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ABSTRACT

Omega polynomial was defined by M.V. Diudea in 2006 as Q(G, X) = ZeeE(G)Xn(e) where the number of edges co-

distant with e is denoted by n(e). One can obtain Theta ©, Sadhana Sd and Pi /7 polynomials by replacing x"© with
n(e)x"® xE® and n(e)x="® in Omega polynomial, respectively. Then Theta ©, Sadhana Sd and Pi /7 indices will be the
first derivative of ©(x), Sd(x) and l1(x) evaluated at x=1. In this paper, Pi [1(G,x) polynomial and Pi [1(G) index of an infinite
family of linear polycene parallelogram benzenoid graph P(a,b) are computed for the first time.
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INTRODUCTION

Let G=(V,E) be a connected bipartite graph with the vertex set V=V(G) and the edge set E=E(G), without loops and
multiple edges. Suppose n, e and h be the number of carbon vertices/atoms, edges/bonds between them and hexagons,
in a molecular graph G.

In graph theory, a topological index is a real number related to a molecular graph, which is a graph invariant. There are
several topological indices already defined and many of them have found applications as means to model chemical,
pharmaceutical and other properties of the molecules. The oldest topological index is Wiener index which was introduced
by Chemist Harold Wiener [1]. The Wiener index [1] is defined as

W(G)z% > > duy)

ue/ (G)ver (G)

The distance d(u,v) between u and v is defined as the length of a minimum path between u and v. Two edges e=uv and
f=xy of G are called co-distant, “e co f*, if and only if d(u,x)=d(v,y)=k and d(u,y)=d(v,x)=k+1 or vice versa, for a non-
negative integer k. It is easy to see that the relation “co” is reflexive and symmetric but it is not necessary to be transitive.
The Omega polynomial (G,x) has been defined by M.V. Diudea as follows [2-5]:

- n(e)
Q(G. %)= e ()X
where, n(e) denotes the number of edges co—distant with the edge e. It is easy to see that the Omega polynomial Q(G,x)
counts equidistant edges in graph G.

Sadhana index Sd(G) for counting qoc strips in G was defined by P.V. Khadikar et al. [6,7] as

5d(G) =2 ece(c)[EG)—N(®))

Also, Sadhana polynomial of a graph G as defined by A.R. Ashrafi et al. [8] as

sd(G,x)= zeeE(G) y[E©)-n(e)

Recently, Thete ©(G,x) and Pi l1(G,x) polynomials for counting goc strips in G were defined by Diudea as
< n(e)
O(G,x)= ZeeE(G) n(e)x

M1(G,X) = Yec 6y NEX "

By definition of Omega polynomial, one can obtain Theta ©, Sadhana Sd and Pi /7 polynomials by replacing x"® with

n(e)x"® xE"® and n(e)x="® in Omega polynomial, respectively. Theta ©, Sadhana Sd and Pi /7 indices will be the first

derivative of ©(x), Sd(x) and l1(x) evaluated at x=1.

Also, first derivative of omega polynomial (in x=1), equals the number of edges in the graph G.
QGX=Y ok () (E) =IEE)
Throughout this paper, our notation is standard and taken from the standard book of graph theory [1, 9, 10] and for more

study about Omega polynomial and other counting polynomilas see paper serices [11-39].

In this paper, Pi (G,x) polynomial and Pi (G) index of an infinite family of linear polycene parallelogram benzenoid
graph P(a,b) are computed for the first time. We encourage the reader to consult papers [33-35, 40-42] and see general
representation of this family of benzenoid graph in Figurel.

Main Results and Discussions

In this section by using definition of Pi I1(G,x) polynomial and Pi [1(G) index, we compute these counting polynomial and
its index for of an infinite family of linear polycene parallelogram benzenoid graph P(a,b).

A general representation of linear polycene parallelogram benzenoid graph P(a,b) depicted in Figure 1, with 2ab+2a+2b
vertices/atoms (|V(P(a,b))|) and 3ab+2a+2b-1 edges/bonds (|E(P(a,b))|). For further study and more detail of this family of
benzenoid graph readers can see references [33-35, 40-42].

An especial case of this family is symetric linear parallelogram benzenoid P(a,a). It is easy to see that P(a,a) aeN. has
2a(a+2) vertices and % a(a+3) 3a’+4a-1 edges. Now, By these terminologies, we will have the following theorem for Pi
(G,x) polynomial and Pi [1(G) index of linear parallelogram benzenoid P(a,b) va,b eN.
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Fig. 1. A 2-D graph of of linear polycene parallelogram benzenoid graph P(a,b).

Theorem 1. Consider linear polycene parallelogram benzenoid graph P(a,b) va,b eN-{1}. and Max{a,b}=a & Min{a,b}=
(see Fig. 1). Then

I1(P(a,B),x)=(aB+a-B?+1)x>#F2a+362, 22’? , jxipr2a2f2oi 4+ B(a+1)x3ap-B-2 +a(B+1)x3ap-a-2
j=
I1(P(a,B))=9a°B* 8a” B+7a*-¥; B>-10aB+4a’+45°-6a- 19/ B+2
Proof. By Fig. 1, there are three distinct cases of qoc strips in linear polycene parallelogram benzenoid graph P(a,b). We

denote the corresponding edges by es,..., eg T and u. By using Table 1, Fig. 1 and on based the integer numbers n and m,
we have two following computations.

Table 1. The number of co-dstant edges of 1, v and e;, i=1,..., B (B=Min{a,b}).

No Number of codistant edges Type of Edges
at+l b u

b+1 a 7

i+1 2 e (i=1,...,5-1)
B+1 |a-b|+1 eg

l. vazb e N-{1} & |E(P(a,b))|=3ab+2a+2b-1, then

”(P(""'b”XFZeEE(P(a,b)]”(e)xE(P(a*’))”(e)

=(Ja-b|+1)x(b+1)x=P 1+ 2 ZE( i +1) X +px(@a+1)xEa  ax b+ 1)xEP L

Thus,

a((a—b D) (b +1)x 2 ik N )
OX |X:1

=9a’b?*8a’b+7ab’ % b3-10ab+4a2+4b2-6a-1% b+2

NP@b)=11'(G,,X) |, =

Il. th<aeN-{1} & |E(P(a,b))|=3ab+2a+2b-1, then
MI(P@))=(labl+ (@™ 2 7 (J+1) XU +bx(a ™ Max(or1)??
J:
And similarly, n(P(a,b)):9a2b2*7a2b+8ab2-%a3-10ab+4a2+4b2-1% a-6b+2

Now, these complete the proof of Theorem 1.m

Theorem 2. Pi polynomial and Pi index of symetric linear polycene parallelogram P(y,y), for y>1 are equal to

188 | Page November 10, 2013



& ISSN 2347-3487

o TPV X=20(2y+ XM X By )M B Ny
J=

o T(P(y.y)=9y" - +2
(P(v.y))=9y 4%V3 37,V
Proof. By considering Max{a,b}=Min{a,b}=y (see Fig. 1), the proof is analogous to the proof of Theorem 1.
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