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Abstract 14 

 15 

The Irish Midlands contains one of the world’s largest hydrothermal Zn-Pb ore districts, 16 

but uncertainty exists in the timing of mineralization relative to host rock ages. 17 

Consequently, genetic models for ore formation are poorly constrained and remain 18 

controversial. Here, we use Re-Os geochronology to show that ore-stage pyrite from the 19 

Lisheen deposit formed at 346.6 ± 3.0 Ma, shortly after host rock deposition. Pyrite from 20 

the Silvermines deposit returns an age of 334.0 ± 6.1 Ma, indicating that at least some 21 

mineralization occurred during later burial. These age determinations show that the 22 

much younger paleomagnetic ages reported for the Irish Zn-Pb deposits reflect 23 

remagnetization during the Variscan orogeny, a process that we suggest impacts 24 

paleomagnetic dating more widely. The Re-Os ages overlap with the ages of Lower 25 

Carboniferous volcanic rocks in the Midlands, which are the product of magmatism that 26 

has been invoked as the driving force for hydrothermal activity. The relatively low initial 27 

Os ratios for both Lisheen (0.253 ± 0.045) and Silvermines (0.453 ± 0.006) are 28 

compatible with derivation of Os from these magmas, or from the Caledonian basement 29 

that underlies the ore deposits. 30 

 31 

 32 

33 
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INTRODUCTION 34 

Hydrothermal ore deposits hosted by sedimentary rocks supply the majority of the 35 

world’s lead, zinc, and a significant proportion of copper. Although general models for 36 

ore formation are well established (e.g., Gustafson and Williams, 1981; Goodfellow et 37 

al., 1993; Leach et al., 2005; Wilkinson, 2014), significant controversy remains over 38 

fundamental aspects of their genesis. Some ores are thought to have formed during, or 39 

soon after, deposition of the host sediments (syngenetic/early diagenetic mineralization), 40 

whereas others formed after – in some cases hundreds of millions of years after –41 

lithification of the host rocks (epigenetic mineralization). For a number of Zn-Pb 42 

deposits, such as the Carboniferous ores of central Ireland (Hitzman and Beaty, 1996), 43 

both models have been proposed. This dichotomy stems from difficulties in determining 44 

with confidence the relative timing of sulfide precipitation, and the paucity of 45 

hydrothermal minerals amenable to radiogenic isotope dating. 46 

The lack of certainty regarding the timing of Zn-Pb mineralization has numerous 47 

impacts, including on the understanding of geodynamic controls on deposit location, on 48 

the development of fluid flow models, and on identifying viable sulfide precipitation 49 

mechanisms. In a wider context, inferred ages of ore deposition, in particular those 50 

obtained by paleomagnetic methods, have been used to argue for a link between the 51 

formation of sediment-hosted Zn-Pb deposits and supercontinent assembly cycles 52 

(Leach et al., 2001). However, if paleomagnetic methods date orogenic events rather 53 

than mineralization, then this interpretation is invalid. Finally, mineral exploration is 54 

guided by deposit models: a syngenetic interpretation will focus efforts on specific 55 

stratigraphic horizons, whereas an epigenetic model allows for deposits to occur in 56 

receptive host rocks of any age. 57 
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Here we use Re-Os dating of ore-stage pyrite, an approach not previously 58 

applied to carbonate-hosted Zn-Pb ores, to test models for the timing and genesis of 59 

mineralization in the Irish orefield – questions that have been vigorously debated for 50 60 

years but have yet to be answered convincingly.  61 

 62 

IRISH OREFIELD 63 

In Ireland during the Early Mississippian, a marine transgression across the 64 

Laurussian continental margin deposited thick limestone units (Figs. 1, 2). Hydrothermal 65 

fluids subsequently precipitated tens of millions of tons of zinc and lead within these 66 

carbonate rocks, making the Irish orefield one of the most intensely mineralized Zn 67 

districts on Earth (Singer, 1995). The giant Navan Zn-Pb deposit forms the largest 68 

resource, but economic Zn-Pb deposits also formed at Tynagh, Silvermines, Galmoy, 69 

and Lisheen (Fig. 1). 70 

Early syngenetic models, such as the extension and convection model of Russell 71 

(1978), were largely discounted in the 1990s in favor of epigenetic interpretations 72 

involving lateral, topographically-driven fluid flow (Hitzman and Beaty, 1996), similar to 73 

the widely accepted model for Mississippi Valley-type (MVT) Zn-Pb deposits. 74 

Significantly, the past decade has seen movement away from this concept, as new 75 

regional data sets and analytical techniques have become available (Wilkinson and 76 

Hitzman, 2014). 77 

 78 

STUDY SITES 79 

Lisheen is the second-largest base-metal deposit in Ireland and has a well-80 

defined geologic setting (e.g., Wilkinson et al., 2005). The Silvermines deposit has been 81 
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central to the development of syngenetic models (e.g., Boyce et al., 2003) and presents 82 

an opportunity to test an existing Rb-Sr sphalerite age (360 ± 5 Ma; Schneider et al., 83 

2007) and a much younger paleomagnetic age (269 ± 4 Ma; Symons et al., 2007). 84 

Sulfide mineralization at Lisheen (Fig. 2) occurs principally within a hydrothermal 85 

dolomite breccia located at the base of the Waulsortian Limestone Formation (WLF). A 86 

minor proportion of ore is hosted by an oolitic unit (Lisduff Oolite Member - LOM) within 87 

underlying argillaceous bioclastic limestones (Ballysteen Limestone Formation - BLF). 88 

Mineralization forms three stratabound ore bodies: the Main, Derryville, and Bog zones, 89 

each of which are controlled by a major normal fault (Hitzman et al., 2002). 90 

Mineralization primarily occurs in the hanging-wall of these faults within the WLF; 91 

footwall mineralization is mainly developed within the LOM.  92 

Sulfide ore at Silvermines is generally restricted to two stratigraphic levels: the 93 

Upper G and B Zones within the dolomitized base of the WLF (Fig. DR2), and the Lower 94 

G, K, and P Zones hosted by dolomitized portions of the BLF (Taylor, 1984). All ore 95 

zones are spatially associated with normal faults (Taylor, 1984).  96 

 97 

Re-Os GEOCHRONOLOGY  98 

At Lisheen, massive pyrite from the early main ore-stage in the LOM (sample LK 99 

8S08FW: Panel 8, Stope 8 in the Main Zone orebody) was selected for analysis. At 100 

Silvermines, massive pyrite from the B Zone orebody (samples B18, B15) was chosen 101 

(see Appendix DR1 for sample descriptions). All pyrite separates were produced and 102 

analyzed using the procedures described by Morelli et al. (2010), some additional details 103 

are described in Appendix DR2. Twelve pyrite separates were analyzed from the 104 

Lisheen sample, with Re and Os concentrations of 2-8 ppb and 15-280 ppt, respectively. 105 
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For Silvermines, twelve pyrite separates from B18 and one from B15 were analyzed; 106 

these contain 0.5-2.5 ppb Re and 85-400 ppt Os. Detailed analytical results are provided 107 

in Tables DR1, DR2, and DR3. 108 

The Lisheen sample yields a Re-Os isochron age of 346.6 ± 3.0 Ma, whereas the 109 

Silvermines samples produce a younger Re-Os isochron age of 334.0 ± 6.1 Ma. (Fig. 3) 110 

The Silvermines isochron shows some scatter beyond calculated analytical uncertainties 111 

(MSWD = 19); this scatter can be accounted for by only a 1% variation in initial 112 

187Os/188Os (IOs) of the fluid from which pyrite formed.  113 

 114 

TIMING AND DURATION OF MINERALIZATION 115 

The early ore-stage pyrite samples from both Lisheen and Silvermines yield Early 116 

Mississippian Re-Os ages that place the timing of sulfide mineralization within ~15 myr 117 

of host rock deposition. The Re-Os age from Lisheen (346 ± 3.0 Ma) overlaps with the 118 

probable depositional age range (353-347 Ma; Waters et al. 2011) for the WLF (Fig. 4). 119 

We conclude that Zn-Pb mineralization at Lisheen most likely developed during the latter 120 

depositional stages of the WLF, or during deposition of the overlying Crosspatrick 121 

Formation (CF) at a depth of no more than 200 meters below the paleo-seafloor. This 122 

interpretation is consistent with arguments that the thickening of the WLF and CF above 123 

the ore zone was due to subsidence of the seafloor during mineralization-related host 124 

rock dissolution (Wilkinson et al., 2011). 125 

Previous interpretations of the timing of mineralization at Silvermines concluded 126 

that syngenetic and near-seafloor mineralization took place based on the occurrence of 127 

exhalative features (e.g., Boyce et al. 1983), vent fauna (e.g., Boyce et al., 2003), 128 

sedimentary reworking of sulfides (Lee and Wilkinson, 2002) and a sphalerite Rb-Sr age 129 
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(Schneider et al., 2007). Our result does not exclude a syngenetic component to the 130 

hydrothermal system, but clearly shows that significant mineralization occurred during 131 

later stages of host rock burial (e.g. Reed and Wallace, 2004). Likewise, the Re-Os age 132 

obtained for Lisheen does not exclude later mineralization at greater burial depths as 133 

has been suggested based on sulfur isotope data (Wilkinson et al., 2005). Together, the 134 

new Re-Os ages provide concrete evidence for a protracted, and probably episodic, 135 

history of mineralization in the Irish Zn-Pb orefield (Wilkinson and Hitzman, 2014).  136 

   137 

OSMIUM SOURCE 138 

 The precise IOs obtained for pyrite isochrons from both Lisheen (0.253 ± 0.045) and 139 

Silvermines (0.453 ± 0.006) reflect the source(s) of Os in the hydrothermal fluids that 140 

formed the deposits. These relatively low values invite the possibility that the fluids 141 

contained a mixture of mantle-derived Os (187Os/188Os ~0.13; Meisel et al., 2001) and 142 

crustal Os (187Os/188Os >>0.13; Ehrenbrink and Jahn, 2001). Alternatively, the IOs 143 

values may reflect derivation of Os from the immediate basement rocks of the Irish 144 

deposits, which were largely derived from early Paleozoic (Caledonian) volcanic arcs 145 

(480-380 Ma; Chew and Stillman, 2009). We estimate average crustal source rock ages 146 

for Os at Lisheen (363 Ma) and Silvermines (412 Ma) by assuming the IOs of the 147 

Caledonian arc rocks was 0.2, similar to that reported in porphyry systems (e.g. 148 

Zimmerman et al., 2014), combined with a 187Re/188Os ratio of 190 calculated from 149 

average crustal concentrations of Re (2 ppb) and Os (50 ppt) (Peucker-Ehrenbrink and 150 

Jahn, 2001; Sun et al., 2003). These estimates are compatible with Os, like Pb and 151 

other metals, being sourced from the early Paleozoic basement (Dixon et al., 1990; 152 
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Wilkinson et al., 2005; Wilkinson, 2014) and/or the overlying Devonian Old Red 153 

Sandstone. 154 

 155 

A POSSIBLE LINK BETWEEN VOLCANISM AND ZN-PB MINERALIZATION  156 

The possibility of a genetic link between the Irish orefield and early Carboniferous 157 

volcanism (e.g, Strogen, 1995) has been a lingering but largely undocumented issue. 158 

However, evidence for a mantle input into the Zn-Pb deposits has recently been 159 

proposed based on He isotope data derived from fluid inclusions from all the main ore 160 

deposits (Davidheiser-Kroll et al., 2014), and from the intimate association of 161 

mineralization and mantle-derived igneous rocks in the Stonepark area, Limerick (Fig. 2; 162 

McCusker and Reed, 2013). Our Re-Os ages overlap with these Chadian-Asbian 163 

volcanic rocks and, therefore, are consistent with a new genetic model (Wilkinson and 164 

Hitzman, 2014) that invokes magmatic heat derived from underplating and mid-crustal 165 

sills as a driver for regional fluid flow. Such a magmatic-related model may explain the 166 

unusually high fluid temperatures documented in the province (~70-280oC; Wilkinson, 167 

2010), compared to those documented for sediment-hosted Zn-Pb deposits elsewhere, 168 

and the extraordinary regional extent of Zn-Pb mineralization. 169 

 170 

IMPLICATIONS FOR DATING OF CARBONATE-HOSTED ZN-PB ORES 171 

 Paleomagnetic dating at Silvermines (Symons et al., 2007), Galmoy (Pannalal et 172 

al., 2008b), and Lisheen (Pannalal et al., 2008a) yields ages of 269 ± 4, 290 ± 9 Ma, and 173 

277 ± 7 Ma, respectively (Fig. 4). However, paleomagnetic studies do not readily 174 

discriminate between primary magnetization ages (e.g. mineralization), and 175 

remagnetization ages. Consequently, we interpret the disparity between our Re-Os 176 
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pyrite ages and the systematically younger paleomagnetic ages from the Irish orefield to 177 

be a result of widespread remagnetization that took place during Variscan orogenic 178 

activity. The preservation of well-defined Re-Os isochrons (Fig. 3), despite a Variscan 179 

overprint in southern and central Ireland, suggests that the Re-Os isotope system in 180 

pyrite was little affected by these tectonothermal processes, and is therefore a robust 181 

system for dating weakly metamorphosed, sediment-hosted Zn-Pb deposits. 182 

 Globally, paleomagnetic ages have been used to implicate major collisional 183 

orogenies that developed during supercontinent assembly cycles as principal drivers for 184 

MVT mineralization (Leach et al., 2001). However, if paleomagnetic ages reflect younger 185 

orogenic events rather than the age of mineralization, as we observe in the Irish orefield, 186 

then this interpretation is invalid. We propose, therefore, that application of pyrite Re-Os 187 

geochronology may help resolve the large age discrepancies and competing 188 

geodynamic models reported for several MVT districts (e.g., Tennessee, USA  and 189 

Upper Silesia, Poland: e.g. Leach et al., 2005). 190 
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Figure 1. Map of Ireland (modified from Wilkinson, 2010) showing selected Zn-Pb ore deposits, 201 

volcanic rocks, and approximate northwestern limit of major deformation associated with the 202 

Variscan orogeny (Hitzman, 1999).  203 

 204 

Figure 2. Basic stratigraphy of the Lisheen (L) and Silvermines (S) areas (modified from 205 

Wilkinson et al., 2005).  206 

 207 

Figure 3. Model 3 Re-Os isochron plots based on data for ore-stage pyrite separates from 208 

Lisheen (top) and Silvermines (bottom), created using Isoplot v3.00 (Ludwig, 2001). All 209 

uncertainties shown are 2σ.  210 

 211 

Figure 4. Age constraints of major events associated with the Irish Zn-Pb orefield. Key to 212 

sources of data: 1 - Waters et al. (2011); 2 – Strogen (1995); Sommerville et al. (1992) 3 – Reed 213 

and Wallace (2004); 4 – Quinn et al. (2005); Hitzman (1999);  5 – Hitzman et al. (2002); 214 

Wilkinson et al. (2011); 6 – Pannalal et al. (2008a);  7 – Boyce et al. (1983); Lee and Wilkinson 215 

(2002); 8 – Symons et al. (2007); 9 – Schneider et al. (2007); 10 – Symons et al. (2002); 11 – 216 

Anderson et al. (1998); 12 – Pannalal et al. (2008b); 13 – McCusker and Reed (2013). Methods: 217 

Re-Os (rhenium-osmium), Rb-Sr (rubidium-strontium), PM (paleomagnetism), GA (geological 218 

arguments). 219 
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Appendix DR1: Sample Descriptions 

 

8S08FW – This sample of massive pyrite was collected by Jamie Wilkinson from the 

southern part of the Lisheen Main Zone orebody (Panel 8, Stope 8; Figure DR1) where 

the ore zone is very thick. The sample came from the footwall of the Killoran Fault at a 

depth of 176m, within the Lisduff Oolite Member of the Ballysteen Limestone 

Formation. Ore is locally developed in the footwall oolite at Lisheen and its approximate 

contiguity with the hangingwall ore zone has been used to argue for a post-faulting 

timing for mineralization (Hitzman et al., 2002). The sample processed (Fig. DR2) is 

primarily composed of massive pyrite that is crosscut by calcite veins. A minor amount 

of sphalerite and fine grained galena (<10 µm) is observed in thin section and back 

scattered electron images (Figure 1). Such pyrite-rich zones are typical within the high 

grade cores of the ore lenses at Lisheen (e.g. Fusciardi et al., 2003). 

 

B15 – This sample was collected by John Ashton (Ashton, 1975) from the Silvermines B-

zone in the barite ore zone (haulage 4932). The following description is based on his field 

notes of the sampling locality. The ore zone contains fine grained massive sulfide 

composed of ~40-45% pyrite, 5-10% galena, and a variable mixture of barite and 

sphalerite. Pyrite occurs typically as elongate crystals that occasionally show slight 

deformation. Sphalerite has replaced pyrite, and galena typically has replaced sphalerite. 

The sample processed (Fig. DR3) is composed of massive pyrite with cracks infilled by 

quartz and carbonate. No barite occurs within this sample and galena is present in cracks 

or as a replacement of pyrite. Pyrite-rich ore was often mined within the B zone at 

Silvermines, and this pyritic massive sulfide (Taylor and Andrew, 1978) is generally 

interpreted as an early mainstage mineralization ore type. 

 

B18 – This sample was collected by John Ashton (Ashton, 1975) from the Silvermines B-

zone (Location: Stope Hanging Wall Drift 48-1S; Fig DR1). The following description is 

based on his field notes of the sampling locality. The sample comes from the central part 

of the B zone in a Pb-rich area close to the B-fault where stratiform massive pyrite and 

semi-massive pyrite with dolomite breccia overlie siderite- or barite-hosted sulfides. 
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Locally, the massive pyrite is mineralized and was mined. The sample processed (Figure 

3) is composed primarily of fine grained (0.5-2mm), massive pyrite. Sphalerite and 

galena are present in smaller amounts and show the same general paragenesis as B15, 

with sphalerite after pyrite and galena typically postdating sphalerite. As with B15, this 

pyritic massive sulphide is generally interpreted as an early mainstage mineralization ore 

type. 

 

 

Figure DR1:  Approximate   sample   locations   for   Lisheen   sample  

8S08FW (top) and Silvermines sample  B18 (bottom). Modified  from  

Andrew (1986). 



 

  Figure DR2: Lisheen sample 8S08FW (top right figure) and a 

representative backscattered electron image (top left figure) and reflected 

light images (bottom figures). 

 

 Figure DR1: Silvermines sample B15 (top left figure) and B18 (top right 

figure) and representative reflected light images of sample B18 (bottom 

figures). 



Appendix DR2: Sample Preparation 

 

All samples were prepared using a standardized procedure to ensure that a relatively pure 

pyrite separate was obtained. A bulk sample containing 5-20g of pyrite was crushed and 

sieved using metal-free equipment to produce 70-200 µm diameter material containing 

pyrite and several impurity minerals (e.g. sphalerite, galena, calcite, dolomite, and 

quartz). Heavy liquid separation using methylene iodide (ρ = 3.32g/cm
3
) is used separate 

carbonate and silicates from the sulfides. To separate pyrite from galena and sphalerite a 

Frantz Isodynamic Separator was used. In the sphalerite-pyrite-galena system we 

typically observe χsphalerite > χpyrite > χgalena (χ = magnetic susceptibility). These differences 

allow separation of pyrite from sphalerite (eliminated at low induced magnetization) and 

galena (eliminated at high induced magnetization). The final separate contains ~85-100% 

pyrite. The remaining impurities are typically found as inclusions or are the result of 

aggregates of multiple minerals not separated by the crushing process.  

 

Analytical Data: 

 

Table DR1: Lisheen Re-Os data 

Sample Name Re ppb Os ppt
187Re / 188Os ± 2σσσσ

187Os / 188Os ± 2σσσσ Rho % Re Blank %187Os Blank %188Os Blank

8508FW 3.70 33.24 919.25 9.14 5.588 0.058 0.845 0.19 0.19 4.67

8508FW M1.0 6.18 46.72 1249.60 9.21 7.484 0.056 0.841 0.10 0.10 3.40

8508FW M1.0-2 5.98 47.94 1119.67 7.98 6.735 0.052 0.778 0.10 0.10 3.15

8508FW M1.2 5.78 44.61 1204.48 9.68 7.254 0.067 0.758 0.11 0.11 3.51

8508FW M1.5 3.88 33.29 995.53 9.42 6.034 0.062 0.818 0.16 0.16 4.41

8508FW NM1.5 2.73 31.87 609.76 5.07 3.784 0.031 0.817 0.23 0.22 3.78

8508FW NM1.5-6N 2.44 27.46 643.64 7.13 3.963 0.045 0.820 0.29 0.29 5.09

8508FW NM1.5-10N 2.28 25.53 651.82 14.85 4.077 0.098 0.869 0.50 0.93 9.56

8508FW B 4.31 37.79 952.61 7.54 5.734 0.047 0.815 0.14 0.14 3.66

8508FW B M0.8 8.10 55.94 1501.95 16.05 8.955 0.103 0.861 0.13 0.13 5.15

8508FW B NM1.0 4.14 39.18 837.80 10.33 5.076 0.104 0.561 0.15 0.15 3.36

8508FW B NM1.2 2.52 31.38 556.09 5.01 3.478 0.031 0.797 0.27 0.26 4.08  

 



Table DR2: Silvermines Re-Os data 

Sample Name Re ppb Total Os ppt 187Re/188 Os ± 2σσσσ 187/188 Os ± 2σσσσ rho % Re Blank %
187

Os Blank %
188

Os Blank

B18 A 1.28 156.97 42.106 0.185 0.6743 0.0030 0.396 0.21 0.02 0.08

B18 A M0.7-F 1.37 392.10 17.719 0.085 0.5489 0.0018 0.301 0.32 0.02 0.05

B18 A NM0.7-F 0.63 144.86 22.148 0.200 0.5752 0.0022 0.188 0.79 0.05 0.15

B18 A NM 0.9 0.93 156.82 30.538 0.168 0.6335 0.0030 0.274 0.38 0.03 0.10

B18 A NM 1.0 1.24 178.58 35.616 0.180 0.6519 0.0040 0.599 0.13 0.09 0.30

B18 A NM 1.0-F 1.25 189.07 33.864 0.146 0.6380 0.0019 0.325 0.26 0.02 0.08

B18 A NM 1.2 1.21 159.77 39.011 0.173 0.6675 0.0024 0.342 0.26 0.02 0.09

B18 A NM 1.55 1.59 181.03 45.575 0.231 0.7076 0.0042 0.628 0.12 0.09 0.33

B18 A NM 1.55-F 1.25 90.99 72.681 0.294 0.8589 0.0025 0.370 0.22 0.03 0.14

B18 A NM 2.0-10/5 1.87 108.67 92.002 0.368 0.9701 0.0031 0.384 0.20 0.03 0.16

B18 A NM 2.0-F 1.72 118.02 77.250 0.305 0.8888 0.0031 0.390 0.18 0.02 0.12

B18 A NM 2.0-10/3 2.32 84.80 151.998 0.571 1.2975 0.0045 0.430 0.13 0.02 0.17

B15 0.53 120.22 22.355 0.115 0.5811 0.0021 0.283 0.36 0.02 0.07  

 

 
Table DR3: Re-Os blank data 

Blank n(Re) n(Os) Re (pg) ± 2σ Os (pg) ± 2σ 187/188 Os ± 2σ

Lisheen 4 4 2.5 1.5 0.34 0.03 0.23 0.05

Silvermines 9 8 1.1 0.6 0.05 0.01 0.18 0.16  

n(Re) = number of blank analyses for Re blank determination; n(Os) = number of blank analyses for Os 

blank determination  
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