these

games are identically distributed:

Pr [G1 ⇒ 1 ] = Pr [G2 ⇒ 1 ]| and Pr [ bad = 1 in G1 ] = Pr [ bad = 1 in G2 ] .

We now bound the probability that bad is set in G2. Such an event may occur due to

one of A’s HMAC queries, or due to a collision in the state variables during the challenge
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computation. We claim that

Pr [ bad = 1 in G2 ] ≤ qH · ((1 + 2−2`) · 2−γ∗ + 2−(`−1)) + 2−2` .

To see this, let Guess denote the event thatAmakes a query to HMAC on a point previously

queried by the challenger during the challenge computation. Let Coll denote the probability

that bad is set during the challenge computation as the result of an accidental collision.

A union bound implies that

Pr [ bad = 1 in G2 ] = Pr [ Guess ∨ Coll in G2 ] ≤ Pr [ Guess in G2 ] + Pr [ Coll in G2 ] .

Now for Guess to occur, A must query HMAC on a point in the set:

{(K,V ‖ 0x00 ‖ I1 ‖N), (K ′, V ), (K ′, V ′ ‖ 0x01 ‖ I1 ‖N), (K∗0 , V
′)} .

Now K,V , and K∗0 are all known to A (the former two being constant, and the latter

being given to A as part of his challenge). However, all other variables are hidden from

A. Since K ′, V ′ ←$ {0, 1}`, and the legitimacy of the sampler guarantees that I1 has at

least γ1 bits of entropy conditioned on A’s view of the experiment, a union bound over

the elements in this set and A’s qH HMAC queries implies that:

Pr [ Guess ] ≤ qH · ((1 + 2−2`) · 2−γ∗ + 2−(`−1)) .

Moreover, due to the domain separation of the queries, it is straightforward to verify that

the only way that Coll will occur is if K∗0 = K ′ and V ′ = V (in which case, the final query

made by the challenger will not be fresh). Since V ′,K∗0 ←$ {0, 1}`, it follows that this

event occurs with probability at most 2−2`. Combining these observations then implies

the claim.

Next we define G3, which is identical to G2 except we compute the challenge state directly

as S∗0 ←$ MHMAC(ε) and remove the now redundant queries to the random oracle HMAC.

It is straightforward to verify that S∗0 is identically distributed in both games, and that

this is a syntactic change. We then define game G4, which is identical to G3 except we

return the random oracle HMAC to answer consistently if queried more than once on the

same point. However, since no HMAC queries are made by the challenger in these games

and we have assumed that A never repeats a query, HMAC will never be queried more

than once on the same point, and so these games are identically distributed. It follows

that Pr [G2 ⇒ 1 ] = Pr [G3 ⇒ 1 ] = Pr [G4 ⇒ 1 ]. Moreover, notice that G4 is equivalent

to game Init against HMAC-DRBG with challenge bit b = 1, and so

Pr [G4 ⇒ 1 ] = Pr
[

Init
A,D
PRNG,M,γ∗,qD ⇒ 1 | b = 1

]
.
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Putting this altogether, yields

Advinit
PRNG,M,γ∗,qD

(A,D) =|Pr [G0 ⇒ 1 ]− Pr [G4 ⇒ 1 ]|

≤ qH · ((1 + 2−2`) · 2−γ∗ + 2−(`−1)) + 2−2` .

Pres and Rec security. The proofs of Pres and Rec security proceed by bounding: (1)

the probability that two of the points queried to HMAC during the challenge computation

collide; and (2) the probability that A queries HMAC on one of these points. We then

argue that if neither of these events occur, then the challenge output / state are identically

distributed to their idealised counterparts. However, this process is surprisingly delicate.

Firstly, the domains of queries are not fully separated, so multiple collisions must be dealt

with. Secondly, the guessing / collision probabilities of points from the same domain differ

throughout the game. For example, queries of the form (K,V ) are made during output

generation and in state updates. In the former case, the attacker knows the ‘secret’ counter

since this doubles as an output block, whereas in the latter this is unknown. This rules

out a modular treatment, and complicates the bound. A small modification to separate

queries would simplify analysis.

Lemma 4.11. Let PRNG = HMAC-DRBG and masking function MHMAC be as specified in

Theorem 4.4, where n = dβ/`e. Then for any (qH, qC)-adversary A in game Pres against

HMAC-DRBG who always outputs addin 6= ε, it holds that

Advpres
PRNG,M,β(A) ≤ (qH · (8qC + 6) + ε) · 2−2` + (qH · (n+ 2) + n(n+ 1)) · 2−` ,

where ε = qC · (6qC + 2n+ 8) + 3n+ 8.

Proof. We argue by a series of game hops, shown in Figure 4.13. We assume without loss

of generality that A never repeats a query to the random oracle HMAC. We first define

game G0, which is a rewriting of game Pres with b = 0 for HMAC-DRBG and MHMAC using

a lazily sampled random oracle. Recall that we assume A outputs addin 6= ε. We also set

a flag bad, but this does not affect the outcome of the game. It holds that

Pr [G0 ⇒ 1 ] = Pr
[

Pres
A
PRNG,M,β ⇒ 1 | b = 0

]
.

Next we define game G1, which is identical to G0 except we change the way in which the

random oracle HMAC responds to queries. Namely in G1 if HMAC is queried on the same
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proc. main // G0, G1

1. (S′0, I1, . . . , Id, addin)←$AHMAC

2. If S′0 = ε then cnt0 ← 0

3. Else (K′, V ′, cnt′)← S′0
4. K0, V0←$ {0, 1}` ; cnt0 ← cnt′ + 1

5. S0 ← (K0, V0, cnt0)

6. For j = 1, . . . , d

7. K′j−1 ← HMAC(Kj−1, Vj−1 ‖ 0x00 ‖ Ij)
8. V ′j−1 ← HMAC(K′j−1, Vj−1)

9. Kj ← HMAC(K′j−1, V
′
j−1 ‖ 0x01 ‖ Ij)

10. Vj ← HMAC(Kj , V
′
j−1)

11. cntj ← 1 ;Sj ← (Kj , Vj , cntj)

12. K′d ← HMAC(Kd, Vd ‖ 0x00 ‖ addin)

13. V ′d ← HMAC(K′d, Vd) // *

14. K0
d ← HMAC(K′d, V

′
d ‖ 0x01 ‖ addin)

15. V 0
d ← HMAC(K0

d , V
′
d)

16. tempR ← ε

17. For j = 1, . . . , n

18. V jd ← HMAC(K0
d , V

j−1
d )// ∗ ∗

19. tempR ← tempR ‖V jd
20. R∗ ← left(tempR, β)

21. K′′d ← HMAC(K0
d , V

n
d ‖ 0x00 ‖ addin)

22. V ′′d ← HMAC(K′′d , V
n
d )

23. K∗ ← HMAC(K′′d , V
′′
d ‖ 0x01 ‖ addin)

24. V ∗ ← HMAC(K∗, V ′′d )

25. cnt∗d ← cntd + 1

26. S∗ ← (K∗, V ∗, cnt∗)

27. b∗←$AHMAC(R∗, S∗)

28. Return b∗

proc. main // G3 , G4, G5

(S′0, I1, . . . , Id, addin)←$AHMAC ; (K′, V ′, cnt′)← S′0
If S0 = ε then cnt0 ← 0

Else (K′, V ′, cnt′)← S′0
K0, V0←$ {0, 1}` ; cnt0 ← cnt′ + 1

S0 ← (K0, V0, cnt0)

For j = 1, . . . , d

K′j−1 ← HMAC(Kj−1, Vj−1 ‖ 0x00 ‖ Ij) ; K′j−1←$ {0, 1}`

V ′j−1 ← HMAC(K′j−1, Vj−1) ; V ′j−1←$ {0, 1}`

Kj ← HMAC(K′j−1, V
′
j−1 ‖ 0x01 ‖ Ij) ; Kj ←$ {0, 1}`

Vj ← HMAC(Kj , V
′
j−1) ; Vj ←$ {0, 1}`

cntj ← 1 ;Sj ← (Kj , Vj , cntj)

R∗←$ {0, 1}β

S∗←$ MHMAC(Sd)

b∗←$AHMAC(R∗, S∗)

Return b∗

proc. HMAC(X) // G0 , G1, G2, G3, G4, G5

Y ←$ {0, 1}`

If HMAC[X] 6= ⊥
bad← 1

Y ← HMAC[X]

HMAC[X]← Y

Return Y

Figure 4.13: Games for proof of Lemma 4.11 (Pres security of HMAC-DRBG).
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value more than once, then it responds with an independent random string as opposed to

the value previously set. These games run identically until the flag bad is set, and so the

Fundamental Lemma of Game Playing implies that

|Pr [G0 ⇒ 1 ]− Pr [G1 ⇒ 1 ]| ≤ Pr [ bad = 1 in G1 ] .

Next, we define game G2 (not shown), which is identical to G1 except during the challenge

computation we overwrite each string returned in response to a query to HMAC with an

independent random bit string drawn from {0, 1}`. Since in G1 each string returned by

the random oracle HMAC is chosen independently at random and used nowhere else in the

game, these games are identically distributed, and so

Pr [G1 ⇒ 1 ] = Pr [G2 ⇒ 1 ] and Pr [ bad = 1 in G1 ] = Pr [ bad = 1 in G2 ] .

We now bound the probability that bad is set in G2. Notice that bad may be set as the

result of an HMAC query by A colliding with a query made by the challenger, or during

the computation of the challenge output / state if two of the points queried to HMAC by

the challenger collide.

Let Guess denote the event that one of A’s queries coincides with one of the points queried

to HMAC by the challenger. Let Coll denote the probability that bad is set during the

challenge computation as the result of an accidental collision. A union bound implies that

Pr [ bad = 1 in G2 ] = Pr [ Guess ∨ Coll in G2 ] ≤ Pr [ Guess in G2 ] + Pr [ Coll in G2 ] .

One may verify from the pseudocode in Figure 4.13 that 4(d+2)+n HMAC computations

are made during the challenge computation. (That is: four HMAC queries for each of the

d refresh calls (lines 6 - 11); four queries for the two applications of update prior and post

the production of output (lines 12 - 15 and 17 - 19 respectively); and n = dβ/`e queries

to produce the output blocks (lines 21 - 23)). Notice that each query made by A which

would cause Guess to occur requires A to guess a key and counter pair. All such keys and

counters are chosen uniformly from {0, 1}` in G2, and moreover these keys and counters

are hidden from A except for: (1) the key K∗ which forms part of the final HMAC query

made by the challenger (line 24); and (2) the counters V j
d for j ∈ [1, n] (line 18) which

are concatenated and truncated to form the output R∗ ← left(tempR, β). All of these

are revealed (partially in the case of V n
d , if β is not a multiple of `) to A as part of the

challenge output / state pair. One may verify from the pseudocode that there are n + 2

such partially known queries (i.e., the n − 1 queries arising from the output generation

loop; the queries in lines 21 and 22 for which the counter V n
d is (at least partially) known,
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and the query on line 24 with known key K∗). The probability that a single HMAC query

made by A correctly guesses the value of a given unknown key / counter pair is equal

to 2−2`, while this probability for a partially unknown pair is upper bounded by 2−`.

Therefore taking a union bound over the 4(d + 2) + n pairs queried, and A’s qH guesses,

implies that:

Pr [ Guess in G2 ] ≤ qH · ((4d+ 6) · 2−2` + (n+ 2) · 2−`) .

We now bound the probability that Coll occurs. We divide the queries made by the

challenger into three classes as follows. For K,V ∈ {0, 1}` and I ∈ {0, 1}≥1 we have: (1)

queries of the form (K,V ‖ 0x00 ‖ I); (2) queries of the form (K,V ); and (3) queries of the

form (K,V ‖ 0x01 ‖ I). Notice that all queries made by the challenger during the challenge

computation fall into one of these types. Moreover, notice that queries of different types

can never collide due to their disjoint domains. Letting Colli for i ∈ [1, 3] denote that

there is a collision amongst the type (i) queries, a union bound implies that

Pr [ Coll in G2 ] ≤ Pr [ Coll1 in G2 ] + Pr [ Coll2 in G2 ] + Pr [ Coll3 in G2 ] .

We first claim that Pr [ Coll1 in G2 ] = Pr [ Coll3 in G2 ] = (d(d+ 3) + 2) · 2−(2`+1). To see

this, notice that the challenger makes a total of (d + 2) type (1) (resp. (3)) queries (d

queries during the iterative reseeds, and a single query in the state update before and after

output generation). Each of these queries consists of a freshly sampled key and counter

chosen from {0, 1}`, by which we mean that the key (resp. the counter) will not be queried

as part of any other query of that type barring an accidental collision. (Looking ahead,

an example of queries which are not freshly sampled are those made to generate output

blocks in line 18, for which the same key is used for each query.) It follows that the

probability that any pair of queries collide is upper bounded by 2−2`. Summing over the

at most 1
2(d+ 1)(d+ 2) distinct pairs of queries and rearranging then proves the claim.

Next we claim that Pr [ Coll2 in G2 ] ≤ (d · (2d+ 2n+ 7) + 3n+ 6) ·2−2`+n(n+ 1) ·2−`. To

see this, first consider the set of type (2) queries made by the challenger up to the point in

the pseudocode indicated by ∗ inclusive. There are 2d+ 1 queries in this set, and each of

these queries consists of a freshly sampled key and counter chosen randomly from {0, 1}`.

Any given pair of such queries will collide with probability 2−2`; therefore summing over

these pairs implies that the probability of a collision up to point ∗ is upper bounded by

d · (2d+ 1) · 2−2`. Now consider the set of type (2) queries made following ∗ and up to the

point indicated by ∗∗ inclusive. While each counter for these queries is sampled uniformly

from {0, 1}`, the key K0
d ←$ {0, 1}` remains fixed across all queries (highlighted in red in
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the pseudocode). As such, each of the n + 1 queries in this set collides with a previous

query in the set with probability 2−`; summing over the n(n+1)
2 pairs of queries of this

form (and rounding up by a factor of two for simplicity) contributes n(n+ 1) · 2−` to the

bound. Moreover, each such query collides with one of the (2d+ 1) type (2) queries made

up to point ∗ with probability 2−2`, contributing (2d + 1) · (n + 1) · 2−2` to the bound.

Following this there are two more type (2) queries (lines 22 and 24), each consisting of a

freshly sampled key and counter. Since there are 2d+ n+ 2 and 2d+ n+ 3 previous type

(2) queries with which these points may collide, this adds a further (4d + 2n + 5) · 2−2`

to the bound. Summing over these terms and rearranging then proves the claim. Putting

this altogether and simplifying the expression, we obtain:

Pr [ bad = 1 in G2 ] ≤ (qH · (4d+ 6) + d · (3d+ 2n+ 10) + 3n+ 8) · 2−2`

+ (qH · (n+ 2) + n(n+ 1)) · 2−` .

Next we first define game G3, which is the same as G2 except we simply compute the

challenge / output state as R∗ ←$ {0, 1}` and S∗ ←$ MHMAC(Sd) directly, and omit the

now redundant HMAC queries which were previously made during their computation. It

is straightforward to verify that S∗ is computed identically in both games and that this is

a syntactic change, and so Pr [G2 ⇒ 1 ] = Pr [G3 ⇒ 1 ]. Next we define game G4, which

is identical to G3 except we no longer overwrite the responses to HMAC queries made

by the challenger during the iterative reseeds with random bit strings. Since the random

oracle HMAC responds to each query with an independent random string, regardless of

whether that point has previously been queried, these games are identically distributed

and so Pr [G3 ⇒ 1 ] = Pr [G4 ⇒ 1 ].

Finally we define game G5, which is identical to G4 except we revert the random oracle

HMAC to answering consistently on all queries. These games run identically until the flag

bad is set. In addition to being set as a result of the attacker’s queries, in games G3 −G5

bad may also be set by the challenger during the iterative reseeds made to compute state

Sd in the event of an accidental collision. As before, we have that Pr [ bad = 1 in G5 ] =

Pr [ bad = 1 in G3 ] ≤ Pr [ Guess in G3 ] +
∑3

i=1 Pr [ Colli in G3 ].

One may verify from the pseudocode that a total of 4d points are queried to HMAC

during the iterative reseeds, each consisting of a uniformly random key and counter which

are independent of A’s view of the experiment. An analogous argument to that used
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previously, taking a union bound over A’s qH queries, then implies that Pr [ Guess in G3 ] ≤

qH · 4d · 2−2`. Moreover, there are d type (1) and d type (3) queries made during this

process, each of which collides with probability at most 2−2`; it follows that Pr [ Coll1 ] =

Pr [ Coll3 ] ≤ d · (d − 1) · 2−(2`+1). Finally, there are 2d type (2) queries made during

this process, each of which collides with probability 2−2`. It follows that Pr [ Coll2 ] ≤

d · (2d− 1) · 2−2`. Putting this altogether than yields

|Pr [G4 ⇒ 1 ]− Pr [G5 ⇒ 1 ]| ≤ Pr [ bad = 1 in G3 ] ≤ (qH · 4d+ d · (3d− 2)) · 2−2` .

It is straightforward to verify thatG5 is equivalent to game Pres with b = 1 for HMAC-DRBG.

It follows that

Pr [G5 ⇒ 1 ] = Pr
[

Pres
A
PRNG,M,β ⇒ 1 | b = 1

]
.

Putting this altogether, rearranging, and upper bounding d with qC implies that

Advpres
PRNG,M,β(A) ≤ (qH · (8qC + 6) + ε) · 2−2` + (qH · (n+ 2) + n(n+ 1)) · 2−` ,

where ε = qC · (6qC + 2n+ 8) + 3n+ 8, concluding the proof.

This concludes our analysis of the Pres security of HMAC-DRBG. All that remains is to

bound its Rec security, which we do in the following lemma.

Lemma 4.12. Let PRNG = HMAC-DRBG and masking function MHMAC be as specified

in Theorem 4.4, where n = dβ/`e. Then for any (qH, qC)-adversary A in game Rec

against HMAC-DRBG who always outputs addin 6= ε, and any (q+
D , γ

∗)-legitimate sampler

D ∈ {D}γ∗, it holds that

Advrec
PRNG,M,γ∗,qD,β

(A,D) ≤ (qH · (4qC + 4 + (4qC − 2) · 2−γ∗) + ε′) · 2−2`

+ (qH · (n+ 4) + n(n+ 1)) · 2−` + qH · 2−(γ∗−1) ,

where ε′ = (qC · (4qC + 2n+ 10 + (qC − 1) · 2−(γ∗−1)) + 3n+ 8).

Proof. We argue by a series of game hops, shown in Figure 4.14. The proof is similar

to that of Lemma 4.11; we emphasise the differences here. We assume without loss of

generality that A never repeats a query to the random oracle HMAC and require that A

outputs addin 6= ε. We begin by defining game G0, which is a rewriting of game Rec with
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proc. main // G0, G1

1. σ ← ε ;µ← 1

2. For k = 1, . . . , qD + 1

3. (σk, Ik, γk, zk)←$D(σk−1)

4. (S0, d, addin)←$AHMAC,Sam((γi, zi)
qD+1
i=1 )

5. If µ+ d > qD + 1 or
∑µ+d
i=µ+1 γi < γ∗

6. Return ⊥
7. (K0, V0, cnt0)← S0

8. For j = 1, . . . , d

9. K′j−1 ← HMAC(Kj−1, Vj−1 ‖ 0x00 ‖ Ij)
10. V ′j−1 ← HMAC(K′j−1, Vj−1)

11. Kj ← HMAC(K′j−1, V
′
j−1 ‖ 0x01 ‖ Ij)

12. Vj ← HMAC(Kj , V
′
j−1)

13. cntj ← 1 ;Sj ← (Kj , Vj , cntj)

14. K′d ← HMAC(Kd, Vd ‖ 0x00 ‖ addin)

15. V ′d ← HMAC(K′d, Vd) // *

16. K0
d ← HMAC(K′d, V

′
d ‖ 0x01 ‖ addin)

17. V 0
d ← HMAC(K0

d , V
′
d)

18. tempR ← ε

19. For j = 1, . . . , n

20. V jd ← HMAC(K0
d , V

j−1
d )// ∗ ∗

21. tempR ← tempR ‖V jd
22. R∗ ← left(tempR, β)

23. K′′d ← HMAC(K0
d , V

n
d ‖ 0x00 ‖ addin)

24. V ′′d ← HMAC(K′′d , V
n
d )

25. K∗ ← HMAC(K′′d , V
′′
d ‖ 0x01 ‖ addin)

26. V ∗ ← HMAC(K∗, V ′′d )

27. cnt∗d ← cnt∗d + 1

28. S∗ ← (K∗, V ∗, cnt∗d)

29. b∗←$AHMAC(R∗, S∗, (Ik)k>µ+d)

30. Return b∗

proc. Sam // G0, G1, G2, G3, G4, G5

µ← µ+ 1

Return Iµ

proc. main // G3 , G4, G5

σ ← ε ;µ← 1

For k = 1, . . . , qD + 1

(σk, Ik, γk, zk)←$D(σk−1)

(S0, d, addin)←$AHMAC,Sam((γi, zi)
qD+1
i=1 )

If µ+ d > qD + 1 or
∑µ+d
i=µ+1 γi < γ∗

Return ⊥
(K0, V0, cnt0)← S0

For j = 1, . . . , d

K′j−1 ← HMAC(Kj−1, Vj−1 ‖ 0x00 ‖ Ij) ; K′j−1←$ {0, 1}`

V ′j−1 ← HMAC(K′j−1, Vj−1) ; V ′j−1←$ {0, 1}`

Kj ← HMAC(K′j−1, V
′
j−1 ‖ 0x01 ‖ Ij) ; Kj ←$ {0, 1}`

Vj ← HMAC(Kj , V
′
j−1) ; Vj ←$ {0, 1}`

cntj ← 1 ;Sj ← (Kj , Vj , cntj)

R∗←$ {0, 1}β

S∗←$ MHMAC(Sd)

b∗←$AHMAC(R∗, S∗, (Ik)k>µ+d)

Return b∗

proc. HMAC(X) // G0 , G1, G2, G3, G4, G5

Y ←$ {0, 1}`

If HMAC[X] 6= ⊥
bad← 1

Y ← HMAC[X]

HMAC[X]← Y

Return Y

Figure 4.14: Games for proof of Lemma 4.12 (Rec security of HMAC-DRBG).

b = 0 for HMAC-DRBG and MHMAC using a lazily sampled random oracle. We also set a

flag bad, but this does not affect the outcome of the game. We have that

Pr [G0 ⇒ 1 ] = Pr
[

Rec
A,D
PRNG,M,γ∗,qD,β ⇒ 1 | b = 0

]
.

Next we define games G1 and G2. In the former, we modify the random oracle HMAC

to respond with an independent random string to all queries, regardless of whether the

value has previously been set. In G2 (not pictured), we overwrite each string returned in

response to a random oracle query made by the challenger with an independent random

bit string. An analogous argument to that made in the proof of Lemma 4.11 implies that

|Pr [G0 ⇒ 1 ]− Pr [G2 ⇒ 1 ]| ≤ Pr [ bad = 1 in G2 ] .

We now bound the probability of this event occurring. Defining the events Guess and Colli

for i ∈ [1, 3] as before, a union bound implies that Pr [ bad = 1 in G2 ] ≤ Pr [ Guess in G2 ]+∑3
i=1 Pr [ Colli in G2 ].
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To bound the probability that Guess occurs, consider the set of queries made by the

challenger, where we define queries of types (1) - (3) as in the proof of Lemma 4.11. We

first note that each of the 2(d+2)+n type (2) queries made by the challenger consists of a

random `-bit key and `-bit counter which are hidden from the attacker, with the exception

of: (a) the first and final type (2) queries (lines 10 and 26 respectively); and (b) queries

2 to n of the j = 1, . . . , n loop (lines 19 - 21), and the first type (2) query during the

subsequent state update (line 24). (For the first query, the counter V0 is chosen by the

attacker. For the final query, the key K∗ is given to the attacker as part of the challenge

state. For all other queries, the counter is revealed to the attacker as part of the output

R∗.) The probability that a single HMAC query made by A correctly guesses the value of

a given unknown key / counter pair is equal to 2−2`, while this probability for a partially

unknown pair is upper bounded by 2−`. Putting this together and taking union bounds,

the probability that A sets Guess by querying a type (2) point to HMAC is upper bounded

by qH · ((2d+ 2) · 2−2` + (n+ 2) · 2−`).

Moreover, all of the d type (3) queries and all but the first of the d type (1) queries

(line 9) made during the iterative reseeds in lines 8 - 13 requires A to correctly guess the

value of a randomly chosen and hidden key and counter in addition to an entropy sample,

which by the legitimacy of the sampler contains at least 2−γ
∗

bits of entropy. As such, the

probability that A correctly guesses a given one of these points in a single query to HMAC

is upper bounded by 2−(γ∗+2`). For the first type (1) query, the key and counter were

chosen by A; however, they must still guess the unknown entropy sample I1 containing

at least γ∗ bits of entropy, and so the probability that A guesses this point with a single

HMAC query is upper bounded by 2−γ
∗
. Finally, the remaining four type (1) and (3)

queries (made as part of the state updates with addin before and after output generation

(lines 14 - 17 and 23 - 26 respectively) each require A to guess a random and hidden key /

counter pair, and so each pair is guessed in a single HMAC query with probability at most

2−2` — except the first type (1) query after output generation (line 23), for which the

counter is (fully or partially) revealed in R∗, and so is guessed with probability at most

2−`. Taking union bounds, the probability that A sets Guess by querying a type (1) or

(3) point to HMAC is upper bounded by qH · ((3 + (2d − 1) · 2−γ∗) · 2−2` + 2−γ
∗

+ 2−`).

Putting this altogether yields,

Pr [ Guess in G2 ] ≤ qH · ((2d+ 5 + (2d− 1) · 2−γ∗) · 2−2` + 2−γ
∗

+ (n+ 3) · 2−`) .

Next we claim that Pr [ Coll1 in G2 ] and Pr [ Coll3 in G2 ] are bounded above by (4d+2+d·

223



4.7 Analysis of HMAC-DRBG

(d−1) ·2−γ∗) ·2−(2`+1). To see this, notice that a collision between a pair of the d type (1)

(resp. type (3)) queries made during the iterative reseeds requires both the entropy input,

and the key and counter (which for all but the first type (1) query are freshly sampled

random bit strings), to collide. A union bound then implies that this probability is upper

bounded by d(d−1)·2−(γ∗+2`+1). For any of the two type (1) (resp. type (3)) queries made

during state updates before and after output generation, any collision with another query

of the same type requires the randomly sampled key and counter to collide, an event which

occurs with probability d · 2−2` for the first such query, and (d+ 1) · 2−2` for the second,

contributing the additional (2d+ 1) · 2−2` term to the bound. For the type (2) queries, it

is straightforward to verify that the same argument as in the proof of Lemma 4.11 applies

in this case also, and so Pr [ Coll2 ] ≤ (d · (2d + 2n + 7) + 3n + 6) · 2−2` + n(n + 1) · 2−`.

Putting this altogether and rearranging, yields

Pr [ bad = 1 in G2 ] ≤ qH · ((2d+ 5 + (2d− 1) · 2−γ∗) · 2−2`

+ (d · (2d+ 2n+ 11 + (d− 1) · 2−γ∗) + 3n+ 8) · 2−2` + qH · 2−γ
∗

+ (qH · (n+ 3) + n(n+ 1)) · 2−` .

Next, we define games G3, G4, and G5. Game G3 is the same as G2, except we compute the

challenge / output state pair as R∗←${0, 1}` and S∗←$M(Sd) and omit the now redundant

HMAC queries which were previously made during their computation. In G4, we no longer

overwrite the responses to random oracle queries made by the challenger with random

bit strings. Finally, in G5 we return the random oracle HMAC to answer consistently

on all queries. An analogous argument to that used in the proof of Lemma 4.11 implies

that |Pr [G2 ⇒ 1 ]− Pr [G5 ⇒ 1 ]| ≤ Pr [ bad = 1 in G3 ]. We now bound this probability.

As before, we have that Pr [ bad = 1 in G3 ] ≤ Pr [ Guess in G3 ] +
∑3

i=1 Pr [ Colli in G3 ].

Firstly, notice that there are 2d type (2) queries made by the challenger in G3. Each

of these consists of a freshly sampled random key and counter, except for the first query

where the counter is known to A. An analogous argument to that used previously implies

that the probability that A queries one of these points to HMAC is upper bounded by

qH · ((2d − 1) · 2−2` + 2−`). Each of the d type (1) (resp. type (3)) queries consists of a

random key / counter and entropy sample, except for the first type (1) query for which

the key and counter are known to A. A union bound then implies that the probability

that A queries one of the type (1) or (3) queries to HMAC is upper bounded by qH · ((2d−
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1) · 2−γ∗ · 2−2` + 2−γ
∗
). Putting this altogether implies that:

Pr [ Guess in G3 ] ≤ qH · ((2d− 1 + (2d− 1) · 2−γ∗) · 2−2` + 2−γ
∗

+ 2−`) .

We now bound the collision probabilities. There are d type (1) and d type (3) queries

made in G3, each of which collides with another query of its type with probability at most

2−(2`+γ∗); it follows that Pr [ Coll1 in G3 ] = Pr [ Coll3 in G3 ] ≤ d · (d− 1) · 2−γ∗ · 2−(2`+1).

Finally, each of the 2d type (2) queries in G3 collides with probability 2−2`; taking a union

bound, it follows that Pr [ Coll2 in G3 ] ≤ d · (2d− 1) · 2−2`. Putting this all together then

yields

Pr [ bad = 1 in G3 ] ≤ qH ·(2d−1+(2d−1) ·2−γ∗) ·2−2`+(d ·(2d−1+(d−1) ·2−γ∗)) ·2−2`

+ qH · 2−γ
∗

+ qH · 2−` .

Moreover, it is straightforward to verify that G5 is equivalent to game Rec with b = 1 for

HMAC-DRBG. It follows that

Pr [G5 ⇒ 1 ] = Pr
[

Rec
A,D
PRNG,M,γ∗,qD,β ⇒ 1 | b = 1

]
.

Putting this altogether, rearranging, and upper bounding d with qC implies that

Advrec
PRNG,M,γ∗,qD,β

(A,D) ≤ (qH · (4qC + 4 + (4qC − 2) · 2−γ∗) + ε′) · 2−2`

+ (qH · (n+ 4) + n(n+ 1)) · 2−` + qH · 2−(γ∗−1) ,

where ε′ = (qC · (4qC + 2n+ 10 + (qC − 1) · 2−(γ∗−1)) + 3n+ 8), concluding the proof.

This completes our analysis of the Init, Pres, and Rec security of HMAC-DRBG. Combining

these results via Theorem 4.1 then proves Theorem 4.4, concluding our analysis of the

robustness of HMAC-DRBG in the ROM.

4.8 Overlooked Attack Vectors

A note on presentation. This section stands somewhat apart from the rest of the

thesis by taking a more informal and intuitive approach to analysis. The material in this
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next(seed, S, β, addin)

If cnt > reseed interval

Return reseed required

(S0, data0)← init(seed, S, β, addin)

If addin← ε then addin← 0n

tempR ← ε ;n← dβ/`e
For i = 1, . . . , n

(ri, Si, datai)← gen(seed, Si−1, datai−1)

tempR ← tempR ‖ ri

R← left(tempR, β)

S′ ← final(seed, Sn, β, addin)

Return (R,S′)

Figure 4.15: Iterative next algorithm for a DRBG with associated decomposition C =
(init, gen, final). Boxed text included for CTR-DRBG only.

section was originally written with practitioners in mind, and aims to demonstrate key

potential attacks rather than being an exhaustive treatment of the problem at hand. We

found that writing e.g., a strictly formal and code-based treatment of the ideas presented

introduced a host of parameters and complicated notation which served mainly to obscure

the fairly intuitive notions we were trying to capture, without providing further insight.

Therefore, we have chosen an altogether more informal approach, but one which is still

sufficiently precise to express our security model and attacks. To refer back to the title of

this thesis, while this section is not entirely in keeping with the provable security aspect,

we hope that this makes our findings more usable and accessible in the real world.

4.8.1 Motivation and Attack Scenario

The positive results of Sections 4.6 and 4.7 are reassuring. However, the flexibility in the

standard to produce variable length and large outputs (of up to 219 bits) in each next

call means that two implementations of the same DRBG may be very different depending

on how such limits are set. While this is reflected in the security bounds of the previous

sections (in terms of the parameter n denoting the number of output blocks computed per

request), in this section we argue that the standard security definition of robustness may

overlook attack vectors against the (fairly non-standard) NIST DRBGs.

The points made in this section do not contradict the results of the previous sections;

rather we argue that in certain (realistic) scenarios — namely when the DRBG is used

to produce many output blocks per next call — it is worth taking a closer look at which

points during output generation a state may be compromised.
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Iterative next algorithms. The next algorithm of each of the NIST DRBGs has the

same high-level structure (modulo slight variations which we highlight below, and which

again exemplify how small design features frustrate a modular treatment). First, any

additional input provided in the call is incorporated into the state, and in the case of

HASH-DRBG one of the state variables is copied into an additional variable in preparation

for output generation (i.e., setting data = V , see Figure 4.1). Output blocks are produced

by iteratively applying a function to the state variables (or in the case of HASH-DRBG,

the copy of the state variable). These blocks are concatenated and truncated to β-bits to

form the returned output R, and a final state update is performed to produce S′.

We would like to track the evolution of the state variables during a next call relative to the

production of different output blocks, in order to reason precisely about the effect of state

component compromises at different points. As such, it shall be useful to formalise this

structure. To this end, we say that a DRBG has an iterative next algorithm if next may be

decomposed into a tuple of subroutines C = (init, gen, final). Here init : Seed×S×N≤βmax×

{0, 1}≤α → S×{0, 1}∗ updates the state with additional input prior to output generation,

and optionally sets a variable data ∈ {0, 1}∗ to store any additional state information

necessary for output generation. Algorithm gen : Seed×S×{0, 1}∗ → {0, 1}`×S×{0, 1}∗

maps a state S and optional string data to an output block r ∈ {0, 1}`, an updated state

S′, and string data′ ∈ {0, 1}∗. Finally final : Seed× S × N≤βmax × {0, 1}≤α → S is used

to update the state post output generation.

The next algorithm is constructed from these component parts as shown in Figure 4.15.

The decomposition algorithms C = (init, gen, final) for each of the NIST DRBGs are shown

in Figure 4.16. It is readily verified that substituting each of these into the framework of

Figure 4.15 yields the corresponding next algorithms shown in Figures 4.1 and 4.2. (For

CTR-DRBG and HMAC-DRBG, data is not set during output generation (e.g., data = ε),

and so we omit it from the discussion of these DRBGs. Similarly since none of the NIST

DRBGs are specified to take a salt, we omit this parameter.) A diagrammatic depiction

of output generation for each of the DRBGs is shown in Figures 4.18a–4.18c.

Variable length outputs. Within this iterative structure, the gen subroutine acts like

the next algorithm of an internal PRNG, called multiple times within a single next call

to produce output blocks. However, as we shall see, the state updates performed by gen

227



4.8 Overlooked Attack Vectors

HASH-DRBG init

Require: S = (V,C, cnt), β, addin

Ensure: S = (V,C, cnt), data

If addin 6= ε

w ← H(0x02 ‖V ‖ addin)

V ← (V + w) mod 2L

data← V

Return (V,C, cnt), data

HASH-DRBG gen

Require S = (V,C, cnt), data

Ensure: r, S = (V,C, cnt), data

r ← H(data)

data← (data+ 1) mod 2L

Return r, (V,C, cnt), data

HASH-DRBG final

Require: S = (V,C, cnt), β, addin

Ensure: S = (V,C, cnt)

H ← H(0x03 ‖V )

V ← (V +H + C + cnt) mod 2L

cnt← cnt + 1

Return (V,C, cnt)

HMAC-DRBG init

Require : S = (K,V, cnt), β, addin

Ensure: S = (K,V, cnt)

If addin 6= ε

(K,V )← update(addin,K, V )

Return (K,V, cnt)

HMAC-DRBG gen

Require (K,V, cnt)

Ensure r, S = (K,V, cnt)

V ← HMAC(K,V ) ; r ← V

Return r, (K,V, cnt)

HMAC-DRBG final

Require : S = (K,V, cnt), β, addin

Ensure: S = (K,V, cnt)

(K,V )← update(addin,K, V )

cnt← cnt + 1

Return (K,V, cnt)

CTR-DRBG init

Require: S = (K,V, cnt), β, addin

Ensure: S = (K,V, cnt)

If addin 6= ε

If derivation function used then

addin← CTR-DRBG df(addin, (κ+`))

Else if len(addin) < (κ+ `) then

addin← addin ‖ 0(κ+`−len(addin))

(K,V )← update(addin,K, V )

Return (K,V, cnt)

CTR-DRBG gen

Require: S = (K,V, cnt)

Ensure: r, S = (K,V, cnt)

V ← (V + 1) mod 2` ; r ← E(K,V )

Return r, (K,V, cnt)

CTR-DRBG final

Require: S = (K,V, cnt), β, addin

Ensure: S = (K,V, cnt)

(K,V )← update(addin,K, V )

cnt← cnt + 1

Return (K,V, cnt)

Figure 4.16: Algorithms C = (init, gen, final) for HASH-DRBG, HMAC-DRBG,
and CTR-DRBG.

do not provide forward security after each block2. This may not seem unreasonable if

the DRBG produces only a handful of blocks per request; however since the standard

allows for up to 219 bits of output to be requested in each next call, there are situations

in which the possibility of a partial state compromise occurring during output generation

is worth considering.

Attack scenario: side channels. We consider an attacker who learns some information

about the state variables being processed during output generation, but who is not able

to perform a full memory compromise by which they would learn e.g., the output blocks

r1, . . . , rn buffered in the internal memory, thereby compromising all output in the call.

The natural scenario we consider here is a side channel attack. Generating multiple output

blocks in a single next call results in a significant amount of computation going on ‘under

the hood’ of next — e.g., up to 212 = 4096 AES-128 computations using a fixed key K0 for

CTR-DRBG with AES-128 — which, given that AES invites leaky implementations [26,40,

95, 104, 118, 121], is concerning. Since robustness only allows the attacker to compromise

the state after it has ‘properly’ updated (via the final process) at the conclusion of a next

call, it does not model side channel leakage during the call.

2This is similar to an observation by Bernstein [28] criticising the inefficiency of CTR-DRBG’s update
function, which appeared concurrently to the production of the first draft of this work. We stress that
our modelling of the attack scenario, and systematic treatment of how the issue affects each of the NIST
DRBGs, is novel.
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Use case: buffering output. As pointed out by Bernstein [28], the overhead incurred

by the state update at the conclusion of a CTR-DRBG next call is undesirable. As such, an

appealing usage choice is to generate a large output upfront in a single request, and buffer

it to later be used for different purposes3 . Our attack model investigates the soundness of

this approach for scenarios in which partial state compromise during output generation via

a side channel — which can only be exacerbated by such usage — is a realistic concern.

Portions of the buffered output may be used for public values such as nonces, whereas

other portions of the output from the same call may be used for e.g., secret keys. As such,

our model assumes an attacker learns an output block sent in the clear as e.g., a nonce, in

conjunction with the partial state information gleaned via a side channel. The attacker’s

goal is to recover unseen output blocks used as security critical secrets, thereby breaking

the security of the consuming application.

4.8.2 Attack Model

We now describe our attack model. We found that a more formal and / or code-based

model using abstract leakage functions (in line with the literature on leakage-resilient

cryptography e.g., [3, 63, 111]) introduced significant complexity, without clarifying the

presentation of the attacks or providing further insight. We therefore opted for a more

informal written definition of the attack model which is nonetheless sufficiently precise to

capture e.g., exactly what the attacker may learn, what he is challenged to guess, and so

on. We aim to demonstrate key attacks rather than providing an exhaustive treatment.

Attack set-up and goals. Consider the next call shown in Figure 4.15. Letting S

denote the state input to next, then this defines a sequence of intermediate states / output

blocks passed through during the course of the request:

(S, (S0, data0), r1, (S1, data1), . . . , rn, (Sn, datan), S′) ,

with the algorithm finally returning (R,S′) = (r1 ‖ . . . ‖ rm, S′). (For simplicity, we as-

sume the requested number of bits is a multiple of the block length; it is straightforward

to remove this assumption.) We consider an attacker A who is able to compromise a

given component of an arbitrary intermediate state Si (or in the case of HASH-DRBG, the

additional state information datai) for i ∈ [0, n], in addition to an arbitrary output block

3Indeed, NIST SP 800-90A says: “For large generate requests, CTR-DRBG produces outputs at the same
speed as the underlying block cipher algorithm encrypts data”, highlighting the efficiency of this approach.
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Table 4.2: Table summarising our analysis. The leftmost three columns correspond to
Sections 4.8.3–4.8.5. The rightmost column corresponds to Section 4.8.6. A X indicates
that we demonstrate an attack. A × indicates that we believe the DRBG is not vulnerable
to such an attack, with justification given. A ∗ corresponds to an attack if CTR-DRBG is
implemented without a derivation function. A ∗∗ indicates an exception in the case that
cnt = 1 at the point of compromise.

(1) Past output (2) Future output (3) Updated Additional

within call within call state S′ input

CTR-DRBG // compromised K X X X X∗

HMAC-DRBG // compromised K × X X ×

HASH-DRBG // compromised V X X ×∗∗ ×

rj for j ∈ [1, n] produced in the same call. We assume the indices (i, j) are known4 to A.

We then assess the attacker’s ability to achieve each of the following ‘goals’:

• (1) Recover unseen output blocks produced prior to the compromised block within

the call {rk}k<j ;

• (2) Recover unseen output blocks produced following the compromised block within

the call {rk}k>j ; and

• (3) Recover the state S′ as updated at the conclusion of the call. This allows the

attacker to run the generator forwards and recover future output.

Extensions. If addin = ε, then init returns the state unchanged, S0 = S. As such,

all attacks which succeed when S0 is partially compromised in our model can also be

executed if the relevant component of state S is compromised prior to the next call,

creating a greater window of opportunity for the attacker.

Security analysis. We analysed each of the NIST DRBGs with respect to our at-

tack model, and found that each DRBG exhibited vulnerabilities, with CTR-DRBG faring

especially badly. We summarise our findings in Table 4.2.

4Here we assume the attacker learns a full block and knows its index. This seems reasonable; for
example, the public nonces exchanged in a TLS handshake (i.e., the client and server random) will contain
at least one whole block and 12 bytes of a second block (if 4 bytes of timestamp are used). These values
would be generated early in a call to the DRBG, and so have a low index j. Both assumptions can be
relaxed at the cost of the attacker performing more work to brute-force any missing bits and / or the index.
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CTR-DRBG // A(Ki, rj , i, j)

V j ← E−1(Ki, rj)

V 0 ← (V j − j) mod 2`

For k = 1, . . . , n

V k ← (V k−1 + 1) mod 2`

rk ← E(Ki, V k)

(K′, V ′)← update(addin,Ki, V n)

cnt′ ← cnt + 1

S′ ← (K′, V ′, cnt′)

Return ({rk}k<j , {rk}k>j , S′)

HMAC-DRBG // A(Ki, rj , i, j)

V j ← rj

For k = j + 1, . . . , n

V k ← HMAC(Ki, V k−1)

rk ← V k

(K′, V ′)← update(addin,Ki, V n)

cnt′ ← cnt + 1

S′ ← (K′, V ′, cnt′)

Return (⊥, {rk}k>j , S′)

HASH-DRBG // A(datai, rj , i, j)

data0 ← (datai − i) mod 2L

For k = 1, . . . , n

rk ← H(datak−1)

datak ← (datak−1 + 1) mod 2L

Return ({rk}k<j , {rk}k>j ,⊥)

Figure 4.17: Adversaries for attacks in Sections 4.8.3-4.8.5.

4.8.3 Security of CTR-DRBG with a Compromised Key

Since each output block encrypts the secret counter V , leakage of the key component of

the CTR-DRBG state is especially damaging. Consider attacker A shown in the left-hand

panel of Figure 4.17. We claim that for all i ∈ [0, n] and j ∈ [1, n], if additional input is

not used (addin = ε) then A achieves goals (1),(2) (recovery of all unseen output blocks

produced in the next call) and (3) (recovery of the next state S′) with probability one. If

additional input is used (addin 6= ε) then the same statement holds for (1), (2), and the

attacker’s ability to satisfy (3) is equal to his ability to guess addin. To see this, notice

that each block of output produced in the next call is computed as rk = E(K0, V 0 + k)

for k ∈ [1, n], where K0, V 0 denote the key and counter as returned by init at the start

of output generation. The key does not update through this process, and so whatever

intermediate key Ki attacker A compromises, this is the key used for output generation.

It is then trivial for A to decrypt the output block rj received in his challenge to recover

the secret counter, thereby possessing all security critical state variables. However if

addin 6= ε, then A must guess this string in order to compute S′.

Discussion. This attack is especially damaging, since target output blocks used as e.g.,

secret keys will be recovered irrespective of their position relative to the block learnt by the

attacker, increasing the exploitability of the compromised CTR-DRBG. In comparison, the

infamously backdoored Dual-EC-DRBG only allowed recovery of output produced after the

compromised block, impacting its practical exploitability [47]. (That said, the embedded

backdoor in Dual-EC-DRBG means the attack itself is far easier to execute).
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(a) Evolution of state S = (K,V, cnt) within a next call for CTR-DRBG.
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(c) Evolution of state S = (V,C, cnt) within a next call for HASH-DRBG.

Figure 4.18: Diagrams showing output production for each of the NIST DRBGs.

4.8.4 Security of HMAC-DRBG with a Compromised Key

Consider the attacker A shown in the middle panel of Figure 4.17, who compromises

the key component Ki of an intermediate state of HMAC-DRBG. We claim that for all

i ∈ [0, n] and j ∈ [1, n], if addin = ε then A achieves goals (2) and (3) with probability

one. If addin 6= ε then the same statement holds for (2), and the attacker’s ability to

satisfy (3) is equal to his ability to guess addin. To see this, let K0, V 0 denote the state

variables at the beginning of output generation. Output blocks are iteratively produced

by computing V k = HMAC(K0, V k−1) and setting rk = V k for k ∈ [1, n]. Since the key

does not update during this process, the key Ki compromised by the attacker will be equal

to the key K0 used for output generation. Since the output block rj which A receives

in his challenge is equal to the secret counter V j , A now knows all security critical state

variables of intermediate state Sj . A can then run HMAC-DRBG forward to recover all

output produced following the compromised block in the call, as well as the updated state

S′ (subject to guessing addin).
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Past output in a compromised next call. It appears that even if an attacker learns

the entirety of an intermediate state Si for i ∈ [0, n] in addition to an output block rj

for j ∈ [1, n], it is still infeasible to achieve goal (1) and recover the set of output blocks

{rk}k<j produced prior to the compromised block within the call. To see this, let V 0

denote the value of the counter at the start of output generation. For each j ∈ [1, n],

output block rj takes the form:

rj = V j = HMACj(K0, V 0) ,

where HMACi(K, ·) denotes the ith iterate of HMAC(K, ·). As such, recovering prior blocks

rk for k < j given K0 and V j corresponds to finding preimages of HMAC(K0, ·). Since the

key is known to the attacker, we clearly cannot argue that this is difficult based on the

PRF-security of HMAC. However, modelling HMAC as a random oracle (see Section 4.7)

it follows that inverting HMAC for sufficiently high entropy V 0 is infeasible. Formalising

this intuition under a standard model assumption remains an interesting open question.

4.8.5 Security of HASH-DRBG with a Compromised Counter.

It is straightforward to see that if A learns the counter value V i in the HASH-DRBG

state, or the iterating copy of the counter in datai for any i ∈ [0, n], j ∈ [1, n], then A

achieves goals (1) and (2) with probability one. Moreover, knowledge of the counter is

sufficient to execute the attack; no output block is needed. The case in which datai is

compromised is shown in the rightmost panel of Figure 4.17. However, unlike CTR-DRBG

and HMAC-DRBG, without also learning the constant C achieving goal (3) does not seem

possible in general. At the end of the next call, the new counter is computed as

V ′ = (V 0 + H(0x03||V 0) + C + cnt) mod 2L ;

however, for all but the first next call, it seems infeasible to extract the constant C from

the known counter V 0 without inverting the hash function. (The exception with the first

next call is because C is derived deterministically from the initial counter V during the

setup process. Provided additional input is not used in the call, this is the counter A

will be able to recover during the attack, allowing them to compute C themselves.) That

said, if additional input is not used and an attacker compromises counters V 0 and V 0′

used for output generation from two consecutive next calls, then A can easily recover C by

calculating C = (V 0′ − H(0x03||V 0)− cnt) mod 2L, where cnt denotes the reseed counter

at the point of the first next call, thus facilitating the recovery of the updated state and
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subsequent output. The same attack is possible if additional input is used conditional on

A being able to guess its value.

4.8.6 Security of Additional Input

We present an additional attack against an implementation of CTR-DRBG which does not

use a derivation function. This attack can (under certain conditions) allow an attacker

who compromises the state of the DRBG to also recover the strings of additional input

fed to the DRBG during output generation requests. This is particularly concerning given

that the standard allows these strings to contain secrets and sensitive data provided they

are not protected at a higher security strength than the instantiation.

Use of a derivation function. Consider the CTR-DRBG next algorithm (Section 4.4).

If the derivation function is not used and additional input is included in a call, then the

raw string of input is XORed directly into the CTR-DRBG state during the application of

the update function (lines 8 and 15). One can verify from the pseudocode description of

CTR-DRBG df in Section 4.4 that to derive a (κ+ `)-bit string from a T -bit input requires

NB block cipher computations where NB = d(κ + `)/`e · (d(T + 72)/`e + 2) and κ and

` denote the key and block size of the block cipher respectively. This computation is

required for every next call which includes additional input, on top of each reseed and the

initial state generation, and so represents a significant overhead. Indeed, a set of slides on

the NIST DRBGs by Kelsey from 2004 [88] includes the comment “Block cipher derivation

function is expensive and complicated. . . When gate count or code size is an issue, nice to

be able to avoid using it!”.

Recovery of additional input. We describe the attack with respect to the ‘ideal’ con-

ditions. Take an implementation of CTR-DRBG built from AES-128 in which a derivation

function is not used (the case for other approved block ciphers is totally analogous). Sup-

pose that an attacker A has compromised the internal state S = (K,V, cnt), and that

the state compromise is followed by a next call in which additional input addin is used.

Moreover, suppose addin has the form addin = X1 ‖X2 where X1 ∈ {0, 1}128 is known to

the attacker and X2 ∈ {0, 1}128 consists of 128 unknown bits. We assume X2 includes a

secret value such as a password which will be the target of the attack.
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At the start of the next call, the state components K,V are updated with addin via

(K0, V 0)← update(addin,K, V ). It is straightforward to verify that

K0 ‖V 0 = K∗ ‖V ∗ ⊕ addin = (K∗ ⊕X1) ‖ (V ∗ ⊕X2) ,

where K∗ ‖V ∗ = E(K,V + 1) ‖E(K,V + 2). Since A has compromised (K,V ), they can

compute (K∗, V ∗). Moreover, since X1 is known to A, it follows that the updated key

K0 = (K∗ ⊕X1) is known to A also.

During output generation, output blocks are produced by encrypting the iterating counter

under K0. Therefore, the kth block of output is of the form:

rk = E(K0, V 0 + k) = E(K0, (V∗ ⊕X2) + k) ,

where the variables in bold are known to A. As such, each block of output produced is

effectively an encryption of the target secret X2 under a known key.

Given a single block of output rk, A can instantly recover the target secret X2 — consisting

of 128-bits of unknown and secret data — as X2 = (E−1(K0, rk) − k) ⊕ V ∗. Moreover,

it is straightforward to verify that A has sufficient information to compute the state as

updated following the next call. As such, A can continue to execute the same attack

against subsequent output generation requests for as long as the key component of the

state evolves predictably.

Extensions. We have just described the ideal conditions for the attack. However the

attack is still possible if X1 is not known to the attacker. Supposing X1 has γ-bits of

entropy, then repeating the above process for each possible candidate for X1 will recover

the correct secret X2 among a list of 2γ candidates. If the data in X2 is of a distinctive

structure, or multiple output blocks can be recovered from the compromised next call, this

can help A quickly eliminate candidates. Either way, the entropy of X2 is reduced to at

most γ-bits, a loss which — given X2 contains up to 128-bits of unknown data — may be

substantial.

Security benefit of the derivation function. The attack exploits the way in which

the structure of addin is preserved by XOR. When the derivation function is used to

condition the data, this structure is sufficiently destroyed that the above attack no longer

works. Indeed, even if the attacker could compromise the raw derivation function output

it is difficult to see how to recover the underlying additional input string more efficiently
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than by exhausting its entropy in a brute-force attack. Likewise for HASH-DRBG and

HMAC-DRBG, in which additional input is hashed as it is incorporated into the state, it

would appear that recovery of such strings requires a brute-force attack.

4.9 Open Source Implementation Analysis

In Section 4.8, we showed that certain implementation decisions — permitted by the

overly flexible standard — may influence the security guarantees of the NIST DRBGs. To

determine if these decisions are taken by implementers in the real world we investigated two

open source implementations of CTR-DRBG, in OpenSSL [127] and mbed TLS [105]. We

found that between the two libraries these problematic decisions have indeed been made.

Large output requests. As detailed in Section 4.8, generating many blocks of output

in a single request increases both the likelihood and impact of our attacks. In OpenSSL,

the next call of CTR-DRBG is implemented in the function drbg ctr generate in the

file drbg ctr.c. Interestingly — and contrary to the standard — this function does not

impose any limit on the number of random bits which may be requested per call. As such,

an arbitrarily large output may be generated using a single key, exacerbating the attacks

of Section 4.8. More generally, exceeding the output generation limit increases the success

probability of the well-known distinguishing attack against a block cipher in CTR-mode

which uses colliding blocks to determine if an output is truly random.

By comparison, the implementation of CTR-DRBG in mbed TLS limits the number of

output blocks per next call to 64 blocks of 128 bits. In the context of our attacks, this

is much better for security than the 4,096 blocks allowed by the standard. Also this

implementation forces a reseed after 10,000 calls to next, which is substantially lower than

the 248 calls that are allowed by the standard.

Derivation function. In Section 4.8.6, we showed that choosing to implement

CTR-DRBG without the derivation function may allow the attacker to recover potentially

sensitive data fed to the DRBG in the event of state compromise. We found that the

OpenSSL implementation of CTR-DRBG allows the generator to be called simultaneously

without the derivation function and with additional input. Specifically, by setting the
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flags field of the RAND DRBG FLAG CTR NO DF structure to RAND DRBG FLAG CTR the caller

may suppress calls to the derivation function, presumably for performance purposes. As

such, the attack described in Section 4.8.6 may be possible in real world implementations.

Summary. Despite the high level and theoretical nature of our analysis, we found that

the problematic implementation decisions which we highlight are made in the real world.

While none of these decisions leads to an immediate vulnerability, both the implementa-

tion and usage of the functions may exacerbate other problems such as side channel or

state compromise attacks. We hope that highlighting these issues will help implementers

make informed decisions about how best to use these algorithms in the context of their

implementation.

4.10 Discussion and Open Problems

In this chapter, we conducted an in-depth and multi-layered analysis of NIST SP 800-

90A, with a focus on investigating unproven security claims and exploring flexibilities in

the standard. On the positive side, we formally verify a number of the claimed — and

yet, until now unproven — security properties in the standard. However, we argue that

taking certain implementation choices permitted by the overly flexible standard may lead

to vulnerabilities. We conclude with a number of reflections and directions for future work.

Design and prove simultaneously. Certain design features of the NIST DRBGs com-

plicate their analysis, and a small tweak in design would facilitate a far simpler proof.

This emphasises the importance of developing cryptographic algorithms alongside security

proofs, and — more importantly — not standardising algorithms with unproven security

properties.

Flexibility. In Section 4.7, we saw how the option to call HMAC-DRBG without addi-

tional input changed the algorithm in a subtle way which lead to an attack. Similarly, the

attacks of Section 4.8 are both facilitated, and exacerbated, by certain implementation

choices allowed by the overly flexible standard. In Section 4.9, we confirmed that imple-

menters do make these choices in the real world. These may be a warning to standard

writers to avoid unnecessary flexibility which may lead to unintended vulnerabilities.
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Usage recommendations. Because these vulnerabilities stem from implementation

choices, we can offer recommendations to make the use of these algorithms more secure.

First off, if the algorithms are being run in a setting where side channel attacks are a

concern then CTR-DRBG should not be used. Additional input should be (safely) incor-

porated during output generation wherever possible and the DRBG should be reseeded

with fresh entropy as often as is practical. While the standard allows outputs of sizeable

length to be requested, users should not ‘batch up’ calls by making a single call for all ran-

domness required for an application. Finally, the CTR-DRBG derivation function should

always be used.

Future work. Analysing the robustness of CTR-DRBG is an important direction for

further work. The key challenge with this seems to be proving that the derivation function

is a good randomness extractor. Unfortunately, since the underlying CBC-MAC-based

extractor (BCC in Figure 4.2) is applied multiple times to the same entropy sample, existing

results on the extraction properties of CBC-MAC [58,151] cannot be applied. A proof of

robustness in the IPM [69] may be possible.

When analysing the robustness of the seedless HASH-DRBG and HMAC-DRBG, we made a

strong assumption that the entropy source was independent of the random oracle in order

to avoid known impossibility results on seedless extraction. Recent work by Coretti et

al. [50] proposes a new robustness model for seedless PRNGs that allows positive results

about such algorithms to be derived under weaker assumptions on the entropy source

than that employed here. This work is an important step to address a long-standing gap

between the seeded PRNGs defined in the theoretical literature, and the seedless PRNGs

used in practice. Extending our results to analyse HASH-DRBG and HMAC-DRBG with

respect to the model of [50] is an interesting topic for future work.

More generally, the design flexibilities we critique above are related to efficiency savings.

Designing PRNGs that achieve an optimal balance between security and efficiency is a key

direction for future work. For example, redesigning the CTR-DRBG derivation function to

reduce computational overhead would make its use more palatable. The gap between the

specification of these DRBGs, which allows for various optional inputs and implementa-

tion choices, and the far simpler manner in which PRNGs are typically modelled in the

literature could indicate that theoretical models are not adequately capturing real world

PRNGs. Extending these models may help understand the limits and possibilities of what
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can be achieved.
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5.1 Introduction and Motivation

Mass surveillance. The Snowden revelations of 2013 marked the point at which the

scales collectively fell from the eyes of both the research community and society as a

whole as to the extent to which government surveillance was encroaching on the privacy of

civilians. The illusion that surveillance was being conducted in a targeted and proportional

manner was instantly shattered, and there could be no doubt that nation states must be

viewed as potential adversaries [126]. While such concerns had been raised before by

privacy advocates [34], the explosive evidence of the Snowden leaks confimed that a new

catalogue of threats [124] — which in the past may have seemed more at home in spy

novels and conspiracy theories — were in fact a very real world concern.

A strong sense emerged that privacy, beyond being an important individual right, was vital

for the functioning of democratic society [126]. Rogaway’s [136] call for cryptographers

to understand their work as inherently political and with the potential to be used for

nefarious purposes resonated with many, and captured a feeling that such an abuse of

governmental power must never again go unchecked.

Understanding Big Brother. Almost immediately, the cryptographic community

sprang into action to analyse this new threat, and in the six years since Snowden pulled

back the curtain a wealth of literature has been written on the topic. On the applied

side, cryptographers sought to assess the impact of the Dual-EC in real world implemen-

tations [46, 47], and to extrapolate lessons from the debacle [31, 146]. On the theoretical

side, foundational work has sought to understand different forms of cryptographic subver-

sion by constructing security models and definitions to formally reason about Big Brother

within the provable security framework. These lines of research have a long and rich his-

tory through topics such as kleptography [169] and subliminal channels [154], but were

addressed with a new urgency post-Snowden. Such work includes the study of Algo-

rithm Substitution Attacks (ASAs) [6,20,53,68,114,143,144] and backdooring cryptosys-

tems [8, 12, 29, 47, 57]. In an ASA, the subversion is specific to a specific implementation

of a particular algorithm or scheme, whereas in backdooring, the backdoor resides in the

specification of the scheme or primitive itself and any implementation faithful to the spec-

ification will be equally vulnerable. There is a balancing act at play between these two

types of attack: while ASAs are arguably easier to carry out, their impact is limited to
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a specific implementation, whereas the successful introduction of a backdoor into a cryp-

tographic scheme, albeit ostensibly harder to mount and subsequently conceal, can have

much wider impact.

Backdoored PRNGs. The Dual-EC-DRBG may be a particular thorn in the side of

many in the cryptographic community. Languishing in plain sight in NIST SP 800-

90A, it became an emblem of just how much the NSA had managed to get away with.

Dual-EC-DRBG provides a particularly useful backdoor to Big Brother: given a single out-

put from the generator, its state and therefore all future output can be recovered (with

moderate computational effort). Protocols like SSL / TLS directly expose PRG outputs

in protocol messages, making Dual-EC-DRBG exploitable in practice [47]. More broadly,

as the previous chapter has attested, the critical reliance of cryptography on good pseu-

dorandom generators — and its brittleness in the event of a randomness failure — makes

these primitives the perfect target for subversion.

Contributions. In this chapter, we conduct a formal exploration of the extent to which

a provably secure pseudorandom number generator can be backdoored. We contribute to

the foundational groundwork required to understand the threat of backdoored PRNGs,

and ask whether PRNGs with certain (strong) security properties may resist it.

5.1.1 Contributions

In this work, we advance understanding of backdoored pseudorandom number generators

in two distinct directions. In the first part of the chapter, we build on existing work on

backdoored PRGs [57] and resolve an open problem by showing that stronger forms of

backdooring are possible than previously demonstrated. We then turn our attention to

backdooring robust PRNGs with input and in the second part of the chapter present the

first analysis of the subject, giving definitions, security models, and constructions. We

begin with a brief overview of existing results on backdoored PRGs, before giving a more

detailed overview of our contributions.

Related work and the Dual-EC. Dodis et al. [57] initiated the first formal study of

backdoored PRGs (BPRGs), building on earlier work by Vazirani and Vazirani [163]. The
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authors construct backdoored PRGs using public key encryption schemes and key encapsu-

lation mechanisms, analyse folklore immunisation techniques, and show that BPRGs are

equivalent to public-key encryption (PKE) with pseudorandom ciphertexts (IND$-CPA

secure PKE). The latter result is especially interesting as it suggests that PRGs built

entirely from symmetric primitives are less likely to contain a backdoor.

A question that was posed (and partly answered) in [57] is: to what extent can a PRG

be backdoored while at the same time being provably secure? This question — which

motivates the problems addressed in this chapter — is especially pertinent in the context

of subversion via backdooring, since the backdoor resides in the specification of the PRG

which will likely be subjected to public scrutiny and analysis1.

Stronger forms of backdooring. Prior to our work, no BPRG had been proposed

that allows recovery of past output values while simultaneously being forward secure.

For example, the backdoor in Dual-EC-DRBG only allows Big Brother (who holds the

backdoor key) to compute unseen future output; pseudorandom bits produced prior to

the compromised output remain unattainable. A construction of a ‘random-seek’ BPRG

from [57] allows Big Brother, given any single output, to recover any past or future output

with probability roughly 1
4 . However, this stronger form of backdooring comes at the

expense of forward security. Indeed, intuitively, forward security and recovery of past

output would seem to be opposing goals. As such, a natural question is whether this

trade-off is inherent or if forward secure PRGs are susceptible to such strong forms of

backdooring. If such a limitation were inherent, then a proof of forward security for a

PRG would indicate a natural form of resistance to such backdoors.

New constructions of BPRGs. For our first contribution, we settle the above open

problem in the negative by providing two constructions of forward secure BPRGs that

allow recovery of past output (and more). Our constructions are a substantial strengthen-

ing of those of [57]. Firstly, both of our constructions allow Big Brother to succeed with

probability 1 (rather than the 1
4 attained for the random-seek BPRG construction of [57]).

Secondly the backdoor is much stronger, in that for both of our BPRG constructions Big

1Remarkably, Dual-EC-DRBG has notable biases which rule out a proof of security — making its stan-
dardisation even more absurd and likely guided by the hand of a government agency. However, as noted
in [57], these biases can be eliminated using special encodings of curve points as in [30, 116, 169], and
Dual-EC-DRBG can be turned into a provably forward secure PRG under the decisional Diffie-Hellman
assumption.
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Brother is able to recover the initial state of the BPRG given only a single output value.

This then enables all states and output values to be reconstructed.

Unsurprisingly, given the connection between BPRGs and IND$-CPA secure PKE [57],

both constructions make use of this latter primitive. This is the only chapter in this thesis

to utilise public key techniques, and we provide the necessary definitions in Section 5.2.

Backdooring PRNGs with input. We then turn our attention to the study of back-

doored PRNGs with input (BPRNGs). This is a natural extension of the study of BPRGs,

particularly in view of the widespread deployment of PRNGs with input in real systems.

As discussed in Chapter 4, robustness is generally accepted as the de facto security target

for any new PRNG design, and so it is logical to require any BPRNG to be robust.

One might hope that with additional high entropy inputs being used to refresh the gener-

ator state, backdooring a PRNG with input might be impossible. This would certainly be

a victory in the quest to defeat Big Brother. However, as we demonstrate in the second

part of the chapter, this is unfortunately not the case.

Building backdoored PRNGs. As a warm-up, we first show how to adapt the robust

PRNG of [60] to embed a backdoor. That construction uses an underlying PRG to produce

output and our BPRNG is based on a simple trick: replace the underlying PRG with a

BPRG. Given a single output, this allows Big Brother to compute all outputs from the

last refresh to the next refresh, while the generator remains robust. However, as soon as

the generator is refreshed with sufficient entropy Big Brother’s advantage is lost and he

will need to compromise more output in order to exploit the backdoor again.

The key challenge of backdooring a robust PRNG is therefore to construct a backdoor

that endures through high entropy refreshes. We show that this can be achieved in the

main result of the chapter: a construction of a robust BPRNG that allows recovery of past

output values going back through the k previous refreshes (where k is a parameter of the

scheme). The construction (see Section 5.4) is based on the idea of interleaving outputs of

a (non-backdoored) PRNG with encryptions of snapshots of that PRNG’s state, using an

IND$-CPA secure encryption scheme to ensure pseudorandomness of outputs. By taking a

snapshot of the state whenever it is refreshed and storing a list of the previous k snapshots

in the state, the construction allows Big Brother to recover, with some probability, output
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values that were computed as many as k refreshes previously. The actual construction is

considerably more complex than this sketch hints, since achieving robustness is challeng-

ing when the state has this additional structure. We additionally sketch variants of the

construction that trade state and output size for strength of backdooring.

Open problems. While we demonstrate that even robust PRNGs succumb to strong

forms of backdooring, our construction has the limitation that the state grows linearly

with the number of high entropy refreshes we wish to simultaneously backdoor. The work

upon which this chapter is based [54] included an impossibility result that claimed to

demonstrate that this limitation is inherent. Regrettably, during the production of this

thesis we discovered an error in the proof of [54] that invalidates the result. We therefore

finish our study of backdoored PRNGs with a discussion of the claimed result and the

error, and outline some possible directions for future work.

5.2 Definitions and Preliminaries

This thesis has so far focused on symmetric cryptography. In this chapter, we will extend

our cryptographic tool-kit to include a number of public key primitives. We then specify

the PRG and PRNG definitions that shall be used throughout the chapter.

5.2.1 Public Key Encryption Schemes

A public key encryption (PKE) scheme allows two parties who do not share a secret key

to exchange encrypted messages. We define our PKE syntax below, and then discuss the

security properties we require of such schemes.

Definition 5.1. A public key encryption (PKE) scheme is a triple of algorithms PKE =

(Key,Enc,Dec), with associated public key space PK, secret key space SK, message space

M, ciphertext space C, and coin space R, defined as follows:

• Key : → PK × SK is a randomised algorithm which takes no input, and returns a

public / secret key pair (pk, sk) ∈ PK × SK.

• Enc : PK ×M → C is a randomised algorithm which takes as input a public key
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pk ∈ PK and a message M ∈ M, and returns a ciphertext C ∈ C. For r ∈ R, we

write Enc(·, ·; r) to denote executing Enc with coins r fixed.

• Dec : SK × C →M is a deterministic algorithm which takes as input a ciphertext

C ∈ C and secret key sk ∈ SK, and returns a string M ′ ∈M∪ {⊥}.

Correctness and length regularity. We require a PKE scheme PKE = (Key,Enc,Dec)

to be perfectly correct, by which we mean that for all pk ∈ PK and all messages M ∈M, it

holds that Pr [ Dec(sk, (Enc(pk,M)) = M ] = 1. We also require that encryption is length-

regular, by which we mean that there exists a function lenPKE : N → N such that for

all (pk,M) ∈ PK ×M it holds that Pr [ |C| = lenPKE(|M |) : C←$ Enc(pk,M) ] = 1. In

both cases, the probability is over the coins of Enc.

Cyclic groups and the DDH assumption. PKE schemes such as ElGamal [64] (in-

troduced later in this section) are frequently defined with respect to a cyclic group of

order q; that is to say, a group G for which there exists an element g ∈ G such that

G = {g0, . . . , gq−1}. To use cyclic groups for cryptography, we need an algorithm to effi-

ciently sample them. We define the group generation algorithm GGen to be a randomised

algorithm which takes no input and outputs a tuple (G, q, g), where G is a description of

a cyclic group of order q for which g is a generator.

A commonly used cryptographic assumption for cyclic groups is the decisional Diffie-

Hellman (DDH) assumption. The DDH assumption requires that for a cyclic group

(G, g, q), the tuples (gx, gy, gxy) and (gx, gy, gz) for x, y, z ←$ Zq are indistinguishable.

More formally, we define the advantage of an attacker A in the DDH game with respect

to group generation algorithm GGen to be:

Advddh
GGen(A) =

∣∣∣∣Pr [A(G, g, q, gx, gy, gxy)⇒ 1 : (G, g, q)←$ GGen ;x, y←$ Zq ]

− Pr [A(G, g, q, gx, gy, gz)⇒ 1 : (G, g, q)←$ GGen ;x, y, z←$ Zq ]

∣∣∣∣ .
The DDH assumption is widely used, underpinning the security of the Diffie-Hellman key

exchange protocol [55] and the ElGamal PKE scheme, among many others.

The ElGamal PKE scheme. A well-known PKE scheme that we will use as an il-

lustrating example throughout this chapter is ElGamal [64]. The scheme ElG.PKE =
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ElG.Key

(G, q, g)←$ GGen

x←$ {0, . . . , q − 1}
sk ← (G, q, g, x)

pk ← (G, q, g, gx)

Return (pk, sk)

ElG.Enc(pk,M)

(G, q, g, h)← pk

y←$ Zq
C1 ← gy

C2 ←M · hy
Return (C1, C2)

ElG.Dec(sk, (C1, C2))

(G, q, g, x)← sk

M ← C2 · (Cx1 )−1

Return M

ElG.Rand(pk, (C1, C2))

(G, q, g, h)← pk

z←$ Zq
C1 ← C1 · gz
C2 ← C2 · hz
Return (C1, C2)

ElG.Rand−1(pk, (C1, C2); z)

(G, q, g, h)← pk

C1 ← C1 · g−z
C2 ← C2 · h−z
Return (C1, C2)

Figure 5.1: The ElGamal re-randomisable PKE Scheme ElG.PKE =
(ElG.Key,ElG.Enc,ElG.Dec, ElG.Rand,ElG.Rand−1), where GGen is a group generation
algorithm.

(ElG.Key,ElG.Enc,ElG.Dec) is depicted in the two leftmost panels of Figure 5.1. The

scheme has associated message space M = G and ciphertext space C = G × G. We will

frequently abuse notation to express the message space and messages encrypted by ElGa-

mal as bit strings rather than group elements. In such cases we implicitly assume that a

suitable encoding scheme is used to map the bit strings into the appropriate group.

Real-or-random PKE security. The usual security requirement for PKE schemes

is that of IND-CPA security, which requires that encryptions of equal length messages

are indistinguishable. It is straightforward to see that ElGamal is an IND-CPA secure

PKE scheme under the assumption that the DDH problem is hard with respect to the

group generation algorithm GGen. In this work, we shall require the stronger property

of IND$-CPA security, which requires that ciphertexts are indistinguishable from random

bit strings. This security property is more challenging to achieve than the analogous ROR

notion for AEAD schemes (see Section 3.2), since the ciphertexts of PKE schemes typically

have mathematical structure (for example, pairs of group elements in the case of ElGa-

mal) which allow them to be distinguished from uniform strings. Nonetheless, concrete

and efficient examples of such schemes can be obtained by applying carefully constructed

encoding schemes to the group elements of ciphertexts in the ElGamal encryption scheme.

For example, the Elligator scheme introduced in [30] gives a pseudorandom encoding of

elliptic curve points, thereby allowing an Elligator-encoded variant of elliptic curve ElGa-

mal to be IND$-CPA. Further examples of encodings are given in [116, 169]. We define

both security properties formally below.

Definition 5.2. Let PKE = (Key,Enc,Dec) be a PKE scheme. The IND-CPA advantage
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of an attacker A against PKE, who makes q queries to their LoR oracle, is defined:

Advind-cpa
PKE (A, q) =

∣∣∣Pr
[
ALoR0(pk,·,·)(pk)⇒ 1 : (pk, sk)←$ Key

]
− Pr

[
ALoR1(pk,·,·)(pk)⇒ 1 : (pk, sk)←$ Key

]∣∣∣ ,
where LoRb(pk, ·, ·), on input a pair of messages M0,M1 ∈ M, returns ⊥ if |M0| 6= |M1|,

and C←$Enc(pk,Mb) otherwise. The IND$-CPA advantage of an attacker A against PKE,

who makes q queries to their real-or-random (RoR) oracle, is defined:

Advind$-cpa
PKE (A, q) =

∣∣∣Pr
[
AEnc(pk,·)(pk)⇒ 1 : (pk, sk)←$ Key

]
− Pr

[
A$(·)(pk)⇒ 1 (pk, sk)←$ Key

]∣∣∣ ,
where $(·), on input a message M ∈M, returns a random string of length lenPKE(|M |).

It is straightforward to show that for any PKE scheme PKE, and any attacker A in game

IND-CPA against PKE, there exists an attacker B in game IND$-CPA, running in the

same time as A and making the same number of oracle queries, such that

Advind-cpa
PKE (A, q) ≤ 2 ·Advind$-cpa

PKE (B, q) .

As such, any PKE scheme which is IND$-CPA secure is also IND-CPA.

As mentioned in Section 5.1, it was shown in [57] that backdoored PRGs are equivalent

to IND$-CPA-encryption, and so it is unsurprising that these schemes feature heavily in

our constructions.

Re-randomisable PKE schemes. For certain results in this chapter, we utilise PKE

schemes which have the additional property of being statistically re-randomisable [77]. A

re-randomisable PKE scheme is a regular PKE scheme with an additional procedure Rand

which is used to update (or ‘re-randomise’) a ciphertext with fresh random coins. We

require that the re-randomised ciphertext is statistically indistinguishable from a fresh en-

cryption of the underlying message. More formally, we define a re-randomisable encryption

scheme to be a tuple of algorithms rPKE = (Key,Enc,Dec,Rand) where (Key,Enc,Dec) are

defined identically to the analogous algorithms in Definition 5.1, and Rand : PK×C → C

is a randomised algorithm which takes as input a public key pk ∈ PK and a ciphertext

C ∈ C, and outputs a re-randomised ciphertext C ′ ∈ C. We define the re-randomisation
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distance of rPKE, denoted ∆rPKE, to be

∆rPKE = max
pk,M,r′0

= ∆({C : C←$ Enc(pk,M)}, {C : C←$ Rand(pk,Enc(pk,M ; r′0))}) .

In words, we take ∆rPKE to be the maximum statistical distance (over pk ∈ PK, M ∈M,

and r′0 ∈ R) between the distribution of an honest encryption of M under pk, and that of

a ciphertext obtained by applying Rand to an encryption of M under pk and coins r′0.

Correctness. We require that decrypting a re-randomised ciphertext returns the correct

underlying message with probability one. More formally, we require that for all pk ∈ PK,

and all messages M ∈M, it holds that:

Pr [M ← Dec(sk, C∗) : C←$ Enc(pk,M) ;C∗←$ Rand(pk,C) ] = 1 ,

where the probability is over the coins of Enc and Rand.

Letting Z denote the coin space of Rand, we write Rand(pk,C; z) to denote executing Rand

with coins z ∈ Z. We write Rand(pk,C0; z1, . . . , zq) to denote the ciphertext Cq obtained

by computing Cj ← Rand(pk, Cj−1; zj) for j = 1, . . . , q and z1, . . . , zq ∈ Z.

Reverse re-randomisable PKE schemes. We may extend the above definition to

introduce reverse re-randomisable PKE schemes. These are re-randomisable PKE schemes

with an additional algorithm Rand−1 which, given a public key, a re-randomised ciphertext,

and the coins with which it was re-randomised, can recover the original ciphertext. We

formalise this in the following definition

Definition 5.3. A reverse re-randomisable PKE scheme is a tuple of algorithms rrPKE =

(Key,Enc,Dec,Rand,Rand−1) where:

• (Key,Enc,Rand,Dec) are defined identically to the analogous algorithms for

re-randomisable PKE schemes; and

• Rand−1 : PK×C ×Z → C is a deterministic algorithm that takes as input a public

key pk ∈ PK, a ciphertext C ′ ∈ C, and coins R ∈ Z, and outputs a ciphertext C ∈ C.

• We require that for all pk ∈ PK, all C ∈ C, and all z ∈ Z, it holds that:

Rand−1(pk,Rand(pk,C; z), z) = C .

Suppose Cq = Rand(pk,C0; z1, . . . , zq), so Cj = Rand(pk,Cj−1; zj) for j = 1, . . . , q. Then,

from the above, we know that Cj−1 = Rand−1(pk, Cj ; zj) for j = 1, . . . , q. To denote C0,
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we write Rand−1(pk,Cq; z1, . . . , zq).

It is straightforward to see that ElGamal encryption and its encoded variants are reverse

re-randomisable. The Rand and Rand−1 algorithms for ElGamal are shown in the right-

hand panel of Figure 5.1.

5.2.2 Trapdoor Permutations

Trapdoor permutations are easy to compute in the forward direction but infeasible to

invert without knowledge of a secret parameter called a trapdoor. We recall their formal

definition below.

Definition 5.4. A family of trapdoor permutations is a tuple of algorithms TDP =

(Gen,F,F−1) defined as follows:

• Gen :→ {0, 1}∗×{0, 1}∗ is a randomised algorithm which takes no input, and outputs

a public parameter and trapdoor (PK,SK) ∈ {0, 1}∗ × {0, 1}∗. Each PK implicitly

defines a permutation over {0, 1}n.

• F : {0, 1}∗ × {0, 1}n → {0, 1}n takes as input PK ∈ {0, 1}∗ and x ∈ {0, 1}n, and

outputs y ∈ {0, 1}n. We write y ← FPK(x) to denote applying F to input (PK, x) to

produce output y.

• F−1 : {0, 1}∗ × {0, 1}n → {0, 1}n takes as input SK ∈ {0, 1}∗ and y ∈ {0, 1}n and

outputs z ∈ {0, 1}n such that FPK(z) = y. We write z ← F−1
SK(y) to denote applying

F−1 to input (SK, y) to produce output z.

We require that TDP is infeasible to invert without knowledge of the trapdoor SK. We

model this via game TDP-INV, shown in Figure 5.2, where the advantage of attacker A

is defined

Advinv
TDP(A) = Pr

[
TDP-INVATDP ⇒ true

]
.

While requiring that trapdoor permutations have domain {0, 1}n as opposed to e.g., Z∗N is a

restriction, standard trapdoor permutations such as RSA [131] and Blum, Blum, Shub [39],

modified as described in [18] to have domain {0, 1}n, satisfy the above definition.
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TDP-INVATDP

(PK,SK)←$ Gen

x←$ {0, 1}n

y ← FPK(x)

z←$A(PK, y)

Return (z = x)

Figure 5.2: Trapdoor permutation security game.

5.2.3 Pseudorandom Number Generators

In this chapter, we will consider both PRNGs with input (the focus of Chapter 4) as

well as deterministic pseudorandom generators (PRGs). We define the variants of these

primitives that will be used in this chapter below.

Parameter generation. Throughout this chapter, we define PRNGs as in Definition 2.3

with one slight modification. Namely, we define init :→ {0, 1}∗×{0, 1}∗ to be a randomised

algorithm which takes no input and outputs a pair of public and backdoor parameters

(pp, bp) ∈ {0, 1}∗×{0, 1}∗. The public parameter pp corresponds to the seed, seed, returned

by init in Definition 2.3. Looking ahead, when modelling backdoored PRNGs, we will

assume that Big Brother knows the backdoor parameter bp. To capture a non-backdoored

PRNG in this syntax, we simply take bp = ⊥.

Deterministic PRGs. A PRG is a deterministic pseudorandom number generator which

has no access to an entropy source (and so has no refresh procedure). More formally,

we define a deterministic PRG with output length ` ∈ N to be a tuple of algorithms

PRG = (init, setup, next). Algorithms setup and next are defined identically to those in

Definition 2.3, and init is as defined as above.

Notation. Let PRG = (init, setup, next) be a PRG. Given an initial state S0, let (Ri, Si)←

next(pp, Si−1) for i = 1, . . . , q. We write (R1, . . . , Rq) ← outq(next(pp, S0)) and

(S1, . . . , Sq) ← stateq(next(pp, S0)) to denote, respectively, the sequence of outputs and

states produced by this process.

PRG security. Security for PRGs can be defined as a special case of game Rob (Sec-

tion 2.5.1) in which an attacker may make no Ref queries. In this chapter we will use an

equivalent formulation which dispenses with the oracles which are available to the attacker
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PRG-DISTA,qPRG

(pp, bp)←$ init

S0←$ setup(pp)

b←$ {0, 1}
If b = 0

(R1, . . . , Rq)← outq(next(pp, S0))

Else (R1, . . . , Rq)←$ ({0, 1}`)q
b′ ← A(pp,R1, . . . , Rq)

Return (b = b′)

PRG-FWDA,qPRG

(pp, bp)←$ init

S0←$ setup(pp)

b←$ {0, 1}
If b = 0

(R1, . . . , Rq)← outq(next(pp, S0))

Else (R1, . . . , Rq)←$ ({0, 1}`)q
(S1, . . . , Sq)← stateq(next(pp, S0))

b′ ← A(pp,R1, . . . , Rq , Sq)

Return (b = b′)

PRG-FWD
A,q
PRG

(pp, bp)←$ init

S0←$ setup(pp)

b←$ {0, 1}
If b = 0

(R1, . . . , Rq)← outq(next(pp, S0))

(S1, . . . , Sq)← stateq(next(pp, S0))

Else (R1, . . . , Rq)←$ ({0, 1}`)q
Sq ←$ setup(pp)

b′ ← A(pp,R1, . . . , Rq , Sq)

Return (b = b′)

Figure 5.3: PRG security games.

in the robustness game. This simplifies the presentation of our results and remains in line

with prior work on backdoored PRGs [57].

We consider three variants of PRG security, shown in Figure 5.3. In each game, the

PRG is initialised and used to compute q outputs. Game PRG-DIST captures the basic

pseudorandomness requirement that an attacker should not be able to distinguish these

q outputs from random bit strings of appropriate length. The forward security game

PRG-FWD is identical to PRG-DIST, except the attacker is also given the (real) final PRG

state Sq as part of his challenge. Finally, PRG-FWD is a strengthening of PRG-FWD in

which we additionally require the challenge state Sq to be indistinguishable from a freshly

generated state Sq←$ setup(pp). Looking ahead, this final game shall be used to simplify

the proof of security for the simple backdoored PRNG given in Section 5.4. We define the

advantage of an attacker A in Gmx
y ∈ {PRG-DISTA,qPRG,PRG-FWDA,qPRG,PRG-FWD

A,q
PRG}

to be:

Advgm
y (x) = 2 ·

∣∣∣∣Pr
[

Gmx
y ⇒ 1

]
− 1

2

∣∣∣∣ .
Stateless PRGs. We will occasionally utilise a simple, stateless variant of a deterministic

PRG. We define a stateless PRG with parameters (u, `) ∈ N2 to be an algorithm G which

takes as input a seed ζ ∈ {0, 1}u and returns an output R ∈ {0, 1}`. We require that if the

seed ζ is chosen uniformly, then the resulting output is pseudorandom. More formally, we

define the stateless PRG distinguishing advantage of an attacker A to be:

Advsprg-dist
G (A) =

∣∣∣∣Pr [A(R)⇒ 1 : ζ←$ {0, 1}u ;R← G(ζ) ]

− Pr
[
A(R)⇒ 1 : R←$ {0, 1}`

]∣∣∣∣ .
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5.3 Backdooring Pseudorandom Generators

We begin our investigation into backdoored PRNGs by considering the simpler case of

backdoored deterministic PRGs (BPRGs). Given that a PRG is a restricted version of a

PRNG, this is a natural starting point at which to develop the techniques that we will

ultimately use to backdoor PRNGs with input.

5.3.1 Modelling Backdoored PRGs

Intuitively, a backdoored cryptosystem is a scheme coupled with some secret backdoor

information. In the view of an adversary who does not know the backdoor information,

the scheme fulfils its usual security definition. However, an adversary in possession of the

backdoor information will gain some advantage in breaking the security of the scheme.

Big Brother. The backdoor attacker is modelled as an algorithm which we call BB

(for ‘Big Brother’) to distinguish it from an attacker A whose goal is to break the usual

security of the scheme without access to the backdoor. Whilst the backdoor attacker

BB will be external in the sense that it will only be able to observe public outputs and

parameters, the attack is also internalised as the backdoor algorithm is designed alongside,

and incorporated into, the scheme. We formalise this below, following [57].

Backdoored PRG syntax. Formally, a BPRG is defined to be a tuple of algorithms

BPRG = (init, setup, next,BB). Algorithms init, setup, and next are defined identically to

those for (non-backdoored) PRGs (Section 5.2.3). The input / output behaviour of Big

Brother will vary depending on the BPRG in question. Crucially, BB will always take as

input a backdoor parameter bp ∈ {0, 1}∗, as well as the public parameter pp ∈ {0, 1}∗.

5.3.2 Backdoored PRG Security

Let BPRG = (setup, init, next,BB) be a BPRG. There are two metrics by which we assess

the effectiveness and security of BPRG. Firstly, we require that the PRG defined by
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BPRG-DISTBB,q
BPRG

(pp, bp)←$ init

S0←$ setup(pp)

b←$ {0, 1}
If b = 0

(R1, . . . , Rq)← outq(next(pp, S0))

Else (R1, . . . , Rq)←$ ({0, 1}`)q
b∗←$ BB(pp, bp,R1, . . . , Rq)

Return (b = b∗)

BPRG-NEXTBB,q
BPRG

(pp, bp)←$ init

S0←$ setup(pp)

(R1, . . . , Rq)← outq(next(pp, S0))

(S1, . . . , Sq)← stateq(next(pp, S0))

S∗q ←$ BB(pp, bp,R1, . . . , Rq)

Return (Sq = S∗q )

BPRG-RSEEKBB,q
BPRG(i, j)

(pp, bp)←$ init

S0←$ setup(pp)

(R1, . . . , Rq)← outq(next(pp, S0))

R∗j ←$ BB(pp, bp, i, j, Ri)

Return (Rj = R∗j )

Figure 5.4: Security games for backdoored PRGs from [57].

PRG = (init, setup, next)2 is secure in the face of a regular (non-backdoor) attacker. This

is important, since for Big Brother to be able to utilise his backdoor the BPRG itself must

be used in honest implementations. Algorithms which are clearly insecure are likely to

be rejected by implementers, and certainly would not achieve the widespread adoption

enjoyed by the standardised Dual-EC-DRBG. Dodis et al. [57] measure the PRG security

of a BPRG with respect to PRG-DIST; looking ahead, we will target the stronger notion

of PRG-FWD.

For our second metric, we measure the effectiveness of the backdoor embedded in BPRG

by assessing the probability that Big Brother, given bp, can achieve some backdooring goal.

Our results on BPRGs will state the advantage terms of both a regular PRG attacker A

and Big Brother BB in their respective games.

Backdooring games. To capture a given backdooring goal, we define a game

BPRNG-TYPEBB,q
BPRG with corresponding advantage term. The three games considered

in [57] are defined in Figure 5.4. In the left-hand panel of Figure 5.4, game BPRG-DIST

challenges Big Brother to break the PRG-DIST security of the PRG in the most basic

sense of distinguishing real from random outputs. The advantage term of Big Brother in

this game is defined

Advbprg-dist
BPRG (BB, q) = 2 ·

∣∣∣∣Pr
[

BPRG-DISTBB,q
BPRG ⇒ true

]
− 1

2

∣∣∣∣ .
In game BPRG-NEXTBB,q

BPRG (middle panel), BB aims to recover the current state of the

PRG given q consecutive outputs from the generator; the advantage term is defined

Advbprg-next
BPRG (BB, q) = Pr

[
BPRG-NEXTBB,q

BPRG ⇒ true
]
.

This is a far more powerful compromise, since achieving it allows BB to predict all of the

generator’s future outputs. Finally, in game BPRG-RSEEKBB,q
BPRG(i, j) (right-hand panel),

2We sometimes use BPRG = (init, setup, next,BB) to refer to the associated PRG PRG = (init, setup, next)
when clear from the context.
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BB is given the ith output and index j, and tries to recover the jth output. We define

Advbprg-rseek
BPRG (BB, q) = min

1≤i,j,≤q
Pr
[

BPRG-RSEEKBB,q
BPRG(i, j)⇒ true

]
.

In [57], Dodis et al. present constructions of BPRGs that are backdoored in the

BPRG-NEXT and BPRG-RSEEK senses. However, their construction of a BPRG of

the latter type is not forward secure.

A question. Notice that for certain parameter settings (namely the case in which j <

i), game BPRG-RSEEK requires Big Brother to recover an output produced prior to

that which was compromised. Intuitively, this seems somewhat at odds with forward

security, which requires that past outputs remains pseudorandom in the event of a state

compromise. This raises the question of whether forward security is inherently at odds

with forms of backdooring which allow recovery of past outputs / states. As well as being

of intrinsic interest, if such a relation were true it would give assurance that forward secure

PRGs — and thereby robust PRNGs — withstand certain forms of backdooring.

We explore this question in the remainder of the chapter — and ultimately answer it in the

negative — by presenting two forward secure BPRGs which contain a backdoor allowing

Big Brother to recover the initial state of the PRG.

5.3.3 Stronger Models and New Constructions for Backdoored PRGs

We begin by defining two new backdooring models for PRGs. As we will see, the stronger

of the two notions implies all the backdooring goals introduced in [57].

Backdoored PRG security models. Consider games BPRG-FIRST and BPRG-OUT

shown in Figure 5.5. In both games, the BPRG is run with initial state S0 to produce

q outputs R1, . . . , Rq, and the Big Brother adversary BB is given a particular output Ri

along with the backdoor parameter bp. In game BPRG-FIRST, BB is challenged to recover

the initial state of the BPRG, S0, with advantage defined

Advfirst
BPRG(BB, q) = min

1≤i≤q
Pr
[

BPRG-FIRSTBB,q
BPRG(i)⇒ true

]
.

In game BPRG-OUT, BB is recovered to recover all output values (including the q − 1
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BPRG-FIRSTBB,q
BPRG(i)

(pp, bp)←$ init

S0←$ setup(pp)

(R1, . . . , Rq)← outq(next(pp, S0))

S∗0 ←$ BB(pp, bp, i, Ri)

Return (S0 = S∗0 )

BPRG-OUTBB,q
BPRG(i)

(pp, bp)←$ init

S0←$ setup(pp)

(R1, . . . , Rq)← outq(next(pp, S0))

(R∗1 , . . . , R
∗
q)←$ BB(pp, bp, i, Ri)

Return ((R1, . . . Rq) = (R∗1 , . . . , R
∗
q))

Figure 5.5: Backdoored PRG security games BPRG-FIRST and BPRG-OUT.

unseen outputs), with corresponding advantage term

Advout
BPRG(BB, q) = min

1≤i≤q
Pr
[

BPRG-OUTBB,q
BPRG(i)⇒ true

]
.

5.3.4 Relations and Separations

Before presenting our BPRG constructions, we briefly discuss the relations and separa-

tions between the backdooring notions in [57] and our new definitions, BPRG-FIRST and

BPRG-OUT.

Relations. We say that one BPRG backdooring notion, BPRG-TYPE, implies another,

BPRG-TYPE′, if given any BPRG BPRG = (init, setup, next,BB) for which

Advtype
BPRG(BB, q) = δ we can define a new BPRG BPRG′ = (init, setup, next,BB′) with

similar advantage in game BPRG-TYPE′. Notice that the regular PRG security of BPRG′

is precisely that of BPRG, since the induced PRG PRG = (init, setup, next) is identical in

both cases.

Let BPRG = (init, setup, next,BB) be a BPRG for which Advfirst
BPRG(BB, q) = δ. We will

show that this implies the existence of BPRGs BPRGi = (init, setup, next,BBi) for i ∈ [1, 3]

with similar advantage in BPRG-TYPE for TYPE ∈ {DIST,NEXT,RSEEK} respectively.

For each BPRGi, the Big Brother algorithm BBi perfectly simulates BB’s view of game

BPRG-FIRST against BPRG. If BB wins that game by successfully recovering the initial

state of the generator, then BBi exploits this to succeed in his own challenge. This means

that BPRG-FIRST implies each of the backdooring notions given in [57] (and is in fact

strictly stronger, as we will show later in the section). We formalise this in the following

theorem.

Theorem 5.1. Let BPRG = (init, setup, next,BB) be a BPRG with parameters (n, `) ∈ N2

for which Advfirst
BPRG(BB, q) = δ. Then there exist BPRGs BPRGi = (init, setup, next,BBi)
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BB1(pp, bp,R1, . . . , Rq)

i←$ [1, q]

S∗0 ←$ BB(pp, bp, i, Ri)

(S∗1 , . . . , S
∗
q )← stateq(next(pp, S∗0 ))

Return S∗q

BB2(pp, bp, i, j, Ri)

S∗0 ←$ BB(pp, bp, i, Ri)

(R∗1 , . . . , R
∗
q)← outq(next(pp, S∗0 ))

Return R∗j

BB3(pp, bp,R1, . . . , Rq)

i←$ [1, q]

S∗0 ←$ BB(pp, bp, i, Ri)

(R∗1 , . . . , R
∗
q)← outq(next(pp, S∗0 ))

For i = 1, . . . , q

If (Ri 6= R∗i )

Return 1

Return 0

Figure 5.6: Big Brother algorithms for Theorem 5.1.

for i ∈ [1, 3] such that: (1) Advbprg-next
BPRG1

(BB1, q) ≥ δ; (2) Advbprg-rseek
BPRG2

(BB2, q) ≥ δ; and

(3) Advbprg-dist
BPRG3

(BB3, q) ≥ δ − 2−(q−1)·`.

Proof. For (1), consider the Big Brother algorithm BB1 shown in the left-hand panel of

Figure 5.6. Notice that in game BPRG-NEXT against BPRG1, BB1 perfectly simulates

BB’s view of the experiment in game BPRG-FIRST(i) against BPRG. Moreover, notice

that if BB returns the correct initial state S∗0 , then BB1 will in turn output the correct state

S∗q with probability one. The BPRG-FIRST success probability of BPRG then implies that

Advbprg-next
BPRG1

(BB1, q) ≥ Pr
[

BPRG-FIRST(i)BB,q
BPRG ⇒ true

]
≥ δ .

For (2), consider BB2 shown in the middle panel of Figure 5.6. Again it is the case that

BB2 in game BPRG-RSEEK against BPRG2 perfectly simulates BPRG-FIRST(i) for BB.

As before, conditioned on BB returning the correct value of S∗0 , it follows that BB2 will

return the correct output Rj with probability one, and so

Advbprg-rseek
BPRG2

(BB2, q) ≥ Pr
[

BPRG-FIRST(i)BB,q
BPRG ⇒ true

]
≥ δ .

Finally consider BB3, shown in the left-hand panel of Figure 5.6. In the case that the

challenge bit for BB3 in game BPRG-DIST is b = 0 (and so BB3 receives real outputs in

their challenge) an analogous argument to those used above implies that BB3 perfectly

simulates BPRG-FIRST(i) for BB. Moreover, BB3 will output one with probability zero

if BB succeeds in his game, and so it follows that Pr [ BB3 ⇒ 1 | b = 0 ] ≤ (1 − δ). On

the other hand, if b = 1 then the outputs (R1, . . . , Ri−1, Ri+1, . . . , Rq) which must match

those generated using S∗0 in order for BB3 to not return 1 are random and independent of

BB’s view of the experiment, implying that Pr [ BB3 ⇒ 1 | b = 1 ] ≥ 1−2−(q−1)·`. Putting

this together gives

Advbprg-dist
BPRG3

(BB3, q) ≥ (1− 2−(q−1)·`)− (1− δ) = δ − 2−(q−1)·` .
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This proves that BPRG-FIRST implies each of the backdooring notions in [57]. It is also

the case that BPRG-FIRST implies our second new backdooring notion, BPRG-OUT. To

see this, notice that since the initial state of a PRG determines all of its output, it is clear

that for any BPRG BPRG = (init, setup, next,BB) for which Advfirst
BPRG(BB, q) = δ, we can

define a BPRG BPRG′ = (init, setup, next,BB′) where BB′ passes his input to BB, computes

(R∗1, . . . , R
∗
q) ← outq(next(pp, S∗0)) where S∗0 is the state output by BB, and returns these

outputs to his challenger. It is straightforward to verify that Advbprg-out
BPRG′

(BB′, q) ≥ δ.

Separations. We will now construct separating examples to show that

BPRG-FIRST is in fact strictly stronger than all the other PRG backdooring mod-

els considered in this thesis. We describe the separating example for the BPRG-OUT

case; the other cases are similar. Let BPRG be a BPRG with state space S such that

Advbprg-out
BPRG (BB, q) = δ. We define a modified BRPG BPRG′ = (init′, setup′, next′,BB)

with state space S ′ = S ∪ {0, 1}n such that init′ = init, setup′ computes S0←$ setup(pp),

chooses d←$ {0, 1}n, and returns S′0 = S0 ‖ d, and next′ on input (pp, S ‖ d) simply com-

putes (R,S′) ← next(pp, S) and returns (R,S′ ‖ d). In particular, notice that the output

produced by BPRG′ is identical to that of BPRG, and so it is easy to see that the modified

BPRG′ has Advbprg-out
BPRG′

(BB, q) = δ also. However, since the output produced by BPRG′ is

entirely independent of the random state component d, for any candidate BPRG-FIRST

BPRG, BPRG′′ = (init′, setup′, next′,BB′′), it must hold that Advbprg-first
BPRG′′

(BB′′, q) ≤ 2−n

since BB′′ can do no better than guess the n unknown bits of state d.

Comparison to BPRG-OUT. The above arguments readily extend to show that any

BPRG-OUT BPRG is also backdoored in a BPRG-RSEEK and BPRG-DIST sense. How-

ever, the separating example used to imply that BPRG-OUT does not imply

BPRG-FIRST additionally implies that BPRG-OUT does not imply BPRG-NEXT (where

recall that the latter notion requires recovery of the current state of the PRG rather than

the first).

Discussion. From Big Brother’s perspective, in most practical attack scenarios the abil-

ity to compute all unseen output (as in BPRG-OUT) is as useful as being able to compute

the initial state (as in BPRG-FIRST), since it is the output values of the BPRG that will

be consumed in applications. This makes the BPRG-OUT notion a natural and powerful

target for constructions of BPRGs. That said, in the following sections we will go one
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init

(pk, sk)←$ Key

(PK, SK)←$ Gen

pp← (pk,PK)

bp← (sk,SK)

Return (pp, bp)

setup(pp)

(pk,PK)← pp

S0←$ {0, 1}n
Return S0

next(pp, S)

(pk,PK)← pp

r ← H(S)

R← Enc(pk, S; r)

S′ ← FPK(S)

Return (R,S′)

BB(pp, bp, i, Ri)

(sk,SK)← bp

S∗i−1 ← Dec(sk,Ri)

S∗0 ← F
−(i−1)
SK (S∗i−1)

Return S∗0

Figure 5.7: Construction of a forward secure BPRG BPRG = (init, setup, next,BB)
from a TDP family TDP = (Gen,F,F−1), an IND$-CPA-secure PKE scheme PKE =
(Key,Enc,Dec), and a hash function H : {0, 1}∗ → R.

better and present two constructions of forward secure BPRGs which achieve the strongest

BPRG-FIRST backdooring goal with probability one.

5.3.5 Forward Secure BPRGs in the Random Oracle Model

We now present the first of our two forward secure BPRG-FIRST backdoored PRGs.

Consider the construction BPRG = (init, setup, next,BB) shown in Figure 5.7. The con-

struction uses as ingredients an IND$-CPA secure PKE scheme PKE, a family of TDPs

TDP, and a hash function H with range equal to the coin space of PKE. For its security

analysis, we model H as a random oracle.

Construction overview. The scheme is reminiscent of the ‘Encrypt-with-Hash’(EwH)

transform for constructing deterministic encryption schemes from [14]. Parameter genera-

tion via init generates a public / secret key pair (pk, sk) for the PKE scheme, and public /

trapdoor parameters for the TDP (PK, SK). The public portions of these form the public

parameters of the BPRG, while their secret counterparts form Big Brother’s backdoor

parameter. An initial BPRG state is generated by sampling from the domain of the TDP,

S0←$ {0, 1}n.

With this in place, the next algorithm of the BPRG produces each output by encrypting

the current state S under pk using randomness produced by hashing S, ri ← H(Si−1),

C ← Enc(pk, Si−1; ri). It then updates the state by applying TDP, Si ← FPK(Si−1). The

IND$-CPA security of PKE ensures the resulting outputs are pseudorandom, while the

one-wayness of TDP implies that a regular forward security attacker is unable to recover

past states. However, given bp = (sk,SK) and an arbitrary output Ri, BB can simply
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decrypt Ri using Dec(sk, ·) to recover the underlying state Si−1. Using the trapdoor SK

to compute the (i − 1)st pre-image of Si−1 then allows BB to recover the initial state

S0 = F
−(i−1)
SK (Si−1) with probability one. We formalise this in the theorem below.

Analysis. Our analysis will be in the ROM, in which all adversaries and the challenger

are given access to the random oracle H. However, we do not give the algorithms of TDP

and PKE access to H. To see why this restriction is necessary, let PKE be an IND$-CPA

PKE scheme and H a hash function, and define PKE′ to be identical to PKE except,

on input (pk,M ; r), Enc checks if r = H(M), outputs M if the relation holds and C =

Enc(pk,M ; r) otherwise. It is straightforward to verify that PKE′ is still IND$-CPA and

that Dec can be modified to ensure correctness provided ciphertexts and messages can

clearly be distinguished by their length. However, the scheme cannot be used to instantiate

the EwH transform nor our construction. It seems possible that techniques similar to those

used in [16] could be used to develop a standard model variant of the construction, thereby

avoiding this idealised and admittedly unnatural restriction; we leave formalising this to

future work.

Theorem 5.2. Let TDP = (Gen,F,F−1) be a family of TDPs with domain {0, 1}n. Let

PKE = (Key,Enc,Dec) be a PKE scheme with coin space R, message space M⊇ {0, 1}n,

and ciphertext space C ⊆ {0, 1}∗, for which lenPKE(n) = `. Let H : {0, 1}∗ → R

be a hash function which we model as a random oracle. Consider the BPRG BPRG =

(init, setup, next,BB) built from these components as shown in Figure 5.7, with output

length ` and state space S = {0, 1}n. Then BPRG is such that

Advgame-first
BPRG (BB, q) = 1 .

Moreover, for any attacker A in game PRG-FWD∗ ∈ {PRG-FWD,PRG-FWD} against

PRG = (init, setup, next), who runs in time T and makes qH queries to the random oracle

H, there exist attackers B1,B2, and C such that

Advprg-fwd*
PRG (A, q) ≤ Advtdp-inv

TDP (B1) + Advtdp-inv
TDP (B2) + 2 ·Advind$-cpa

PKE (C, q) .

B1 runs in time O(q), and B2 runs in time T plus an O((qH + 1) · q + qH) overhead. C

runs in time T plus an O(q + qH) overhead.

Proof. The correctness of PKE immediately implies that Advfirst
BPRG(BB, q) = 1. It remains

to bound the security of PRG = (init, setup, next) against a standard PRG adversary A in

game PRG-FWD. We argue by a series of game hops, shown in Figure 5.8. Our main line
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of argument is given in games G0 −G5. Games G∗1 and G∗3 lie perpendicular to the other

games and are used to bound certain bad events.

We may without loss of generality assume that A never repeats a query to the random

oracle H. We begin by defining game G0, which is a re-writing of game PRG-FWD for

PRG with challenge bit b = 0 using a lazy-sampled random oracle. We also set a number

of flags, but these do not affect the outcome of the game. It follows that

Pr [G0 ⇒ 1 ] = Pr
[

PRG-FWDA,qPRG ⇒ 1 | b = 0
]
.

Next we define game G1, which is identical to G0 except we change the way in which the

random oracle H responds to queries. Namely, if H is queried more than once on a state

S0, . . . , Sq−1 (indicated by the set Q) in G1, then H responds with an independent random

string instead of the value previously set. These games run identically until the flag bad

is set, and so the Fundamental Lemma of Game Playing implies that:

|Pr [G0 ⇒ 1 ]− Pr [G1 ⇒ 1 ]| ≤ Pr [ bad = 1 in G1 ] .

To bound this probability, we make a distinction between: (1) bad being set during the

challenge computation if Si = Sj for some 0 ≤ i < j ≤ q−1, an event indicated by setting

the flag coll; and (2) bad being set after the challenge computation by A submitting a

query of the form Si for i ∈ [0, q − 1] to H, an event indicated by setting the flag guess.

Moreover, notice that bad is set if and only if at least one of coll and guess is set. A union

bound then implies that:

Pr [ bad = 1 in G1 ] = Pr [ coll ∨ guess = 1 in G1 ]

≤ Pr [ coll = 1 in G1 ] + Pr [ guess = 1 in G1 ] . (5.1)

To bound the probability of coll being set we define game G∗1, which is identical to G1

except we change the way in which the initial state S0 is computed. In more detail, instead

of setting S0 ←$ {0, 1}n as in G1, we now choose S′0 ←$ {0, 1}n and set S0 ← FPK(S′0).

Since FPK is a permutation, applying it to a point sampled uniformly from domain {0, 1}n

is equivalent to sampling directly from {0, 1}n, and so S0 is identically distributed in both

games. As such, this is a purely syntactic change, and so Pr [G1 ⇒ 1 ] = Pr [G∗1 ⇒ 1 ] and

Pr [ coll = 1 in G1 ] = Pr [ coll = 1 in G∗1 ].

We now bound the probability that coll is set in G∗1. We claim that there exists an attacker
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B1 in game TDP-INV against TDP such that

Pr [ coll = 1 in G∗1 ] ≤ Advtdp-inv
TDP (B1) , (5.2)

and moreover, B1 runs in time O(q). To see this, let B1 proceed as follows. On input

(PK, y), B sets S0 ← y. B1 then generates states by setting Si ← FPK(Si−1) for i ∈ [1, q].

Notice that this perfectly simulates the generation of states in G∗1. If during this process

B finds states Si = Sj for 0 ≤ i < j ≤ q − 1 — precisely the event that would set the

flag coll in G∗1 — then B halts and outputs Sj−i−1 in his game. If no such collision is

found, B1 aborts the simulation and outputs a random point from {0, 1}n. Notice that,

since F is a permutation, it must be the case that Sj−i−1 is the (unique) pre-image of B’s

challenge y = S0, and so conditioned on such a collision occurring B will win his game

with probability one. Since B1 invokes F at most q times it is straightforward to verify

that B1 runs in time O(q), and since games G1 and G∗1 are equivalent this in turn implies

that Pr [ coll = 1 in G1 ] ≤ Advtdp-inv
TDP (B1). We will return to bound Pr [ guess = 1 in G1 ]

and thereby complete our analysis of equation (5.1) in a later game.

We now return to our main series of game hops. We next define game G2, which is identical

to G1 except rather than generating the coins used for encryptions via ri ← H(Si−1) for

i = 1, . . . , q, we instead simply sample coins randomly from the coin space of the scheme

ri←$R. Since in G1 each H query on Si ∈ Q is answered with an independent random

string drawn from R (recall the modification to H in G1), this is a purely syntactic change

and so Pr [G1 ⇒ 1 ] = Pr [G2 ⇒ 1 ] and Pr [ guess = 1 in G1 ] = Pr [ guess = 1 in G2 ].

Next we define G3, which is identical to G2 except instead of computing outputs via

Ri ← Enc(pk, Si−1; ri) for ri ←$ R, we instead set Ri ←$ {0, 1}` for i ∈ [1, q]. We claim

that there exists an attacker C1 in game IND$-CPA against PKE, running in time T plus

an O(q + qH) overhead and who makes q queries to his real-or-random oracle, such that

|Pr [G2 ⇒ 1 ]− Pr [G3 ⇒ 1 ]| = Advind$-cpa
PKE (C1, q) .

To see this, let C1 be the attacker who proceeds as follows. On input pk, C1 generates a

public parameter / trapdoor pair for TDP via (PK,SK)←$Gen, and sets pp← (pk,PK). C1

chooses an initial state S0←${0, 1}n. For i ∈ [1, q], C1 generates a challenge output / state

by querying Si−1 to his real-or-random encryption oracle, setting Ri equal to the response,

and updating the state via Si ← FPK(Si−1). Finally, C1 passes (pp,R1, . . . , Rq, Sq) to A,

and simulates H for A by returning an independent random string drawn from R in
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response to each query. When A outputs a bit, C1 outputs the same bit to his challenger.

If C1 receives real encryptions from his real-or-random oracle then this perfectly simulates

G2; otherwise it perfectly simulates G3. It follows that

Advind$-cpa
PKE (C1, q) =

∣∣∣Pr
[
CEnc(pk,·)

1 (pk)⇒ 1 : (pk, sk)←$ Key
]

− Pr
[
C$(·)

1 (pk)⇒ 1 : (pk, sk)←$ Key
]∣∣∣

= |Pr [G2 ⇒ 1 ]− Pr [G3 ⇒ 1 ] .

It is straightforward to verify that C1 makes q oracle queries, and runs in the same time

as A plus an O(q + qH) overhead to account for computing the challenge and simulating

the H queries, thereby proving the claim.

Moreover, we claim that there exists an attacker C2 in game IND$-CPA against PKE who

makes q queries to his real-or-random oracle and runs in the same time as C1, such that

Pr [ guess = 1 in G2 ] ≤ Pr [ guess = 1 in G3 ] + Advind$-cpa
PKE (C2, q) . (5.3)

We define C2 to proceed identically to C1 up to and including the point C1 passes the

challenge to A. At this point, C2 starts to simulate H for A by returning an independent

random string in response to each ofA’s queries as before. However, if one ofA’s qH queries

causes guess to be set — that is to say, A queries one of the states inQ = {Si : i ∈ [0, q−1]}

to H, then A halts and outputs 1 to his own challenger. If this event does not occur, then

at the end of the simulation he returns 0. Notice that C2 outputs 1 if and only if the flag

guess is set. Moreover, notice that if C2 receives real encryptions from his oracle then this

perfectly simulates G2; otherwise it perfectly simulates G3. It follows that

Advind$-cpa
PKE (C2, q) =

∣∣∣Pr
[
CEnc(pk,·)

2 (pk)⇒ 1 : (pk, sk)←$ Key
]

− Pr
[
C$(·)

2 (pk)⇒ 1 : (pk, sk)←$ Key
]∣∣∣

= |Pr [ guess = 1 in G2 ]− Pr [ guess = 1 in G3 ]| .

An analogous argument to that used above verifies C2’s run time and query budget. Re-

arranging and invoking the triangle inequality then proves the claim.

We now bound Pr [ guess = 1 in G3 ]. We first define another perpendicular game G∗3 in

which we modify the way in which the sequence of states S0, . . . , Sq are computed. Namely,

263



5.3 Backdooring Pseudorandom Generators

instead of choosing S0←${0, 1}n and setting Si ← FiPK(S0) for i ∈ [1, q], we instead choose

Sq−1 ←$ {0, 1}n, set Sq = FPK(Sq−1), and Si = F−q+iPK (Sq) for i = 0, . . . , q − 2. (Note

that the challenger knows the trapdoor SK for the TDP, and so can compute the required

pre-images). Again, since TDP is a permutation, the sequence of states S0, . . . , Sq is

identically distributed in both games. As such, this is a purely syntactic change and so

Pr [G3 ⇒ 1 ] = Pr [G∗3 ⇒ 1 ] and Pr [ guess = 1 in G3 ] = Pr [ guess = 1 in G∗3 ].

With this in place, we claim that there exists an attacker B2 in game TDP-INV against

TDP such that

Pr [ guess = 1 in G∗3 ] ≤ Advtdp-inv
TDP (B2) ,

where B2 runs in the same time as A plus an O((qH + 1) · q+ qH) overhead. Let B2 be the

attacker who proceeds as follows. On input (PK, y), B2 begins by generating a public /

secret key pair for the PKE scheme via (pk, sk)←$Key and sets pp← (pk,PK). B2 chooses

Ri ←$ {0, 1}` for i ∈ [1, q], sets Sq ← y, and passes (pp,R1, . . . , Rq, Sq) to A. B2 begins

simulating H for A by answering each query with an independent random string. Since

FPK is a permutation, there is a unique sequence of states / pre-images S0, . . . , Sq−1 which

correspond to Sq = y, and these make up the set Q = {Sq−i = F−iPK(Sq) : i ∈ [1, q]}. The

flag guess is set if and only if A queries Si ∈ Q to H. Now for a good TDP, Q will not be

immediately known to B2 (since computing any point in Q corresponds to inverting y).

However, letting X1, . . . , XqH
denote the set of H queries made by A, B2 can test whether

each Xj lies in Q as follows. For each H query Xj , B2 uses PK to compute νij = FiPK(Xj)

for i ∈ [1, q], and checks if νij = Sq (where recall Sq = y is the value B2 is trying to invert).

If such a relation holds, then this implies that Xj = F−iSK(Sq) = Sq−i ∈ Q, and so such a

query causes guess to be set with probability one. If such a query is made, B2 then halts

the simulation and outputs νi−1
j = Sq−1 to his own challenger. Since FPK is a permutation,

this will be equal to the unique preimage of B2’s challenge Sq = y with probability one,

and so Advtdp-inv
TDP (B2) ≥ Pr [ guess = 1 in G∗3 ]. Moreover, B2 runs in the same time as A

with an O((qH +1) ·q+qH) overhead, which accounts for the q FPK computations B2 makes

for each of A’s qH queries, plus the O(q+ qH) overhead required to compute the challenge

and simulate the oracle queries.

We may now put this altogether to finally bound equation (5.1). From (5.3) and the

previous line of argument we have that Pr [ guess = 1 in G1 ] ≤ Pr [ guess = 1 in G∗3 ] +

Advind$-cpa
PKE (C2, q), and by (5.2) it holds that Pr [ coll = 1 in G1 ] ≤ Advtdp-inv

TDP (B1). Sub-
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stituting into (5.1) then yields

Pr [ bad = 1 in G1 ] ≤ Advtdp-inv
TDP (B1) + Advtdp-inv

TDP (B2) + Advind$-cpa
PKE (C2, q) .

With this in place, we again return to our main line of game hops, and define G4 to be

identical to G3 except we remove the now redundant coins ri ←$ R sampled during the

challenge computation. Since these coins are not used in either game, this is clearly a

syntactic change and so Pr [G3 ⇒ 1 ] = Pr [G4 ⇒ 1 ]. We then define G5 to be identical to

G4, except we return the random oracle to answer consistently on the points in Q. Since

these points are not queried to H by the challenger in either game, and by assumption A

never repeats a query, in neither game will these points be queried to H more than once.

As such the games are equivalent, and Pr [G4 ⇒ 1 ] = Pr [G5 ⇒ 1 ].

Moreover, it is straightforward to verify that G5 is identical to PRG-FWD for PRG with

challenge bit b = 1, and so

Pr [G5 ⇒ 1 ] = Pr
[

PRG-FWDA,qPRG ⇒ 1 | b = 1
]
.

Combining the above observations via a standard argument implies that there exist ad-

versaries B1,B2, and C with the claimed query budgets such that

Advprg-fwd
PRG (A, q) =

∣∣∣∣Pr
[

PRG-FWDA,qPRG ⇒ 1 | b = 0
]
− Pr

[
PRG-FWDA,qPRG ⇒ 1 | b = 1

] ∣∣∣∣
≤ Advtdp-inv

TDP (B1) + Advtdp-inv
TDP (B2) + 2 ·Advind$-cpa

PKE (C, q) .

This concludes the proof of PRG-FWD security for PRG. We now claim that the same

bound holds for PRG-FWD security. Looking ahead, we shall utilise this security property

in Section 5.4 to show that BPRG can be used to instantiate a construction of a simple

backdoored PRNG. To this end, we define game G6 to be identical to G5 except we

overwrite the final state Sq ← FqPK(S0) for S0 ←$ {0, 1}n with a freshly sampled state

Sq ←$ {0, 1}n. Since F is a permutation and the intermediate states Si ← FiPK(S0) for

i ∈ [0, q − 1] are not used in either game other than to compute Sq, it follows that both

games are identically distributed. Moreover, it is straightforward to verify that game G6

is equivalent to game PRG-FWD against PRG with challenge bit b = 1. Since G0 was

equivalent to game PRG-FWD with challenge bit b = 0, extending the above argument

to include the hop to G6 implies the PRG-FWD security of PRG also, thereby concluding

the proof.
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proc. // main G0, G1

chal-set← 0 ;Q ← ∅
(pk, sk)←$ Key

(PK, SK)←$ Gen

pp← (pk,PK)

bp← (sk,SK)

S0←$ {0, 1}n
For i = 1, . . . , q

ri ← H(Si−1)

Q ← Q∪ {Si−1}
Ri ← Enc(pk, Si−1; ri)

Si ← FPK(Si−1)

chal-set← 1

b∗←$AH(pp,R1, . . . , Rq , Sq)

Return b∗

proc. // main G∗1
chal-set← 0 ;Q ← ∅
(pk, sk)←$ Key

(PK, SK)←$ Gen

pp← (pk,PK)

bp← (sk,SK)

S′0←$ {0, 1}n
S0 ← FPK(S′0)

For i = 1, . . . , q

ri ← H(Si−1)

Q ← Q∪ {Si−1}
Ri ← Enc(pk, Si−1; ri)

Si ← FPK(Si−1)

chal-set← 1

b∗←$AH(pp,R1, . . . , Rq , Sq)

Return b∗

proc. // main G2, G3

chal-set← 0 ;Q ← ∅
(pk, sk)←$ Key

(PK, SK)←$ Gen

pp← (pk,PK)

bp← (sk,SK)

S0←$ {0, 1}n
For i = 1, . . . , q

ri←$R
Q ← Q∪ {Si−1}
Ri ← Enc(pk, Si−1; ri)

Ri←$ {0, 1}`

Si ← FPK(Si−1)

chal-set← 1

b∗←$AH(pp,R1, . . . , Rq , Sq)

Return b∗

proc. // main G∗3
chal-set← 0 ;Q ← ∅
(pk, sk)←$ Key

(PK, SK)←$ Gen

pp← (pk,PK)

bp← (sk,SK)

Sq−1←$ {0, 1}n
Q ← Q∪ Sq−1

Sq ← FPK(Sq−1)

For i = 0, . . . , q − 2

Si ← F−q+iPK (Sq)

Q ← Q∪ {Si}
For i = 1, . . . , q

ri←$R
Ri←$ {0, 1}`

chal-set← 1

b∗←$AH(pp,R1, . . . , Rq , Sq)

Return b∗

proc. // main G4, G5, G6

chal-set← 0 ;Q ← ∅
(pk, sk)←$ Key

(PK,SK)←$ Gen

pp← (pk,PK)

bp← (sk,SK)

S0←$ {0, 1}n
For i = 1, . . . , q

Q ← Q∪ {Si−1}
Ri←$ {0, 1}`
Si ← FPK(Si−1)

chal-set← 1

Sq ←$ {0, 1}n

b∗←$AH(pp,R1, . . . , Rq , Sq)

Return b∗

proc. H(X) // G0 , G1, . . . , G4, G5

Y ←$R
If X ∈ Q

bad← true

If chal-set = 0 then coll← true

Else guess← true

Y ← H[X]

H[X]← Y

Return Y

Figure 5.8: Games for proof of Theorem 5.2.

5.3.6 Standard Model Forward Secure BPRGs from Reverse Re-Randomisable

Encryption

We now present our second BPRG construction, in which we dispense with the ROM

and the use of trapdoor permutations at the expense of requiring the IND$-CPA-secure

PKE scheme to be reverse re-randomisable (see Definition 5.3). Such PKE schemes can

be instantiated in the standard model using the encoded variant of ElGamal sketched in

Section 5.2.

Consider the BPRG BPRG = (init, setup, next,BB) shown in Figure 5.9. The scheme is

based on a (non-backdoored) forward secure PRG, PRG′ = (init′, setup′, next′), which we

will augment to embed a backdoor using a reverse re-randomisable PKE scheme rrPKE =

(Key,Enc,Dec,Rand,Rand−1). Looking ahead, we will take a similar approach of modifying

a robust PRNG using a re-randomisable PKE scheme to construct a robust backdoored
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PRNG in Section 5.4. To simplify the presentation of the construction, we write (t, s) to

denote output / state pairs produced by PRG′, to distinguish these from the outputs and

states produced by BPRG.

Construction overview. The public and backdoor parameters of BPRG are defined to

be (pp, bp) = ((pk, pp′), sk), where pp′ is a public parameter for the underlying PRG PRG′,

and (pk, sk) are a public / secret key pair for rrPKE. The initial state of BPRG is set to

(s0, C0), where s0 is an initial state for PRG′ and C0 ←$ Enc(pk, s0) is an encryption of

that state under pk.

On input (pp, (s, C)), next first applies next′ to s to generate an output / state pair

(t, s′) ← next′(pp′, s). The output t is then used to re-randomise the ciphertext stored in

the state via C ′ ← Rand(pk,C; t). The algorithm then returns an output and state pair of

the form (R,S) = (C, (s′, C ′)). Since rrPKE is re-randomisable and IND$-CPA, the output

C will appear random and independent from the re-randomised ciphertext C ′ stored in

the state. Combined with the forward security of PRG′, this implies the forward security

of BPRG.

By construction, it holds that whichever output, Ri, Big Brother receives in his challenge,

this corresponds to a ciphertext Ci−1 encrypting the initial underlying PRG state s0 which

has been re-randomised (i − 1) times. BB can simply decrypt Ri = Ci−1 to recover s0,

then run PRG′ forward to recover t1, . . . , tq and use these to iteratively reverse the re-

randomisations of Ci−1 to recover C0. Setting S0 = (s0, C0) thereby reconstructs the

initial state of BPRG. We formalise this in the following theorem.

Theorem 5.3. Let PRG′ = (init′, setup′, next′) be a PRG with output length `′ and state

space S = {0, 1}n. Let rrPKE = (Key,Enc,Dec,Rand,Rand−1) be a reverse re-randomisable

PKE scheme with message space M⊇ {0, 1}n and ciphertext space C ⊆ {0, 1}∗, for which

Rand has coin space Z = {0, 1}`′ and lenPKE(n) = `. Consider the BPRG BPRG =

(init, setup, next,BB) built from these components as shown in Figure 5.9, with output

length ` and state space S = {0, 1}n+`. Then BPRG is such that

Advgame-first
BPRG (BB, q) = 1 .

Moreover, for any attacker A in game PRG-FWD against PRG = (init, setup, next) who

runs in time T , there exist attackers B,B′1,B′2, and C running in time T plus an O(q)
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init

(pk, sk)←$ Key

(pp′,⊥)←$ init′

pp← (pk, pp′)

bp← sk

Return (pp, bp)

setup(pp)

(pk, pp′)← pp

s0←$ setup′(pp′)

C0←$ Enc(pk, s0)

S0 ← (s0, C0)

Return S0

next(pp, S)

(pk, pp′)← pp

(s, C)← S

(t, s′)← next′(pp′, s)

C′ ← Rand(pk, C; t)

R← C ;S ← (s′, C′)

Return (R,S)

BB(pp, bp, i, Ri)

(pk, pp′)← pp ; sk ← bp

C∗i−1 ← Ri
s∗0 ← Dec(sk, C∗i−1)

(t∗1, . . . , t
∗
q)← outq(next′(pp′, s∗0))

For j = i− 1, . . . , 1

C∗j−1 ← Rand−1(pk, C∗j , t
∗
j )

S∗0 ← (s∗0, C
∗
0 )

Return S∗0

Figure 5.9: Construction of a forward secure BPRG BPRG = (init, setup, next,BB) from a
reverse re-randomisable PKE scheme rrPKE = (Key,Enc,Dec,Rand,Rand−1) and a forward
secure PRG PRG′ = (init′, setup′, next′).

overhead, such that

Advprg-fwd
PRG (A, q) ≤ 2 ·Advind-cpa

rrPKE (B, 1) + Advind$-cpa
rrPKE (B′1, q)

+ Advind$-cpa
rrPKE (B′2, 1) + 2 ·Advprg-fwd

PRG′
(C, q) + 2q ·∆rrPKE .

Furthermore, we can define attackers B,B′, and C, running in time T plus an O(q) over-

head, such that

Advprg-fwd
PRG (A, q) ≤ 2 ·Advind-cpa

rrPKE (B, 1)+Advind$-cpa
rrPKE (B′, q)+Advprg-fwd

PRG′
(C, q)+q ·∆rrPKE .

Proof. The correctness of rrPKE immediately implies that Advfirst
BPRG(BB, q) = 1. To prove

the PRG-FWD security of PRG = (init, setup, next) we argue by a series of game hops,

shown in Figure 5.10. We begin by defining game G0, which is identical to PRG-FWD

against PRG with challenge bit b = 0. It follows that

Pr
[

PRG-FWDA,qPRG ⇒ 1 | b = 0
]

= Pr [G0 ⇒ 1 ] .

Next we define game G1, which is identical to G0 except we change the way in which the

initial state S0 = (s0, C0) is computed. Namely, instead of setting C0 ←$ Enc(pk, S0) as

in G0, we instead sample an independent initial state for the underlying PRG PRG′ via

M ←$ setup(pp′) and set C0←$ Enc(pk,M). We claim that there exists an attacker B1 in

game IND-CPA against rrPKE, who runs in time T plus an O(q) overhead and makes a

single query to their left-or-right oracle, such that

|Pr [G1 ⇒ 1 ]− Pr [G0 ⇒ 1 ]| ≤ Advind-cpa
rrPKE (B1, 1) .

To see this, let B1 be the attacker who proceeds as follows. On input pk, B1 begins

by generating public parameters for PRG′ via (pp′,⊥)←$ init′. B1 then generates states
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s0,M←$init(pp′). B1 queries (s0,M) to his left-or-right oracle, receiving C0 in response. B1

sets S0 = (s0, C0) and computes the q challenge outputs and corresponding states following

the pseudocode description in G1 (this accounts for the O(q) overhead in B1’s run time).

At the end of the game, B1 outputs whatever bit A does. Notice that if B1 receives real

outputs in his game then this perfectly simulates G0, otherwise it perfectly simulates G1.

Combining these observations via a standard argument then implies the claim.

Next we define game G2, which is identical to G1 except we sample the strings used for re-

randomisations uniformly at random, ti←$ {0, 1}`′ for i ∈ [1, q], as opposed to generating

these using PRG′. We claim that there exists an attacker C1 in game PRG-FWD against

PRG′, who runs in time T plus an O(q) overhead, such that

|Pr [G2 ⇒ 1 ]− Pr [G1 ⇒ 1 ]| ≤ Advprg-fwd
PRG′

(C1, q) .

To see this, let C1 be the adversary who proceeds as follows. On input (pp′, t1, . . . , tq, sq),

C1 begins by generating a public / secret key pair for rrPKE, (pk, sk)←$ Key, and sets

pp = (pk, pp′). C1 then generates M ←$ setup(pp′), and encrypts M under pk to yield C0.

C1 uses the outputs received in his challenge to iteratively compute Ci ← Rand(pk,Ci−1; ti)

and Ri ← Ci−1 for i ∈ [1, q]. Finally, C1 sets Sq = (sq, Cq) where recall that sq is the state

received in his challenge, and passes (pp,R1, . . . , Rq, Sq) to A. When A outputs a bit, C1

outputs whatever bit A does. Notice that if C1 receives real PRG outputs in his challenge

then this perfectly simulates G1; otherwise it perfectly simulates G2, thereby proving the

claim.

Next we define game G3, which is identical to G2 except we set Ci ←$ Enc(pk,M) for

i ∈ [1, q], as opposed to generating these by re-randomising the previous ciphertext state

component, Ci ← Rand(pk, Ci−1; ti). We claim that

|Pr [G3 ⇒ 1 ]− Pr [G2 ⇒ 1 ]| ≤ q ·∆rrPKE .

We first define a series of hybrid gamesHi, whereH0 is equivalent toG2, Hq is equivalent to

G3, and for each i ∈ [1, q], Hi is identical to Hi−1 except we replace Ci ← Rand(pk,Ci−1; ti)

with Ci←$ Enc(pk,M). The triangle inequality implies that

|Pr [G3 ⇒ 1 ]− Pr [G2 ⇒ 1 ]| = |Pr [Hq ⇒ 1 ]− Pr [H0 ⇒ 1 ]|

≤
q∑
i=1

|Pr [Hi ⇒ 1 ]− Pr [Hi−1 ⇒ 1 ]| .

Notice that for each i ∈ [1, q], A’s view of game Hi can be computed as a deterministic
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function of ((pk, pp′), s0, C0, . . . , Ci) (i.e., by running PRG′ forward using (pp′, s0) to gener-

ate sq and ti for i ∈ [1, q], setting Cj ← Rand(pk,Cj−1; tj) for j ∈ [i+1, q], and assembling

the outputs and states accordingly). Letting gi denote this function, we may write:

|Pr [Hi ⇒ 1 ]−Pr [Hi−1 ⇒ 1 ]| = |Pr
[
A(gi((pk, pp

′), s0, C0, . . . , Ci−1,Enc(pk,M))⇒ 1
]

− Pr
[
A(gi((pk, pp

′), s0, C0, . . . , Ci−1,Rand(pk, Ci−1; ti))⇒ 1
]
| ,

where Cj ←$ Enc(pk,M) for j ∈ [0, i − 1]. By the definition of a re-randomisable PKE

scheme, we have that:

∆({Ci : Ci←$ Enc(pk,M)}, {Ci : ti←$ {0, 1}`′ ;Ci ← Rand(pk, Ci−1; ti)}) ≤ ∆rrPKE .

Noting that applying a function to two random variables cannot increase their statistical

distance, this implies that |Pr [Hi ⇒ 1 ] − Pr [Hi−1 ⇒ 1 ]| ≤ ∆rrPKE for each i ∈ [1, q].

Summing over the q pairs of games then implies the claim.

Next we define game G4, which is identical to G3 except we replace all the ciphertexts

Ci−1←$ Enc(pk,M) for i ∈ [1, q] which form the outputs of PRG with random bit strings

Ci−1←$ {0, 1}`. Notice that we do not replace Cq (which does not form a PRG output)

since looking ahead this will form part of the ‘real’ state that is given to the attacker

regardless of the challenge bit. We claim there exists an adversary B′1 in game IND$-CPA

against rrPKE, who runs in time T plus an O(q) overhead and makes q queries to his

real-or-random oracle, such that

|Pr [G4 ⇒ 1 ]− Pr [G3 ⇒ 1 ]| ≤ Advind$-cpa
rrPKE (B′1, q) .

To see this, let B′1 be the attacker who proceeds as follows. On input pk, B′1 generates

public parameters for PRG′ via (pp′,⊥)←$ init′, sets pp = (pk, pp′), and samples states

s0,M ←$ setup′(pp′). To generate A’s challenge, B′1 first runs PRG′ forward to generate

(s1, . . . , sq) ← stateq(next′(pp′, s0)). B′1 then queries M to his real-or-random oracle q

times, receiving C0, . . . , Cq−1 in response. B′1 sets Ri = Ci−1 for i ∈ [1, q], uses pk to

compute Cq ←$ Enc(pk,M), and passes (pp,R1, . . . , Rq, (sq, Cq)) to A. At the end of the

game, B′1 outputs whatever bit A does. Notice that if B′1 receives real ciphertexts from

his oracle then this perfectly simulates G3; otherwise it perfectly simulates G4, thereby

implying the claim.

Next we define game G5, which is identical to G4 except we now: (1) explicitly sample

outputs as Ri ←$ {0, 1}` for i ∈ [1, q], rather than choosing Ci−1 ←$ {0, 1}` and setting
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Ri = Ci−1; and (2) return to computing C0 ←$ Enc(pk,M) when generating the initial

PRG state, rather than sampling C0←$ {0, 1}`. Since R1, . . . , Rq are already equivalent to

uniform bit strings in G4, (1) is a purely syntactic change. To bound (2), we claim that

there exists an attacker B′2 in game IND$-CPA against rrPKE, who runs in time T plus

an O(q) overhead and makes a single query to his real-or-random oracle, such that

|Pr [G5 ⇒ 1 ]− Pr [G4 ⇒ 1 ]| ≤ Advind$-cpa
rrPKE (B′2, 1) .

We define B′2 to proceed identically to B′1 in the previous reduction, except during the

challenge computation B′2 makes only a single query M to his real-or-random oracle (set-

ting C0 equal to the response) and samples random outputs Ri←$ {0, 1}` for i ∈ [1, q]. As

before, if B′2 receives a real encryption in his challenge then this perfectly simulates G4;

otherwise it perfectly simulates G5, thereby implying the claim.

Next we define game G6, which is identical to G5 except we return to computing Cq

as the qth re-randomisation of C0, Cq ← Rand(pk,C0; t1, . . . , tq), rather than as a fresh

ciphertext. An analogous argument to that made above, invoking the re-randomisability

of rrPKE, implies that

|Pr [G6 ⇒ 1 ]− Pr [G5 ⇒ 1 ]| ≤ q ·∆rrPKE .

Next we define game G7, which is identical to G6 except we return to computing t1, . . . , tq

via PRG′ rather than sampling these randomly. Since both games can be perfectly sim-

ulated by an attacker in PRG-FWD against PRG′, an analogous argument to that made

above implies that there exists an attacker C2 with the claimed run time such that

|Pr [G7 ⇒ 1 ]− Pr [G6 ⇒ 1 ]| ≤ Advprg-fwd
PRG′

(C2, q) .

Finally we define game G8, which is identical to G7 except we return to setting

C0 ←$ Enc(pk, s0) when generating the initial state. By an analogous argument to that

made previously, both games can be perfectly simulated by an adversary B2 in game

IND-CPA against rrPKE with the claimed run time and query budget, and so

|Pr [G8 ⇒ 1 ]− Pr [G7 ⇒ 1 ]| ≤ Advind-cpa
rrPKE (B2, 1) .

Moreover, notice that game G8 is identical to PRG-FWD against PRG with challenge bit

b = 1, and so

Pr
[

PRG-FWDA,qPRG ⇒ 1 | b = 1
]

= Pr [G8 ⇒ 1 ] .
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Putting this altogether via a standard argument, it follows that

Advprg-fwd
PRG (A, q) ≤ 2 ·Advind-cpa

rrPKE (B, 1) + Advind$-cpa
rrPKE (B′1, q)

+ Advind$-cpa
rrPKE (B′2, 1) + 2 ·Advprg-fwd

PRG′
(C, q) + 2q ·∆rrPKE .

This concludes the proof of PRG-FWD security for PRG. We now prove that PRG also

achieves PRG-FWD security as a straightforward extension of the above result. We argue

by a series of game hops, also shown in Figure 5.10, where we define games G′0 and G′1

to be identical to G0 and G1 respectively. An identical argument to that used previously

implies that there exists an attacker B1 in game IND-CPA against rrPKE with the claimed

run time such that

|Pr
[
G′1 ⇒ 1

]
− Pr

[
G′0 ⇒ 1

]
| ≤ Advind-cpa

rrPKE (B1, 1) .

In game G′2, we replace the PRG′ outputs t1, . . . , tq with uniform bit strings as in G2, but

now also replace the final PRG′ state with a freshly generated state sq ←$ setup′(pp′). A

straightforward reduction to the PRG-FWD security of PRG′ implies that there exists an

adversary C, running in time T plus an O(q) overhead, such that

|Pr
[
G′2 ⇒ 1

]
− Pr

[
G′1 ⇒ 1

]
| ≤ Advprg-fwd

PRG′
(C, q) .

We define games G′3, G′4 to be identical to games G3, G4 respectively, but with the extra

line of code setting sq←$ setup′(pp′) (introduced in the previous game hop) included. An

entirely analogous argument to that made previously implies that there exists an adversary

B′ with the claimed run time such that

|Pr
[
G′4 ⇒ 1

]
− Pr

[
G′2 ⇒ 1

]
| ≤ q ·∆rrPKE + Advind$-cpa

rrPKE (B′, q) .

In game G′5, we replace the ciphertext Cq ←$ Enc(pk,M) in the challenge state with

Cq←$ Enc(pk, sq). (We also remove some redundant lines of code; it is straightforward to

verify that this does not alter the distribution of the game.) A reduction to the IND$-CPA

security of rrPKE implies the existence of an attacker B2 with the claimed run time such

that

|Pr
[
G′5 ⇒ 1

]
− Pr

[
G′4 ⇒ 1

]
| ≤ Advind-cpa

rrPKE (B2, 1) .

Moreover, notice that the challenge computation in G′5 is equivalent to that in PRG-FWD

with challenge bit b = 1. Combining the above via a standard argument, implies that

there exists attackers B,B′, C with the claimed run times and query budgets, such that

Advprg-fwd
PRG (A, q) ≤ 2 ·Advind-cpa

rrPKE (B, 1)+Advind$-cpa
rrPKE (B′, q)+Advprg-fwd

PRG′
(C, q)+q ·∆rrPKE .
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proc. main // G0, G1

(pk, sk)←$ Key

(pp′,⊥)←$ init′

pp← (pk, pp′)

bp← sk

s0←$ setup′(pp′)

C0←$ Enc(pk, s0)

M ←$ setup′(pp′)

C0←$ Enc(pk,M)

S0 ← (s0, C0)

For i = 1, . . . , q

(ti, si)← next′(pp′, si−1)

Ci ← Rand(pk, Ci−1; ti)

Ri ← Ci−1

Sq ← (sq , Cq)

b∗←$A(pp,R1, . . . , Rq , Sq)

Return b∗

proc. main // G2, G′2, G3, G
′
3

(pk, sk)←$ Key

(pp′,⊥)←$ init′

pp← (pk, pp′)

bp← sk

s0←$ setup′(pp′)

M ←$ setup′(pp′)

C0←$ Enc(pk,M)

S0 ← (s0, C0)

For i = 1, . . . , q

(ti, si)← next′(pp′, si−1)

ti←$ {0, 1}`′

Ci ← Rand(pk, Ci−1; ti)

Ci←$ Enc(pk,M)

Ri ← Ci−1

sq ←$ init′(pp′) // G′2, G
′
3 only

Sq ← (sq , Cq)

b∗←$A(pp,R1, . . . , Rq , Sq)

Return b∗

proc. main // G4

(pk, sk)←$ Key

(pp′,⊥)←$ init′

pp← (pk, pp′)

bp← sk

s0←$ setup′(pp′)

M ←$ setup′(pp′)

C0←$ {0, 1}`
S0 ← (s0, C0)

For i = 1, . . . , q

(ti, si)← next′(pp′, si−1)

ti←$ {0, 1}`′

Ci←$ {0, 1}`
Ri ← Ci−1

sq ←$ init′(pp′) // G′4 only

Cq ←$ Enc(pk,M)

Sq ← (sq , Cq)

b∗←$A(pp,R1, . . . , Rq , Sq)

Return b∗

proc. main // G5, G6

(pk, sk)←$ Key

(pp′,⊥)←$ init′

pp← (pk, pp′)

bp← sk

s0←$ setup′(pp′)

M ←$ setup′(pp′)

C0←$ Enc(pk,M)

S0 ← (s0, C0)

For i = 1, . . . , q

(ti, si)← next′(pp′, si−1)

ti←$ {0, 1}`′

Ri←$ {0, 1}`
Cq ←$ Enc(pk,M)

Cq ← Rand(pk, C0; t1, . . . , tq)

Sq ← (sq , Cq)

b∗←$A(pp,R1, . . . , Rq , Sq)

Return b∗

proc. main // G7, G8

(pk, sk)←$ Key

(pp′,⊥)←$ init′

pp← (pk, pp′)

bp← sk

s0←$ setup′(pp′)

M ←$ setup′(pp′)

C0←$ Enc(pk,M)

C0←$ Enc(pk, s0)

S0 ← (s0, C0)

For i = 1, . . . , q

(ti, si)← next′(pp′, si−1)

Ri←$ {0, 1}`
Cq ← Rand(pk, C0; t1, . . . , tq)

Sq ← (sq , C0)

b∗←$A(pp,R1, . . . , Rq , Sq)

Return b∗

proc. main // G′5
(pk, sk)←$ Key

(pp′,⊥)←$ init′

pp← (pk, pp′)

bp← sk

s0←$ setup′(pp′)

M ←$ setup′(pp′)

C0←$ {0, 1}`
S0 ← (s0, C0)

For i = 1, . . . , q

Ri←$ {0, 1}`
sq ←$ init′(pp′)

Cq ←$ Enc(pk, sq)

Sq ← (sq , Cq)

b∗←$A(pp,R1, . . . , Rq , Sq)

Return b∗

Figure 5.10: Games for proof of Theorem 5.3.

This concludes our analysis of the two forward secure BPRG-FIRST backdoored PRGs

presented in this section. We now build on these results to address the main theme of the

chapter: backdooring robust PRNGs with input.

5.4 Backdooring Pseudorandom Number Generators with Input

Having demonstrated that forward security for PRGs offers no protection against back-

dooring, we turn our attention to subverting a primitive with far stronger security prop-

erties: robust PRNGs with input. In this section we present the first provable security
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treatment of backdoored PRNGs (BPRNGs), giving definitions and concrete construc-

tions. We begin by specifying our BPRNG syntax.

BPRNG syntax. BPRNGs are defined analogously to BPRGs (see Section 5.3) as

a PRNG with an associated Big Brother algorithm BB which represents the backdoor

attacker. More formally, a BPRNG BPRNG = (init, setup, refresh, next,BB) with param-

eter set (`, p) is a tuple of algorithms where init, setup, refresh, and next are as defined

in Section 5.2. The input / output behaviour of BB will be specified for each BPRNG

— however, BB always takes as input a public parameter pp ∈ {0, 1}∗ and a backdoor

parameter bp ∈ {0, 1}∗.

5.4.1 A Simple Backdoored PRNG

Before introducing backdooring models for PRNGs, and to motivate our definitions, we

show that the forward secure BPRGs presented in Section 5.3 immediately allow us to

construct a robust BPRNG satisfying a weak form of backdooring.

Intuition. Let PRNG = (setup, init, refresh, next) be a robust PRNG with input. By

considering the special case of game Rob in which the adversary A makes no Set or Ref

queries, and one Get query at the conclusion of the game, it is straightforward to see that

PRG = (setup, init, next) must be a forward secure PRG. This suggests that we might be

able to replace PRG with a backdoored variant BPRG, as defined in Section 5.3. The effect

of this is that during the periods of output production between refresh calls — when the

PRNG is effectively operating as a deterministic PRG — Big Brother should be able to

exploit the backdoor embedded in BPRG.

Construction. Consider the BPRNG BPRNG = (init, setup, refresh, next) shown in Fig-

ure 5.11. The construction is built from an extractor Ext : {0, 1}∗ × {0, 1}v → {0, 1}n

which is online-computable on inputs of length p with associated algorithms iterate :

{0, 1}p×{0, 1}p×{0, 1}v → {0, 1}p and finalise : {0, 1}p×{0, 1}v → {0, 1}n, and a BPRG

BPRG = (init, setup, next,BB) with output length ` ∈ N and state space S = {0, 1}n.

We have written the BPRNG algorithms and states with an overline to distinguish these

from the algorithms of the underlying BPRG. Looking ahead, we will require that BPRG
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init

(pp′, bp)←$ init

A←$ {0, 1}v
pp← (pp′, A)

Return (pp, bp)

setup(pp)

S1←$ setup(pp)

S2 ← 0p

flag-ref← 0

S ← (S1, S2, flag-ref)

Return S

refresh(pp, S, I)

(pp′, A)← pp

(S1, S2, flag-ref)← S

S2 ← iterate(S2, Ii;A)

flag-ref← 1

S ← (S1, S2, flag-ref)

Return S

next(pp, S)

1. (pp′, A)← pp

2. (S1, S2, flag-ref)← S

3. If flag-ref = 1

4. U ← finalise(S2;A)

5. S1 ← U ⊕ S1

6. S2 ← 0p

7. (R,S1)← next(pp′, S1)

8. flag-ref← 0

9. S ← (S1, S2, flag-ref)

10. Return (R,S)

Figure 5.11: Construction of a robust BPRNG BPRNG = (init, setup, refresh, next,BB) from
a PRG-FWD secure BPRG BPRG = (init, setup, refresh,BB), and an extractor Ext which
is online-computable with respect to p, with associated algorithms iterate and finalise.

is PRG-FWD secure and has the additional property that the states output by setup are

pseudorandom. More formally, for a BPRG BPRG = (init, setup, next,BB) with state space

S = {0, 1}n, we define the IND-STATE advantage of an attacker A to be

Advind-state
BPRG (A) =

∣∣∣∣Pr [A(pp, S0)⇒ 1 : (pp, bp)←$ init ;S0←$ setup(pp) ]

− Pr [A(pp, S0)⇒ 1 : (pp, bp)←$ init ;S0←$ {0, 1}n ]

∣∣∣∣ .

Overview. Our backdoored PRNG BPRNG is based on the PRNG with input from [60].

The key differences are that: (1) we produce outputs via a stateful and forward secure

(backdoored) PRG as opposed to the stateless PRG used in [60]); and (2) the construction

uses an abstract online-computable extractor rather than the concrete online extractor-like

function in the original.

The state of BPRNG is of the form S = (S1, S2, flag-ref) ∈ {0, 1}n×{0, 1}p×{0, 1}, where

S1 is a state for BPRG, S2 is a state for the online-computable extractor (initialised to

0p), and flag-ref is used to record whether refresh has been invoked since the previous next

call. The public parameters are of the form pp = (pp′, A), where pp′ are parameters for

BPRG and A←$ {0, 1}v is an extractor seed.

On input (pp, (S1, S2, flag-ref), I), refresh incorporates I into the state of the

online-computable extractor via S2 ← iterate(S2, I;A) and sets flag-ref to true. On in-

put (pp, (S1, S2, flag-ref)), algorithm next first checks if flag-ref = 1. If so, it finalises the

extraction process by computing U ← finalise(S2;A) and uses this to update state compo-

nent S1 via S1 ← S1 ⊕ U . Algorithm next then uses the next algorithm of the underlying
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on-EXTA,DExt,γ∗,qD

b←$ {0, 1}
σ0 ← ε ;A←$ {0, 1}v ;µ← 0

For k = 1, . . . , qD
(σk, Ik, γk, zk)←$D(σk−1)

d←$ASam(A, (γk, zk)
qD
k=1)

If µ+ d > qD or
∑µ+d
i=µ+1 γi < γ∗

Return ⊥
If b = 0 then

y0 ← 0p

For j = 1, . . . , d

yj ← iterate(yj−1, Ij ;A)

U ← finalise(yd;A)

Else U ←$ {0, 1}n

b∗←$A(A,U, (Ik)k>µ+d)

Return (b = b∗)

Sam

µ = µ+ 1

Return Iµ

Figure 5.12: Security game for an online-computable extractor.

PRG to compute (R,S1) ← next(pp, S1), returning the output R and updating the S1

component of S accordingly. The Big Brother algorithm BB is simply taken to be that

of BPRG.

We will now prove that BPRNG is robust. We begin by defining a variant of security for

online-computable extractors that we will utilise in the proof.

Online-computable extractors. Consider the game on-EXT shown in Figure 5.12,

in which an attacker is challenged to distinguish the output of the online-computable

extractor Ext — applied to a set of inputs, adaptively chosen by A and which collectively

contain γ∗ bits of entropy — from a random string. The game is very similar to game

Extract used in the proof of Rec security for HASH-DRBG (see Section 4.6), and isolates

the required security of an online-computable extractor with respect to a distribution

sampler D. For an attacker / sampler pair (A,D), we define

Advon-ext
Ext,γ∗,qD

(A,D) = 2 ·
∣∣∣∣Pr
[

on-EXTA,DExt,γ∗,qD
⇒ 1

]
− 1

2

∣∣∣∣ .
We say that A is a qC-adversary if they output d ≤ qC in their challenge.

Security analysis of BPRNG. It is fairly straightforward to verify that BPRNG is

robust; the proof is similar to that of the original construction in [60]. Notice that setup

returns states S1 = (S1, S2, flag-ref) for which S1 is pseudorandom. This ensures that in

game Pres, the updated state S1 ← U ⊕ S1, where U is the output of the online extractor
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(line 5 of next), is a pseudorandom n-bit string too. Similarly in game Rec, the properties

of Ext imply that U and thereby the updated S1 are statistically close to uniform. In

both cases, applying next to S1 yields a pseudorandom output and state by reductions to

the PRG-FWD and IND-STATE security of BPRG. From this, the robustness of BPRNG

follows from Theorem 2.2. We formalise this in the following theorem.

Theorem 5.4. Let BPRNG = (init, setup, refresh, next,BB) be the BPRNG with associated

parameters (`, p) and state space S = {0, 1}n × {0, 1}p × {0, 1} shown in Figure 5.11,

built from an extractor Ext : {0, 1}∗ × {0, 1}v → {0, 1}n which is online-computable with

respect to p and a BPRG BPRG = (init, setup, next,BB) with output length ` and state space

S = {0, 1}n. Let PRNG = (init, setup, refresh, next). Then for any (qR, qD, qC , qS)-attacker

A running in time T and any (qD, γ
∗)-legitimate sampler D, there exist adversaries B, C,

and a qC-adversary E, each running in time T ′ ≈ T , such that

Advrob
PRNG,γ∗(A,D) ≤ 2qR ·

(
3·Advind-state

BPRG (B)+2·Advprg-fwd
BPRG (C, 1)+Advext

Ext,γ∗,qD
(E ,D)

)
.

Proof. We prove the Rob security of PRNG by bounding its Pres and Rec security, then

combining these results via Theorem 2.2. We begin by considering Pres security.

Pres security. We argue by a series of game hops, shown in Figure 5.13. Let G0 be

identical to game Pres for PRNG with challenge bit b = 0. We begin by defining game G1,

which is identical to G0 except we replace the initial underlying PRG state S1←$setup(pp)

with a truly random state S1←$ {0, 1}n. A straightforward reduction to the IND-STATE

security of BPRG implies that there exists an attacker B1 running in time T ′ ≈ T such

that

|Pr [G1 ⇒ 1 ]− Pr [G0 ⇒ 1 ]| ≤ Advind-state
BPRG (B1) .

Next we define game G2, which is identical to G1 except in the steps in the ‘If flag-ref = 1’

conditional we replace the updated state S′1 ← S1 ⊕ U with a uniformly random state

S′1←${0, 1}n. Since S1←${0, 1}n is uniformly distributed in G1 by the previous transition,

it follows that S′1 is uniformly distributed in G1 also. As such, the games are identical and

Pr [G2 ⇒ 1 ] = Pr [G1 ⇒ 1 ].

Next in game G3, we replace the randomly sampled state S′1 ←$ {0, 1}n with a freshly

generated state S′1 ←$ setup(pp). As before, an analogous reduction to the IND-STATE

security of PRG implies that there exists an attacker B2, running in time T ′ ≈ T , such
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that

|Pr [G3 ⇒ 1 ]− Pr [G2 ⇒ 1 ]| ≤ Advind-state
BPRG (B2) .

Next we define game G4, which is identical to G3 except we replace the output / state

pair (R∗, S∗1)← next(pp, S′1) with a random output R∗←$ {0, 1}` and a freshly generated

state S∗1 ←$ setup(pp). Since both games can be perfectly simulated by an attacker C in

game PRG-FWD
C,1
BPRG against BPRG (who given challenge output / state pair (R∗, S∗1)

constructs A’s challenge as S
∗

= (R∗, (S∗1 , 0
p, 0)) and at the end of the game outputs

whatever bit A does), it follows that

|Pr [G4 ⇒ 1 ]− Pr [G3 ⇒ 1 ]| ≤ Advprg-fwd
BPRG (C, 1) .

In game G5, G6, and G7 (not shown), we revert the modifications introduced in games

G3, G2, and G1 respectively to return to computing states S′1 and S1 according to the

specification of next. However, since A’s view of the experiment is now independent of

these intermediate states, the games are identically distributed and so Pr [G7 ⇒ 1 ] =

Pr [G4 ⇒ 1 ]. Moreover, notice that G7 is identical to game Pres against PRNG with

challenge bit b = 1. (To see this, notice that A receives in their challenge a random output

R∗ and a state S
∗

= (S∗1 , 0
p, 0) for S∗1 ←$ setup(pp), which is precisely the distribution of

states returned by setup.) Combining the above observations via a standard argument

implies that there exist attackers B and C, running in time T ′ ≈ T , such that

Advpres
PRNG(A) ≤ 2 ·Advind-state

BPRG (B) + Advprg-fwd
BPRG (C, 1) .

Rec security. The proof of Rec security is very similar; we emphasise the key differences

here. It is straightforward to verify that game G′0 shown in Figure 5.14 is equivalent to

game Rec against BPRNG with challenge bit b = 0. Next we define game G′1 to be

identical to G′0, except we replace U ← finalise(S2;A) with a uniform string U ←$ {0, 1}n.

It is straightforward to verify that both games can be perfectly simulated by an attacker

E in game Ext against Ext (who uses his own oracle to simulate A’s Sam oracle, outputs

the same index to his challenger as A does, sets U equal to the returned string, and uses

this plus the remaining entropy samples to simulate the rest of the game). It follows that

|Pr
[
G′1 ⇒ 1

]
− Pr

[
G′0 ⇒ 1

]
| ≤ Advext

Ext,γ∗,qD
(E ,D) .

In games G′2 and G′3 we replace S′1 in the ‘If flag-ref = 1’ conditional with first a uniform

string, and then with a freshly generated state S′1 ←$ setup(pp). An entirely analogous

argument to that made in the transitions to games G2 and G3 in the proof of Pres security
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implies there exists an attacker B, running in time T ′ ≈ T , such that

|Pr
[
G′3 ⇒ 1

]
− Pr

[
G′1 ⇒ 1

]
| ≤ Advind-state

BPRG (B) .

In game G′4, we replace the output / state pair (R∗, S∗1) ← next(pp, S′1) with a random

output and freshly generated state R∗←${0, 1}`, S∗1←$setup(pp). An analogous reduction

to the PRG-FWD security of BPRG implies that there exists an attacker C, running in

time T ′ ≈ T , such that

|Pr
[
G′4 ⇒ 1

]
− Pr

[
G′3 ⇒ 1

]
| ≤ Advprg-fwd

BPRG (C, 1) .

Finally, in games G′5, G
′
6, and G′7, we reverse the modifications made in games G′3, G′2, and

G′1, respectively, to return to computing the state S′1 according to the protocol. Again since

the attacker’s view is independent of intermediate states in G′4, it follows that these games

are identically distributed. Moreover, game G′7 is equivalent to game Rec against PRNG

with challenge bit b = 1. Putting this all together via a standard argument implies that

Advrec
PRNG,γ∗,qD

(A,D) ≤ Advind-state
BPRG (B) + Advprg-fwd

BPRG (C, 1) + Advext
Ext,γ∗,qD

(E ,D) .

Combining the statements on Pres and Rec security via Theorem 2.2 completes the proof.

Instantiation. Recall that BPRNG requires as a component a PRG-FWD BPRG which

additionally has pseudorandom initial states. Consider BPRG = (init, setup, next,BB) of

Theorem 5.2, built from a TDP family TDP, PKE scheme PKE, and hash function H.

Since the initial states for BPRG are of the form S0 ←$ {0, 1}n, it is straightforward to

verify that Advind-state
BPRG (A) = 0. Combined with the PRG-FWD security of BPRG proved

in Theorem 5.2, this implies that BPRG may be used to instantiate BPRNG.

For BPRG = (init, setup, next,BB) of Theorem 5.3, built from a PKE scheme rrPKE and

PRG PRG′, the initial states returned by setup are of the form S0 = (s0, C0) where s0 is

an initial state for PRG′ and C0←$ Enc(pk, s0). Since rrPKE is assumed to be IND$-CPA,

it follows that BPRG will have pseudorandom initial states provided PRG′ does. More

formally, a simple game hopping argument replacing first s0, and then C0, in state S0

with random bit strings of appropriate length implies that for any attacker A running in

time T , there exist attackers B, C, running in time T ′ ≈ T , such that

Advind-state
BPRG (A) ≤ Advind-state

PRG′ (B) + Advind$-cpa
rrPKE (C, 1) .

Moreover, BPRG was shown in Theorem 5.3 to meet PRG-FWD security and so BPRG
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proc. main // G0, G1

(pp′, bp)←$ init ;A←$ {0, 1}v
pp← (pp′, A)

S1←$ setup(pp) ; S1←$ {0, 1}n

S2 ← 0p ; flag-ref← 0

S ← (S1, S2, flag-ref)

(I1, . . . , Id)←$A(pp)

For i = 1, . . . , d

S2 ← iterate(S2, Ii;A)

flag-ref← 1

If flag-ref = 1

U ← finalise(S2;A)

S′1 ← U ⊕ S1

S2 ← 0p

(R∗, S∗1 )← next(pp′, S′1)

flag-ref← 0

S
∗ ← (S∗1 , S2, flag-ref)

b∗←$A(pp,R∗, S∗)

Return b∗

proc. main // G2, G3

(pp′, bp)←$ init ;A←$ {0, 1}v
pp← (pp′, A)

S1←$ {0, 1}n
S2 ← 0p ; flag-ref← 0

S ← (S1, S2, flag-ref)

(I1, . . . , Id)←$A(pp)

For i = 1, . . . , d

S2 ← iterate(S2, Ii;A)

flag-ref← 1

If flag-ref = 1

U ← finalise(S2;A)

S′1←$ {0, 1}n

S′1←$ setup(pp)

S2 ← 0p

(R∗, S∗1 )← next(pp′, S′1)

flag-ref← 0

S
∗ ← (S∗1 , S2, flag-ref)

b∗←$A(pp,R∗, S∗)

Return b∗

proc. main // G4

(pp′, bp)←$ init ;A←$ {0, 1}v
pp← (pp′, A)

S1←$ {0, 1}n
S2 ← 0p ; flag-ref← 0

S ← (S1, S2, flag-ref)

(I1, . . . , Id)←$A(pp)

For i = 1, . . . , d

S2 ← iterate(S2, Ii;A)

flag-ref← 1

If flag-ref = 1

U ← finalise(S2;A)

S′1←$ setup(pp)

S2 ← 0p

R∗ ← {0, 1}` ;S∗1 ←$ setup(pp)

flag-ref← 0

S
∗←$ (S∗1 , S2, flag-ref)

b∗←$A(pp,R∗, S∗)

Return b∗

Figure 5.13: Games for proof of Theorem 5.4.

may also be used to instantiate BPRNG.

For both choices of BPRG, this form of backdooring would then allow BB, given an arbi-

trary output Ri, to recover the state which immediately followed the last refresh call prior

to the production of Ri. BB can then use this to recover all output produced between

this point and the next refresh. Of course, following a high entropy refresh the state will

become unpredictable again, and Big Brother will need to compromise another output in

order to regain his advantage.

Towards stronger backdooring. Since BB’s advantage is lost following a high entropy

refresh, the form of backdooring achieved by the BPRNG presented in Figure 5.11 is highly

limited. One implication of this construction is that when considering stronger forms of

backdooring we must turn our attention to subverting refresh calls in some way.

5.4.2 Security Models for Backdoored PRNGs

We now define security models for BPRNGs. As we shall see, specifying such models

requires some care in the more complicated BPRNG setting. We discuss the rationale for

our choice of models below.
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proc. main // G′0, G
′
1

σ ← ε ;µ← 0

(pp′, bp)←$ init ;A←$ {0, 1}v
pp← (pp′, A)

For k = 1, . . . , qD
(σk, Ik, γk, zk)←$D(σk−1)

(S0, d)←$ASam(pp, (γk, zk)
qD
i=1)

If µ+ d > qD or
∑µ+d
i=µ+1 γi < γ∗

Return ⊥
(S1, S2, flag-ref)← S0

For i = 1, . . . , d

S2 ← iterate(S2, Ii;A)

flag-ref← 1

If flag-ref = 1

U ← finalise(S2;A)

U ←$ {0, 1}n

S′1 ← U ⊕ S1

S2 ← 0p

(R∗, S∗1 )← next(pp′;S′1)

flag-ref← 0

S
∗ ← (S∗1 , S2, flag-ref)

b∗←$A(pp,R∗, S∗, (Ik)k>µ+d)

Return b∗

proc. Sam // G′0 −G′7
µ = µ+ 1

Return Iµ

proc. main // G′2, G
′
3

σ ← ε ;µ← 0

(pp′, bp)←$ init ;A←$ {0, 1}v
pp← (pp′, A)

For k = 1, . . . , qD
(σk, Ik, γk, zk)←$D(σk−1)

(S0, d)←$ASam(pp, (γk, zk)
qD
i=1)

If µ+ d > qD or
∑µ+d
i=µ+1 γi < γ∗

Return ⊥
(S1, S2, flag-ref)← S0

For i = 1, . . . , d

S2 ← iterate(S2, Ii;A)

flag-ref← 1

If flag-ref = 1

U ←$ {0, 1}n
S′1←$ {0, 1}n

S′1←$ setup(pp)

S2 ← 0p

(R∗, S∗1 )← next(pp′;S′1)

flag-ref← 0

S
∗ ← (S∗1 , S2, flag-ref)

b∗←$A(pp,R∗, S∗, (Ik)k>µ+d)

Return b∗

proc. main // G′4
σ ← ε ;µ← 0

(pp′, bp)←$ init ;A←$ {0, 1}v
pp← (pp′, A)

For k = 1, . . . , qD
(σk, Ik, γk, zk)←$D(σk−1)

(S0, d)←$ASam(pp, (γk, zk)
qD
i=1)

If µ+ d > qD or
∑µ+d
i=µ+1 γi < γ∗

Return ⊥
(S1, S2, flag-ref)← S0

For i = 1, . . . , d

S2 ← iterate(S2, Ii;A)

flag-ref← 1

If flag-ref = 1

U ←$ {0, 1}n
S′1←$ {0, 1}n
S′1←$ setup(pp)

S2 ← 0p

R∗←$ {0, 1}` ;S∗1 ←$ setup(pp)

flag-ref← 0

S
∗ ← (S∗1 , S2, flag-ref)

b∗←$A(pp,R∗, S∗, (Ik)k>µ+d)

Return b∗

Figure 5.14: Games for proof of Theorem 5.4.

BPRNG security. Analogously to our treatment of BPRGs (Section 5.3), we require

that the PRNG PRNG = (init, setup, refresh, next) associated to a BPRNG BPRNG =

(init, setup, refresh, next,BB) is secure in the face of an attacker who does not know the

backdoor. Simultaneously, Big Brother should be able to exploit the backdoor to under-

mine security in some way. To make our models as strong as possible, we make minimal

assumptions about Big Brother’s influence, while allowing the non-backdoored attacker

A — to whom the backdoored scheme must still appear secure — maximum power to

compromise the scheme. To this end, we model BB as a passive observer who is able to

capture just one BPRNG output which he is then challenged to exploit. At the same time,

we demand that the BPRNG is provably secure in the face of a robustness adversary A,

with all the capabilities this allows. Notably, the latter condition allows us to explore the

extent to which a guarantee of robustness may act as an immuniser against backdooring.

When analysing BPRNGs, we present advantage terms for both regular robustness and

backdoor attackers. As in the BPRG setting, we sometimes abuse notation to let BPRNG

refer to the associated PRNG PRNG when the meaning is clear from the context.

Distribution samplers. When defining backdooring games, we do not allow BB any

degree of compromise over the distribution sampler D from which the BPRNG draws
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evolve(PRNG, pp, S, rp,D)

(a1, b1, . . . , aρ, bρ)← rp

φ← ();σ ← ε

For i = 1 . . . ρ

For j = 1 . . . ai

(R,S)← next(pp, S)

φ← φ ‖ (R,S)

For k = 1 . . . bi

(σ, I, γ, z)←$D(σ)

S ← refresh(pp, S, I)

Return φ

Figure 5.15: The evolve algorithm.

entropy samples. This is again to fit with our ethos of making minimal assumptions on

BB’s capabilities. Moreover, it strengthens the backdooring model by demanding that

the backdoor be effective against all (qD, γ
∗)-legitimate samplers D, including those not

under the control of BB. We also note that in the extreme case where BB has complete

knowledge of all the inputs used in refresh calls, then BB’s view of the evolution of the state

is deterministic and the PRNG is reduced to a forward secure PRG which is periodically

reseeded with correlated values. As such, this restriction on Big Brother’s power ensures

a clear separation between the results of Section 5.3 and those which follow.

Refresh patterns. Notice that the evolution of a PRNG state and the set of outputs

produced is dictated by the sequence of refresh and next calls made. We call this sequence

of calls a refresh pattern, and express it in the form rp = (a1, b1, . . . , aρ, bρ) where, for each

i, ai denotes a number of consecutive calls to next and bi denotes a subsequent number of

consecutive calls to refresh. We refer to the sequence of next calls indicated by each ai as

the ith refresh period.

We define evolve to be the algorithm which takes as input a PRNG with input PRNG =

(setup, init, refresh, next), public parameter pp, an initial state S, a refresh pattern rp =

(a1, b1, . . . , aρ, bρ), and a distribution sampler D, and returns the set of outputs and states

generated by executing the refresh pattern with the initial state and public parameters

indicated. We give a formal pseudocode description of evolve in Figure 5.15. The output

of evolve is a sequence (R1, S1, . . . , RqR , SqR) of PRNG output and state pairs where qR =∑ρ
i=1 ai. Based on evolve, we define an additional algorithm out, which takes the same

input, runs evolve, and returns only the output values (R1, . . . , RqR).

Backdooring Models for BPRNGs. We present two new backdooring models for
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BPRNG-STATEBB
BPRNG,D(rp, i, j)

(pp, bp)←$ init

S0←$ setup(pp)

(R1, S1, . . . , RqR , SqR )← evolve(BPRNG, pp, S0, rp,D)

S∗j ← BB(pp, bp,Ri, i, j, rp)

Return (S∗j = Sj)

BPRNG-OUTBB
BPRNG,D(rp, i, j)

(pp, bp)←$ init

S0←$ setup(pp)

(R0, . . . , RqR )← out(BPRNG, pp, S0, rp,D)

R∗j ← BB(pp, bp,Ri, i, j, rp)

Return (R∗j = Rj)

Figure 5.16: Security games for backdoored PRNGs.

PRNGs with input in Figure 5.16. As we saw in Section 5.3, Big Brother’s ability to exploit

a backdoor in a PRNG may be affected by the sequence of refresh and next calls made. To

reflect this, each backdooring game and corresponding advantage term is parameterised

by a refresh pattern rp.

In the first game, the BPRNG is evolved according to the specified refresh pattern. Big

Brother is given an output Ri, and challenged to recover state Sj . In the second game,

Big Brother is again given output Ri, but now we ask him to recover an output value

Rj . In both games, Big Brother is additionally given the refresh pattern. For a BPRNG

BPRNG = (init, setup, refresh, next,BB), sampler D, and refresh pattern rp, the advantage

of BB in game BPRNG-TYPE ∈ {BPRNG-STATE,BPRNG-OUT} against BPRNG is

defined

Advtype
BPRNG,D(BB, rp, i, j) = Pr

[
BPRNG-TYPEBB

BPRNG,D(rp, i, j)⇒ true
]
.

As with the corresponding BPRG definitions in Section 5.3.3, it is straightforward to

verify that a BPRNG backdoored in the BPRNG-STATE sense is strictly stronger than

one backdoored in the BPRNG-OUT sense.

Extensions. Stronger backdooring models can be achieved by considering games in

which Big Brother is not given the refresh pattern. In Section 5.4.5, we will discuss how

to extend our BPRNG construction (Section 5.4.3) to handle this case.

5.4.3 Construction of a Robust Backdoored PRNG

We now present our main result of the chapter: a construction of a provably robust

BPRNG achieving our BPRNG-OUT backdooring notion.
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Components. Consider BPRNG = (init, setup, refresh, next,BB) as shown in Figure 5.17.

The construction is built from the following components:

• A (non-backdoored) PRNG with input PRNG = (init, setup, refresh, next) with asso-

ciated parameters (`, p) and state space S = {0, 1}n. We require that PRNG is Pres

and Rec secure.

• A pair of stateless PRGs (see Section 5.2): G : {0, 1}` → {0, 1}2k·u+1 and G′ :

{0, 1}u → {0, 1}k·m.

• A re-randomisable PKE scheme rPKE = (Key,Enc,Dec,Rand) with public / secret

key spaces PK / SK, message spaceM⊇ {0, 1}n, coin space R = {0, 1}`, ciphertext

space C ⊆ {0, 1}∗, and Rand coin space Z = {0, 1}u. We let m = lenPKE(n), which

by the length regularity of rPKE implies that m = |Enc(pk,M)| for all pk ∈ PK

and M ∈ {0, 1}n. We say that a ciphertext C is invalid for a public key pk ∈ PK

if for all M ∈ M and coins r ∈ R it holds that C 6= Enc(pk,M ; r). We require

that rPKE has an associated procedure invalid, which takes as input a public key

pk ∈ PK and a ciphertext C and outputs 1 if C is invalid for pk and 0 otherwise. It

is straightforward to see that this can be instantiated for ElGamal and its encoded

variants by checking that both ciphertext components are valid group elements.

Combining these components yields a BPRNG with associated parameters (k ·m, p) and

state space S = {0, 1}k·m+n+1. We write the algorithms, outputs, and states of the

backdoored PRNG with an overline to distinguish these from those of the underlying

PRNG.

Construction overview. The construction is based on the simple idea of interleaving

outputs of the underlying PRNG PRNG with encrypted snapshots of its state. By taking

a snapshot of this PRNG state whenever it is refreshed and storing a list of the previous k

snapshots, the construction will enable BB to recover, with reasonable probability, output

values that were computed in the previous k refresh periods. Of course, this means that the

state of the final construction is large compared to that of the PRNG used as a component

in its construction.

Algorithms. We now give an overview of each of the BPRNG component algorithms

shown in Figure 5.17. Parameter generation via init generates public parameters for the
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init

(pp,⊥)←$ init

(pk, sk)←$ Key

pp← (pp, pk)

bp← sk

Return (pp, bp)

setup(pp)

(pp, pk)← pp

S0←$ setup(pp)

C[1]←$ Enc(pk, S0)

For i = 2, . . . , k

C[i]←$ Enc(pk, 0n)

ψ ← 0

S0 ← (S0, C[1], . . . , C[k], ψ)

Return S0

refresh(pp, S, I)

(pp, pk)← pp

(S,C[1], . . . , C[k], ψ)← S

S ← refresh(pp, S, I)

ψ ← 1

S ← (S,C[1], . . . , C[k], ψ)

Return S

next(pp, S)

1. (pp, pk)← pp

2. (S,C[1], . . . , C[k], ψ)← S

3. For i = 1, . . . , k

4. If 1← invalid(pk, C[i])

5. C[i]← Enc(pk, 0n; 0`)

6. If ψ = 1

7. (R,S)← next(pp, S)

8. C[0]← Enc(pk, S;R)

9. C[k]← C[k− 1]; . . . ;C[1]← C[0]

10. (R,S)← next(pp, S)

11. (η,R1, . . . , R2k)← G(R)

12. If η = 0

13. R← G′(R1)

14. Else

15. For i = 1, . . . , k

16. C[i]← Rand(pk, C[i], Ri)

17. R← C[1] ‖ . . . ‖C[k]

18. For i = 1, . . . , k

19. C[i]← Rand(pk, C[i], Rk+i)

20. ψ ← 0

21. S ← (S,C[1], . . . , C[k], ψ)

22. Return (R,S)

BB(pp, bp,Ri, i, j, rp)

If i = j

Return Ri
(pp, pk)← pp ; sk ← bp

(a1, b1, . . . , aρ, bρ)← rp

(C[1], . . . , C[k])← Ri
iref ← minσ

[∑σ
ν=1 aν ≥ i

]
jref ← minσ

[∑σ
ν=1 aν ≥ j

]
If jref > iref or iref − jref ≥ k

Return ⊥
S ← Dec(sk, C[(iref − jref + 1)])

(R,S0)← next(pp, S)

jit ← j −
∑jref−1

ν=1 aν
For z = 1, . . . , jit

(Rz , Sz)← next(pp, Sz−1)

(η,R′1, . . . , R
′
2k)← G(Rjit )

R
∗ ← G′(R′1)

Return R
∗

Figure 5.17: Construction of a robust BPRNG BPRNG = (init, setup, refresh, next,BB),
using as components a re-randomisable PKE scheme rPKE = (Key,Enc,Dec,Rand), a
PRNG with input PRNG = (init, setup, refresh, next), and stateless PRGs G and G′.

underlying PRNG PRNG and a public / secret key pair (pk, sk) for the re-randomisable

PKE scheme rPKE. The backdoor parameter of BPRNG is set equal to the secret key for

PKE; the other parameters form the public parameters of the scheme. To construct the

initial state, setup first generates a state S0 ←$ setup(pp) for the underlying PRNG, and

outputs S0 = (S0, C[1], . . . , C[k], ψ), where C[1] is an encryption of S0, and C[2], . . . , C[k]

are encryptions of 0n, under Enc(pk, ·). Here ψ is a flag which is initialised to 0. Looking

ahead, the state components C[1], . . . , C[k] will correspond to encrypted snapshots of the

state of PRNG during the previous k refresh periods. The flag ψ will be used to indicate to

next that a new refresh period has been entered and a new encrypted snapshot should be

taken. On input (pp, S, I) where S = (S,C[1], . . . , C[k], ψ), refresh simply uses the refresh

algorithm of the underlying PRNG to update state component S with input I, and sets

the flag ψ to 1.

Output generation. The specification of next is more complex. On input pp = (pp, pk)

and S = (S,C[1], . . . , C[k], ψ), next first uses invalid to check if any of the encrypted

snapshots correspond to an invalid ciphertext (lines 3-5). If so, the ciphertext is replaced

by an encryption of 0n using 0` ∈ R as coins (recall that next is deterministic and so

cannot generate randomised encryptions). Looking ahead, this is required for the proof of

recovering security in which the attacker may set the value of the BPRNG state; since there

285



5.4 Backdooring Pseudorandom Number Generators with Input

is no guarantee that the re-randomisation properties of rPKE hold for invalid ciphertexts,

we remove these from the state. With this in place, next then uses ψ to check if a new

refresh period has been entered (line 6). If so, a new encrypted snapshot of the underlying

PRNG state is produced by generating an output / state pair (R,S) ← next(pp, S) and

setting C[0]← Enc(pk, S;R) and C[i]← C[i− 1] for i ∈ [1, k] (lines 7-9). Notice how the

kth encrypted snapshot is discarded during this process.

Outputs for BPRNG are produced in two different ways; one of which leaks the encrypted

snapshots stored in the state to Big Brother, and the other in a way which can be replicated

by Big Brother given knowledge of the appropriate encrypted snapshot. In more detail,

next uses PRNG to generate an output / state pair (R,S), and expands R using the

stateless PRG G, parsing the resulting string as (η,R1, . . . , R2k) where η ∈ {0, 1} and

Ri ∈ {0, 1}u for i ∈ [1, 2k] (lines 10-11). The bit η is used to determine which method of

output production will be taken. If η = 0, then the BPRNG output is simply computed

as R ← G′(R1) (lines 12-13). If η = 1, R is constructed using encrypted snapshots as

follows. Firstly, each C[i] is re-randomised using Ri as coins via C[i]← Rand(pk,C[i];Ri)

for i ∈ [1, k]. The BPRNG output is set to the concatenation of these ciphertexts, R =

C[1] ‖ . . . ‖C[k] (lines 14-17). To compute the updated state, the remaining random

strings Rk+i are used to further re-randomise each C[i] for i ∈ [1, k], and the flag ψ is set

to 0 (lines 18-21). This second re-randomisation ensures that the ciphertexts in the state

appear independent from those used to produce the output R.

Big Brother. For the Big Brother algorithm BB in the construction to be successful, it

is required that: (1) the output value Ri given to BB corresponds to (C[1], . . . , C[k]); and

(2) the output value Rj that BB is required to recover corresponds to a value computed

via G′. Since the type of output produced is decided from the output of PRNG and G

which are both assumed to be good generators, this will happen with probability close to

1/4. Furthermore, it is required that the number of refresh periods between Rj and Ri

is less than k. More precisely, for a refresh pattern rp = (a1, b1, . . . , aρ, bρ), Big Brother

first computes the refresh periods iref and jref in which, respectively, the challenge and

target outputs Ri and Rj were generated via iref = minσ[
∑σ

ν=1 aν ≥ i] and jref =

minσ[
∑σ

ν=1 aν ≥ j]. If iref − jref ∈ [0, k − 1], then the initial refreshed state used to

compute Rj will be encrypted in C[iref − jref + 1]. Hence, all BB has to do is to decrypt

and iterate this state jit + 1 times where jit = j −
∑jref−1

ν=1 aν to obtain the seed used to
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compute Rj . If the condition on iref and jref is not met then BB aborts and returns ⊥.

5.4.4 Security Analysis

In this section we analyse the security properties of BPRNG. To prove Rob security,

we first prove the Pres and Rec security of BPRNG and then invoke Theorem 2.2. We

require that rPKE satisfies a stronger re-randomisation property than that introduced in

Section 5.2: namely, that the re-randomisation of an adversarially chosen ciphertext is

indistinguishable from the encryption of an adversarially chosen message. In particular,

there is no requirement that the ciphertext is generated using e.g., good randomness, or

that the message output by A matches that encrypted in C∗. We formalise this property

in the following definition.

Definition 5.5. Let rPKE = (Key,Enc,Dec,Rand) be a re-randomisable PKE scheme with

message space M. For an attacker A, the strong re-randomisability advantage of rPKE is

defined

Adv s-rerand
rPKE (A) =

∣∣∣Pr
[
b = b′ : (pk, sk)←$ Key; b←$ {0, 1}; (C∗,M∗)←$A(pk);

C0←$ Rand(pk, C∗);C1←$ Enc(pk,M∗); b′←$A(Cb)
]
− 1/2

∣∣∣ .
We require that M∗ ∈ M and that the ciphertext C∗ output by A is valid

(i.e., invalid(pk, C∗) = 0).

Discussion and instantiation. We note that this property is not immediately com-

parable to the re-randomisation definition for PKE given in Section 5.2. That was a

statistical notion concerning encryptions of the same message, while in contrast the fol-

lowing is a computational notion regarding possibly different messages. However, we will

show in the following lemma that ElGamal is strongly re-randomisable provided the DDH

problem is hard with respect to ElGamal’s group generation algorithm GGen. As such, an

appropriately encoded variant of ElGamal may be used to instantiate the scheme.

Lemma 5.1. Let ElG.rPKE = (ElG.Key,ElG.Enc,ElG.Dec,ElG.Rand) be the ElGamal re-

randomisable PKE scheme with associated group generation algorithm GGen. Then for

any attacker A running in time T , there exists an attacker B running in time T ′ ≈ T
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such that

Advs-rerand
rPKE.ElG(A) ≤ 2 ·Advddh

GGen(B) .

Proof. We argue by a series of game hops. Let G0 be equivalent to the strong re-

randomisability game against ElG.rPKE for A with challenge bit b = 0. Since by as-

sumption the ciphertext C∗ output by A is valid for pk = (G, q, g, gx), it must be the case

that there exists a message M ∈ G and y′ ∈ Zq such that C∗ = (C∗1 , C
∗
2 ) = (gy

′
,M · gxy′),

and so (C∗1 , C
∗
2 ) ∈ G×G. Now with this notation the ciphertext C0←$ ElG.Rand(pk, C∗)

which is given to A for his challenge is of the form C0 = (C0
1 , C

0
2 ) = (C∗1 · gy, C∗2 · gxy) for

y←$ Zq.

Next we define game G1, which is identical to G0 except we generate the C0
2 component

of C0 by multiplying C∗2 by a random group element, C0
2 ← C∗2 · gz where z←$ Zq. It is

straightforward to verify that both G0 and G1 can be perfectly simulated by an attacker

B1 in the DDH game against GGen running in time T ′ ≈ T , who on input (G, q, g, gx, gy, Z)

proceeds as follows. B1 first passes pk = (G, q, g, gx) to A. When A outputs ((C∗1 , C
∗
2 ),M),

B1 sets C0 = (C∗1 · gy, C∗2 · Z) and passes this to A. At the end of the game, B outputs

whatever bit A does. It is straightforward to verify that if A receives Z = gxy in his

challenge then this perfectly simulates G0, whereas if Z = gz for z←$Zq then this perfectly

simulates G1. It follows that

|Pr [G0 ⇒ 1 ]− Pr [G1 ⇒ 1 ]| ≤ Advddh
GGen(B1) .

Next we define game G2 to be identical to G1, except we replace C0 with a pair of random

group elements, C0 = (gy, gz) for y, z ←$ G. Recall that in G1, C0 = (C∗1 · gy, C∗2 · gz)

where y, z←$Zq and (C∗1 , C
∗
2 ) ∈ G×G. Since multiplying an arbitrary element of a cyclic

group by a random group element is equivalent to sampling uniformly from the group, it

follows that these games are identically distributed, and

Pr [G1 ⇒ 1 ] = Pr [G2 ⇒ 1 ] .

Next we define game G3, which is identical to G2 except we now set C0
2 equal to M∗ · gz

for z←$Zq. Since by definition M∗ ∈M = G, an analogous argument to that made above

implies that the games are identically distributed, and

Pr [G2 ⇒ 1 ] = Pr [G3 ⇒ 1 ] .

Next we define game G4, which is identical to G3 except we set C0 = (gy,M∗ · gxy) for

y←$Zq, where recall that pk = (G, q, g, gx). An entirely analogous argument to that made
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previously implies that both games can be perfectly simulated by an attacker B2 in the

DDH game against GGen, implying that

|Pr [G3 ⇒ 1 ]− Pr [G4 ⇒ 1 ]| ≤ Advddh
GGen(B2) .

Moreover, notice that G4 is equivalent to the strong re-randomisability game for ElG.rPKE

with challenge bit b = 1. Combining the above observations via a standard argument

implies that

Advs-rerand
rPKE.ElG(A) ≤ 2 ·Advddh

GGen(B) ,

thereby concluding the proof.

Security of BPRNG. With this in place, the security of BPRNG is captured in the

following theorem. The proof follows from a number of lemmas, presented below, combined

with Theorem 2.2.

Theorem 5.5. Let PRNG = (init, setup, refresh, next) be a PRNG with associated pa-

rameters (`, p) and state space S = {0, 1}n. Let rPKE = (Key,Enc,Dec,Rand) be a re-

randomisable PKE scheme rPKE = (Key,Enc,Dec,Rand) with public / secret key spaces

PK / SK, message space M ⊇ {0, 1}n, coin space R = {0, 1}`, ciphertext space C ⊆

{0, 1}∗, and Rand coin space Z = {0, 1}u. We let lenPKE(n) = m, and require that rPKE

has an associated ciphertext validity procedure invalid. Let G : {0, 1}` → {0, 1}2k·u+1 and

G′ : {0, 1}u → {0, 1}k·m be stateless PRGs.

Let BPRNG = (init, setup, refresh, next,BB) be as shown in Figure 5.17, with associated

parameters (k · m, p) and state space S = {0, 1}n+k·m+1. Then for all refresh patterns

rp = (a1, b1, . . . , aρ, bρ), all distribution samplers D, and for all 1 ≤ i, j ≤
∑ρ

ν=1 aν = qR,

there exist efficient adversaries B, C such that Advbprng-out
BPRNG,D(BB, rp, i, j) ≥ δ(rp, i, j), where

δ(rp, i, j) =


1 if j = i ; else

1
4 −Advrob

PRNG,γ∗,qD
(B,D)− 2 ·Advsprg-dist

G (C) if iref − jref ∈ [0, k − 1]

0 otherwise

Here iref ← minσ [
∑σ

ν=1 aν ≥ i] and jref ← minσ [
∑σ

ν=1 aν ≥ j]. B is a (q′R, qD, qC , qS)-

adversary where qD =
∑ρ

i=1 bi, qC = max1≤i≤ρ bi, q
′
R = qR + ρ− 1, and qS = 0.
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Moreover, for any (qR, qD, qC , qS)-attacker A running in time T and any (qD, γ
∗)-legitimate

sampler D in game Rob against PRNG = (init, setup, refresh, next), there exist attackers B,

C1, C2, C3, E, E ′, F , G, running in time T ′ ≈ T , such that

Advrob
PRNG,γ∗,qD

(A,D) ≤ 2qR ·
(

3 ·Advind-cpa
rPKE (B, 1) + Advpres

PRNG(C1) + 2 ·Advpres
PRNG(C2)

+ Advrec
PRNG,γ∗,qD

(C3,D) + 2 ·Advsprg-dist
G (E) + 2 ·Advsprg-dist

G (E ′)

+ (3k − 1) ·∆rPKE + (k + 1) ·Advsrerand
rPKE (F) + 2 ·Advind$-cpa

rPKE (G, k)

)
.

Here, C1 and C3 are qC-attackers and C2 is a 0-attacker.

Preserving security. We begin by analysing the Pres security of BPRNG. The proof uses

a reduction to the Pres security of the underlying PRNG PRNG to argue that the output

/ state pair (R,S) on line 7 of next can be replaced with a random output R←$ {0, 1}`

and fresh state S←$ setup(pp). In order for an attacker C in game Pres against PRNG to

be able to simulate the games required for the reduction, we must first use the IND-CPA

security of rPKE to argue that the encryption of the initial state of PRNG — unknown to

C and encrypted in component C[0] of the state of BPRNG — can be replaced with an

encryption of 0n. With this in place, a series of game hops sequentially argues that each

output produced by PRNG or the PRGs G,G′ during output production in next can be

replaced with a random string. This then allows us to argue, via properties of rPKE, that

the output / state pair received by A in their challenge may be replaced by their idealised

counterparts.

Lemma 5.2. Let PRNG be as in Theorem 5.5. Then for any qC-attacker A running in

time T in game Pres against PRNG, there exist attackers B, C1, C2, E , E ′,F , and G running

in time T ′ ≈ T such that

Advpres

PRNG
(A) ≤ 2 ·Advind-cpa

rPKE (B, 1) + Advpres
PRNG(C1) + Advpres

PRNG(C2) + Advsprg-dist
G (E)

+ Advsprg-dist
G′

(E ′) + (2k − 1) ·∆rPKE + Advs-rerand
rPKE (F) + Advind$-cpa

rPKE (G, k) .

Here, C1 is a qC-attacker and C2 is a 0-attacker.

Proof. We argue by a series of game hops, shown in Figures 5.18 and 5.19. We begin by

defining game G0, which is readily verified to be identical to game Pres against PRNG
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which challenge bit b = 0. Next we define game G1, which is identical to G0 except we

change the way in which the initial state S is generated. Namely, rather than setting

state component C[1]←$ Enc(pk, S) in line 3, where S←$ setup(pp) is the initial state of

the underlying PRNG, we instead set C[1]←$ Enc(pk, 0n). We claim that there exists an

attacker B1 running in time T ′ ≈ T such that

|Pr [G1 ⇒ 1 ]− Pr [G0 ⇒ 1 ]| ≤ Advind-cpa
rPKE (B1, 1) .

To see this, notice that both games can be perfectly simulated by an attacker in game

IND-CPA against rPKE who proceeds as follows. On input pk, B1 generates public pa-

rameters pp←$ init and passes pp = (pp, pk) to A. B1 generates initial state S←$ setup(pp)

for PRNG, and makes a single query of (S, 0n) to his LoR oracle, setting C[1] equal to the

returned ciphertext. B1 sets the initial state of BPRNG equal to S0 = (S,C[1],Enc(pk, 0n),

. . . ,Enc(pk, 0n), 0) and uses this to simulate the rest of the game for A as per the pseu-

docode description, finally outputting whatever bit A does. A straightforward argument

then implies the claim.

Next we define game G2, which is identical to G1 except we replace (R,S)← next(pp, S)

(line 15 in G1) with a random output and freshly generated state, R ←$ {0, 1}` and

S ←$ setup(pp) (line 14 in G2). We claim that there exists a qC-attacker C1 running

in time T ′ ≈ T such that

|Pr [G2 ⇒ 1 ]− Pr [G1 ⇒ 1 ]| ≤ Advpres
PRNG(C1) .

Notice that if A outputs ε at the start of their challenge then the modified ‘If ψ = 1’ loop is

not executed and so the games are identical. Therefore, we may without loss of generality

assume that A outputs (I1, . . . , Id) for d ≥ 1. Let C1 be the attacker who proceeds as

follows. On input pp, C1 generates a public / secret key pair via (pk, sk)←$Key and passes

(pp, pk) to A. C1 constructs a partial initial state for BPRNG as (·, C[1], . . . , C[k], 0) where

C[i]←$ Enc(pk, 0n) for i ∈ [1, k] and the missing first component is implicitly taken to

be the unknown initial state S in C1’s challenge. When A outputs a tuple (I1, . . . , Id),

C1 outputs the same tuple to his own challenger. C1 receives (R,S) in response, inserts

these at line 15 in G1, and continues running the game, finally outputting whatever bit A

does. It is straightforward to verify that if C1 receives a real output / state in his challenge

then this perfectly simulates G1; otherwise it perfectly simulates G2, thereby implying the

claim.

Next we define game G3, which is identical to G2 except we replace C[0]← Enc(pk, S;R)
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(line 15) with C[0]←$ Enc(pk, 0n). Recalling that R←$ {0, 1}` in G2 where rPKE’s coin

space is R = {0, 1}`, an analogous argument to that made above implies that there exists

an attacker B2 running in time T ′ ≈ T and who makes a single query of (S, 0n) to his LoR

oracle, such that

|Pr [G3 ⇒ 1 ]− Pr [G2 ⇒ 1 ]| ≤ Advind-cpa
rPKE (B2, 1) .

Next we define game G4, which is identical to G3 except we replace the line (R,S) ←

next(pp, S) (line 18 in G3) with R←$ {0, 1}` ;S ←$ setup(pp) (line 17 in G4). We claim

that there exists a 0-attacker C2 in game Pres against PRNG running in time T ′ ≈ T such

that

|Pr [G4 ⇒ 1 ]− Pr [G3 ⇒ 1 ]| ≤ Advpres
PRNG(C2) .

To see this, notice that due to a previous transition the output / state pair in this line

are computed by applying next to pp and a freshly generated state S ←$ setup(pp) (i.e.,

from line 14 in G3 if the ‘If ψ = 1’ loop is executed, and line 2 otherwise). Let C2

proceed as follows. C2 generates parameters and initial state as described in the previous

reduction to Pres security and passes (pp, pk) to A. If A outputs (I1, . . . , Id) with d ≥ 1,

then C2 ignores the inputs that A outputs, and sets C[0] ←$ Enc(pk, 0n), followed by

C[k]← C[k − 1]; . . . ;C[1]← C[0]. C2 then outputs ε to their challenger, receiving (R,S)

in response. C2 substitutes these values into line 18 of G3 and continues running the

game. At the end of the game, C2 outputs whatever bit A does. It is straightforward to

verify that if C2 receives a real output / state in his challenge this perfectly simulates G3;

otherwise it perfectly simulates G4, thereby implying the claim.

Next we define game G5, which is identical to G4 except we replace the output of the

stateless PRG G on line 18 with a truly random string of appropriate length. Since the

PRG seed R is chosen uniformly at random in both games (line 17), a straightforward

reduction to the stateless PRG security of G implies that there exists an attacker E running

in time T ′ ≈ T such that

|Pr [G5 ⇒ 1 ]− Pr [G4 ⇒ 1 ]| ≤ Advsprg-dist
G (E) .

Next we define G6 to be identical to G5, except we replace the output of the stateless

PRG G′ (line 20 in G5) with a random string of appropriate length. Due to the previous

transition, G′ takes as input as truly random seed R1 (line 18) in G5, and so an analogous

reduction to the PRG security of G′ implies that there exists an attacker E ′ running in
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time T ′ ≈ T such that

|Pr [G6 ⇒ 1 ]− Pr [G5 ⇒ 1 ]| ≤ Advsprg-dist
G′

(E ′) .

Notice that in G6, A will receive a random output R
∗ ←$ {0, 1}k·m in his challenge if

η = 0. Next we define game G7, which is identical to G6 except we replace the re-

randomised ciphertexts C[i]← Rand(pk, C[i];Ri) for i ∈ [1, k] (line 22) with fresh encryp-

tions C[i]←$ Enc(pk, 0n). We claim that

|Pr [G7 ⇒ 1 ]− Pr [G6 ⇒ 1 ]| ≤ k ·∆rPKE .

To see this, notice that if η = 0 then the modified code is not executed, and so we may

assume without loss of generality that η = 1. Now in both games each of the ciphertexts

to be re-randomised corresponds to a fresh randomised encryption of 0n, and each Ri

corresponds to a random string drawn from the coin space of Rand. As such, invoking the

re-randomisability of rPKE and taking a hybrid argument over the k ciphertexts implies

the claim.

Next we define game G8, which is identical to G7 except we replace the re-randomised

ciphertexts C[i]← Rand(pk,C[i];Rk+i) for i ∈ [1, k] in line 26 of G7 with fresh encryptions:

C[i]←$ Enc(pk, 0n) for i ∈ [2, k], and C[1]←$ Enc(pk, S) where S←$ setup(pp) in line 17.

We claim that there exists an attacker F running in T ′ ≈ T such that

|Pr [G8 ⇒ 1 ]− Pr [G7 ⇒ 1 ]| ≤ (k − 1) ·∆rPKE + Advs-rerand
rPKE (F) .

To see this, notice that by the previous game hop each C[i] which is re-randomised is

an honestly generated encryption of 0n and so a valid ciphertext. A straightforward

reduction to the strong re-randomisability of rPKE then implies that we can replace

C[1] ← Rand(pk,C[1];Rk+i) with C[1]←$ Enc(pk, S), with the transition upper bounded

by Advs-rerand
rPKE (F). (To see this, let F be the attacker who simulates the game as in G7, but

generates C[1] on line 26 by submitting (C∗, S) to their challenger, where C∗←$Enc(pk, 0n)

and S is as generated in line 17, and inserts the response as C[1].) Moreover, the re-

randomisability of rPKE implies that each C[i] for i ∈ [2, k] is ∆rPKE close to a fresh

encryption of 0n; taking a hybrid argument over each of the (k − 1) ciphertexts then

implies the claim. Moreover, notice that the structure of the challenge state S
∗

is now

identical to that of a fresh state output by setup(pp).

Next we define game G9, which is identical to G8 except we replace each ciphertext

C[i]←$ Enc(pk, 0n) for i ∈ [1, k] (line 22) with a random bit string C[i]←$ {0, 1}m. A

straightforward reduction to the IND$-CPA security of rPKE implies that there exists an
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attacker G running in time T ′ ≈ T and who makes k queries of 0n to his RoR oracle such

that

|Pr [G9 ⇒ 1 ]− Pr [G8 ⇒ 1 ]| ≤ Advind$-cpa
rPKE (G, k) .

In particular, notice that in G9 the output R
∗

given to A in his challenge is equivalent to

a string drawn uniformly from {0, 1}k·m regardless of whether η = 0 or η = 1. Finally, we

define game G10 (not shown), which reverses the modifications made in G1 to return to

computing C[1] on line 3 as per the protocol. However, since A’s view of the game is now

independent of this value, it follows that these games are identically distributed and

Pr [G10 ⇒ 1 ] = Pr [G9 ⇒ 1 ] .

Moreover, since A always receives a random output R
∗←$ {0, 1}k·m and freshly generated

state S
∗←$ setup(pp) in his challenge, it is straightforward to verify that G10 is equivalent

to game Pres against PRNG with challenge bit b = 1. Combining the above via a standard

argument implies that there exist attackers B, C1, C2, E , E ′,F ,G, with the claimed run times

and query budgets, such that

Advpres

PRNG
(A) ≤ 2 ·Advind-cpa

rPKE (B, 1) + Advpres
PRNG(C1) + Advpres

PRNG(C2) + Advsprg-dist
G (E)

+ Advsprg-dist
G′

(E ′) + (2k − 1) ·∆rPKE + Advs-rerand
rPKE (F) + Advind$-cpa

rPKE (G, k) ,

thereby concluding the proof of Pres security.

Recovering security. In the following lemma, we analyse the Rec security of BPRNG.

The proof is similar to that of Pres security. A natural difference is that we appeal to the

Rec security of PRNG to argue that (R,S) on line 7 of next can be replaced with a random

output and freshly generated state. Interestingly, despite working in the Rec setting, we

still require a reduction to the Pres security of PRNG to argue that (R,S) on line 10

can be replaced with their idealised counterparts. This is because this pair is produced

by applying next(pp, ·) to a state which, depending on the value of state component ψ,

is either freshly generated or has been output by next; since the state does not follow a

period of refreshing, we cannot appeal to Rec security. Instead we show that (modulo

previous game hops) the relevant games can be simulated by an attacker in game Pres

who outputs ε at the start of their challenge.
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Lemma 5.3. Let PRNG be as in Theorem 5.5. Then for any qC-attacker A running in

time T in game Rec against PRNG, and any (qD, γ
∗)-legitimate sampler D, there exist

attackers B, C2, C3, E , E ′,F , and G running in time T ′ ≈ T , such that

Advrec
PRNG,γ∗,qD

(A,D) ≤ Advind-cpa
rPKE (B, 1) + Advpres

PRNG(C2)

+ Advrec
PRNG,γ∗,qD

(C3,D) + Advsprg-dist
G (E) + Advsprg-dist

G′
(E ′)

+ k · (∆rPKE + Advs-rerand
rPKE (F)) + Advind$-cpa

rPKE (G, k) .

Here, C2 is a 0-attacker and C3 is a qC-attacker.

Proof. We argue by a series of game hops, shown in Figures 5.20 and 5.21. The proof is

similar to that of Lemma 5.2; we emphasise the differences here. We begin by defining

game G0, which is readily verified to be equivalent to game Rec against PRNG with

challenge bit b = 0. Next we define game G1, which is identical to G0 except we replace

(R,S) ← next(pp, S) on line 15 with R←$ {0, 1}`, S ←$ setup(pp). We claim that there

exists a qC-attacker C3 in game Rec against PRNG, running in time T ′ ≈ T , such that

|Pr [G1 ⇒ 1 ]− Pr [G0 ⇒ 1 ]| ≤ Advrec
PRNG,γ∗,qD

(C3,D) .

Let C3 be the adversary who proceeds as follows. On input pp and entropy estimates /

side information (γk, zk)
qD
i=1, C3 generates (pk, sk)←$ Key, and passes ((pp, pk), (γk, zk)

qD
i=1)

to A. C3 simulates A’s Sam oracle by querying his own oracle and passing the response to

A. Eventually, A outputs an initial state S = (S,C[1], . . . , C[k], ψ) and index d. C3 passes

S, d to his own challenger, receiving back unused inputs (Ik)k>µ+d and (R,S). C3 inserts

(R,S) at line 15 in G0 and continues to simulate the game, finally passing the resulting

output / state (R
∗
, S
∗
) and inputs (Ik)k>µ+d to A. At the end of the game, C3 outputs

whatever bit A does. Notice that if C3 receives a real output / state in his challenge then

this perfectly simulates G0, otherwise it perfectly simulates G1; the claim follows.

Next we define game G2, which is identical to G1 except we replace C[0]← Enc(pk, S;R)

on line 17 of G1 with C[0]←$ Enc(pk, 0n). An entirely analogous argument to that made

in the proof of Lemma 5.2 implies that there exists an attacker B running in time T ′ ≈ T ,

and who makes a single query of (S, 0n) to his LoR oracle, such that

|Pr [G2 ⇒ 1 ]− Pr [G1 ⇒ 1 ]| ≤ Advind-cpa
rPKE (B, 1) .

Next we define game G3, which is identical to G2 except we replace (R,S)← next(pp, S)
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on line 18 with R←$ {0, 1}`, S←$ setup(pp). Notice that since we are in the Rec setting,

at least one refresh must have previously occurred (i.e., A must output d ≥ 1 at the start

of the challenge, and so the ‘If ψ = 1’ loop is executed). As such, the state S input to

next will be that generated freshly in line 15. Therefore, this is again simulatable by a

0-adversary C2 in game Pres against the underlying PRNG PRNG. C2 uses the code of

the sampler to generate the required entropy samples, estimates, and side information. C2

generates parameters as before, and passes these along with the entropy estimates / side

information to A. C2 uses the generated inputs to simulate A’s Sam oracle. Eventually,

A outputs state (S,C[1], . . . , C[k], ψ) and some value d. C2 discards S and d, and keeps

the remaining ciphertexts to simulate the rest of the challenge, first replacing any invalid

ciphertexts with encryptions of 0n as per the protocol. We view S←$ setup(pp) in line 15

as the unknown initial state for the computation of C2’s Pres challenge against PRNG. As

described in the proof of Lemma 5.2, C2 returns the empty string to its challenger, and

receives back (R,S), which C2 inserts at line 18 of G2. C2 then simulates the remainder of

the challenge, again using the code of the sampler D to produce the unused inputs which

are given to A along with the challenge output / state. At the end of the game, C2 outputs

whatever bit A does. It is straightforward to verify that if C2 receives a real output / state

in his challenge then this perfectly simulates G2; otherwise it perfectly simulates G3. It

follows that

|Pr [G3 ⇒ 1 ]− Pr [G2 ⇒ 1 ]| ≤ Advpres
PRNG(C2) ,

where C2 runs in time T ′ ≈ T .

In games G4 and G5, we first replace the output of G on line 19 and then G′ on line 20 with

random bit strings. As before, by construction each PRG is seeded with a truly random

seed in the game in which their output is modified, and so a straightforward reduction

implies the existence of attackers E and E ′ with the claimed run times such that

|Pr [G5 ⇒ 1 ]− Pr [G3 ⇒ 1 ]| ≤ Advsprg-dist
G (E) + Advsprg-dist

G′
(E ′) .

In game G6, we replace the re-randomised ciphertexts C[i] ← Rand(pk,C[i];Ri) in line

23 of G5 with fresh encryptions C[i] ←$ Enc(pk,Mi), where M1 = S from line 18 of

G5 and Mi = 0n for i ∈ [2, k]. Notice that while A may output invalid ciphertexts as

part of his challenge state, the loop in lines 11-13 ensures that each of these is replaced

with Enc(pk, 0n; 0`) and so each ciphertext which is re-randomised is valid. As such, an

analogous reduction to that made in the proof of Lemma 5.2, invoking the strong re-

randomisability of rPKE, plus a hybrid argument over the k ciphertexts to be replaced,
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implies that there exists an attacker F running in time T ′ ≈ T such that

|Pr [G6 ⇒ 1 ]− Pr [G5 ⇒ 1 ]| ≤ k ·Advs-rerand
rPKE (F) .

In game G7, we replace the re-randomised ciphertexts on line 27 of G6 with fresh en-

cryptions of their underlying messages. Since, by the previous transition, all ciphertexts

which are re-randomised at this point in G6 are fresh encryptions, a straightforward hybrid

argument invoking the re-randomisability of rPKE implies that

|Pr [G7 ⇒ 1 ]− Pr [G6 ⇒ 1 ]| ≤ k ·∆rPKE .

In game G8, we replace each ciphertext C[i] on lines 22, 24 of G7 with a random bit string

C[i]←$ {0, 1}m for i ∈ [1, k]. As before, a reduction to the IND$-CPA security of rPKE

implies that there exists an attacker G with the claimed run time and query budget, such

that

|Pr [G8 ⇒ 1 ]− Pr [G7 ⇒ 1 ]| ≤ Advind$-cpa
rPKE (G, k) .

Notice that A always receives a random output R
∗←${0, 1}k·m and freshly generated state

S
∗←$ setup(pp) in his challenge in G8. As such, it is straightforward to verify that G8 is

equivalent to game Rec against PRNG with challenge bit b = 1. Combining the above via

a standard argument implies that there exist attackers B, C, E , E ′,F ,G with the claimed

run times, such that

Advrec
PRNG,γ∗,qD

(A,D) ≤ Advind-cpa
rPKE (B, 1) + Advpres

PRNG(C2)

+ Advrec
PRNG,γ∗,qD

(C3,D) + Advsprg-dist
G (E) + Advsprg-dist

G′
(E ′)

+ k · (∆rPKE + Advs-rerand
rPKE (F)) + Advind$-cpa

rPKE (G, k) ,

thereby concluding the proof of Rec security.

Big Brother’s success probability. It remains to bound the probability that Big

Brother succeeds in game BPRNG-OUT for BPRNG. Let iref , jref denote, respectively,

the refresh periods in which the challenge output Ri and target output Rj were computed.

The key observation is that for Big Brother to succeed, two conditions must be met. Firstly,

we require that iref − jref ∈ [0, k − 1]; this ensures that the encrypted snapshot of the

PRNG state used in refresh period jref is stored in the state of BPRNG. Secondly, letting

ηi, ηj denote the values of η computed in line 11 of the next algorithm when generating the
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i-th and j-th output values Ri and Rj , respectively, we require that ηi = 1 (so challenge

output Ri consists of encrypted shapshots), and ηj = 0 (and hence can be reconstructed

by BB given the appropriate encrypted snapshot). If ηi, ηj←${0, 1} then this relation will

occur with probability 1
4 ; a brief series of game hops to transition from their production

in next to this idealised variant then implies the claim.

Lemma 5.4. Let BPRNG be as in Theorem 5.5. Then for all refresh patterns

rp = (a1, b1, . . . , aρ, bρ), all distribution samplers D, and for all 1 ≤ i, j ≤
∑ρ

ν=1 aν = qR,

there exist efficient adversaries B, C such that Advbprng-out
BPRNG,D(BB, rp, i, j) ≥ δ(rp, i, j), where

δ(rp, i, j) =


1 if j = i ; else

1
4 −Advrob

PRNG,γ∗,qD
(B,D)− 2 ·Advsprg-dist

G (C) if iref − jref ∈ [0, k − 1]

0 otherwise

Here iref ← minσ [
∑σ

ν=1 aν ≥ i] and jref ← minσ [
∑σ

ν=1 aν ≥ j]. B is a (q′R, qD, qC , qS)-

adversary where qD =
∑ρ

i=1 bi, qC = max1≤i≤ρ bi, q
′
R = qR + ρ− 1, and qS = 0.

Proof. If i = j, then the target output is given to BB as part of his challenge and BB

trivially succeeds with probability one. Similarly, if jref > iref or iref − jref ≥ k then BB

aborts and output ⊥, justifying this case also.

For the remaining case, let ηi, ηj denote the values of η computed in line 11 of the next

algorithm when generating the i-th and j-th output values Ri and Rj , respectively. As

discussed above, for BB to successfully recover the target output Rj we must have that

ηi = 1 and ηj = 0. If this is the case, and assuming that iref − jref ∈ [0, k− 1] , then it is

straightforward to verify that BB will output the correct value with probability one. As

such, for j 6= i such that iref − jref ∈ [0, k − 1], it holds that

Advbprng-out
BPRNG,D(BB, rp, i, j) ≥ Pr [ ηi = 1 ∧ ηj = 0 ] .

We now bound this probability. We let G0 be identical to game BPRNG-OUT against

BPRNG. Consider the evolution of the state of the underlying PRNG PRNG within an

execution of BPRNG with refresh pattern rp = (a1, b1, . . . , aρ, bρ) and sampler D. It

is straightforward to verify that the state of PRNG evolves via a refresh pattern rp′ =

(a1, b1, a2 + 1, b2, . . . , aρ + 1, bρ), where the additional plus one for ai with i ∈ [2, ρ] is due

to the extra application of next on line 7 of next which occurs at the start of all but the first

refresh period. Letting (R1, . . . , RqR+ρ−1)← out(PRNG, S0, pp, rp
′,D) where qR =

∑ρ
i=1 ai
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(the extra ρ − 1 outputs accounting for the additional next calls mentioned above), then

we may write

Pr [ ηi = 1 ∧ ηj = 0 in G0 ] = Pr
[

lsb(G(Ri+iref−1)) = 1 ∧ lsb(G(Rj+jref−1)) = 0 in G0

]
.

To bound this probability, we argue by a series of game hops. We let G1 be identical to G0

except each output Ri for i ∈ [1, qR+ρ− 1] is replaced with a random string Ri←${0, 1}`.

Notice that both games can be perfectly simulated by a (q′R, qD, qC , qS)-adversary B in

game Rob against PRNG, where qD =
∑ρ

i=1 bi, qC = max1≤i≤ρ bi, q
′
R = qR + ρ − 1,

and qS = 0, who uses his Ref and RoR oracles to evolve the state of PRNG according

to rp′. At the end of this process, B computes (ηi, R1,i, . . . , R2k,i) ← G(Ri+iref−1) and

(ηj , R1,j . . . , R2k,j) ← G(Rj+jref−1), and outputs 1 if ηi = 1 and ηj = 0 and 0 otherwise.

It follows that

|Pr [ ηi = 1 ∧ ηj = 0 in G1 ]− Pr [ ηi = 1 ∧ ηj = 0 in G0 ]| ≤ Advrob
PRNG,γ∗,qD

(B,D) .

In games G2 and G3 we replace, respectively, the outputs of G(Ri+iref−1) and G(Rj+jref−1)

with random bit strings. In both games, by the previous transition, the PRGs are seeded

with an independent random string, and so a pair of straightforward reductions to the

stateless PRG security of G, combined via a standard argument, implies that there exists

an attacker C such that

|Pr [ ηi = 1 ∧ ηj = 0 in G3 ]− Pr [ ηi = 1 ∧ ηj = 0 in G1 ]| ≤ 2 ·Advsprg-dist
G (C) .

Now in G3 both ηi and ηj are chosen as random bits, and so

Pr [ ηi = 1 ∧ ηj = 0 in G3 ] =
1

4
.

Putting this altogether, and rearranging via a standard argument, we conclude that

Advbprng-out
BPRNG,D(BB, rp, i, j) ≥ Pr [ ηi = 1 ∧ ηj = 0 in G0 ]

≥ 1

4
−Advrob

PRNG,γ∗,qD
(B,D)− 2 ·Advsprg-dist

G (C) ,

thereby completing the proof.

Summary. Combining Lemmas 5.2 and 5.3 (Pres and Rec security of BPRNG) via The-

orem 2.2 implies the upper bound on the robustness of BPRNG. The analysis of Big

Brother’s success probability (Lemma 5.4) then completes the proof of Theorem 5.5.
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5.4.5 Extensions and Modifications

We conclude our analysis of BPRNG with a discussion of the extensions and modifications

which can be made to the above construction to give it slightly different properties. Each

of the following modifications can be shown to be secure using almost identical arguments

to the existing security analysis.

Alternative snapshot storage. An alternative to storing a snapshot of a refreshed

state by rotating the ciphertexts (C[1], . . . , C[k]) as done in line 9 of next would be to

choose a random ciphertext to replace. More specifically, the PRNG output R computed

in line 7 of next could be stretched to produce a log k bit value t, and ciphertext C[t]

would then be replaced with C[0]. Note, however, that BB would no longer be able to tell

which ciphertext corresponds to which snapshot of the state. This can be addressed if the

encryption scheme, in addition to the aforementioned properties, can be used in a way

which is additively homomorphic (for example, ElGamal using its lifted variant [64]). In

this case, the construction would be able to maintain an encrypted counter of the number

of refresh periods, and, for each snapshot, store an encrypted value corresponding to the

number of refresh periods PRNG has undergone before the snapshot was taken. If the

ciphertexts containing these values are concatenated with (C[1], . . . , C[k]) to produce the

output value R, then BB obtains sufficient information to derive which state to use to

recover a given output value. This yields a construction with different advantage function

δ(rp, i, j) compared to the above construction; instead of a sharp drop to 0 when i and j

are separated by k refresh periods, the advantage gradually declines as the distance (in

terms of the number of refresh periods) between i and j increases.

Shorter outputs. The above construction can further be modified to produce shorter

output values. Specifically, instead of setting R ← (C[1], . . . , C[k]) in line 17 of next, a

random ciphertext C[t] could be chosen as R by stretching the output of G in line 11 with

an additional log k bits to produce t. This will reduce the output length from k ·m bits to

m bits. However, a similar problem to the above occurs: BB will not be able to tell which

snapshot C[t] represents. Using a similar solution to the above will increase the output

length to 2m bits. This modification will essentially reduce the backdooring advantage by

a factor of 1/k compared to the above construction.
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Refresh pattern. Lastly, we note that the above construction assumes BB receives

as input the refresh pattern rp. Again, by maintaining encrypted counters for both the

number of refresh periods and the number of produced output values for each snapshot,

we can obtain an algorithm BB which does not require rp as input, but at the cost of

increasing the output size.

301



5.4 Backdooring Pseudorandom Number Generators with Input

proc. main // G0, G1

1. pp←$ init ; (pk, sk)←$ Key

2. S←$ setup(pp)

3. C[1]←$ Enc(pk, S)

4. C[1]←$ Enc(pk, 0n)

5. For i = 2 . . . k

6. C[i]←$ Enc(pk, 0n)

7. ψ ← 0 ;S0 ← (S,C[1] . . . C[k], ψ)

8. (I1, . . . , Id)←$A(pp, pk)

9. For j = 1, . . . , d

10. S ← refresh(pp, S, Ij) ;ψ ← 1

11. For i = 1 . . . k

12. If 1← invalid(pk, C[i])

13. C[i]← Enc(pk, 0n; 0`)

14. If ψ = 1

15. (R,S)← next(pp, S)

16. C[0]← Enc(pk, S;R)

17. C[k]← C[k − 1]; . . . ;C[1]← C[0]

18. (R,S)← next(pp, S)

19. (η,R1, . . . , R2k)← G(R)

20. If η = 0 then R
∗ ← G′(R1)

21. Else

22. For i = 1 . . . k

23. C[i]← Rand(pk, C[i], Ri)

24. R
∗ ← C[1] ‖ . . . ‖C[k]

25. For i = 1 . . . k

26. C[i]← Rand(pk, C[i], Rk+i)

27. ψ ← 0 ;S
∗ ← (S,C[1] . . . C[k], ψ)

28. b∗←$A((pp, pk), R
∗
, S
∗
)

29. Return b∗

proc. main // G4, G5

1. pp←$ init ; (pk, sk)←$ Key

2. S←$ setup(pp)

3. C[1]←$ Enc(pk, 0n)

4. For i = 2 . . . k

5. C[i]←$ Enc(pk, 0n)

6. ψ ← 0 ;S0 ← (S,C[1] . . . C[k], ψ)

7. (I1, . . . , Id)←$A(pp, pk)

8. For j = 1, . . . , d

9. S ← refresh(pp, S, Ij) ;ψ ← 1

10. For i = 1 . . . k

11. If 1← invalid(pk, C[i])

12. C[i]← Enc(pk, 0n; 0`)

13. If ψ = 1

14. R←$ {0, 1}` ;S←$ setup(pp)

15. C[0]←$ Enc(pk, 0n)

16. C[k]← C[k − 1]; . . . ;C[1]← C[0]

17. R←$ {0, 1}` ;S←$ setup(pp)

18. (η,R1, . . . , R2k)← G(R)

19. (η,R1, . . . , R2k)←$ {0, 1}2k·u+1

20. If η = 0 then R
∗ ← G′(R1)

21. Else

22. For i = 1 . . . k

23. C[i]← Rand(pk, C[i], Ri)

24. R
∗ ← C[1] ‖ . . . ‖C[k]

25. For i = 1 . . . k

26. C[i]← Rand(pk, C[i], Rk+i)

27. ψ ← 0 ;S
∗ ← (S,C[1] . . . C[k], ψ)

28. b∗←$A((pp, pk), R
∗
, S
∗
)

29. Return b∗

proc. main // G2, G3

1. pp←$ init ; (pk, sk)←$ Key

2. S←$ setup(pp)

3. C[1]←$ Enc(pk, 0n)

4. For i = 2 . . . k

5. C[i]←$ Enc(pk, 0n)

6. ψ ← 0 ;S0 ← (S,C[1] . . . C[k], ψ)

7. (I1, . . . , Id)←$A(pp, pk)

8. For j = 1, . . . , d

9. S ← refresh(pp, S, Ij) ;ψ ← 1

10. For i = 1 . . . k

11. If 1← invalid(pk, C[i])

12. C[i]← Enc(pk, 0n; 0`)

13. If ψ = 1

14. R←$ {0, 1}` ;S←$ setup(pp)

15. C[0]← Enc(pk, S;R)

16. C[0]←$ Enc(pk, 0n)

17. C[k]← C[k − 1]; . . . ;C[1]← C[0]

18. (R,S)← next(pp, S)

19. (η,R1, . . . , R2k)← G(R)

20. If η = 0 then R
∗ ← G′(R1)

21. Else

22. For i = 1 . . . k

23. C[i]← Rand(pk, C[i], Ri)

24. R
∗ ← C[1] ‖ . . . ‖C[k]

25. For i = 1 . . . k

26. C[i]← Rand(pk, C[i], Rk+i)

27. ψ ← 0 ;S
∗ ← (S,C[1] . . . C[k], ψ)

28. b∗←$A((pp, pk), R
∗
, S
∗
)

29. Return b∗

proc. main // G6, G7

1. pp←$ init ; (pk, sk)←$ Key

2. S←$ setup(pp)

3. C[1]←$ Enc(pk, 0n)

4. For i = 2 . . . k

5. C[i]←$ Enc(pk, 0n)

6. ψ ← 0 ;S0 ← (S,C[1] . . . C[k], ψ)

7. (I1, . . . , Id)←$A(pp, pk)

8. For j = 1, . . . , d

9. S ← refresh(pp, S, Ij) ;ψ ← 1

10. For i = 1 . . . k

11. If 1← invalid(pk, C[i])

12. C[i]← Enc(pk, 0n; 0`)

13. If ψ = 1

14. R←$ {0, 1}` ;S←$ setup(pp)

15. C[0]←$ Enc(pk, 0n)

16. C[k]← C[k − 1]; . . . ;C[1]← C[0]

17. R←$ {0, 1}` ;S←$ setup(pp)

18. (η,R1, . . . , R2k)←$ {0, 1}2k·u+1

19. If η = 0 then R
∗←$ {0, 1}k·m

20. Else

21. For i = 1 . . . k

22. C[i]← Rand(pk, C[i], Ri)

23. C[i]←$ Enc(pk, 0n)

24. R
∗ ← C[1] ‖ . . . ‖C[k]

25. For i = 1 . . . k

26. C[i]← Rand(pk, C[i], Rk+i)

27. ψ ← 0 ;S
∗ ← (S,C[1] . . . C[k], ψ)

28. b∗←$A((pp, pk), R
∗
, S
∗
)

29. Return b∗

Figure 5.18: Games for proof of Lemma 5.2.
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proc. main // G8, G9

1. pp←$ init ; (pk, sk)←$ Key

2. S←$ setup(pp)

3. C[1]←$ Enc(pk, 0n)

4. For i = 2 . . . k

5. C[i]←$ Enc(pk, 0n)

6. ψ ← 0 ;S0 ← (S,C[1] . . . C[k], ψ)

7. (I1, . . . , Id)←$A(pp, pk)

8. For j = 1, . . . , d

9. S ← refresh(pp, S, Ij) ;ψ ← 1

10. For i = 1 . . . k

11. If 1← invalid(pk, C[i])

12. C[i]← Enc(pk, 0n; 0`)

13. If ψ = 1

14. R←$ {0, 1}` ;S←$ setup(pp)

15. C[0]←$ Enc(pk, 0n)

16. C[k]← C[k − 1]; . . . ;C[1]← C[0]

17. R←$ {0, 1}` ;S←$ setup(pp)

18. (η,R1, . . . , R2k)←$ {0, 1}2k·u′+1

19. If η = 0 then R
∗←$ {0, 1}k·m

20. Else

21. For i = 1 . . . k

22. C[i]←$ Enc(pk, 0n)

23. C[i]←$ {0, 1}m

24. R
∗ ← C[1] ‖ . . . ‖C[k]

25. For i = 2, . . . , k

26. C[i]←$ Enc(pk, 0n)

27. C[1]←$ Enc(pk, S)

28. ψ ← 0 ;S
∗ ← (S,C[1] . . . C[k], ψ)

29. b∗←$A((pp, pk), R
∗
, S
∗
)

30. Return b∗

Figure 5.19: Further games for proof of Lemma 5.2.
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proc. main // G0, G1

1. σ ← ε ;µ← 0

2. pp←$ init ; (pk, sk)←$ Key

3. For k = 1, . . . , qD
4. (σk, Ik, γk, zk)←$D(σk−1)

5. (S0, d)←$ASam((pp, pk), (γk, zk)
qD
i=1)

6. If µ+ d > qD or
∑µ+d
i=µ+1 γi < γ∗

7. Return ⊥
8. (S,C[1], . . . , C[k], ψ)← S0

9. For j = 1, . . . , d

10. S ← refresh(pp, S, Ij) ;ψ ← 1

11. For i = 1 . . . k

12. If 1← invalid(pk, C[i])

13. C[i]← Enc(pk, 0n; 0`)

14. If ψ = 1

15. (R,S)← next(pp, S)

16. R←$ {0, 1}` ;S←$ setup(pp)

17. C[0]← Enc(pk, S;R)

18. C[k]← C[k − 1]; . . . ;C[1]← C[0]

19. (R,S)← next(pp, S)

20. (η,R1, . . . , R2k)← G(R)

21. If η = 0 then R
∗ ← G′(R1)

22. Else

23. For i = 1 . . . k

24. C[i]← Rand(pk, C[i], Ri)

25. R
∗ ← C[1] ‖ . . . ‖C[k]

26. For i = 1 . . . k

27. C[i]← Rand(pk, C[i], Rk+i)

28. ψ ← 0 ;S
∗ ← (S,C[1] . . . C[k], ψ)

29. b∗←$A((pp, pk), R
∗
, S
∗
, (Ik)k>µ+d)

Sam // G0 −G3

µ = µ+ 1

Return Iµ

proc. main // G2, G3

1. σ ← ε ;µ← 0

2. pp←$ init ; (pk, sk)←$ Key

3. For k = 1, . . . , qD
4. (σk, Ik, γk, zk)←$D(σk−1)

5. (S0, d)←$ASam((pp, pk), (γk, zk)
qD
i=1)

6. If µ+ d > qD or
∑µ+d
i=µ+1 γi < γ∗

7. Return ⊥
8. (S,C[1], . . . , C[k], ψ)← S0

9. For j = 1, . . . , d

10. S ← refresh(pp, S, Ij) ;ψ ← 1

11. For i = 1 . . . k

12. If 1← invalid(pk, C[i])

13. C[i]← Enc(pk, 0n; 0`)

14. If ψ = 1

15. R←$ {0, 1}` ;S←$ setup(pp)

16. C[0]←$ Enc(pk, 0n)

17. C[k]← C[k − 1]; . . . ;C[1]← C[0]

18. (R,S)← next(pp, S)

19. R←$ {0, 1}` ;S←$ setup(pp)

20. (η,R1, . . . , R2k)← G(R)

21. If η = 0 then R
∗ ← G′(R1)

22. Else

23. For i = 1 . . . k

24. C[i]← Rand(pk, C[i], Ri)

25. R
∗ ← C[1] ‖ . . . ‖C[k]

26. For i = 1 . . . k

27. C[i]← Rand(pk, C[i], Rk+i)

28. ψ ← 0 ;S
∗ ← (S,C[1] . . . C[k], ψ)

29. b∗←$A((pp, pk), R
∗
, S
∗
, (Ik)k>µ+d)

Figure 5.20: Games for proof of Lemma 5.3.
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proc. main // G4, G5

1. σ ← ε ;µ← 0

2. pp←$ init ; (pk, sk)←$ Key

3. For k = 1, . . . , qD
4. (σk, Ik, γk, zk)←$D(σk−1)

5. (S0, d)←$ASam((pp, pk), (γk, zk)
qD
i=1)

6. If µ+ d > qD or
∑µ+d
i=µ+1 γi < γ∗

7. Return ⊥
8. (S,C[1], . . . , C[k], ψ)← S0

9. For j = 1, . . . , d

10. S ← refresh(pp, S, Ij) ;ψ ← 1

11. For i = 1 . . . k

12. If 1← invalid(pk, C[i])

13. C[i]← Enc(pk, 0n; 0`)

14. If ψ = 1

15. R←$ {0, 1}` ;S←$ setup(pp)

16. C[0]←$ Enc(pk, 0n)

17. C[k]← C[k − 1]; . . . ;C[1]← C[0]

18. R←$ {0, 1}` ;S←$ setup(pp)

19. (η,R1, . . . , R2k)←$ {0, 1}2k·u+1

20. If η = 0 then R
∗ ← G′(R1) ; R

∗ ← {0, 1}k·m

21. Else

22. For i = 1 . . . k

23. C[i]← Rand(pk, C[i], Ri)

24. R
∗ ← C[1] ‖ . . . ‖C[k]

25. For i = 1 . . . k

26. C[i]← Rand(pk, C[i], Rk+i)

27. ψ ← 0 ;S
∗ ← (S,C[1] . . . C[k], ψ)

28. b∗←$A((pp, pk), R
∗
, S
∗
, (Ik)k>µ+d)

Sam // G4 −G7

µ = µ+ 1

Return Iµ

proc. main // G6, G7

1. σ ← ε ;µ← 0

2. pp←$ init ; (pk, sk)←$ Key

3. For k = 1, . . . , qD
4. (σk, Ik, γk, zk)←$D(σk−1)

5. (S0, d)←$ASam((pp, pk), (γk, zk)
qD
i=1)

6. If µ+ d > qD or
∑µ+d
i=µ+1 γi < γ∗

7. Return ⊥
8. (S,C[1], . . . , C[k], ψ)← S0

9. For j = 1, . . . , d

10. S ← refresh(pp, S, Ij) ;ψ ← 1

11. For i = 1 . . . k

12. If 1← invalid(pk, C[i])

13. C[i]← Enc(pk, 0n; 0`)

14. If ψ = 1

15. R←$ {0, 1}` ;S←$ setup(pp)

16. C[0]←$ Enc(pk, 0n)

17. C[k]← C[k − 1]; . . . ;C[1]← C[0]

18. R←$ {0, 1}` ;S←$ setup(pp)

19. (η,R1, . . . , R2k)←$ {0, 1}2k·u+1

20. If η = 0 then R
∗ ← {0, 1}k·m

21. Else

22. C[1]←$ Enc(pk, S)

23. For i = 2 . . . k

24. C[i]←$ Enc(pk, 0n)

25. R
∗ ← C[1] ‖ . . . ‖C[k]

26. For i = 1 . . . k

27. C[i]← Rand(pk, C[i];Rk+i)

28. For i = 2, . . . , k

29. C[i]←$ Enc(pk, 0n)

30. C[1]←$ Enc(pk, S)

31. ψ ← 0 ;S
∗ ← (S,C[1] . . . C[k], ψ)

32. b∗←$A((pp, pk), R
∗
, S
∗
, (Ik)k>µ+d)

Figure 5.21: Further games for proof of Lemma 5.3.
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proc. main // G8

1. σ ← ε ;µ← 0

2. pp←$ init ; (pk, sk)←$ Key

3. For k = 1, . . . , qD
4. (σk, Ik, γk, zk)←$D(σk−1)

5. (S0, d)←$ASam((pp, pk), (γk, zk)
qD
i=1)

6. If µ+ d > qD or
∑µ+d
i=µ+1 γi < γ∗

7. Return ⊥
8. (S,C[1], . . . , C[k], ψ)← S0

9. For j = 1, . . . , d

10. S ← refresh(pp, S, Ij) ;ψ ← 1

11. For i = 1 . . . k

12. If 1← invalid(pk, C[i])

13. C[i]← Enc(pk, 0n; 0`)

14. If ψ = 1

15. R←$ {0, 1}` ;S←$ setup(pp)

16. C[0]←$ Enc(pk, 0n)

17. C[k]← C[k − 1]; . . . ;C[1]← C[0]

18. R←$ {0, 1}` ;S←$ setup(pp)

19. (η,R1, . . . , R2k)←$ {0, 1}2k·u+1

20. If η = 0 then R
∗ ← {0, 1}k·m

21. Else

22. For i = 1 . . . k

23. C[i]←$ {0, 1}m

24. R
∗ ← C[1] ‖ . . . ‖C[k]

25. For i = 2 . . . k

26. C[i]←$ Enc(pk, 0n)

27. C[1]←$ Enc(pk, S)

28. ψ ← 0 ;S
∗ ← (S,C[1] . . . C[k], ψ)

29. b∗←$A((pp, pk), R
∗
, S
∗
, (Ik)k>µ+d)

Sam // G8

µ = µ+ 1

Return Iµ

Figure 5.22: Further games for proof of Lemma 5.3.
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5.4.6 On the Inherent Resistance of PRNGs with Input to Backdooring

We have just presented and analysed a construction of a PRNG with input that is back-

doored in a powerful sense: from a given output, Big Brother can recover prior output

values through a number of past refreshes. However, our construction is limited in that

the number of past refresh periods that Big Brother can simultaneously compromise is

proportional to the state size.

The paper upon which this chapter is based [54] included a result purporting to formalise

this intuition by bounding the number of refresh periods that a backdoor attacker can

simultaneously compromise in terms of the state size of the PRNG. Unfortunately during

the production of this thesis we discovered that the previously stated result is incorrect

and have been unable to recover a similar result. For the remainder of the section, we give

an overview of the problem with the result of [54] and of the challenges associated with

recovering a similar result.

The result from [54]. We define a ‘high entropy refresh’ to be a sequence of consecutive

refresh calls such that the entropy samples used in those calls collectively contain at least

γ∗ bits of entropy. The claimed result of [54] considers a backdoored PRNG that allowed

Big Brother to recover a sequence of past PRNG states, each separated by a high entropy

refresh, given a single output and the backdoor parameter.

The key observation that motivated the proof approach of [54] is that since all PRNG

outputs are a deterministic function of the PRNG state and public parameters, it follows

that any ‘useful’ information that can be leaked to Big Brother via the output must be

‘stored’ in these values. The proof of [54] aimed to lower bound the collision entropy of

sequences of states separated by high entropy refreshes. If the expected collision entropy

(over the choice of public parameters) of such a sequence can be shown to decrease as the

number of states in the sequence increases, then this can be used to argue that the state

must grow in order to hold enough information for the sequence of states to be recovered.

While this intuition does seem sound, we shall see that proving a relationship between

collision probability and compromised refresh periods does not seem as straightforward as

erroneously assumed in [54].
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Collision probabilities. We now describe in more detail the collision probabilities that

the proof of [54] aims to bound, and discuss where the problems arise. We have inten-

tionally kept our description fairly informal to avoid introducing additional notation; the

reader is referred to the original work for a more rigorous treatment.

The result of [54] considers a restricted class of (qD, γ
∗)-legitimate samplers. The only

restriction necessary to recall for our discussion here is that we assume that the sampler D

always returns a fixed sequence of entropy estimates, although the actual entropy samples

which these estimates accompany may differ. More formally, we assume that there exists

a sequence of entropy estimates (γ∗1 , γ
∗
2 , . . . , γ

∗
qD) such that for all j ≥ 1 it holds that

Pr
[
γj = γ∗j

]
= 1, where γi is obtained by setting σ0 = ε and iteratively computing

(σi, Ii, γi, zi)←$D(σi−1) for i ∈ [1, j]. We say that such samplers are well-behaved.

With this in place, consider the following experiment for a PRNG

PRNG = (init, setup, refresh, next), a well-behaved (qD, γ
∗)-legitimate sampler D, and a

given refresh pattern rp = (a1, b1, . . . , aρ, bρ) with qR =
∑ρ

i=1 ai. Sample public parameters

pp←$init and a pair of initial states S0, S
′
0←$setup(pp). Evolve both states according to rp,

producing (R1, S1, . . . , RqR , SqR) ← evolve(PRNG, pp, S0, rp,D) and (R′1, S
′
1, . . . , R

′
qR
, S′qR)

← evolve(PRNG, pp, S′0, rp,D). For some j ≤ ρ, pick out a sequence of states from the first

run Sj = (Si0 , Si1 , . . . , Sij ), where i0 = 0 and ik ∈ [1, qR] for k ∈ [1, j], such that each pair

of states is separated by a high entropy refresh. Since the sampler is well-behaved, it follows

that the corresponding sequence of states from the second run, S′j = (S′i0 , S
′
i1
, . . . , S′ij ), are

each separated by a high entropy refresh also. We let CP(Sj | pp) denote the probability

that these sequences of states collide. More formally, we define

CP(Sj | pp) =
∑
z

Pr
[
Sj = S′j | pp = z

]
· Pr [ pp = z ] ,

where the probability is over the coins of init, setup, and D.

The false claim. Let PRNG be a PRNG with associated parameters (`, p). Let δ =

maxA,DAdvrob
PRNG,γ∗,qD

(A,D), where the maximum is over all (qR, qD, qC , qS)-attackers

running in time T and all well-behaved (qD, γ
∗)-legitimate-samplers D3. We define ε =

δ + 2−`, where recall that ` is the output length of PRNG. The result of [54] hinged on

proving that for PRNG as described, it holds that CP(Sj | pp) ≤ εj+1 for all j ≥ 0.

3In [54], a scheme is defined to be (T, ε)-secure with respect to a given security game if the maximum
advantage of an attacker running in time T is ε, and we have stated the result here in this way for ease
of comparison. It is straightforward to verify that the same argument holds when rephrasing the claimed
result of [54] in line with the concrete security style advantage terms given in this work.
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The claim is correct in the case that j = 0. To see this, notice that if CP(S0 | pp) is

large, then an attacker A can exploit this to win the robustness game against PRNG as

follows. Upon input pp, A makes a RoR query, receiving R1 in response. A then generates

a fresh state S′0←$ setup(pp), computes R′1 ← next(pp, S′0), and returns 1 if R1 = R′1 and 0

otherwise. It is straightforward to verify that Advrob
PRNG,γ∗,qD

(A,D) ≥ CP(S0 | pp)− 2−`.

Since by definition δ ≥ Advrob
PRNG,γ∗,qD

(A,D), this implies the claim in the case that j = 0.

However, unfortunately the result does not extend to j ≥ 1 in generality, and we construct

as a counterexample a PRNG for which the claim does not hold.

A counterexample. For the counterexample, consider a PRNG

PRNG = (init, setup, refresh, next) with parameters (`, p) and for which S = {0, 1}n. Let

PP ⊆ {0, 1}∗ denote the public parameter space of PRNG. We let

δ = maxA,DAdvrob
PRNG,γ∗,qD

(A,D) as defined above. We require that δ < 1 − 2−(`−1)

(note that any cryptographically useful PRNG will satisfy this property).

We now define a modified PRNG PRNG′ = (init′, setup′, refresh′, next′) as follows. We

set the public parameter space PP ′ of PRNG′ to be PP ′ = {0, 1} × PP. We define

modified parameter generation via init′ to toss a coin c←$ {0, 1}, run init′, and output

parameters pp′ = c ‖ pp. When setup′, refresh′, or next′ are called on an input tuple

containing pp′ = c ‖ pp, they remove the prepended c from the public parameters and

apply the corresponding algorithm of the original scheme to the resulting input tuple. If

c = 0, they simply return the result. However, if c = 1 then the algorithm overwrites

the state component with 0n prior to returning the result. For example, for all pp ∈ PP,

0n←$ setup′(1 ‖ pp) and (R, 0n) ← next(1 ‖ pp, S) where (R,S′) ← next(pp, S). Crucially,

notice that if PRNG′ is run with public parameters pp′ ∈ {1} × PP then, for any refresh

pattern rp and sampler D, the sequence of states generated by running PRNG′ according

to rp will be constant at 0n.

It is straightforward to verify that for any (qR, qD, qC , qS)-attacker A running in time T ,

and well-behaved (qD, γ
∗)-legitimate sampler D, it holds that

maxA,DAdvrob
PRNG′,γ∗,qD

(A,D) ≤ 1
2 · (1 + δ). (To see this, notice that game Rob against

PRNG′ is equivalent to that against PRNG in the case that pp′ ∈ {0} × PP, in which

case the advantage of such an attacker is upper bounded by δ. Upper bounding the at-

tacker advantage in the case that pp′ ∈ {1} × PP with 1, and noting that parameters for

the different cases are chosen with probability 1
2 , justifies the claim.) This implies that
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ε ≤ 1
2 · (1 + δ) + 2−` for PRNG′, and since by assumption δ < 1 − 2−(`−1), this implies

that ε < 1.

We now consider CP(Sj | pp) for PRNG′. Due to the pathological behaviour of PRNG′ in

the case the pp′ ∈ {1}×PP, it follows that CP(Sj | pp) ≥ 1
2 for all j ≥ 0. This is because

conditioned on a ‘bad’ parameter pp′ ∈ {1} × PP being sampled — an event that occurs

with probability 1
2 — then any pair of state sequences produced by PRNG′ will collide with

probability one. However, the claimed result in [54] would imply that CP(Sj | pp) ≤ εj+1.

Since ε < 1 by our assumption on δ, this implies that εj+1 — and thereby CP(Sj | pp)

— tends to 0 as j tends to infinity. However, since we know that CP(Sj | pp) ≥ 1
2 for all

j ≥ 0, this is clearly a contradiction.

Challenges and future work. Despite this considerable setback, we believe that the in-

tuition that simultaneously backdooring more refresh periods for a robust PRNG requires

the backdoored PRNG to have a larger state is likely to be correct, although the counterex-

ample suggests that the increase in state size compared to refresh periods compromised

might be smaller than previously believed.

If we could correctly upper bound CP(Sj | pp) for j ≥ 0, we could likely recover a variant of

the result. Unfortunately, it is not clear how to construct this bound via a direct reduction

to the Rob security of the PRNG, since intuitively an attacker in the robustness game can

win if e.g., the states output by setup collide, and gains no greater advantage if a sequence

of j states collides.

A possible approach. It may be possible to circumvent this roadblock by considering

a restricted set of PRNGs and introducing a new robustness definition. Namely, suppose

that the PRNG in question is Pres secure. Then this implies that the states following high

entropy refreshes are indistinguishable from initial states generated by setup. As such, we

can hop to a game in which these refreshed states are replaced by freshly generated states

(with the gap between the games bounded via a series of reductions to the Pres security

of the PRNG). Thus in the modified game the desired collision probability is equivalent

to the following:

CP(Sj | pp) =
∑
z

Pr
[
Sj = S′j | pp←$ init ;Sj , S′j ←$ setupj(pp)

]
· Pr [ pp = z ] ,

where Sj←$setupj(pp) corresponds to computing Si←$setup(pp) for i ∈ [0, j], and returning
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Sj = (S0, . . . , Sj).

As such, in this modified game the problem reduces to bounding the probability that two

sequences of freshly sampled states collide. It seems likely that this conceptually simpler

setting may in turn simplify the analysis. That said, the probability still does not seem

possible to bound via a reduction to the robustness of the PRNG for the reasons discussed

above. An alternative approach might be to define a ‘multi-instance’ variant of robust-

ness, in which public parameters are sampled and an attacker must tackle j independent

instances of the PRNG using these public parameters and break the robustness of all of

them. If the j initial states corresponding to each challenge instance collide with a sequence

of j states sampled by the attacker (an event that occurs with probability CP(Sj | pp))

then the attacker can exploit this to win their game. However, it has been shown that

pinning down the ‘right’ multi-instance definition for indistinguishability games such as

robustness — in the sense of requiring the attacker to succeed against each instance, and

not e.g., succeed against the majority and guess the remainder — can be very challeng-

ing [21]. More broadly, modifying robustness in this artificial way (and restricting the set

of PRNGs considered to those that achieve Pres security) makes for a much less satisfying

result. For these reasons we leave formalising this intuition, and hopefully overcoming its

limitations, to future work.

5.5 Conclusion

In this chapter we presented a provable security treatment of mass surveillance in the

context of backdoored pseudorandom number generators, which post-Snowden and the

Dual-EC-DRBG scandal must be considered a very real world problem. We set out to

explore the extent to which a secure pseudorandom number generator can be backdoored

while simultaneously being provably secure.

In the first part of the chapter, we resolved an open problem from [57] by demonstrating

via two novel BPRG constructions that forward secure PRGs can be backdoored in a way

that allows Big Brother to recover past output. This unfortunately disproves the intuition

that forward secure PRGs — which are designed to protect past output in the event of

state compromise by a non-backdoor attacker — may offer some protection against such
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5.5 Conclusion

a form of backdooring.

We built on these results in the second part of the chapter to tackle a more challenging

problem: backdooring robust PRNGs with input. This setting adds a considerable layer

of complexity since the state of a robust PRNG is periodically updated with fresh entropy.

We used a simple BPRNG construction to highlight the key challenge in building powerful

robust backdoored PRNGs: constructing a backdoor that persists through multiple high

entropy refreshes. We defined a new security model to capture this goal, and the chapter

culminated with a construction of a robust BPRNG that provably achieves it, possessing

a backdoor that allows Big Brother to recover past outputs stretching back through a

bounded number of refresh periods. The fact that a provably robust PRNG — which can

withstand all manner of compromise by a non-backdoor attacker — succumbs to a powerful

form of backdooring underscores that Big Brother represents a formidable threat, quite

distinct from the adversaries typically considered in the cryptographic literature pre-2013,

and motivates the need for further study to understand and prevent backdoor attackers.

We conclude by highlighting some open problems and directions for future work.

Impossibility result. The main problem left open by our work is understanding the

extent to which robust PRNGs possess an innate resistance to backdooring. A new result

proving that there is a limit to how many refresh periods can be simultaneously back-

doored would be a positive step to counteract surveillance, suggesting that use of robust

PRNGs which are frequently refreshed with sufficient entropy may frustrate Big Brother’s

attempts at subversion. On the other hand, disproving the intuition sketched in Sec-

tion 5.4.6 via a construction that allows Big Brother to compromise many refresh periods

without a significant increase in state size would certainly be interesting (if disappoint-

ing), and nonetheless useful to increase our understanding of the dangers and limitations

of backdoored PRNGs.

Immunisers. Regardless of whether this limitation is inherent, we have shown that ro-

bust PRNGs succumb to powerful forms of backdooring. As such, developing immunisers

— post-processing techniques which aim to destroy the subliminal channel opened by a

backdoor — emerges as an important direction for future work. Naively the immunisation

techniques for BPRGs of [57] should work equally well for PRNGs with input, since a
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5.5 Conclusion

PRNG collapses to a PRG when no refresh calls are made. However, it seems plausible

that robust PRNGs, being seemingly ‘harder’ to backdoor, can be immunised with less

intrusive or idealised cryptographic techniques than for PRGs (which require a hash func-

tion modelled as either a random oracle or a universal computational extractor [57]). This

motivates the development of immunisers designed specifically for PRNGs.
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Chapter 6

Conclusion

In this thesis we have used three real world concerns — EtE encrypted messaging, stan-

dardised PRNGs, and the threat of backdoored algorithms — as a jumping-off point

for a provable security analysis of a number of practical problems. In each setting,

we were motivated by uncovering and modelling new attacks, and developing provably

secure solutions.

In Chapter 3, we considered message franking (formalised as ccAEAD [73]), a proposed

solution to the emerging problem of verifiable abuse reporting in encrypted messaging

applications. We began by showing that Facebook’s attachment franking scheme succumbs

to an attack caused by the non-robustness [67] of GCM colliding with a server side bug. We

used the ad hoc and ultimately insecure scheme deployed by Facebook to motivate the need

for fast, provably secure ccAEAD. To this end, we dived into the wealth of literature on

collision-resistant hashing to both explain why secure franking schemes cannot match the

efficiency (in terms of rate) of the fastest AEAD schemes, and to inspire our construction

of the first secure single-pass ccAEAD scheme. Problems left open by our work include

developing a scheme that matches the efficiency of ours under weaker assumptions than

the RKA-PRF-security required of the compression function here, and developing new

security models for message franking as its usage increases and other desirable properties

for franking schemes emerge.

Chapters 4 and 5 took as their starting point the NIST SP 800-90A standard, which

was uncomfortably thrust into the spotlight with the Snowden revelations regarding the

backdoored Dual-EC.

In Chapter 4 we set out to fill some of the significant gaps in analysis that surround the
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three PRNG constructions that remain in the widely deployed standard. Prior to our work,

these PRNGs — HASH-DRBG, HMAC-DRBG, and CTR-DRBG — had received minimal

formal analysis, likely having been comparatively overlooked in light of the Dual-EC-DRBG

controversy. On the positive side we formally proved the robustness of HASH-DRBG in

the ROM, along with a similar but more restricted result for HMAC-DRBG. However, on a

less positive note we presented a new attack that breaks the forward security of a permit-

ted variant of HMAC-DRBG, directly contradicting security claims made in the standard

and underscoring the need to formally prove all such claims. Finally, we stepped out-

side the conventional PRNG security models to consider state compromise during output

production, and highlighted a number of vulnerabilities that may arise from implemen-

tation choices allowed by the overly flexible standard. Directions for future work include

extending our analysis to the recently proposed seed-dependent sampler setting [50], and

developing new PRNGs that achieve an effective balance between provable security and

practicality that might be candidates to replace those in NIST SP 800-90A in the future.

For Chapter 5, we took inspiration from both the infamously backdoored Dual-EC-DRBG

and earlier work on backdoored deterministic PRGs [57] to explore the extent to which

a provably secure pseudorandom number generator can be backdoored. This question is

interesting from a practical, as well as theoretical, perspective since any new standardised

PRNG will likely have to stand up to rigorous security analysis. We showed that, un-

fortunately, strong security properties such as forward security for PRGs and robustness

for PRNGs with input do not offer the protection against backdooring one might hope.

To this end, we presented novel constructions of generators that are provably secure with

respect to these definitions and yet nonetheless conceal powerful backdoors. In particular,

the main result of the chapter was a construction of a provably robust PRNG that allows

recovery of past output values through a bounded number of refresh periods — a backdoor

with the potential to completely undermine the security of real world protocols such as

SSL / TLS. En route, we strengthened existing definitions for backdoored PRGs, and de-

veloped the first security model for backdoored PRNGs with input. Open problems from

this section include either formalising or disproving the intuition sketched in the latter

part of the chapter that the fresh entropy which periodically flows into the state of robust

PRNGs makes them more challenging to backdoor, and developing immuniser functions

that are tailored to robust PRNGs.
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Provable security in the real world. The results in this thesis illustrate the productive

interplay that can exist between provable security and practice. As we’ve seen, a provable

security analysis is a highly useful component in the design of real world cryptosystems,

with the potential to pre-empt and prevent attacks, produce practical solutions grounded

in decades of research, and provide a framework within which to formally reason about

the security required for an application.

On the other hand, the results presented illustrate the extent to which the wealth of prob-

lems that exist in practice, and the solutions to these already deployed by practitioners,

are a great source of inspiration for provable security research. In each setting considered,

we have shown how analysing a real world problem through the lens of provable secu-

rity can act as a catalyst to define new security models, develop new constructions, and

unearth unexpected connections to existing literature.

Rather than provable security being unhelpfully academic — or worse, directly at odds

with practice, as some critics have suggested [94] — we strongly believe that there is a

natural and mutually beneficial relationship between provable security and the real world.

This is exemplified by the success — both on paper and in practice — of practice-oriented

provable security. Encouraging an exchange of ideas and culture of collaboration between

practitioners and the academic community is likely to yield further successes on both sides

in the future.
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