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Abstract

Unlike polynomial kernelization in general, for which many non-trivial results and methods exist,
only few non-trival algorithms are known for polynomial-time sparsification. Furthermore, excepting
problems on restricted inputs (such as graph problems on planar graphs), most such results rely
upon encoding the instance as a system of bounded-degree polynomial equations. In particular, for
SAT problems with a fixed constraint language Γ, every previously known result is captured by this
approach, and for several such problems this is known to be tight. In this work, we investigate the
limits of this approach – in particular, does it really cover all cases of non-trivial polynomial-time
sparsification?

We generalize the method using tools from the algebraic approach to constraint satisfaction
problems (CSP). Every constraint which can be modelled via a system of linear equations, over some
finite field F, also admits a finite domain extension to a tractable CSP with a Maltsev polymorphism,
and using known algorithms for Maltsev languages we can show that every problem of the latter
type admits a “basis” of O(n) constraints, which implies a linear sparsification for the original
problem. This generalization appears to be strict; other special cases include constraints modelled
via group equations over some finite group G. For sparsifications of polynomial but super-linear
size we consider two extensions of this. Most directly, we can capture systems of bounded-degree
polynomial equations in a “lift-and-project” manner, by finding Maltsev extensions for constraints
over c-tuples of variables, for a basis with O(nc) constraints. Additionally, we may use extensions
with k-edge polymorphisms instead of requiring a Maltsev polymorphism.

We also investigate characterizations of when such extensions exist. We give an infinite sequence
of partial polymorphisms φ1, φ2, . . . which characterizes whether a language Γ has a Maltsev ex-
tension (of possibly infinite domain). In the complementary direction of proving lower bounds on
kernelizability, we prove that for any language not preserved by φ1, the corresponding SAT problem
does not admit a kernel of size O(n2−ε) for any ε > 0 unless the polynomial hierarchy collapses.

1 Introduction

Kernelization is a preprocessing technique based on reducing an instance of a computationally hard
problem in polynomial time to an equivalent instance, a kernel, whose size is bounded by a function f
with respect to a given complexity parameter. The function f is referred to as the size of the kernel,
and if the size is polynomially bounded we say that the problem admits a polynomial kernel. A classical
kernelization example is Vertex Cover, which admits a kernel with 2k vertices, where k denotes the size
of the cover [37]. Kernelization is a central topic in parameterized complexity, and many non-trivial upper
and lower bounds on the kernelizability of various problems are known; see, e.g., the books of Fomin et
al. [18] or Cygan et al. [13]. Instance reductions also carry practical significance in speeding up subsequent
computations; e.g., the winning contribution in the 2016 PACE challenge for Feedback Vertex Set
used a novel kernelization step as a key component (see https://pacechallenge.wordpress.com/).
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When the complexity parameter is the number of variables or vertices n of the instance, kernelization
is also referred to as sparsification, although sparsifications are sometimes allowed to use superpolynomial
time. A prominent example of the latter is the famous sparsification lemma that underpins research into
the exponential time hypothesis [23]; according to this lemma, for every k there is a subexponential-time
sparsification of k-SAT into O(n) clauses, and hence a total size of Õ(n) bits1.

If the sparsification is restricted to polynomial time, results are more rare, but some do exist. On the
one hand, for many problems, including k-SAT and Vertex Cover, it has been shown that non-trivial
polynomial-time sparsification is impossible unless the polynomial hierarchy collapses [15]; concretely,
under this assumption (which we will make implicitly in the sequel), there is no sparsification for k-
SAT to O(nk−ε) bits for any ε > 0, whereas an encoding in O(nk) bits is trivial. Similar negative
results are known for other problems [26, 25]. On the other hand, there are examples of SAT problems
for which non-trivial sparsification is possible. The first such result was by Bart Jansen (unpublished
until recently [24]), who observed that 1-in-k-SAT admits a kernel with at most n constraints using
Gaussian elimination. More surprisingly, Jansen and Pieterse [26] showed that the Not-All-Equal
k-SAT problem admits a kernel with O(nk−1) constraints, improving on the trivial bound by a factor of
n and settling an implicit open problem. In later research, they improved and generalized the method,
and showed that the bound of O(nk−1) is tight [24]. These bounds follow by encoding the instance as
the roots of a system of bounded-degree polynomial equations, and exploiting the bounded rank of the
resulting system to eliminate superfluous constraints. This is a natural method, with strong explanatory
power for non-trivial sparsifications both of SAT problems and more generally [24, 25]. But does it really
cover all cases of non-trivial polynomial-time sparsification of SAT problems?

Let us make the question more precise. A constraint language Γ is a (finite or infinite) set of relations
over a fixed domain D, and a constraint over Γ is (informally) a requirement that R(X) holds, for some
relation R ∈ Γ and tuple of variables X. The constraint satisfaction problem CSP(Γ) over Γ takes as
input a set of constraints over Γ on a set of variables V , and asks whether there is an assignment V → D
that satisfies every constraint. If D = {0, 1} is the Boolean domain, then the problem is referred to as
SAT(Γ). For particular choices of Γ, this can define problems such as k-Coloring, k-SAT, 1-in-k-
SAT and Not-All-Equal k-SAT. As a concrete example, the k-Coloring problem can be realized
as CSP({6=k}) where 6=k denotes the disequality relation on a domain with k elements. We then ask,
for which languages Γ does CSP(Γ) have a kernel of O(nc) constraints, for some constant c ≥ 1, and
in particular, for which languages is there a kernel with O(n) constraints? (Note that for every finite Γ
there is a trivial polynomial kernel in n, produced by simply discarding duplicate constraints, but as we
saw above, for some languages this can be improved upon.)

We show how the above-described method of kernelization can be generalized using concepts from
the study of constraint satisfaction problems. Consider a constraint R(X) over the domain D = {0, 1}.
By the above method, we would seek a low-degree polynomial P (X) over some finite field F such that
P (X) = 0 if and only if R(X) holds. If this can be done for all relations R ∈ Γ, with polynomials
of max-degree d, then SAT(Γ) has a kernel of O(nd) constraints. We generalize this to finding an
extension of R to some larger domain D′, in a way such that the extension belongs to a language Γ′ with
certain algebraic properties (a Maltsev or k-edge polymorphism). Existing polynomial-time algorithms
for CSP(Γ′) can then be adapted to find a polynomial kernel for the input instance. We show that this
gives a direct and proper generalization of the method of bounded-degree polynomials, and we study in
some detail the conditions required for such an extension to exist.

To describe our approach and results more fully, we review the algebraic approach to CSPs.

The Algebraic Approach in Parameterized and Fine-Grained Complexity

For any language Γ, the classical complexity of CSP(Γ) (i.e., whether CSP(Γ) is in P or is NP-complete)
is determined by the existence of certain algebraic invariants of Γ known as polymorphisms [27]. These
notions will be formally defined in Section 2, but at the moment we may think of the polymorphisms of
a constraint language as higher-arity generalizations of homomorphisms, i.e., operations preserving the
structure of the relations in the constraint language. The connection between constraint languages and
their associated polymorphisms gave rise to the algebraic approach for characterizing the complexity of
CSP(Γ). For a long time it was conjectured not only that CSP(Γ) is either in P or is NP-complete

1Õ(n) supresses logarithmic factors.
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for every Γ [17], but also that the tractability of a CSP problem can be characterized by a finite list of
polymorphisms [8]. Recently, Zhuk and Bulatov have independently announced affirmative solutions to
this conjecture [6, 41].

However, for purposes of parameterized and fine-grained complexity questions, looking at polymor-
phisms alone is too coarse. More technically, the polymorphisms of Γ characterize the expressive power
of Γ up to primitive positive definitions, i.e., up to the use of conjunctions, equality constraints, and
existential quantification, whereas for many questions a liberal use of existentially quantified local vari-
ables is not allowed. For example, k-ary clauses have primitive positive definitions using 3-clauses via
the classical implementation

(x1 ∨ . . . ∨ xk) ≡ ∃y1, . . . , yk−3 : (x1 ∨ x2 ∨ y1) ∧ (¬y1 ∨ x3 ∨ y2) ∧ . . . ∧ (¬yk−3 ∨ xk−1 ∨ xk).

Therefore, the 3-SAT and k-SAT problems are identical with respect to the polymorphisms of the lan-
guage, despite having distinctly different properties with respect to kernel size and running time. In such
cases, one may look at the expressive power under quantifier-free primitive positive definitions, allowing
only conjunctions and equality constraints. This expressive power is characterized by more fine-grained
algebraic invariants called partial polymorphisms. For example, there are numerous dichotomy results for
the complexity of parameterized SAT(Γ) and CSP(Γ) problems, both for so-called FPT algorithms and
for kernelization [30, 31, 32, 36], and in each of the cases listed, a dichotomy is given which is equivalent
to requiring a finite list of partial polymorphisms of Γ. Similarly, Jonsson et al. [29] showed that the
exact running times of NP-hard SAT(Γ) and CSP(Γ) problems, in terms of the number of variables n, are
characterized by the partial polymorphisms of the constraint language Γ. Recently, this approach was
also applied in a research programme of classifying NP-hard SAT(Γ) problems admitting exponentially
improved upper bounds [34].

Unfortunately, studying properties of SAT(Γ) and CSP(Γ) for questions phrased in terms of the size
parameter n is again more complicated than for more permissive parameters k. For example, it is known
that for every finite set P of strictly partial polymorphisms, the number of relations invariant under P
is double-exponential in terms of the arity n [33, Lemma 35]; hence, such relations can in general not
be described by poly(n) bits. As we show later, it also holds that the existence of a polynomial kernel
cannot be characterized by such a finite set P . Instead, such a characterization must be given in another
way. For example, Lagerkvist et al. [35] provide a way to finitely characterize all partial polymorphisms
of a finite Boolean language Γ, whereas in the present article, we pursue a model with an infinite set P
represented via a uniformly described basis.

Our Results

We study the kernelizability of CSP(Γ) using methods inspired by the algebraic approach to CSP.
Our kernelization method is valid for both finite and infinite languages but as the latter requires an
additional technical assumption, we for the purposes of this introduction assume that Γ is finite. We
show kernelizations based on extending an NP-hard language Γ on a domain D into a tractable language
Γ̂ on a domain D′ ⊃ D, where Γ̂ has a polymorphism that guarantees that instances of CSP(Γ̂) have small
representations computable in polynomial time. We prove that this extension property is equivalent to the
requirement that Γ is preserved by certain partial operations that are constructible by the polymorphisms
of the larger language Γ̂. This information can then be used to reduce an instance of CSP(Γ) on n
variables to an equivalent instance with O(nc) constraints, where c is a constant that depends on the
algebraic properties of Γ̂. This method also solves the more difficult problem of finding a polynomial-
sized basis, i.e., given an instance I = (V,C) of CSP(Γ) on |V | = n variables and with constraint set C,
we compute a set C ′ ⊆ C with |C ′| = O(nc) such that every assignment satisfying C ′ also satisfies every
constraint in C. Our results generalize and extend the kernelization results of Jansen and Pieterse [24].
(Recently, these results were further sharpened; see Chen et al. [11].)

When the host language Γ̂ has a Maltsev polymorphism, we refer to this as a Maltsev extension of Γ,
and we show that CSP(Γ) has a basis of O(n) constraints using results and procedures from the so-called
simple algorithm for Maltsev constraints by Bulatov and Dalmau [7]. Particular examples of this case
include relations defined via linear equations over a finite field, such as the problem 1-in-k-SAT, and
relations defined via equations over a finite group (see Section 3.1). This case covers all known NP-hard
CSP(Γ) problems with kernels of size O(n).
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We also consider two approaches that yield kernels of polynomial but not linear size. Most imme-
diately, if Γ̂ has a k-edge polymorphism for some k ≥ 2, then CSP(Γ) has basis of O(nk−1) constraints
using the few subpowers algorithm of Idziak et al. [22], similarly to the application of the algorithm for
the Maltsev case above. Indeed, a Maltsev operation is precisely a k-edge operation for k = 2. We
refer to this as a k-edge extension of Γ. Extending this further, we consider a notion that generalizes
the approach of defining constraints as roots of bounded-degree polynomials, as used by Jansen and
Pieterse [24]. For this, we focus on the Boolean case (D = {0, 1}). Observe that a polynomial of degree
d over a field F, with variable set V , can be viewed as a linear equation over F with variables corre-
sponding to tuples over V of size at most d. Therefore, a second natural way of showing a basis of O(nc)
constraints, c > 1, for a language Γ is to show that every relation R ∈ Γ can be extended to a relation R′

over (≤ d)-ary tuples of variables, such that R′ admits a Maltsev extension. We refer to R′ as a degree-d
extension of R. Computing a linear basis for the extended instance then gives us a basis for SAT(Γ)
of O(nd) constraints. As outlined above, roots of bounded-degree polynomials are a special case of this
approach. Combining the two approaches is also possible: if Γ has a degree-d extension which in turn
has a k-edge extension, then SAT(Γ) has a basis of O(n(k−1)d) constraints.

Interestingly, the notion of a k-edge extension is on its own insufficient to capture all Boolean lan-
guages Γ with a polynomial basis. That is, for every k ≥ 2 there is a language Γ with a degree-2 extension
with a Maltsev extension, but which does not have a k-edge extension. This is in contrast to the algebraic
side, where there is a notion of an algebra having few subpowers, closely related to the idea of only being
able to primitively positively define 2poly(n) distinct n-ary relations, where it is known that an algebra
has few subpowers if and only if it has a k-edge term [2].

Finally, we turn to the question of lower bounds, and of obtaining a better understanding of the
algebraic properties of languages with useful extensions. It turns out that this question has a strong
correspondence to properties of the partial polymorphisms of the constraint language. As discussed
earlier, the property of admitting an extension Γ̂ with respect to a concrete operation p is tantamount to
Γ being preserved by certain partial operations constructible by p. Moreover, if Γ is a constraint language
not preserved by operations of this form, this can sometimes be exploited in order to prove lower bounds
on kernelizability of CSP(Γ). For the case of Maltsev extensions, we show how to relax this to a set of
universal partial polymorphisms P which characterize the existence of a Maltsev extension of Γ without
needing to refer to a concrete operation p. We prove that the set P is necessarily infinite, but has a
natural basis of gradually stronger partial operations φi, i ≥ 1. We then show, towards establishing a
dichotomy for SAT(Γ) problems with linear kernels, that if Γ is a Boolean language not preserved by φ1

(and thus, SAT(Γ) does not admit a Maltsev extension), and if SAT(Γ) is NP-hard, then SAT(Γ) does
not admit a kernel of O(n2−ε) bits for any ε > 0 unless the polynomial hierarchy collapses.

In addition, as discussed earlier, we show that for any finite set P of strictly partial operations, and
for every c > 1, there is a Boolean language Γ preserved by P which does not admit a kernel of O(nc−ε)
bits for any ε > 0 unless the polynomial hierarchy collapses. Hence, finite lists of partial polymorphisms
cannot give non-trivial size guarantees in kernelization of NP-hard SAT problems, which is in stark
contrast to the setting of classical complexity of CSP, where tractability can always be explained by
finite lists of polymorphisms.

Infinite languages. Our results apply in principle to infinite constraint languages, but there are some
technical caveats. Let Γ be an infinite constraint language, and let Γ̂ be a suitable extension (e.g.,
a Maltsev extension of Γ over a finite domain). Then briefly, all statements above about a basis for
CSP(Γ) hold unchanged, but the computation of said basis can be more challenging. This has two
sources. First, the construction of Γ′ from Γ may itself be computationally challenging, even if Γ is
fixed. Second, the direct application of the above-mentioned algorithm for CSP(Γ′) would require a
running time proportional to the number of tuples in the relations occurring in the instance, which may
well be exponential in n. For these reasons, we cannot in the general case conclude the existence of a
polynomial-time sparsification algorithm, even though a polynomial- or linear-sized basis can be shown.

Structure of the Article

Section 2 gives the required preliminaries. In Section 3 we present basic results on language extensions
and show how having a Maltsev extension implies that CSP(Γ) has a linear basis. In Section 4 we
present the approaches of k-edge extensions and bounded-degree extensions for computing a basis of
O(nc) constraints, c > 1. In Section 5 we present the further algebraic characterisations of Maltsev
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extensions and pursue the problem of proving lower bounds on kernelizability. In Section 6 we summarize
our results and discuss gaps in our knowledge together with future questions.

2 Preliminaries

In this section we introduce the constraint satisfaction problem, kernelization, and the algebraic machin-
ery that will be used throughout the article.

2.1 Operations and Relations

For n ≥ 1 we let [n] denote the set {1, . . . , n}. An n-ary function f : Dn → D over a domain D
is typically referred to as a operation on D, although we will sometimes use the terms function and
operation interchangeably. We let ar(f) = n denote the arity of f . Similarly, if R ⊆ Dn is an n-ary
relation over D we let ar(R) = n. If t ∈ Dn is a tuple we let t[i] denote the ith element in t and for
n′ ≤ n we let

pri1,...,in′ (t) = (t[i1], . . . , t[in′ ])

denote the projection of t on (not necessarily distinct) coordinates i1, . . . , in′ ∈ [n]. Similarly, if R is an
n-ary relation we let

pri1,...,in′ (R) = {pri1,...,in′ (t) | t ∈ R}.

We will often represent relations by logical formulas, and if ψ is a first-order formula with free variables
x1, . . . , xk we write R(x1, . . . , xk) ≡ ψ(x1, . . . , xk) to denote the relation R = {(f(x1), . . . , f(xk)) |
f is a satisfying assignment to ψ}.

2.2 The Constraint Satisfaction Problem

A set of relations Γ is referred to as a constraint language. The constraint satisfaction problem over a
constraint language Γ over D (CSP(Γ)) is the computational decision problem defined as follows.

Instance: A set V of variables and a set C of constraint applications R(x1, . . . , xk) where R ∈ Γ,
ar(R) = k, and x1, . . . , xk ∈ V .
Question: Is there a function f : V → D such that (f(x1), . . . , f(xk)) ∈ R for each R(x1, . . . , xk) in C?

In the particular case when Γ is Boolean we denote CSP(Γ) by SAT(Γ), and we let BR denote the
set of all Boolean relations. Throughout the article we will assume that the constraints in an instance of
CSP(Γ) are represented explicitly as a list of tuples. This is not the only possible choice of representation
but is in line with the majority of theoretical CSP research.

Example 1. Consider the ternary relation R1/3 = {(0, 0, 1), (0, 1, 0), (1, 0, 0)}. It is then readily seen
that SAT({R1/3}) can be viewed as an alternative formulation of the 1-in-3-SAT problem restricted to
instances consisting only of positive literals. More generally, if we let

R1/k = {(x1, . . . , xk) ∈ {0, 1}k | x1 + . . .+ xk = 1},

then SAT({R1/k}) is a natural formulation of 1-in-k-SAT without negation.

2.3 Kernelization

A parameterized problem is a subset of Σ∗ × N where Σ is a finite alphabet. Hence, each instance is
associated with a natural number, called the parameter.

Definition 1. A kernelization algorithm, or a kernel, for a parameterized problem L ⊆ Σ∗ × N is a
polynomial-time algorithm which, given an instance (x, k) ∈ Σ∗ × N, computes (x′, k′) ∈ Σ∗ × N such
that (1) (x, k) ∈ L if and only if (x′, k′) ∈ L and (2) |x′|+ k′ ≤ f(k) for some function f .

The function f in the above definition is sometimes called the size of the kernel. In this article, we are
mainly interested in the case where the parameter denotes the number of variables n in a given instance
of CSP(Γ), and thus aim to construct kernels with a small number of constraints.
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2.4 Polymorphisms and Partial Polymorphisms

In this section we define the link between constraint languages and algebras that was promised in Sec-
tion 1. If f is an n-ary operation and t1, . . . , tn a sequence of k-ary tuples we can in a natural way obtain
a k-ary tuple by applying f componentwise, i.e.,

f(t1, . . . , tn) = (f(t1[1], . . . , tn[1]), . . . , f(t1[k], . . . , tn[k])).

Definition 2. An n-ary operation f is a polymorphism of a k-ary relation R if f(t1, . . . , tn) ∈ R for each
sequence of tuples t1, . . . , tn ∈ R.

If f is a polymorphism of R we also say that R is invariant under f , or that f preserves R, and for a
constraint language Γ we let Pol(Γ) denote the set of operations preserving every relation in Γ. Similarly,
if F is a set of functions, we let Inv(F ) denote the set of all relations invariant under each operation in
F . Sets of functions of the form Pol(Γ) are referred to as clones. It is well known that Pol(Γ)

1. for each n ≥ 1 and each 1 ≤ i ≤ n contains the projection πni (x1, . . . , xi, . . . , xn) = xi, and

2. is closed under composition, i.e., if f, g1, . . . , gm ∈ Pol(Γ), where ar(f) = m and ar(gi) = n for each
1 ≤ i ≤ m, then the operation

f ◦ g1, . . . , gm(x1, . . . , xn) = f(g1(x1, . . . , xn), . . . , gm(x1, . . . , xn))

is included in Pol(Γ).

Similarly, sets of the form Inv(F ) are referred to as relational clones, or co-clones, and are sets of
relations closed under primitive positive definitions (pp-definitions), which are logical formulas consisting
of existential quantification, conjunction, and equality constraints. In symbols, we say that a k-ary
relation R has a pp-definition over a constraint language Γ over a domain D if

R(x1, . . . , xk) ≡ ∃y1, . . . , yk′ : R1(x1) ∧ . . . ∧Rm(xm),

where each Ri ∈ Γ ∪ {Eq}, Eq = {(x, x) | x ∈ D} and each xi is an ar(Ri)-ary tuple of variables over
x1, . . . , xk, y1, . . . , yk′ . Clones and co-clones are related via the following Galois connection.

Theorem 1 ([3, 4, 19]). Let Γ and Γ′ be two constraint languages. Then Γ ⊆ Inv(Pol(Γ′)) if and only
if Pol(Γ′) ⊆ Pol(Γ).

Example 2. It is an easy exercise to verify that the only polymorphisms of the relation R1/3 from
Example 1 are the projections. In order words every Boolean relation is invariant under Pol({R1/3}),
and Theorem 1 then implies that R1/3 can pp-define every Boolean relation.

As a shorthand, we let [F ] = Pol(Inv(F )) denote the smallest clone containing F 2 and 〈Γ〉 =
Inv(Pol(Γ)) be the smallest co-clone containing Γ. Using Theorem 1 Jeavons et al. proved that if Γ
and Γ′ are two finite constraint languages and Pol(Γ) ⊆ Pol(Γ′), then CSP(Γ′) is polynomial-time many-
one reducible to CSP(Γ) [27]. As remarked in Section 1, while this theorem is useful for establishing
complexity dichotomies for CSP and related problems [1, 12], it offers little information on whether a
problem admits a kernel of a particular size. Hence, in order to have any hope of studying kernelizability
of SAT and CSP problems, we need algebras more fine-grained than polymorphisms. In our case these
algebras will consist of partial operations instead of total operations.

Definition 3. An n-ary partial operation over a set D of values is a map of the form f : X → D, where
X ⊆ Dn is called the domain of f , and denoted by domain(f).

As in the case of total operations we let ar(f) = n denote the arity of f . If f and g are n-ary partial
operations such that domain(g) ⊆ domain(f) and f(x1, . . . , xn) = g(x1, . . . , xn) for each (x1, . . . , xn) ∈
domain(g), then g is said to be a subfunction of f . A partial operation which is a subfunction of a
total projection is called a partial projection. We are now ready to define the partial analogue of a
polymorphism.

2Note that we also use [n] for denoting the set {1, . . . , n}, but the intended meaning will always be clear from the
context.

6



Definition 4. An n-ary partial operation f is a partial polymorphism of a k-ary relation R if, for every
sequence t1, . . . , tn ∈ R, either f(t1, . . . , tn) ∈ R or there exists i ∈ [k] such that (t1[i], . . . , tn[i]) /∈
domain(f).

In essence this simply means that f either results in a tuple included in R, or is undefined for some
application. Again, this notion easily generalizes to constraint languages, and if we let pPol(Γ) denote
the set of partial polymorphisms of the constraint language Γ, we obtain a strong partial clone. It is
known that strong partial clones are sets of partial operations which (1) are closed under composition of
partial operations and (2) contains all partial projections [38]. More formally, the first condition means
that if f, g1, . . . , gm are included in the strong partial clone, where f is m-ary and every gi is n-ary, then
the partial operation

f ◦ g1, . . . , gm(x1, . . . , xn) = f(g1(x1, . . . , xn), . . . , gm(x1, . . . , xn))

is also included in the strong partial clone, and (x1, . . . , xn) ∈ domain(f ◦ g1, . . . , gm) if and only if

(x1, . . . , xn) ∈
m⋂
i=1

domain(gi)

and
(g1(x1, . . . , xn), . . . , gm(x1, . . . , xn)) ∈ domain(f).

The second condition, containing all partial projections, is known to be equivalent to closure under taking
subfunctions; a property which in the literature is sometimes called strong.

If F is a set of partial operations we let Inv(F ) denote the set of all relations invariant under F , but
this time Inv(F ) is in general not closed under pp-definitions, but under quantifier-free primitive positive
definitions (qfpp-definitions). As the terminology suggests, a relation R has a qfpp-definition over Γ if
R is definable via a pp-formula which does not make use of existential quantification. Such formulas are
sometimes simply called conjunctive formulas. We have the following Galois connection between Inv(·)
and pPol(·).

Theorem 2 ([19, 38]). Let Γ and Γ′ be two constraint languages. Then Γ ⊆ Inv(pPol(Γ′)) if and only
if pPol(Γ′) ⊆ pPol(Γ).

As a shorthand we let [F ]s = pPol(Inv(F )) denote the smallest strong partial clone containing the
set of partial operations F , and 〈Γ〉6∃ = Inv(pPol(Γ)) for a constraint language Γ be the smallest set
of relations containing Γ which is closed under qfpp-definitions. The intended mnemonic for the latter
notation is that the pp-formulas defining the relations in 〈Γ〉6∃ are quantifier-free and thus cannot make
use of existential quantification. Using the Galois connection in Theorem 2 Jonsson et al. [29] proved
the following theorem.

Theorem 3. Let Γ and ∆ be two finite constraint languages. If pPol(Γ) ⊆ pPol(∆) then there exists a
polynomial-time many-one reduction from SAT(∆) to SAT(Γ) which maps an instance (V,C) of SAT(∆)
to an instance (V ′, C ′) of SAT(Γ) where |V ′| ≤ |V | and |C ′| ≤ c|C|, where c depends only on Γ and ∆.

In particular this implies that if pPol(Γ) ⊆ pPol(∆) and CSP(Γ) is solvable in O(cn) time for a
constant c > 1, then CSP(∆) is solvable in O(cn) time, too. Note that Theorem 3 also shows a
connection between partial polymorphims and kernelizability, in the sense that if pPol(Γ) ⊆ pPol(∆)
and CSP(Γ) has a kernel with O(f(n)) constraints for some function f , then CSP(∆) also admits a
kernel with O(f(n)) constraints.

2.5 Maltsev Operations, Signatures and Compact Representations

A Maltsev operation over D ⊇ {0, 1} is a ternary operation φ which for all x, y ∈ D satisfies the two
identities φ(x, x, y) = y and φ(x, y, y) = x. Before we can explain the powerful, structural properties
of relations invariant under Maltsev operations, we need a few technical definitions from Bulatov and
Dalmau [7]. Let t, t′ be two n-ary tuples over D. We say that (t, t′) witnesses a tuple (i, a, b) ∈ [n]×D2
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if pr1,...,i−1(t) = pr1,...,i−1(t′), t[i] = a, and t′[i] = b. The signature of an n-ary relation R over D is then
defined as

Sig(R) = {(i, a, b) ∈ [n]×D2 | ∃t, t′ ∈ R such that (t, t′) witnesses (i, a, b)},

and we say that R′ ⊆ R is a representation of R if Sig(R) = Sig(R′). If R′ is a representation of R it
is said to be compact if |R′| ≤ 2|Sig(R)|, and it is known that every relation invariant under a Maltsev
operation admits a compact representation. Furthermore, we have the following theorem from Bulatov
and Dalmau, where we let 〈R〉f denote the smallest superset of R preserved under the operation f .

Theorem 4 ([7]). Let φ be a Maltsev operation over a finite domain, R ∈ Inv({φ}) a relation, and R′

a representation of R. Then 〈R′〉φ = R.

We remark that 〈R〉f can also be defined as the relation

〈R〉f = {t | g(t1, . . . , tar(g)) = t, t1, . . . , tar(g) ∈ R, g ∈ [{f}]}.

Hence, relations invariant under Maltsev operations are reconstructible from their compact representa-
tions, which is one of the underlying ideas behind the polynomial-time algorithm for Maltsev constraints
by Bulatov and Dalmau [7]. This property will prove to be crucial in the forthcoming section where
we describe techniques for extending a constraint language into a constraint language preserved by a
Maltsev operation.

3 Maltsev Extensions and Kernels of Linear Size

In this section we give general upper bounds for kernelization of NP-hard CSP problems based on
algebraic conditions. We begin in Section 3.1 by outlining the polynomial-time algorithm for Malt-
sev constraints, and modify this algorithm in Section 3.2 to construct linear-sized kernels for CSP(Γ)
problems satisfying an algebraic condition related to the existence of certain Maltsev operations.

3.1 The Simple Algorithm for Maltsev Constraints

At this stage the connection between Maltsev operations, compact representations and tractability of
Maltsev constraints might not be immediate to the reader. We therefore give a brief description of the
simple algorithm for Maltsev constraints from Bulatov and Dalmau [7], which will henceforth simply be
referred to as the Maltsev algorithm. In a nutshell, the Maltsev algorithm operates as follows, where φ is
a Maltsev operation over a finite set D (note that Inv({φ}) is the infinite constraint language consisting
of all relations preserved by φ).

1. Let (V, {C1, . . . , Cm}) be an instance of CSP(Inv({φ})), and S0 a compact representation of D|V |.

2. For each i ∈ [m] compute a compact representation Si of the solution space of the instance
(V, {C1, . . . , Ci}) using Si−1.

3. Answer yes if Sm 6= ∅ and no otherwise.

The second step is accomplished by removing the tuples from 〈Si−1〉φ that are not compatible with
the constraint Ci. While the basic idea behind the Maltsev algorithm is not complicated, the intricate
details of the involved subprocedures are outside the scope of this article, and we refer the reader to
Bulatov and Dalmau [7], and Dyer and Richerby [16] for a slightly simplified presentation. We note that
although the Maltsev algorithm applies to infinite languages, it is assumed that the relations in the input
are specified by explicit lists of tuples, i.e., the running time includes a factor proportional to max |R|
over relations R used in the input.

Example 3. Let G = (D, ·) be a group over a finite set D, i.e., · is a binary, associative operator, D
is closed under · and contains an identity element 1G, and each element x ∈ D has an inverse element
x−1 ∈ D such that x · x−1 = 1G. The ternary operation s(x, y, z) = x · y−1 · z is referred to as the coset
generating operation of G, and is Maltsev since s(x, y, y) = x · y−1 · y = x and s(x, x, y) = x ·x−1 · y = y.
The problem CSP(Inv({s})) is known to be tractable via the algorithm from Feder and Vardi [17], but
since s is a Maltsev operation CSP(Inv({s})) can also be solved via the Maltsev algorithm.
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Another early class of tractable CSP problems was discovered via the observation that if R is preserved
by a certain Maltsev operation, it can be viewed as the solution space of a system of linear equations.

Example 4. An Abelian group G = (D,+) is a group where + is commutative. Similar to Example 3
we can consider the coset generating operation s(x, y, z) = x − y + z, where −y denotes the inverse of
the element y. If |D| is prime it is known that R ∈ Inv({s}) if and only if R is the solution space of a
system of linear equations modulo |D| [28]. Hence, the problem CSP(Inv({s})) can efficiently be solved
with Gaussian elimination, but can also be solved via the Maltsev algorithm.

3.2 Upper Bounds Based on Maltsev Extensions

In this section we use a variation of the Maltsev algorithm to obtain kernels of CSP problems. First,
observe that Γ is never preserved by a Maltsev operation when CSP(Γ) is NP-hard, since the Maltsev
algorithm then solves CSP(Γ) in polynomial time. The gist of our approach is instead to find a closely
related constraint language Γ̂ which is preserved by a Maltsev operation. This will allow us to use the
advantageous properties of relations invariant under Maltsev operations in order to compute a kernel for
the original problem CSP(Γ). We thus begin by making the following definition.

Definition 5. A constraint language Γ over a domain D admits an extension over the constraint language
Γ̂ over E ⊇ D if there exists a bijection h : Γ → Γ̂ such that ar(h(R)) = ar(R) and h(R) ∩Dar(R) = R
for every R ∈ Γ.

In model-theoretic terminology Γ is sometimes referred to as an induced substructure of Γ̂, and Γ̂ is
called either an extension of Γ or a superstructure of Γ [21]. Trivially, every constraint language is an
extension of itself, but we are particularly interested in the case when Γ̂ is preserved by an operation not
present in Pol(Γ), and say that Γ admits a Maltsev extension if Γ̂ is preserved by a Maltsev operation.

In general, we do not exclude the possibility that the domain E is infinite. In this section, however,
we will only be concerned with finite domains, and therefore do not explicitly state this assumption. If
the bijection h is efficiently computable and there exists a polynomial p such that h(R) can be computed
in O(p(|R|)) time for each R ∈ Γ, then we say that Γ admits a polynomially bounded extension. In
particular, an extension over a finite domain of any finite Γ is polynomially bounded.

Example 5. Recall from Section 2.2 that R1/3 consists of the three tuples (0, 0, 1), (0, 1, 0), and (1, 0, 0).

We claim that R1/3 has a Maltsev extension over {0, 1, 2}. Let R̂1/3 = {(x, y, z) ∈ {0, 1, 2}3 | x+ y+ z =

1 (mod 3)}. By definition, R̂1/3 ∩ {0, 1}3 = R1/3, so all that remains to prove is that R̂1/3 is preserved
by a Maltsev operation. But recall from Example 4 that a relation R is the solution space of a system of
linear equations over D, where |D| is prime, if and only if R is preserved by the operation x− y+ z over
D. Hence, R̂1/3 is indeed a Maltsev extension of R1/3. More generally, one can also prove that R1/k has
a Maltsev extension to a finite domain D where |D| ≥ k and |D| is prime.

Example 5 also shows that the existence of a Maltsev extension of Γ in general cannot be witnessed
by the polymorphisms of Γ, since Pol({R1/3}) consists only of projections. However, we will now prove
that the property of admitting an extension with respect to an operation f can be witnessed by the
partial polymorphisms of the constraint language Γ. The basic idea is that one can construct partial
polymorphisms of Γ by restricting g ∈ [{f}] to the domain of Γ.

Definition 6. Let f : Ek → E be a k-ary operation over a domain E and let D ⊆ E. Define the k-ary
partial operation f|D over D as

domain(f|D) = {(x1, . . . , xk) ∈ Dk | f(x1, . . . , xk) ∈ D},

and
f|D(x1, . . . , xk) = f(x1, . . . , xk)

for every (x1, . . . , xk) ∈ domain(f|D).

In other words f|D is the partial operation over D resulting by restricting f to tuples over D which
also result in a value in D. As a shorthand we let f|B = f|{0,1} be the Boolean restriction.
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Theorem 5. Let Γ be a constraint language on a domain D and let f be an operation on a domain
E ⊇ D. Define Γ̂ = {〈R〉f | R ∈ Γ}. Then the following statements are equivalent.

1. Γ̂ is an extension of Γ preserved by f .

2. g|D ∈ pPol(Γ) for every g ∈ Pol(Γ̂).

Proof. For the first direction, assume that Γ̂ is an extension of Γ, and assume that there exists R ∈ Γ and
an n-ary g ∈ Pol(Γ̂) such that g|D(t1, . . . , tn) /∈ R for t1, . . . , tn ∈ R. By construction, g|D(t1, . . . , tn) = t

is a tuple in Dn. But since R̂∩Dar(R) = R, this implies that t /∈ R̂, hence g(t1, . . . , tn) = g|D(t1, . . . , tn) =

t /∈ R̂. Hence, g preserves neither R̂ nor Γ̂, which is a contradiction. We conclude that g|D ∈ pPol(Γ).

For the other direction, assume that {g|D | g ∈ Pol(Γ̂)} ⊆ pPol(Γ) but that there exists R̂ ∈ Γ̂ such

that R̂ ∩Dar(R) ⊃ R. Let t ∈ R̂ ∩Dar(R) \R. By construction of R̂ it follows that there exists an n-ary
g ∈ [{f}] and t1, . . . , tn ∈ R such that g(t1, . . . , tn) = t /∈ R. But then it follows that g|D(t1, . . . , tn) is
defined as well, implying that g|D(t1, . . . , tn) /∈ R. This contradicts the assumption that g|D ∈ pPol(Γ)

for every g ∈ Pol(Γ̂) (since [{f}] ⊆ Pol(Γ̂)).

Example 6. Let us consider the operation f(x, y, z) = x − y + z over the three element Abelian group
from Example 5, which preserved the extension of R1/3. One can verify that f|B defines a ternary Boolean
partial operation satisfying the two identities defining a Maltsev operation, and which is undefined other-
wise. In fact, whenever Γ is a Boolean constraint language such that SAT(Γ) is NP-hard and Γ admits a
Maltsev extension with respect to a Maltsev operation φ, φ|B will always result in f|B, which by Theorem 5
is guaranteed to preserve Γ. We will return to properties of this partial operation in Section 5.

Hence, the existence of an extension Γ̂ of a language Γ with respect to a concrete operation f can
always be witnessed by the partial polymorphisms of Γ that are constructible via the operation f . It is
also worth remarking that, while not complicated to prove, Theorem 5 also provides a novel, algebraic
characterization of the substructure relationship between two relational structures. Note, however, that
this theorem only applies when a concrete operation f is being considered, and thus cannot a priori be
used to disprove the existence of a particular type of extension, e.g., a Maltsev extension. We revisit this
issue in Section 5, where we describe a set of universal partial polymorphisms of Γ that guarantee the
existence of a Maltsev extension.

We now proceed to describe the kernelization application of the Maltsev extension property. Given
an instance I = ({x1, . . . , xn}, C) of CSP(Γ) we let

ΨI = {(g(x1), . . . , g(xn)) | g satisfies I}

be the relation consisting of all satisfying assignments of I. If φ is a Maltsev operation and I =
(V, {C1, . . . , Cm}) an instance of CSP(Inv({φ})) we let Seq(I) = (S0, S1 . . . , Sm) denote the compact
representations of the relations

Ψ(V,∅),Ψ(V,{C1}), . . . ,Ψ(V,{C1,...,Cm})

computed by the Maltsev algorithm. We remark that the ordering chosen in the sequence Seq(I) does
not influence the upper bound in the forthcoming kernelization algorithm.

Definition 7. Let φ be a Maltsev operation, p a polynomial and let ∆ ⊆ Inv({φ}). We say that ∆ and
CSP(∆) have chain length p if |{〈Si〉φ | i ∈ {0, 1, . . . , |C|}}| ≤ p(|V |) for each instance I = (V,C) of
CSP(∆), where Seq(I) = (S0, S1, . . . , S|C|).

We now have everything in place to define our kernelization algorithm.

Theorem 6. Let Γ be a constraint language which admits a polynomially bounded Maltsev extension Γ̂
with chain length p. Then CSP(Γ) has a kernel with O(p(|V |)) constraints.

Proof. Let φ ∈ Pol(Γ̂) denote the Maltsev operation witnessing the extension Γ̂. Given an instance
I = (V,C) of CSP(Γ) we can obtain an instance I ′ = (V,C ′) of CSP(Γ̂) by replacing each constraint
Ri(xi) in C by R̂i(xi). We arbitrarily order the constraints as C ′ = (C1, . . . , Cm) where m = |C ′|. We
then iteratively compute the corresponding sequence Seq(I ′) = (S0, S1, . . . , S|C′|). This can be done in
polynomial time with respect to the size of I via the same procedure as the Maltsev algorithm, since we
assume that the constraints are explicitly represented. For each i ∈ [m] we then do the following.
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1. Let the ith constraint be Ci = R̂i(xi1 , . . . , xir ) with ar(R̂i) = r.

2. For each t ∈ Si−1 determine whether pri1,...,ir (t) ∈ R̂i.

3. If yes, then remove the constraint Ci, otherwise keep it.

This can be done in polynomial time with respect to the size of the instance I ′, since |Si−1| is bounded
by a polynomial in |V | and since the test pri1,...,ir (t) ∈ R̂i can naively be checked in linear time with
respect to |R̂i|. We claim that the procedure outlined above will correctly detect whether the constraint
Ci is redundant or not with respect to 〈Si−1〉φ, i.e., whether 〈Si−1〉φ = 〈Si〉φ. First, observe that if there
exists t ∈ Si−1 such that pri1,...,ir (t) /∈ R̂i, then the constraint is clearly not redundant. Hence, assume
that pri1,...,ir (t) ∈ R̂i for every t ∈ Si−1. Then Si−1 ⊆ 〈Si〉φ, hence also 〈Si−1〉φ ⊆ 〈Si〉φ. On the other
hand, 〈Si〉φ ⊆ 〈Si−1〉φ holds trivially. Therefore, equality must hold.

Let I ′′ = (V,C ′′) denote the resulting instance. Since CSP(Inv({φ})) has chain length p it follows that
the sequence 〈S0〉φ, 〈S1〉φ, . . . , 〈S|C′|〉φ contains at most p(|V |) distinct elements, hence |C ′′| ≤ p(|V |).
It also holds that ΨI′ = ΨI′′ . Let D be the domain of Γ. Clearly, it holds that ΨI = (ΨI′ ∩ D|V |) =
(ΨI′′∩D|V |). Hence, we can safely transform I ′′ to an instance I∗ of CSP(Γ) by replacing each constraint
R̂i(xi) with Ri(xi). Then I∗ is an instance of CSP(Γ) with at most p(|V |) constraints, such that
ΨI = ΨI∗ . In particular, I∗ has a solution if and only if I has a solution.

As with the Maltsev algorithm, the procedure runs in polynomial time with respect to the total size
of the instance. For languages with bounded arity this simply means time polynomial in n, but it is
worth noting that if Γ is infinite but concisely represented, then the applicability of the above algorithm
depends on whether the underlying operations of the Maltsev algorithm can be performed in polynomial
time with respect to this representation.

All that remains now is to bound the chain lengths of Maltsev extensions. It might be tempting
to argue that the compact representation Si decreases in size if the corresponding constraint is not
redundant, but this strategy is not guaranteed to work since the compact representation is reconstructed
in every iteration of the Maltsev algorithm. Instead, we will prove that either the compact representation
or the associated signature shrinks if the constraint is not redundant. To accomplish this we need two
subsidiary lemmas.

Lemma 1. Let φ be a Maltsev operation over D and I an instance of CSP(Inv({φ})). Then Sig(Si−1) ⊇
Sig(Si) for each Si−1 in Seq(I).

Proof. Let I = (V,C), (j, a, b) ∈ Sig(Si), where j ∈ [|V |] and a, b ∈ D. Then there exists t, t′ ∈ Si such
that (t, t′) witnesses (j, a, b), i.e., pr1,...,j−1(t) = pr1,...,j−1(t′), and t[j] = a, t′[j] = b. Since 〈Si−1〉φ ⊇
〈Si〉φ ⊇ Si, it follows that t, t′ ∈ 〈Si−1〉φ, and hence also that (j, a, b) ∈ Sig(〈Si−1〉φ). But since Si−1 is
a representation of 〈Si−1〉φ, Sig(Si−1) = Sig(〈Si−1〉φ), from which we infer that (j, a, b) ∈ Sig(Si−1).

Lemma 2. Let φ be a Maltsev operation over a finite domain D, and R ∈ Inv({φ}). For every i ∈ [ar(R)],
the tuples (i, a, b) in Sig(R) define an equivalence relation on pri(R) ⊆ D.

Proof. Define the relation a ∼ b if and only if (i, a, b) ∈ Sig(R). Note that (i, a, a) ∈ Sig(R) if and
only if a ∈ pri(R), and that (i, a, b) /∈ Sig(R) for any b if a /∈ pri(R). Also note that ∼ is symmetric
by its definition. It remains to show transitivity. Let (i, a, b) ∈ Sig(R) be witnessed by (ta, tb) and
(i, a, c) ∈ Sig(R) be witnessed by (t′a, t

′
c). We claim that tc := φ(ta, t

′
a, t
′
c) ∈ R is a tuple such that (tb, tc)

witnesses (i, b, c) ∈ Sig(R). Indeed, for every j < i we have φ(ta[j], t′a[j], t′c[j]) = φ(ta[j], t′a[j], t′a[j]) =
ta[j], whereas φ(ta[i], t′a[i], t′c[i]) = (a, a, c) = c. Since ta[j] = tb[j] for every j < i, it follows that (tb, tc)
witnesses (i, b, c) ∈ Sig(R). Hence ∼ is an equivalence relation on pri(R).

We remark that each equivalence relation in Lemma 2 is a so-called congruence of the Maltsev
operation φ. Congruences and the lattices induced by ordering congruences by inclusion, congruence
lattices, are a well-studied topic within universal algebra [10, Section 2.5], and we will now see that the
height of the congruence lattice can be used to bound the chain length of CSP(Inv({φ})).

Theorem 7. Let φ be a Maltsev operation over a finite domain D. Then CSP(Inv({φ})) has chain
length O(|D||V |).
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Proof. Let I = (V,C) be an instance of CSP(Inv({φ})), with |V | = n and |C| = m, and let Seq(I) =
(S0, S1, . . . , Sm) be the sequence of compact representations computed by the Maltsev algorithm. By
Lemma 1, Sig(Si+1) ⊆ Sig(Si) for every i < m, and by Lemma 2, the sets (j, a, b) ∈ Sig(Si) induce
an equivalence relation on prj(〈Si〉φ) for every i ≤ m, j ≤ n. (Lemma 2 applies here since Sig(Si) =
Sig(〈Si〉φ) for every Si in Seq(I), and 〈Si〉φ ∈ Inv({φ}).) We also note that if Sig(Si+1) = Sig(Si), then
〈Si〉φ = 〈Si+1〉φ since Si+1 is a compact representation of 〈Si〉φ. Hence, we need to bound the number
of times that Sig(Si+1) ⊂ Sig(Si) can hold. Now note that whenever Sig(Si+1) ⊂ Sig(Si), then either
prj(〈Si〉φ) ⊂ prj(〈Si+1〉φ) for some j, or the equivalence relation induced by tuples (j, a, b) ∈ Sig(Si+1) is
a refinement of that induced by tuples (j, a, b) ∈ Sig(Si) for some j. Both of these events can only occur
|D| − 1 times for every position j (unless Sm = ∅). Hence the chain length is bounded by 2|V ||D|.

This bound can be slightly improved for a particular class of Maltsev operations. Recall from Exam-
ple 3 that s(x, y, z) = x · y−1 · z is the coset generating operation of a group G = (D, ·).

Lemma 3. Let G = (D, ·) be a finite group and let s be its coset generating operation. Then CSP(Inv({s}))
has chain length O(|V | log |D|).

Proof. Let I = (V,C) be an instance of CSP(Inv({s})), where |V | = n and |C| = m. Let Seq(I) =
(S0, S1, . . . , Sm) be the corresponding sequence. First observe that S0 is a compact representation of Dn

and that (Dn, ·) is nothing else than the nth direct power of G. It is well-known that R is a coset of
a subgroup of (Dn, ·) if and only if s preserves R [14]. In particular, this implies that S1 is a compact
representation of a subgroup of (Dn, ·), and more generally that each Si is a compact representation of a
subgroup of 〈Si−1〉s. An application of Lagrange’s theorem reveals that |〈Si〉s| divides |〈Si−1〉s|, which
implies that the sequence 〈S0〉s, 〈S1〉s, . . . , 〈Sm〉s contains at most n log2 |D|+ 1 distinct elements.

Note that if the domain |D| is prime in Lemma 3 then the proof can be strengthened to obtain the
bound O(|V |).

Example 7. Let us briefly return to Example 5, where we demonstrated that R1/k had a Maltsev extension
over the coset generating operation of an Abelian group (D,+) where |D| is prime. Combining Theorem 6
and Lemma 3 we therefore conclude that SAT({R1/k}) has a kernel with O(|V |) constraints.

More generally, we may interpret the results in this section as follows. If Γ admits a Maltsev extension
over the coset generating operation of an Abelian group (D,+), where |D| is prime, then we obtain
kernels with O(|V |) constraints, closely mirroring the results from Jansen and Pieterse [24]. This is in
turn a special case of constraint languages admitting Maltsev extensions over coset generating operations
over arbitrary groups, where we obtain kernels with O(|V | log |D|) constraints. It is not hard to find
examples of groups whose coset generating operations cannot be represented by the aforementioned
Abelian groups. One such example is the group An of all even permutations over [n] for n ≥ 3. Last,
in the most general case, where we obtain kernels with O(|V ||D|) constraints, we have extensions over
arbitrary Maltsev operations. Furthermore, it is known that a Maltsev operation φ over D is the coset
generating operation of a group (D, ·) if and only if

φ(φ(x, y, z), z, u) = φ(x, y, u)

and
φ(u, z, φ(z, y, x)) = φ(u, y, x)

for all x, y, z, u ∈ D [14]. Hence, any Maltsev operation not satisfying either of these two identities
cannot be viewed as a coset generating operation of some group.3

4 Kernels of Polynomial Size

Section 3.2 gives a description of CSP problems admitting kernels with O(n) constraints. In this section
we study two generalizations which provide kernels with O(nc) constraints for c > 1.

3Recently, Chen et al. have shown that any Boolean language with a Maltsev extension over a group as above, also admits
a Maltsev extension as equations over integer rings [11]. However, the general question of whether Maltsev extensions have
greater expressive power than standard linear equations remains unanswered.
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4.1 Moving Beyond Maltsev: k-Edge Extensions

It is known that Maltsev operations are particular examples of a more general class of operations called
k-edge operations. Following Idziak et al. [2] we define a k-edge operation e as a (k + 1)-ary operation
satisfying

e(x, x, y, y, y, . . . , y, y) = e(x, y, x, y, y, . . . , y, y) = y

and for each i ∈ {4, . . . , k + 1}
e(y, . . . , y, x, y, . . . , y) = y,

where x occurs in position i. Note that a Maltsev operation is nothing else than a 2-edge operation
with the first and second arguments permuted. A k-edge extension is then defined analogously to the
concept of a Maltsev extension, with the distinction that the extension Γ̂ must be preserved by a k-edge
operation for some k ≥ 2. It is known that k-edge operations satisfy many of the advantageous properties
of Maltsev operations, and the basic definitions concerning signatures and representations are similar.
Before the proof of Theorem 9 we need the following lemma from Idziak et al. [2, Lemma 2.13].

Lemma 4 ([2]). If e is a k-edge operation over D then [{e}] also contains a binary operation d and a
ternary operation p satisfying

p(x, y, y) = x, p(x, x, y) = d(x, y), d(x, d(x, y)) = d(x, y)

for all x, y ∈ D and a k-ary operation s, which for all x, y ∈ D satisfies

s(x, y, y, y, . . . , y, y) = d(y, x)

and for each i ∈ {2, . . . , k},
s(y, y, . . . , y, x, y, . . . , y) = y,

where x appears in position i.

If e is a k-edge operation over D and d the operation in Lemma 4 then (a, b) ∈ D2 is a minority
pair if d(a, b) = b. Given an n-ary relation R ∈ Inv({e}) and t, t′ ∈ R we then say that the index
(i, a, b) ∈ [n] ×D2 witnesses (t, t′) if (a, b) is a minority pair, pr1,...,i−1(t) = pr1,...,i−1(t′), and t[i] = a,
t′[i] = b. We let Sige(R) denote the set of all indexes witnessing tuples of the relation R ∈ Inv({e}).
Last, R′ ⊆ R is a representation of R if (1) Sige(R) = Sige(R

′) and (2) for every i1, . . . , ik′ ∈ [n],
k′ < k, pri1,...,ik′ (R) = pri1,...,ik′ (R

′). Similar to the Maltsev case we have the following useful property
of representations of relations invariant under k-edge operations.

Theorem 8 ([2]). Let e be a k-edge operation over a finite domain, R ∈ Inv({e}) a relation, and R′ a
representation of R. Then 〈R′〉e = R.

Moreover, each n-ary relation invariant under a k-edge operation has a compact representation of size
O(nk−1). By this stage it should not come as a surprise to the reader that Maltsev algorithm outlined in
Section 3.1 can be modified to solve CSP(Inv({e})) in polynomial time. We will refer to this algorithm
as the few subpowers algorithm [22]. We then obtain the following, analogous to the Maltsev case from
Section 3.2.

Theorem 9. Let Γ be a constraint language which admits a polynomially bounded k-edge extension Γ̂
over a finite domain D. Then CSP(Γ) has a kernel with O(|D|k−1|V |k−1) constraints.

Proof. We only provide a proof sketch since the details are very similar to the Maltsev case. Assume
k ≥ 3, since otherwise the bound follows from Theorem 6 and 7, and let e denote the k-edge operation
witnessing the extension Γ̂. Given an instance I = (V, {C1, . . . , Cm}) of CSP(Γ), iteratively compute
compact representations S0, S1, . . . , Sm of the solution space of (V, ∅), (V, {C1}), . . ., (V, {C1, . . . , Cm}).
This can be done in polynomial time using the procedures from the few subpowers algorithm [22]. We
then remove the constraint Ci if and only if 〈Si〉e = 〈Si−1〉e, which can be checked in polynomial time
using arguments similar to those in Theorem 6.

All that remains to be proven is therefore that the number of distinct elements in the sequence
〈S0〉e, 〈S1〉e, . . . , 〈Sm〉e is bounded by O(|D|k−1|V |k−1). For each Si define

Proj(Si) = {(J,R) | J ∈ [|V |]j , R ⊆ Dj , j < k,prJ(Si) = R}.

If 〈Si〉e ⊃ 〈Si−1〉e it can then be proven that either Sige(Si) ⊃ Sige(Si−1) or Proj(Si) ⊃ Proj(Si−1).
This gives the bound 1 + |Sig(Dn)|+ |Proj(Dn)| = O(|D|k−1|V |k−1).
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4.2 Bounded-Degree Extensions

We now consider an alternative technique for obtaining kernels with O(nc) constraints, c > 1, which is
useful for classes of languages that do not admit Maltsev or k-edge extensions. This will generalize the
results on kernelization for constraints defined via non-linear polynomials over finite fields [24]. In the
rest of this subsection, we assume that the language Γ is Boolean.

Definition 8. Let c ∈ N be a constant, c ≥ 2, and for a set V let V (c) = {S1, . . . , Sl} be an enumeration
of all subsets of V of size at most c in some fixed order S1, . . . , Sl. We make the following definitions.

1. Let t ∈ {0, 1}r be a tuple of arity r and let [r](c) = {S1, . . . , Sl}. A tuple ť ∈ {0, 1}l is the degree-c
extension of t with respect to the ordering S1, . . . , Sl if ť[i] =

∏
j∈Si

t[j], i ∈ [l].

2. A degree-c extension of Γ is a language Γ̌ with a bijection h between relations R ∈ Γ and relations
Ř ∈ Γ̌ such that for every R ∈ Γ and for every tuple t ∈ {0, 1}ar(R), t ∈ R if and only if ť ∈ Ř
where ť is the degree-c extension of t with respect to some fixed ordering.

Note that, whereas tuples t ∈ {0, 1}r have unique degree extensions ť up to the ordering of the sets
Sl, a relation R ⊆ {0, 1}r will have many degree-c extensions for c > 1, since it is not determined whether

t′ ∈ Ř for tuples t′ ∈ {0, 1}ar(Ř) that are not extensions of tuples t ∈ {0, 1}r.
We now give the kernelization applications of degree extensions. Let I = (V,C) be a SAT(Γ) instance

for a Boolean constraint language Γ. Let V (c) be defined as above, for some constant c ≥ 2, and from
any assignment g : V → {0, 1} define an assignment g′ : V (c) → {0, 1} as g′(S) :=

∏
v∈S g(v) for every

set S ∈ V (c). Degree-c extensions, Maltsev extensions and k-edge extensions are related by the following
theorem.

Theorem 10. Let Γ be a finite Boolean language and Γ̌ a degree-c extension of Γ. If Γ̌ admits a Maltsev
extension, then SAT(Γ) admits a kernel of O(nc) constraints; if Γ̌ admits a k-edge extension, then
SAT(Γ) admits a kernel of O(n(k−1)c) constraints.

Proof. Since Γ is finite and fixed, we assume that both extensions are efficiently computable. Let
I = (V,C), |V | = n, be an instance of SAT(Γ), and let V (c) be the degree-c extension of V . For
each constraint R(x1, . . . , xm), m = ar(R), let X1, . . . , Xl ∈ V (c) denote the subsets of {x1, . . . , xm} of
size at most c, and replace R(x1, . . . , xm) by the constraint Ř(X1, . . . , Xl). Let I ′ be the instance of
SAT(Γ̌) resulting from repeating this for every constraint in the instance. Observe that if g is a satisfying
assignment to I then g′(X) =

∏
x∈X g(x), X ∈ V (c), is a satisfying assignment to I ′. We now apply

the kernelization for languages with Maltsev extensions, respectively k-edge extensions, to I ′, and let
I ′′ = (V,C ′) where C ′ ⊆ C is the set of constraints kept by the kernelization. Note that the contents
of the relation ΨI defined by I correspond directly to the relation {ť ∩ ΨI′ | t ∈ {0, 1}n} (recall from
Section 3.2 that ΨI is the set of all satisfying assignments to the instance I). Since the kernelizations
we use preserve the entire solution space, this kernelization procedure is sound, and the desired bound
for the number of constraints in the output follows from Theorem 9.

We observe that this captures the class of SAT problems which can be written as roots of low-degree
polynomials from Jansen and Pieterse [24].

Theorem 11. Let Γ be a Boolean language such that every relation R ∈ Γ can be defined as the set of
solutions in {0, 1} to a polynomial of degree at most d, over some fixed finite field F . Then Γ admits a
degree-d extension with a Maltsev extension.

Proof. We sketch the most important ideas. Let G1 = (D, ·) and G2 = (D,+) be the two Abelian groups
representing the field F . For R ∈ Γ, let pR be the polynomial defining R. Then pR can be written as a
sum of monomials over G1, and each such monomial can simply be treated as conjunction of variables
since pR is evaluated over the Boolean domain, and thus corresponds to a member of V d for d ≥ 1.
Hence, the extension Ř of R can be written as a linear sum over G2, and similar to Example 4 it is now
clear that the coset generating operation of G2 will preserve the resulting Maltsev extension. The result
then follows from Theorem 10.

Finally, we observe that the approach of k-edge extensions by itself is insufficient to prove tight
polynomial kernel bounds for SAT(Γ) problems.
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Lemma 5. For every k ≥ 3 there exists a finite Boolean language Γ such that SAT(Γ) is NP-hard and
admits a kernel with O(n2) constraints, but Γ does not admit a k-edge extension.

Proof. Let R(x1, . . . , xk) be the set of Boolean roots to the quadratic polynomial p(x1, . . . , xk) = x1 +
. . . + xk − x1x2 − 1, evaluated over Zp for some prime p > k. If we let Γ = {R} it can then be verified
that SAT(Γ) is NP-hard since it does not fall into one of Schaefer’s tractable cases [39]. However, since
R is described as the roots of a quadratic equation over a finite field, SAT(Γ) has a kernel with O(n2)
constraints, by Theorem 11. On the other hand, assume towards a contradiction that Γ has an extension
into a language Γ̂ preserved by a k-edge operation e. By Theorem 5, Γ must then be preserved by the
partial operation e|B. Let t1 = (1, 1, 0, . . . , 0) and for i = 2, . . . , k + 1 let ti = (0, . . . , 1, . . . , 0) be the
tuple with 1 in entry i− 1 and 0 in all other entries. It is then easy to verify that

e|B(t1, . . . , tk+1) = (0, . . . , 0)

is defined since e is a k-edge operation. Since ti ∈ R for every i ∈ [k + 1] but (0, . . . , 0) /∈ R, we have a
witness against R being preserved by e|B, and since e was arbitrary, we conclude that Γ does not admit
a k-edge extension.

5 Universal Partial Maltsev Operations and Lower Bounds

We have seen that Maltsev extensions and, more generally, k-edge extensions, provide an algebraic
criterion for determining that a CSP(Γ) problem admits a kernel of a fixed size. In this section we
demonstrate that our approach can also be used to give lower bounds for the kernelization complexity
of Boolean constraint languages. More specifically, we will use the fact that if a satisfiability problem
SAT(Γ) admits a Maltsev extension, then this can be witnessed by certain canonical partial operations
preserving Γ. We begin in Section 5.1 by studying properties of these canonical partial operations,
universal partial Maltsev operations, and in Section 5.2 prove that the absence of these operations can
be used to prove lower bounds on kernelizability.

5.1 Universal Partial Maltsev Operations

In this section we will study properties of partial operations preserving every Boolean constraint language
admitting a Maltsev extension. We thus begin by making the following definition.

Definition 9. A Boolean partial operation f is a universal partial Maltsev operation if f ∈ pPol(Γ) for
every Boolean Γ admitting a Maltsev extension.

In addition, we let UPM denote the set of all Boolean partial universal Maltsev operations, i.e., if we
first let X = {Γ | Γ ⊆ BR admits a Maltsev extension} we then define

UPM =
⋂

Γ∈X
pPol(Γ).

Note that UPM is a strong partial clone since it is defined as the intersection of a set of strong partial
clones. We now proceed and give a complete characterization of the universal partial Maltsev operations.
This characterization will show that there exists an operation u defined over an infinite domain such
every Boolean Γ admitting a Maltsev extension also admits an extension with respect to u, which in
particular will show that the universal partial Maltsev operations can be described by nested applications
of u. This operation is defined as follows.

Definition 10. Let the infinite domain D∞ be recursively defined to contain 0, 1, and ternary tuples
of the form (x, y, z) where x, y, z ∈ D∞ and x 6= y, y 6= z. The ternary Maltsev operation u over D∞ is
defined as u(x, x, y) = y, u(x, y, y) = x, and u(x, y, z) = (x, y, z) otherwise.

Now recall from Section 3.2 that if Γ admits a Maltsev extension with respect to a Maltsev operation
φ then Γ is preserved by every partial operation q|B for q ∈ [{φ}]. Hence, our aim is to show that every
universal partial Maltsev operation is of the form q|B for q ∈ [{u}]. Before presenting this proof we need
some additional notation. It is well-known that if [F ] is a clone over a domain D then f ∈ [F ] if and
only if f is definable as a term function over the algebra (D,F ) [20]. Given a term T (x1, . . . , xn) over an
algebra (D,F ) defining an operation g ∈ [F ] and b1, . . . , bn ∈ D, we let Val(T (b1, . . . , bn)) = g(b1, . . . , bn).
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Theorem 12. Let q ∈ [{u}]. Then q|B ∈ UPM.

Proof. Let Γ be a Boolean constraint language which admits a Maltsev extension Γ̂. We will prove that
q|B ∈ pPol(Γ), which is sufficient to prove the claim since Γ was choosen arbitrarily. Let p be the Maltsev

operation witnessing the extension Γ̂, let n denote the arity of q, and let q(x1, . . . , xn) = Tu(x1, . . . , xn)
where Tu is the term over u defining q. Now, first consider the operation q′ ∈ [{p}] obtained by replacing
each occurrence of u with p in the term Tu(x1, . . . , xn). Let T p(x1, . . . , xn) denote this term over p, and
for each term Tui (xi) occurring as a subterm in Tu(x1, . . . , xn) we let T pi (xi) denote the corresponding
term over p.

Now observe that the partial operation q′|B is included in pPol(Γ) via Lemma 5. We claim that q|B
can be obtained as a subfunction of q′|B, which implies that q|B ∈ pPol(Γ), since a strong partial clone is

always closed under taking subfunctions. By definition, we have that (b1, . . . , bn) ∈ domain(q|B) if and
only if b1, . . . , bn ∈ {0, 1} and q(b1, . . . , bn) ∈ {0, 1}.

We will prove that for each sequence of Boolean arguments b1, . . . , bn, if q(b1, . . . , bn) = b ∈ {0, 1}
then q′(b1, . . . , bn) = b. First, let us illustrate the intuition behind this by an example. Assume that
n = 7 and that Tu(x1, x2, x3, x4, x5, x6, x7) = u(u(x1, x2, x3), u(x4, x5, x6), x7). In this case we will e.g.
have that

Val(Tu(0, 1, 0, 0, 1, 0, 1)) = 1

since
u(u(0, 1, 0), u(0, 1, 0), 1) = u((0, 1, 0), (0, 1, 0), 1) = 1,

due to the fact that u always respect the Maltsev identities. But since p is also a Maltsev operation it
must also be the case that Val(T p(0, 1, 0, 0, 1, 0, 1)) = 1, even if u(0, 1, 0) and p(0, 1, 0) might differ.

The general case can be proven by a case inspection of the term Tu. First, assume that Tu contains a
term of the form u(xi1 , xi2 , xi3). If bi1 , bi2 , bi3 ∈ {0, 1} then u(bi1 , bi2 , bi3) ∈ {0, 1} if and only if bi1 = bi2
or bi2 = bi3 . But this implies that p(bi1 , bi2 , bi3) = u(bi1 , bi2 , bi3) since p is Maltsev. Second, assume that
Tu contains a term of the form u(Tu1 (x1), Tu2 (x2), Tu3 (x3)) where x1,x2 and x3 are tuples of variables
over x1, . . . , xn. Let b1, b2 and b3 be Boolean tuples matching the length of x1, x2 and x3, and
assume that Val(Tu1 (b1)) = Val(T p1 (b1)), Val(Tu2 (b2)) = Val(T p2 (b2)) and Val(Tu3 (b3)) = Val(T p3 (b3)).
Similarly to the first case we have that

u(Val(Tu1 (b1)),Val(Tu2 (b2)),Val(Tu3 (b3))) ∈ {0, 1}

if and only if Val(Tu1 (b1)) = Val(Tu2 (b2)) or Val(Tu2 (b2)) = Val(Tu3 (b3)), and since p is Maltsev this
implies that

p(Val(T p1 (b1)),Val(T p2 (b2)),Val(T p3 (b3))) = u(Val(Tu1 (b1)),Val(Tu2 (b2)),Val(Tu3 (b3))).

Hence, for each (b1, . . . , bn) ∈ domain(q|B) we have that (b1, . . . , bn) ∈ domain(q′|B) and that q|B(b1, . . . , bn) =

q′|B(b1, . . . , bn). This implies that q|B is a subfunction of q′|B, that q|B ∈ pPol(Γ), and, finally, that q|B is
a universal partial Maltsev operation.

Using Theorem 12 we can now prove that every Boolean language Γ invariant under the universal
partial Maltsev operations admits a Maltsev extension over D∞.

Theorem 13. Let Γ be a Boolean constraint language. Then UPM ⊆ pPol(Γ) if and only if Γ has a
Maltsev extension Γ̂ over D∞.

Proof. For the first direction, let u be the Maltsev operation from Definition 10 over the infinite domain
D∞. For each relation R ∈ Γ we let R̂ = 〈R〉u. Let Γ̂ denote the resulting constraint language over
D∞. By definition, u ∈ Pol(Γ̂), and everything that remains to be proven is that R̂ ∩ {0, 1}ar(R) = R
for each R̂ ∈ Γ̂. Hence, assume that there exists at least one tuple t ∈ (R̂ ∩ {0, 1}ar(R)) \ R. This
implies that there exists a term T over u such that Val(T (t1[i], . . . , tm[i])) = t[i] for each i ∈ [ar(R)],
where R = {t1, . . . , tm}. Let q denote the function corresponding to the term T and observe that
q ∈ [{u}]. According to Theorem 12 this implies that q|B is a universal partial Maltsev operation
and, furthermore, that q|B(t1[i], . . . , tm[i]) is defined for each i ∈ [ar(R)], since q(t1[i], . . . , tm[i]) ∈ {0, 1}.
Hence, q|B(t1, . . . , tm) = t /∈ R, which contradicts the assumption that Γ was invariant under all universal
partial Maltsev operations.
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The second direction is trivial since if Γ has a Maltsev extension over D∞ then Γ by definition is
preserved by every universal partial Maltsev operation.

Moreover, Theorem 12 and Theorem 13 implies that every universal partial Maltsev operation can be
described via Theorem 12. Hence, we have obtained a complete understanding of the universal partial
Maltsev operations.

Corollary 1. Let f be a Boolean partial operation. Then f ∈ UPM if and only if f = q|B for q ∈ [{u}].

Hence, we have obtained a complete characterization of universal partial Maltsev operations, in
terms of restrictions of term functions over u. We now proceed by studying additional properties of the
strong partial clone UPM, and will not only give a generating set of UPM, but also show that any such
generating set needs to be infinite.

Definition 11. Let u1 = u and fix d ≥ 1. We define

1. ud+1(x1, . . . , x3d , y1, . . . , y3d , z1, . . . , z3d) = u(ud(x1, . . . , x3d), ud(y1, . . . , y3d), ud(z1, . . . , z3d)), and

2. φd = ud|B.

We refer to φd as the dth universal partial Maltsev operation. We will now prove that these operations
are expressive enough to generate all other universal partial Maltsev operations.

Theorem 14. [{φ1, φ2, . . .}]s = UPM.

Proof. Let f ∈ UPM be an n-ary universal partial Maltsev operation. By Theorem 13 there exists an
operation q ∈ [{u}] such that f = q|B. Let Tu be the term over u defining q and let d ≥ 1 be the maximum
depth of Tu. We claim that f ∈ [{φd}]s. To prove this we will show that f can be reconstructed from φd
by gradually transforming the term defining φd. Hence, let Su denote the term from Definition 11 and
consider the following recursive procedure.

1. Let e ≤ d denote the current depth.

2. Let u(T1, T2, T3) be the current term at depth e in Tu and u(S1, S2, S3) be the term in the corre-
sponding position in Su.

3. If Ti = xj for a single variable xj , then identify the tuple of variables occurring in Si with xj .

4. Otherwise recursively apply the procedure for Ti and increase e by one.

It is then straightforward to see that the resulting term over u defines an operation g whose restriction
g|B is exactly f , implying that f ∈ [{φd}]s.

In particular the proof implies that φe ∈ [{φd}]s for every e ≤ d. Hence, the set of universal partial
Maltsev operations can be generated by the sequence φ1, φ2, . . . of increasingly stronger operations. We
will now prove that this sequence of operations in fact strictly increases in expressive power and that
no finite set of (strictly partial) operations can generate UPM. Thus, say that a strong partial clone
pPol(Γ) is finitely generated if there exists a finite set of partial operations F such that [F ]s = pPol(Γ).

Theorem 15. UPM is not finitely generated.

Proof. Assume that there exists a finite set of partial universal Maltsev operations M such that [M ]s =
UPM. By Theorem 14 there exists a d such that M ⊆ [{φ1, . . . , φd}]s, implying that [{φ1, . . . , φd}]s =
UPM. We will prove that φ3d /∈ [{φd}]s for every d ≥ 1, which by Theorem 14 is sufficient to contradict
this assumption. To accomplish this we first define a function f : N → N with the property that if f
is unbounded, i.e., for every n ∈ N there exists m ∈ N such that f(n) < f(m), then φ3d /∈ [{φd}]s for
every d ≥ 1. This function is defined as follows: f(d) is equal to the largest 1 ≤ n ≤ 3d such that

there for every tuple t ∈ {0, 1}3d

and indices i1, . . . , ie ∈ [3d], e ≤ n, exist t1, t2 ∈ domain(φd) such that
pri1,...,ie(t1) = pri1,...,ie(t2) = pri1,...,ie(t), and φd(t1) = 0 and φd(t2) = 1. The intuition behind this
function is that it, given input d, returns the largest possible n such that whenever we fix at most n
values, it is possible to find tuples in the domain of φd matching these fixed values, and the result of
applying φd to these tuples is 0 and 1, respectively.

17



It can be verified that the first values are f(1) = 1 and f(2) = 3. We prove by induction that f(d) ≥ d
for any d ≥ 3, which is sufficient to show that f is unbounded. Let f(d) = n and consider the term over
u corresponding to φd from Definition 11. At the uppermost level this term has the form

u(T1(x1, . . . , x3d−1), T2(y1, . . . , y3d−1), T3(z1, . . . , z3d−1)).

Now assume that we are given indices i1, . . . , ie ∈ [3d], e ≤ n. Regardless of the values assigned to the
corresponding variables, we need to prove that φd can be evaluated to both 0 and 1. First, if e < d then
the inductive hypothesis is applicable and we are already done. Therefore assume that e = d. In this
case it is easy to see that all of the fixed values belong to exactly one of the subterms T1, T2, T3 since
the inductive hypothesis is applicable otherwise. Assume without loss of generality that this subterm is
T1. It is then clear that if yi1 , . . . , yie are assigned the same values as xi1 , . . . , xie , then regardless of the
values of the other variables, the result of evaluating the two terms will result in the same tuple. Since u
is a Maltsev operation this implies that the output of φd in this case only depends on the third subterm
T3, which, for example, will output 0 if z1, . . . , z3d are assigned 0, and 1 if z1, . . . , z3d are assigned 1.

For the second part of the proof, fix d ≥ 1, and observe that f(3d) > f(d), as otherwise φd would
be a total operation which is not a projection. We claim that φ3d /∈ [{φd}]s. Assume that φ3d ∈ [{φd}]s
and let

φ3d(x1, . . . , x33d ) = φd(g1(x1, . . . , x33d ), . . . , g3d(x1, . . . , x33d ))

be the composition witnessing this, where g1, . . . , g3d ∈ [{φd}]s. It is clear that there exists a gi, indices
j1, . . . , j3d , and a subterm of the form φd(xj1 , . . . , xj3d ) in the definition of gi over φd. Let X denote the set

of variables used in this term, i.e., X = {xj1 , . . . , xj3d}. Now note that the assumption f(3d) ≥ 3d ≥ |X|
implies that φd(xj1 , . . . , xj3d ) cannot be undefined for any sequence of arguments. But this would imply
that φd is a total operation which is not a projection, which is impossible. We thus conclude that
φ3d /∈ [{φd}]s for every d ≥ 1, implying that UPM cannot be finitely generated.

A more concrete interpretation of Theorem 15 states the following: for any Boolean constraint lan-
guage Γ, the existence of a Maltsev extension can be determined by checking if φi ∈ pPol(Γ) for every
i ≥ 1, but in general there is no finite set of partial operations guaranteeing the existence of a Malt-
sev extension. We briefly return to this question in Section 6.3 where we discuss a meta problem in
kernelization.

5.2 Lower Bounds

In this section we will prove that the absence of partial universal Maltsev operations can be used to
prove lower bounds on kernelizability for SAT. First, recall from Definition 11 that the first universal
partial Maltsev operation φ1 is a ternary partial operation satisfying the two identities φ1(x, y, y) = x
and φ1(x, x, y) = y for all x, y ∈ {0, 1}, and note that

domain(φ1) = {(0, 0, 0), (1, 1, 1), (0, 0, 1), (1, 1, 0), (1, 0, 0), (0, 1, 1)}.

Since φ1 is universal by Theorem 12, we can already conclude that φ1 preserves any Boolean Γ admitting
a Maltsev extension, but we will shortly see that φ1 ∈ pPol(Γ) is in fact also a necessary condition for
the existence of a linear-sized kernel for SAT(Γ), modulo a standard complexity theoretical assumption.
A pivotal part of this proof is that if φ1 /∈ pPol(Γ), then Γ can qfpp-define a relation Φ1, which can be
used as a gadget in a reduction from the Vertex Cover problem. This relation is defined as

Φ1(x1, x2, x3, x4, x5, x6) ≡ (x1 ∨ x4) ∧ (x1 6= x3) ∧ (x2 6= x4) ∧ (x5 = 0) ∧ (x6 = 1),

and if we explicitly enumerate the tuples of Φ1 we see that

Φ1 = {(0, 0, 1, 1, 0, 1), (1, 1, 0, 0, 0, 1), (1, 0, 0, 1, 0, 1)},

implying that each argument of Φ1 exactly corresponds to a tuple in domain(φ1). However, as made
clear in the following lemma, there is an even stronger relationship between φ1 and Φ1.

Lemma 6. If Γ is a Boolean constraint language such that 〈Γ〉 = BR and φ1 /∈ pPol(Γ) then Φ1 ∈ 〈Γ〉 6∃.
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Proof. Before the proof we need two central observations. First, the assumption that 〈Γ〉 = BR is well-
known to be equivalent to that Pol(Γ) consists only of projections [5]. Second, Φ1 consists of three tuples
which can be ordered as s1, s2, s3 in such a way that there for every s ∈ domain(φ1) exists 1 ≤ i ≤ 6
such that s = (s1[i], s2[i], s3[i]).

Now, assume that 〈Γ〉 = BR, φ1 /∈ pPol(Γ), but that Φ1 /∈ 〈Γ〉6∃. Then, due to the Galois connection
in Theorem 2, there exists an n-ary partial operation f ∈ pPol(Γ) such that f /∈ pPol({Φ1}), and
t1, . . . , tn ∈ Φ1 such that f(t1, . . . , tn) /∈ Φ1. Now consider the value k = |{t1, . . . , tn}|, i.e., the number
of distinct tuples in the sequence. If n > k then it is known that there exists a closely related partial
operation g of arity at most k such that g /∈ pPol({Φ1}) [35], and we may therefore assume that
n = k ≤ |Φ1| = 3. Assume first that 1 ≤ n ≤ 2. It is then not difficult to see that there for every
t ∈ {0, 1}n exists i such that (t1[i], . . . , tn[i]) = t. But then it follows that f is in fact a total operation
which is not a projection, which is impossible since we assumed that 〈Γ〉 = BR. Hence, it must be
the case that n = 3, and that {t1, t2, t3} = {s1, s2, s3} = Φ1. Assume without loss of generality that
t1 = s1, t2 = s2, t3 = s3, and note that this implies that domain(f) = domain(φ1) (otherwise the
arguments of f can be described as a permutation of the arguments of φ1). First, we will show that
f(0, 0, 0) = 0 and that f(1, 1, 1) = 1. Indeed, if f(0, 0, 0) = 1 or f(1, 1, 1) = 0, it is possible to define
a unary total operation f ′ as f ′(x) = f(x, x, x) which is not a projection, since either f ′(0) = 1 or
f ′(1) = 0. Second, assume there exists (x, y, z) ∈ domain(f), distinct from (0, 0, 0) and (1, 1, 1), such
that f(x, y, z) 6= φ1(x, y, z). Without loss of generality assume that (x, y, z) = (a, a, b) for a, b ∈ {0, 1},
and note that f(a, a, b) = a since φ1(a, a, b) = b. If also f(b, b, a) = a it is possible to define a binary
total operation f ′(x, y) = f(x, x, y) which is not a projection, therefore f(b, b, a) = b. We next consider
the values taken by f on the tuples (b, a, a) and (a, b, b). If f(b, a, a) = f(a, b, b) then we can again define
a total, binary operation which is not a projection, and it must hold that f(b, a, a) 6= f(a, b, b). However,
regardless of whether f(b, a, a) = b or f(b, a, a) = a, it is not difficult to verify that f must be a partial
projection. This contradicts the assumption that f /∈ pPol({Φ1}), and we conclude that Φ1 ∈ 〈Γ〉6∃.

We will now use Lemma 6 to give a reduction from the Vertex Cover problem, since it is known that
Vertex Cover does not admit a kernel with O(n2−ε) edges for any ε > 0, unless NP ⊆ co-NP/poly [15].
Before the reduction we will need the following lemma, stating that if Γ can pp-define every Boolean
relation, then for each k, Γ can pp-define the relation which is true if and only if the Hamming weight of
its arguments is exactly k, using only a linear number of constraints and existentially quantified variables.
Thus, for each n and k, let Hn,k denote the relation {(b1, . . . , bn) ∈ {0, 1}n | b1 + . . .+ bn = k}.

Lemma 7. Let Γ be a constraint language such that 〈Γ〉 = BR. Then Γ can pp-define Hn,k with O(n+k)
constraints and O(n+ k) existentially quantified variables.

Proof. We first observe that one can recursively design a circuit consisting of fan-in 2 gates which
computes the sum of n input gates as follows. At the lowest level, we split the input gates into pairs and
compute the sum for each pair, producing an output of 2 bits for each pair. This can clearly be done
with O(1) gates. At every level i above that, we join each pair of outputs from the previous level, of i
bits each, into a single output of i+ 1 bits which computes their sum. This can be done with O(i) gates
by chaining full adders. Finally, at level dlog2 ne, we will have computed the sum. The total number of
gates will be

dlog2 ne∑
i=1

(
n

2i
) ·O(i),

and it is a straightforward exercise to show that this sums to O(n). Let z1, . . . , zlog2 n denote the output
gates of this circuit. By a standard Tseytin transformation we then obtain an equisatisfiable 3-SAT
instance with O(n) clauses and O(n) variables [40]. Next, for each 1 ≤ i ≤ log2 n, add the unary
constraint (zi = ki), where ki denotes the ith bit of k written in binary. Each such unary constraint can
clearly be pp-defined with O(1) existentially quantified variables over Γ. We then pp-define each 3-SAT
clause in order to obtain a pp-definition of R over Γ, which in total only requires O(n) existentially
quantified variables. Note that this can be done since we assumed that 〈Γ〉 = BR which implies that Γ
can pp-define every Boolean relation.

Using Lemma 6 and Lemma 7 we can now proceed to prove our lower bound by a reduction from
Vertex Cover.
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Theorem 16. Let Γ be a finite Boolean constraint language such that 〈Γ〉 = BR and φ1 /∈ pPol(Γ).
Then SAT(Γ) does not have a kernel of size O(n2−ε) for any ε > 0, unless NP ⊆ co-NP/poly.

Proof. We will give a polynomial-time many-one reduction from Vertex Cover parameterized by the
number of vertices to SAT(Γ ∪ {Φ1}), which via Theorem 3 and Lemma 6 has a reduction to SAT(Γ)
which does not increase the number of variables. Let (V,E) be the input graph and let k denote the
maximum size of the cover. First, introduce two fresh variables xv and x′v for each v ∈ V , and one
variable yi for each 1 ≤ i ≤ k. Furthermore, introduce two variables x and y. For each edge {u, v} ∈ E
introduce a constraint Φ1(xu, x

′
v, x
′
u, xv, x, y), and note that this enforces the constraint (xu ∨ xv). Let

∃z1, . . . , zm : φ(x1, . . . , x|V |, y1, . . . , yk, z1, . . . , zm)

denote the pp-definition H|V |+k,k over Γ where m ∈ O(k + |V |), and consisting of at most O(k + |V |)
constraints. Such a pp-definition must exist according to Lemma 7. Drop the existential quantifiers
and add the constraints of φ(x1, . . . , x|V |, y1, . . . , yk, z1, . . . , zm). Let (V ′, C) denote this instance of
SAT(Γ∪ {Φ1}). Assume first that (V,E) has a vertex cover of size k′ ≤ k. We first assign x the value 0
and y the value 1. For each v in this cover assign xv the value 1 and x′v the value 0. For any vertex not
included in the cover we use the opposite values. We then set y1, . . . , yk−k′ to 1, and yk−k′+1, . . . , yk to
0. For the other direction, assume that (V ′, C) is satisfiable. For any xv variable assigned 1 we then let
v be part of the vertex cover. Since

x1 + . . .+ x|V | + y1 + . . .+ yk = k,

the resulting vertex cover is smaller than or equal to k.

Example 8. Consider the relation Rk = {(b1, . . . , bk) ∈ {0, 1}k | b1 + . . .+ bk ∈ {1, 2} (mod 6)} and let
P = {Rk | k ≥ 1}. The kernelization status of SAT(P ) was left open in Jansen and Pieterse [24], and
while a precise upper bound seems difficult to obtain, we can at least prove that this problem does not admit
a kernel of linear size, unless NP ⊆ co-NP/poly. To see this, observe that (0, 0, 1), (0, 1, 1), (0, 1, 0) ∈ R3

but φ1((0, 0, 1), (0, 1, 1), (0, 1, 0)) = (0, 0, 0) /∈ R3. The result then follows from Theorem 16.

Although φ1 ∈ pPol(Γ) is a necessary condition for the existence of a linear kernel, it is crucial to note
that this condition does not even guarantee the existence of a Maltsev extension. To see this, note first
that Theorem 15 implies that there for every d ≥ 1 exists e > d such that φe /∈ [{φ1, . . . , φd}]s, which by
Corollary 1 disproves the existence of a Maltsev extension. This furthermore implies that there exists
relations preserved by φ1, . . . , φd but not by φe for sufficiently large e > d, and the proof of Theorem 16
would not go through easily for such relations, simply because Φ1 is not preserved by φ1, and thus no
language Γ invariant under φ1 can qfpp-implement Φ1. We return to this question in Section 6.4 and
give a concrete example of a relation R preserved by φ1 but not by φ2, for which we have been unable
to determine the kernelization status.

Finally, regardless of whether Maltsev extensions are necessary for linear kernels, we can show that
any characterisation of kernelizability in terms of a finite set of partial operations P is incomplete. As
discussed in the introduction, this is in contrast to the existing parameterized dichotomy results for
CSP for more permissive parameters k [9, 30, 31, 32, 36], but it is in line with previous observations
on the complexity of Inv(P ) for finite P ; cf. [33, Lemma 35]. To prove this we will use a padding
procedure that, starting from a relation R of arity r, defines a padded relation R′ of arity r′ = rO(1)

such that R′ is preserved by all partial operations of sufficiently small arity. The principle is to pad R
by arguments that correspond to d-ary functions over R, such that, for any low-arity partial operation p
and every sequence of tuples t1, . . . , tc ∈ R′, the value of p(t1, . . . , tc) is undefined in one of the padding
columns. This construction is formalized in the following lemma, where we for notational convenience
sometimes will treat a tuple of variables as a set, and for example write R(X) ≡ ∃Y : R′(X,Y ) instead
of R(x1, . . . , x|X|) ≡ ∃y1, . . . , y|Y | : R′(x1, . . . , x|X|, y1, . . . , y|Y |).

Lemma 8. Fix a constant c ∈ N. For every relation R ⊆ {0, 1}r, there is a relation R′ of arity rO(1)

created by adding padding columns to R (where the exponent depends on c), such that R(X) ≡ ∃Y :
R′(X,Y ) and R′ is invariant under every non-total partial operation of arity at most c.
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Proof. Let X = {x1, . . . , xr}, d = c2, and define a set of padding variables Y = {yx̄,f | x̄ ∈ Xd, f :
{0, 1}d → {0, 1}}, one for every (x1, . . . , xd) ∈ Xd and every d-ary operation f . Define a relation R′ of
arity |X|+ |Y | as

R′(X,Y ) ≡ R(X) ∧
∧

yx̄,f∈Y
(yx̄,f = f(x̄[1], . . . , x̄[c])).

Then R(X) ≡ ∃Y : R′(X,Y ) by design, and |Y | = rd22d

= rO(1) since d = c2 is a constant. We show
that R′ is preserved by all partial operations of arity lower than or equal to c.

Let φ be a non-total partial operation of arity c′ ≤ c, and assume that R′ is not invariant under
φ, i.e., there are tuples t1, . . . , tc′ ∈ R′ such that φ(t1, . . . , tc′) is defined and not contained in R′. We
assume that all tuples ti are distinct, as otherwise the application φ(t1, . . . , tc) defines an operation φ′

of arity |{t1, . . . , tc′}| for which we can repeat the argument below. Let u1, . . . , uc′ be the projections
of the tuples onto X, i.e., ui = pr1,...,|X|(ti). Note that the tuples u1, . . . , uc′ are distinct, and that
φ(u1, . . . , uc′) is defined. Let I ⊆ [r] be a minimal set of “witness positions” for the distinctness of u, i.e.,
for every pair i, j ∈ [c′], i 6= j, there is a position p ∈ I such that ui[p] 6= uj [p]. Note that |I| ≤ c2. Let

t ∈ {0, 1}c′ be a tuple for which φ is undefined. Then there exists a function f : {0, 1}|I| → {0, 1} such
that f(prI(ui)) = t[i] for each i ∈ [c′], since the projection onto I is distinct for all tuples ui, and since
|I| ≤ d2, there exist a variable yx̄,f in Y . This implies that φ(t1, . . . , tc) is undefined, since in particular
φ is undefined when applied to the position corresponding to yx̄,f . Since φ was generically chosen, the
claim follows.

The following theorem now follows without too much difficulty.

Theorem 17. Let P be a finite set of partial polymorphisms such that 〈Inv(P )〉 = BR. Then for every
c ≥ 2 there is a finite Boolean language Γ such that Γ ⊂ Inv(P ) but SAT(Γ) does not admit a kernel of
O(nc−ε) bits for any ε > 0 unless the polynomial hierarchy collapses. In particular, SAT(Inv(P )) does
not admit any polynomial kernel under the same assumption.

Proof. We will show that for a constant q that only depends on P , and for every k ≥ 3, there is a finite
language Γk such that there is a polynomial-time reduction from k-SAT on n variables to SAT(Γk) on
O(nq) variables. Since k-SAT admits no kernel of sizeO(nk−ε) for any ε > 0 unless NP⊆ co-NP/poly [15],
and since q is independent of k, the result will follow.

Let c be the largest arity of a partial polymorphism in P , and let (X,C) be an instance of k-SAT,
|X| = n. Create a set of “global” padding variables Y = {yx̄,f | x̄ ∈ Xd, f : {0, 1}d → {0, 1}}, one for
every (x1, . . . , xd) ∈ Xd and every d-ary operation, d = c2. We will constrain so that for every yx̄,f ∈ Y
and every satisfying assignment, we have yx̄,f = f(x̄[1], . . . , x̄[d]).

To do this, let R0 = {0, 1}k and let R′0 be its padded version as in Lemma 8. For every k-tuple
(x1, . . . , xr) of variables from X, add a constraint R′0(x1, . . . , xr, y1, . . . , yt), where R′0 is the padded
version of R0 and where y1, . . . , yt is the enumeration of padding variables yi ∈ Y corresponding to
operations over (x1, . . . , xk). This locks in the value of y for every y ∈ Y , without constraining the
possible values of X. Additionally, create a padded relation for every possible k-clause, and for every
k-clause in the input, defining a relation R(V ) for some V ⊆ X, output the constraint R′(V, YV ) where
R′ is the padded version of R and the variables YV ⊆ Y are chosen accordingly. Note that the padding
variables of Y can be “reused” between different constraint applications, since they are simply defined
by operations over X.

Let Γ be the language containing the relations R′0 and R′ for every k-clause R; note that it suffices that
|Γ| = k+ 2. We have thus defined a reduction from k-SAT on n variables to SAT(Γ) on O(|Y |) = nO(1)

variables, where the constant in the exponent only depends on c (and in particular not on k). The
theorem follows.

6 Concluding Remarks and Open Questions

We have studied the kernelization properties of SAT and CSP problems parameterized by the number of
variables with tools from universal algebra. We particularly focused on problems with linear kernels, and
showed that a CSP problem has a kernel with O(n) constraints if it can be extended into a CSP problem
on a larger domain preserved by a Maltsev operation. In a similar vein, if the CSP is extended into a
CSP preserved by a k-edge operation, k > 2, then the problem has a kernel with O(nk−1) constraints.
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For Boolean languages, we additionally considered a generalisation of the method of encoding relations
as the roots of bounded-degree polynomials, as previously employed by Jansen and Pieterse [24]. For
this, we study the degree-c extension of the language for some c > 1, roughly corresponding to relations
defined over c-tuples of variables from the original language. We show that if the degree-c extension
of a Boolean language Γ has a Maltsev extension, then SAT(Γ) has a kernel with O(nc) constraints,
and if the extension has a k-edge extension then SAT(Γ) has a kernel with O(n(k−1)c) constraints. In
particular, if R is definable as the roots of a polynomial of degree at most c over some finite field, then
the degree-c extension of R has a natural Maltsev extension. Therefore our approach directly generalizes
previous results on polynomial sparsification of SAT(Γ) problems [24].

Finally, we also considered lower bounds and algebraic characterisations of the languages for which our
approach applies. We give a complete algebraic characterisation of languages with a Maltsev extension,
up to a distinction between finite-domain and infinite-domain extensions, and for Boolean languages we
give partial corresponding lower bounds against linear kernels, assuming the polynomial hierarchy does
not collapse.

6.1 Linear Kernels for Boolean Languages

Let us now in some more detail discuss the state of our results for linear kernels. In the following, let Γ
be a finite Boolean language such that SAT(Γ) is NP-hard. Then we have shown the following.

• If every relation R ∈ Γ has a Maltsev extension R̂ into a finite domain DR, then SAT(Γ) has
a basis of O(n) constraints, i.e., any set C of constraints using relations of Γ and on n variables
contains a basis C ′ ⊆ C such that |C ′| = O(n) and every assignment that satisfies C ′ also satisfies
C. This basis can be computed in polynomial time, and consequently SAT(Γ) has a linear kernel.

• There is a set P of universal partial Maltsev operations, such that Γ admits a Maltsev extension if
and only if Γ is preserved by every partial operation in P . However, the resulting extension is over
an infinite domain. The set P has no finite basis, but it has an easily described countable basis
{φ1, φ2, . . .} where φi implies φj for every j < i.

• If Γ is not preserved by the first operation φ1 in this enumeration, then SAT(Γ) admits no kernel of
O(n2−ε) bits for any ε > 0 unless the polynomial hierarchy collapses. Consequently, the language
also has no linear basis.

• Finally, for every finite set P ′ of strictly partial Boolean operations and every constant c > 1, there
is a finite language Γ such that Γ is preserved by P ′ and SAT(Γ) admits no kernel with O(nc−ε)
bits for any ε > 0 unless the polynomial hierarchy collapses.

In particular, our work leaves the following questions open.

1. Is there a finite language (Boolean or otherwise) which admits an infinite-domain Maltsev extension
but no Maltsev extension into a finite domain?

2. Does the existence of an infinite-domain Maltsev extension for a language Γ itself imply that
CSP(Γ) has a linear basis?

3. Conversely, assume that Γ does not admit a Maltsev extension, i.e., φi /∈ pPol(Γ) for some i > 1
(since the case i = 1 is known). Does this imply that SAT(Γ) does not have a linear basis, or even
no linear kernel?

6.2 Polynomial, Super-Linear Kernels

Our investigation into the existence of kernels of polynomial but superlinear size is less complete than
that for linear kernels, but we wish to highlight a few questions.

1. Are k-edge extensions a necessary ingredient for Boolean SAT(Γ) problems? That is, assume that
Γ has a degree-c extension with a k-edge extension, for some constants c, k > 1. Does the degree-c′

extension of Γ for c′ = (k − 1)c admit a Maltsev extension?
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2. What is the proper generalisation of bounded-degree extensions to CSP problems on a higher
domain? Is it always asymptotically optimal to use padding variables corresponding to all c-ary
functions over the main variables, or do some problems only admit a kernel of degree c by using a
very specific set of c-ary padding functions?

See also the discussion about padding following problem 2 in Section 6.4.

6.3 The Meta-Problem in Kernelization

Theorem 16 can be seen as a first step in answering a meta problem in kernelization, i.e., given a
constraint language Γ, decide whether CSP(Γ) admits a kernel of, for example, linear size. A reasonable
starting point is to first try to construct an algorithm for checking whether Γ admits a Maltsev extension,
which we by Theorem 14 already know is equivalent to checking whether the partial operations φ1, φ2, . . .
preserve Γ. Due to Theorem 15, such an algorithm is likely not possible for arbitrary infinite languages,
but it is known that the partial polymorphisms of any finite constraint language can be characterized by
a finite set of partial operations [35]. Thus, is it for every finite Γ possible to find d such that if φ1, . . . , φd
preserve Γ, then Γ is preserved by φe for any e ≥ d, and therefore admits a Maltsev extension?

6.4 Concrete Open Problems

Finally, let us provide a few concrete languages for which the correct kernel size is unknown.
Problem 1. The following is the smallest example we have found of a problem with unknown ker-

nelization status, found via a computer search. As shorthand, let us omit spaces and commas when
describing tuples, i.e., the tuple (0, 0, 1, 1) would be written as 0011. Then the problem is a relation
R ⊂ {0, 1}10 defined as

R = {0000000001, 1000100010, 0100011000, 0011000100, 1000010100, 0010101000}.

Exhaustive testing will verify that R is preserved by φ1. But define the 6-ary operation

q = u(u(x1, x2, x3), u(x4, x2, x5), x6),

where u is the Maltsev operation on D∞ from Definition 10. Then q|B is a universal partial Maltsev
operation, but

q|B(1000100010, 0000000001, 0100011000, 1000010100, 0010101000, 0011000100) = 0101000010,

where 0101000010 /∈ R. Observe also that this implies that φ2 does not preserve R, since q|B ∈ [{φ2}]s
by the proof of Theorem 14. On the other hand, define

R′ = R ∪ {0101000010}.

Then R′ can be implemented using 1-in-4 constraints. Indeed, name the arguments of R and R′ as
R(x1,1, x1,2, x1,3, x2,1, . . . , x3,3, z). Then we see that either z = 1 or there is exactly one non-zero entry
in every “row” xi,∗ and in every “column” x∗,i, i = 1, 2, 3, and that this describes R′ completely. Thus
SAT({R′}) admits a Maltsev extension on domain {0, 1, 2, 3} and a linear kernel, whereas SAT({R})
does not admit a Maltsev extension but the existence of a linear kernel is an open question.

Problem 2. The next question concerns the precise degree of polynomial but super-linear kernels

for padded languages. Let Γ3 be the language of 3-clauses, and let Γ
(2)
3 be the result of padding every

relation R ∈ Γ3 with all binary conjunctions as in the degree-2 extension (so the relations in Γ
(2)
3 have

arity 6). Then SAT(Γ
(2)
3 ) has a kernel with O(n2) constraints, since the cube term xyz over a constraint

R(x, y, z) can be written as a binary term ((xy)z over the constraint R(x, y, z, xy, xz, yz); and as a lower

bound we note that SAT(Γ
(2)
3 ) cannot have a kernel of size O(n3/2−ε) for any ε > 0 unless the polynomial

hierarchy collapses, since such a kernel would contradict known lower bounds for 3-SAT [15]. Can we
close the gap between these upper and lower bounds?

The same question can also be generalized to k-SAT for any k > 3, i.e., if Γ
(k−1)
k is attained by padding

k-clauses using (k− 1)-ary functions, then we have an upper bound of a kernel of O(n2) constraints and
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a lower bound against kernels of size O(n
k

k−1−ε) for ε > 0. Furthermore, the languages Γk−1
k will for

sufficiently large k = k(r) be closed under all partial operations of arity up to r; cf. the proof of Lemma 8.
The same general pattern will hold for any other language SAT(Γ) with a non-trivial lower bound on
the kernel size: if SAT(Γ) admits no kernel better than size O(nr), then its padded version SAT(Γ(r−1))
will not admit a linear kernel. However, this implication does not necessarily run two ways; it is not
known to us whether a lower bound against a linear kernel for SAT(Γ(c)) for some c > 1 implies a lower
bound against a kernel of O(nc) bits for SAT(Γ).
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