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Abstract 

    In this work, the Fredholm integral equation (FIE) with logarithmic kernel is investigated from the contact problem in the 
plane theory of elasticity. Then, using potential theory method (PTM), the spectral relationships (SRs) of this integral 
equation are obtained in some different domains of the contact. Many special cases and new SRs are established and 

discussed from this work. 
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INTRODUCTION  

 Many problems in the half-plane of elasticity, deformation in physics and engineering are reduced to an integral 
equation of the first kind; see Popov [1], Covalence [2], and Alexandrov [3]. In other words, different methods are 
established for solving the FIE with discontinuous kernel. These methods are: Cauchy method [4], potential 
theory method [5, 6], orthogonal polynomial methods [7, 8], Fourier transformation method [9, 10] and Krein’s 
method [11, 12]. The FIE with logarithmic kernel is investigated from the contact problem in two dimensional 

problem, in the theory of elasticity from an infinite strip; occupying the region 0 y h   made of material 

satisfies the stress relations, lies without fraction on a rigid support. A rigid rectangular stamp is impressed into 

the boundary of the strip y h by constant force p whose eccentricity of application is e . Then, using Airy 

function and Fourier integral forms,  Abdou et al. in [12], represented the plane contact problem, in a half-plane, 
as a FIE of the first kind with logarithmic kernel. 

Here, the PTM is used to obtain a boundary value problem (BVP) in two dimensional domain. Moreover the properties of 

Chebyshev polynomials of the first, second kind and the elliptic Jacobi functions are used. Then, by considering the 
equivalence condition between the differential equation and the integral equation we obtain many different SRs inside and 

outside the domain of contact (domain of integration). The importance of using spectral relationships in contact problems 
in the theory of elasticity can be found in Refs. [13-17]. 

1. Fredholm integral equation: 

    Consider the following FIE: 

    
1

1

x
k q d x f x


    




 
   

 
      (1) 

where the kernel is defined by 
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Here, , ,x    are the dimensionless variables; while 
h

a
   is a dimensionless parameter characterizing the strip 

thickness. It should be noted that as  , the integral equation takes the form:  
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                   (3) 

In the remainder part of this paper, we will obtain the solution of the FIE (3) in the form of SRs in different domains and  

discuss it. 

2.  Solution of integral equation 

    Here, we use the PTM to obtain the SRs for the FIE of the first kind in different domains. For this purpose, consider the 

integral operator 
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ln
L

K d t dt f x
x t

 
 

   
 

      (4) 

under the condition 

 
L

t dt P                                         (5) 

where, we will consider the following cases: 

     

  

(1) , : , 0 , (2) , : , 0

(3) , : , 0

L x y L x a y L x y L x a y

L x y L b x a y

       

    
                                                    (6) 
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2.1.   The first case (1) of equation (6):  

    Using the potential theory method, see Abdou et al. [18], we have 
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                    (7) 

with the equivalence condition 
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x y P x x L
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         (8) 

where  x is the Dirac-delta function. 

To obtain the solution of (7), we use the transformation mapping function: 

   1 ,
2 2

ia a
z i e                      (9) 

A useful method in engineering mathematics is using a conformal mapping to transform complicated region into a simpler 
one, for this reason, we use equation (9). The transformation (9) maps the region in x y plane into the region outside 

the unit circle , such that  /   does not vanish or becomes infinite outside the unit circle . The parametric equations 

of (9) are 

2 2 2 2

1 1 1 1
cos 1 , sin 1

2 2 2 2

a a a a
x y

 
   

    

      
             

       
                         (10) 

Using the transformation (9), we get 

 
1
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1 2 1 2

2 cos2 1 , . . 0s t as
r a r a

 
   



         (11) 

The mapping (9) maps the upper and lower of the interval    , ,x y a a  into the lower and the upper of the 

semicircle 1  , respectively. Moreover the point z  will be mapped onto the point 0  . 

Using the transformation (9) in the BVP (7) we have 
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            (12) 

Also, the equivalence condition becomes 
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cos sin
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       (13) 

Here, we assume 
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1 1

, cos , sin ,
2 2

a a
W W     

 

    
      

    
               (14) 

to solve the BVP of (12), we assume 

   
0

, cosn

n

W X n   




       (15) 

Differentiating (15) with respect to  and , then introducing the result to satisfy the first equation of (12), and noting that, 

when r  , we have 0  . Therefore, the solution of the formula (12) can be adapted in the form 

 
0

, cosn

n

n

W A n   




       (16) 

Where, with the aid of the second and third formulas of (12), we have 

   0 0 0

1 1
, cos

2 2
nA f d A f n d

 

 

    
 

 

            (17) 

Using the previous results in (13), we obtain 
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                  (18) 

Introducing (18) into (4), and noting the definition of CP of the first kind, cosn

x
T n

a


 
 

 
 , we obtain 
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             (19) 

The formula (19) represents the SRs for the FIE of the first kind with logarithmic kernel, where we assume the known 

function, in (4),   n

x
f x T

a

 
  

 
. 

2.2.   The second case (2) of equation (6):  

    In order to obtain the SRs of (19) for x a , we obtain from (10) that x a for 0  and x a for  , 

therefore, we have      

 
2 2

,
x x a

x a
a


 

      (20) 

Solving the BVP (12), under the condition (20), then using (17) we have the following SRs: 
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                         (21) 

Where,  H x is the Heaviside function, see Whittaker et al. [19]. 
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The conformal mapping (9), for x a  maps the half plane, 0,y  into the semi-circle  1,0 ,      and the half 

plane 0y   into 1,0 .      Hence, we deduce that, outside the interval, the case for  x a x a   are 

corresponding in  −plane to  1, 1    , while inside the interval L  the case for  x a x a   is 

corresponding to  0 1, 1 0      . Therefore, the solution of the BVP (7) for 0  takes the form 
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           (22) 

Moreover, the term of equivalence relation of (8) 
W

y




will take the form 
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       (23) 

Using the separation of variable method, with the aid of (22), in the BVP (7) and the equivalence relation (8), we can 

obtain 
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                      (24) 

where 

     
2 2 2 2

2 2
, 0,

2
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                          (25) 

 

The formula (24) leads us to assume the general integral operator 

 
2

ln
a

a

x
K t dt

x t
 









 
  

 
             (26) 

Hence, with the aid of (26), and for the interval  0,L y a x a     in z − plane, which transformed into the 

semi-circle  1,0      in  − plane, we have the following SRs: 
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2.3. The third case (3) of equation (6):  

    When b x a  , we will seek the solution of the BVP (7) by using the transformation mapping 

 
/

ln , , ,iK
z sn k e i     



 
    

 
                                  (28) 
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The transformation mapping (28), z x iy  , is called the Jacobi elliptic transformation. The three basic functions of 

the elliptic functions are denoted    , , ,cn u k du u k and  ,sn u k where k is known as the elliptic modulus. They 

arise from the inversion of the elliptic integral of the first kind 

   2

2 2
0

, , 0 1
1 sin

dt
u F k k

k t



   


          (29) 

Where, modk u is the elliptic modulus and  ,am u k  is the Jacobi amplitude. The Jacobi elliptic function are 

periodic in  K k and  /K k , where  K k is the complete elliptic integral of the first  kind,    / / ,K k K k  

and
/ 21k k  , is the complementary elliptic modulus (see Whittaker et al. [19]), where 

 
  

1

2 2 2
0

,
1 1

dt b
K K k k

at k t

 
   

  
         (30) 

Also, the Jacobi elliptic integral of the first kind is defined 
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            (31) 

The transformation mapping (28) maps the region of the interval  , 0b x a y   in z -plane, z x iy  , into the 

closed ring 
1

0 0    , 0 /
exp

k

k
 

 
 
 

 in  − plane. 

Moreover, the transformation mapping (28) maps the region outside the plane Im 0z   to the region outside the semi-

ring 1

0 0 ,0        , or inside the semi-ring  1

0 0 , 0         . Also, the point ,z  will be mapped 

to 1    in  −plane. Moreover, the points outside the interval  ,b a will be mapped outside the ring
1

0    while  

outside the interval  ,a b  will be mapped inside the ring 0  . 

Assume, 

 
/

/ /ln , ,
K

u iv K u K K v K 


                                (32) 

Hence, we have 

 
/ /

ln ,
K K

u v 
 

         (33) 

Using (32) and (33) in (28), with the help of properties of elliptic function, we can have the parametric equations 

 

2 2 2 2 2 2

( ) ( ) ( ) ( )
,

1 ( ) 1 ( )

sn u cn iv dn iv cn u dn iv sn iv
x b y ib

k sn u sn iv k sn u sn iv
  

 
             (34) 

The linear coordinate u K  will cover the interval  ,a b  , while u K  covers the interval , .a b  For this, we 

have  , 1sn K k  , and the first formula of (34), after using the properties of the elliptic functions, see Whittaker et al.[19],  

takes the form:       

   
1

/ / /, ,x b dn v k K K


    
 

       (35) 

Also, the formula (35), with the properties of dn , can be adapted in the form 
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2 2 2
1

,
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x

b dt
v b x a

t k t
  

 
        (36) 

The formula (36) is hold only for b x a  and when x is changed from b to a , v will be changed from 0  to K  . For 

this, we define 

     
1 1

1 2, , , ,
K K

f f b dn k f f b dn k
 

    
 

              
               

            

            (37) 

Where,  1f  is defined inside 
0   and  2f  outside

1

0   . 

After the above discussion, the BVP (7) can be modified as 
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             (38) 

Where,    , ,V W x y   and ,x y are given by (34). 

Using the chain rule, we can write the equivalence condition in the final form as 
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                              (39) 

Now, we assume the solution of (38) in the form 

     1

0 0

1

, cos ln , ,n n
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n
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                    (40) 

Therefore, for determining the unknown constants , , ,n nA B C  and ,D  we assume 
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                            (41) 

 

From the second and third conditions of (38) and with the aid of (41), we have 

 

           
 

         

1 2 2 1
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                      (42) 

●Now we have the following two points of discussions: 

(1) The first discuss for a symmetric case, we have      1 2f f g    , hence we get 

       1 2

0 0, 0,1,2,... ; 0, lnn n nf f g n C D g P b         

Therefore, rewrite (42) to take the form 
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       1
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               (43) 

With the aid of the last conditions of equation (38) and the formula (43), we can directly determine the value of P in the 

form: 
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The values of n can be obtained, after using the famous relation, see [19] 
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    to get 
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Finally, using (44) in (39), the potential function  x , becomes 
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                          (46) 

where, the constant P is given by (44), and 's by (45), while the function  nT X  is the CP of the first kind. 

(2) The second discuss for a skew symmetric case, we assume 

     1 2
, 0,1,2,... .n n nf f h n               (47) 

In this case, the four constants of (42) and the constant P  of (44) become 

  0 0

0

, 1,2,... ; 0; , 0.
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                        (48) 

Also the corresponding of the two formulas of (43) and (47), respectively, become 

     10

0 0
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nK K
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and 
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1
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                         (50) 

Assume, in (49) and (50)    0, ; 1; 0,1,2,...m nh m n h n    , then, we can obtain the following SRs: 
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3.  Special and new relations of SRs:  

    Many spectral relationships, which have many applications in astrophysics, mathematical engineering and contact 
problems in the theory of elasticity, can be derived and established from this work: 

(I) the integral operator  
1 1
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  can be established if we consider, in (4), the following two 

cases: 
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We have, directly the following: 
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where, 
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In this case, the orthogonal relation will take respectively the forms 
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Differentiating (4) with respect to x , we get 
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where,  nU x is the CP of the second kind. 

Let, 0n  , in (57), we have 
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                          (58) 

The value of the integral (58) has many important applications in the contact problem when the kernel takes a Cauchy 

form.  

 Also, in  − plane we follow   
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Also, the orthogonal relation for the CPs of the second kind takes the form 
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(II) For the integral operator  
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for this, we have 
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also, we obtain 
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where, in (65), we assumed 
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If we differentiate (65) with respect to x we obtain many SRs of Cauchy kernel,  
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      , hence, after some algebra, we get 
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The integral operator (II) with the SRs (65), (67) can be adapted, in the Fourier integral sine or cosine forms, as the 

following:  
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and its inverse 
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     (69) 

This leads us to deduce the following important relations  
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The formulas (61) and (65)-(68) can be used with wide applications in the displacement problems of mechanics, see 
Aleksandrov et al.[6], Aleksandrov[13]  and Abdou [16]. 

In the spectral relationships (51), we assume  
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to obtain the following 
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where, 

 
 

 

 
   

2
2

2 2
2

0

cos , , 1 , cos ,
2 cosh cosh

2
, tanh , 1 , 2

2 cosh cosh
n

e du
X k k e Y

k u

nk ee du e k
n e k e

k n ku

 





  







 




  








 



     
 

 
     
    





            (73) 

Finally, for the interval b x a  , after assuming 
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we can obtain 

 

 

 

2 2 22 2 2

2 2 2 2

2 2 2 2

2 2

1 22
, 1 ,

21 1
ln .

2
ln , 0 .

nnb a

a b

b ab a
T nT d

a b n a b

a b
n

a b


 

    





      
   

      
   

     
 

                        (75) 

 

References 

[1] G. Ya. Popov, Contact Problem for a Linearly Deformable Base, Kiev-Odessa,1982. 

[2] E. K. Covalence, Some approximate methods of solving integral equation of mixed problem J. Appl. Math. Mech. 
53(1989) 85-92. 

[3] V. M. Aleksandrov, Asymptotic methods in the mechanics of continuous media problems with mixed boundary 
conditions, J. Appl. Math. Mech. Vol. 57(2) (1993) 321-327. 

[4] N. I. Muskhelishvili, Singular Integral Equations, Noordhoff, Amsterdam, 1953. 

[5] C. D. Green, Integral Equation Methods, Wiley, 1969. 

[6] V. M. Aleksandrov and E. V. Covalence, Problems in the Mechanics of Continuous Media with Mixed Boundary 
Conditions, Nuka Moscow, 1986. 

[7] J. Frankel, A Galerkin solution to a regularized Cauchy singular integro-differential equation, Quart. Appl. Math. XL VIII 
(4) (1995)741-753. 

[8] M. A. Abdou, Fredholm-Volterra integral equation with singular kernel, J.Appl. Math. Comput. 173, (2003), 231-243. 

[9] A. Dzhurave, Methods of Singular Integral Equations, London, N.Y,1992. 

[10] C. Constanda, Integral equation of the first kind in plane elasticity, J. Quart. Appl. Math. 53 (1995) 783-793. 

[11] I. Gakhberg and M. G. Krein, Volterra Operator Theorem in Hilbert Spase and Its Application, Moscow, 1967. 



ISSN 2347-3487 
 

622 | P a g e                                                             M a y  1 7 ,  2 0 1 4  

[12] M. A. Abdou and N. Y. Ezzeldin, Krein’s method with certain singular kernel for solving the integral equation of the first 
kind, Per, Math. Hung. Vol.28, No.2 (1994) 143-149. 

[13] V. M. Aleksandrov, Development of the Theory of Contact Problems in USSR, Nuka Moscow, 1976. 

[14] S. M. Mkhitarion, Spectral relationships for the integral operators generated by a kernel in the form of a weber-Sonien 
integral, and their application to contact problems, J. Appl. Math. Mech. 48(1984) 67-74. 

[15] M. A. Abdou, Integral equation and contact problem for a system of impressing stamps, Appl. Math. Comp. 
106(1999)141-148. 

[16] M. A. Abdou. O. L. Mustafa, Fredholm-Volterra integral equation in contact problem, J. Appl. Math. Compute. 
138(2003) 199-215. 

[17] M. A. Abdou, Spectral relationships for integral operators in contact problem of impressing stamps, J.Appl. Math. 
Comput. 118(2001),95-111. 

[18] M. A. Abdou, S. A. Hassan, Boundary value of a contact problem, PU.M.A, Vol. 5,No.3(1994) 311-316. 

[19] E. T. Whittaker and G. N. Watson, Course of Modern Analysis Cambridge University press, 1996. 

 

 

 

 

 

 

 

 

 

 

 

 

  


